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Abstract—This paper presents TopoFormer, a novel hybrid
deep learning architecture that integrates transformer-based en-
coders with convolutional long short-term memory (ConvLSTM)
layers for the precise prediction of topographic beach profiles
referenced to elevation datums, with a particular focus on Mean
Low Water Springs (MLWS) and Mean Low Water Neaps
(MLWN). Accurate topographic estimation down to MLWS is
critical for coastal management, navigation safety, and environ-
mental monitoring. Leveraging a comprehensive dataset from
the Wales Coastal Monitoring Centre (WCMC), consisting of
over 2000 surveys across 36 coastal survey units, TopoFormer
addresses key challenges in topographic prediction, including
temporal variability and data gaps in survey measurements. The
architecture uniquely combines multi-head attention mechanisms
and ConvLSTM layers to capture both long-range dependencies
and localized temporal patterns inherent in beach profiles data.
TopoFormer’s predictive performance was rigorously evaluated
against state-of-the-art models, including DenseNet, 1D/2D CNNs,
and LSTMs. While all models demonstrated strong performance,
TopoFormer achieved the lowest mean absolute error (MAE),
as low as 2 cm, and provided superior accuracy in both in-
distribution (ID) and out-of-distribution (OOD) evaluations.

Index Terms—Topographic Predictions, Transformers, LSTMs,
Coastal Monitoring

I. INTRODUCTION

Accurate topographic measurements are essential for coastal
applications such as flood risk assessment, erosion monitoring,
habitat mapping, and navigation safety. Among these, Mean
Low Water Spring (MLWS) levels are crucial as they define
coastal boundaries, influence sediment transport, and support
biodiversity studies in intertidal zones. For regions like Wales,
with its intricate and dynamic coastlines, reliable MLWS data
is vital for informed decision-making, especially in areas
prone to erosion, flooding, and ecological changes [1, 2].
However, environmental and logistical challenges—such as
adverse weather, high wave energy, and inaccessible shallow
slopes—often hinder the collection of complete MLWS data,
leaving gaps in surveys that can undermine topographic anal-
ysis and coastal management efforts [3, 4].

To bridge these data gaps, researchers have turned to
historical coastal records and advanced machine learning
(ML) methods. Time series models, such as Long Short-
Term Memory (LSTM) networks and emerging transformer-
based architectures, have shown exceptional performance in
capturing complex temporal dependencies and variability in

trend prediction similar to topographic beach profiles [5, 6].
These approaches enable robust extrapolation of beach pro-
files, address missing data that do not reach MLWN/MLWS
and improve the accuracy of topographic predictions. Build-
ing on this foundation, this study introduces TopoFormer, a
transformer-based architecture designed to predict topographic
beach profiles referenced to MLWS and other low-water
datums using surveys from 36 Welsh coastal sites provided
by the Wales Coastal Monitoring Centre (WCMC - Data Plat-
form (https://www.wcmc.wales/data). By integrating state-of-
the-art techniques with diverse coastal datasets, TopoFormer
provides a scalable and adaptable solution to improve coastal
monitoring and management practices.

II. RELATED WORKS

Coastal monitoring involves observing and analysing coastal
environments to understand and predict changes. Traditional
methods, such as topographic surveys and tide gauge measure-
ments, provided accurate insights but were labour-intensive
and time-consuming. Modern advancements, including remote
sensing, LiDAR, GIS, and auditory techniques like sonar, have
revolutionized coastal monitoring. These technologies enable
large-scale, real-time data collection, detailed topographic and
bathymetric mapping, and the integration of diverse datasets
for uncovering spatial patterns and trends[7].

Recent research has contributed significantly to advancing
our understanding of coastal dynamics, water quality, and
sediment transport, although several limitations remain. Han-
nides et al. [8] assessed U.S. beach water quality monitoring
programs, demonstrating their effectiveness in maintaining
water safety but focusing solely on water quality without
addressing sediment transport or beach morphology. Similarly,
Thakur and Devi [7] reviewed advances in water quality
monitoring devices, emphasizing materials and technological
perspectives but neglecting sediment-changing aspects and
coastal morphological processes.

Suanez et al. [9] provided an in-depth analysis of morpho-
logical dynamics during extreme water level events over 17
years of beach and dune monitoring. While valuable, their
work lacks integration with predictive models or technologies
to forecast future coastal dynamics. Banno [10] contributed
by utilizing long-term in-situ monitoring data to understand
coastal changes, yet the study did not leverage advanced

https://orcid.org/0000-0001-8009-9319
https://www.wcmc.wales/data


technologies like UAVs or acoustic monitoring for enhanced
precision. Meng et al. [11] conducted experimental studies on
beach profile evolution under various nourishment methods,
offering critical insights but limited by their reliance on
controlled experimental conditions that do not fully replicate
real-world complexities.

Pang et al. [12] conducted a comprehensive review of
coastal erosion processes and their modelling in the context
of climate change, highlighting significant factors but without
integrating predictive technologies for future dynamics. Oliver
et al. [13] and Cantelon et al. [14] examined intertidal spring
dynamics and coastal nutrient loading through geophysics,
drone surveys, and in-situ monitoring. Although these studies
advanced understanding of nutrient loading and groundwater
dynamics, they offered limited insights into sediment transport
processes and their management implications. Smith et al.
[15] explored tidal pumping and intertidal springs’ impact
on coastal lagoon thermal variability, but their study did not
extensively address nutrient loading or sediment dynamics.

The dynamic nature of coastal environments demands in-
novative approaches to monitoring and prediction, yet existing
methodologies often fall short in addressing the interconnected
challenges of data limitations, operational constraints, and
holistic management. Coastal studies often focus narrowly on
aspects like water quality or erosion, neglecting a holistic
view of coastal dynamics. The lack of advanced predictive
models and integration of technologies limits the ability to
address complex challenges. Additionally, current topographic
beach profile surveys are generally constrained to MLWS
levels, restricting data collection to about 31.6 days annually
and increasing operational risks and costs. Expanding data
collection to the MLWN datum, where over 300 survey days
are viable, could alleviate these issues. TopoFormer addresses
these challenges by introducing a transformer-based deep
learning architecture to predict topographic beach profiles
between MLWN and MLWS datums. Leveraging over 2000
historical surveys from Welsh coasts, it bridges data gaps, en-
hances predictive accuracy, and offers scalable solutions. This
approach mitigates survey risks, reduces costs, and contributes
to broader coastal monitoring and management strategies.

III. THE PROPOSED METHODOLOGY

A. Beach Profiles

Beach profiles are 2D measurements of elevation and dis-
tance (chainage) along a pre-determined line. It is measured
from the back of the beach such as a sea wall and extend
seaward until the MLWS elevation is reached (this is known as
a vertical datum). An example profile and its satellite imagery
representation are shown in Figure 1. Over time beach profiles
are repeated and their changes can be compared in a graph.
The four vertical datums and the ’back of beach’ chainage are
used to calculate cross sectional area (see Figure 1).

The four vertical datums are: (1-2) MHWS (Mean High
Water Spring) and MHWN (Mean High Water Neap) are
the average heights of high waters of the spring and neap
tides, respectively. (3-4) MLWN and MLWS are, on the other

Fig. 1. (LEFT) Example profile for Whitmore Bay with low and high mean
tidal datums and MLWN-based CSA. (RIGHT) Satellite imagery of Whitmore
Bay showing survey units and the example survey point.

hand, the average height of low waters of the neap and spring
tides, respectively. Cross Sectional Area (CSA) is the area
underneath the profile line from the back of the mobile beach
to a specific vertical datum e.g. MLWN. All four datums and
CSA examples are shown in Figure 1.

B. TopoFormer

TopoFormer is a hybrid LSTM-Transformer-based architec-
ture developed to accurately predict topographic beach profiles
referenced to mean-water datums by combining the strengths
of transformers and ConvLSTM layers, TopoFormer captures
both long-range dependencies and localized temporal trends,
making it a novel approach in time-series prediction for tidal
applications. The model processes beach profile data in the
form of sequential elevation-chainage pairs. These pairs are
normalised to ensure compatibility across diverse datasets,
enabling TopoFormer to generalize across multiple coastal
locations and adapt to varied tidal characteristics.

The model begins with six layers of transformer blocks,
each designed to capture long-range dependencies in the
profiles. Each transformer block consists of the following: (i)
Multi-Head Attention: dynamically assigns weights to different
parts of the input sequence, prioritizing critical regions such
as those near MLWN and MLWS. (ii) Layer Normalization:
ensures stable gradient flow and faster convergence during
training. (iii) ConvLSTM Layers: four ConvLSTM layers
within each transformer block capture localized temporal
and spatial dependencies, which is particularly important for
understanding subtle variations in tidal profiles.

After the transformer blocks, the output is passed to a multi-
layer perceptron (MLP) consisting of two fully connected
layers, designed to refine the predictions further. Finally, a
dense layer generates the predicted elevation values corre-
sponding to the chainage points, ensuring that the output
aligns with the expected trends. The model is trained using
a Mean Absolute Error (MAE) loss function, and the Adam
optimizer is employed with an initial learning rate of 1×10−3.
Training stability is maintained through early stopping, and the
monitoring is done using the validation loss.

TopoFormer introduces key innovations that set it apart from
traditional and deep learning-based topographic prediction
methods: (i) it combines ConvLSTM layers with transformer
blocks, effectively capturing both long-range dependencies



Fig. 2. (LEFT) TopoFormer, and (RIGHT) Transformer block details.

and localized temporal trends; (ii) this integration enables
simultaneous handling of spatial and temporal variations,
crucial for this prediction tasks; (iii) its attention mechanism
focuses on critical regions like MLWN and MLWS, ensuring
high precision where it matters most; (iv) with only 761K
trainable parameters, TopoFormer is computationally efficient
and scalable; and (v) its modular design supports integration
with additional data modalities, such as satellite imagery and
meteorological data, for comprehensive coastal monitoring.

Figure 2-(LEFT) illustrates the sequential architecture of
TopoFormer, showing its transformer blocks, MLP layers, and
the final dense layer. Figure 2-(RIGHT) provides an expanded
view of the individual transformer block, highlighting the
multi-head attention mechanism, ConvLSTM layers, and layer
normalization.

IV. EXPERIMENTAL ANALYSIS

A. Dataset

The dataset used in this study consisted of 2,757 profile
measurements provided by the WCMC. After preprocessing
to address missing measurements, the total number of usable
profiles was reduced to 1,366. These profiles were selected
based on their ability to reach MLWS across 33 different
coastal locations in Wales. The dataset was divided into
training, validation, and testing subsets in a 7:2:1 ratio to
ensure consistent evaluation across all models. To standardize
the profiles for model processing, each profile was resampled
into 100 elevation-chainage pairs and was represented as an
array of size (180,), where the first 80 elevation samples (ex-
tending down to MLWN) and all 100 chainage samples were
included as input features. The remaining 20 elevation samples
(below MLWN to MLWS) served as prediction targets. To
account for varying geographical profiles, chainage values
were adjusted such that the 0m elevation point corresponded to
a chainage value of 0m. Negative chainage values represented
points at higher elevations above sea level, while positive

TABLE I
MODEL PERFORMANCE COMPARISON IN TERMS OF MAE, RMSE AND

NUMBER OF TRAINABLE PARAMETERS. (BOLD AND UNDERLINED
VALUES REFER TO THE BEST AND 2ND BEST MODELS, RESPECTIVELY.)

Model MAE RMSE Trainable
Params

DenseNet 0.133 0.164 253K
LSTM 0.031 0.038 387K
biLSTM 0.062 0.070 186K
ConvLSTM 0.034 0.038 984K
1D-CNN 0.054 0.064 2,981K
2D-CNN 0.040 0.048 799K
TopoFormer 0.021 0.026 761K

chainage values corresponded to points below sea level. This
preprocessing ensured a consistent spatial alignment across all
profiles, facilitating robust model training and evaluation.

B. Experiments & Results

The experimental analysis evaluated the performance
of TopoFormer against several baseline models, including
DenseNet, LSTM, bi-LSTM, ConvLSTM, and 1D/2D-CNNs.
The comparison was conducted using test data and focused
on key performance metrics: MAE, Root Mean Square Error
(RMSE), Mean Absolute Percentage Error (MAPE), and the
number of trainable parameters. To further assess the robust-
ness of TopoFormer, the analysis was extended to include
predictions on out-of-distribution (OOD) data. Specifically,
TopoFormer and the two best-performing baseline models
were tested on profiles that did not reach MLWS for a selected
survey site. This final evaluation highlighted the models’
ability to generalize to incomplete or unseen data, a critical
aspect in real-world coastal monitoring applications.

The performance comparison, as summarized in Table I,
demonstrates the clear advantages of the proposed TopoFormer
model in terms of prediction accuracy and computational
efficiency. Among all the models evaluated, TopoFormer
achieved the lowest values for both MAE (0.021) and RMSE
(0.026), indicating its superior ability to predict topographic
elevations with high precision. While models such as LSTM
and ConvLSTM performed well, with MAE and RMSE values
of 0.031 and 0.034, respectively, they fell short of matching
the accuracy achieved by TopoFormer. Notably, the biLSTM
model had the smallest number of trainable parameters (186K),
but its MAE and RMSE metrics (0.062 and 0.070) were
significantly less competitive, illustrating a trade-off between
model complexity and prediction accuracy. Furthermore, Topo-
Former maintained a balanced architecture with 761K trainable
parameters, which is competitive when compared to other
models. For example, ConvLSTM, while comparable in error
metrics, was substantially more computationally intensive with
984K parameters. Although LSTM achieved the second-best
MAE (0.031) and RMSE (0.038), it required fewer param-
eters (387K) compared to TopoFormer (761K). Models like
1D-CNN and 2D-CNN, with trainable parameters reaching
2,981K and 799K, respectively, highlighted the significant



Fig. 3. Elevation predictions for MLWN-MLWS range for all models.

Fig. 4. MAPE box-plots for test set with 75% quantiles highlighted.

computational demand of convolutional architectures without
delivering better accuracy.

Figure 3 compares the prediction performance of all models
for an example profile. While this visual analysis indicates
that all models perform similarly, the zoomed-in section re-
veals TopoFormer’s accuracy in predicting the range between
MLWN and MLWS. This highlights TopoFormer’s capability
to capture subtle but critical variations in beach profiles,
making it particularly effective for accurate topographical
mean low-water predictions. Figure 4 provides a box plot
of the MAPE for all models, offering descriptive statistics to
evaluate their performance distributions. TopoFormer exhibits
the lowest MAPE across all statistical metrics, with a notably
low 75th percentile value of 1.6748, compared to LSTM’s
2.4238 and ConvLSTM’s 2.4287. Furthermore, TopoFormer
achieves the smallest minimum and 25th percentile values,
demonstrating its consistent accuracy and robustness across
the dataset.

The results strongly advocate for TopoFormer’s utility in
topographic prediction tasks, as it combines exceptional accu-
racy with a manageable number of parameters. Its ability to
outperform traditional models and even deep-learning-based
baselines validates the effectiveness of its transformer-based

Fig. 5. OOD elevation predictions down to MLWS with comparison to
average profile from actual profile measurements.

design for this application. By addressing the shortcomings
of existing approaches, TopoFormer represents a meaningful
advancement in topographical prediction and offers a robust
solution for real-world coastal monitoring challenges.

For the final analysis, an out-of-distribution (OOD) profile
with measurements reaching only MLWN was used to eval-
uate the predictive performance of the three best-performing
models: TopoFormer, LSTM, and ConvLSTM. The objective
was to predict elevations down to MLWS for this profile.
Since no ground truth exists for this specific date, an average
profile derived from existing measurements between MLWN
and MLWS was used as a reference for comparison. As
illustrated in Figure 3, all three models demonstrated strong
performance in predicting the OOD profile. However, Topo-
Former consistently provided predictions that closely aligned
with both the average trend and the elevation-chainage pair of
MLWS. This highlights TopoFormer’s superior generalization
capability, as it is able to effectively capture coastal dynamics
even for profiles outside the training distribution.

V. CONCLUSIONS

This study introduced TopoFormer, a transformer-based
deep learning model for topographic prediction tasks, demon-
strating its ability to outperform traditional and state-of-the-
art models on various metrics, including MAE, RMSE, and
MAPE. Its transformer-based architecture proved effective in
predicting both in-distribution and out-of-distribution profiles,
showcasing its robustness and adaptability. By addressing key
challenges in topographic prediction, TopoFormer offers a
practical solution for coastal monitoring and management.

For future work, combining satellite imagery with survey
data within a multi-modal AI framework could further enhance
predictive accuracy and provide richer insights into coastal
dynamics. Additionally, the geo-informed development of ad-
vanced machine learning techniques tailored to topographic
prediction could unlock even greater potential for addressing
complex coastal challenges.
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