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ABSTRACT

Faces provide crucial input for early development. This study leveraged innovations in wearable head-mounted cameras
(headcams; specifically, TinyExplorer gear) and automated face detection (RetinaFace) to characterise the everyday visual
availability of faces during playtime in the home environment across the first years. Using a cross-sectional developmental
trajectory design, we collected egocentric headcam data from 29 young children across the first 3 years of life (2-30 months).
The dataset comprised 1,891 minutes of video (over 5.5 million frames). We examined cross-sectional developmental trajectories
in face availability, spatial distribution, size and size variability. We observed distinct non-linear changes in face availability across
three vertically defined regions of the egocentric video (bottom/middle/top). In early infancy, faces were most common in the
middle, with an initial steep decline followed by a modest increase after the first year. In the top region, during the second year,
face presence increased and then decreased. The bottom region consistently showed low face presence. These findings suggest that
the availability of faces is not only age-dependent but also region-specific, reflecting dynamic reorganisation of everyday visual
input. Additionally, face size variability was greater in younger infants, consistent with caregiver-driven interactions. We interpret
our findings in the context of emerging motor abilities. By focusing on a specific activity (playtime), this study demonstrates
how nuanced patterns can be detected using shorter recordings than in previous studies—enabling scalability and inclusivity
of naturalistic research. These results offer new insights into early face availability and demonstrate the value of integrating
naturalistic methods with automated analysis to advance developmental theory.

1 | Background centric visual experiences of faces in everyday environments have

emerged as an important area of inquiry only more recently. The

Faces play a fundamental role in early development, shaping
visual attention, social learning and caregiver-infant interactions.
From birth, infants exhibit a preference for face-like stimuli,
which has been proposed to scaffold perceptual, cognitive and
social development (Grossmann and Johnson 2007; Morton and
Johnson 1991). Although there has been extensive research on
face perception and social learning (for review, see Michel and
Thiele 2025; Pascalis et al. 2011; Scott and Arcaro 2023), the ego-

availability of lightweight head-mounted cameras (headcams;
Smith et al. 2015) in the past decade or so has provided novel
opportunities to directly explore and characterise everyday face
availability from the infant’s own visual perspective.

To date, headcam studies of face availability typically fall into
two categories, distinguished by their data collection context:
home-based and lab-based. Most headcam studies are based in
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Summary

* The availability of faces in egocentric views across the
first 3 years shows non-linear changes that vary by spatial
region of the visual scene.

* Context-constrained (playtime) egocentric recordings
reveal subtle changes using relatively short recordings,
facilitating more accessible head-mounted camera data
collection.

* Integration of head-mounted cameras and automated face
detection enables the scalable, spatially sensitive analysis
of the real-world visual availability of faces across the first
years.

less structured, naturalistic home environments. Caregivers are
typically asked to record 4-6 hours of video, capturing various
everyday activities when infants are awake and alert. Using
this design, cross-sectional studies generally report a significant
decline in the proportion of faces in infants’ visual scenes between
1 and 24 months (Fausey et al. 2016; Jayaraman et al. 2015).
This decrease appears to be especially pronounced in the first
4 months of life (Jayaraman et al. 2013, 2015; Jayaraman et al.
2017; Jayaraman and Smith 2019; Sugden et al. 2013), a period
during which infants’ visual scenes tend to contain many close-
up, upright faces (Jayaraman et al. 2015; Sugden and Moulson
2017). However, Long, Kachergis et al. (2022) captured a similar
developmental pattern in a longitudinal study with even older
infants (6-32 months, three infants tested weekly, SAYCam
dataset; Sullivan et al. 2021). In contrast, a different pattern
emerged in a cross-sectional lab-based study by Long, Sanchez
et al. (2022), in which parents were instructed to play with pre-
selected objects as they typically would for 15-20 minutes. Albeit
with a narrower age range (8, 12 and 16 months), this study did
not replicate the developmental pattern of a decreasing presence
of faces in visual scenes across age. If anything, a subtle U-shaped
trajectory for face availability was observed, with 12-month-olds
encountering slightly fewer faces in their visual scenes compared
to 8- and 16-month-olds.

In the current study, we aimed to reconcile these disparities by
bridging the gap between less structured home studies and more
structured laboratory investigations (for a discussion, see D’Souza
and D’Souza 2024). To achieve this, we instructed caregivers to
record headcam footage specifically during playtime (similarly
to Long, Sanchez, et al. 2022) but situated within their natural
home environments (similarly to Jayaraman et al. 2013, 2015,
Jayaraman et al. 2017; Jayaraman and Smith 2019; Long, Kacher-
gis, et al. 2022; Sugden et al. 2013). By strategically constraining
certain contextual variables (in this case, type of activity) while
preserving the ecological validity of home settings, our approach
may provide an opportunity to detect subtler changes in the
everyday visual availability of faces across the first years. Beyond
mapping changes across age, we are interested in how these
might coincide with the emergence of new motor abilities, such as
transitions from lying to sitting and to independent locomotion,
which may modulate the availability of faces in infants’ visual

scenes (Franchak et al. 2011, 2017; Karasik et al. 2013; Yamamoto
et al. 2020).

Building on recent advances in headcam technology (e.g.,
BabyView by Long et al. 2023; EgoActive by Geangu et al. 2023),
we designed the TinyExplorer gear (Nikolov et al. 2024, https://
osf.io/95wvn/; see Figure 1a,b) to fulfil the needs of the current
study. This gear specifically prioritises lightweight modularity
(allowing the headcam to be integrated with various hats and
headbands) and ease of use, while maintaining high video and
audio quality. Crucially, the TinyExplorer gear has a horizontal
field of view (FOV) of 80° and a vertical FOV of 116°. Whilst
this is comparable to the headcam studies reviewed above in
the horizontal plane, it captures around three times as much
FOV in the vertical plane (see Figure 2 for details). This enables
us not only to replicate prior studies (by examining the middle
region) but also to extend them in a key way: By examining how
the distribution of faces across different regions of the footage
(bottom, middle, top) shifts with age. Finally, to process the
recordings, we employed the state-of-the-art RetinaFace face-
detection algorithm (Deng et al. 2020). RetinaFace automatically
detects faces in egocentric views of infants and young children
with high accuracy (Nikolov et al. In press), while also seamlessly
extracting additional valuable data: face size and position within
each frame (see Figure 1c).

Taken together, by balancing ecological validity with method-
ological control, we leverage hardware and software innovations
to characterise the availability of faces during contextually
structured activity (playtime) within naturalistic home environ-
ments, integrating existing literature. Furthermore, exploring
developmental patterns through the lens of emerging motor
abilities offers further insights into the mechanisms driving
developmental changes in infants’ visual scenes.

2 | Methods
2.1 | Participants

We analysed data from 29 infants and toddlers, aged 2-30 months
(M = 16.0, SD = 8.4). Demographic information (following
D’Souza et al. 2020; see Table 1) was collected from caregivers
via a phone/online interview. Inclusion criteria were as follows:
(1) being from monolingual English-speaking households (>95%
English; 3 excluded); (2) no diagnosed neurodevelopmental con-
dition; and (3) contributing at least 40 minutes of usable footage
(two-thirds of the 1-hour target; two excluded).

Participants were approached through existing databases and
opportunity sampling, including via social media, leaflets in local
nurseries, events and word-of-mouth. Families were recruited
with the goal of including one child at each monthly age point.
We aimed to test each child within +7 days of their monthly age
mark to ensure balanced sampling across the early developmental
period. In four cases, due to family circumstances, participants
were tested outside the target window but were successfully
replaced. Two additional participants started recording slightly
outside the window (+1 day and +2 days) and despite multiple
attempts, could not be replaced before the study end date; these
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FIGURE 1 | (a) TinyExplorer headband configuration suitable for younger infants; (b) TinyExplorer soft helmet configuration suitable for older
infants and toddlers; (c) an example video frame with automated face detection output using RetinaFace; the number on the image shows the face

detection confidence value.
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FIGURE 2 | Field of view (FOV) comparisons across selected headcam studies: (a) current study (TinyExplorer gear; Nikolov et al. 2024, https://
osf.io/95wvn/); (b) Fausey et al. (2016), Jayaraman et al. (2015), Jayaraman et al. (2017), Jayaraman and Smith (2019); (c) Long, Sanchez et al. (2022); (d)
Long, Kachergis et al. (2022). Blue rectangles indicate the FOV of the current study, while grey dashed rectangles represent the FOV reported in each

respective study. Illustrative scene is Al-generated.

children were retained in the final sample, and their inclusion did
not alter the results.

Families were given a small gift (e.g., a T-shirt, a book) and a
£10 multi-retailer gift voucher in return for their participation.
In addition, participants with initially insufficient recording
duration (n = 8) were invited to provide an extra recording and
received an additional £5 voucher. Ethical approval was obtained
from Cardiff University School of Psychology Ethics Committee
(EC.23.08.08.6821GRA). Informed consent was obtained from
caregivers.

2.2 | Procedure
2.2.1 | TinyExplorer Gear

The TinyExplorer gear (Nikolov et al. 2024, https://osf.io/95wvn/;
see Figure 1a,b), custom-assembled headcam system, was used
to record egocentric video data. The camera recorded at 50
frames per second (more individual frames within the same
time period means that each frame captures a smaller portion
of the movement, resulting in less blur). The analysed videos
were vertically oriented (1080 X 1920 pixels; 9:16 aspect ratio)
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TABLE 1 | Participant characteristics.

Characteristic Value
Sample size 29
Child age (months) 2-30; M =16.0, SD = 8.4
Child sex
Female 14
Male 15
Child ethnicity
White 27
Black 0
Asian 0
Mixed 2
Other 0

26-45; M =34.1,SD =4.5

25-54; M = 35.3,SD = 5.7
(one missing)

1-3; Mdn = 2.0, IQR =1.0
2-4; Mdn = 2.0, IQR = 0.0

Primary caregiver age (years)

Secondary caregiver age (years)

Children in household
Adults in household

Highest caregiver education

Postgraduate degree 18
Undergraduate degree 9
Vocational/College 2
A-levels 0
Secondary education 0

Highest caregiver occupation

Managers, directors, senior 9
officials

Professional occupations 8

Associate 8

professionals/Technical
Administrative/Secretarial
Skilled trades
Caring/Leisure/Service

Sales/Customer service

— O O N =

Process/Plant/Machine
operatives
Elementary occupations 0
32,000-160,000; Mdn =
71,000, IQR = 34,000 (two
missing)

Household income (£)

with a horizontal FOV of 80° and a vertical FOV of 116° (see
Figure 1c).
2.2.2 | Video Recordings

Two ready-to-use TinyExplorer gears were posted to each family’s
home. Caregivers were instructed to put the TinyExplorer gear

on their child’s head and record until the camera runs out of
battery (~30 minutes per camera; ~1 hour across two cameras).
Instructions were provided on how to pause the camera if
necessary. Families were asked to record at home on a typical day
during playtime, when the child was ‘at their best’, and outside of
meal and nap times. After the equipment was posted back, videos
were exported and clipped to exclude segments with prolonged
physical interference (e.g., touching or adjusting the camera or
helmet for more than 5 seconds), significant misalignment of the
camera view, or visible nudity beyond what would typically be
seen at a public beach. Brief or minor physical interference that
did not affect footage centrality were retained. Clipped sections
accounted for a median of 4% of the total video duration per
participant (IQR = 22.5%, range = 0%-80%). This resulted in a total
of 5,673,918 usable frames across all participants (Mdn = 179,474;
IQR = 43,939, range = 120,225-339,648). Finally, for all analyses,
each frame was segmented into three parts (bottom, middle, top)
to enable alignment of FOV with existing studies (see Figure 2).

2.23 | Motor Milestones

Within seven days of receiving the headcam equipment, care-
givers completed a phone/online interview. This included ques-
tions about key motor milestones: sitting without support, stand-
ing with assistance, crawling on hands and knees, walking with
assistance, standing alone and walking alone (WHO Multicentre
Growth Reference Study Group 2006). Caregivers retrospectively
reported the age in months at which their child first demonstrated
these motor milestones. We calculated experience with each
motor ability by subtracting the age at which they achieved the
milestone from the child’s current age.

2.3 | Automated Annotation of Faces in Child’s
View

An automated face detection algorithm, RetinaFace (Deng et al.
2020), was applied to all frames to detect faces, outputting for each
detection four coordinates defining the rectangular face region. A
confidence threshold of 0.9 was used, meaning the model must be
at least 90% certain in its prediction before labelling a region as a
face. The algorithm and threshold choice were informed by our
validation study (Nikolov et al. In press). In this validation study,
we manually annotated a subsample of the same naturalistic
playtime headcam data from 10 participants (age range 18-29
months; 34,013 frames), six of whom were also included in the
current study’s sample. The validation achieved 97% precision
and 78% recall, with a tendency to slightly underestimate the
proportion of faces relative to manual annotation. In the current
study, applying this validated pipeline to the full dataset resulted
in 19.63% of frames containing at least one face.

3 | Analytical Approach

To investigate whether face availability, face size and face size
variability changed with age and frame area, we divided each
frame into three equally sized areas (bottom, middle, top). Faces
were assigned to an area based on the vertical position of the
centre of the bounding box. First, we evaluated whether recording

4 0f10

Developmental Science, 2026

85USD17 SUOWILLOD BAIERID 3|qed!(dde aup Aq peusenob o/ 3N YO 138N JO S3IN. 0} ARIqIT BUIIUO /B]1M UO (SUORIPUOD-PUE-SWUBIALIOD" A3 1M ARRIq1BUIIUO//SARY) SUORIPUOD PUE SR L U3 885 *[9202/T0/8Z] U0 ARIqIT3UIUO AB|IMW S0UB|[0X3 9180 PU UIESH 104 31musu| UoN ‘IOIN A9 TZTOL 9SSP/TTTT OT/I0p/wod™Ae |Im AReid 1)Ul juo//Sdny wo.y papeoumod ‘Z ‘9202 ‘£89LL97T



duration was related to any of the variables of interest listed above,
overall and for each frame area. Spearman’s rank correlations
indicated that none of these relationships were significant (7,s
< 0.36, all ps > 0.05). Therefore, duration was not included
in the following analyses for parsimony. Second, we fit both
linear and generalized additive models (GAMs) to compare a
literature-grounded linear trajectory (e.g., Fausey et al. 2016) with
a more flexible, data-driven smooth curve (e.g., Long, Kachergis,
et al. 2022). For these analyses, we used the mgcv package in R
(Wood 2023). Linear models tested straightforward developmen-
tal hypotheses, whereas GAMs captured potential non-linearities.
Smooth terms were modelled using thin-plate regression splines
(Wood 2017, 2023). We began by fitting a linear model with
age (in months), frame area (bottom, middle, top) and their
interaction. We then fitted a second linear model, without the
interaction term, to assess whether model fit changed. Following
the same approach, we used smooth GAMs to explore potential
non-linear effects. We first fitted a smooth GAM with interaction,
allowing separate smooth functions of age for each frame area,
and then fitted a second model with a single smooth term for
age. The basis dimension was set to k = 10 for each smooth.
Basis dimension diagnostics (Wood 2017) revealed low k-indices
and significant p values; however, estimated degrees of freedom
(edf) remained well below the basis limit (k’ = 9), with a highest
value of 5.22, indicating no evidence of overfitting. Therefore, k
= 10 was retained for interpretability and parsimony. All models
were first fitted using restricted maximum likelihood (REML)
to report model fit statistics (adjusted R?, deviance explained,
AIC). For model comparisons, we refitted models with maximum
likelihood (ML). Comparisons were conducted sequentially: (1)
linear models with versus without the interaction; (2) smooth
models with versus without the interaction; and finally, (3) the
best-fitting linear model compared with the best-fitting smooth
model. We compared nested models using likelihood ratio y*
tests for parametric terms and F-tests when models differed in
smooth terms. Model fit was further evaluated using deviance
explained, AIC and adjusted R? to identify the best-fitting models.
In the Results section, we report only the best-fitting models
to streamline the text, while Supporting Information (Sections
SI1-SI3) provides full comparison details, including parametric
coefficients, smooth terms and model diagnostics. Finally, we
conducted Mann-Whitney U tests to explore differences between
motor milestone-defined groups, with statistical details provided
in Supporting Information (Section SI4).

4 | Results

4.1 | Presence of Faces in the Child’s View Across
Age and Frame Area

The best-fitted model explaining changes in the proportion of
frames occupied by faces (see Figure 3a) was the smooth GAM
with interaction (Figure 3b). This model explained 68.2% of the
deviance, with an adjusted R? of 0.63, and an AIC of —295.7.
In this model, the fixed effects for the frame area comparisons
were significant (middle compared to bottom: b = 0.06, SE =
0.01, t = 5.81, p < 0.001; top compared to bottom: b = 0.10, SE
= 0.01, t = 9.76, p < 0.001). As the bottom area was designated
as the reference level in our models, we conducted pairwise
comparisons using estimated marginal means (via the emmeans

package; Lenth et al. 2025) to directly contrast the middle and top
areas, revealing a significant difference: b = —0.10; SE = 0.02, ¢
= —4.55, p < 0.001. The spline-based smooth terms for age were
statistically significant for the middle (edf = 4.05, F = 6.88, p <
0.001) and top (edf = 5.22, F = 2.84, p = 0.013) areas, but not for
the bottom area (edf = 1.00, F = 0.28, p = 0.598) (see Figure 3b).

Taken together, as illustrated in Figure 3b, the results indicate
differential changes in the three areas of the frames across age.
Specifically, in the bottom area, there was no change in the
proportion of faces across age. The middle area demonstrated a
non-linear change, characterised by an initial steep decrease in
the proportion of frames with faces, followed by a slight increase
in the presence of faces in this region after the first years of life.
In the top area, most change was concentrated in the second year
of life, showing an increase followed by a decrease.

4.2 | Size of Faces in the Child’s View Across Age

We employed GAMs to examine whether the size of faces differs
across age (Figure 4a). None of the effects in any of the models
reached statistical significance (p > 0.05). In other words, the
median size of faces did not differ across frame areas or age.
Building on this, we next examined whether the variability of face
size changes across age and area (Figure 4b). To carry out these
analyses, for each frame, the face area (bounding box) was first
normalised by the area of the frame region (1080 X 640 pixels)
and then log-transformed to improve the normality of the data
distribution. The coefficient of variation (CV) was computed for
each age (in months) and frame area (bottom, middle, top) as the
standard deviation of the log-transformed values divided by their
mean. The linear model without the interaction showed the best
fit (see Figure 4b). This model explained 9.54% of the deviance,
with an adjusted R? of 0.063, and an AIC of —132.81. There was a
significant effect of age (b < 0.01, SE < 0.01, t = —2.41, p = 0.018).
The differences between the bottom and middle (b = 0.04, SE =
0.03, t =1.51, p = 0.134) and bottom and top (b < 0.01, SE = 0.03, t
= 0.06, p = 0.949) areas were not significant. As the bottom area
was designated as the reference level in our models, we conducted
pairwise comparisons using estimated marginal means (via the
emmeans package) to directly contrast the middle and top areas—
this was not significant (b = 0.04, SE = 0.03; t = 1.45, p = 0.151).
Overall, these findings suggest that variability in the sizes of
faces in view decreases significantly with age, regardless of area,
and that this change is best captured by a linear function (see
Figure 4b).

4.3 | Visualising Motor Milestones

The non-linear changes in the proportion of faces in the middle
and top sections of frames identified above (Figure 3) suggest
multiple points of re-organisation during the first years of life.
In this section, we explore the possibility that these may be
associated with emerging motor abilities. In Figure 5, we provide
visualisations aligning motor milestones with the proportion of
faces in the top and middle sections of frames (as areas in which
changes were detected; see above). Early on, there appears to
be a notable decrease in the proportion of faces in the middle
section of frames (Figure 5b), broadly corresponding to gaining
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expertise with independent sitting (Figure 5c). This period is 5 | Discussion

followed by a gradual increase, particularly in the top area,

observed at the onset of independent walking (Figure 5a-c). The current study extends previous research by integrating recent
Additionally, Figure 5d,e visualises data categorised into pre- innovations in wearable headcam technology (TinyExplorer

sitters, independent sitters and independent walkers. Although  gear; Nikolov et al. 2024, https://osf.io/95wvn/) and advanced
preliminary non-parametric Mann-Whitney U tests were not  machine-learning algorithms (RetinaFace; Deng et al. 2020) to
significant (Supporting Information, Section SI4), this analysis ~ examine the everyday availability of faces in a playtime context
remains purely exploratory due to the extremely small group  in the first years of life, with the aim to integrate the exist-
sizes. However, we hope these visualisations may inspire future  ing literature. This approach revealed nuanced changes in the
hypothesis-driven studies. availability of faces across age, particularly highlighting distinct
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FIGURE 5 | (a)Proportion of frames with faces across age in the top frame area, each bar corresponds to a participant; (b) proportion of frames with
faces across age in the middle frame area, each bar corresponds to a participant; (c) motor milestones, each rectangle corresponds to one motor milestone
for a particular participant. White indicates the ability has not yet emerged, grey indicates it has. Shading reflects experience with the ability (lighter to
darker = less to more experience), calculated as the difference between the child’s current age and the age at which they achieved the milestone. For
example, the 8-month-old infant in this study had only recently begun sitting without support and standing with assistance, so their boxes are lighter,
whereas the 29-month-old had much more motor experience, reflected in darker boxes; (d) data from (a) organised by motor ability group (pre-sitters,
sitters, walkers); (e) data from (b) organized by motor ability group (pre-sitters, sitters, walkers). Pre-sitters = unable to sit or walk; sitters = able to sit

but unable to walk; walkers = able to sit and walk. Illustrative infant images are Al-generated.

developmental trajectories across frame areas within the child’s
visual scenes, as well as decreases in the variability of face
sizes. These results refine our current understanding of the early
visual availability of faces (Fausey et al. 2016; Jayaraman et al.
2015; Long, Kachergis, et al. 2022; Long, Sanchez, et al. 2022),
and align with the view that constraining the type of activity
within the home environment may enable us to observe subtler
developmental patterns.

Using a headcam with a wider vertical FOV than is typical in
prior studies (see Figure 2) enabled us to carry out an analysis
of the spatial distribution of faces across the top, middle and
bottom sections of the frame. As the middle section is the
most directly comparable to regions examined in earlier work,
it allowed us to integrate our work with existing findings, whilst
also examining the availability of faces in the upper or lower parts
of the frame. We detected distinct non-linear changes across age
in the three frame areas (bottom, middle and top). The plotted
patterns indicate that in young infants, faces were most often
positioned in the middle area, with a steep decline across the
first year of life. This was followed by a slight increase in the
presence of faces in this region in the second year of life. In the
top area, a similar but more pronounced increase emerged during

the first half of the second year of life, followed by a decline. In
contrast, the bottom area consistently showed a low proportion
of faces, which is expected given its proximity to the child’s body.
It represents an area where faces are unlikely to appear. Taken
together, these findings suggest that developmental changes in
face availability are area-specific, with dynamic, non-linear age
effects in the middle and top areas of the visual scene.

Our finding that in very young infants the proportion of faces
was relatively high, with most faces being positioned in the
middle, aligns with previous findings (e.g., Jayaraman et al. 2015).
Specifically, it supports the interpretation that play at this age
is largely face-to-face, with caregivers positioning their faces
centrally in the infant’s view, thereby shaping the visual content
of infants’ views (Smith et al. 2018). This is also in line with
our other finding that the sizes of faces in the views of young
infants are more variable, consistent with interpretations that
it is the caregivers who bring their faces in and out of view
whilst young infants remain relatively static. Furthermore, the
U-shaped developmental trajectories in this study resemble a
developmental trend observed in Long, Sanchez et al. (2022),
where 12-month-olds were exposed to slightly fewer faces (albeit
not significantly so) compared to 8- and 16-month-olds during
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lab-based play sessions. Our results also broadly align with
findings from Long, Kachergis et al. (2022), who investigated
densely sampled recordings from three children from 6 to 32
months (SAYCam; Sullivan et al. 2021). They found that although
a linear decrease in face availability was significant, quadratic
terms relating children’s age to the proportion of faces would
provide a better fit to the data than linear terms alone. These
results suggest that face availability changes with age but not
necessarily in a linear fashion, particularly when playtime activity
is considered.

Overall, the patterns in the top and middle areas suggest that
face availability during playtime is not a fixed or monotonic
process but instead follows a non-linear trajectory across age.
Periods of lower availability may represent transitional phases
in which other elements of the environment occupy a greater
proportion of visual scenes. Such variability underscores the
importance of treating children’s everyday input as dynamic and
highlights the need to understand what processes contribute to
these changes. The current observations align with theoretical
accounts that emphasise the bidirectional relationship between
visual experiences and emerging motor abilities (Campos et al.
2000; Gibson 1988; Smith et al. 2018). As infants learn to sit
independently, their visual experiences might become less dom-
inated by faces appearing in the middle and increasingly shaped
by manual engagement with the surrounding environment that
independent sitting enables (Mlincek et al. 2022). The increase
in face presence in the top area after the first year of life may
capture caregiver presence above the child whilst developing
walking expertise (Franchak et al. 2017; Kretch et al. 2014),
whereas the subsequent decline later in the second year of life
may signal a shift towards greater autonomy. Although we did not
observe statistically significant differences between (very small)
motor milestone groups in the current study, we hope that the
visualisations we provided will motivate further interest in how
specific motor milestones may contribute to shifts in visual input
(Adolph and Tamis-LeMonda 2014; Karasik et al. 2012).

Notably, the fact that we observe non-linear developmental
patterns with comparatively shorter video recordings suggests
that systematically constraining the type of activity in home
environments may enable researchers to capture more nuanced
changes. In the current study, caregivers were instructed to record
during playtime when their child was ‘at their best’, and outside
of meal and nap times, but face-to-face interaction was not
emphasized. Importantly, the overall range of face availability we
observed in the middle frame area is consistent with previous
reports (e.g., Fausey et al. 2016), indicating that shorter playtime
recordings are not systematically biased towards either including
or excluding faces. This is also in line with our finding of no
correlation between recording duration and the proportion of
frames containing faces. However, it currently remains unclear
how different activities precisely shape face availability. Thus,
mapping the repertoire of everyday activities (de Barbaro 2019;
Soderstrom and Wittebolle 2013; Tamis-LeMonda et al. 2018)
and examining the availability of faces in visual scenes as
activity-specific holds promise as a future research direction.

The possibility of meaningful, shorter recordings of selected
activities also helps address one of the main barriers to partic-
ipation in headcam studies: The significant number of hours

families are typically asked to contribute. Reducing the required
recording time makes participation more feasible for a wider
range of families, ultimately increasing the accessibility and
inclusivity of the research design. Shorter sessions are particularly
beneficial for families with time constraints, neurodivergent
children or those who may be hesitant to engage in long-
term studies. Our headcam design (TinyExplorer gear; Nikolov
et al. 2024, https://osf.io/95wvn/) was specifically developed with
these considerations in mind, with the future goal of expanding
the participant pool by creating a user experience that is as
seamless and unobtrusive as possible. This approach not only
improves data collection logistics but also aligns with the broader
goals of equity and inclusion in developmental research. It
also represents a promising avenue for integrating naturalistic
data into large-scale cohort studies and clinical trials—domains
where ecological validity is increasingly valued (Liu and Pana-
giotakos 2022). By capturing infants’ visual experiences in a
minimally intrusive and standardised way, this design enables
the examination of developmental processes in contextually rich
environments.

There are some limitations of the current study that warrant dis-
cussion. First, while the automated detection algorithms preserve
individual differences well (Nikolov et al. In press), they tend
to systematically underestimate the presence of faces, especially
in cases involving partial occlusion, unconventional angles or
low-light conditions. This makes the current approach more
suitable for research questions focused on general developmental
trends or broad measures of face availability over time, rather
than fine-grained analyses. Second, the present study utilised
a cross-sectional developmental approach, capturing snapshots
of children’s visual environments at different ages. Whilst this
design allowed us to map broad developmental trajectories in
face availability across the first years of life, highlighting non-
linear patterns across the developmental period, it needs to be
followed by longitudinal work to trace individual trajectories.
Finally, it is important to acknowledge the exploratory nature of
the interpretations related to motor abilities. While we suggest
a potential link between changes in the availability of faces in
infants’ visual scenes and emerging motor abilities, these patterns
should be interpreted with caution and in the context of a large
body of literature demonstrating how posture and locomotion
alter experiences (e.g., Franchak et al. 2017; Karasik et al. 2011,
Karasik et al. 2013; Kretch et al. 2014; Long, Sanchez, et al.
2022; Luo and Franchak 2020; Mlincek et al. 2022; Thurman
and Corbetta 2019; Yamamoto et al. 2020). Future research with
larger samples recruited around the emergence of key motor
milestones is needed to validate our preliminary observations and
to better understand the mechanisms underlying these non-linear
developmental shifts, such as how changes in posture, manual
exploration, locomotion and caregiver behaviour interact to shape
visual scenes.

In summary, by integrating innovations in wearable head-
cam technology and advanced machine-learning algorithms,
this study characterises non-linear changes in the availability
of faces in infants’ views during a contextually constrained
activity (playtime) in naturalistic home environments. These
findings contribute to the foundation for future hypothesis-driven
research and may inform the design of intervention strategies that
support early development.
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