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Abstract

Road technical condition assessment and maintenance decision-making rely heavily on
technical standards whose clauses, computational formulas, and decision logic are often
expressed in unstructured formats, leading to fragmented knowledge representation, iso-
lated indicator calculation procedures, and limited interpretability of decision outcomes. To
address these challenges, a semantic framework with executable reasoning and computa-
tion components, Road Performance and Maintenance Ontology (RPMO), was developed,
composed of a core ontology, an assessment ontology, and a maintenance ontology. The
framework formalized clauses, computational formulas, and decision rules from standards
and integrated semantic web rule language (SWRL) rules with external computational
programs to automate distress identification and the computation and write-back of per-
formance indicators. Validation through three use case scenarios conducted on eleven
expressway asphalt pavement segments demonstrated that the framework produced dis-
tress severity inference, indicator computation, performance rating, and maintenance
recommendations that were highly consistent with technical standards and expert judg-
ment, with all reasoning results traceable to specific clauses and rule instances. This
research established a methodological foundation for semantic transformation of road
technical standards and automated execution of assessment and decision logic, enhancing
the efficiency, transparency, and consistency of maintenance decision-making to support
explicit, reliable, and knowledge-driven intelligent systems.

Keywords: road technical condition assessment; maintenance decision-making; ontology
development; SWRL; clause traceability

1. Introduction

As critical components of national transportation industries, road infrastructures play
a vital role in ensuring the efficiency, safety, and sustainable development of transport sys-
tems. Assessing and maintaining the technical condition of road infrastructures is essential
to sustaining their long-term performance [1,2]. In recent years, advances in information
and communication technologies have enabled these assessment and maintenance tasks to
evolve toward more refined and intelligent solutions [3,4]. While significantly enhancing
management efficiency, road management departments are increasingly confronted with
the challenge of integrating massive volumes of heterogeneous data such as inspection
results, distress records, and maintenance actions with complex decision-making logic
derived from standards, empirical rules, and evaluation systems [5,6].
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Particularly, digital tools such as pavement management systems [7], building infor-
mation modeling platforms [8] and sensor-based monitoring techniques [9] have been
widely adopted into road management workflows, but they typically operate with mu-
tually isolated data formats and protocols, resulting in incomplete semantics and limited
cross-system interoperability [10,11]. Moreover, current technical standards and main-
tenance specifications, while widely available, are usually presented in fragmented and
unstructured text documents [12,13]. This unstructured nature makes them difficult for
machines to interpret, hinders the traceability of evaluation results, and obscures the logic
behind decision-making processes. Therefore, within the emerging paradigm of data-driven
and intelligent maintenance strategies, enhancing semantic integrity and knowledge-level
interoperability has been recognized as an essential step.

Building upon these needs, semantic ontologies have increasingly gained attention
in road infrastructure management as a foundational approach for structured knowledge
representation and machine-understandable reasoning [14-16]. As a formal model that
specifies domain concepts, properties, and their relationships, an ontology enables het-
erogeneous information, such as specification clauses, quality indicators, computational
formulas, and inference rules, to be integrated within a unified semantic framework [17-19].
This can be leveraged to support an end-to-end modeling pathway that links data, compu-
tation, rules, decision outputs, and their corresponding normative justifications.

For example, in the process of assessing road technical conditions, a well-architected
ontology can formally represent quality indicators such as the pavement surface condition
index (PCI), pavement maintenance quality index (PQI), and highway maintenance quality
index (MQI), along with their respective formulas and computational logic. Specifically,
the calculation of PCI depends on the pavement distress ratio (DR), which is derived
from distress areas and weights over segment area. Within the assessment process, the
specific weights assigned to each distress instance are determined by its severity, which
is further dictated by basic attributes, such as main crack block size and average crack
width for alligator cracking. Despite the multi-layered and nested nature of this process, a
systematically constructed ontology can provide explicit conceptualization and attribute
definitions for these fundamental properties and formally link these parameters to dis-
tress severity levels and quality indicators with explicit traceability to standard clauses.
Similarly, in preventive maintenance scenarios for expressways, when a segment satisfies
certain conditions, an ontology can formalize the recommendation logic of applying certain
maintenance techniques, enabling models to generate decisions that are both actionable
and standard-compliant.

Previous studies have introduced several well-developed ontologies in the road in-
frastructure domain, with research primarily focusing on data exchange within asset man-
agement systems [11,20,21], project lifecycle information management [22,23], and road
infrastructure data modeling [24,25]. These efforts have preliminarily demonstrated and af-
firmed the application potential of semantic ontologies in this field. However, most existing
ontologies were oriented toward entity classification or data interoperability, lacking struc-
tured representations of standard clauses and semantic formalization of decision-making
rules. Consequently, they were insufficient for supporting complex reasoning tasks, such
as technical condition assessment and maintenance strategy recommendation. In addition,
current models generally failed to establish traceable links between inference results and
their supporting standard clauses, and they lacked integration with computational models
for quality indicator calculation.

To address these gaps, this study focused on the representative tasks of road technical
condition assessment and maintenance decision-making, and proposed a task-oriented
Road Performance and Maintenance Ontology (RPMO). The RPMO formalized key knowl-
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edge elements required in practice, including road segment attributes, distress types,
quality indicators, computation formulas, maintenance types, decision rules, and their
associated standard clauses. By integrating Semantic Web Rule Language (SWRL)-based
reasoning mechanisms with external computational models, the proposed framework
delivered a comprehensive and executable solution capable of reasoning, computation, and
traceability across the full workflow from distress severity inference and indicator com-
putation, through maintenance threshold definition, to maintenance type and technique
recommendation. On this basis, this framework can support automated technical condition
assessment, intelligent maintenance strategy recommendation, and standard-traceable
question answering, while offering strong scalability and engineering adaptability across
practical application scenarios.

The remainder of this paper was organized as follows. Section 2 presents a compre-
hensive review of ontology development methodologies and domain-specific ontologies
in the road infrastructure field. Section 3 introduces the six-stage ontology development
methodology. Section 4 elaborates on the ontology design and implementation processes.
Section 5 validates the ontology performance through three representative use case sce-
narios. Section 6 discusses the theoretical contributions, engineering applicability, and
limitations of the proposed approach. Finally, Section 7 concludes the study and outlines
future research directions.

2. Related Work
2.1. Ontology Development and Methodologies

As a structured representation of domain knowledge, ontologies have emerged as a
central vehicle for managing and exploiting complex information in knowledge-intensive
fields such as medicine, finance, law, education, and engineering [26]. By providing
a formalized conceptual system enriched with semantic constraints, ontologies enable
interoperable data exchange, knowledge sharing, and automated reasoning across het-
erogeneous systems [27]. They further support the machine-readable representation of
engineering standards, regulatory specifications, and expert experiences. These capabili-
ties collectively establish a robust foundation for information integration and intelligent
decision-making in complex engineering scenarios [28,29].

Existing studies generally categorized ontology development approaches into manual,
semi-automated, and fully automated paradigms [30,31]. Manual construction relied
heavily on the involvement of domain experts and knowledge engineers, who interpreted
standards and engineering practices through systematic workflows, such as requirements
analysis, concept extraction, and relation definition, to ensure semantic accuracy, internal
consistency, and engineering applicability [17,19,22]. With the rapid increase in data
volume, automated techniques have been progressively incorporated into the construction
pipeline. Semi-automated approaches typically leveraged text mining, semantic annotation,
pattern recognition, and machine learning to extract candidate concepts and relations from
standards, technical reports, or domain databases, followed by expert validation to balance
efficiency and accuracy [32,33]. Fully automated methods further relied on large-scale
corpora and pretrained language models to extract conceptual structures from unstructured
text; these were often paired with rule engines or knowledge-graph embeddings to identify
latent relations and rapidly generate preliminary ontology schemas [34].

Despite the efficiency advantages that semi-automated and automated methods of-
fered, their applicability remains significantly constrained in engineering practices. For
instance, in the legal domain, models can automatically identify statutory terminology,
yet complex logical constructs such as necessary conditions or exceptions still require
expert interpretation [35]. In industrial equipment fault diagnosis, ontologies may assist
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in identifying event nodes from log data, yet the configuration of causal weights remains
heavily reliant on engineers’ experience [36]. In the specialized field of road infrastructure
operations and maintenance, the knowledge underpinning technical condition assessment
and maintenance decision-making was tightly bound to strict industry specifications and
standards, involving numerous formula-based technical indicators and complex logical
relations, and automated methods found it difficult to ensure semantic accuracy and
consistency with standards [37]. Furthermore, road engineering ontologies often encom-
passed multi-level and multi-scale objects involving rich semantic relationships among
components, distresses, inspection indicators, and maintenance measures [38]. Automated
approaches still faced limitations in handling these nested entities, hierarchical relation-
ships, and the scarcity of domain-specific corpora [14]. These challenges indicate that expert
intervention remains indispensable for semantic calibration, top-level schema design, and
the modeling of normative logic. While automation may accelerate data preprocessing and
pattern mining, the cognitive backbone of a domain ontology must be manually established
to form an “initial trusted knowledge base,” whose rigor and completeness ultimately
determine the quality and extensibility of subsequent automated enhancements.

To ensure the normative and scientific integrity of manual ontology development,
a variety of mature methodologies have been proposed and validated over the years (as
shown in Table 1). Among them, the Skeletal Methodology by Uschold & King [39], as
an early initiative, laid the foundational framework for goal-oriented ontology engineer-
ing. METHONTOLOGY systematized the ontology development lifecycle, emphasizing a
complete process encompassing specification, knowledge acquisition, conceptualization,
implementation, and evaluation [40,41]. The On-To-Knowledge Methodology introduced
the Ontology Requirements Specification Document (ORSD), highlighting application-
driven modeling and proving effective in corporate knowledge management and semantic
retrieval contexts [42]. Ontology Development 101 proposed a concise and accessible seven-
step approach, widely adopted in educational settings and rapid prototyping [43,44]. More
recently, the NeOn methodology addressed distributed and dynamic environments, em-
phasizing reuse, alignment, and collaborative ontology development to support complex
ontology networks [45,46].

Table 1. Ontology development methodologies.

Methodology

Source Principles Steps

Skeletal Methodology

Identify purpose
Building the ontology
Ontology capture
Ontology coding
Integrating existing ontologies
Evaluation
Documentation

Goal-oriented domain

3] specification

METHONTOLOGY

Specification
Knowledge acquisition
Conceptualization
Integration
Implementation
Evaluation
Documentation

Software engineering
[41] lifecycle management
concepts

On-To-Knowledge

Feasibility study
Kickoff
Refinement
Application & evolution

Enterprise knowledge

1421 management
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Table 1. Cont.

Methodology

Source Principles Steps

NeOn

Environment and feasibility study
Knowledge acquisition
Collaboration, alignment, Ontology requirements specification
dynamic evolution Conceptualization
Formalization
Implementation

[46]

Ontology Development 101

Determine the domain and scope
Consider reusing existing ontologies
Enumerate important terms
[43] Practical teaching program  Define the classes and the class hierarchy
Define the properties of classes
Define the facets of the slots
Create instances

Given the characteristics of road technical condition assessment and maintenance
decision-making, where the knowledge to be modeled included standard clauses, quality
evaluation indicators, computational formulas, distress types, logical rules, and inference
chains, a high level of semantic precision and traceability to official standards was essen-
tial. Therefore, a manual development approach was adopted as the foundation, with
METHONTOLOGY and NeOn methodologies employed as guiding frameworks to ensure
the development of a well-structured, semantically rigorous, reusable, and interpretable
ontology system.

2.2. Existing Ontologies in Road Infrastructure Domain

In the road infrastructure domain, several representative ontology frameworks have
been proposed and developed to support knowledge management and information inte-
gration across different lifecycle stages (summarized in Table 2). These ontologies vary
in their scope of knowledge, modeling methodologies, and application validation, each
emphasizing different aspects of the domain.

Highway Ontology (HiOnto) [17] was one of the earlier ontology frameworks de-
veloped for highway construction, aiming to establish a unified semantic model that
integrates road components, transportation facilities, and associated management elements.
It adopted a distributed three-layer architecture (domain layer, application layer, and user
layer) based on the European e-COGNOS ontology as the upper-level reference. Within
this framework, both physical products and managerial products were included in the product
category. For instance, maintenance-related entities such as maintenance manual (including
preventive maintenance manual and seasonal maintenance manual) were modeled as subclasses
of highway management product, providing partial support for condition assessment and
maintenance management.

The Integrated Highway Planning Ontology (IHP-ONTO) [10] aimed to establish a
shared semantic framework for integrated highway planning by incorporating road facili-
ties, traffic elements, spatial relationships, and project planning processes. For modeling
aspects related to condition assessment and maintenance decision-making, IHP-ONTO
defined the class pavement section along with its subclasses, including location, traffic volume,
condition rating, geometric information, pavement distress, and treatment history. It categorized
MG&R treatments into three types: preventive maintenance, rehabilitation, and reconstruction,
and introduced economic attributes such as environment cost, road user cost, and agency
cost. However, this ontology was primarily designed to facilitate inter-project coordination
among departments of transportation; formal definitions for the detailed classification of
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pavement distresses, the computational method for condition rating, or the decision logic
for selecting maintenance treatments were not included.

The Road Shared Ontology (RSO) [25] was designed to enable the semantic represen-
tation of road infrastructure information through a shared ontology approach. The primary
idea behind RSO was to establish a unified semantic framework that captured common
concepts across road design, construction, and maintenance domains, thereby serving
as a semantic bridge for cross-domain information integration. It adopted a hierarchical
structure that classified road assets into three levels: Road, Segment, Subcomponent. A key
modeling principle of RSO was the assignment of geometric, material, and functional
attributes to segments rather than entire roads, recognizing that different segments may
vary significantly in terms of cross-sectional configuration, number of lanes, and pavement
structure. This modeling strategy enhanced the ontology’s ability to capture local variations
in road characteristics and provided fine-grained data support for condition assessment
and maintenance planning.

Building upon RSO, the Road Maintenance Ontology (RMO) [24] extended the Trav-
eledWay entity to include maintenance-specific properties and relationships. It supported
the management of distress records, condition assessments, and treatment history, in-
troducing the PCI as a quantitative indicator of segment-level condition. The property
RMO:hasRequiredLevelOfService defined the minimum PCI threshold required to trigger
maintenance actions. In parallel, the RMO:treatmentHistory property allowed detailed
tracking of treatment types, implementation times, and corresponding PCI values, enabling
a traceable modeling of maintenance history.

Through this layered architecture of shared and domain-specific ontologies, RSO and
RMO mitigated semantic heterogeneity across multi-source databases and formalized criti-
cal maintenance concepts such as PCI, distress types, and treatment history into a knowledge
framework. However, as summarized in the comparative analysis in Table 2, significant
limitations remain regarding their practical executability and normative depth. Firstly,
their indicator coverage was centered on PCI and related high-level concepts, whereas
key assessment inputs required in practice, such as crack block size and the integrated
indicator PQI and MQI, were not modeled as a coherent indicator system with explicit
dependencies. Secondly, formula-level representations and the associated threshold condi-
tions were not explicitly embedded in the ontology structure, resulting in inference logic
that relies heavily on manual configuration. Thirdly, reasoning capabilities remain limited
to simple threshold-based triggers and lack support for multi-criteria integrated decision
logic. Therefore, while RSO and RMO represent pioneering efforts in semantic modeling
for road management, further expansion and refinement are required.

Table 2. Representative ontologies in the field of road infrastructure.

. Capability
Domain & Development Ontology Evaluation & Coverage
Name Scope Methodology Reuse Validation
D I F R T E
Highway Highway eCOGNOs ~ Competency
ontology construction o ontolo questions T
(HiOnto) [17] 8y Experts Survey
Integrated Highway Competency
highway — M&R project —y prpoNTOLOGY + eCOGNOs — COmpleteness
planning planning & Uschold and Gruninger ontolo Conciseness A e
ontology(IHP-  inter-project & 8y Clarity
ONTO) [10] coordination Consistency
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Table 2. Cont.

. Capability
Name Domain & Development Ontology Evaluation & Coverage
Scope Methodolo R Validati
p gy euse alidation D 1 F R T E
R?;(iosllgagl;,ed Shared road Shared ontology . SPARQL query J - — — — —
(RSO) [25] information approach language
Road
maintenance Pavement Shared ontology RSO SPARQL query J v = v = —
ontology management approach language
(RMO) [24]

Note: D: Distress; I: Indicator; F: Formula; R: Rules; T: Traceability; E: External integration.

2.3. Research Gaps

Overall, existing ontologies have achieved notable progress in conceptual system

construction and basic reasoning, providing generic frameworks for knowledge modeling

in the road infrastructure domain. However, the comparison of capability coverage in

Table 2 indicated that the capabilities required for an executable and auditable assessment-

to-maintenance workflow were rarely integrated within a single framework. In particular,

several limitations remain for supporting standards-aligned technical condition assessment

and maintenance decision-making:

Incomplete indicator and distress classification systems: Existing ontologies generally
remain at the descriptive level of road components, geometric attributes, and defini-
tions of certain distresses, lacking systematic modeling of the comprehensive indicator
system required for technical condition assessment. Core assessment indexes such as
PCI, PQI, and MQI lack formalized representations of their mathematical definitions,
calculation processes, and threshold conditions.

Disconnection between assessment and maintenance: Most studies failed to establish
a complete semantic chain linking road condition assessment to maintenance action
recommendations. Formalized logical connections between evaluation outputs and
maintenance strategies were largely absent.

Lack of formula and computational modeling and insufficient integration with external
programs: The computational formulas, threshold conditions, and inference rules
underlying technical indicators were seldom explicitly modeled, limiting support for
automated indicator computation and condition-based reasoning. Meanwhile, few
existing models offer mechanisms for integrating external computational programs
directly with the ontology and feeding the results back into the knowledge base to
support dynamic inference and decision-making processes.

Limited traceability to specification clauses: There was a general lack of mechanisms
for mapping standard clauses to specific indicators, formulas, and assessment out-
comes. This limited the machine-readability and semantic traceability of regulatory
content, making it difficult to fulfill the evidence-based requirements of engineering
decision-making.

Building on these identified limitations, this study aims to advance ontology-based

modeling for road condition assessment and maintenance through the following contributions:

Establishing a complete indicator modeling mechanism that formalizes not only PCI
but also DR, PQI, MQ], and other evaluation indicators, including their computational
formulas and threshold conditions, thus supporting complex evaluation logic and
calculation-based inference.

https:/ /doi.org/10.3390/app16020607
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e Based on the authoritative technical specifications, clause identifiers and document
references will be explicitly embedded, enabling direct mapping between standard doc-
uments, semantic models, and knowledge graphs to support traceable and standards-
aligned semantic representation.

e Developing a mechanism for integrating formulas and external computational pro-
grams, allowing the ontology to invoke external calculation tools for indicator compu-
tation and to dynamically update results in the knowledge base, thereby enabling the
fusion of knowledge representation and computational processes.

e  Constructing a rule-based reasoning framework that employs SWRL rules, SPARQL
Protocol and RDF Query Language (SPARQL) queries, and ontology reasoning engines
to transform evaluation results into formalized maintenance decision logic, improving
the transparency and explainability of the reasoning process.

3. Ontology Development Methodology
3.1. Methodological Foundation

The methodological design of this study was grounded in semantic web technologies
and established ontology engineering frameworks. Drawing upon key industry standards,
we developed a domain ontology tailored to road technical condition assessment and
maintenance decision-making. The overall workflow followed the logical sequence of
requirement analysis, knowledge acquisition, conceptual modeling, formal implementation,
validation, and application. Informed by METHONTOLOGY, the NeOn Methodology,
and practical experiences from existing road engineering ontologies, a six-stage ontology
development process was designed (as illustrated in Figure 1) to ensure methodological
rigor and the accuracy, extensibility, and applicability of the resulting ontology.

METHONTOLOGY, NeOn Methodology, Domain specific ontologies, Practical experiences

Ontology development methodology for road performance assessment and maintenance decision-making

Objectives

* Semantic modeling of
performance assessment
® Semantic modeling of
distress types and
parameters

* Rule-based reasoning

making
o Standard clauses
modeling and traceability

for maintenance decision-

Knowledge

Formalization & ]
Acquisition & Conceptualization Verification &

Implementation Instantiation Evaluation

ORSD

* Domain & scope

* Goals

« Knowledge sources

® Users & scenarios

e Competency questions

Reuse
Knowledge sources | Modular Design Language & tools Data sources ¢ Consistency checks &
 Standards « Core ontology * OWL 20L o Evaluated seg inf e testing
JTG_5210_2018 * Assessment ontology o Protégé o Inspection results of | | ® Case-based validation
JTG_5421_2018 * Maintenance ontology Rule modeling indicators  CQ-driven SPARQL
JTG_T_5142 01 2021 || Clause traceability * SWRL Rules * Distress report validation
* Published ontologies | | design External formula Methods & tools S ciinements:
RSO, Rr_ao, IHP»(?n(o « evidencedBy interfaces « Cellfie validated ontology
* Practical experiences || o ¢o0 clauce o python o Excel to ontology
® Project database * sourceDocument
Formula & External
Computation Integration

Terminology & Ontologies Documents ABox instances Use case scenarios

Concept lists o Core ontology » OWL 20L ontology files * Segment ® Severity inference

o Road basic info * Assessment ontology * SWRL rulebase * Distress * Quality indicator

« Quality indicator * Maintenance ontology * Formula and programs ... calculate

* Distress attribute External computing interface Clause & formula & * Maintenance type

« Standard clauses programs rule instances and technique

© Maintenance types « calculate_dr.py Knowledge graph recommendation

® Formula & parameter e calculate_pci.py

* SWRL rules ...

Figure 1. Ontology development methodology.
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3.2. Six-Stage Ontology Development Process
3.2.1. Specification

The first stage involved requirement analysis, in which the application objectives of
the RPMO were clarified through an in-depth examination of industry standards, represen-
tative cases, and current engineering practices. The ontology was expected to support the
structured representation of road technical condition evaluation workflows and results, the
semantic modeling of distress types and associated severity parameters, and rule-based
reasoning for maintenance strategy selection.

To formalize these requirements, we adopted the ORSD to systematically describe the
intended functions, core problems, and application scenarios. Meanwhile, as an effective
means of defining and assessing the scope of an ontology, employing competency questions
(CQs) to delimit modeling boundaries was recognized as a standard practice in ontology
engineering [43]. Accordingly, the ORSD included a structured set of CQs that specified
the range of inferencing capabilities the ontology must support. The CQs are detailed in
Section 4.1 and validated individually in the use case scenarios discussed in Section 5.

3.2.2. Knowledge Acquisition & Reuse

Second, during the knowledge acquisition and reuse stage, relevant concepts and rela-
tions were derived from technical standards, specification tables, domain terminologies, and
existing ontologies. Authoritative knowledge sources within the road engineering domain
were systematically collected and consolidated, with particular emphasis on current indus-
try standards. For example, Highway Performance Assessment Standards (JTG_5210_2018)
defined pavement distress categories together with their evaluation indicators and grading
rules [12]; Technical Standards for Highway Maintenance (JTG_5110_2023) specified the
technical requirements and strategic guidelines for highway maintenance activities [13];
and Specifications for Maintenance Design of Highway Asphalt Pavement (JTG_5421_2018)
outlined the design principles and computational procedures for asphalt pavement mainte-
nance [47]. These standard documents constituted the primary knowledge foundation of
the ontology, ensuring that its content remained both normative and comprehensive.

In parallel, existing ontologies and semantic models relevant to road infrastructure
management were surveyed to support knowledge reuse and alignment. As aforemen-
tioned in Section 2, published models such as the RSO, RMO, and IHP-Onto provided
valuable precedents. These existing models were examined to avoid unnecessary reinven-
tion, and their conceptual structures informed the categorization and relational design
adopted in this study. General concepts (e.g., RSO:Road, RSO:Segment) were reused directly
to preserve semantic interoperability, while still allowing the ontology to be adapted and
refined for the specific analytical and operational requirements of road maintenance.

In addition to documentary sources, expert experience was incorporated as a comple-
mentary knowledge source to support ontology development. Expert consultations were
conducted with four road maintenance practitioners to delimit the scope and coverage
of the ontology and to confirm the competency questions (CQs) that specify the required
modeling and reasoning capabilities. The elicited expert inputs were consolidated into the
ORSD artifacts and subsequently used to refine the conceptualization and formalization of
classes, properties, and rule constraints.

3.2.3. Conceptualization

In the conceptualization stage, the knowledge gathered in the previous stage was
structured into a coherent conceptual model, defining the ontology’s classes, properties,
and relational architecture. The conceptual design emphasized three key aspects:

e  Modular architecture

https:/ /doi.org/10.3390/app16020607
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The RPMO was organized into a structured hierarchy that comprised three coordinated
modules: a core ontology, an assessment ontology, and a maintenance ontology. Specifically,
the core ontology defined foundational road assets and distress types to facilitate domain
modeling; the assessment ontology evaluated technical indicators and condition ratings
to support quantitative analysis; and the maintenance ontology integrated decision logic to
recommend treatment strategies. These modules were interconnected through shared concepts
and properties, articulating a clear and logically interpretable chain connecting physical road
segment conditions, quantitative assessments, and maintenance decision-making.

e  Clause traceability design

To guarantee transparency and interpretability in the reasoning process, traceability
to specifications was explicitly incorporated into the ontology. Clauses from technical
standards were modeled as instances of a dedicated class named StandardClause. Two prop-
erties, fromClause and sourceDocument, were introduced to link ontology entities or rule
instances to their corresponding clause numbers and source documents. For example, an
assessment rule “If a distress instance is classified as alligator cracking with a main crack block
size between 0.2 and 0.5 m and an average crack width < 2 mm, then the distress severity is light”
was linked through fromClause to clause_JTG_5210_2018_5_2_1. Consequently, when an
inference engine applied this rule to classify a distress instance, the system can retrieve and
display the exact standard justification for that conclusion.

e  Formula representation and external program integration

Road condition assessment and maintenance design involved numerous quantitative
computations, some of which were not directly expressible within Web Ontology Language
(OWL)-based logical formalisms. To accommodate these requirements, the RPMO em-
ployed a hybrid integration framework to decouple semantic reasoning from numerical
computation. Formula entities and their associated properties were introduced to store
mathematical expressions and reference identifiers, which served as the semantic founda-
tion for external processing. Within this framework, the ontology defined the semantics of
input and output parameters, while the numerical computations were carried out by an
external Python program (version 3.12). The results, such as the DR derived from distress
measurements, were then written back into the ontology as data assertions.

3.2.4. Formalization & Implementation

In the formalization stage, the conceptual model developed earlier was implemented
using a formal representation language. The ontology was encoded according to the OWL
2 DL specification using Protégé 5.6.7, which served as the primary tool for constructing
class hierarchies, defining property relations, and specifying logical constraints. The core
concepts and relations were first entered into Protégé, after which OWL axioms were used to
articulate the intended semantics and applicable conditions of each concept with precision.

For reasoning, SWRL was employed to translate quantitative decision conditions
into explicit logic. For example, the rule “If the MQI of a given segment is less than 60,
then the indicator level of this segment is very poor”, was represented as “RSO:Segment(?s) *
rpmo:hasMQI(?s, ?mqi) " swrlb:lessThan(?mgqi, 60) -> rpmo:hasMQILevel(?s, rpmo:VeryPoor) *
rpmo:evidencedBy(?s, rpmo:MQILevel _5)”. Such rules enabled the inference engine to assign
condition ratings automatically based on the values recorded in instance data. Meanwhile,
the description logic reasoner Pellet was continuously used to verify model consistency
and ensure no logical conflicts were introduced throughout the formalization process.
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3.2.5. Instantiation

Subsequently, during the instantiation phase, data instances were imported into the
ontology in batch to construct the knowledge base. This was accomplished in Protégé using
the built-in Cellfie module, where load rules were specified to map excel data into ontology
individuals. Representative highway segments and their inspection records were selected
as the source of instances.

3.2.6. Verification & Evaluation

In this stage, the ontology underwent comprehensive quality checking and functional
verification. At the technical level, a description logic reasoner was employed to perform
consistency checking and inference testing, ensuring that no logical conflicts or modeling er-
rors were present. After loading instantiated case data, SWRL rules and OWL axioms were
executed to confirm that intermediate inferences (e.g., severity, prerequisite parameters,
and rule-trigger conditions) matched the intended semantics.

At the application level, the CQs defined in ORSD were revisited, and three use case
scenarios were employed to evaluate whether the ontology could adequately support these
questions. Within each scenario, the correctness of indicator computation and decision
outputs was validated against an independently derived, standards-based ground truth.
Specifically, a verification panel consisting of four domain experts in road maintenance and
two graduate students independently performed manual derivations following the same
technical standards and the same input inspection records; discrepancies were reconciled
through panel discussion. The complete dataset, including raw inspection records and
the finalized reference values used for validation (highlighted in red), was provided in
Supplementary Material Table S2 Input Data. By constructing SPARQL queries and per-
forming reasoning-based querying, the ontology was tested on its ability to answer these
questions. The successful resolution of these queries can demonstrate that the ontology ful-
filled the functional requirements established during the requirement analysis stage, while
the ground truth comparison verifies the accuracy of the computed and inferred results.

4. Ontology Design and Implementation
4.1. Ontology Requirements Specification Document (ORSD)

To ensure the ontology development process maintained clearly defined boundaries
and verifiable objectives, a structured ORSD was used to guide and constrain the modeling
processes. The structured components of the ORSD are summarized in Table 3.

A key component of the ORSD was the CQs that defined the inferential capabilities the
ontology must support. Examples include: “How severe is the distress observed on the segment?
What are the DR, PCI, PQI and MQI values of the Segment?” which corresponded to integrated
condition assessment and severity identification; “What is the MQI level and which rule and
standard clause support it?” which reflected the application and the traceability of evaluation
rules; “Based on the technical condition indicators, which maintenance type is recommended?
Which document and clause support this decision?” which concerned maintenance strategy
selection and the traceability of decisions. Taken together, these questions span evaluation,
decision-making, traceability, and analytical interpretation, thereby defining the functional
requirements against which the ontology was subsequently verified.
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Table 3. Ontology Requirements Specification Document (ORSD).

Domain & Scope

Domain

Road technical condition assessment and maintenance decision-making

Scope

Semantic representation of road structure, distress, quality indicators, calculation formulas,
evaluation rules, and standard clauses references

Aim & Goals

Aim

Provide a consistent, inferable, and traceable knowledge model for road maintenance

Goals

Semantically integrate assessment indicators and distress properties
Enable formula execution and result inference

Achieve standard clause level traceability

Support cross-domain data integration

Knowledge Sources

Industry standards

Highway Performance Assessment Standards (JTG_5210_2018)

Technical Standards for Highway Maintenance (JTG_5110_2023) [13]

Specifications for Maintenance Design of Highway Asphalt Pavement (JTG_5421_2018) [47]

Technical Specifications for Preventive Maintenance of Highway Asphalt Pavement
(JTG_T_5142_01_2021) [48]

Published ontologies

RSO, RMO, IHP-ONTO

Expert experiences

Interviews with engineering experts

Case data

Pavement inspection reports

Users & Scenarios

Users

Engineers and decision-makers in road management departments

Developers of road management systems

Standards setting and regulatory bodies

Researchers

Scenarios

Technical condition assessment

Decision support for road maintenance

Knowledge querying and professional training

Cross-system data integration

Competency Questions

CcO1

How severe is the distress observed on the segment?

4.2. Concept Extraction and Knowledge Acquisition

The construction of the ontology relies fundamentally on the clear, systematic iden-
tification and structuring of domain concepts. In this study, concept extraction denotes
the systematic identification and compilation of candidate domain concepts and relation-
ships from technical standards, specification tables, and the ORSD requirements, with the
objective of supporting the entire knowledge flow from technical condition assessment
to maintenance strategy formulation. Through structural decomposition, complex and
fragmented standard provisions were transformed into semantically explicit concepts and
relations. The process focused on extracting key definitions, parameter constraints, in-
dicator systems, evaluation rules, and intervention measures embedded within the road
technical condition assessment and maintenance decision-making workflow. Guided by
the scope and knowledge sources defined in the ORSD, we distilled a candidate concept set
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for subsequent ontology conceptualization and model design (Section 4.3). The resulting
structured concept set was organized into seven core dimensions, as illustrated in Figure 2.
Specific colors were assigned to each dimension: red for road basic attributes, green for
distress types and parameters, dark teal for technical condition indicators, blue for for-
mulas, teal for maintenance and treatment techniques, yellow for standard documents,
and orange for rules; this color-coding scheme was applied consistently throughout all
subsequent figures.

Core Ontology

rpmo:hasDistress

PavementType,TechnicalGrade

5 . :0b: dOi DistressType, DistressSeverit:
TrafficVolume,IndicatorLevel... ARG W v

rpmo:hasQualityIndicator rpmo:inputOf
rpmo:QualityIndicator e rpmo:Formula
PCl, RQI, RDI, SRI, MQl... DR, PCI, MQl...

rpmo:justifiedBy
A4

rpmo:hasMaintenanceType rpmo:justifiedBy

StandardDocument

rpmo:MaintenanceType SdandardClause
L] A

DailyMaintenance rpmo:fromClause

MaintenanceEngineering rme'RuIe

rpmo:evidencedBy

Severitylnference
MaintenanceTypeSelection...

Assessment Ontology

Figure 2. Core concepts for ontology modeling.

e  Road basic attributes, including concepts such as road, road segment, technical grade,
pavement type, and structural layers, which together provided the contextual basis
for all assessment and decision-making activities.

e  Technical condition indicators. This dimension covered the highway maintenance
quality index, MQI; the component indicators for subdomains such as the subgrade
(SCI), pavement (PQI), bridges and tunnels (BCI), and roadside facilities (TCI); and
detailed pavement indicators such as the pavement surface condition index, PCI, the
pavement riding quality index, RQI, and the pavement rutting depth index, RDI.

e  Distress types and parameters. These encompassed the characteristic distress cate-
gories for subgrade, asphalt pavement, and cement concrete pavement, as well as the
associated parameters for severity determination, including area, length, depth, and
width, along with their corresponding threshold values.

e Standard documents and clauses. This included the representation of standard docu-
ments and their clause identifiers, which allows the ontology to maintain explicit links
to authoritative specifications.

e  Maintenance types and treatment techniques. The ontology formalized the taxonomy
of maintenance activities, including routine maintenance, routine repair, preventive
maintenance, rehabilitative maintenance, special maintenance, and emergency mainte-
nance. Representative preventive maintenance techniques were also incorporated to
support decision-making tasks.

e Key computational formulas and parameters. This dimension included formulas
and parameters such as the weighted combination used in MQI calculation and the
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calculated formulas for DR and PCI, together with the indicators, coefficients, and
standard clauses involved.

e  SWRL rules. These rules described critical reasoning procedures, including the de-
termination of distress severity, the selection of parameter weights used in indicator
computations, and the inference of appropriate maintenance categories and recom-
mended treatment technologies based on indicator thresholds.

4.3. Conceptualization & Model Design

To organize the seven categories of core concepts identified in Section 4.2 into a
structured and interoperable semantic system, the Road Performance and Maintenance
Ontology (RPMO) was developed as a modular semantic framework, using the base
IRI <http:/ /www.semanticweb.org/RPMO> and the prefix rpmo: for its concepts and
properties. The resulting RPMO consisted of three coordinated modules: a core ontology
for foundational concepts, an assessment ontology for technical evaluation knowledge, and
a maintenance ontology for maintenance strategies (as shown in Figure 2). Although each
module served a distinct function, they were interconnected through shared concepts and
properties, together forming a unified ontological network.

Within this modular semantic framework, the design of RPMO followed a class-
centered ontological modeling pattern. In this pattern, domain concepts that shared a
unified metadata structure and function as semantic categories, such as DistressType and
IndicatorLevel, were defined as classes, whereas predefined, non-decomposable classification
items explicitly specified in technical standards, such as AlligatorCracking and Excellent,
were modeled as named individuals. This modeling choice avoids unnecessary class
proliferation, improves reasoning efficiency, and ensures a logically rigorous knowledge
hierarchy while maintaining concise and efficient instance-level assertions.

Based on this modeling pattern, several principles for class hierarchy design were
followed to optimize the ontology structure. First, the principle of conceptual clarity was
emphasized: each class was assigned a well-defined semantic scope and unambiguous
boundaries, with distinct hierarchies between different classes so they did not overlap or
cause confusion. For example, AlligatorCracking and Rutting were represented as distinct
individuals of the class DistressType, and a given Distress instance was associated with only
one distress type individual via the hasDistressType property. The second was the principle
of minimal redundancy. Concepts that were required by both the assessment ontology
and the maintenance ontology, such as the Segment, were modeled in the core ontology
so that a single authoritative definition could be shared across modules. Third, naming
consistency was ensured by standardizing class and property names in English using clear
and technically interpretable terms, with CamelCase conventions adopted for class names
(e.g., DistressType and StandardClause). Finally, the principle of extensibility guided the
design by reserving appropriate abstraction levels to accommodate future expansion. For
example, although the present work focused primarily on asphalt pavement maintenance,
an abstract classification node PavementType was introduced, and the applicableToStructure
property was defined for distress types, enabling straightforward extension to cement
concrete pavement specific distress types and maintenance measures.

4.3.1. Core Ontology

As illustrated in Figure 3, the core ontology defined the shared concepts and general
relationships that underpin the road maintenance domain and served as the common
foundation for both the assessment ontology and the maintenance ontology. Within the core
ontology, abstract representations of road entities were established as classes, including Road
and Segment, as well as infrastructure components such as Pavement, Subgrade, TrafficFacility,
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and BridgeTunnel AndCulvert, which together provided a unified semantic description of
inspection objects associated with road segments. Fundamental classification concepts,
such as TechnicalGrade and PavementType, were also modeled as classes and linked to road
or segment entities through object properties, while their concrete classification values (e.g.,
Expressway or AspkaltPavement) were represented as named individuals.

hasTechnicalGrade
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Figure 3. Core ontology.

hasQualityIndicator J

Concepts that were required by both the assessment and maintenance modules were
likewise defined at this foundational level to ensure semantic consistency across mod-
ules. For example, Distress was modeled as a general class for structure deterioration,
without embedding specific classification logic in the core ontology. The categorization
of distresses was instead captured through the DistressType concept, which functioned as
a classification class whose predefined standard categories (e.g., AlligatorCracking) were
modeled as named individuals and associated with instances under the Distress class via
the hasDistressType property. Similarly, QualityIndicator was defined as an abstract class
representing quantitative measures of road condition, while the concrete indicators and
their associated evaluation logic were formalized within the assessment ontology.

4.3.2. Assessment Ontology

The assessment ontology extended the core ontology by providing a specialized repre-
sentation of the knowledge structures required for road technical condition assessment,
as shown in Figure 4. One major component of this ontology was the formalization of
pavement distress classification. Building on the general class of Distress defined in the
core ontology, the assessment ontology refined this concept according to the categories
prescribed in the standard. Distress types such as AlligatorCracking, TransverseCracking,
BlockCracking, Rutting, and Potholes were introduced as named individuals under the class
DistressType. Each Distress instance was linked to exactly one DistressType individual
through the object property hasDistressType, thereby enabling explicit and unambiguous
distress classification while avoiding unnecessary class proliferation. Each Distress in-
stance was further associated with specific attributes that characterize its severity, such
as AvgCrackWidth, MainCrackBlockSize and ConvertedArea. These attributes were repre-
sented as data properties and served as input parameters for rule-based reasoning on
distress severity.
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Figure 4. Assessment ontology.

In addition, the assessment ontology formalized the set of technical condition indica-
tors and their computational formulas. A dedicated class, QualityIndicator, was established
to represent the various performance metrics. Each indicator instance captured its numeri-
cal values through data properties and linked to its corresponding computational procedure
through the object property calculatedBy, which linked the indicator to an instance of the
class Formula. Formulas such as Formula_DR, Formula_PCI, Formula_PQI, and Formula_MQI
were represented as named individuals of the Formula class. Their analytical expressions
were captured using the data property formulaExpression. Each formula instance was further
linked to its authoritative standard clause through the justified By relation (discussed in
Section 4.4), and to the external computation modules through the implementedBy relation,
further explained in Section 4.5.

The assessment ontology also included a conceptual model for indicator-based condi-
tion levels. Based on the grading schemes defined in the technical standards, an Indicator-
Level class was created to represent ordered condition levels. Concrete grading levels were
modeled as named individuals of this class. For example, the indicator levels associated
with the MQILevel included Excellent, Good, Fair, Poor, and VeryPoor. This design enabled
grading results to be inferred and queried at the instance level while maintaining a stable
and extensible classification structure.

A further component of the assessment ontology concerned the representation of
assessment rules. A class named Rule was defined to organize rule instances that encoded
logical relationships between indicator values, distress attributes, and inferred condition
levels or distress severity. Typical rules included statements such as: “If the MQI of a road
segment is greater than or equal to 90, then the MQILevel of the segment is inferred to be Excellent”
and “If a distress instance is classified as alligator cracking, and its main crack block size lies between
0.2 and 0.5 m while its average crack width does not exceed 2 mm, then its severity level is Light”.
Although OWL alone cannot express such procedural logic, these rules can be executed by
the reasoning mechanisms described in Section 4.6 once the required conceptual structures
are defined in the ontology.
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4.3.3. Maintenance Ontology

The maintenance ontology focused on representing the knowledge required for main-
tenance strategy selection, as illustrated in Figure 5. Building upon the road structure
framework defined in the core ontology, it first established a classification system for
maintenance measures. Following the structure provided in standards, maintenance ac-
tivities were organized into several hierarchical levels. At the highest level, two broad
categories were distinguished: daily maintenance and maintenance engineering. The latter
was further divided into emergency maintenance engineering, preventive maintenance
engineering, rehabilitative maintenance engineering, and special maintenance engineering.
Within these categories, specific maintenance techniques were identified, and preventive
maintenance techniques were further organized into seal treatments, overlay treatments,
and thermal recycling treatments. These categories were readily extensible as future re-
quirements emerged. Each maintenance technique was modeled as a class or a named
individual within the ontology and could be associated with descriptive attributes, such as
materials required, applicable conditions, and cost levels.
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Figure 5. Maintenance ontology.

The maintenance ontology also modeled the decision rules that linked road condition
assessments to appropriate maintenance measures. For example, rules may specify that
preventive maintenance should be recommended when a segment has a PCI of at least 90,
an RQI of at least 90, an RDI of at least 80, and an SRI below 75. To formalize these rules,
under the class Rule, individual rule instances defining the logical relationships between
condition indicators and recommended maintenance actions were created. Through object
properties such as hasMaintenanceType and hasSuggestedTechnique, these rules connected
evaluation results or distress conditions from the assessment ontology to the corresponding
maintenance classes. An example rule stated: “If a segment recommended for preventive mainte-
nance has a PCI greater than or equal to 93, an RQI greater than or equal to 93, and an RDI greater
than or equal to 93, then the recommended maintenance technique is SandFogSeal”. Additional
contextual properties, such as traffic volume or pavement age, could be incorporated to
refine the applicability of decision rules.

To ensure transparency and traceability, the maintenance ontology incorporated the
object property evidencedBy, which linked maintenance rules or inferred recommendations
to their supporting clauses in technical standards. This mechanism enabled each recom-
mended maintenance action to be explicitly traced back to its normative basis, as further
detailed in Section 4.4.
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4.4. Clause Traceability Mechanism

To ensure that technical condition assessment and maintenance decision-making
remain transparent, standardized, and interpretable, this study developed a clause trace-
ability mechanism (as illustrated in Figure 6). This mechanism enables the reasoning system
to not only generate computational results but also articulate the underlying rationale,
bridging the gap between automated inference and standards clauses.

StandardClause StandardDocument
sourceDocument >

clause_JTG_5210_2018_5_2_1
JTG_5210_2018

i clauselD L )

4 fromClause
rpmo:Distress(?d) A rpmo:hasDistressType(?d, rpmo:AlligatorCracking) A rpmo:hasMainCrackBlockSize(?d,
?v1) A swrlb:greaterThanOrEqual(?v1, 0.2) A swrlb:lessThanOrEqual(?v1, 0.5) A

rpmo:hasAvgCrackWidth(?d, ?v2) A swrlb:lessThanOrEqual(?v2, 2) -> rpmo:evidencedBy(?d,
rpmo:Rule_AlligatorCracking_Light) A rpmo:hasDistressSeverity(?d, rpmo:Light)

Rule_AlligatorCracking_Light
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evidencedBy
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hasDi T hasDi i = .
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AlligatorCracking
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Figure 6. Clause traceability mechanism.

In traditional workflows, while conclusions can be generated for a given road segment,
the standards-based justification remains largely inaccessible. For instance, as shown in
Figure 6, without explicit traceability, the system might infer that the severity of Distress20 is
Light but would be unable to demonstrate that this conclusion is grounded in clause 5.2.1 of
JTG_5210_2018. Therefore, the purpose of this mechanism was to establish explicit semantic
links between the conclusions produced by the inference engine and their underpinning
normative clauses, forming a complete evidential chain that connects the inference result,
the logical rule, the originating clause, and the standard document.

The central idea of this mechanism involved formally structuring the knowledge
contained in technical standards and embedding it within the reasoning workflow. In the
RPMO, standard documents (e.g., JTG_5210_2018) and their specific normative clauses
(e.g., clause_JTG_5210_2018_5_2_1) were modeled as instances of the StandardDocument
and StandardClause classes, respectively. Each clause instance contained properties such as
clauseID and sourceDocument, enabling the clause to function as a discrete, citable semantic
unit. At the same time, all inference rules used for distress classification, indicator level
assignment, index computation, or maintenance treatment selection were modeled as
individuals of an SWRLRules class. These rules were linked to their respective source
clauses through the object property fromClause. In this way, the logic embedded in the
rules became a formalized expression of the corresponding standard, and the content of
the standards was semantically mapped into the reasoning architecture.

During the reasoning process, inspection data and distress observations enter the
model as factual assertions, triggering the relevant SWRL rules to produce assessment
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or decision results. For each generated result, the ontology automatically assigned an
evidencedBy attribute that recorded the specific rule responsible for the inference. Since each
rule was already linked to its originating clause, the system could automatically assemble a
complete traceability path. Furthermore, SPARQL queries could be utilized to retrieve both
the inference results and their supporting evidence, providing a unified and explainable
interface for decision visualization and auditability.

4.5. Formula & External Computation Integration

Due to the inherent limitations of ontology languages in handling complex mathe-
matical operations, technical condition indicators, such as DR, PCI, PQI, and MQ]I, cannot
be computed efficiently within a native ontology environment. These evaluations require
continuous numerical processing, including exponential functions and linear weighting. To
address this issue, this study decoupled semantic reasoning from numerical computation
by developing a coordinated integration framework between the ontology and external
computational modules (as illustrated in Figure 7).
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Figure 7. Formula & external computation integration mechanism.

Within this framework, the ontology, serialized in Turtle (.ttl) format, was responsible
for providing structured representations of standard clauses, indicator definitions, and
parameter dependencies. Simultaneously, external Python programs utilized RDFLib
(version 7.5.0) to access the ontology files, perform the necessary mathematical calculations,
and write the results back into the ontology. This architecture established a closed-loop
system encompassing data acquisition, indicator computation, and condition evaluation.

As shown in Figure 7, the interaction between the ontology and external scripts
followed a snapshot-based execution process. Each Python program read a complete
ontology snapshot in TTL format as input (e.g., RPMO.ttl), extracted the required semantic
parameters, performed the corresponding numerical computation, and serialized the
results into a new ontology snapshot (e.g., RPMO_with_DR:.ttl). The generated ontology
file preserved the full content of the input ontology while appending new data property
assertions for the computed values, leaving the original file unaltered. Consequently, each
ontology snapshot therefore represented a well-defined and consistent ontology version
corresponding to a specific computation stage, and served as an explicit reference point for
subsequent reasoning or decision-making.

All numerical inputs required for computation were supplied by the ontology through
semantic inference. Distress attributes, including type, severity, converted area, and weight-
ing, were automatically inferred via ontology axioms and SWRL rules (e.g., assigning
values to hasWeight and hasConvertedArea). Furthermore, structural parameters required
for the DR, PCI, PQI, and MQI formulas, such as A0_PCI, A1_PClI, and specific weight-
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ing factors, were encoded as data properties for each Segment individual according to
technical specifications.

To ensure unambiguous entity identification throughout the execution process, on-
tology entities were accessed via their IRIs following a consistent convention. Concepts
newly defined in the RPMO used the rpmo: namespace, while reused concepts retained
their original IRIs (e.g., RSO:Segment). Algorithm 1 illustrates the DR computation proce-
dure as an example, and the full set of executable scripts for indicator computation and
write-back is provided in the Supplementary Materials as Code S3 to S6 (calculate_dr.py,
calculate_pci.py, calculate_pqi.py, and calculate_mgqi.py). These scripts retrieve relevant
Segment and Distress instances, extract numerical parameters, and write the computed
indicators back as data property assertions.

Once the ontology was updated with these newly calculated numerical values, sub-
sequent layers of semantic reasoning could be activated. For instance, the system could
determine the technical rating of a segment based on MQI thresholds or automatically
identify maintenance treatments. Through this iterative interaction, internal semantic
reasoning and external numerical computation formed a stable, mutually reinforcing cycle
that ensured both logical rigor and computational efficiency.

Algorithm 1: calculate_dr

Input: seg_id; //The internationalized resource identifiers (IRI) of assessed segment
Output: DR; //The distress ratio of assessed segment

//Step 1. Read the road segment and distress data from ontology

1: segment <— get_individual _by_id(seg_id); //Locate the segment individual

2: A_seg < get_data_property(segment, “hasConvertedArea”); //Read the converted
area of this segment

3: distress_list <— get_object_properties(segment, “hasDistress”); //Obtain all distress
individuals observed on this segment

4: if distress_list is empty then

5: DR« 0.0
6: goto WRITE_BACK_RESULT
7: end if

//Step 2. Accumulate the weighted distress area

8: sum_weighted_area < 0.0

9: for each d in distress_list do

10:  w_d ¢ get_data_property(d, “hasWeight”); //Weight inferred from SWRL rules
11:  A_d < get_data_property(d, “hasConvertedArea”); //Converted area of the
distress

12:  sum_weighted_area - sum_weighted_area + (w_d * A_d)

13: end for

/ /Step 3. Calculate distress ratio DR

14: DR_raw < sum_weighted_area/A_seg

15: DR < DR_raw * 100.0

/ /Step 4. Write the DR result back to the ontology

WRITE_BACK_RESULT:

16: set_data_property(segment, “hasDR”, DR);

17: save_ontology_changes()

18: return DR
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4.6. Rules & Reasoning Mechanism

While the semantic representation of concepts and numerical computation provided
the foundation for assessment, the reasoning mechanism served as the key component that
transforms static knowledge into dynamic conclusions. Within the RPMO framework, a
comprehensive rule system was developed to automate distress interpretation, parameter
inference, technical condition assessment, and maintenance selection. The complete SWRL
rule inventory is provided in Supplementary Materials Table S1 SWRL Rules, which lists
each rule identifier, rule type, rule content, and textual description. By integrating OWL
description logic with SWRL rule-based reasoning, the system enables an automated
pipeline from raw inspection data to final maintenance recommendations. Specifically,
OWL reasoning handles class inheritance, consistency checking, and automatic deduction
based on object property constraints, ensuring that foundational semantic relations are
correctly interpreted. SWRL rules complement this capability by establishing executable
logical mappings between specification thresholds and the semantic structures defined in
the ontology.

For assessment-related inference, the rule system was organized into four principal
categories. The first was severity inference, which determined the severity of a distress
instance, such as Light, Moderate, or Severe, based on observed characteristics. These rules
aligned directly with the severity thresholds in standards and allowed the Pellet reasoner
to automatically assign the hasDistressSeverity property to each Distress individual. The
second category, weight determination, assigned specific evaluation weights (e.g., a weight
of 0.6 for light longitudinal cracking) based on distress types and severity levels. The
third category was area conversion, which unified different measurement units, such as
length, into standardized converted areas for DR computation. The fourth category was
performance rating, which evaluated the technical condition level of a segment based on
indicators calculated in Section 4.5. An example of the severity inference rules can be found
in Figure 6.

For maintenance decision-making, two classes of rules were defined: maintenance type
selection and maintenance technique recommendation. The type selection rules inferred
the appropriate maintenance category for a segment, such as preventive maintenance engi-
neering or rehabilitative maintenance engineering, based on its corresponding indicators.
Building on this, the technique recommendation rules further identified specific techniques
suited to the segment’s condition, such as MicroSurfacing, FogSeal, or OverlayRecycling.

Overall, the rule system supported a fully automated workflow spanning distress
characterization, condition evaluation, and strategy selection. As illustrated by the pipeline
for Segment7 in Figure 8, this workflow interpreted raw observations and geometric param-
eters into inferred severities, areas, and weights, which then served as inputs for external
numerical computation. These computed results were then written back to the ontology to
trigger further inference regarding performance levels and maintenance strategies. Each
inference result was traceable to its governing specification clause, evaluation rationale,
and supporting factual data. It should be noted that the development of this rule system fo-
cused on asphalt pavements in expressway contexts as a representative case. The semantic
framework allowed further extension to other structural pavement types, more complex
maintenance strategies, and multi-criteria decision-making.
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Figure 8. End-to-End reasoning and computation pipeline for Segment7.

4.7. Instantiation & Verification

To evaluate the executability and effectiveness of RPMO in practical application
contexts, the ontology was instantiated and validated through reasoning using real road
inspection data. The instantiation process followed a structured workflow that included
data import, semantic individual generation, and rule execution. Using the Cellfie plugin
embedded in Protégé, the raw inspection data in Excel format were mapped to ontology
instances of classes such as Segment, Distress, and QualityIndicator, with their corresponding
property values populated to provide the foundational facts required for subsequent
reasoning. Figure 9 illustrates the instantiation process for the distress data associated
with Segment$.
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Figure 9. Instantiation process for the distress data associated with Segment§.
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Once the instantiated data were loaded, the ontology was subjected to both description
logic reasoning and SWRL rule-based reasoning to validate its performance in distress
severity inference, parameter determination, indicator computation, and maintenance
decision-making. This process ensured that the ontology behaved correctly under realistic
conditions and satisfied the requirements of logical soundness, internal consistency, and
traceability of inference outcomes.

To comprehensively examine the ontology’s performance across different application
tasks, this study designed three use case scenarios grounded in typical operational work-
flows. These scenarios covered the essential steps from data interpretation to decision
generation and constituted a systematic evaluation of the ontology’s overall capabilities.
The input datasets, rule representations, reasoning logic, and corresponding CQ based
SPARQL validation for these scenarios are presented in detail in Section 5.

5. Use Case Scenarios

To validate the applicability of the developed RPMO and its reasoning mechanisms to
real road condition data, this section constructed three representative use case scenarios
based on field-collected inspection records. These scenarios were designed to systematically
validate the ontology’s reasoning workflows across three core tasks: distress severity
inference, technical condition assessment, and maintenance decision support.

Each use case included the instantiation of input data, the execution of relevant rules,
and the verification of inference outcomes. SPARQL-based CQs were employed to examine
the correctness and internal consistency of the ontology’s reasoning results. For brevity,
common prefix declarations were omitted in the SPARQL queries reported in the tables
for each subsequent scenario. These included the standard namespaces (PREFIX rdf:
<http:/ /www.w3.0rg/1999 /02 /22-rdf-syntax-ns#>, PREFIX owl: <http://www.w3.org/
2002/07 /owl#>, PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>, and PREFIX
xsd: <http://www.w3.org/2001/XMLSchema#>) as well as the domain-specific prefixes
RSO (<http:/ /www.semanticweb.org/MarquetteUniversity /Road_Shared_Ontology#:>)
and rpmo (<http:/ /www.semanticweb.org/RPMO#>). All input data were batch-imported
from Excel spreadsheets into the ontology using defined rules in the Cellfie plugin of
protégé, ensuring full reproducibility of the evaluation process. Moreover, across all
three scenarios, ontology-based outputs were further compared against the independently
derived, standards-based ground truth described in Section 3.2.6. Detailed descriptions of
the input datasets and the load rules are provided in the Supplementary Materials Table S2
input data and Code S1 Cellfie load rules, respectively.

5.1. Use Case Scenario 1: Distress Severity Inference
5.1.1. Input Data and Instantiation

This scenario illustrated how RPMO integrated distress parameter attributes with
SWRL-based reasoning to automatically classify asphalt pavement distresses’ severity
levels. Five distress records observed on Segment8 (Distress20 to Distress24) were used as
representative examples. As illustrated in Figure 9, the records in Excel were converted into
ontology individuals through data mapping. During this process, essential properties in-
cluding hasDistressType, hasMainCrackBlockSize, hasAvgCrackWidth, and hasMainCrackWidth
were automatically generated. For example, Distress22 and Distress23 were longitudinal
cracks with measured hasMainCrackWidth of 2 mm and 4.5 mm, respectively.

5.1.2. Rule Modeling

According to the Highway Performance Assessment Standards, the severity of a
distress can be determined based on its associated parameters and the corresponding
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normative criteria. In this section, the standard-based severity criteria were formalized into
executable rules so that raw distress observations could be consistently transformed into
machine-interpretable severity labels, which then served as inputs to subsequent indicator
computation and decision reasoning. Taking longitudinal cracking as an example, the
severity of a longitudinal crack was considered light if the main crack width was less than
or equal to 3 mm, and severe if the main crack width exceeded 3 mm. These normative
thresholds were modeled in the ontology as individuals of the StandardClause class and
were linked to the corresponding distress severity inference SWRL rules (Detailed SWRL
rules and their textual descriptions are provided in Supplementary Materials Table S1
SWRL Rules):

Rule_LongitudinalCracking_Light: Distress(?d) " hasDistressType(?d, LongitudinalCrack-
ing) ~ hasMainCrackWidth(?d, ?v) * swrlb:lessThanOrEqual(?v, 3) -> hasDistressSeverity(?d,
rpmo:Light) * evidencedBy(?d, Rule_LongitudinalCracking_Light)

Rule_LongitudinalCracking_Severe: Distress(?d) * hasDistressType(?d, LongitudinalCrack-
ing)" hasMainCrackWidth(?d, ?v) * swrib:greaterThan(?v, 3) -> hasDistressSeverity(?d, Severe) *
evidencedBy(?d, Rule_LongitudinalCracking_Severe)

Following the clause-tracing mechanism described in Section 4.4, each SWRL rule
instance was linked to a specific clause of the governing standard through the from-
Clause property. For example, the rule Rule_LongitudinalCracking_Light was derived from
clause_JTG_5210_2018_5_2_3, which was captured in the ontology as:

fromClause(Rule_LongitudinalCracking_Light, clause_JTG_5210_2018_5_2_3)

In this representation, clause_JTG_5210_2018_5_2_3 was modeled as an instance of Stan-
dardClause class, which was connected to the standard document instance JTG_5210_2018
via the sourceDocument property and carried the clauselD 5.2.3 as a datatype attribute:

sourceDocument(clause_JTG_5210_2018_5_2_3, JTG_5210_2018) and clauselD: 5.2.3.

5.1.3. Reasoning

After the distress instances were loaded, the defined SWRL rules were executed in
the Protégé environment through the SWRLTab plugin. The Pellet reasoner automatically
inferred the hasDistressSeverity property (illustrated by the red solid arrows in Figure 9)
and asserted the evidencedBy relation to the corresponding rule instance.

For Distress22, with a main crack width of 2 mm, the reasoner evaluated the rule
Rule_LongitudinalCracking_Light for longitudinal cracking and inferred:

hasDistressSeverity(Distress22, Light)

evidencedBy(Distress22, Rule_LongitudinalCracking_Light)

fromClause(Rule_LongitudinalCracking_Light, clause_JTG_5210_2018_5_2_3)

sourceDocument(clause_JTG_5210_2018_5_2_3, JTG_5210_2018)

5.1.4. SPARQL Queries for CQ1 and CQ2

Table 4 presents the SPARQL queries for CQ1 and CQ2 together with their correspond-
ing outputs in RPMO. Using Segment§ as an example, CQ1 retrieved the inferred severity
levels for the observed distresses. The results indicated that four of the five cases were clas-
sified as Light, whereas Distress23 was identified as Severe. CQ2 further traced the standard
clauses that support these severity inferences. The retrieved results showed that Distress20,
categorized as AlligatorCracking, was evaluated according to clause 5.2.1 of JTG_5210_2018;
Distress21, a BlockCracking case, was governed by clause 5.2.2; Distress22 and Distress23, both
LongitudinalCracking, followed clause 5.2.3; and Distress24, a TransverseCracking, followed
clause 5.2.4 of the same standard.
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Table 4. SPARQL queries and results for CQ1 & CQ2.

CcQ1 How severe is the distress observed on the segment?
SELECT ?distress ?severity
WHERE {
rpmo:Segment8 rpmo:hasDistress ?distress.
SPARQL Query ol ) s .
?distress rpmo:hasDistressSeverity ?severity.
ORDER BY ?distress
distress severity
Distress20 Light
Distress21 Light
Results Distress22 Light
Distress23 Severe
Distress24 Light
cQ2 Which standard clause and standard document does the inference rely on?
SELECT ?distress ?severity ?rule ?clause ?document
WHERE {
rpmo:Segment8 rpmo:hasDistress ?distress.
?distress rpmo:hasDistressSeverity ?severity;
rpmo:evidencedBy ?rule.
SPARQL Query p y .
?rule rpmo:ruleType rpmo:Severitylnference;
rpmo:fromClause ?clause.
?clause rpmo:sourceDocument ?document.
ORDER BY ?distress ?rule
distress severity rule clause document
Distress20 Light Rule_AlligatorCracking_Light clause_JTG_5210_2018_5_2_1 JTG_5210_2018
Distress21 Light Rule_BlockCracking_Light clause_JTG_5210_2018_5_2_2 JTG_5210_2018
Results Distress22 Light  Rule_LongitudinalCracking_Light ~ clause_JTG_5210_2018 5.2 3  JTG_5210_2018
Distress23 Severe  Rule_LongitudinalCracking_Severe clause_JTG_5210_2018_5_2_3 JTG_5210_2018
Distress24 Light Rule_TransverseCracking_Light clause_JTG_5210_2018_5_2_4 JTG_5210_2018

These results demonstrate that the RPMO, through a unified rule pattern and parame-
ter definitions, achieved automated severity assessment across multiple distress types. The
inferred severity values fully aligned with ground truth obtained through a verification
panel, confirming both correctness and interpretability of the reasoning process.

5.2. Use Case Scenario 2: Technical Condition Computation & Performance Level Rating

This scenario evaluated the executability and semantic consistency of an ontology-
driven, cross-module computation workflow involving semantic reasoning, external nu-
merical computation, data write-back, and automated condition rating. Taking a complete
road section as the assessment object, the workflow demonstrated how inferred distress
parameters (such as distress-specific weights and converted areas) were first obtained
through ontology reasoning. These results were then consumed by external Python scripts
to compute the DR, PCI, PQI, and MQI indicators sequentially. The computed values were
written back into the ontology, after which the performance rating SWRL rules classified
the segment’s technical condition (e.g., Excellent, Good, Fair) based on its MQI value and
generated the corresponding semantic assertions.

5.2.1. Instantiation of Road Segments and Distress Data

Scenario 1 presented the distress parameters detected on Segment8, whereas this
scenario extended the analysis to eleven segments (Segment1 to Segment10) to demonstrate
a complete executable assessment and decision workflow. Detailed data for all segments
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are provided in the Supplementary Materials Table S2 input data. The basic information of
the representative road section Segment7 (e.g., technical grade “Expressway” and pavement
type “AsphaltPavement”), the observed distresses and their associated attributes (Distress16
to Distress19), and the corresponding technical indicator values (e.g., hasRDI, hasRQI) are
presented in detail in Figure 8. It should be noted that this scenario focused exclusively on
the computational workflow for the asphalt pavement indicators DR, PCI, PQI, and MQIL
Other technical condition indicators (e.g., RQI and RDI) were introduced as placeholder
inputs at this stage. These values were instantiated only to enable the execution of indicator
aggregation and reasoning rules, while their detailed computational logic was treated as an
extensible component that requires further ontology and computation-module expansion.
Accordingly, representative values for these indicators were manually assigned within
plausible ranges by referencing comparable inspection results.

In addition, the parameter and weight values required for formula-based computa-
tions, as well as the converted areas of segments and certain distress types, were automati-
cally inferred through the severity inference, weight determination and area conversion
rules defined in Section 4.6. These rules, implemented via the ontology’s reasoning mecha-
nism, inferred and generated the necessary inputs prior to indicator calculation.

For example, as shown in Figure 8, the rules Rule_LongitudinalCracking_Light
and Weight_LongitudinalCracking_Light inferred that Distress17 had a Light severity and
the corresponding computation weight of 0.6. The area conversion rule AreaCon-
vert_LongitudinalCracking further converted the recorded linear length of the distress into
an equivalent area value of 19.63. Similarly, the segment area was computed using the
Area_Segment rule. These inferred weights and converted areas were then used as direct
inputs for DR computation. Moreover, the rule PCIParameter_1 derived the segment-specific
parameters AO_PCI and A1_PCI for Segment7 based on its technical grade and pavement
type, enabling subsequent PCI computation. The same reasoning mechanism also inferred
aggregation weights such as hasWeight_PCI, hasWeight_RQI, and hasWeight_RDI for PQI
computation, and hasWeight_PQI, hasWeight_BCI, hasWeight_SCI, and hasWeight_TCI for
MOQI computation.

5.2.2. Modeling DR, PCI, PQI and MQI

According to the Highway Performance Assessment Standards [12], the DR was
computed from distress areas and weights over segment area, as defined in Equation (1).
PCI was computed as a function of DR, as defined in Equation (2).

ie
L wiA;

DR = 100 x % (1)

PCI = 100 — ayDR™ )

where a¢ and a; are computational parameters corresponding to the AO_PCI and A1_PCI
values in the ontology; A; is the converted area of the i-th type of distress; A is the total
inspected area of the segment; w; is the weight for the i-th type of distress; i represents the
distress type including its severity level; and i, is the total number of distress types (21 for
asphalt pavement and 20 for cement concrete pavement).

The PQI was defined as a composite measure incorporating PCI, RQI, RDI, and
either the SRI or the PWI, with weights specified by road technical grade, as shown in
Equation (3). Similarly, the overall highway condition index MQI was formulated as a
weighted combination of SCI, PQI, BCI, and TCI, as defined in Equation (4).

PQI = wpc;PCI + (URQIRQI + wrpiRDI + wppiPBI 4+ wpwPWI 4+ wSgriRI + wpss  PSSI 3)
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MQI = (USCISCI + CdpQ[PQI + C(JBCIBCI + CUTC[TCI (4)

In these equations, the coefficients (e.g., wpcr) represent the weights of specific indica-
tors (e.g., PCI) within the aggregate index, corresponding to properties like hasWeight_PCI
in the ontology. All the corresponding weights were generated automatically through the
weight determination SWRL rules.

Within RPMO, these formulas were represented in the class Formula, with individuals
Formula_DR, Formula_PCI, Formula_PQI, and Formula_MQI. Each formula instance included
the properties formulaExpression and implementedBy, which specify the mathematical expres-
sion and the external computation program, respectively.

The numerical computations were executed by the associated Python scripts built in
Section 4.5. These scripts read the TTL ontology file (provided in Supplementary Materials
Code S2 RPMO), applied the parameters generated through reasoning, computed the index
values for each segment, and wrote the results back into the ontology as data properties
(hasDR, hasPClI, hasPQI, and hasMQI).

Taking Segment7 as an example, the calculate_dr.py script read the distress areas,
weights, and segment area from the ontology (RPMO.ttl), computed a DR value of 0.66,
and wrote this back to generate a new snapshot RPMO_with_DR.ttl. Subsequently, calcu-
late_pci.py retrieved the DR value and the AO_PCI and A1_PCI parameters to calculate a
PCI of 87.36, resulting in RPMO_with_PCI.ttl. The calculate_pgi.py script then aggregated
the PCI with other technical indicators and weights to produce a PQI of 86.93. Finally,
calculate_mgi.py processed the PQI along with SCI, BCI, and TCI values to determine a final
MQI of 85.47, which was written back to the ontology as RPMO_with_MQI.ttl.

5.2.3. Inferring MQI Level from MQI Value

The MQI rating levels were modeled as individuals of the class MQILevel (e.g., Excellent,
Good, etc.). A set of performance rating SWRL rules mapped the numerical MQI values
to these categorical levels based on the threshold definitions specified in clause 4.0.1 of
JTG_5210_2018.

For example, for Segment7 in Figure 8, the SWRL rule Rule_MQILevel_2 inferred that
its MQI level was Good:

Segment(?s) * hasMQI(?s, ?mqi) " swrlb:greaterThanOrEqual(?mgi, 80) " swrlb:lessThan(?mgqi,
90) -> hasMQILevel(?s, Good) evidencedBy(?s, Rule_MQILevel_2)

This rule was linked to the standard clause clause_JTG_5210_2018_4_0_1 via the from-
Clause property, which in turn referenced the standard document JTG_5210_2018 through
the sourceDocument property, thereby enabling explicit provenance tracing from the inferred
rating to the governing clause.

5.2.4. SPARQL Queries for CQ3 to CQ6

Table 5 presents the SPARQL queries for CQ3 to CQ6 together with their corresponding
outputs in RPMO. CQ3 retrieved the set of distress types applicable to asphalt pavement.
This query leveraged the applicableToStructure object property predefined in RPMO, which
linked each DistressType to its corresponding InspectionObject. The results listed eleven
distress categories such as alligator cracking and block cracking, consistent with the clas-
sifications specified in clause 5.2 of JTG_5210_2018. CQ4 examined the distress weights
used in the DR computation. Using alligator cracking as an example, the query not only
retrieved the assigned weight values but also traced the underlying reasoning rules and the
standard clauses on which they depended. Among the input distresses, six were identified
as AlligatorCracking and all with a severity level of Light; consequently, a weight of 0.6
was applied for each distress in the DR calculation. This assignment corresponded to
the provisions in clause 7.4.5 of JTG_5210_2018. CQ5 retrieved the computed technical
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condition indicators for the input segments. The results showed the DR, PCI, PQI, and

MQI values for all eleven segments, which matched the manually calculated reference

values. CQ6 used Segment7 as an example and queried its assigned performance rating

based on the computed MQI value. The result indicated that Segment7 was classified as
Good, following the threshold definitions provided in clause 4.0.1 of JTG_5210_2018.

Table 5. SPARQL queries and results for CQ3 to CQ6.

CQ3

What distress types are defined for asphalt pavement?

SPARQL Query

SELECT DISTINCT ?distressType
WHERE {

?distressType rdf:type rpmo:DistressType;

rpmo:applicableToStructure rpmo:AsphaltPavement.

}
ORDER BY ?distressType

Results

distressType
AlligatorCracking
Bleeding
BlockCracking
LongitudinalCracking
Lump
Patching_Asphalt
Pothole_Asphalt
Revelling
Rutting
Subsidence
TransverseCracking

CQ4

How are the weight of alligator cracking chosen for DR?

SPARQL Query

SELECT DISTINCT ?d ?severity ?weight ?rule ?clause ?document
WHERE {

?d rdf:type rpmo:Distress;

rpmo:hasDistressType rpmo:AlligatorCracking;
rpmo:hasDistressSeverity ?severity;
rpmo:hasWeight ?weight;

rpmo:evidencedBy ?rule.

?rule rpmo:ruleType rpmo:WeightDetermination;
rpmo:fromClause ?clause.

?clause rpmo:clauselD ?clauselD;
rpmo:sourceDocument ?document.

)
ORDER BY 2d

Results

d severity weight rule clause

Distress16
Distress20
Distress26
Distress33
Distress4
Distress9

Light
Light
Light
Light
Light
Light

"0.6™*<http/Awww.
"0.6™*<http/Awww. Wi
"0.6™*<http/Mwww. Wi
"0.6™*<http/iwww.

“0.6™*<http/Awww. Weight_AlligatorCracking_Light
Weight_AlligatorCracking_Light

eight_AlligatorCracking_Light
eight_AlligatorCracking_Light

Weight_AlligatorCracking_Light
"0.6™*<http/Mwww. Weight_AlligatorCracking_Light

clause_JTG_5210_2018_7_4_5 JTG_5210_2018
clause_JTG_5210_2018_7_4.5 JTG_5210_2018
clause_JTG_5210_2018_7_4.5 JTG_5210_2018
clause_JTG_5210_2018_7_4.5 JTG_5210_2018
clause_JTG_5210_2018_7_4.5 JTG_5210_2018
clause_JTG_5210_2018_7_4_5 JTG_5210_2018

CQ5

What are the DR, PCI, PQI and MQI values of the Segment?
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Table 5. Cont.

SELECT ?Segment (STR(?DR) AS ?DR_show) (STR(?PCI) AS ?PCI_show)
(STR(?PQI) AS ?PQI_show) (STR(?MQI) AS ?MQI_show)

WHERE {

?Segment rdf:type RSO:Segment;

rpmo:hasDR ?DR;

SPARQL Query rpmo:hasPCI ?PCI;

rpmo:hasPQI ?PQI;

rpmo:hasMQI ?MQIL

}

ORDER BY ?Segment

Segment DR_show PCI_show PQI_show MQI_show
Segment1 "0.12" "93.747 "89.93" "86.61"
Segment10 "1.96" "80.21" "84.79" "84.39"
Segment2 "0.19" "92.43" "89.62" "91.02"
Segment3 "0.32" "90.62" "87.82" "87.20"
Results Segment4 "0.56" "88.19" "84.72" "84.847
Segment5 "0.90" "85.64" "86.94" "86.16"
Segments "1.06" "84.64" "80.61" "82.92"
Segment7 "0.66" "87.36" "86.93" "85.47"
Segment8 "1.16" "84.05" "86.92" "87.22"
Segment9 "1.96" "80.21" "81.67" "85.98"
CQ6 What is the MQI level and which rule and standard clause support it?

SELECT (STR(?MQI) AS ?MQI_show) ?MQILevel ?rule ?clause ?document

WHERE {

rpmo:Segment7 rpmo:hasMQI ?MQI;

rpmo:hasMQILevel ?MQILevel;

SPARQL Query rpmo:evidencedBy ?rule.

?rule rpmo:ruleType rpmo:PerformanceRating;

rpmo:fromClause ?clause.

?clause rpmo:sourceDocument ?document.

}
MQl_show MQILevel rule clause document

Results

"85.47" Good Rule_MQlLevel_2 clause_JTG_5210_2018_4_0_1 JTG_5210_2018

5.3. Use Case Scenario 3: Maintenance Type and Preventive Technique Recommendation

This scenario built upon the indicator results derived in Scenario 2 and used them
as inputs to the decision rules defined within the RPMO. The embedded maintenance
decision logic then triggered the selection of maintenance types and the recommendation
of specific maintenance techniques. When the computed indicators satisfied the threshold
combinations prescribed in the Specifications for Maintenance Design of Highway Asphalt
Pavement (JTG_5421_2018) and the Technical Specifications for Preventive Maintenance of
Highway Asphalt Pavement (JTG_T_5142_01_2021), the ontology automatically inferred
the applicable maintenance types (e.g., PreventiveMaintenanceEngineering, Rehabilitative-
MaintenanceEngineering) and the corresponding techniques (e.g., FogSeal, MicroSurfacing,
UltraThinOverlay).

5.3.1. Mapping Indicators to Maintenance Types

In clause 5.2.1 of JTG_5421_2018, a table was provided for classifying the maintenance
type of each evaluation unit based on pavement condition data. This section operationalizes
that decision table as SWRL rules, enabling the ontology to automatically infer a segment’s
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maintenance type from its computed indicator values (e.g., PCI) together with contextual
attributes (e.g., technical grade and pavement type).

For example, if an expressway segment had a PCI value between 85 and 90 and an
RQI value greater than or equal to 85, preventive maintenance was preferred. By contrast,
if the PCI value was still between 85 and 90 but the RQI value was below 85, more intensive
repair maintenance might be required. These textual conditions were encoded as SWRL
rules in the ontology, and the recommended maintenance type could be automatically
derived by executing these rules (Detailed SWRL rules and their textual descriptions are
provided in Supplementary Material Table S1 SWRL Rules):

Segment(?s) " hasTechnicalGrade(?s, Expressway) * hasPavementType(?s, AsphaltPavement)”
hasPCI(?s, ?pci) " swrlb:greater ThanOrEqual(?pci, 85) * swrlb:lessThan(?pci, 90) * hasRQI(?s, ?rqi)
“swrib:greaterThanOrEqual(?rqi, 85) -> hasMaintenanceType(?s, PreventiveMaintenanceEngi-
neering) " evidencedBy(?s, Rule_MR_5)

Segment(?s) * hasTechnicalGrade(?s, Expressway) * hasPavementType(?s, AsphaltPavement)
“hasPCI(?s, ?pci) " swrlb:greaterThanOrEqual(?pci, 85) * swrib:lessThan(?pci, 90) " hasRQI(?s,
?rqi) “ swrib:lessThan(?rqi, 85) -> hasMaintenanceType(?s, RehabilitativeMaintenanceEngineering)
" evidencedBy(?s, Rule_MR_6)

Specifically, for Segment7 in Figure 8, which had a computed PCI of 87.36 and the
instantiated RQI of 87.67, Rule_MR_5 was triggered and the ontology inferred that the
required maintenance type was PreventiveMaintenanceEngineering. This rule was linked
via the fromClause property to clause_JTG_5421_2018_5_2_1, which further referenced the
standard JTG_5421_2018 through the sourceDocument property.

5.3.2. Recommending Preventive Maintenance Techniques

Once the maintenance type was determined for each segment, the ontology further
refined the decision into specific maintenance techniques. Focusing on preventive main-
tenance in this case, the Technical Specifications for Preventive Maintenance of Highway
Asphalt Pavement (JTG_T_5142_01_2021) were used as the basis for modeling individual
treatment options as instances of the class PreventiveMaintenanceTech. The applicability
conditions for each preventive maintenance technique, expressed in terms of pavement
condition thresholds in the standard, were encoded as SWRL rules. By executing these
rules, the ontology automatically recommends suitable preventive maintenance techniques
for segments classified as requiring preventive maintenance. For instance, if an expressway
segment recommended for preventive maintenance has a PCI greater than or equal to
85, an RQI greater than or equal to 85, and an RDI greater than or equal to 80, then the
recommended maintenance technique is ThinOuverlays, this decision rule can be expressed
in SWRL as follows (Detailed SWRL rules and their textual descriptions are provided in
Supplementary Material Table S1 SWRL Rules):

Segment(?s) ~ hasTechnicalGrade(?s, Expressway) * hasPCI(?s, ?pci) * swrlb:greater ThanOrEqual
(?pci, 85) * hasRQI(?s, ?rqi) * swrlb:greaterThanOrEqual(?rqi, 85) *~ hasRDI(?s, ?rdi) "
swrlb:greaterThanOrEqual(?rdi, 80) -> hasSuggestedTechnique(?s, ThinOverlays) "~ evi-
dencedBy(?s, Rule_MRTech_4)

For the example Segment7 in Figure 8, with a PCI of 87.36, an RQI of 87.67, and an
RDI of 81.00, the ontology recommends ThinOuverlays, SealAndOverlays, RemixingRecycling,
and OverlayRecycling as suitable techniques based on rules Rule_ MRTech_4, Rule_MRTech_6,
Rule_MRTech_7,and Rule_MRTech_8. These rules are linked to clause_JTG_T_5142_01_2021_5_3_2,
clause_JTG_T_5142_01_2021_5_3_3, and clause_|JTG_T_5142_01_2021_5_4_2 via the fromClause
property, and are associated with the corresponding standard document JTG_T 5142_01_2021
through the sourceDocument property.
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5.3.3. SPARQL Queries for CQ7 to CQ9

Table 6 presents the SPARQL queries for CQ7 to CQ9, together with their correspond-
ing outputs in RPMO. CQ?7 retrieved the maintenance categories modeled in the ontology,
showing that two types of maintenance engineering were represented: PreventiveMainte-
nanceEngineering and RehabilitativeMaintenanceEngineering. CQ8 determined the required
maintenance type for each segment based on its evaluated condition indicators and traced
the supporting standard clauses used in the decision. The results indicated that Segment1,
Segment2, Segment3, Segment4, Segmentb, and Segment7 required preventive maintenance,
whereas the remaining segments fell under rehabilitative maintenance. All of these infer-
ences were derived from clause 5.2.1 of JTG_5421_2018. CQ9 then focused on the segments
requiring preventive maintenance and recommended appropriate maintenance techniques
according to the threshold conditions specified in the technical standards. Using Segment7
as an example, the recommended techniques included OwverlayRecycling, ReminingRecy-
cling, Seal AndOuerlays, and ThinOuverlays. These recommendations were supported by
clauses 5.3.2,5.3.3 and 5.4.2 of J[TG_T_5142_01_2021. Across the evaluated segments, the
queried maintenance decisions and technique recommendations were consistent with the
expert-derived ground truth finalized by the verification panel.

Table 6. SPARQL queries and results for CQ7 to CQ9.

cQ7

What maintenance types are modeled in the ontology?

SPARQL Query

SELECT DISTINCT ?maintenanceType
WHERE {
?maintenanceType rdf:type rpmo:MaintenanceType.

}
ORDER BY ?maintenanceType

Results

maintenanceType
PreventiveMaintenanceEngineering
RehabilitativeMaintenanceEngineering

CQ8

Based on the technical condition indicators, which maintenance type is
recommended? Which document and clause support this decision?

SPARQL Query

SELECT ?Segment ?maintenanceType ?rule ?clause ?document
WHERE {

?Segment rdf:type RSO:Segment;

rpmo:hasMaintenanceType ?maintenanceType;
rpmo:evidencedBy ?rule.

?rule rpmo:ruleType rpmo:MaintenanceTypeSelection;
rpmo:fromClause ?clause.

?clause rpmo:sourceDocument ?document.

}
ORDER BY ?Segment

Results

Segment maintenanceType rule clause document
Segment1 PreventiveMaintenanceEngineering Rule_MR_3 clause_JTG_5421_2018_5_2_1 JTG_5421_2018
Segment10  RehabilitativeMaintenanceEngineering Rule_MR_7 clause_JTG_5421_2018_5_2_1 JTG_5421_2018
Segment2 PreventiveMaintenanceEngineering Rule_MR_3 clause_JTG_5421_2018_5_2_1 JTG_5421_2018
Segment3 PreventiveMaintenanceEngineering Rule_MR_3 clause_JTG_5421_2018_5_2_1 JTG_5421_2018
Segment4 PreventiveMaintenanceEngineering Rule_MR_5 clause_JTG_5421_2018_5_2_1 JTG_5421_2018
Segment5 PreventiveMaintenanceEngineering Rule_MR_5 clause_JTG_5421_2018_5_2_1 JTG_5421_2018
Segment6 RehabilitativeMaintenanceEngineering Rule_MR_7 clause_JTG_5421_2018_5_2_1 JTG_5421_2018
Segment7 PreventiveMaintenanceEngineering Rule_MR_5 clause_JTG_5421_2018_5_2_1 JTG_5421_2018
Segment8 RehabilitativeMaintenanceEngineering Rule_MR_7 clause_JTG_5421_2018_5_2_1 JTG_5421_2018
Segment9 RehabilitativeMaintenanceEngineering Rule_MR_7 clause_JTG_5421_2018_5_2_1 JTG_5421_2018
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Table 6. Cont.

CQ9

If preventive maintenance is required for the Segment, which
preventive-maintenance technology is recommended? Which document and
clause support this?

SPARQL Query

SELECT ?technique ?rule ?clause ?document

WHERE {

rpmo:Segment? rpmo:hasMaintenanceType
rpmo:PreventiveMaintenanceEngineering;
rpmo:hasSuggestedTechnique ?technique.

rpmo:evidencedBy ?rule.

?rule rpmo:ruleType rpmo:MaintenanceTechniqueRecommendation;
rpmo:fromClause ?clause.

?clause rpmo:sourceDocument ?document.

}
ORDER BY ?rule

Results

technique rule clause document
ThinOverlays Rule_MRTech_4 clause_JTG_T_5142_01_2021_5_3_2 JTG_T_5142_01_2021
SealAndOverlays Rule_MRTech_6 clause_JTG_T_5142_01_2021_5_3_3 JTG_T_5142_01_2021
RemixingRecycling Rule_MRTech_7 clause_JTG_T_5142_01_2021_5_4_2 JTG_T_5142_01_2021
OverlayRecycling Rule_MRTech_8 clause_JTG_T_5142_01_2021_5_4_2 JTG_T_5142_01_2021

6. Discussion

This study developed an integrated semantic ontology framework, RPMO, to support
road condition assessment and maintenance decision-making. The model was designed
around three core requirements: the structured representation of standard clauses, the exe-
cutable computation of assessment indicators, and the explainability of rule-based reasoning.

From the perspective of methodological validity, the ontology-driven reasoning and
computation outputs demonstrated strong consistency with existing standards across all
three use case scenarios. The framework’s primary strength lies in its executable decision-
support layer, which moves beyond traditional descriptive ontologies. By delegating
numerical calculations to external scripts while maintaining semantic control, we achieved
a balance between logical rigor and computational efficiency. This scheduling mechanism
executed the computation chain sequentially and wrote results back to the ontology, effec-
tively closing the loop between semantic modeling and data execution, demonstrating the
potential of ontologies to serve not only as knowledge repositories but also as executable
decision-support layers. Furthermore, the explicit linkage between inference results and
specific standard clauses provided interpretability for decision-makers, addressing the
long-standing challenge in intelligent maintenance systems.

Regarding extensibility, RPMO adopted a modular structure comprising a core ontol-
ogy, an assessment ontology, and a maintenance ontology. This modular design facilitated
initial deployment for asphalt pavement while leaving extensible interfaces for other struc-
tural components such as concrete pavements, subgrades, and traffic facilities. Extending
the system requires only the addition of new indicators and distress types within the
assessment ontology and corresponding maintenance measures and trigger conditions
within the maintenance ontology, without restructuring the overall framework.

Naturally, this study also revealed several limitations that should not be overlooked.
Firstly, the current modeling and validation efforts remain largely confined to asphalt
pavements on expressways. The distress types and assessment rules for cement concrete
pavements, subgrade structures, and traffic facilities specified in JTG_5210_2018 have
not yet been systematically incorporated. Similarly, the maintenance recommendation
module emphasized preventive maintenance technologies, as well as their applicability
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conditions and requirements, whereas the representation of rehabilitative maintenance
remained abstract and did not yet support a full lifecycle maintenance strategy. Secondly;,
the decision rules relied mainly on threshold-based combinations of quality indicators
and technical grades. They did not yet incorporate traffic volume dynamics, deterioration
forecasting, or cost-benefit analysis. Although JTG_T_5142_01_2021 provided applicability
thresholds by road technical grades and traffic load, the present ontology did not integrate
historical monitoring data or economic evaluation models, limiting its ability to support
long-term strategy optimization and alternative scheme comparison. Thirdly, from an
engineering deployment perspective, this study verified the functionality and feasibility
of the proposed semantic framework only on a small-scale dataset and three use case
scenarios. Its performance has not yet been systematically validated under real-world
network conditions where the numbers of segments, distress instances, and rules increase
substantially, which may raise scalability concerns for OWL/SWRL reasoning in terms of
computational cost and performance. The stability and reliability of indicator computation
and rule triggering under incomplete, inconsistent, or noisy inspection data have not been
evaluated. Moreover, as technical standards evolve over time, clause-linked rules and
threshold parameters may require continual updates, and the long-term maintainability of
the rule base remains to be examined.

Despite these limitations, the proposed standard-driven, formula-executable, and
rule-interpretable semantic framework exhibited strong adaptability and extensibility.
The RPMO supported the alignment of standard clauses, computational formulas, and
decision rules within a single semantic layer, and was adaptable to different national or
regional standards. By enabling the integration of rule-based reasoning and executable
computation within an ontology, the framework transformed traditional infrastructure
ontologies into intelligent, data-driven decision-support systems. This architecture can be
well suited to serve as the upper knowledge layer for smart maintenance platforms and
digital highway systems.

7. Conclusions

Confronted with the fragmented knowledge hierarchies, inconsistent semantic repre-
sentations, and the limited capability to support condition assessment and maintenance
decision-making of existing ontologies in the road infrastructure domain, this study pro-
posed an integrated semantic modeling framework that unified standard clauses, com-
putational formulas, and reasoning rules. It substantially advanced beyond traditional
models confined to conceptual taxonomies and static data interoperability, enabling a
structured, executable, and traceable representation of the entire assessment, reasoning,
and decision workflow.

A six-stage ontology construction framework encompassing specification, knowledge
acquisition & reuse, conceptualization, formalization & implementation, instantiation, and
verification & evaluation was established to guide the RPMO development process. Based
on this framework, a three-module semantic architecture consisting of a core ontology,
an assessment ontology and a maintenance ontology was developed. The core ontol-
ogy abstracted fundamental concepts such as roads, segments, distresses, and standard
clauses. The evaluation ontology formalized quality indicators and explicitly embedded
the calculation formulas and computational logic from the specifications into the ontology
structure. The maintenance ontology defined maintenance types, preventive maintenance
technologies, and their applicability constraints.

Building on this structure, the study further established an executable semantic rea-
soning chain spanning the workflow from distress data input, to DR, PCI, PQI and MQI
computation, to level inference, and finally to maintenance type determination and pre-
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ventive maintenance recommendation. SWRL rules were employed to represent distress
severity inference, weight determination, performance rating, and maintenance type and
technique selection logic. A clause-tracing mechanism was established by mapping SWRL
rule instances to corresponding standard clauses and documents. Indicator computation
was integrated with external Python scripts, enabling parameter acquisition, formula
execution, and result synchronization.

Additionally, three representative use case scenarios were developed using real in-
spection data to validate the instantiated RPMO: distress severity inference, segment-level
indicator computation and MQI classification, and maintenance recommendation based
on assessment indicators. SPARQL queries were further employed to answer the CQs
defined in the ORSD, and the reasoning and query outputs in all scenarios were highly
consistent with both the technical standards and expert judgment. The automated indicator
computation pipeline fully reproduced the parameter dependencies and computational
logic specified in the standards, confirming the executability, interpretability, reliability and
engineering applicability of the proposed ontology model for complex domain tasks.

Ultimately, the proposed semantic framework demonstrated strong reusability and
extensibility. Future work will focus on three directions: First, the scope of the ontology
will be expanded to cover other road structures such as concrete pavements, subgrades,
roadside facilities, and bridge tunnel structures, enabling unified semantic reasoning across
all subcomponents. In parallel, a full lifecycle maintenance ontology will be developed
to incorporate preventive and structural rehabilitation strategies, with detailed semantic
definitions and combination rules for rehabilitative maintenance techniques. Second,
decision-making logic will be enhanced by integrating traffic volume evolution models,
pavement performance deterioration models, and cost-benefit analysis. These additions
will extend the decision logic from static threshold-based reasoning to predictive and
optimization-driven scheme generation, ultimately supporting an intelligent maintenance
decision framework capable of integrating multisource heterogeneous data and conducting
multi-criteria comprehensive evaluation. Third, to support engineering-scale deployment,
systematic benchmarking will be conducted under large-scale networks with substantially
increased numbers of segments, distress instances, and rules, and the reasoning pipeline
will be optimized through partitioned or incremental reasoning strategies. Robustness
mechanisms will be incorporated to handle incomplete, inconsistent, or noisy inspection
data, and a standards-versioned rule governance process will be established to maintain
clause-linked rules and threshold parameters when regulations are updated.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/app16020607/s1, Table S1: SWRL Rules.xIsx provides the com-
plete SWRL rule inventory with rule identifiers, rule categories, rule contents, and textual descriptions.
Table S2: input data.xlsx provides the scenario dataset as an Excel workbook (Segment and Distress
sheets), together with reference values used for verification highlighted in red. Code S1: Cellfie load
rules.json provides the Cellfie mappings used to import Table S2 into Protégé. Code S2: RPMO.ttl pro-
vides the released RPMO ontology in Turtle format. Code S3 to S6 (calculate_dr.py, calculate_pci.py,
calculate_pqi.py, and calculate_mqi.py) provide the external scripts used to reproduce DR, PCI, PQI,
and MQI computation and write-back.
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Abbreviations

The following abbreviations are used in this manuscript:

RPMO Road Performance and Maintenance Ontology
SWRL Semantic Web Rule Language

ORSD Ontology Requirements Specification Document
HiOnto Highway Ontology

IHP-ONTO  Integrated Highway Planning Ontology
RSO Road Shared Ontology

M&R Maintenance And Rehabilitation

RMO Road Maintenance Ontology

PCI Pavement Surface Condition Index

MQI Highway Maintenance Quality Indicator
SCI Subgrade Condition Index

BCI Bridge, Tunnel and Culvert Condition Index
TCI Traffic Facility Condition Index

PQI Pavement Maintenance Quality Index

RQI Pavement Riding Quality Index

RDI Pavement Rutting Depth Index

PBI Pavement Bumping Index

PWI Pavement Surface Wearing Index

SRI Pavement Skidding Resistance Index
SPARQL SPARQL Protocol and RDF Query Language
CQs Competency Questions

DR Pavement Distress Ratio

OWL Web Ontology Language
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