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Abstract 

Mismatch repair (MMR) deficiency occurs in 10–20% of colorectal cancer (CRC) cases, leading to 

microsatellite instability (MSI). Although MSI/MMR testing is critical for CRC management, high costs and 

long turnaround times limit testing rates and clinical utility, highlighting the need for more accessible, 

cost-effective alternatives. PANProfiler Colorectal (PPC) is an artificial intelligence (AI)-based biomarker 

test that determines MSI/MMR status directly from haematoxylin and eosin (H&E)-stained slides. We 

conducted a blinded, multi-centred validation to assess PPC’s performance against standard testing. The 

study included 3,576 whole slide images from 1,243 CRC patients across three United Kingdom 

institutions. PPC produced definitive results for 86.55% of slides, achieving an overall agreement of 

93.83%, positive agreement of 92.54%, and negative agreement of 94.02%. PPC accurately determined 

MSI/MMR status from routine H&E slides, offering a rapid, scalable alternative to conventional diagnostic 

methods. 

Introduction 
 

The DNA mismatch repair (MMR) system is essential for maintaining DNA integrity by rectifying errors 

that occur during replication, such as base-base mismatches and insertion-deletion loops, to maintain 

genomic stability. Four key proteins, MLH1, MSH2, MSH6, and PMS2, are included in this process. If the 

expression of any of the corresponding genes is impaired, the MMR mechanism can become 

dysfunctional1. When MMR is disrupted, it leads to microsatellite instability (MSI), which is characterised 

by changes in these repetitive DNA sequences. As such, MSI is a phenotypic indicator of abnormal MMR 

function1. Deficient MMR (dMMR) is evident in 10-20% of colorectal cancers (CRCs)2–4. MSI/MMR status 

can inform the clinical management of CRC patients, with major diagnostic, prognostic, and therapeutic 

implications, as well as highlighting patients for Lynch syndrome testing5. Importantly, MSI-high (MSI-H) 

and dMMR serve as predictive biomarkers of response to immune checkpoint inhibitors. The pioneering 

work of Allison and Honjo demonstrated that immunotherapy is particularly effective in CRC with MSI-H 

or dMMR, with response rates of approximately 50% in metastatic CRC and up to 100% in early-stage 

cases6,7. Therefore, accurate and timely MSI/MMR testing is critical to guide treatment decisions and 

improve patient outcomes.  

 

Testing for MSI or dMMR is recommended for all CRC patients by the National Institute for Health and 

Care Excellence (NICE)8, the European Society for Medical Oncology (ESMO)9, and jointly by the American 

Society of Clinical Oncology (ASCO) and the College of American Pathologists (CAP)10. However, universal 

MSI/MMR testing is not yet standard practice, with testing rates varying significantly across countries, 

healthcare settings, and patient demographics11–13. Current clinical practice relies on two primary 

methods for MSI/MMR testing: immunohistochemistry (IHC), which detects loss of nuclear expression of 

the MMR proteins MLH1, MSH2, MSH6, and PMS2, and polymerase chain reaction (PCR)-based MSI 

testing, which identifies instability in specific microsatellite loci14. Both approaches demonstrate good 

sensitivity (91–93%) and moderate specificity (79–83%)15, yet are limited by practical challenges. While 

IHC is generally highly concordant, its interpretation can be subject to inter-observer variability in 
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challenging cases16, whereas PCR can be affected by poor DNA quality, especially from formalin-fixed, 

paraffin-embedded (FFPE) samples17,18. Both require additional tumour tissue beyond that used for 

preparing the haematoxylin and eosin (H&E)-stained specimen, specialised infrastructure, and may incur 

high costs. Combined with pathology workforce shortages and variable turnaround times13,19,20, these 

limitations highlight the need for a rapid, reliable, cost-effective, and widely accessible alternative for 

MSI/dMMR detection in all CRC patients. 

 

In routine H&E-stained CRC tissue, MSI and dMMR tumours are associated with certain morphological 

patterns21, such as the presence of prominent tumour-infiltrating lymphocytes (TILs) or peritumoral 

“Crohn’s-like” lymphoid reaction, mucinous differentiation and/or poorly-differentiated morphology21. 

This suggests that MSI/MMR status has distinct histomorphological features identifiable from H&E-

stained specimens, which could be leveraged in image-driven algorithms using artificial intelligence. This 

potential has been demonstrated in multiple studies where AI models were successfully used to 

determine MSI or MMR status from whole slide images (WSIs) of H&E-stained tissue21–24. 

 

PANProfiler Colorectal (PPC) is an AI-based biomarker test for determining MSI/MMR status from H&E-

stained WSIs (Figure 1). In this paper, we report the performance characteristics of PPC based on a 

retrospective validation performed in a blinded setting. Data were collected from three UK institutions, 

ensuring a diverse cohort that enabled assessment of PPC’s robustness and effectiveness across different 

clinical settings. The results were generated centrally and analysed at St James's University Hospital (SJUH) 

in Leeds, UK, without PPC having access to the reference test results at any time of the study. Variability 

in scanning equipment, image formats, patient demographics, and disease characteristics was considered 

to reflect real-world conditions. In addition, we discuss PPC’s utility as an AI-based diagnostic test within 

routine CRC workflows and its potential to streamline the diagnostic processes to enable faster 

turnaround times. 

 

Results 

Blinded validation results of PANProfiler Colorectal 

The key performance characteristics from the blinded validation are given in Table 1. The results 

demonstrate consistently strong performance of the PPC model across all three independent cohorts. 

High overall percent agreement (OPA), positive percent agreement (PPA), and negative percent 

agreement (NPA) were observed, with C-statistics exceeding 0.92 in all cases. The model delivered 

particularly robust results on the largest cohort (L1-UK-CRC-SVS-1-BLIND). The test replacement rate (TRR) 

varied across datasets but remained high overall with only 13.45% of tested samples returning an 

Indeterminate result. These findings support the generalisability and clinical potential of PPC across 

different institutions and regions in the UK. 
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Performance of PANProfiler Colorectal across diverse subpopulations 

To demonstrate the generalisability of PPC across different regions within the UK, results from all 

institutions were analysed together. To this end, we included the I1-UK-CRC-CZI-1-DEV cohort as an 

additional site to represent Scotland. Since this dataset was validated using 5-fold cross-validation rather 

than a blind evaluation, it is not included in the main results. The I1-UK-CRC-CZI-1-DEV cohort, consisting 

of 1,125 WSIs with a prevalence of 13.6%, demonstrated strong performance, achieving an OPA of 86.49% 

(95% CI: 83.80-88.89%), PPA of 97.41% (95% CI: 92.63-99.46%), NPA of 84.44% (95% CI: 81.34-87.21%), a 

C-statistic of 0.928, and a TRR of 65.2% (95% CI: 62.29-67.94%). These metrics are within the range of the 

blind performance results (shown in Table 1), which assessed performance in England, Wales, and 

Northern Ireland. 

Cohort characteristics 

The breakdown of resections and biopsies for development and blind cohorts are provided in 

Supplementary Table S1. Study population demographics, including age and sex distribution, are detailed 

in Supplementary Table S2. The mean age across the cohorts ranged from 65.6 to 68.9 years (standard 

deviation: 11.6 to 12.8 years). Males comprised 52-57% of patients across cohorts, while females 

accounted for 43-48%, consistent with previously reported figures in the literature2. Tumour site 

distribution is presented in Supplementary Tables S3, with the colon being the most frequently affected 

site, which aligns with published data32,33. Supplementary Table S4 shows the breakdown of histological 

subtypes across different cohorts. Adenocarcinoma was the predominant histological subtype, observed 

in 73.24–94.4% of cases, in agreement with prior studies34. It was followed by mucinous adenocarcinoma, 

with a prevalence of 5.56–20.42% across cohorts. 

 

Tumour grade and pathological stage data are summarised in Supplementary Tables S5-S7. These tables 

also provide the distribution of MSI and dMMR status within each cohort. Moderately differentiated was 

the most prevalent histological grade, consistent with the literature34. Poorly differentiated carcinoma 

was more frequently observed in patients with MSI-H/dMMR compared to those with non-MSI-H or 

proficient mismatch repair (pMMR), a finding also supported by earlier studies21. Tumour stage varied 

across cohorts, with stage II and III being the most common. MSI-H/dMMR prevalence was highest in 

stage II cases. Compared to the published literature, this study observed a lower proportion of stage IV 

diagnoses and a higher proportion of stage II cases33,35. However, the association between lower tumour 

stage and increased MSI-H/dMMR prevalence is consistent with previous findings36. 

 

Impact of backbone model on performance  

The self-supervised learning (SSL)-pretrained backbone outperformed the ImageNet backbone across all 

metrics in the five-fold cross-validation on the L1-UK-CRC-SVS-1-DEV cohort (see Supplementary Table S8 

and Supplementary Figure S1). It achieved a higher C-statistic (0.96 vs. 0.93), OPA (95.25% vs. 91.48%), 

PPA (95.51% vs. 87.78%), and NPA (95.19% vs. 92.39%). Additionally, the TRR was slightly higher for SSL 
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(84.03% vs. 83.12%). Consequently, the SSL-based model, demonstrating optimal performance, was 

selected for the blinded validation study. 

 

Explainability and interpretability of deep learning models 

We unblinded and analysed 61 images from the L1-UK-CRC-SVS-1-BLIND cohort, with a breakdown of 16 

true positives (TP), 18 true negatives (TN), 7 false positives (FP), 6 false negatives (FN), 8 indeterminate 

negatives (IN), and 6 indeterminate positives (IP). In Figures 2-3, and Supplementary Figure S2, example 

images demonstrate how our models direct their attention, by overlaying the “attention heatmaps” (B) 

onto the original WSIs (A). The same panel also highlights the regions of interest selected based on the 

model's attention.  

To analyse the predictions correctly classified by the model, we visualised the heatmaps for TP and TN 

cases. For TP cases, regions with high attention scores predominantly aligned with tumour tissue, such as 

poorly/moderately differentiated areas with medullary features, TILs, and adenocarcinoma with 

mucinous features (Figure 2, A-B). In TN cases (Figure 2, right), the model's attention was directed toward 

tumour regions featuring moderately differentiated adenocarcinomas. 

To analyse the predictions incorrectly classified by the model, we visualised the heatmaps for FP and FN 

cases (Figure 3). FP predictions were focused on poorly differentiated regions, which could explain the 

misclassification, as poor differentiation is often linked to MSI-H/dMMR tumours (Figure 3, left). For a FN 

case (Figure 3, right), the model concentrated on regions of moderately differentiated adenocarcinoma, 

likely contributing to the misclassification. 

To investigate the model’s indeterminate predictions, we visualised heatmaps for the IN and IP cases 

(Supplementary Figure S2). Our analysis suggests that indeterminate predictions may arise from 

conflicting or ambiguous morphological signals. For instance, some non-MSI-H/pMMR (IN) cases 

presented with features typically associated with MSI-H/dMMR status (e.g., poor differentiation, TILs, 

mucinous features), while others were confounded by factors like limited tumour tissue or contained non-

specific features such as moderate differentiation. Similarly, most indeterminate MSI-H/dMMR (IP) cases 

exhibited a substantial degree of well or moderate differentiation. 

Overall, increased attention is observed on biologically meaningful morphological features, such as poor 

differentiation, TILs, and mucinous characteristics, which are well-documented as being associated with 

MSI-H/dMMR. By contrast, well-differentiated tumours are commonly linked to non-MSI-H/pMMR. 

Moderate differentiation, on the other hand, is not a reliable discriminator of MSI/MMR status, as it is 

observed in both MSI-H/dMMR and non-MSI-H/pMMR tumours23,24,37–40. 

The model’s embedding space was also evaluated to determine whether MSI-H/dMMR and non-MSI-

H/pMMR cases could be separated. Embedding spaces were visualised at both the slide level (Figure 4, A) 

and patch level (Figure 4, B). The slide-level (classification) embedding space (Figure 4, A) demonstrated 

clear separation between the MSI-H/dMMR and non-MSI-H/pMMR classes. At the patch level, distinct 
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regions for each class were observed, with patches exhibiting similar morphology positioned closer 

together in the embedding space. For example, MSI-H/dMMR patches in one region formed clusters 

characterised by poorly differentiated adenocarcinoma, while another non-MSI-H/pMMR cluster of 

patches were associated with moderately differentiated adenocarcinoma. 

Discussion 

This study evaluated the performance of AI-based PPC compared to standard pathology MSI/MMR testing 

in a retrospective, blinded setting. High PPA and NPA demonstrated that PPC accurately identified both 

MSI-high/dMMR (Unstable) and non-MSI-high/pMMR (Stable) samples. Additionally, of 3,576 WSIs, PPC 

returned definite results (TRR) for 86.55% of images, indicating a potential significant reduction in the 

number of standard pathology tests required.  

 

Many other studies have evaluated AI-driven methods for determining MSI/MMR status from WSIs41–46. 

These demonstrate the feasibility of AI-derived image features for MSI/MMR detection. However, most 

have focused on screening, where the primary target was identifying cases not requiring further molecular 

or IHC testing. For instance, one study40 conducted a blinded validation on 600 WSIs, reporting an area 

under the receiver operating characteristic curve (AUC, i.e. the C-statistic) of 88% and a sensitivity (i.e. 

PPA) of 96-98% with a TRR of 46-47%. Other studies reported comparable or worse performance. For 

example, one study47 achieved TRRs of 44.12% for resections and 52.73% for biopsies with a sensitivity of 

95%. Moreover, another approach for MSI screening48 introduced a deep learning (DL)-based classifier 

capable of replacing testing for only 40% of CRC cases.  

 

Other AI-based approaches have addressed the problem from a diagnostic perspective, aiming to identify 

both MSI-high/dMMR and non-MSI-high/pMMR cases. One diagnostic approach49 validated on 355 

resections and 341 biopsies, reported AUCs of 84.57% and 76.79%, sensitivity scores of 90.91% and 

92.31%, specificity (i.e. NPA) scores of 95.13% and 95.36%, and TRRs of 56.06% and 51.03%, respectively. 

Finally, a recent large-scale study23 by Wagner et al. reported sensitivity scores of 98-99% and specificity 

scores of 44-56%. While there exist key differences in model architecture and training data characteristics, 

our study's higher specificity fundamentally stems from different clinical goals and model designs. The 

Wagner et al. model was developed for pre-screening, where a trade-off with specificity is accepted to 

maximise sensitivity. In contrast, our tool is designed for diagnostic use, requiring both high sensitivity 

and specificity. We achieve this by implementing a three-tiered classification system (‘Stable’, ‘Unstable’, 

‘Indeterminate’), which allows the model to make definitive calls with higher confidence by classifying 

ambiguous cases as ‘Indeterminate’. This methodological choice is the primary driver of our higher 

specificity. Consequently, in contrast to previous methods, PPC demonstrates remarkable diagnostic 

utility by maintaining both high sensitivity and specificity. This also translates to great practical 

application, with an overall TRR of 86.55%.  

 

We evaluated the safety of PPC by comparing its performance to standard MSI/MMR detection tests, 

including PCR for MSI testing and IHC for MMR deficiency, based on results from clinical studies in the 

literature. This is critical to show that PPC yields similar risk in the context of false negative and false 
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positive results, as such there would be no greater risk of adverse effects compared to the current 

standard of care. Aggregated data from multiple studies primarily across the US and Europe 15 indicate 

that MSI testing (n = 3,476) has a sensitivity (PPA) of 93% (95% CI: 87-96%) and a specificity (NPA) of 79% 

(95% CI: 70-86%), while MMR testing (n = 3,091) shows a sensitivity of 91% (95% CI: 85-95%), and a 

specificity of 83% (95% CI: 77-88%). The National Institute for Health and Care Excellence (NICE), England, 

reported similar figures8 for MSI testing (sensitivity: 91.3% [95% CI: 42.6-99.3%], specificity: 83.7% [95% 

CI: 63.8-93.7%]) and IHC-based MMR testing (sensitivity: 96.2% [95% CI: 69.4-99.6%], specificity: 88.4% 

[95% CI: 79.0-94.0%]). Recent studies report that concordance between MSI testing and MMR IHC is 

increasing, especially when sufficient tumour DNA is present and unusual IHC patterns are taken into 

account during MMR testing50. PPC’s performance appears comparable to standard pathology tests, 

however, direct head-to-head comparisons with other studies are often challenging due to variations in 

patient cohorts, experimental design, preanalytical protocols and the specific definitions of outcomes. 

Therefore, any comparison of our results to other published data should be interpreted with caution. 

 

The integration of PPC into pathological workflows could offer significant advantages, particularly in its 

ability to streamline diagnostic processes by minimising reliance on time-intensive assays currently used 

as the standard for biomarker testing. This reduction in testing could assist users, such as pathologists and 

laboratory professionals, in managing growing workloads and addressing staffing shortages19,20. By 

contrast, PPC can generate biomarker results within minutes (Supplementary Figure S3), enabling 

pathology reports to be finalised simultaneously during the histological assessment. Other potential 

benefits of PPC include lowering the diagnostic burden on pathologists and lab professionals, allowing 

them to dedicate more attention to complex cases. A digital test based on existing H&E-stained slides 

offers positive environmental benefits by reducing the need for additional wet laboratory procedures, 

minimising the use of toxic chemicals and consumables common in conventional diagnostics. By 

streamlining workflows and reducing the reliance on standard laboratory testing, PPC also has the 

potential to deliver timely results and greater cost efficiency for healthcare providers. Future work will 

include a health economics analysis to evaluate its cost-effectiveness in real-world clinical environments. 

In parallel, usability studies with target users will assess the impact of PPC on user experience and 

workflow integration. 

 

While PPC’s overall performance demonstrated significant promise, certain aspects warrant additional 

exploration to improve the AI-based test. Approximately 14% of samples returned an Indeterminate 

result, which may be partially due to preanalytical factors such as suboptimal tissue processing, staining 

or slide digitisation. Standardising and optimising these workflows will be key to increasing the proportion 

of assessable cases and improving clinical usability. Indeterminate outcomes may also reflect model 

uncertainty driven by morphological inconsistencies. Our visual analysis of indeterminate cases showed 

they often contained conflicting features, such as non-MSI cases presenting with MSI-like features (e.g., 

TILs and poor differentiation), non-specific features like moderate differentiation, or confounding factors 

like limited tumour tissue, leading to an indeterminate result (Supplementary Figure S2).  Expanding the 

training dataset to include more diverse, representative cases could improve the model’s ability to resolve 

such differences. In addition, a deeper investigation into the variability of validation metrics such as TRR 

is needed to better understand and refine PPC’s performance across different cohorts. All institutions in 
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the study were based in the UK, providing a strong foundation within a well-characterised healthcare 

system. To build on these findings and support broader applicability, future validation will benefit from 

including samples from other regions and more diverse demographics. While this retrospective study 

offers valuable insights, prospective studies in clinical environments will be key to further demonstrating 

PPC’s performance and utility in real-world clinical settings. Such studies would provide a critical 

understanding of PPC’s integration into routine pathology workflows and assess its impact on patient 

outcomes. Finally, this study utilised mostly resected tissue samples (Supplementary Table S1). Since 

biopsies are more commonly used in routine clinical practice, future validation efforts will expand to 

include biopsy samples, further supporting the test’s real-world applicability. 

 

Taken together, these findings point to the potential of PPC as a proficient diagnostic tool capable of 

comparable levels of performance to current standard-of-care testing. This paves the way towards 

improved diagnostics, ensuring more accurate results and leading to the timely establishment of 

MSI/MMR status for CRC cases. 

 

Methods 

Cohort characteristics for blinded validation 

A total of 3,576 WSIs from three different UK cohorts were used for the multi-centred, blinded validation 

of PPC (Table 2). Only WSIs derived from FFPE blocks of primary CRC were included in the analysis. WSIs 

of fresh frozen samples, metastatic tumours from non-colorectal sites, and those with less than 10% 

tumour content were excluded. Additionally, WSIs failing visual assessment and quality control by 

pathologists due to excessive tissue folds, air bubbles, pen marks, adhesive tape, out-of-focus regions, 

pixel artefacts or other digital distortions were also excluded. The number of excluded images (n=1,234) 

accounted for 25.65% of the images originally acquired from the three institutions (n=4,810). The WSIs 

were acquired using different scanners and stored in multiple image formats. MSI-H/dMMR prevalence 

ranged from 12.52 to 20.60%. This is comparable to global estimates2–4, which serve as the primary 

reference for clinical practice in the UK.  The make-up of each independent cohort was as follows: 

 

L1-UK-CRC-SVS-1-BLIND: This cohort comprised 3,884 archival CRC images, sourced from St James's 

University Hospital (SJUH) in Leeds, UK, of which 3,124 had MSI/MMR status (391 Unstable and 2,733 

Stable). Tissue samples were scanned at 20/40x magnification using Leica Aperio GT 450 DX, AT2 or 

Scanscope CS scanners and stored in SVS format. 

 

W1-UK-CRC-CZI-1-BLIND: This cohort was composed of a total of 510 WSIs, sourced from Wales Cancer 

Biobank (WCB) in Cardiff, UK, of which 54 had MSI/MMR status (11 Unstable and 43 Stable). Tissue 

samples were scanned at 40x magnification and stored in CZI format. 
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N1-UK-CRC-SVS-1-BLIND: This cohort comprised 398 WSIs collected from Northern Ireland Biobank (NIB) 

in Belfast, UK (82 Unstable, 316 Stable). Tissue samples were scanned at 20/40x magnification using a 

Leica Aperio AT2 scanner and stored in SVS format. 

 

Cohort characteristics for development and calibration 

A total of 2,502 WSIs of FFPE CRC specimens from four cohorts were used for development, internal 

validation, and calibration of PPC (Table 3). While samples from the blinded validation and 

development/calibration cohorts may originate from the same institution, there is no case overlap 

between these distinct cohorts. Each case included in the blinded validation cohort is unique and has not 

been used in the development or calibration phases of the model. The make-up of each cohort was as 

follows: 

 

T1-US-CRC-SVS-1-DEV: This cohort consisted of 563 WSIs (78 Unstable and 485 Stable), acquired from The 

Cancer Genome Atlas (TCGA) Colon (COAD) and rectal (READ) adenocarcinoma studies 

(https://portal.gdc.cancer.gov/).  It was used for model development and internal validation. Tissue 

samples were scanned at 20/40x magnification and stored in SVS format. 

 

I1-UK-CRC-CZI-1-DEV:  This cohort consisted of 1,156 WSIs (159 Unstable and 997 Stable), sourced from 

the Industrial Centre for Artificial Intelligence Research in Digital Diagnostics (iCAIRD) in Scotland, UK. It 

was used for model development and internal validation. Tissue samples were scanned using Zeiss 

Axioscan at 40x magnification and stored in CZI format. 

 

L1-UK-CRC-SVS-1-DEV: This cohort consisted of 551 WSIs (109 Unstable and 442 Stable) collected from 

SJUH in Leeds. It was used for internal validation and calibration. Tissue samples were scanned at 20/40x 

magnification using Leica Aperio GT 450 DX, AT2 or Scanscope CS scanners and stored in SVS format. 

 

N1-UK-CRC-SVS-1-DEV: This cohort consisted of 130 WSIs (27 Unstable and 103 Stable) collected from 

NIB. It was used for internal validation and calibration. Tissue samples were scanned at 20/40x 

magnification using a Leica Aperio AT2 scanner and stored in SVS format. 

Overview of PANProfiler Colorectal 

PPC is an AI-driven biomarker test developed to determine MSI/MMR status from digitally scanned H&E-

stained slides of FFPE primary CRC specimens. PPC classifies MSI/MMR status as 'Unstable', Stable' or 

'Indeterminate'. 'Unstable' was defined as MSI-high/dMMR (i.e. positive class), while 'Stable' 

corresponded to pMMR/non-MSI-high (i.e. negative class). An 'Indeterminate' result was returned when 

the test could not confidently determine MSI/MMR status.  
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Performance characteristics and statistical procedures  

PPC’s performance was evaluated through a comprehensive agreement analysis with standard pathology 

tests, employing four key metrics: overall percent agreement (OPA), positive percent agreement (PPA), 

negative percent agreement (NPA) and test replacement rate (TRR), which measured the percentage of 

cases for which PPC was able to provide a definitive result.  In addition, the C-statistic, equivalent to the 

area under the receiver operating characteristic curve (AUC), was reported 25,26. Formal definitions of all 

performance metrics are provided in Supplementary Tables S9 and S10.  

 

Based on the expected prevalence of MSI-H/dMMR in colorectal cancer (10-20%), a power analysis 

determined that a minimum of 140-245 cases would be required to achieve a 95% confidence level with 

a 5% margin of error 27. The sample size used in this study therefore exceeds the threshold necessary to 

ensure adequate statistical power. 

 

Artificial intelligence for establishing MSI/MMR status 
PPC is powered by AI and digital pathology. The platform relies on a series of DL methods, a subset of AI 

that enables computers to learn patterns from large datasets. Specifically, it can identify complex 

histomorphological features in relevant parts of H&E-stained WSIs of CRC and use them to determine 

MSI/MMR status 28. Figure 1 illustrates the core preprocessing and DL components that underlie PPC and 

how they are connected in an end-to-end pipeline.  

 

A DL model was trained to predict MSI/MMR status as follows. In the first step, input WSIs were 

subdivided into image patches (i.e. tiles) of 256x256 pixels at a resolution of 1.0 microns per pixel (MPP). 

Proprietary filtering algorithms were used to eliminate the background tiles and detect tissue. A WSI was 

discarded from analysis if it contained fewer than 10 tiles after the filtering process. Colour normalisation 
29 was applied to the remaining tiles before they were assigned with a reference biomarker status.  

 

The selected pre-processed tiles were then used in an end-to-end DL pipeline. This pipeline consisted of 

the following components: (1) a smart sampling module used for extracting groups of tiles that are 

spatially adjacent (referred to as windows); (2) a feature extractor CNN (i.e., an encoder) for learning 

unique feature representations for each tile; (3) an attention module that aggregated the tile embedding 

into a slide level embedding, weighting the features based on their relevance (using the attention scores) 

for the target biomarker. The attention module was finally connected to a classification layer that made 

the final diagnostic call on the biomarker status. 

Explainability and interpretability of deep learning models 

Understanding the internal mechanisms of DL models can provide insights into how they detect visual 

patterns in tissue WSIs that may be correlated with biological signals. Visualising the "black-box" nature 

of these models offers valuable insights into the explainability of their outputs. A common approach to 

visualising the spatial regions critical for determining biomarker status is overlaying tile-level attention on 

WSIs to create spatial heatmaps. These heatmaps highlight the areas of the input image that have the 
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strongest influence on the biomarker result. DL models can identify morphological patterns or visual 

features that are not immediately visible to the human eyes and correlate them with the existence (or 

absence) of biological signals, such as biomarker expression. We visualise the heatmaps by overlaying the 

model attention onto the WSI in Figures 3-4. 

In addition, to enhance the interpretability of the models, a DL model was developed and trained to 

classify various tissue types in CRC samples using the NCT-CRC-HE-100K dataset 30. The model categorised 

tissues into the following classes: adipose, background, debris, lymphocytes, mucus, smooth muscle, 

normal colon mucosa, stroma, and tumour. This model was used to confirm whether the attention of the 

primary models was directed toward relevant morphological regions by overlaying the classification maps 

onto the WSIs and comparing them with the attention heatmaps. 

 

To gain deeper insights into the PPC model, its embedding space, a lower-dimensional vector 

representation of image patches or whole slides, was visualised. Patch-level embeddings were obtained 

by processing each WSI through the model's feature extractor, and the resulting vectors for individual 

patches were stored. These patch embeddings were then aggregated into slide-level embeddings using 

the model's attention layer and saved for each WSI. The embeddings were visualised in TensorBoard using 

t-distributed Stochastic Neighbour Embedding (t-SNE), a technique for visualising high-dimensional data 

in two or three dimensions, with data points organised by their respective classes (Figure 4). To measure 

similarity between embeddings, the cosine distance, a metric based on the angle between two vectors, 

was used. For this analysis, a subset of 61 WSIs from the L1-UK-CRC-SVS-1-BLIND cohort was unblinded, 

comprising 28 samples with MSI-H/dMMR and 33 with non-MSI-H/pMMR. 

 

Development and validation strategies  

We utilised an SSL framework (Mocov2) for pre-training base models, allowing them to learn feature 

representations from unlabelled data and develop robustness for diverse tasks 31. Using the pre-trained 

SSL model as a backbone, a model was further fine-tuned through supervised learning with labels derived 

from reference MSI/MMR results. The SSL training datasets consisted of 588 WSIs from the T1-US-CRC-

SVS-1-DEV cohort. The development datasets (Table 3) consisted of 1,719 WSIs (237 Unstable, 1,482 

Stable WSIs), including T1-US-CRC-SVS-1-DEV (n=563, with 78 Unstable and 485 Stable WSIs), and I1-UK-

CRC-CZI-1-DEV (n=1,156, with 159 Unstable, and 997 Stable WSIs).  

 

To determine the best model to be deployed for blinded validation, different models were evaluated on 

the L1-UK-CRC-SVS-1-DEV cohort using cross-validation. To this end, this cohort was divided into five 

equal-sized folds. A model was fine-tuned, validated, and tested five times, cycling through a few fold 

combinations. This ensured that the models were thoroughly evaluated over the entirety of a cohort while 

minimising the risk of overfitting and providing a robust assessment of model performance.  

 

Calibration refers to finding the most optimal decision thresholds for a model. These thresholds help the 

model operate safely by allowing an 'Indeterminate' output when no definitive result can be provided. 
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PPC’s safety and effectiveness were maintained across different sites by calibrating cohort-specific 

thresholds for each biomarker. The decision boundaries identified during the calibration process were 

applied to compute the final model outputs, which were then used to calculate performance metrics on 

the test set for each cohort (see Performance characteristics for details). 

 

After determining the optimal configuration, PPC underwent separate calibrations on two cohorts before 

the blinded validation phase. Specifically, calibration was performed on the L1-UK-CRC-SVS-1-DEV cohort, 

consisting of 551 WSIs (109 Unstable and 442 Stable images), and the N1-UK-CRC-SVS-1-DEV cohort, 

which included 130 WSIs (27 Unstable and 103 Stable). No calibration was performed for the WCB cohort 

(W1-UK-CRC-CZI-1-BLIND), due to a low sample size. 

Blinded validation  

Authors from the University of Leeds conducted the blinded validation across all three cohorts. MSI/MMR 

status associated with blinded cohorts was not disclosed at any stage to the analysts. WSIs were analysed 

using PPC, generating test results classified as Stable, Unstable, or Indeterminate. These results were then 

shared with the clinical research team performing the blinded validation, who constructed confusion 

matrices and calculated performance metrics. 

Data availability 

 

The Cancer Genome Atlas (TCGA) used for training is publicly available from the following link:  

https://portal.gdc.cancer.gov/. The additional datasets used for training and blinded validation were 

obtained through agreements between Panakeia Technologies Limited and the respective data providers 

and are not publicly available. 

 

Code availability 

The software and AI algorithms used in the current study are Panakeia Technologies Limited proprietary 

IP and cannot be shared. 

 

Acknowledgements 

This project was (partially) funded by Innovate UK Smart Grant 10054824. The results shown in this study 

are partially based upon data generated by the TCGA Research Network: https://www.cancer.gov/tcga. 

We acknowledge the support of iCAIRD (Industrial Centre for Artificial Intelligence Research in Digital 

Diagnostics), funded by Innovate UK, for the provision of the I1-UK-CRC-CZI-1-DEV cohort.  Biosamples in 

the W1-UK-CRC-CZI-1-BLIND cohort were obtained from the Wales Cancer Biobank (DOI: 

https://openbioresources.metajnl.com/articles/10.5334/ojb.46) which is funded by Health and Care 

ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

https://portal.gdc.cancer.gov/


 

 

Research Wales. Other investigators may have received specimens from the same subjects. Biosamples in 

the N1-UK-CRC-SVS-1-BLIND cohort were obtained from the Northern Ireland Biobank (DOI: 

https://openbioresources.metajnl.com/articles/10.5334/ojb.47 which received core funding from the 

Health and Social Care Research and Development Division of the Public Health Agency in Northern 

Ireland. 

 

Author contributions  

S.A. led the study. S.W., S.A., F.N., C.B., and A.G. designed the study. S.W., F.N., and C.B., performed the 

study experiments and analysed the results. S.W., C.B., F.N., A.G., S.A., and J.S. developed the software 

and the core AI algorithms and models as well as the computational approaches used in the study. A.G., 

J.S., C.B., F.N., S.W., and S.A. developed the platform to run the study experiments. D.J.H., I.H.U., N.B., 

M.H., B.M., G.R., M.C., C.F., E.W., M.L., M.S.T., R.C., and N.M.O. provisioned data for the study. D.J.H., 

I.H.U., and J.B. facilitated access to a part of the data. N.B. carried out blinded validation analysis for the 

results. P.P., J.N.K, N.K., N.M.O., E.W., D.M., O.M., and S.S. provided clinical and biological inputs for the 

study. D.M. and S.S. evaluated the images and performed data quality controls. S.W., S.A., and C.B. created 

the visualisations and illustrations for the manuscript. S.A., S.W., C.B., and F.N. verified the study results. 

S.A. and C.B. prepared the manuscript. J.C.B. provided suggestions on the contextual positioning of the 

manuscript and contributed editorial feedback. All authors discussed the findings and reviewed the 

manuscript.  

 

Competing Interests 

 The authors declare the following competing interests: S.W., N.K., D.M., S.S., P.P., J.S., F.N., A.G., C.B., 

A.M., and S.A are employees of Panakeia Technologies Limited, UK. S.W., N.K., P.P., J.S., F.N., A.G., C.B., 

and S.A declare stock ownership interests with Panakeia Technologies Limited, UK. P.P. holds a 

leadership position at Panakeia Technologies Limited, UK. O.M. provides consulting services for Panakeia 

Technologies Limited, UK. J.B. holds leadership positions at Panakeia Technologies Limited and Bering 

Limited, UK. J.B. declares travel, accommodations, and expenses for QURE AI, UK, and stock ownership 

interests with Orli Health, UK. He has received honoraria from Bayer, Germany, and research funding 

from QURE AI, UK, and IBEX Medical Analytics, Israel. M.S.T. is a scientific advisor to Mindpeak and 

Sonrai Analytics, and has received honoraria recently from BMS, MSD, Roche, Sanofi and Incyte. He has 

received grant support from Phillips, Roche, MSD and Akoya. None of these disclosures are related to 

this work. J.N.K. declares consulting services for Bioptimus, France; Owkin, France; DoMore Diagnostics, 

Norway; Panakeia Technologies Limited, UK; AstraZeneca, UK; Mindpeak, Germany; and MultiplexDx, 

Slovakia. Furthermore, he holds shares in StratifAI GmbH, Germany, and Synagen GmbH, Germany, and 

has received a research grant from GSK. He has also received honoraria by AstraZeneca, Bayer, Daiichi 

Sankyo, Janssen, Merck, MSD, BMS, Roche, Pfizer, and Fresenius. D.J.H. is an employee of and holds a 

leadership position at Nucana PLC, UK, and ILC Therapeutics Limited, UK, with which he also declares 

stock ownership interests. He has received research funding from Nucana PLC, UK. N.M.O. is a stock 

ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS



 

 

owner at 4D Path. He also previously received research funding from, and had a consultancy role in, 4D 

Path. He currently receives research funding from Tristar Technologies, with whom he also has a 

consultancy role. M.C and C.F. have a consultancy role in TriStar Technologies. E.W. has previously been 

in receipt of a 4D Path PhD studentship. J.C.B. is currently employed by Precede Bio. He holds a 

leadership position on the Board of Directors at Saga Diagnostics. He holds stock or ownership interests 

in AstraZeneca, Precede Bio, Corista, and Nexosomes. He has provided consulting or advisory services to 

Akoya, Leica, Agilent, Multiplex, Bain Capital, and ExAI. Other authors declare no other competing 

interests. 

 

References  

1. Pećina-Šlaus, N., Kafka, A., Salamon, I. & Bukovac, A. Mismatch Repair Pathway, Genome 

Stability and Cancer. Front. Mol. Biosci. 7, (2020). 

2. Koopman, M. et al. Deficient mismatch repair system in patients with sporadic advanced 

colorectal cancer. Br. J. Cancer 100, 266–273 (2009). 

3. Kang, Y.-J. et al. A scoping review and meta-analysis on the prevalence of pan-tumour 

biomarkers (dMMR, MSI, high TMB) in different solid tumours. Sci. Rep. 12, 20495 (2022). 

4. Lorenzi, M., Amonkar, M., Zhang, J., Mehta, S. & Liaw, K.-L. Epidemiology of Microsatellite 

Instability High (MSI-H) and Deficient Mismatch Repair (dMMR) in Solid Tumors: A 

Structured Literature Review. J. Oncol. 2020, 1807929 (2020). 

5. Ma, J., Setton, J., Lee, N. Y., Riaz, N. & Powell, S. N. The therapeutic significance of 

mutational signatures from DNA repair deficiency in cancer. Nat. Commun. 9, 3292 (2018). 

6. Cercek, A. et al. PD-1 Blockade in Mismatch Repair–Deficient, Locally Advanced Rectal 

Cancer. N. Engl. J. Med. 386, 2363–2376 (2022). 

7. Morse, M. A., Hochster, H. & Benson, A. Perspectives on Treatment of Metastatic 

Colorectal Cancer with Immune Checkpoint Inhibitor Therapy. The Oncologist 25, 33–45 

(2020). 

8. Molecular testing strategies for Lynch syndrome in people with colorectal cancer. Nice 

https://www.nice.org.uk/guidance/dg27. 

ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS



 

 

9. Stjepanovic, N. et al. Hereditary gastrointestinal cancers: ESMO Clinical Practice Guidelines 

for diagnosis, treatment and follow-up†. Ann. Oncol. 30, 1558–1571 (2019). 

10. Vikas, P. et al. Mismatch Repair and Microsatellite Instability Testing for Immune 

Checkpoint Inhibitor Therapy: ASCO Endorsement of College of American Pathologists 

Guideline. J. Clin. Oncol. 41, 1943–1948 (2023). 

11. Garcia-Carbonero, R. et al. Real-world study on microsatellite instability and mismatch 

repair deficiency testing patterns among patients with metastatic colorectal cancer in Spain. 

Clin. Transl. Oncol. 26, 864–871 (2024). 

12. Papke, D. J., Lindeman, N. I., Schrag, D. & Iorgulescu, J. B. Underutilization of Guideline-

Recommended Mismatch Repair/Microsatellite Instability Biomarker Testing in Advanced 

Colorectal Cancer. Cancer Epidemiol. Biomark. Prev. Publ. Am. Assoc. Cancer Res. 

Cosponsored Am. Soc. Prev. Oncol. 31, 1746–1751 (2022). 

13. Echle, A. et al. Clinical-Grade Detection of Microsatellite Instability in Colorectal Tumors by 

Deep Learning. Gastroenterology 159, 1406-1416.e11 (2020). 

14. Chen, J. et al. Microsatellite Status Detection of Colorectal Cancer: Evaluation of 

Inconsistency between PCR and IHC. J. Cancer 14, 1132–1140 (2023). 

15. Ladabaum, U., Ford, J. M., Martel, M. & Barkun, A. N. American Gastroenterological 

Association Technical Review on the Diagnosis and Management of Lynch Syndrome. 

Gastroenterology 149, 783-813.e20 (2015). 

16. Yu, F., Makrigiorgos, A., Leong, K. W. & Makrigiorgos, G. M. Sensitive detection of 

microsatellite instability in tissues and liquid biopsies: Recent developments and updates. 

Comput. Struct. Biotechnol. J. 19, 4931–4940 (2021). 

17. Sieben, N. L. G., Ter Haar, N. T., Cornelisse, C. J., Jan Fleuren, G. & Cleton-Jansensen, A.-

M. PCR artifacts in LOH and MSI analysis of microdissected tumor cells. Hum. Pathol. 31, 

1414–1419 (2000). 

18. Monument, M. J., Lessnick, S. L., Schiffman, J. D. & Randall, Rl. Tx. Microsatellite Instability 

ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS



 

 

in Sarcoma: Fact or Fiction? Int. Sch. Res. Not. 2012, 473146 (2012). 

19. Walsh, E. & Orsi, N. M. The current troubled state of the global pathology workforce: a 

concise review. Diagn. Pathol. 19, 163 (2024). 

20. Robboy, S. J. et al. The Pathologist Workforce in the United States: II. An Interactive 

Modeling Tool for Analyzing Future Qualitative and Quantitative Staffing Demands for 

Services. Arch. Pathol. Lab. Med. 139, 1413–1430 (2015). 

21. Greenson, J. K. et al. Pathologic predictors of microsatellite instability in colorectal cancer. 

Am. J. Surg. Pathol. 33, 126–133 (2009). 

22. Chang, X. et al. Predicting colorectal cancer microsatellite instability with a self-attention-

enabled convolutional neural network. Cell Rep. Med. 4, 100914 (2023). 

23. Wagner, S. J. et al. Transformer-based biomarker prediction from colorectal cancer 

histology: A large-scale multicentric study. Cancer Cell 41, 1650-1661.e4 (2023). 

24. Kather, J. N. et al. Deep learning can predict microsatellite instability directly from histology 

in gastrointestinal cancer. Nat. Med. 25, 1054–1056 (2019). 

25. Harrell, F. E. Regression Modeling Strategies: With Applications to Linear Models, Logistic 

Regression, and Survival Analysis. (Springer, New York, NY, 2001). doi:10.1007/978-1-

4757-3462-1. 

26. Hanley, J. A. & McNeil, B. J. The meaning and use of the area under a receiver operating 

characteristic (ROC) curve. Radiology 143, 29–36 (1982). 

27. Naing, L., Nordin, R. B., Abdul Rahman, H. & Naing, Y. T. Sample size calculation for 

prevalence studies using Scalex and ScalaR calculators. BMC Med. Res. Methodol. 22, 209 

(2022). 

28. Arslan, S. et al. A systematic pan-cancer study on deep learning-based prediction of multi-

omic biomarkers from routine pathology images. Commun. Med. 4, 48 (2024). 

29. Macenko, M. et al. A method for normalizing histology slides for quantitative analysis. in 

2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro 1107–

ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS



 

 

1110 (2009). doi:10.1109/ISBI.2009.5193250. 

30. Kather, J. N., Halama, N. & Marx, A. 100,000 histological images of human colorectal 

cancer and healthy tissue. Zenodo https://doi.org/10.5281/zenodo.1214456 (2018). 

31. Chen, X., Fan, H., Girshick, R. & He, K. Improved Baselines with Momentum Contrastive 

Learning. Preprint at https://doi.org/10.48550/arXiv.2003.04297 (2020). 

32. White, A. et al. A review of sex-related differences in colorectal cancer incidence, screening 

uptake, routes to diagnosis, cancer stage and survival in the UK. BMC Cancer 18, 906 

(2018). 

33. Himbert, C. et al. Clinical Characteristics and Outcomes of Colorectal Cancer in the 

ColoCare Study: Differences by Age of Onset. Cancers 13, 3817 (2021). 

34. Fleming, M., Ravula, S., Tatishchev, S. F. & Wang, H. L. Colorectal carcinoma: Pathologic 

aspects. J. Gastrointest. Oncol. 3, 153–173 (2012). 

35. McPhail, S., Johnson, S., Greenberg, D., Peake, M. & Rous, B. Stage at diagnosis and early 

mortality from cancer in England. Br. J. Cancer 112, S108–S115 (2015). 

36. Gutierrez, C., Ogino, S., Meyerhardt, J. A. & Iorgulescu, J. B. The Prevalence and 

Prognosis of Microsatellite Instability-High/Mismatch Repair-Deficient Colorectal 

Adenocarcinomas in the United States. JCO Precis. Oncol. e2200179 (2023) 

doi:10.1200/PO.22.00179. 

37. Cao, R. et al. Development and interpretation of a pathomics-based model for the prediction 

of microsatellite instability in Colorectal Cancer. Theranostics 10, 11080–11091 (2020). 

38. Nguyen, H.-G. et al. Image-based assessment of extracellular mucin-to-tumor area predicts 

consensus molecular subtypes (CMS) in colorectal cancer. Mod. Pathol. 35, 240–248 

(2022). 

39. Adib, E. et al. Deep learning–powered analysis of tumor-infiltrating lymphocytes (TILs) in 

colorectal cancer. J. Clin. Oncol. 43, 288–288 (2025). 

40. Saillard, C. et al. Validation of MSIntuit as an AI-based pre-screening tool for MSI detection 

ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS



 

 

from colorectal cancer histology slides. Nat. Commun. 14, 6695 (2023). 

41. Hezi, H., Gelber, M., Balabanov, A., Maruvka, Y. E. & Freiman, M. CIMIL-CRC: A clinically-

informed multiple instance learning framework for patient-level colorectal cancer molecular 

subtypes classification from H&E stained images. Comput. Methods Programs Biomed. 259, 

108513 (2025). 

42. Gustav, M. et al. Deep learning for dual detection of microsatellite instability and POLE 

mutations in colorectal cancer histopathology | npj Precision Oncology. Npj Precis. Oncol. 8, 

(2024). 

43. He, B. et al. Development of a Multimodal Deep Learning Model for Predicting Microsatellite 

Instability in Colorectal Cancer by Integrating Histopathological Images and Clinical Data. 

Preprint at https://doi.org/10.21203/rs.3.rs-4200523/v1 (2024). 

44. Raza, M., Awan, R., Bashir, R. M. S., Qaiser, T. & Rajpoot, N. M. Dual attention model with 

reinforcement learning for classification of histology whole-slide images. Comput. Med. 

Imaging Graph. 118, 102466 (2024). 

45. Nowak, M. et al. Single-cell AI-based detection and prognostic and predictive value of DNA 

mismatch repair deficiency in colorectal cancer. Cell Rep. Med. 5, 101727 (2024). 

46. Lo, C.-M., Jiang, J.-K. & Lin, C.-C. Detecting microsatellite instability in colorectal cancer 

using Transformer-based colonoscopy image classification and retrieval. PloS One 19, 

e0292277 (2024). 

47. Echle, A. et al. Artificial intelligence for detection of microsatellite instability in colorectal 

cancer—a multicentric analysis of a pre-screening tool for clinical application. ESMO Open 

7, 100400 (2022). 

48. Lee, S. H., Song, I. H. & Jang, H.-J. Feasibility of deep learning-based fully automated 

classification of microsatellite instability in tissue slides of colorectal cancer. Int. J. Cancer 

149, 728–740 (2021). 

49. Clinical actionability of triaging DNA mismatch repair deficient colorectal cancer from biopsy 

ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS



 

 

samples using deep learning - eBioMedicine. The Lancet 81, (2022). 

50. Loughrey, M. B. et al. Identifying mismatch repair-deficient colon cancer: near-perfect 

concordance between immunohistochemistry and microsatellite instability testing in a large, 

population-based series. Histopathology 78, 401–413 (2021). 

 

Figure 1 | CRC diagnostic pathway with and without PANProfiler Colorectal (PPC). (A) The standard 

diagnostic pathway for CRC begins with the collection of tissue samples (biopsy or resection). Tissue 

sections are cut from FFPE blocks, mounted onto glass slides and stained with H&E. These slides are 

examined by a pathologist, who assesses the presence of tumour and, where present, its grade. Upon 

confirmation of malignancy, additional testing is performed to assess MSI/MMR status. IHC is commonly 

used to evaluate the expression of MMR proteins (MLH1, PMS2, MSH2, and MSH6), while PCR/NGS can 

be used to detect changes in the number of repeats in microsatellite loci, characteristic of MSI. These 

biomarkers are important for guiding treatment decisions, including the use of immunotherapy. 

Integrating PPC, a digital test, into routine pathological workflow has the potential to streamline the 

diagnostic process, reducing the turnaround times from days or weeks to minutes (see also 

Supplementary Figure S3), potentially reducing the pressure on histopathology services, and enabling 

timely treatment decisions. (B) Overview of PPC’s end-to-end deep learning pipeline, including data 

preprocessing steps, background removal, detection of relevant tissue, tiling and colour normalisation, 

and selection of tiles for biomarker profiling. PPC’s deep learning architecture consists of a feature 

extractor and proprietary aggregation, attention and classification modules.  

 

 

Figure 2 | Explainability and interpretability visualisations for images correctly classified by the model, 

where two true positive (TP) and one true negative (TN) cases from the L1-UK-CRC-SVS-1-BLIND cohort 

are shown. A: Original WSI and two regions of interest (ROIs) beneath it (selected from different regions 

indicated by the red boxes). B: Attention scores with darker hues of red indicating high attention and blue 

indicating low attention. C: Annotated regions based on a classification of the tissue, including adipose, 

background, debris, lymphocytes, mucus, smooth muscle, normal colon mucosa, stroma, and tumour. 

 

Figure 3 | Explainability and interpretability visualisations for images incorrectly classified by the model, 

where one false positive (FP) and one false negative (FN) images from the L1-UK-CRC -SVS-1-BLIND cohort 

are shown. A: Original WSI and two ROIs beneath it (selected from different regions indicated by the red 

boxes). B: Attention scores with darker hues of red indicating high attention and blue indicating low 

attention. C: Annotated regions based on a classification of the tissue, including adipose, background, 

debris, lymphocytes, mucus, smooth muscle, normal colon mucosa, stroma, and tumour. 
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Figure 4 | Visualisation of the embedding space at slide and patch levels. The embedding space of 61 

whole slide images (WSIs) from the L1-UK-CRC-SVS-1-BLIND cohort is visualised at both slide (A) and 

patch (B) levels. MSI-H/dMMR and non-MSI-H/pMMR images and patches are shown in red and blue, 

respectively. The slide level embeddings (A) are visualised using 2D t-SNE, while the top 100 scoring 

attention tiles per WSI (B) are visualised using 3D t-SNE. An example of three closest MSI-H/dMMR and 

non-MSI-H/pMMR patches (based on cosine distance) is shown, taken from regions indicated by red and 

blue boxes, respectively. 

 

 

Cohort Region Sample 
Size 

(Unstable 
%) 

Overall 
Percent 

Agreement % 
(CI) 

Positive 
Percent 

Agreement % 
(CI) 

Negative 
Percent 

Agreement % 
(CI) 

Test 
Replacement 

Rate % 
(CI) 

C-
statisti

c 

L1-UK- 
CRC-

SVS-1- 
BLIND 

England 
3,124  

(12.5%) 
94.06 (93.11-

94.91) 
92.45 (89.05-

95.05) 
94.28 (93.28-

95.17) 
88.35 

(87.17-89.45) 
0.9695 

W1-UK- 
CRC-CZI-

1- 
BLIND 

Wales 
 54 

(20.4%) 
84.31 

(71.41-92.98) 
100.00 

(71.51-100.00) 
80.00 

(64.35-90.95) 
94.44 

(84.61-98.84) 
0.9205 

N1-UK- 
CRC-

SVS-1- 
BLIND 

Northern 
Ireland 

398  
(20.6%) 

93.31  
(89.75-95.92) 

91.67  
(81.61-97.24) 

93.75  
(89.74-96.54) 

71.36 
(66.64-75.75) 

0.9670 

ALL  
3,576  

(13.5%) 
93.83  

(92.92-94.65) 
92.54  

(89.52- 94.91) 
94.02 

(93.06-94.89) 
86.55 

(85.39-87.65) 
0.9685 

Table 1 | Blinded validation results of PPC by cohort. C-statistic for all cohorts was computed using a 
weighted average based on sample size. 
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Cohort Images received 
Images with verified 
MSI/MMR status* 

Number of 
patients with 

verified MSI/MMR 
status* 

MSI-H/dMMR prevalence 
% 

L1-UK-CRC-SVS-1- 
BLIND 

3,884 3,124 791 12.52 

W1-UK-CRC-CZI-1- 
BLIND 

510  54 54 20.37 

N1-UK-CRC-SVS-1- 
BLIND 

416 398  398 20.60 

Combined Total 4,810 3,576  1,243 13.53 

Table 2 | Details of the cohorts used in the multi-centred, blinded validation study for PANProfiler 

Colorectal. *: WSIs were excluded based on the study’s inclusion and exclusion criteria (see Methods: 

Cohort Characteristics), including pathological assessment and the availability of corresponding 

MSI/MMR status. 

 

 

Cohort 
Images 

received 
Images with verified 
MSI/MMR status* 

Number of patients 
with verified 

MSI/MMR status* 

MSI-H/dMMR 
prevalence % 

T1-US-CRC-SVS-1-DEV 625 563 554 13.85 

I1-UK-CRC-CZI-1-DEV 1196 1156 1011 13.75 

L1-UK-CRC-SVS-1-DEV 551 551 142 19.78 

N1-UK-CRC-SVS-1-DEV 130 130 130 20.77 

Combined Total 2,502 2,400 1837 15.54 

Table 3 | Details of the cohorts used for development, internal validation and calibration of PANProfiler 

Colorectal. *: WSIs were excluded based on the study’s inclusion and exclusion criteria (see Methods: 

Cohort Characteristics), including pathological assessment and the availability of corresponding 

MSI/MMR status. 
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