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Abstract

Mismatch repair (MMR) deficiency occurs in 10-20% of colorectal cancer (CRC) cases, leading to
microsatellite instability (MSI). Although MSI/MMR testing is critical for CRC management, high costs and
long turnaround times limit testing rates and clinical utility, highlighting the need for more accessible,
cost-effective alternatives. PANProfiler Colorectal (PPC) is an artificial intelligence (Al)-based biomarker
test that determines MSI/MMR status directly from haematoxylin and eosin (H&E)-stained slides. We
conducted a blinded, multi-centred validation to assess PPC’s performance against standard testing. The
study included 3,576 whole slide images from 1,243 CRC patients across three United Kingdom
institutions. PPC produced definitive results for 86.55% of slides, achieving an overall agreement of
93.83%, positive agreement of 92.54%, and negative agreement of 94.02%. PPC accurately determined
MSI/MMR status from routine H&E slides, offering a rapid, scalable alternative to conventional diagnostic
methods.

Introduction

The DNA mismatch repair (MMR) system is essential for maintaining DNA integrity by rectifying errors
that occur during replication, such as base-base mismatches and insertion-deletion loops, to maintain
genomic stability. Four key proteins, MLH1, MSH2, MSH6, and PMS2, are included in this process. If the
expression of any of the corresponding genes is impaired, the MMR mechanism can become
dysfunctional®. When MMR is disrupted, it leads to microsatellite instability (MSI), which is characterised
by changes in these repetitive DNA sequences. As such, MSI is a phenotypic indicator of abnormal MMR
function®. Deficient MMR (dMMR) is evident in 10-20% of colorectal cancers (CRCs)?™. MSI/MMR status
can inform the clinical management of CRC patients, with major diagnostic, prognostic, and therapeutic
implications, as well as highlighting patients for Lynch syndrome testing®. Importantly, MSI-high (MSI-H)
and dMMR serve as predictive biomarkers of response to immune checkpoint inhibitors. The pioneering
work of Allison and Honjo demonstrated that immunotherapy is particularly effective in CRC with MSI-H
or dMMR, with response rates of approximately 50% in metastatic CRC and up to 100% in early-stage
cases®’. Therefore, accurate and timely MSI/MMR testing is critical to guide treatment decisions and
improve patient outcomes.

Testing for MSI or dMMR is recommended for all CRC patients by the National Institute for Health and
Care Excellence (NICE)?, the European Society for Medical Oncology (ESMO)?®, and jointly by the American
Society of Clinical Oncology (ASCO) and the College of American Pathologists (CAP)°. However, universal
MSI/MMR testing is not yet standard practice, with testing rates varying significantly across countries,
healthcare settings, and patient demographics'*™3. Current clinical practice relies on two primary
methods for MSI/MMR testing: immunohistochemistry (IHC), which detects loss of nuclear expression of
the MMR proteins MLH1, MSH2, MSH6, and PMS2, and polymerase chain reaction (PCR)-based MSI
testing, which identifies instability in specific microsatellite loci**. Both approaches demonstrate good
sensitivity (91-93%) and moderate specificity (79-83%)*°, yet are limited by practical challenges. While
IHC is generally highly concordant, its interpretation can be subject to inter-observer variability in



challenging cases'®, whereas PCR can be affected by poor DNA quality, especially from formalin-fixed,
paraffin-embedded (FFPE) samples'’'8. Both require additional tumour tissue beyond that used for
preparing the haematoxylin and eosin (H&E)-stained specimen, specialised infrastructure, and may incur
high costs. Combined with pathology workforce shortages and variable turnaround times'31%20 these
limitations highlight the need for a rapid, reliable, cost-effective, and widely accessible alternative for
MSI/dMMR detection in all CRC patients.

In routine H&E-stained CRC tissue, MSI and dMMR tumours are associated with certain morphological
patterns?!, such as the presence of prominent tumour-infiltrating lymphocytes (TILs) or peritumoral
“Crohn’s-like” lymphoid reaction, mucinous differentiation and/or poorly-differentiated morphology?.
This suggests that MSI/MMR status has distinct histomorphological features identifiable from H&E-
stained specimens, which could be leveraged in image-driven algorithms using artificial intelligence. This
potential has been demonstrated in multiple studies where Al models were successfully used to
determine MSI or MMR status from whole slide images (WSls) of H&E-stained tissue?~24,

PANProfiler Colorectal (PPC) is an Al-based biomarker test for determining MSI/MMR status from H&E-
stained WSIs (Figure 1). In this paper, we report the performance characteristics of PPC based on a
retrospective validation performed in a blinded setting. Data were collected from three UK institutions,
ensuring a diverse cohort that enabled assessment of PPC’s robustness and effectiveness across different
clinical settings. The results were generated centrally and analysed at St James's University Hospital (SJUH)
in Leeds, UK, without PPC having access to the reference test results at any time of the study. Variability
in scanning equipment, image formats, patient demographics, and disease characteristics was considered
to reflect real-world conditions. In addition, we discuss PPC’s utility as an Al-based diagnostic test within
routine CRC workflows and its potential to streamline the diagnostic processes to enable faster
turnaround times.

Results

Blinded validation results of PANProfiler Colorectal

The key performance characteristics from the blinded validation are given in Table 1. The results
demonstrate consistently strong performance of the PPC model across all three independent cohorts.
High overall percent agreement (OPA), positive percent agreement (PPA), and negative percent
agreement (NPA) were observed, with C-statistics exceeding 0.92 in all cases. The model delivered
particularly robust results on the largest cohort (L1-UK-CRC-SVS-1-BLIND). The test replacement rate (TRR)
varied across datasets but remained high overall with only 13.45% of tested samples returning an
Indeterminate result. These findings support the generalisability and clinical potential of PPC across
different institutions and regions in the UK.



Performance of PANProfiler Colorectal across diverse subpopulations

To demonstrate the generalisability of PPC across different regions within the UK, results from all
institutions were analysed together. To this end, we included the 11-UK-CRC-CZI-1-DEV cohort as an
additional site to represent Scotland. Since this dataset was validated using 5-fold cross-validation rather
than a blind evaluation, it is not included in the main results. The I11-UK-CRC-CZI-1-DEV cohort, consisting
of 1,125 WSIs with a prevalence of 13.6%, demonstrated strong performance, achieving an OPA of 86.49%
(95% Cl: 83.80-88.89%), PPA of 97.41% (95% Cl: 92.63-99.46%), NPA of 84.44% (95% Cl: 81.34-87.21%), a
C-statistic of 0.928, and a TRR of 65.2% (95% Cl: 62.29-67.94%). These metrics are within the range of the
blind performance results (shown in Table 1), which assessed performance in England, Wales, and
Northern Ireland.

Cohort characteristics

The breakdown of resections and biopsies for development and blind cohorts are provided in
Supplementary Table S1. Study population demographics, including age and sex distribution, are detailed
in Supplementary Table S2. The mean age across the cohorts ranged from 65.6 to 68.9 years (standard
deviation: 11.6 to 12.8 years). Males comprised 52-57% of patients across cohorts, while females
accounted for 43-48%, consistent with previously reported figures in the literature?. Tumour site
distribution is presented in Supplementary Tables S3, with the colon being the most frequently affected
site, which aligns with published data®?23. Supplementary Table $4 shows the breakdown of histological
subtypes across different cohorts. Adenocarcinoma was the predominant histological subtype, observed
in 73.24-94.4% of cases, in agreement with prior studies®*. It was followed by mucinous adenocarcinoma,
with a prevalence of 5.56-20.42% across cohorts.

Tumour grade and pathological stage data are summarised in Supplementary Tables S5-S7. These tables
also provide the distribution of MSI and dMMR status within each cohort. Moderately differentiated was
the most prevalent histological grade, consistent with the literature®*. Poorly differentiated carcinoma
was more frequently observed in patients with MSI-H/dMMR compared to those with non-MSI-H or
proficient mismatch repair (PMMR), a finding also supported by earlier studies?. Tumour stage varied
across cohorts, with stage Il and Ill being the most common. MSI-H/dMMR prevalence was highest in
stage Il cases. Compared to the published literature, this study observed a lower proportion of stage IV
diagnoses and a higher proportion of stage Il cases®*3°. However, the association between lower tumour
stage and increased MSI-H/dMMR prevalence is consistent with previous findings®®.

Impact of backbone model on performance

The self-supervised learning (SSL)-pretrained backbone outperformed the ImageNet backbone across all
metrics in the five-fold cross-validation on the L1-UK-CRC-SVS-1-DEV cohort (see Supplementary Table S8
and Supplementary Figure S1). It achieved a higher C-statistic (0.96 vs. 0.93), OPA (95.25% vs. 91.48%),
PPA (95.51% vs. 87.78%), and NPA (95.19% vs. 92.39%). Additionally, the TRR was slightly higher for SSL



(84.03% vs. 83.12%). Consequently, the SSL-based model, demonstrating optimal performance, was
selected for the blinded validation study.

Explainability and interpretability of deep learning models

We unblinded and analysed 61 images from the L1-UK-CRC-SVS-1-BLIND cohort, with a breakdown of 16
true positives (TP), 18 true negatives (TN), 7 false positives (FP), 6 false negatives (FN), 8 indeterminate
negatives (IN), and 6 indeterminate positives (IP). In Figures 2-3, and Supplementary Figure S2, example
images demonstrate how our models direct their attention, by overlaying the “attention heatmaps” (B)
onto the original WSIs (A). The same panel also highlights the regions of interest selected based on the
model's attention.

To analyse the predictions correctly classified by the model, we visualised the heatmaps for TP and TN
cases. For TP cases, regions with high attention scores predominantly aligned with tumour tissue, such as
poorly/moderately differentiated areas with medullary features, TILs, and adenocarcinoma with
mucinous features (Figure 2, A-B). In TN cases (Figure 2, right), the model's attention was directed toward
tumour regions featuring moderately differentiated adenocarcinomas.

To analyse the predictions incorrectly classified by the model, we visualised the heatmaps for FP and FN
cases (Figure 3). FP predictions were focused on poorly differentiated regions, which could explain the
misclassification, as poor differentiation is often linked to MSI-H/dMMR tumours (Figure 3, left). For a FN
case (Figure 3, right), the model concentrated on regions of moderately differentiated adenocarcinoma,
likely contributing to the misclassification.

To investigate the model’s indeterminate predictions, we visualised heatmaps for the IN and IP cases
(Supplementary Figure S2). Our analysis suggests that indeterminate predictions may arise from
conflicting or ambiguous morphological signals. For instance, some non-MSI-H/pMMR (IN) cases
presented with features typically associated with MSI-H/dMMR status (e.g., poor differentiation, TILs,
mucinous features), while others were confounded by factors like limited tumour tissue or contained non-
specific features such as moderate differentiation. Similarly, most indeterminate MSI-H/dMMR (IP) cases
exhibited a substantial degree of well or moderate differentiation.

Overall, increased attention is observed on biologically meaningful morphological features, such as poor
differentiation, TlLs, and mucinous characteristics, which are well-documented as being associated with
MSI-H/dMMR. By contrast, well-differentiated tumours are commonly linked to non-MSI-H/pMMR.
Moderate differentiation, on the other hand, is not a reliable discriminator of MSI/MMR status, as it is
observed in both MSI-H/dMMR and non-MSI-H/pMMR tumours?32437-40,

The model’s embedding space was also evaluated to determine whether MSI-H/dMMR and non-MSI-
H/pMMR cases could be separated. Embedding spaces were visualised at both the slide level (Figure 4, A)
and patch level (Figure 4, B). The slide-level (classification) embedding space (Figure 4, A) demonstrated
clear separation between the MSI-H/dMMR and non-MSI-H/pMMR classes. At the patch level, distinct



regions for each class were observed, with patches exhibiting similar morphology positioned closer
together in the embedding space. For example, MSI-H/dMMR patches in one region formed clusters
characterised by poorly differentiated adenocarcinoma, while another non-MSI-H/pMMR cluster of
patches were associated with moderately differentiated adenocarcinoma.

Discussion

This study evaluated the performance of Al-based PPC compared to standard pathology MSI/MMR testing
in a retrospective, blinded setting. High PPA and NPA demonstrated that PPC accurately identified both
MSI-high/dMMR (Unstable) and non-MSlI-high/pMMR (Stable) samples. Additionally, of 3,576 WSIs, PPC
returned definite results (TRR) for 86.55% of images, indicating a potential significant reduction in the
number of standard pathology tests required.

Many other studies have evaluated Al-driven methods for determining MSI/MMR status from WS|s*~46
These demonstrate the feasibility of Al-derived image features for MSI/MMR detection. However, most
have focused on screening, where the primary target was identifying cases not requiring further molecular
or IHC testing. For instance, one study*® conducted a blinded validation on 600 WSls, reporting an area
under the receiver operating characteristic curve (AUC, i.e. the C-statistic) of 88% and a sensitivity (i.e.
PPA) of 96-98% with a TRR of 46-47%. Other studies reported comparable or worse performance. For
example, one study*’ achieved TRRs of 44.12% for resections and 52.73% for biopsies with a sensitivity of
95%. Moreover, another approach for MSI screening*® introduced a deep learning (DL)-based classifier
capable of replacing testing for only 40% of CRC cases.

Other Al-based approaches have addressed the problem from a diagnostic perspective, aiming to identify
both MSI-high/dMMR and non-MSI-high/pMMR cases. One diagnostic approach*® validated on 355
resections and 341 biopsies, reported AUCs of 84.57% and 76.79%, sensitivity scores of 90.91% and
92.31%, specificity (i.e. NPA) scores of 95.13% and 95.36%, and TRRs of 56.06% and 51.03%, respectively.
Finally, a recent large-scale study?® by Wagner et al. reported sensitivity scores of 98-99% and specificity
scores of 44-56%. While there exist key differences in model architecture and training data characteristics,
our study's higher specificity fundamentally stems from different clinical goals and model designs. The
Wagner et al. model was developed for pre-screening, where a trade-off with specificity is accepted to
maximise sensitivity. In contrast, our tool is designed for diagnostic use, requiring both high sensitivity
and specificity. We achieve this by implementing a three-tiered classification system (‘Stable’, ‘Unstable’,
‘Indeterminate’), which allows the model to make definitive calls with higher confidence by classifying
ambiguous cases as ‘Indeterminate’. This methodological choice is the primary driver of our higher
specificity. Consequently, in contrast to previous methods, PPC demonstrates remarkable diagnostic
utility by maintaining both high sensitivity and specificity. This also translates to great practical
application, with an overall TRR of 86.55%.

We evaluated the safety of PPC by comparing its performance to standard MSI/MMR detection tests,
including PCR for MSI testing and IHC for MMR deficiency, based on results from clinical studies in the
literature. This is critical to show that PPC yields similar risk in the context of false negative and false



positive results, as such there would be no greater risk of adverse effects compared to the current
standard of care. Aggregated data from multiple studies primarily across the US and Europe *° indicate
that MSI testing (n = 3,476) has a sensitivity (PPA) of 93% (95% Cl: 87-96%) and a specificity (NPA) of 79%
(95% Cl: 70-86%), while MMR testing (n = 3,091) shows a sensitivity of 91% (95% Cl: 85-95%), and a
specificity of 83% (95% Cl: 77-88%). The National Institute for Health and Care Excellence (NICE), England,
reported similar figures® for MSI testing (sensitivity: 91.3% [95% Cl: 42.6-99.3%), specificity: 83.7% [95%
Cl: 63.8-93.7%]) and IHC-based MMR testing (sensitivity: 96.2% [95% Cl: 69.4-99.6%)], specificity: 88.4%
[95% Cl: 79.0-94.0%]). Recent studies report that concordance between MSI testing and MMR IHC is
increasing, especially when sufficient tumour DNA is present and unusual IHC patterns are taken into
account during MMR testing®. PPC’s performance appears comparable to standard pathology tests,
however, direct head-to-head comparisons with other studies are often challenging due to variations in
patient cohorts, experimental design, preanalytical protocols and the specific definitions of outcomes.
Therefore, any comparison of our results to other published data should be interpreted with caution.

The integration of PPC into pathological workflows could offer significant advantages, particularly in its
ability to streamline diagnostic processes by minimising reliance on time-intensive assays currently used
as the standard for biomarker testing. This reduction in testing could assist users, such as pathologists and
laboratory professionals, in managing growing workloads and addressing staffing shortages'®*. By
contrast, PPC can generate biomarker results within minutes (Supplementary Figure S3), enabling
pathology reports to be finalised simultaneously during the histological assessment. Other potential
benefits of PPC include lowering the diagnostic burden on pathologists and lab professionals, allowing
them to dedicate more attention to complex cases. A digital test based on existing H&E-stained slides
offers positive environmental benefits by reducing the need for additional wet laboratory procedures,
minimising the use of toxic chemicals and consumables common in conventional diagnostics. By
streamlining workflows and reducing the reliance on standard laboratory testing, PPC also has the
potential to deliver timely results and greater cost efficiency for healthcare providers. Future work will
include a health economics analysis to evaluate its cost-effectiveness in real-world clinical environments.
In parallel, usability studies with target users will assess the impact of PPC on user experience and
workflow integration.

While PPC’s overall performance demonstrated significant promise, certain aspects warrant additional
exploration to improve the Al-based test. Approximately 14% of samples returned an Indeterminate
result, which may be partially due to preanalytical factors such as suboptimal tissue processing, staining
or slide digitisation. Standardising and optimising these workflows will be key to increasing the proportion
of assessable cases and improving clinical usability. Indeterminate outcomes may also reflect model
uncertainty driven by morphological inconsistencies. Our visual analysis of indeterminate cases showed
they often contained conflicting features, such as non-MSI cases presenting with MSl-like features (e.g.,
TILs and poor differentiation), non-specific features like moderate differentiation, or confounding factors
like limited tumour tissue, leading to an indeterminate result (Supplementary Figure S2). Expanding the
training dataset to include more diverse, representative cases could improve the model’s ability to resolve
such differences. In addition, a deeper investigation into the variability of validation metrics such as TRR
is needed to better understand and refine PPC’s performance across different cohorts. All institutions in



the study were based in the UK, providing a strong foundation within a well-characterised healthcare
system. To build on these findings and support broader applicability, future validation will benefit from
including samples from other regions and more diverse demographics. While this retrospective study
offers valuable insights, prospective studies in clinical environments will be key to further demonstrating
PPC's performance and utility in real-world clinical settings. Such studies would provide a critical
understanding of PPC’s integration into routine pathology workflows and assess its impact on patient
outcomes. Finally, this study utilised mostly resected tissue samples (Supplementary Table S1). Since
biopsies are more commonly used in routine clinical practice, future validation efforts will expand to
include biopsy samples, further supporting the test’s real-world applicability.

Taken together, these findings point to the potential of PPC as a proficient diagnostic tool capable of
comparable levels of performance to current standard-of-care testing. This paves the way towards
improved diagnostics, ensuring more accurate results and leading to the timely establishment of
MSI/MMR status for CRC cases.

Methods

Cohort characteristics for blinded validation

A total of 3,576 WSlIs from three different UK cohorts were used for the multi-centred, blinded validation
of PPC (Table 2). Only WSiIs derived from FFPE blocks of primary CRC were included in the analysis. WSls
of fresh frozen samples, metastatic tumours from non-colorectal sites, and those with less than 10%
tumour content were excluded. Additionally, WSIs failing visual assessment and quality control by
pathologists due to excessive tissue folds, air bubbles, pen marks, adhesive tape, out-of-focus regions,
pixel artefacts or other digital distortions were also excluded. The number of excluded images (n=1,234)
accounted for 25.65% of the images originally acquired from the three institutions (n=4,810). The WSls
were acquired using different scanners and stored in multiple image formats. MSI-H/dMMR prevalence
ranged from 12.52 to 20.60%. This is comparable to global estimates?™, which serve as the primary
reference for clinical practice in the UK. The make-up of each independent cohort was as follows:

L1-UK-CRC-SVS-1-BLIND: This cohort comprised 3,884 archival CRC images, sourced from St James's
University Hospital (SJUH) in Leeds, UK, of which 3,124 had MSI/MMR status (391 Unstable and 2,733
Stable). Tissue samples were scanned at 20/40x magnification using Leica Aperio GT 450 DX, AT2 or
Scanscope CS scanners and stored in SVS format.

W1-UK-CRC-CZI-1-BLIND: This cohort was composed of a total of 510 WSlIs, sourced from Wales Cancer
Biobank (WCB) in Cardiff, UK, of which 54 had MSI/MMR status (11 Unstable and 43 Stable). Tissue
samples were scanned at 40x magnification and stored in CZI format.



N1-UK-CRC-SVS-1-BLIND: This cohort comprised 398 WSIs collected from Northern Ireland Biobank (NIB)
in Belfast, UK (82 Unstable, 316 Stable). Tissue samples were scanned at 20/40x magnification using a
Leica Aperio AT2 scanner and stored in SVS format.

Cohort characteristics for development and calibration

A total of 2,502 WSIs of FFPE CRC specimens from four cohorts were used for development, internal
validation, and calibration of PPC (Table 3). While samples from the blinded validation and
development/calibration cohorts may originate from the same institution, there is no case overlap
between these distinct cohorts. Each case included in the blinded validation cohort is unique and has not
been used in the development or calibration phases of the model. The make-up of each cohort was as
follows:

T1-US-CRC-SVS-1-DEV: This cohort consisted of 563 WSIs (78 Unstable and 485 Stable), acquired from The
Cancer Genome Atlas (TCGA) Colon (COAD) and rectal (READ) adenocarcinoma studies
(https://portal.gdc.cancer.gov/). It was used for model development and internal validation. Tissue
samples were scanned at 20/40x magnification and stored in SVS format.

11-UK-CRC-CZI-1-DEV: This cohort consisted of 1,156 WSIs (159 Unstable and 997 Stable), sourced from
the Industrial Centre for Artificial Intelligence Research in Digital Diagnostics (iCAIRD) in Scotland, UK. It
was used for model development and internal validation. Tissue samples were scanned using Zeiss
Axioscan at 40x magnification and stored in CZI format.

L1-UK-CRC-SVS-1-DEV: This cohort consisted of 551 WSls (109 Unstable and 442 Stable) collected from
SJUH in Leeds. It was used for internal validation and calibration. Tissue samples were scanned at 20/40x
magnification using Leica Aperio GT 450 DX, AT2 or Scanscope CS scanners and stored in SVS format.

N1-UK-CRC-SVS-1-DEV: This cohort consisted of 130 WSIs (27 Unstable and 103 Stable) collected from
NIB. It was used for internal validation and calibration. Tissue samples were scanned at 20/40x
maghnification using a Leica Aperio AT2 scanner and stored in SVS format.

Overview of PANProfiler Colorectal

PPC is an Al-driven biomarker test developed to determine MSI/MMR status from digitally scanned H&E-
stained slides of FFPE primary CRC specimens. PPC classifies MSI/MMR status as 'Unstable', Stable' or
'Indeterminate’. 'Unstable' was defined as MSI-high/dMMR (i.e. positive class), while 'Stable’
corresponded to pMMR/non-MSI-high (i.e. negative class). An 'Indeterminate’ result was returned when
the test could not confidently determine MSI/MMR status.



Performance characteristics and statistical procedures

PPC’s performance was evaluated through a comprehensive agreement analysis with standard pathology
tests, employing four key metrics: overall percent agreement (OPA), positive percent agreement (PPA),
negative percent agreement (NPA) and test replacement rate (TRR), which measured the percentage of
cases for which PPC was able to provide a definitive result. In addition, the C-statistic, equivalent to the
area under the receiver operating characteristic curve (AUC), was reported 2>%¢, Formal definitions of all
performance metrics are provided in Supplementary Tables S9 and S10.

Based on the expected prevalence of MSI-H/dMMR in colorectal cancer (10-20%), a power analysis
determined that a minimum of 140-245 cases would be required to achieve a 95% confidence level with
a 5% margin of error 2. The sample size used in this study therefore exceeds the threshold necessary to
ensure adequate statistical power.

Artificial intelligence for establishing MSI/MMR status

PPC is powered by Al and digital pathology. The platform relies on a series of DL methods, a subset of Al
that enables computers to learn patterns from large datasets. Specifically, it can identify complex
histomorphological features in relevant parts of H&E-stained WSIs of CRC and use them to determine
MSI/MMR status 2. Figure 1 illustrates the core preprocessing and DL components that underlie PPC and
how they are connected in an end-to-end pipeline.

A DL model was trained to predict MSI/MMR status as follows. In the first step, input WSIs were
subdivided into image patches (i.e. tiles) of 256x256 pixels at a resolution of 1.0 microns per pixel (MPP).
Proprietary filtering algorithms were used to eliminate the background tiles and detect tissue. A WSI was
discarded from analysis if it contained fewer than 10 tiles after the filtering process. Colour normalisation
29 was applied to the remaining tiles before they were assigned with a reference biomarker status.

The selected pre-processed tiles were then used in an end-to-end DL pipeline. This pipeline consisted of
the following components: (1) a smart sampling module used for extracting groups of tiles that are
spatially adjacent (referred to as windows); (2) a feature extractor CNN (i.e., an encoder) for learning
unique feature representations for each tile; (3) an attention module that aggregated the tile embedding
into a slide level embedding, weighting the features based on their relevance (using the attention scores)
for the target biomarker. The attention module was finally connected to a classification layer that made
the final diagnostic call on the biomarker status.

Explainability and interpretability of deep learning models

Understanding the internal mechanisms of DL models can provide insights into how they detect visual
patterns in tissue WSIs that may be correlated with biological signals. Visualising the "black-box" nature
of these models offers valuable insights into the explainability of their outputs. A common approach to
visualising the spatial regions critical for determining biomarker status is overlaying tile-level attention on
WSIs to create spatial heatmaps. These heatmaps highlight the areas of the input image that have the



strongest influence on the biomarker result. DL models can identify morphological patterns or visual
features that are not immediately visible to the human eyes and correlate them with the existence (or
absence) of biological signals, such as biomarker expression. We visualise the heatmaps by overlaying the
model attention onto the WSI in Figures 3-4.

In addition, to enhance the interpretability of the models, a DL model was developed and trained to
classify various tissue types in CRC samples using the NCT-CRC-HE-100K dataset *. The model categorised
tissues into the following classes: adipose, background, debris, lymphocytes, mucus, smooth muscle,
normal colon mucosa, stroma, and tumour. This model was used to confirm whether the attention of the
primary models was directed toward relevant morphological regions by overlaying the classification maps
onto the WSIs and comparing them with the attention heatmaps.

To gain deeper insights into the PPC model, its embedding space, a lower-dimensional vector
representation of image patches or whole slides, was visualised. Patch-level embeddings were obtained
by processing each WSI through the model's feature extractor, and the resulting vectors for individual
patches were stored. These patch embeddings were then aggregated into slide-level embeddings using
the model's attention layer and saved for each WSI. The embeddings were visualised in TensorBoard using
t-distributed Stochastic Neighbour Embedding (t-SNE), a technique for visualising high-dimensional data
in two or three dimensions, with data points organised by their respective classes (Figure 4). To measure
similarity between embeddings, the cosine distance, a metric based on the angle between two vectors,
was used. For this analysis, a subset of 61 WSIs from the L1-UK-CRC-SVS-1-BLIND cohort was unblinded,
comprising 28 samples with MSI-H/dMMR and 33 with non-MSI-H/pMMR.

Development and validation strategies

We utilised an SSL framework (Mocov2) for pre-training base models, allowing them to learn feature
representations from unlabelled data and develop robustness for diverse tasks 3!. Using the pre-trained
SSL model as a backbone, a model was further fine-tuned through supervised learning with labels derived
from reference MSI/MMR results. The SSL training datasets consisted of 588 WSIs from the T1-US-CRC-
SVS-1-DEV cohort. The development datasets (Table 3) consisted of 1,719 WSIs (237 Unstable, 1,482
Stable WSIs), including T1-US-CRC-SVS-1-DEV (n=563, with 78 Unstable and 485 Stable WSls), and 11-UK-
CRC-CZI-1-DEV (n=1,156, with 159 Unstable, and 997 Stable WSIs).

To determine the best model to be deployed for blinded validation, different models were evaluated on
the L1-UK-CRC-SVS-1-DEV cohort using cross-validation. To this end, this cohort was divided into five
equal-sized folds. A model was fine-tuned, validated, and tested five times, cycling through a few fold
combinations. This ensured that the models were thoroughly evaluated over the entirety of a cohort while
minimising the risk of overfitting and providing a robust assessment of model performance.

Calibration refers to finding the most optimal decision thresholds for a model. These thresholds help the
model operate safely by allowing an 'Indeterminate’ output when no definitive result can be provided.



PPC’s safety and effectiveness were maintained across different sites by calibrating cohort-specific
thresholds for each biomarker. The decision boundaries identified during the calibration process were
applied to compute the final model outputs, which were then used to calculate performance metrics on
the test set for each cohort (see Performance characteristics for details).

After determining the optimal configuration, PPC underwent separate calibrations on two cohorts before
the blinded validation phase. Specifically, calibration was performed on the L1-UK-CRC-SVS-1-DEV cohort,
consisting of 551 WSIs (109 Unstable and 442 Stable images), and the N1-UK-CRC-SVS-1-DEV cohort,
which included 130 WSiIs (27 Unstable and 103 Stable). No calibration was performed for the WCB cohort
(W1-UK-CRC-CZI-1-BLIND), due to a low sample size.

Blinded validation

Authors from the University of Leeds conducted the blinded validation across all three cohorts. MSI/MMR
status associated with blinded cohorts was not disclosed at any stage to the analysts. WSIs were analysed
using PPC, generating test results classified as Stable, Unstable, or Indeterminate. These results were then
shared with the clinical research team performing the blinded validation, who constructed confusion
matrices and calculated performance metrics.

Data availability

The Cancer Genome Atlas (TCGA) used for training is publicly available from the following link:
https://portal.gdc.cancer.gov/. The additional datasets used for training and blinded validation were
obtained through agreements between Panakeia Technologies Limited and the respective data providers

and are not publicly available.

Code availability

The software and Al algorithms used in the current study are Panakeia Technologies Limited proprietary
IP and cannot be shared.
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Figure 1 | CRC diagnostic pathway with and without PANProfiler Colorectal (PPC). (A) The standard
diagnostic pathway for CRC begins with the collection of tissue samples (biopsy or resection). Tissue
sections are cut from FFPE blocks, mounted onto glass slides and stained with H&E. These slides are
examined by a pathologist, who assesses the presence of tumour and, where present, its grade. Upon
confirmation of malignancy, additional testing is performed to assess MSI/MMR status. IHC is commonly
used to evaluate the expression of MMR proteins (MLH1, PMS2, MSH2, and MSH6), while PCR/NGS can
be used to detect changes in the number of repeats in microsatellite loci, characteristic of MSI. These
biomarkers are important for guiding treatment decisions, including the use of immunotherapy.
Integrating PPC, a digital test, into routine pathological workflow has the potential to streamline the
diagnostic process, reducing the turnaround times from days or weeks to minutes (see also
Supplementary Figure S3), potentially reducing the pressure on histopathology services, and enabling
timely treatment decisions. (B) Overview of PPC’s end-to-end deep learning pipeline, including data
preprocessing steps, background removal, detection of relevant tissue, tiling and colour normalisation,
and selection of tiles for biomarker profiling. PPC’'s deep learning architecture consists of a feature
extractor and proprietary aggregation, attention and classification modules.

Figure 2 | Explainability and interpretability visualisations for images correctly classified by the model,
where two true positive (TP) and one true negative (TN) cases from the L1-UK-CRC-SVS-1-BLIND cohort
are shown. A: Original WSl and two regions of interest (ROIs) beneath it (selected from different regions
indicated by the red boxes). B: Attention scores with darker hues of red indicating high attention and blue
indicating low attention. C: Annotated regions based on a classification of the tissue, including adipose,
background, debris, lymphocytes, mucus, smooth muscle, normal colon mucosa, stroma, and tumour.

Figure 3 | Explainability and interpretability visualisations for images incorrectly classified by the model,
where one false positive (FP) and one false negative (FN) images from the L1-UK-CRC -SVS-1-BLIND cohort
are shown. A: Original WSI and two ROIs beneath it (selected from different regions indicated by the red
boxes). B: Attention scores with darker hues of red indicating high attention and blue indicating low
attention. C: Annotated regions based on a classification of the tissue, including adipose, background,
debris, lymphocytes, mucus, smooth muscle, normal colon mucosa, stroma, and tumour.



Figure 4 | Visualisation of the embedding space at slide and patch levels. The embedding space of 61
whole slide images (WSIs) from the L1-UK-CRC-SVS-1-BLIND cohort is visualised at both slide (A) and
patch (B) levels. MSI-H/dMMR and non-MSI-H/pMMR images and patches are shown in red and blue,
respectively. The slide level embeddings (A) are visualised using 2D t-SNE, while the top 100 scoring

attention tiles per WSI (B) are visualised using 3D t-SNE. An example of three closest MSI-H/dMMR and
non-MSI-H/pMMR patches (based on cosine distance) is shown, taken from regions indicated by red and

blue boxes, respectively.

Cohort Region

L1-UK-
CRC-
SVS-1-
BLIND

England

W1-UK-
CRC-CZI-
1-
BLIND

Wales

N1-UK-
CRC-
SVS-1-
BLIND

Ireland

ALL

Northern

Sample
Size
(Unstable
%)

3,124
(12.5%)

54
(20.4%)

398
(20.6%)

3,576
(13.5%)

Overall
Percent
Agreement %
(C1)

94.06 (93.11-
94.91)

84.31
(71.41-92.98)

93.31
(89.75-95.92)

93.83
(92.92-94.65)

Positive
Percent
Agreement %
(C1)

92.45 (89.05-
95.05)

100.00
(71.51-100.00)

91.67
(81.61-97.24)

92.54
(89.52- 94.91)

Negative
Percent
Agreement %
(C1)

94.28 (93.28-
95.17)

80.00
(64.35-90.95)

93.75
(89.74-96.54)

94.02
(93.06-94.89)

Test
Replacement
Rate %
(C1)

88.35
(87.17-89.45)

94.44
(84.61-98.84)

71.36
(66.64-75.75)

86.55
(85.39-87.65)

C_
statisti
c

0.9695

0.9205

0.9670

0.9685

Table 1 | Blinded validation results of PPC by cohort. C-statistic for all cohorts was computed using a
weighted average based on sample size.



Number of
Cohort Images received Images with verified patients with MSI-H/dMMR prevalence
g MSI/MMR status* | verified MSI/MMR %
status*
L1-UK-CRC-SVS-1-
12.52
BLIND 3,884 3,124 791
W1-UK-CRC-CZI-1-
20.37
BLIND 510 54 54
N1-UK-CRC-SVS-1-
20.60
BLIND 416 398 398
Combined Total 4,810 3,576 1,243 13.53

Table 2 | Details of the cohorts used in the multi-centred, blinded validation study for PANProfiler
Colorectal. *: WSIs were excluded based on the study’s inclusion and exclusion criteria (see Methods:
Cohort Characteristics), including pathological assessment and the availability of corresponding
MSI/MMR status.

Images Images with verified Numper of pétlents MSI-H/dMMR

ool received MSI/MMR status* iy verlitd revalence %

MSI/MMR status* P °
T1-US-CRC-SVS-1-DEV 625 563 554 13.85
11-UK-CRC-CZI-1-DEV 1196 1156 1011 13.75
L1-UK-CRC-SVS-1-DEV 551 551 142 19.78
N1-UK-CRC-SVS-1-DEV 130 130 130 20.77
Combined Total 2,502 2,400 1837 15.54

Table 3 | Details of the cohorts used for development, internal validation and calibration of PANProfiler
Colorectal. *: WSIs were excluded based on the study’s inclusion and exclusion criteria (see Methods:

Cohort Characteristics), including pathological assessment and the availability of corresponding
MSI/MMR status.
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