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Abstract

The various water fluxes of the global terrestrial water cycle are integral to the Earth system and the
well-being of societies. However, fluxes occurring below the land surface, such as groundwater recharge and
discharge, are more poorly constrained observationally than surface fluxes like streamflow. Consequently,
the broader relevance of these hidden fluxes is less well understood and their global estimates are more
uncertain. Here we combine multiple observational datasets and theoretical considerations within a Budyko-
type water balance framework, providing a starting point for enhanced understanding of subsurface water
partitioning at large scales. Observations indicate that climatic aridity substantially influences subsurface
flux partitioning, but that there is considerable variability in need of further explanation. We show how
this framework can be used to integrate empirical data, theoretical constraints, and model-based insights
to better understand subsurface flux partitioning and its controlling factors. Such a holistic approach is
essential to better understand subsurface water cycling, especially in the face of increasing resource demands
and climate change.
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Freshwater resources are essential for sustaining life on Earth and supporting human survival. However, human
activities, including land-use changes, freshwater use and climate change, are substantially altering the global
water cycle [1], making sustainable water management increasingly critical. Achieving this requires a thorough
understanding of the complex partitioning of water fluxes within the terrestrial water cycle across both space
and time.

The movement of water between the atmosphere and subsurface — including through vegetation (i.e., green
water) and surface or groundwater (i.e., blue water) — has garnered considerable scientific attention [e.g., 2—
4]. However, understanding how these fluxes partition within the water cycle, particularly in the subsurface,
remains a major challenge [5]. This is largely due to the hidden nature of groundwater, which is difficult to
observe across large areas because most data come from sparse, spatially biased point measurements such as
boreholes [6]. In addition, limited knowledge of the spatial variability of hydrogeological properties further
complicates assessments of subsurface fluxes [7].

To address some of these limitations, assembling quasi-global observational datasets from in-situ measure-
ments has become an important approach for tracking water fluxes and storage across space and time [e.g.,
8-12]. In addition, satellite-based and airborne remote sensing provide spatial and temporal information on
precipitation, evaporation, surface water (liquid and frozen), soil moisture, and groundwater [e.g., 13]. For sub-
surface observations, the Gravity Recovery and Climate Ezxperiment (GRACE) and follow up (GRACE-FO)
missions have been offering a unique approach by measuring temporal variations in Earth’s gravity field to
infer changes in total terrestrial water storage over space and time [e.g., 14-16].

Despite advances in observational tools, major gaps remain in our ability to quantify and understand sub-
surface water partitioning. This is particularly concerning because groundwater — the largest usable freshwater
reservoir — is deeply interconnected with surface processes [8]. It sustains billions of livelihoods [e.g., 17], sup-
ports ecosystems [e.g., 18], and provides vital services such as water purification, contaminant biodegradation,
nutrient recycling, and flood and drought mitigation [e.g., 19]. A clear understanding of both surface and sub-
surface water fluxes is essential due to their central role in Earth system processes like biogeochemical cycling
[20], ecosystem function [21], and human well-being [22], as well as their importance for achieving the UN Sus-
tainable Development Goals [23]. In summary, groundwater plays a key role in the global water cycle [24] and
is a vital resource [25], making it crucial to understand how, where, and why it is partitioned.

The proportion of precipitation that leaves the land surface as streamflow and (complementary to this) as
evaporation is relatively well constrained through in-situ and remote observational methods, at least at cli-
matological time scales. Early 20th-century researchers developed empirical formulas to estimate mean annual
streamflow and evaporation using climatic data, with Schreiber’s [26] exponential equation being a notable early
effort. Based on observations from 29 large (>10,000 km?) basins, Mikhail Tvanovich Budyko [27] refined these
early models and suggested that a catchment’s long-term mean evaporation (F, evaporation which includes
transpiration) and streamflow (Q) are largely governed by the balance between water availability (mean precip-
itation, P) and energy availability (originally quantified as net radiation divided by latent heat of vaporization,
but now commonly as mean potential evaporation, PFE). These factors are often combined into climatic arid-
ity (A), defined as the fraction PE/P. Regions can be classified as water-limited, where E is constrained by
available precipitation (A > 1), or energy-limited, where FE is constrained by available energy (A < 1). Despite
its simplicity, Budyko’s conceptual model works surprisingly well and thus provides a comprehensive baseline
for constraining the main fluxes leaving the land surface, even if open questions and exceptions remain [28].

Infiltrated precipitation can follow multiple pathways: it may be stored in the soil and taken up by plants,
run off as stormflow, or percolate deeper into the subsurface to recharge groundwater. This water adds to
subsurface storage and travels along flow paths with residence times ranging from hours (e.g., surface water-
groundwater interactions; [29]) to millions of years (e.g., deep groundwater; [30]). Along the way, it can end up
as transpiration [31], interact with rivers and streams as baseflow or transmission loss [e.g., 32], resurface as
spring flow [e.g., 33|, discharge into the ocean as submarine groundwater [e.g., 34], or be extracted by humans
[e.g., 35].
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Fig. 1: Illustrative overview of how climatic aridity and geology can influence water cycle flux
partitioning. Scenarios A to D demonstrate how flux partitioning may be affected by climatic aridity as an
external driver and geology as an example of an internal control. Geology influences flux partitioning primarily
through permeability and storage properties. Surface water and groundwater fluxes are shown in blue, while
evaporation and transpiration are indicated by green arrows. Understanding the influence of different internal
controls (e.g., topography, land-use and change, vegetation type and structure, etc.) on water flux partitioning
remains challenging but is essential for advancing our knowledge of subsurface water cycling. Scenarios are
illustrated at the catchment scale, typically reflecting headwater catchments, but the conceptual framework is
intended to be applicable to larger domains. Human impacts and water use are acknowledged as additional
factors affecting flux partitioning but are not explicitly represented in this overview.

While surface water fluxes such as evaporation and streamflow are often conceptualized as being primarily
driven by climatic factors [e.g., 36], subsurface water fluxes are commonly perceived to be more strongly
influenced by non-climatic controls [37]. These include topography [e.g., 38|, vegetation and soil properties [e.g.,
5, 39|, as well as geological features [e.g., 40]. For example, vegetation regulates evaporation — the dominant
component of many ecosystem water balances [41, 42] — and therefore influences soil moisture, and also modifies
soil properties and facilitates deep drainage [e.g., 5, 43, 44]. Topography influences whether infiltrated water
moves mainly vertically or laterally, and areas of topographic convergence can constitute hot-spots for localized
recharge [38]. In addition, lateral redistribution of water along topographic gradients can partly decouple water
availability from precipitation, both at hill slope [45] and at larger scales, for instance as mountain block
recharge [46]. Geology, through its control on soil and hydrogeological properties, modulates groundwater flow
and associated partitioning across spatial scales [e.g., 40, 47], but is inherently heterogeneous [48].
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Controls influencing water flux partitioning may be broadly grouped as ‘external’ (e.g., precipitation, energy
availability) or ‘internal’ (e.g., vegetation, soil, geology), depending on the spatial and conceptual boundaries
of the system under study. In Figure 1, we illustrate this distinction at the catchment scale, with climatic
aridity as a widely accepted external driver (following Budyko’s approach), and geology as an internal control.
It should be noted that aridity and geology are just two examples of external and internal controls, and other
external (e.g., seasonality) and internal (e.g., vegetation type, topography, geology) controls may influence
partitioning in different (and sometimes interacting) ways.

The partitioning of infiltrated water — how much of it becomes recharge or other subsurface fluxes — is
difficult to quantify and generally less well constrained than surface fluxes. Abbott et al. [49], for example, have
shown particularly large uncertainties for global groundwater recharge (10,000-25,000 km?/yr) and submarine
groundwater discharge (100-6,500 km3 /yr). Hydrological models have advanced and are widely used to simulate
water cycle fluxes from local to global scales [e.g., 50-54]. However, subsurface fluxes remain challenging to
represent due to limited observability. GRACE data show that models often underestimate decadal water
storage trends [55], and comparisons with recharge estimates reveal significant discrepancies in precipitation
partitioning [56, 57]. These findings are echoed in recent efforts to “close the water cycle from observations
across scales”, where some of the largest relative uncertainties were reported for groundwater recharge (13%)
and discharge (60%) [58].

The disconnect between observations and models contributes to persistent uncertainties in the quantifi-
cation of global water cycling [e.g., 59], posing challenges for the understanding of groundwater’s role in the
Earth system [6], for the sustainable use of groundwater [60] and for understanding the effects of irrigation on
subsurface water partitioning [61]. Budyko-type constraints have shown potential in reducing uncertainties in
the simulation of streamflow and evaporation across catchments globally [62], and similar constraints might
exist for subsurface variables such as groundwater recharge [56]. Here we propose a generalized Budyko-type
framework leveraging existing datasets and theoretical considerations to constrain subsurface water flux parti-
tioning, initially focusing on large temporal and spatial scales. This simple yet versatile framework provides a
first step towards bridging observations and models, as well as surface and subsurface hydrology.

Insights from a synthesis of observations and theory

Similar to Budyko, we first consider long-term (i.e., climatologically driven) average water fluxes. This is partly
because available quasi-global recharge datasets rarely provide temporal information, and partly because under-
standing the long-term water balance is a simple yet crucial starting point. We note that the term spatial scale
is often used to refer to both the scale of the study domain (e.g., the globe) and that of the study unit (e.g.,
a catchment). Here, our focus is on large domains, as we want to compare many sites globally, while the indi-
vidual units may still be classified as small-scale (e.g., headwater catchments or local recharge estimates). The
extent to which observations at different spatial scales are comparable remains a largely unresolved question.
However, we hypothesize that by comparing many sites, the scale of individual measurements becomes less
important and, instead, relationships emerge that capture the dominant controls at larger scales.

Recent analyses of large groundwater recharge datasets show that long-term average recharge is primarily
controlled by climate, particularly climatic aridity, and tends to follow a broadly predictable Budyko-type
relationship [56, 63, 64] — though considerable scatter remains due to secondary influences. Building on these
insights, we propose a generalized water balance framework that extends the classical Budyko curve to include
not only evaporation and streamflow, but also groundwater recharge and other subsurface fluxes (Box 1), akin to
earlier concepts by L wvovich [65]. This enables all major fluxes to be expressed as fractions of precipitation, which
— under closed-system assumptions — should sum to the total input, offering a coherent basis for diagnosing
water partitioning.

This extended Budyko-type framework offers two main advantages. First, it aligns water fluxes along the
dominant global environmental gradient — climatic aridity — thus enabling systematic comparisons across cli-
mates and regions. Second, it provides physically based bounds based on water and energy availability, which,
when combined with internal water balance constraints, enable joint evaluation of multiple fluxes. This helps
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to identify inconsistencies between observed, inferred, or modeled water fluxes across the surface—subsurface
continuum.

In Figure 2, we illustrate how aridity-recharge relationships from three recent large-scale datasets [63, 64, 66]
can be interpreted within this extended water balance framework, providing a first step toward integrating
subsurface fluxes into broader hydrological partitioning frameworks. Although significant variability exists
within and across datasets, calculating binned medians reveals a consistent pattern: recharge fractions (R/P)
decrease as aridity increases, aligning with decreasing streamflow fractions (Q/P) as predicted by the Budyko
curve, and with decreasing soil moisture observations (not shown here) [67].

We note that most available recharge data are concentrated in dry (water-limited) regions, leaving recharge
behavior in humid (energy-limited) climates relatively poorly constrained. Also, while existing datasets reveal
strong relationships between climatic aridity and subsurface fluxes such as groundwater recharge — supporting
the view that aridity is a dominant global control [56] — they also exhibit substantial scatter (shown by shaded
areas in Figure 2) and diverge between sources. These discrepancies arise from both data uncertainties and
secondary influences such as topography, vegetation, and geology, which differ across datasets and affect the
shape of the recharge—aridity relationships. For example, the dataset from Moeck et al. [63] suggests considerably
higher recharge at PE/P = 1 than that of MacDonald et al. [64]. Much of the Moeck et al. dataset originates
from Australia and includes some implausible values (e.g., R/P > 1) reported without uncertainty bounds —
potentially contributing to deviations from theoretical expectations.

Which internal routes does water
1.0 A take before leaving a catchment?

Precipitation leaves Precipitation leaves
mostly as streamflow mostly as evaporation Predominantly streamflow, unclear if
0.8 Q sourced from groundwater or not
@ % $ Streamflow and evaporation, largely
x ] @ sourced from groundwater
X 06
L :
° Q @ Streamflow and evaporation, largely
= 04 @ not sourced from groundwater
::< @ Predominantly evaporation, largely
L. 024 not sourced from groundwater
el l‘ N (D) | —MacDonald
— ‘Moeck Recharge
0.0 1 estimates
0.2 0.5 0.8 1.25 2.0 5.0

Energy-limited Climatic aridity (PE/P) [-] Water-limited

Fig. 2: Subsurface partitioning of water fluxes plotted against climatic aridity. Evaporation (green
water) and streamflow (blue water) are based on the Budyko equation [36] and indicated by the green and
blue areas, respectively. Long-term average groundwater recharge data are based on different observational
datasets (MacDonald et al. [64]; Moeck et al. [63]; Lee et al. [66]), each paired with precipitation and potential
evaporation data from CHELSA [68, 69]. Spearman rank correlations (ps) between climatic aridity and recharge
fractions are —0.54, —0.63, —0.51, respectively. Baseflow estimates and their corresponding aridity values are
taken from Gnann et al. [70], with ps = —0.82 between climatic aridity and baseflow fractions. The lines
connect binned medians (10 equally sized bins) and the shaded areas show the 25! and 75! percentiles of
the bins. Scenarios A to D correspond to those shown in Figure 1. The scenarios show different examples of
external partitioning (streamflow vs. evaporation) and internal partitioning (i.e., if streamflow and evaporation
are sourced from groundwater or not).

A notable advantage of the proposed framework (Figure 2 and Box 1) is its ability to explore hypotheses
about flux combinations and their implications. For instance, if recharge fractions (R/P) are consistently high
for a given level of aridity, this suggests substantial groundwater-fed streamflow, that is, baseflow (Qy) [71, 72].
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This hypothesis can be tested using independent estimates of baseflow, so we added baseflow fractions (Qy/P)
to Figure 2 [70]. Although these baseflow estimates are uncertain due to reliance on somewhat arbitrary baseflow
separation methods, they indicate that baseflow fractions reach a plateau in humid regions (i.e., become less
influenced by climate). Similar patterns have indeed been observed for recharge, which may point towards the
important role of geology. In humid regions with sufficient rainfall, some fraction of potential recharge may
be rejected due to a limited capacity of the subsurface to transmit or store infiltrated water, resulting in a
non-climatic limit to the maximum amount of recharge and baseflow that can be generated [e.g., 70, 73, 74].

Beyond framing empirical observations, the water balance framework can also be used to examine theoretical
implications of fitted curves for other fluxes. This can be illustrated by combining the water balance framework
(Box 1) with fitted functions for recharge [56] and streamflow [36]. If we specify recharge and streamflow with
these functions, the possible ranges of all other fluxes (e.g., baseflow) can be estimated by generating random
flux combinations and only retaining those that respect the water balance constraints. For example, Figure 3a
shows the theoretically possible ranges of baseflow fraction that can occur if we use the recharge curve from
Berghuijs et al. [56]. We can now choose any functional relationship between aridity and recharge and explore
the implications of this decision for other fluxes, assuming the assumptions made in Box 1 hold.

Figure 3a shows that the curve used in Berghuijs et al. [56] leads to high recharge fractions for humid
climates for which there is little data constraint, and thus also to high baseflow fractions (approaching total
streamflow, thus implying a baseflow index of close to 1 in humid regions). Based on the baseflow curve shown
in Figure 2 and the presumption of a geology-related limit to recharge and baseflow in humid regions, we also
fitted an alternative curve where recharge fractions decrease again for low aridities, shown in Figure 3b. This,
by contrast, leads to a baseflow curve that decreases again for more humid regions and thus aligns more closely
with the pattern shown in Figure 2. While this numerical experiment is simple and will need refinement, it
demonstrates how the joint analysis of different flux fractions within the Budyko-type framework can lead to
insights not possible from individual fluxes alone. Choosing a certain recharge curve has implications for the
resulting baseflow pattern — as well as other fluxes — and thus reveals joint hypotheses that can be tested with
observations and models. For instance, large differences between recharge and baseflow may indicate that a
lot of recharge is subsequently taken up by vegetation. This may happen in regions where riparian vegetation
transpires a lot of groundwater before it can discharge into the stream channel, thus reducing baseflow [33].

Berghuijs et al. (2022) recharge curve

A possible alternative recharge curve

1.0 1 & 1.0 1 b
i 0.8 A i 0.8
g [
x X
E 0.6 E’ 0.6
o Y (B)
= 0.4 A S = 0.4 4
= Baseflow — - Recharge % i | Recharge
= | 0| i / o ©
L L I

0.0 = 004 Baseflow :

0.2 0.5 0.8 1.25 2.0 5.0 0.2 0.5 0.8 1.25 2.0 5.0

Climatic aridity (PE/P) [-]

Climatic aridity (PE/P) [-]

Fig. 3: Possible groundwater recharge scenarios as a function of climatic aridity. Combining
Budyko’s curve and different groundwater recharge curves with the water balance equations (Box 1) reveals pos-
sible behaviors of internal flux partitioning. (a) Constrained range of baseflow values when using the recharge
curve published in Berghuijs et al. [56]. (b) Recharge values and constrained range of baseflow for an alterna-
tive groundwater recharge curve, created by multiplying the Berghuijs et al. [56] values with an exponential
decay factor that lowers the recharge fractions progressively towards lower aridities and thus mimics the base-
flow pattern visible in Figure 2. To obtain possible ranges for the different internal fluxes (Ey, Ey, Qf, Qb),
we randomly sampled values for all flux fractions not specified with any curve (i.e., for all but recharge, evap-
oration and streamflow) between 0 and 1 and only retained them if they did not violate any water balance
assumptions (Box 1). The shaded areas represent the ranges of possible values, and the lines represent mean
values. Scenarios A to D correspond to those shown in Figure 1.
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In addition to uncertainties in individual flux measurements, baseflow estimation, climate data, and com-
parability issues (e.g., whether recharge was measured in a specific part of the catchment), the Budyko-type
approach relies on three key assumptions. First, it assumes that the jointly considered flux datasets are repre-
sentative of the same underlying relationships, for example the actual global flux distributions. This assumption
may become problematic if the combined datasets are heavily biased towards certain regions (e.g., most recharge
estimates are from Australia, while the baseflow estimates are from the US and the UK). Second, it assumes
negligible changes in subsurface storage, implying steady-state conditions. Third, it presumes a closed water bal-
ance, which depends on the scale of consideration and may not hold true for as many catchments as commonly
assumed [75].

Groundwater response times tend to be longer in arid regions [76] — for instance, some Saharan and Ara-
bian aquifers are likely still responding to higher rates of recharge that increased hydraulic heads in the late
Pleistocene [77] — , and arid catchments often exhibit more groundwater import or export [78]. This suggests
that deviations from the idealized framework are more likely in arid regions. In contrast, such deviations are
less significant in humid regions, where the relationship between recharge and baseflow should generally be
more straightforward. It is generally possible to extend the framework to account for these issues. However,
this is not our focus here and should stimulate follow-on research.
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Box 1: Formulation of a simplified water balance framework.

Surface water fluxes and partitioning
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pogenic  Evaporation evaporation
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, S, Ocean
b Q

Subsurface water fluxes and partitioning

To combine multiple water fluxes into a single water balance framework, we can use a set of water balance
equations that establish quantitative links between various fluxes within a closed catchment system. The overall
catchment water balance is given by:

dS

2 =P-Q-E, M)
where S is storage, ¢ is time, P is precipitation (grey), @ is streamflow (blue), and E is evaporation (green,
includes transpiration). Anthropogenic fluxes (red) are illustrated for completeness but not further considered.
We also assume that there are no other inputs or outputs (e.g., groundwater flow) and that measurement errors
are comparatively small.
Streamflow (@) and evaporation (E) are assumed to consist of a part that originates from the land surface
and unsaturated zone (subscript f) and from groundwater (subscript b). Together, groundwater-fed streamflow
(i.e., baseflow) Q3 and evaporation Fj are assumed to equal groundwater recharge (R).
Internally to a system’s boundary, we thus get more water balance equations:

Q= Qy + Q, (2)
E=FE; + Ey, (3)
RZEb-l-Qb. (4)

At long (i.e., climatological) timescales, storage changes are assumed to become negligible compared to water
fluxes:
dS

o ~ 0. (5)

Overall, we can therefore write a water balance equation that integrates all water fluxes and respects the
external water balance:

P=Qp+Qu+Ef+E,=Q+E. (6)
The assumptions made in this water balance framework may break down for individual sites or catchments,
for instance due to cross-boundary fluxes such as inter-catchment groundwater flow or focused recharge from
streams into the groundwater. Nevertheless, when looking across large domains with many individual sites, we
expect these assumptions to hold on average and thus enable the identification of large-scale (e.g., global) rela~
tionships. Further, the simplicity of the framework enables exploration of how specific functional relationships
(e.g., the recharge curve by Berghuijs et al. [56]; see Figures 2 and 3) influence other fluxes (e.g., baseflow),
since all fluxes are interlinked through the above water balance equations.
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Transient dynamics of water flux partitioning — challenges and
implications

Applications such as global hydrological models and water resource assessments depend on accurate recharge
estimates to constrain simulations of water availability [e.g., 79], assess groundwater sustainability, and inform
policy decisions [e.g., 80]. However, these efforts are frequently hampered by large uncertainties or discrepancies
with observed trends or patterns [53, 55-57]. Our proposed framework helps address this challenge by offering
hydrologically informed constraints on multiple fluxes (Figure 3), yielding insights that complement individual
observations. Like many current approaches, however, it focuses on long-term averages and assumes steady-state
conditions. While these assumptions are essential for establishing baseline conditions and remain foundational
to understanding Earth system processes, they limit our ability to capture dynamic system responses.

In reality, water cycle processes are highly dynamic and rarely operate in steady-state. Natural variability
across time scales — seasonal to multi-decadal — as well as human activities and climate change, introduce
transient and spatially heterogeneous forcings that alter internal flux partitioning. For instance, snow melt
runoff in the western US has been shown to consist largely of older groundwater, revealing previously hidden
subsurface dynamics [47]. Groundwater recharge responds to multiple factors, including seasonality [81], rainfall
intensity [82, 83], and human water use [84], all of which may shift under climate change, which is projected
to affect rainfall seasonality [85], flash flood and drought frequency [86, 87], and transient groundwater storage
and recharge patterns [88]. In areas of depletion, streamflow can reverse from gaining to losing [89], and over-
extraction may increase groundwater capture [90] or lead to land subsidence [91], whereas irrigation or managed
aquifer recharge can enhance recharge under certain conditions [84]. These dynamics highlight the need for
improved observational networks and models that explicitly account for non-stationarity [92].

Sustainable water management begins with quantifying renewable water use, as this provides the foundation
for setting abstraction limits with value-based considerations [60]. Achieving this requires an understanding
of how internal flux partitioning responds to both abstraction and system transients, such as climate or land-
use changes. The "water budget myth’ [e.g., 93], widely discussed in the hydrogeological literature, underscores
that knowledge of long-term recharge alone is insufficient to predict hydrological responses to pumping. In
reality, groundwater abstraction can affect partitioning across multiple components of the water balance. These
impacts are highly context dependent and influenced by the spatial distribution and temporal dynamics of
pumping itself. This principle extends beyond groundwater abstraction to encompass any temporally dynamic
or spatially heterogeneous forcing, including climate change, land-use shifts, or engineered interventions.

Hydrological responses and water management strategies also vary regionally, particularly between humid and
arid climates. In humid (i.e., energy-limited) regions, shallow water tables are more common [76, 94|, leading
to tighter coupling between the surface and subsurface, and more frequent bi-directional hydraulic interactions
[95]. The generally faster hydraulic response times in such systems [76] are often evident on human timescales,
enabling more adaptive water management approaches [96]. While knowledge of absolute flux magnitudes may
be less critical in these regions, uncertainties in relative flux partitioning can still be significant.

In contrast, arid (i.e., water-limited) regions tend to exhibit slower response times and less continuous coupling
between groundwater and surface water. These short-lived but intense exchanges underscore the importance
of recognising transient climate—groundwater relationships in water-limited systems. Bi-directional interactions
have historically been considered less significant than in humid regions, and the longer response times often
limit the feasibility of adaptive management strategies in arid regions [e.g., 96]. In such settings, flux-based
management supported by long-term monitoring [e.g., 97] is more appropriate. This approach focuses on
managing flows between water cycle components rather than tracking absolute storage states alone. However,
surface-groundwater interactions can still be highly dynamic where recharge is spatially and temporally focused,
such as along mountain fronts, in river valleys, or during episodic events associated with spring run-off [e.g., 98].

While climatic aridity is a strong predictor of recharge rates, it does not fully determine them. The substantial
scatter seen in aridity-recharge relationships (Figure 2) indicates that internal flux partitioning — and therefore
responses to abstraction — can differ considerably even under similar climatic conditions. In more arid regions,
pumped water is more likely to originate from long-term storage rather than from captured discharge (e.g.,
baseflow), making depletion more likely [99, 100]. However, this pattern is not universal, reinforcing the need
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to interpret changes in water fluxes and storage with caution, especially when robust partitioning frameworks
are lacking. This is particularly important in irrigated regions, where irrigation return flows can constitute a
major internal flux [25].

Finally, it remains unclear how transient or spatially heterogeneous changes in fluxes influence a system’s
position within the Budyko framework. Adjustments in internal water partitioning ultimately drive the external
partitioning patterns we observe. For instance, if abstraction mainly captures streamflow, the impact would be a
reduction in streamflow fractions — a scenario more likely in humid systems, yet dependent on abstraction rates
and system dynamics. Understanding these internal processes is therefore critical for detecting and interpreting
water cycle changes, improving predictive models, and managing water resources sustainably.

Constraining internal water fluxes for a resilient water future

As global environmental and socio-economic crises converge, the concept of a 'safe and just’ operating space
for humanity is gaining traction [101]. This highlights the growing need for integrated, rather than isolated,
solutions to manage interconnected systems [102]. Defining global boundaries for water sustainability, however,
remains contested, with ongoing debates over appropriate methodologies and their feasibility [103-106]. A
fundamental prerequisite for any meaningful boundary-setting is an accurate understanding of internal water
flux partitioning, which governs how water moves between storage and flow components within the terrestrial
system.

Our proposed Budyko-type framework offers a scalable approach to explore, integrate, and constrain internal
water fluxes, addressing key challenges in global water sustainability as we have illustrated in Figure 4. The
conceptual distinction between external and internal controls introduced in Figure 1 provides a practical lens:
climatic aridity sets the external baseline, while factors such as geology, topography, and vegetation explain
departures from this baseline. Within this framework, empirical patterns of recharge and baseflow (Figure 2) can
be interpreted across spatial and temporal scales, linking the conceptual overview (Figure 1) to observational
evidence (Figure 2) and to broader implications for internal controls and management strategies (Figure 4).

This is particularly valuable given ongoing uncertainty around the dominant controls on recharge [107] and
its sensitivity to climate and land-use change [53, 108]. While geology is one important secondary control
(Figure 1), others such as land cover or vegetation also influence partitioning (Figure 4b). For instance, karst
systems tend to show higher recharge due to rapid infiltration [40], whereas reforestation can reduce recharge
through increased transpiration [109]. Accurately representing the balance between focused and diffuse recharge
also remains challenging, especially under shifting climatic and land-use regimes [73, 110, 111]. Nevertheless,
the simplicity of the framework allows large-scale exploration of how certain functional relationships (e.g., the
recharge curve by Berghuijs et al. [56]) influence other interdependent fluxes such as baseflow (Figure 3).

Existing large-scale datasets on groundwater recharge reveal significant gaps, particularly in humid regions.
As a result, plausible aridity-recharge relationships vary widely in humid regions (see Figure 3), which poses
a challenge for constraining internal flux partitioning over large areas of the land surface (Figure 4c). Fur-
thermore, many recharge datasets — with the notable exception of MacDonald et al. [64] — do not provide
uncertainty bounds, complicating efforts to identify outliers or assess confidence levels. In arid regions, obser-
vational constraints on recharge fractions are more stringent (Figure 2), yet relative uncertainties remain a
pressing issue (Figure 4c), particularly for water security and ecosystem health. Dryland groundwater systems
also tend to exhibit long response timescales [76], limiting the utility of short observational records. Addressing
these limitations requires combining long-term records, process-based modeling, and palaeoclimate proxies to
reconstruct hydrological responses across timescales [e.g., 112].

Improving the quantity, quality, and consistency of recharge observations across all climatic regions is thus a
critical research priority [113]. This challenge is amplified when considering transient dynamics, for which no
global databases currently exist. Consequently, researchers often resort to strong assumptions such as space-
time symmetry [108], which may not hold under non-stationary stressors. Expanding observational networks
and synthesizing existing data would support more robust predictions of water flux responses to controls such
as climate variability, land-use change, and human abstraction.
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While we have integrated several variables and data sources, the terrestrial water cycle includes many more
variables that can provide additional insights. Collections of in-situ observations of groundwater levels [114], soil
moisture [115] or latent heat fluxes [116], as well as remote observations of terrestrial water storage [14], near-
surface soil moisture [67], or vegetation status [e.g., 117], can provide further constraints or process insights,
but not without conceptual advances on how to integrate them.

Empirical patterns Secondary controls

a Other data from in-situ b Examples: topography, soils,
T or remote observations T vegetation, land use, geology
2 . o Karst
© S
5 3 Land use
L * (e.g. forest)
Climatic aridity —» Climatic aridity —»
Observational gaps Model behavior
c d Can different modeling
T T decisions be related to
———— emergent relationships?
o - ~
= | / Rechargein \ + Observational 2 Model A
— . . . . ) —
x \\humld;eglons/, uncertainties® E Model B
[ ~__‘__- °
Climatic aridity —» Climatic aridity —»

Fig. 4: Challenges in internal water flux partitioning illustrated through our Budyko-type frame-
work. a: Empirical datasets reveal relationships between climatic aridity and different water fluxes (e.g.,
recharge, baseflow), but ideally these relationships should be explained through a unified process-based frame-
work. b: Once baseline relationships are established, secondary controls such as geology (e.g., karst) or land-use
(e.g., reforestation) can be explored through their influence on flux partitioning. ¢: Observational gaps, espe-
cially in humid regions, limit our ability to constrain internal partitioning; current datasets also often lack
uncertainty estimates. d: Functional relationships derived from models can highlight differences in model
behavior and structure, revealing the consequences of key assumptions (e.g., recharge parameterizations) and
enabling comparison with empirical data.

Our framework can also serve as a valuable benchmark for evaluating model performance (Figure 4d). Hydro-
logical models that accurately simulate external fluxes such as streamflow may still misrepresent internal fluxes
like recharge, particularly under changing conditions [39, 40]. Structural uncertainties are compounded by lim-
ited information on aquifer architecture [7] and the spatial variability of subsurface hydraulic properties [118].
Since geological heterogeneity can influence partitioning (Figure 1), efforts should focus on synthesizing exist-
ing geological datasets [e.g., 119] and expanding data collection suitable for new methods [e.g., 120], including
less visible processes such as groundwater transpiration and inter-catchment groundwater flows [121].

A promising pathway forward involves the use of functional relationships between different water stores and
fluxes, which may be mediated by other controls such as geology. These relationships can capture emergent
(spatial) patterns at regional or global scales and facilitate comparisons between observations and models. Here
we focused on relationships between climatic aridity and different water fluxes (Figures 2 and 3), and discussed
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secondary controls which may influence these relationships (Figure 4b). However, other flux combinations can
also be used. For instance, especially in regions where precipitation variability is much stronger than potential
evaporation variability, or in case where absolute precipitation magnitudes matter (e.g., due to threshold-
dependent processes), we might instead focus on functional relationships between precipitation and recharge
[e.g., 64, 122]. The use of functional relationships has already proved valuable in hydrology and related
disciplines [e.g., 123-125], and thus warrants a more widespread adoption in hydrology [57]. Without a better
theoretical understanding and a broader observational base, we lack the tools to evaluate which model structures
are most plausible.

Enhancing model reliability requires interdisciplinary collaboration. Closer dialogue among atmospheric scien-
tists, hydrologists, hydrogeologists, and specialists in both modeling and measurement is essential to develop
shared frameworks and common terminologies [126, 127]. Such collaboration fosters the synergistic advancement
of theories and models across disciplines. Iterative exchanges between modelers and observational scientists
are particularly valuable: models can help identify observation gaps, while empirical data and process knowl-
edge should inform model structure and parameter estimation (Figure 4d). For example, recent advances have
shown the benefits of incorporating preferential flow mechanisms into large-scale infiltration [128] and recharge
models [40], thereby enhancing realism and predictive accuracy.

A better understanding of how water is partitioned in the global terrestrial water cycle is vital for sustaining
ecosystems and societies facing growing anthropogenic pressures. Our perspective underscores the importance
of hidden subsurface processes, particularly groundwater recharge and discharge, in shaping water availability
and ecosystem resilience. Through our Budyko-type lens, we advocate for a more integrated approach to
constraining water fluxes, bridging observations and models, and addressing persistent theoretical gaps. As the
global community aspires to move toward a sustainable water future, improving knowledge of internal water
partitioning will be essential to safeguard this critical resource for generations to come.
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