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3Department of Earth Sciences, Free University Amsterdam, De Boelelaan 1085 , Amsterdam,7

1081, North Holland, Netherlands.8

4School of Earth and Environmental Sciences, Cardiff University, Park Place, Cardiff, CF109

3AT, Wales, United Kingdom.10

*Corresponding author(s). E-mail(s): gabriel.rau@newcastle.edu.au;11

sebastian.gnann@hydrologie.uni-freiburg.de;12

Contributing authors: w.r.berghuijs@vu.nl; CuthbertM2@cardiff.ac.uk;13

†These authors contributed equally to this work.14

Abstract15

The various water fluxes of the global terrestrial water cycle are integral to the Earth system and the16

well-being of societies. However, fluxes occurring below the land surface, such as groundwater recharge and17

discharge, are more poorly constrained observationally than surface fluxes like streamflow. Consequently,18

the broader relevance of these hidden fluxes is less well understood and their global estimates are more19

uncertain. Here we combine multiple observational datasets and theoretical considerations within a Budyko-20

type water balance framework, providing a starting point for enhanced understanding of subsurface water21

partitioning at large scales. Observations indicate that climatic aridity substantially influences subsurface22

flux partitioning, but that there is considerable variability in need of further explanation. We show how23

this framework can be used to integrate empirical data, theoretical constraints, and model-based insights24

to better understand subsurface flux partitioning and its controlling factors. Such a holistic approach is25

essential to better understand subsurface water cycling, especially in the face of increasing resource demands26

and climate change.27
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Main28

Freshwater resources are essential for sustaining life on Earth and supporting human survival. However, human29

activities, including land-use changes, freshwater use and climate change, are substantially altering the global30

water cycle [1], making sustainable water management increasingly critical. Achieving this requires a thorough31

understanding of the complex partitioning of water fluxes within the terrestrial water cycle across both space32

and time.33

The movement of water between the atmosphere and subsurface – including through vegetation (i.e., green34

water) and surface or groundwater (i.e., blue water) – has garnered considerable scientific attention [e.g., 2–35

4]. However, understanding how these fluxes partition within the water cycle, particularly in the subsurface,36

remains a major challenge [5]. This is largely due to the hidden nature of groundwater, which is difficult to37

observe across large areas because most data come from sparse, spatially biased point measurements such as38

boreholes [6]. In addition, limited knowledge of the spatial variability of hydrogeological properties further39

complicates assessments of subsurface fluxes [7].40

To address some of these limitations, assembling quasi-global observational datasets from in-situ measure-41

ments has become an important approach for tracking water fluxes and storage across space and time [e.g.,42

8–12]. In addition, satellite-based and airborne remote sensing provide spatial and temporal information on43

precipitation, evaporation, surface water (liquid and frozen), soil moisture, and groundwater [e.g., 13]. For sub-44

surface observations, the Gravity Recovery and Climate Experiment (GRACE) and follow up (GRACE-FO)45

missions have been offering a unique approach by measuring temporal variations in Earth’s gravity field to46

infer changes in total terrestrial water storage over space and time [e.g., 14–16].47

Despite advances in observational tools, major gaps remain in our ability to quantify and understand sub-48

surface water partitioning. This is particularly concerning because groundwater – the largest usable freshwater49

reservoir – is deeply interconnected with surface processes [8]. It sustains billions of livelihoods [e.g., 17], sup-50

ports ecosystems [e.g., 18], and provides vital services such as water purification, contaminant biodegradation,51

nutrient recycling, and flood and drought mitigation [e.g., 19]. A clear understanding of both surface and sub-52

surface water fluxes is essential due to their central role in Earth system processes like biogeochemical cycling53

[20], ecosystem function [21], and human well-being [22], as well as their importance for achieving the UN Sus-54

tainable Development Goals [23]. In summary, groundwater plays a key role in the global water cycle [24] and55

is a vital resource [25], making it crucial to understand how, where, and why it is partitioned.56

The proportion of precipitation that leaves the land surface as streamflow and (complementary to this) as57

evaporation is relatively well constrained through in-situ and remote observational methods, at least at cli-58

matological time scales. Early 20th-century researchers developed empirical formulas to estimate mean annual59

streamflow and evaporation using climatic data, with Schreiber ’s [26] exponential equation being a notable early60

effort. Based on observations from 29 large (>10,000 km²) basins, Mikhail Ivanovich Budyko [27] refined these61

early models and suggested that a catchment’s long-term mean evaporation (E, evaporation which includes62

transpiration) and streamflow (Q) are largely governed by the balance between water availability (mean precip-63

itation, P ) and energy availability (originally quantified as net radiation divided by latent heat of vaporization,64

but now commonly as mean potential evaporation, PE). These factors are often combined into climatic arid-65

ity (A), defined as the fraction PE/P . Regions can be classified as water-limited, where E is constrained by66

available precipitation (A > 1), or energy-limited, where E is constrained by available energy (A < 1). Despite67

its simplicity, Budyko’s conceptual model works surprisingly well and thus provides a comprehensive baseline68

for constraining the main fluxes leaving the land surface, even if open questions and exceptions remain [28].69

Infiltrated precipitation can follow multiple pathways: it may be stored in the soil and taken up by plants,70

run off as stormflow, or percolate deeper into the subsurface to recharge groundwater. This water adds to71

subsurface storage and travels along flow paths with residence times ranging from hours (e.g., surface water-72

groundwater interactions; [29]) to millions of years (e.g., deep groundwater; [30]). Along the way, it can end up73

as transpiration [31], interact with rivers and streams as baseflow or transmission loss [e.g., 32], resurface as74

spring flow [e.g., 33], discharge into the ocean as submarine groundwater [e.g., 34], or be extracted by humans75

[e.g., 35].76
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Fig. 1: Illustrative overview of how climatic aridity and geology can influence water cycle flux
partitioning. Scenarios A to D demonstrate how flux partitioning may be affected by climatic aridity as an
external driver and geology as an example of an internal control. Geology influences flux partitioning primarily
through permeability and storage properties. Surface water and groundwater fluxes are shown in blue, while
evaporation and transpiration are indicated by green arrows. Understanding the influence of different internal
controls (e.g., topography, land-use and change, vegetation type and structure, etc.) on water flux partitioning
remains challenging but is essential for advancing our knowledge of subsurface water cycling. Scenarios are
illustrated at the catchment scale, typically reflecting headwater catchments, but the conceptual framework is
intended to be applicable to larger domains. Human impacts and water use are acknowledged as additional
factors affecting flux partitioning but are not explicitly represented in this overview.

While surface water fluxes such as evaporation and streamflow are often conceptualized as being primarily77

driven by climatic factors [e.g., 36], subsurface water fluxes are commonly perceived to be more strongly78

influenced by non-climatic controls [37]. These include topography [e.g., 38], vegetation and soil properties [e.g.,79

5, 39], as well as geological features [e.g., 40]. For example, vegetation regulates evaporation – the dominant80

component of many ecosystem water balances [41, 42] – and therefore influences soil moisture, and also modifies81

soil properties and facilitates deep drainage [e.g., 5, 43, 44]. Topography influences whether infiltrated water82

moves mainly vertically or laterally, and areas of topographic convergence can constitute hot-spots for localized83

recharge [38]. In addition, lateral redistribution of water along topographic gradients can partly decouple water84

availability from precipitation, both at hill slope [45] and at larger scales, for instance as mountain block85

recharge [46]. Geology, through its control on soil and hydrogeological properties, modulates groundwater flow86

and associated partitioning across spatial scales [e.g., 40, 47], but is inherently heterogeneous [48].87
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Controls influencing water flux partitioning may be broadly grouped as ‘external ’ (e.g., precipitation, energy88

availability) or ‘internal ’ (e.g., vegetation, soil, geology), depending on the spatial and conceptual boundaries89

of the system under study. In Figure 1, we illustrate this distinction at the catchment scale, with climatic90

aridity as a widely accepted external driver (following Budyko’s approach), and geology as an internal control.91

It should be noted that aridity and geology are just two examples of external and internal controls, and other92

external (e.g., seasonality) and internal (e.g., vegetation type, topography, geology) controls may influence93

partitioning in different (and sometimes interacting) ways.94

The partitioning of infiltrated water – how much of it becomes recharge or other subsurface fluxes – is95

difficult to quantify and generally less well constrained than surface fluxes. Abbott et al. [49], for example, have96

shown particularly large uncertainties for global groundwater recharge (10,000–25,000 km3/yr) and submarine97

groundwater discharge (100–6,500 km3/yr). Hydrological models have advanced and are widely used to simulate98

water cycle fluxes from local to global scales [e.g., 50–54]. However, subsurface fluxes remain challenging to99

represent due to limited observability. GRACE data show that models often underestimate decadal water100

storage trends [55], and comparisons with recharge estimates reveal significant discrepancies in precipitation101

partitioning [56, 57]. These findings are echoed in recent efforts to “close the water cycle from observations102

across scales”, where some of the largest relative uncertainties were reported for groundwater recharge (13%)103

and discharge (60%) [58].104

The disconnect between observations and models contributes to persistent uncertainties in the quantifi-105

cation of global water cycling [e.g., 59], posing challenges for the understanding of groundwater’s role in the106

Earth system [6], for the sustainable use of groundwater [60] and for understanding the effects of irrigation on107

subsurface water partitioning [61]. Budyko-type constraints have shown potential in reducing uncertainties in108

the simulation of streamflow and evaporation across catchments globally [62], and similar constraints might109

exist for subsurface variables such as groundwater recharge [56]. Here we propose a generalized Budyko-type110

framework leveraging existing datasets and theoretical considerations to constrain subsurface water flux parti-111

tioning, initially focusing on large temporal and spatial scales. This simple yet versatile framework provides a112

first step towards bridging observations and models, as well as surface and subsurface hydrology.113

Insights from a synthesis of observations and theory114

Similar to Budyko, we first consider long-term (i.e., climatologically driven) average water fluxes. This is partly115

because available quasi-global recharge datasets rarely provide temporal information, and partly because under-116

standing the long-term water balance is a simple yet crucial starting point. We note that the term spatial scale117

is often used to refer to both the scale of the study domain (e.g., the globe) and that of the study unit (e.g.,118

a catchment). Here, our focus is on large domains, as we want to compare many sites globally, while the indi-119

vidual units may still be classified as small-scale (e.g., headwater catchments or local recharge estimates). The120

extent to which observations at different spatial scales are comparable remains a largely unresolved question.121

However, we hypothesize that by comparing many sites, the scale of individual measurements becomes less122

important and, instead, relationships emerge that capture the dominant controls at larger scales.123

Recent analyses of large groundwater recharge datasets show that long-term average recharge is primarily124

controlled by climate, particularly climatic aridity, and tends to follow a broadly predictable Budyko-type125

relationship [56, 63, 64] – though considerable scatter remains due to secondary influences. Building on these126

insights, we propose a generalized water balance framework that extends the classical Budyko curve to include127

not only evaporation and streamflow, but also groundwater recharge and other subsurface fluxes (Box 1), akin to128

earlier concepts by L’vovich [65]. This enables all major fluxes to be expressed as fractions of precipitation, which129

– under closed-system assumptions – should sum to the total input, offering a coherent basis for diagnosing130

water partitioning.131

This extended Budyko-type framework offers two main advantages. First, it aligns water fluxes along the132

dominant global environmental gradient – climatic aridity – thus enabling systematic comparisons across cli-133

mates and regions. Second, it provides physically based bounds based on water and energy availability, which,134

when combined with internal water balance constraints, enable joint evaluation of multiple fluxes. This helps135
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to identify inconsistencies between observed, inferred, or modeled water fluxes across the surface–subsurface136

continuum.137

In Figure 2, we illustrate how aridity-recharge relationships from three recent large-scale datasets [63, 64, 66]138

can be interpreted within this extended water balance framework, providing a first step toward integrating139

subsurface fluxes into broader hydrological partitioning frameworks. Although significant variability exists140

within and across datasets, calculating binned medians reveals a consistent pattern: recharge fractions (R/P )141

decrease as aridity increases, aligning with decreasing streamflow fractions (Q/P ) as predicted by the Budyko142

curve, and with decreasing soil moisture observations (not shown here) [67].143

We note that most available recharge data are concentrated in dry (water-limited) regions, leaving recharge144

behavior in humid (energy-limited) climates relatively poorly constrained. Also, while existing datasets reveal145

strong relationships between climatic aridity and subsurface fluxes such as groundwater recharge – supporting146

the view that aridity is a dominant global control [56] – they also exhibit substantial scatter (shown by shaded147

areas in Figure 2) and diverge between sources. These discrepancies arise from both data uncertainties and148

secondary influences such as topography, vegetation, and geology, which differ across datasets and affect the149

shape of the recharge–aridity relationships. For example, the dataset fromMoeck et al. [63] suggests considerably150

higher recharge at PE/P ≈ 1 than that of MacDonald et al. [64]. Much of the Moeck et al. dataset originates151

from Australia and includes some implausible values (e.g., R/P > 1) reported without uncertainty bounds –152

potentially contributing to deviations from theoretical expectations.153

Energy-limited Water-limitedClimatic aridity (PE/P) [-]

F
lu

x
ra

ti
o

(F
lu

x
/P

) 
[-

]

MacDonald 

Moeck

Lee

Precipitation leaves

mostly as evaporation

Precipitation leaves

mostly as streamflow

C

A
B

A

B

C

Predominantly streamflow, unclear if

sourced from groundwater or not

Streamflow and evaporation, largely

not sourced from groundwater

Streamflow and evaporation, largely

sourced from groundwater

Which internal routes does water

take before leaving a catchment?

Recharge
estimates

Predominantly evaporation, largely

not sourced from groundwater
D

DBaseflow

Fig. 2: Subsurface partitioning of water fluxes plotted against climatic aridity. Evaporation (green
water) and streamflow (blue water) are based on the Budyko equation [36] and indicated by the green and
blue areas, respectively. Long-term average groundwater recharge data are based on different observational
datasets (MacDonald et al. [64]; Moeck et al. [63]; Lee et al. [66]), each paired with precipitation and potential
evaporation data from CHELSA [68, 69]. Spearman rank correlations (ρs) between climatic aridity and recharge
fractions are −0.54, −0.63, −0.51, respectively. Baseflow estimates and their corresponding aridity values are
taken from Gnann et al. [70], with ρs = −0.82 between climatic aridity and baseflow fractions. The lines
connect binned medians (10 equally sized bins) and the shaded areas show the 25th and 75th percentiles of
the bins. Scenarios A to D correspond to those shown in Figure 1. The scenarios show different examples of
external partitioning (streamflow vs. evaporation) and internal partitioning (i.e., if streamflow and evaporation
are sourced from groundwater or not).

A notable advantage of the proposed framework (Figure 2 and Box 1) is its ability to explore hypotheses154

about flux combinations and their implications. For instance, if recharge fractions (R/P ) are consistently high155

for a given level of aridity, this suggests substantial groundwater-fed streamflow, that is, baseflow (Qb) [71, 72].156
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This hypothesis can be tested using independent estimates of baseflow, so we added baseflow fractions (Qb/P )157

to Figure 2 [70]. Although these baseflow estimates are uncertain due to reliance on somewhat arbitrary baseflow158

separation methods, they indicate that baseflow fractions reach a plateau in humid regions (i.e., become less159

influenced by climate). Similar patterns have indeed been observed for recharge, which may point towards the160

important role of geology. In humid regions with sufficient rainfall, some fraction of potential recharge may161

be rejected due to a limited capacity of the subsurface to transmit or store infiltrated water, resulting in a162

non-climatic limit to the maximum amount of recharge and baseflow that can be generated [e.g., 70, 73, 74].163

Beyond framing empirical observations, the water balance framework can also be used to examine theoretical164

implications of fitted curves for other fluxes. This can be illustrated by combining the water balance framework165

(Box 1) with fitted functions for recharge [56] and streamflow [36]. If we specify recharge and streamflow with166

these functions, the possible ranges of all other fluxes (e.g., baseflow) can be estimated by generating random167

flux combinations and only retaining those that respect the water balance constraints. For example, Figure 3a168

shows the theoretically possible ranges of baseflow fraction that can occur if we use the recharge curve from169

Berghuijs et al. [56]. We can now choose any functional relationship between aridity and recharge and explore170

the implications of this decision for other fluxes, assuming the assumptions made in Box 1 hold.171

Figure 3a shows that the curve used in Berghuijs et al. [56] leads to high recharge fractions for humid172

climates for which there is little data constraint, and thus also to high baseflow fractions (approaching total173

streamflow, thus implying a baseflow index of close to 1 in humid regions). Based on the baseflow curve shown174

in Figure 2 and the presumption of a geology-related limit to recharge and baseflow in humid regions, we also175

fitted an alternative curve where recharge fractions decrease again for low aridities, shown in Figure 3b. This,176

by contrast, leads to a baseflow curve that decreases again for more humid regions and thus aligns more closely177

with the pattern shown in Figure 2. While this numerical experiment is simple and will need refinement, it178

demonstrates how the joint analysis of different flux fractions within the Budyko-type framework can lead to179

insights not possible from individual fluxes alone. Choosing a certain recharge curve has implications for the180

resulting baseflow pattern – as well as other fluxes – and thus reveals joint hypotheses that can be tested with181

observations and models. For instance, large differences between recharge and baseflow may indicate that a182

lot of recharge is subsequently taken up by vegetation. This may happen in regions where riparian vegetation183

transpires a lot of groundwater before it can discharge into the stream channel, thus reducing baseflow [33].184
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Fig. 3: Possible groundwater recharge scenarios as a function of climatic aridity. Combining
Budyko’s curve and different groundwater recharge curves with the water balance equations (Box 1) reveals pos-
sible behaviors of internal flux partitioning. (a) Constrained range of baseflow values when using the recharge
curve published in Berghuijs et al. [56]. (b) Recharge values and constrained range of baseflow for an alterna-
tive groundwater recharge curve, created by multiplying the Berghuijs et al. [56] values with an exponential
decay factor that lowers the recharge fractions progressively towards lower aridities and thus mimics the base-
flow pattern visible in Figure 2. To obtain possible ranges for the different internal fluxes (Ef , Eb, Qf , Qb),
we randomly sampled values for all flux fractions not specified with any curve (i.e., for all but recharge, evap-
oration and streamflow) between 0 and 1 and only retained them if they did not violate any water balance
assumptions (Box 1). The shaded areas represent the ranges of possible values, and the lines represent mean
values. Scenarios A to D correspond to those shown in Figure 1.
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In addition to uncertainties in individual flux measurements, baseflow estimation, climate data, and com-185

parability issues (e.g., whether recharge was measured in a specific part of the catchment), the Budyko-type186

approach relies on three key assumptions. First, it assumes that the jointly considered flux datasets are repre-187

sentative of the same underlying relationships, for example the actual global flux distributions. This assumption188

may become problematic if the combined datasets are heavily biased towards certain regions (e.g., most recharge189

estimates are from Australia, while the baseflow estimates are from the US and the UK). Second, it assumes190

negligible changes in subsurface storage, implying steady-state conditions. Third, it presumes a closed water bal-191

ance, which depends on the scale of consideration and may not hold true for as many catchments as commonly192

assumed [75].193

Groundwater response times tend to be longer in arid regions [76] – for instance, some Saharan and Ara-194

bian aquifers are likely still responding to higher rates of recharge that increased hydraulic heads in the late195

Pleistocene [77] – , and arid catchments often exhibit more groundwater import or export [78]. This suggests196

that deviations from the idealized framework are more likely in arid regions. In contrast, such deviations are197

less significant in humid regions, where the relationship between recharge and baseflow should generally be198

more straightforward. It is generally possible to extend the framework to account for these issues. However,199

this is not our focus here and should stimulate follow-on research.200
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Box 1: Formulation of a simplified water balance framework.

Precipitation
Evaporation

Surface water �uxes and partitioning

Subsurface water �uxes and partitioning

In�ltration Total runo�

Anthro-
pogenic

S

P

Q
E

Discharge: Streams, springs, ocean

Qf

Qb

Ef

Eb

PE

Potential
evaporation

R

To combine multiple water fluxes into a single water balance framework, we can use a set of water balance
equations that establish quantitative links between various fluxes within a closed catchment system. The overall
catchment water balance is given by:

dS

dt
= P −Q− E, (1)

where S is storage, t is time, P is precipitation (grey), Q is streamflow (blue), and E is evaporation (green,
includes transpiration). Anthropogenic fluxes (red) are illustrated for completeness but not further considered.
We also assume that there are no other inputs or outputs (e.g., groundwater flow) and that measurement errors
are comparatively small.
Streamflow (Q) and evaporation (E) are assumed to consist of a part that originates from the land surface
and unsaturated zone (subscript f) and from groundwater (subscript b). Together, groundwater-fed streamflow
(i.e., baseflow) Qb and evaporation Eb are assumed to equal groundwater recharge (R).
Internally to a system’s boundary, we thus get more water balance equations:

Q = Qf +Qb, (2)

E = Ef + Eb, (3)

R = Eb +Qb. (4)

At long (i.e., climatological) timescales, storage changes are assumed to become negligible compared to water
fluxes:

dS

dt
≈ 0. (5)

Overall, we can therefore write a water balance equation that integrates all water fluxes and respects the
external water balance:

P = Qf +Qb + Ef + Eb = Q+ E. (6)

The assumptions made in this water balance framework may break down for individual sites or catchments,
for instance due to cross-boundary fluxes such as inter-catchment groundwater flow or focused recharge from
streams into the groundwater. Nevertheless, when looking across large domains with many individual sites, we
expect these assumptions to hold on average and thus enable the identification of large-scale (e.g., global) rela-
tionships. Further, the simplicity of the framework enables exploration of how specific functional relationships
(e.g., the recharge curve by Berghuijs et al. [56]; see Figures 2 and 3) influence other fluxes (e.g., baseflow),
since all fluxes are interlinked through the above water balance equations.

201
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Transient dynamics of water flux partitioning – challenges and202

implications203

Applications such as global hydrological models and water resource assessments depend on accurate recharge204

estimates to constrain simulations of water availability [e.g., 79], assess groundwater sustainability, and inform205

policy decisions [e.g., 80]. However, these efforts are frequently hampered by large uncertainties or discrepancies206

with observed trends or patterns [53, 55–57]. Our proposed framework helps address this challenge by offering207

hydrologically informed constraints on multiple fluxes (Figure 3), yielding insights that complement individual208

observations. Like many current approaches, however, it focuses on long-term averages and assumes steady-state209

conditions. While these assumptions are essential for establishing baseline conditions and remain foundational210

to understanding Earth system processes, they limit our ability to capture dynamic system responses.211

In reality, water cycle processes are highly dynamic and rarely operate in steady-state. Natural variability212

across time scales – seasonal to multi-decadal – as well as human activities and climate change, introduce213

transient and spatially heterogeneous forcings that alter internal flux partitioning. For instance, snow melt214

runoff in the western US has been shown to consist largely of older groundwater, revealing previously hidden215

subsurface dynamics [47]. Groundwater recharge responds to multiple factors, including seasonality [81], rainfall216

intensity [82, 83], and human water use [84], all of which may shift under climate change, which is projected217

to affect rainfall seasonality [85], flash flood and drought frequency [86, 87], and transient groundwater storage218

and recharge patterns [88]. In areas of depletion, streamflow can reverse from gaining to losing [89], and over-219

extraction may increase groundwater capture [90] or lead to land subsidence [91], whereas irrigation or managed220

aquifer recharge can enhance recharge under certain conditions [84]. These dynamics highlight the need for221

improved observational networks and models that explicitly account for non-stationarity [92].222

Sustainable water management begins with quantifying renewable water use, as this provides the foundation223

for setting abstraction limits with value-based considerations [60]. Achieving this requires an understanding224

of how internal flux partitioning responds to both abstraction and system transients, such as climate or land-225

use changes. The ’water budget myth’ [e.g., 93], widely discussed in the hydrogeological literature, underscores226

that knowledge of long-term recharge alone is insufficient to predict hydrological responses to pumping. In227

reality, groundwater abstraction can affect partitioning across multiple components of the water balance. These228

impacts are highly context dependent and influenced by the spatial distribution and temporal dynamics of229

pumping itself. This principle extends beyond groundwater abstraction to encompass any temporally dynamic230

or spatially heterogeneous forcing, including climate change, land-use shifts, or engineered interventions.231

Hydrological responses and water management strategies also vary regionally, particularly between humid and232

arid climates. In humid (i.e., energy-limited) regions, shallow water tables are more common [76, 94], leading233

to tighter coupling between the surface and subsurface, and more frequent bi-directional hydraulic interactions234

[95]. The generally faster hydraulic response times in such systems [76] are often evident on human timescales,235

enabling more adaptive water management approaches [96]. While knowledge of absolute flux magnitudes may236

be less critical in these regions, uncertainties in relative flux partitioning can still be significant.237

In contrast, arid (i.e., water-limited) regions tend to exhibit slower response times and less continuous coupling238

between groundwater and surface water. These short-lived but intense exchanges underscore the importance239

of recognising transient climate–groundwater relationships in water-limited systems. Bi-directional interactions240

have historically been considered less significant than in humid regions, and the longer response times often241

limit the feasibility of adaptive management strategies in arid regions [e.g., 96]. In such settings, flux-based242

management supported by long-term monitoring [e.g., 97] is more appropriate. This approach focuses on243

managing flows between water cycle components rather than tracking absolute storage states alone. However,244

surface–groundwater interactions can still be highly dynamic where recharge is spatially and temporally focused,245

such as along mountain fronts, in river valleys, or during episodic events associated with spring run-off [e.g., 98].246

While climatic aridity is a strong predictor of recharge rates, it does not fully determine them. The substantial247

scatter seen in aridity-recharge relationships (Figure 2) indicates that internal flux partitioning – and therefore248

responses to abstraction – can differ considerably even under similar climatic conditions. In more arid regions,249

pumped water is more likely to originate from long-term storage rather than from captured discharge (e.g.,250

baseflow), making depletion more likely [99, 100]. However, this pattern is not universal, reinforcing the need251
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to interpret changes in water fluxes and storage with caution, especially when robust partitioning frameworks252

are lacking. This is particularly important in irrigated regions, where irrigation return flows can constitute a253

major internal flux [25].254

Finally, it remains unclear how transient or spatially heterogeneous changes in fluxes influence a system’s255

position within the Budyko framework. Adjustments in internal water partitioning ultimately drive the external256

partitioning patterns we observe. For instance, if abstraction mainly captures streamflow, the impact would be a257

reduction in streamflow fractions – a scenario more likely in humid systems, yet dependent on abstraction rates258

and system dynamics. Understanding these internal processes is therefore critical for detecting and interpreting259

water cycle changes, improving predictive models, and managing water resources sustainably.260

Constraining internal water fluxes for a resilient water future261

As global environmental and socio-economic crises converge, the concept of a ’safe and just ’ operating space262

for humanity is gaining traction [101]. This highlights the growing need for integrated, rather than isolated,263

solutions to manage interconnected systems [102]. Defining global boundaries for water sustainability, however,264

remains contested, with ongoing debates over appropriate methodologies and their feasibility [103–106]. A265

fundamental prerequisite for any meaningful boundary-setting is an accurate understanding of internal water266

flux partitioning, which governs how water moves between storage and flow components within the terrestrial267

system.268

Our proposed Budyko-type framework offers a scalable approach to explore, integrate, and constrain internal269

water fluxes, addressing key challenges in global water sustainability as we have illustrated in Figure 4. The270

conceptual distinction between external and internal controls introduced in Figure 1 provides a practical lens:271

climatic aridity sets the external baseline, while factors such as geology, topography, and vegetation explain272

departures from this baseline. Within this framework, empirical patterns of recharge and baseflow (Figure 2) can273

be interpreted across spatial and temporal scales, linking the conceptual overview (Figure 1) to observational274

evidence (Figure 2) and to broader implications for internal controls and management strategies (Figure 4).275

This is particularly valuable given ongoing uncertainty around the dominant controls on recharge [107] and276

its sensitivity to climate and land-use change [53, 108]. While geology is one important secondary control277

(Figure 1), others such as land cover or vegetation also influence partitioning (Figure 4b). For instance, karst278

systems tend to show higher recharge due to rapid infiltration [40], whereas reforestation can reduce recharge279

through increased transpiration [109]. Accurately representing the balance between focused and diffuse recharge280

also remains challenging, especially under shifting climatic and land-use regimes [73, 110, 111]. Nevertheless,281

the simplicity of the framework allows large-scale exploration of how certain functional relationships (e.g., the282

recharge curve by Berghuijs et al. [56]) influence other interdependent fluxes such as baseflow (Figure 3).283

Existing large-scale datasets on groundwater recharge reveal significant gaps, particularly in humid regions.284

As a result, plausible aridity-recharge relationships vary widely in humid regions (see Figure 3), which poses285

a challenge for constraining internal flux partitioning over large areas of the land surface (Figure 4c). Fur-286

thermore, many recharge datasets – with the notable exception of MacDonald et al. [64] – do not provide287

uncertainty bounds, complicating efforts to identify outliers or assess confidence levels. In arid regions, obser-288

vational constraints on recharge fractions are more stringent (Figure 2), yet relative uncertainties remain a289

pressing issue (Figure 4c), particularly for water security and ecosystem health. Dryland groundwater systems290

also tend to exhibit long response timescales [76], limiting the utility of short observational records. Addressing291

these limitations requires combining long-term records, process-based modeling, and palaeoclimate proxies to292

reconstruct hydrological responses across timescales [e.g., 112].293

Improving the quantity, quality, and consistency of recharge observations across all climatic regions is thus a294

critical research priority [113]. This challenge is amplified when considering transient dynamics, for which no295

global databases currently exist. Consequently, researchers often resort to strong assumptions such as space-296

time symmetry [108], which may not hold under non-stationary stressors. Expanding observational networks297

and synthesizing existing data would support more robust predictions of water flux responses to controls such298

as climate variability, land-use change, and human abstraction.299
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While we have integrated several variables and data sources, the terrestrial water cycle includes many more300

variables that can provide additional insights. Collections of in-situ observations of groundwater levels [114], soil301

moisture [115] or latent heat fluxes [116], as well as remote observations of terrestrial water storage [14], near-302

surface soil moisture [67], or vegetation status [e.g., 117], can provide further constraints or process insights,303

but not without conceptual advances on how to integrate them.304
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work. a: Empirical datasets reveal relationships between climatic aridity and different water fluxes (e.g.,
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Our framework can also serve as a valuable benchmark for evaluating model performance (Figure 4d). Hydro-305

logical models that accurately simulate external fluxes such as streamflow may still misrepresent internal fluxes306

like recharge, particularly under changing conditions [39, 40]. Structural uncertainties are compounded by lim-307

ited information on aquifer architecture [7] and the spatial variability of subsurface hydraulic properties [118].308

Since geological heterogeneity can influence partitioning (Figure 1), efforts should focus on synthesizing exist-309

ing geological datasets [e.g., 119] and expanding data collection suitable for new methods [e.g., 120], including310

less visible processes such as groundwater transpiration and inter-catchment groundwater flows [121].311

A promising pathway forward involves the use of functional relationships between different water stores and312

fluxes, which may be mediated by other controls such as geology. These relationships can capture emergent313

(spatial) patterns at regional or global scales and facilitate comparisons between observations and models. Here314

we focused on relationships between climatic aridity and different water fluxes (Figures 2 and 3), and discussed315
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secondary controls which may influence these relationships (Figure 4b). However, other flux combinations can316

also be used. For instance, especially in regions where precipitation variability is much stronger than potential317

evaporation variability, or in case where absolute precipitation magnitudes matter (e.g., due to threshold-318

dependent processes), we might instead focus on functional relationships between precipitation and recharge319

[e.g., 64, 122]. The use of functional relationships has already proved valuable in hydrology and related320

disciplines [e.g., 123–125], and thus warrants a more widespread adoption in hydrology [57]. Without a better321

theoretical understanding and a broader observational base, we lack the tools to evaluate which model structures322

are most plausible.323

Enhancing model reliability requires interdisciplinary collaboration. Closer dialogue among atmospheric scien-324

tists, hydrologists, hydrogeologists, and specialists in both modeling and measurement is essential to develop325

shared frameworks and common terminologies [126, 127]. Such collaboration fosters the synergistic advancement326

of theories and models across disciplines. Iterative exchanges between modelers and observational scientists327

are particularly valuable: models can help identify observation gaps, while empirical data and process knowl-328

edge should inform model structure and parameter estimation (Figure 4d). For example, recent advances have329

shown the benefits of incorporating preferential flow mechanisms into large-scale infiltration [128] and recharge330

models [40], thereby enhancing realism and predictive accuracy.331

A better understanding of how water is partitioned in the global terrestrial water cycle is vital for sustaining332

ecosystems and societies facing growing anthropogenic pressures. Our perspective underscores the importance333

of hidden subsurface processes, particularly groundwater recharge and discharge, in shaping water availability334

and ecosystem resilience. Through our Budyko-type lens, we advocate for a more integrated approach to335

constraining water fluxes, bridging observations and models, and addressing persistent theoretical gaps. As the336

global community aspires to move toward a sustainable water future, improving knowledge of internal water337

partitioning will be essential to safeguard this critical resource for generations to come.338
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