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Abstract

Recent research has demonstrated that task switching — which has traditionally been attributed to
declarative rule use and executive control — can also be supported by associative learning mechanisms.
However, whereas declarative task switching is characterized by large switch costs and small congruency
effects, associative mechanisms may produce small (or no) switch costs and large congruency effects.
Here, we asked whether humans (who possess both declarative and associative learning mechanisms)
and pigeons (which have thus far shown no evidence of possessing declarative learning mechanisms)
would display different patterns of performance when switching either between two rule-based (RB)
subtasks, which should encourage declarative rule use, or between two information-integration (l1)
subtasks, which should encourage associative learning. The pigeons showed no switch costs in either
task condition, consistent with the view that they depend entirely on associative mechanisms to solve
both RB and Il tasks. Conversely, the humans showed strong switch costs in both task conditions. These
data raise two possibilities: (1) that human learners may have used declarative mechanisms to solve
both RB and Il tasks, and (2) that among humans, associative learning mechanisms might not reliably

preclude switch costs. The theoretical implications of each possibility are discussed.

Keywords: Task-switching, categorization, pigeons, RB-II, dual-systems
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Several prominent theories of learning and categorization have argued that humans have
two different learning mechanisms — one declarative, one associative — with the potential to
promote adaptive responding (Ashby, Alfonso-Reese, Turken, & Waldron, 1998; McLaren et al., 2019;
see also Minda, Roark, Kalra & Cruz, 2024). In comparison to declarative processes, which may be
restricted to select species (including humans and possibly some nonhuman primates), associative
processes are evolutionarily ancient and conserved across species (Smith et al., 2012; see also Pontes
et al., 2020). Humans’ impressive cognitive achievements are often attributed to our capacity for
declarative processing, and by contrast, some authors have drawn a sharp dividing line between
associative learning and more “complex” forms of cognition (such as concept formation, language,
and executive control; e.g., Allen & Bekoff, 1995; Marcus, Vijayan, Rao, & Vishton, 1999; Mulcahy &

Call, 2006).

Nevertheless, several lines of inquiry stemming from machine learning (Silver et al., 2016;
Silver et al., 2017) and cognitive psychology (Lind, 2018; McMurray, Horst, & Samuelson, 2012;
Sloutsky, Yim, Yao, & Dennis, 2017; Wasserman, Kain, & O’Donoghue, 2023) have demonstrated that
associative learning can support highly flexible, goal-directed behaviour across varied cognitive
domains. In line with this perspective, researchers have found that task switching — which has
traditionally been viewed with the ambit of executive control and declarative processing (e.g.,
Monsell, 2003) — can likewise be accomplished through associative mechanisms (Castro &
Wasserman, 2016; Meier, Lea, Forrest, Angerer, & Mclaren, 2013; Meier, Lea, & Mclaren, 2016;
Forrest, Elchlepp, Monsell, & McLaren, 2012; Li, Li, Liu, Lages, & Stoet, 2019a; O’Donoghue &

Wasserman, 2021).

In a typical task switching paradigm, participants concurrently perform two or more tasks
involving the same stimulus set. On every trial, a task cue is presented to signal which contingencies
of reinforcement are in force on that trial. For example, a hypothetical participant might have to

classify a number according to either quantity (high/low) or parity (odd/even), contingent on the
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color of a background cue. These two tasks would be intermixed within each session, thereby

requiring the participant to shift their classification strategies on a trial-by-trial basis.

As in the above example, most task switching paradigms explore the effect of switching
between declarative decision rules; indeed, participants are often directly informed of the rules prior
to beginning the experiment (c.f., Meier et al., 2013). Under these circumstances, human participants

evidence at least two characteristic patterns of responding.

First, participants display small congruency effects: they are slightly, but reliably faster (and
sometimes more accurate) to respond to stimuli which require the same response regardless of the
task cue, relative to stimuli which require different responses depending on the task cue (Kiesel,
Wendt, & Peters, 2007). For example, if “odd numbers” and “numbers < 5” are assigned to one
response key, whereas “even numbers” and “numbers > 5” are assigned to the second response key,
then “3” is a congruent stimulus (because it requires the same response in both tasks) and “7” is

incongruent (because it requires a different response in each task).

Second, participants display large switch costs: when trial N involves a different decision rule
than trial N-1, response times increase and/or accuracies decrease relative to when the same
decision rule repeats across trials (Monsell, 2003; Samavatyan & Leth-Steensen, 2009). These switch
costs are often attributed to the need to discard the executive task set that was appropriate for trial
N-1, and to recruit the task set that is appropriate for trial N. Switch costs have been framed as a
hallmark of executive functioning (e.g., Monsell, 2003): they persist across a wide variety of
paradigms and populations (Ardiale, Hodzik, & Lemaire, 2012; Ellefson, Shapiro, & Chater, 2006);
they are not eliminated (although they can be reduced) through advanced preparation (Nieuwenhuis
& Monsell, 2002), extended practice (Stoet & Snyder, 2007), or expertise (Slama, Rebillon, & Kolinsky,
2017); and they may have adaptive value because they promote sustained attention to ongoing tasks
(Li, Li, Lages, & Stoet, 2017) while they shield participants from irrelevant sources of variance

(Dreisbach & Haider, 2008).
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Associative Task Switching

If switch costs are a byproduct of executive control, then they should be eliminated (or at
least strongly reduced)! in paradigms that do not encourage declarative rule use. Although
associative task switching is less well-studied than declarative task switching, studies involving both
human associative learners (e.g., Forrest et al., 2012; Li et al., 2019; Meier et al., 2013) and
nonhuman species which may lack human-like executive functioning (e.g., Castro & Wasserman,
2016; Meier et al., 2013; Meier et al., 2016; O’'Donoghue, Broschard, & Wasserman, 2020;
O’Donoghue & Wasserman, 2021) are thus far consistent with this prediction. In contrast to rule
users, who typically produce large switch costs relative to small congruency effects, associative
learners typically produce small (or no) switch costs relative to large congruency effects (e.g., Forrest
et al., 2012; Li et al., 2019a; Meier et al., 2013; see Forrest et al., 2012, for proof-of-concept that a

purely associative mechanism can produce small switch costs).

Comparative investigations of associative task switching are complicated by the fact that
humans are strongly biased toward declarative rule use (Ashby et al., 1998; Smith et al., 2012), which
makes the contributions of associative mechanisms extremely difficult to isolate (McLaren et al.,
2019). In lieu of explaining task rules to human participants (as is standard in the declarative
literature), most associative task switching paradigms either require research participants to
memorize a comprehensive list of cue-stimulus-response (CSR) mappings (e.g. Li et al., 2019a) or to
use small stimulus sets that are likewise amenable to exemplar memorization (Forrest et al., 2012;
Meier et al., 2013). In some cases, extra precautions are taken to ensure that task rules are non-
discoverable; for example, Li, Li, Liu, Lages, and Stoet (2019b) investigated task switching

performance among English-speaking participants tasked with categorizing Chinese numerals.

INote that switch costs can be incurred not just by switching tasks, but also by switching cues (e.g., Jost, De
Baene, Koch, & Brass, 2013). We revisit this issue in the General Discussion.
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Whether such memorization is truly associative remains a matter of debate. Some authors
have asserted that CSR memorization primarily reflects the contributions of associative processes
(Bower & Winzenz, 1970), whereas others have argued that associative learners should not have
conscious access to their memory representations (e.g., Edmunds, Wills, & Milton, 2016; Smith et al.,

2012), meaning that effortful memorization would constitute a declarative learning strategy.

With this debate in mind, we aimed to compare humans’ declarative and associative task
switching performance using a paradigm that encourages associative learning (by making task rules
difficult to verbalize) while also discouraging CSR memorization (through the use of trial-unique

stimuli). To do so, we compared task switching performance among participants trained to solve rule-

based (RB) and information-integration (ll) tasks like those depicted in Figure 1.
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Figure 1. Sample rule-based (A) and information-integration (B) stimulus distributions. The color of the points denotes
category assignment, and the dashed lines denote the optimal decision bounds. Note that, although the stimulus
distributions shown here are circular and uniformly sampled, most RB-II research has instead used bivariate normal
distributions (e.g., Crossley, Roeder, Hélie, & Ashby, 2018; Smith et al., 2012). In our laboratory, we prefer to use circular
distributions because they ensure that both tasks and all four subtasks are sampled from shared regions of the stimulus
space (O’Donoghue et al., 2020; O’'Donoghue & Wasserman, 2021).

RB and Il tasks are created by sampling two categories from the same bidimensional stimulus
space, often comprising sinusoidal gratings that vary in spatial frequency and line orientation (e.g.,
Crossley et al., 2018; Smith et al., 2012). In our RB tasks (Figure 1A), the optimal decision bound that
separates the two categories lies perpendicular to a single dimension, rendering only that dimension
relevant for categorization. Because these decision bounds are readily verbalizable (e.g., “if the lines

are angled at less than 45°, then the stimulus belongs to category ‘A’; otherwise, it belongs to

category ‘B’”), the RB tasks encourage declarative rule use (Ashby & Valentin, 2017).

By contrast, the diagonal decision bounds that delineate the Il distributions are not easy to
verbalize. To solve the Il tasks, participants must integrate information about both spatial frequency
and line orientation, which is often assumed to encourage associative processing (e.g., Ashby &

Valentin, 2017; Smith et al., 2012).

Supporting the assertion that RB and Il tasks may engage different learning mechanisms,
human participants reliably learn RB tasks more quickly than Il tasks. This discrepancy is often taken
to reflect the fact that Il learners begin by testing declarative decision rules, but must then abandon
those rules to achieve task mastery (see Ashby & Valentin, 2017, for a review of the RB advantage
alongside related RB-II dissociations). Critically, at least two nonhuman species believed to possess
the associative system, but to lack the declarative system — namely, pigeons (O’Donoghue, et al.,
2020; Smith et al., 2011; Smith et al., 2012) and rats (Broschard, Kim, Love, Wasserman, & Freeman,

2019) — show no differences in RB and Il learning speed, suggesting that the disparities observed in
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the human literature cannot be explained by task difficulty (see also Ashby & Valentin, 2017; c.f,,

Nosofsky, Stanton, & Zaki, 2005; Zaki & Kleinschmidt, 2014)2.

To date, very few authors have examined humans’ task switching performance in the context
of RB and Il categorization. Meier et al. (2013) trained participants to switch between simplified
versions of the two RB subtasks depicted in Figure 1A. After trial-and-error learning, participants who
successfully verbalized the rules governing each subtask displayed strong switch costs and small
congruency effects, consistent with declarative rule use. By contrast, participants who did not
verbalize either categorization rule displayed no switch costs and strong congruency effects,
consistent with associative learning. However, Meier et al.’s (2013) stimulus set comprised just four
unique stimuli, which might have encouraged exemplar memorization even though their participants

were not explicitly instructed to memorize the stimuli.

Separately, Crossley et al. (2018) asked whether participants could simultaneously learn and
switch between an RB subtask and an Il subtask involving randomly sampled stimuli, under the
assumption that this procedure necessitates trial-by-trial switching between declarative and
associative mechanisms (see also Erickson, 2008). Such switches proved to be difficult, but possible.
In addition, RB-II switches were more difficult than switches between a unidimensional RB subtask
and a bidimensional RB task, suggesting that switching between declarative and associative

mechanisms may be more costly than switching between two declarative rules.

On the other hand, we were particularly interested in conditions that were not examined in
any of this prior work: namely, requiring participants to switch between two unidimensional,

randomly-sampled RB subtasks (Figure 1A), which should each depend on declarative rule use, or

2 Beyond this basic RB advantage, RB and Il tasks have yielded numerous behavioral and neurobiological
dissociations suggesting that they engage different learning mechanisms (for a review, see Ashby & Valentin,
2017). However, several of these dissociations have either failed to replicate (e.g., Edmunds, Wills, & Milton,
2019; Newell, Dunn, & Kalish, 2010) or may have been confounded by other factors (e.g., Stephens & Kalish,
2018; Newell, Moore, Wills, & Milton, 2013). A full review of the debate surrounding RB and Il tasks lies
beyond the scope of the present report; however, we revisit this issue in the General Discussion.
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requiring participants to switch between two bidimensional, randomly-sampled Il subtasks (Figure
1B), which should each encourage associative mechanisms. If human learners engaged the optimal
associative strategy to solve the two Il subtasks, then we expected that they would show significantly

weaker switch costs relative to human rule-users trained to switch between the two RB subtasks.

To determine whether human learners arrived at the optimal strategies for each task
condition, we considered the concordance between two manipulation checks: decision bound
modelling (DBM; Ashby & Gott, 1988) and self-reported strategy use (e.g., Edmunds et al., 2016).
Additionally, and in effort to better discern which elements of humans’ performance might be
mediated by associative mechanisms (that are shared across species), and which elements might be
mediated by declarative mechanisms (that may be unique to select species, including humans and
possibly some nonhuman primates; Smith et al., 2012), we conducted a comparative investigation
involving both humans (Experiment 1) and pigeons (Experiment 2A, wherein we trained pigeons
using the same general approach used in Experiment 1, and Experiment 2B, wherein we asked

whether differences in stimulus processing might explain our observed interspecies differences).

Experiment 1

In Experiment 1, we trained human participants to switch either between the two RB
subtasks (the RB-RB group) or between the two Il subtasks (the II-1l group) using the full stimulus
distributions depicted in Figure 1. If most participants converged on the optimal learning
mechanisms for each task condition (declarative rule use in the RB-RB group; associative learning in
the II-1l group), then we suspected that participants in the RB-RB group would show significantly

stronger switch costs than participants in the ll-1l group.

Method

Participants. We recruited 40 participants (mean age = 43.46, SD = 12.31) from Amazon’s

Mechanical Turk, each of whom completed Experiment 1 on a personal computer in exchange for
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monetary compensation ($10 USD). Twenty participants were randomly assigned to each of the RB-
RB and II-1l task conditions. All participants provided informed consent, and all experimental

procedures were approved by the Human Subjects Office at The University of lowa.

As described in the Results, we subsequently excluded 14 participants who did not meet our
learning criterion (5 participants excluded from the RB-RB group, and 9 participants excluded from
the II-1l group, yielding a final RB-RB group N = 15 and a final ll-Il group N = 11). The mean age across

the remaining 26 participants was 43.10 (SD = 11.95).

A post hoc sensitivity analysis conducted in G*Power revealed that, with combined N = 26
and a two-tailed, six-predictor model?, we had 80.00% power to detect regression coefficients for
which 2= 0.34 and 90.00% power to detect regression coefficients for which f> = 0.45. Critically, the
effect sizes obtained in past research exceed these thresholds: in Li et al. (2019b), the interaction
between task condition (declarative vs. associative) and trial type (stay vs. switch) on reaction time-
based switch costs had an n?,=0.43 (converted f2,= 0.43 / (1 - 0.43) = 0.75), while in Forrest et al.
(2012), the effect of task condition (declarative vs. associative) on reaction-time based switch costs
had an f2 = 0.53. Thus, our final sample size was sufficiently powered to detect differences in switch
cost magnitude as a function of task condition (should such differences exist using the RB and Il tasks

deployed here).

Stimuli. We generated the stimuli and programmed the experiment using JavaScript and the
jsPsych library (de Leeuw, 2015). In each of the RB-RB and II-1l task conditions, the stimuli were
sinusoidal gratings that varied in spatial frequency and line orientation. These stimuli were randomly

and uniformly sampled from the normalized circular distributions depicted in Figure 1, with raw

3 As detailed in the Results, our statistical models included three individual predictors (task condition,
congruency, and trial type) as well as all possible interactions between them (two two-way interactions and
one omnibus three-way interaction).
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spatial frequency values ranging from 0.01 to 0.10 cycles per pixel and raw line orientation values

ranging from 0-90°.

Phases 1 and 2: Individual Subtask Training. All participants were independently trained on
two individual subtasks [the frequency (RBF) and orientation (RBO) subtasks in the RB-RB group, or
the negative (IIN) and positive (lIP) subtasks in the II-Il group; Figure 1] before progressing to the
critical task switching phase. The order in which the subtasks were trained was counterbalanced
across participants. Before beginning the first subtask, all participants were told that they would
“learn one way of sorting the objects”, and before beginning the second subtask, all participants
were told that they would “learn a different way of sorting the objects”. In both phases, learning
progressed through trial-and-error; no further task instructions were provided. Participants were

asked to respond as quickly and accurately as possible.

Each trial began with the presentation of a 250 x 250 px circular task cue in the center of the
screen (Figure 2A). This task cue could be either blue (RGB value: [0, 0, 255]) or red (RGB value: [255,
0, 0]), with cue-subtask relationships randomized across participants. The participant then had to
press the space bar, at which point the 200 x 200 px trial exemplar was overlaid on top of the task
cue. Once the trial exemplar appeared, participants were immediately allowed to categorize it by
pressing either the ‘q’ or ‘p’ key on their keyboard. Category-response assignments were
counterbalanced across the full sample. Participants were provided with feedback 0.5 s after making
their response; either the word “correct” or “error” appeared on-screen, and remained visible for 1.0
s. The next trial then began automatically after a variable 0.8-1.2 s delay. No correction trials were

provided.
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Figure 2. Trial structures used in Experiments 1 and 2. The top row (A) depicts the trial structure given to the humans in
Experiment 1; the middle row (B) depicts the trial structure given to the pigeons in Experiment 2A; the bottom row (C)
depicts the trial structure given to the pigeons in Experiment 2B. In panels B and C, the word “correct” is included for

illustrative purposes only.

Training on each individual subtask continued either until the participant reached an 85%
criterion (at least 85% overall accuracy in a 30-trial moving window) or to a maximum of 240 trials.
For the purposes of our analyses, we classified participants as “learners” only if they met the 85%
criterion separately on each individual subtask. We classified participants as “nonlearners” if they did

not meet the 85% criterion on at least one subtask.

After finishing each individual subtask, participants were prompted to self-report how they
had solved that subtask. (“In this phase, what do you think determined which response was correct?

What approach(es) did you take to sorting the objects? Please be as specific as possible.”)

Phase 3: Task switching. After receiving independent training on each of the two subtasks in

the manner described above, participants progressed to the critical task switching phase. At the
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beginning of this phase, all participants were told that, having “learned two different ways of sorting
the objects”, they would now have to “put them together”. Participants were reminded of the
counterbalanced color-subtask mappings that they had learned in Phases 1 and 2. For example, a
sample participant would be told: “when the background is blue, you should sort the objects as you

did in Phase 1”, and “when the background is red, you should sort the objects as you did in Phase 2”.

The trial sequence was identical to that described in Phases 1 and 2. All participants
completed 480 trials in the task switching phase. As did Meier et al. (2013), we partially randomized

the trial order such that a subtask switch occurred on one third of all trials.

At the end of the task switching phase, participants were given two additional self-report
prompts. The first asked whether their approaches to sorting the objects had changed in the task
switching phase (“Did your approach to sorting the objects change in this final phase? If so, how?”),
while the second asked whether they experienced any distractions during the study [“Were you
distracted while you completed the task (e.g., by using your phone)?”]. No participants reported
meaningful changes in their approach during the task switching phase nor did they report substantial

distractions.

Results and Discussion

All data and scripts used for analysis are available via https://osf.io/3265r/ (O’'Donoghue,

2023). This study was not preregistered.

Learning Speeds. To compare learning speeds in each of the RB-RB and II-1l groups, we first
excluded 14 nonlearners (five from the RB-RB group, and nine from the II-Il group), defined as
participants who did not meet the 85% criterion on at least one subtask during Phases 1 and 2 (see
Method). After exclusion, there remained 15 participants in the RB-RB group, and 11 participants in

the -1l group (total analyzable N = 26). We opted to exclude nonlearners from our analyses because,
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given that they did not reach criterion on at least one subtask, they presumably had not adopted the

optimal strategy for that subtask (which would in turn muddle the group-level analyses).

Figure 3A depicts the average learning curves in each task condition (RB-RB vs. lI-Il),
separated by subtask. For easier visualization, we divided each individual participant’s data into 10
blocks (mean number of trials per block = 6.60; SD = 3.89). On average, participants acquired all four
subtasks quite quickly —an impressive feat given the difficulty of our arranged stimulus distributions
(Figure 1). As is typical of RB and Il paradigms (see Ashby & Valentin, 2017), learning was numerically
faster in each of the two RB subtasks (RBF: mean number of trials = 47.53; SD = 25.43; RBO: mean
number of trials = 59.47; SD = 29.80) relative to each of the two Il subtasks (IIN: mean number of
trials = 81.91; SD = 40.84; IIP: mean number of trials = 84.27; SD = 47.66). An independent-samples t-
test with overarching task condition (RB-RB vs. II-1l) as a between-subjects factor confirmed that
participants in the RB-RB group reached criterion significantly faster than participants in the II-1I

group, t(13.48) =-2.40, p = .031.
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Figure 3. The top panels (A) depict learning curves for the humans in Experiment 1; the bottom panels (B) depict learning
curves for the pigeons in Experiment 2A. In each case, individual participants’ data were divided into 10 blocks (humans:
mean block size = 6.60 trials, SD = 3.89 trials; pigeons: mean block size = 108.00 trials, SD = 74.81 trials). Error bars
represent the standard error of the mean.

Decision Bound Modeling. Researchers investigating performance in RB and Il paradigms
typically implement manipulation checks to confirm that most RB and Il learners arrived at the

optimal strategies for each task condition (declarative rule use in the case of RB tasks; associative

learning in the case of Il tasks). The most commonly deployed manipulation check is decision bound
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modelling (DBM), a simplified version of General Recognition Theory (Ashby & Gott, 1988; Ashby &
Perrin, 1988), which assumes that participants assign category membership in accordance with
deterministic decision bounds placed in psychological stimulus space. In DBM, multiple models are fit
to each participant’s data to characterize their decision bound, and the best-fitting model is

commonly assumed to reflect that participant’s underlying strategy.

Typically, participants whose responses are best characterized by unidimensional decision
bounds (i.e., decision bounds that lie perpendicular to the relevant dimension) are assumed to have
relied on declarative rules, whereas participants whose responses are best characterized by diagonal
decision bounds are assumed to have relied on associative mechanisms (e.g., Casale, Roeder, &
Ashby, 2012; Maddox & Ashby, 2004; O’Donoghue, Broschard, Freeman, & Wasserman, 2022; Smith,
Boomer, Zakrzewski, Roeder, Church, & Ashby, 2014; c.f., Edmunds, Milton, & Wills, 2018, and note

that we revisit this assumption in Experiment 2).

In our DBM analysis, we initially* considered the four models that are most commonly used
in the broader dual-systems literature: random guessing (RGM), which assumes that participants
respond at random (allowing for possible response bias); two one-dimensional models, each of
which assumes that participants used a single stimulus dimension to guide their responding (either
spatial frequency in the case of the 1DF model or line orientation in the case of the 1DO model); and
a linear two-dimensional model (2DL), which assumes that participants used both spatial frequency
and line orientation. Assuming that most learners converge on the optimal strategies for their
respective task conditions, most successful RB-RB learners’ choice behavior should be best-described

by a one-dimensional model (1DF in the RBF subtask; 1DO in the RBO subtask), whereas most

4 One valid critique of much existing RB-Il literature is that using just these four models may be insufficient to
capture the full range of strategies that participants might actually deploy to solve RB and Il tasks. Of particular
note, Edmunds et al. (2018) demonstrated that participants who use conjunctive rules to reach criterion on Il
tasks are often misidentified as associative learners (because they are best fit by linear two-dimensional
models) even when conjunctive rule-based models are also fit to their data. With this result in mind, and for
parsimony with the existing RB-II literature, we focus on just four models here; but, in the Supplemental
Materials, we detail an alternative DBM analysis that also includes a fifth, conjunctive rule-based model.
Additionally, we revisit broader theoretical concerns surrounding DBM in the General Discussion.
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successful lI-1l learners’ choice behavior should be best-described by the 2DL model in both the IIN

and IIP subtasks.

For each participant, and for each subtask on which that participant was trained, we fit the
four models to the last 30 trials (i.e., to the 85% criterion window) from that participant’s training
phase. Through supplementary analyses, we also ruled out the possibility of strong idiosyncrasies
within these 30-trial windows (which might, for example, have made some participants’ Il
distributions more amenable to rule use than others’; see Supplementary Materials). We used the
Bayesian Information Criterion (BIC; Neath & Cavanaugh, 2012) as our measure of model fit. The BIC
penalizes more complex models (i.e., models with more free parameters) more heavily, and a lower
BIC indicates a better fit to the data. All model fits were calculated using the ‘grt’ package for R

(Matsuki, 2017).

The first subsection of Table 1 (“Humans (Experiment 1) — Individual Subtask Training”)
summarizes the aggregate results of our DBM analysis for the Individual Subtask Training phase (see
Supplemental Materials for details of individual participants’ model fits). Overall, and as expected,
most participants in each subtask were best-described by the optimal model for that subtask. In the
RB-RB group, 13 of 15 participants (86.67%) were best-described by the 1DF model in the RBF
subtask, and 11 of 15 participants (73.33%) were best-described by the 1DO model in the RBO
subtask. Fisher’s Exact Tests revealed that neither distribution significantly diverged from the
optimally expected distributions (wherein 100% of participants would converge on the optimal

unidimensional model for each subtask), both ps > 0.996.

Table 1.
Subtask RGM 1DF 1D0O 2DL
Humans (Experiment 1) — Individual Subtask Training
RBF - 86.67% (13) - 13.33% (2)
RBO - - 73.33% (11) 26.67% (4)
IIN - 27.27% (3) 18.18% (2) 54.54% (6)
1P - 27.27% (3) 9.09% (1) 63.64% (7)

Humans (Experiment 1) — Task Switching
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RBF - 86.67% (13) - 13.33% (2)
RBO 6.67% (1) - 60.00% (9) 33.33% (5)
IIN - 27.27% (3) 18.18% (2) 54.54% (6)
113 - 36.36% (4) 18.18% (2) 45.45% (5)

Pigeons (Experiment 2A) — Individual Subtask Training

RBF - 75.00% (3) - 25.00% (1)
RBO - - 75.00% (3) 25.00% (1)
[IN - - - 100.00% (4)
1P - - - 100.00% (4)
Pigeons (Experiment 2A) — Task Switching
RBF - 75.00% (3) - 25.00% (1)
RBO - - 75.00% (3) 25.00% (1)
IIN - - - 100.00% (4)
1P - - - 100.00% (4)

Table 1. DBM model fits. For each of the humans in Experiment 1 (first four rows) and the pigeons in Experiment 2A (last
four rows), the cell values indicate the percentage of participants in each task condition who were best-described by each

model, with the absolute number of participants in parentheses.

The model fits for participants in the II-1l group were slightly more variable (although the
variability observed here is comparable to that observed in past research; e.g., Casale et al., 2012;
Edmunds, Milton, & Wills, 2015; Edmunds et al., 2016). Nevertheless, and as expected, the majority
of participants were best described by the 2DL model. Six of the 11 participants (54.54%) were best
described by the 2DL model in the IIN subtask, and seven of the 11 participants (63.64%) were best
described by the 2DL model in the IIP subtask. In the broader RB-II literature, these findings would
commonly be taken to suggest that most participants converged on the optimal strategies for each
task condition (c.f., Edmunds et al., 2016; Edmunds et al., 2018). Nevertheless, Fisher’s Exact Tests
revealed that, in both the IIN and IIP subtasks, our data did diverge from the optimally expected
distributions (wherein 100% of participants would be expected to converge on the 2DL model), both

ps <.022.

Self-Report. As an additional indicator of which mechanisms participants might have used in
each of the RB-RB and II-Il conditions, we next explored our own participants’ descriptions of how

they solved each subtask. Formal dual-systems models of categorization typically make no
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predictions surrounding self-report (e.g., Ashby et al., 1998), and implicit theorists often assume that
self-reports cannot yield relevant insights into associative processes (e.g., Ashby & Rosedahl, 2017).
Nevertheless, some researchers have asserted that participants’ self-reports could plausibly differ
between RB and Il task conditions (e.g., Edmunds et al., 2016), while still others have reported that
they do differ (e.g., Chandrasekaran, Koslov, & Maddox, 2014). With these opposing perspectives in
mind, we were interested in exploring the concordance between self-reported strategy and other

potential indicators of participants’ learning mechanisms (e.g., DBM; see also Edmunds et al., 2016).

As described in the Method, participants were prompted to self-report which approaches
they took to categorizing the stimuli after completing each of Phases 1 and 2 (Individual Subtask
Training). All responses were independently coded by three raters (HF, RB, and EQ) according to the
following criteria, which were initially based on the guidelines developed by Edmunds et al. (2016)
and then modified according to pilot data from a related project conducted in our laboratory. All

raters were blind as to which task conditions and subtasks corresponded to which self-reports.

Participants were classified as unidimensional rule users if they reported using a single
stimulus dimension (e.g., “the direction of the stripes”)>. We additionally subdivided unidimensional
rule users according to whether they relied on spatial frequency (“Freq”) or line orientation

(“Orient”).

Participants were classified as bidimensional rule users if they reported using both stimulus
dimensions in an explicitly rule-like manner. This distinction includes participants who developed a
unidimensional rule with a small number of exceptions (“RuleEX”; e.g., “it depended on the angle of
the stripes, but if bars were thick enough, then the correct response was always ‘q’”), participants
who described a clear strategy based on distance from the prototype of one category (“A/not A”;

e.g., “the correct response was ‘q’ if the angle was close to 90° and if the lines were thin enough,

5 The sample self-reports provided throughout this section are illustrative of our coding scheme and do not
represent real data.
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339  otherwise it was ‘p’”), and participants who developed any other verbalizable rule based on both
340 stimulus dimensions (“Misc.”; e.g., “thick, vertical lines were in one category; thin, horizontal lines

341  were in the other category”).

342 Participants were classified as implicit learners if they reported relying on intuition, muscle

343 memory, family resemblance, and/or having a ‘feeling’ for each response (“Implicit”).

344 Participants were classified as miscellaneous strategy users if they reported any of the

345  following: using both spatial frequency and line orientation in an unspecified manner (“Unclear”;
346  e.g., “it depends on the width and the angle of the bars”, which could plausibly constitute either
347  unspecified rule use or similarity-based, associative classification); guessing randomly (“Guessing”);
348 explicitly memorizing the correct stimulus-response assighments (“Memory”)®, or relying on aspects
349 of the task that were irrelevant to category membership (“Irrel.”; e.g., “I think there was a set

350 sequence of correct responses”).

351 Table 2 depicts the raters’ classifications of our participants’ self-reports. Inter-rater reliability
352 was strong, Fleiss’ k = .83. In cases of disagreement, we selected the strategy that was agreed upon
353 by the majority of the raters (there were no instances in which all three raters selected different

354  strategies).

Table 2.
Unidimensional Rules Bidimensional Rules Implicit Miscellaneous Strategies
Subtask Freq Orient RuleEX  A/not A Misc. Implicit | Unclear  Guessing ~ Memory  Irrel
93.33% 6.67%
RBF - - - - - - - -
(14) (1)
100.00%
RBO - (5) - - - - - - - -
N 3636%  9.09% 9.09% ~ ~ ~ 45.45% ~ ~ _
(4) (1) (1) (5)
P 36.36% _ _ _ 18.18% _ 45.45% _ _ _

(4) (2) (5)

8In our tasks, the stimuli were always randomly sampled; the likelihood of any individual stimulus appearing
twice was effectively zero. However, in related pilot projects, a small subset of participants reported believing
that the stimuli were repeated across trials and that the correct category-response assignments could be
memorized.
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Table 2. Self-reported strategies in Experiment 1. The cell values indicate the percentage of participants in each task

condition who were classified as having reported each strategy, with absolute values in parentheses.

The vast majority of participants in the RB-RB group reported using the optimal strategies to
solve each subtask: 93.33% of participants trained on the RBF subtask reported using a
unidimensional rule based on spatial frequency, and 100.00% of participants trained on the RBO
subtask reported using a unidimensional rule based on line orientation. Neither of these
distributions significantly diverged from the optimally expected distribution (wherein 100% of

participants would report using the optimal unidimensional rule), both Fisher’s Exact ps = 1.00.

The participants in the Il-ll group displayed much more variability in their reports. In each of
the IIN and IIP subtasks, a slim majority of participants (54.54%) reported using either a
unidimensional or a bidimensional decision rule. In theory, a single unidimensional decision bound
could not achieve the 85% criterion on either |l subtask (Figure 1B; and see Supplemental Materials
for evidence that there were no strong idiosyncrasies across individual participants’ Il distributions).
However, multiple participants noted that, although they believed that the task was solvable by a
unidimensional rule, they found it difficult to determine the exact category boundary. This
uncertainty, in conjunction with our random stimulus sampling, may have allowed a small subset of

unidimensional rule users to reach the 85% criterion.

The remainder of participants (45.45%) reported using both spatial frequency and line
orientation but did not provide further information as to how those dimensions were used, meaning

that we could not confidently classify them as either declarative rule users or associative learners.

Interestingly, no participants in the II-1l group were classified as implicit learners according to
our criteria; indeed, the observed distributions for each subtask significantly differed from the
optimally expected distributions, wherein 100% of participants would report using Implicit strategies,

both Fisher’s Exact ps < .001. Of course, we acknowledge that self-reports may be inaccurate, and
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that asking participants to verbally describe their strategies might have biased them toward
generating verbalizable decision rules (even if they did not actually use those rules to achieve task
mastery). With this consideration in mind, we also acknowledge that at least some participants who
were classified as miscellaneous bidimensional learners (“Unclear”; Table 2) may have deployed
associative learning mechanisms. These participants did report which dimensions were relevant, but
they may have been unable to describe how those dimensions were relevant, which would be
consistent with the suggestion that associative learners might have difficulty accessing their memory
representations (Edmunds et al., 2016; Smith et al., 2012). Nevertheless, even if we were to assume
that all lI-1l group participants classified as having ‘Unclear’ self-reports were actually associative

learners, then associative learners would still constitute less than half of our sample.

Task switching. Finally, we considered the data from Phase 3 (Task Switching). Importantly,
participants’ strategies could conceivably have changed between Phases 1 and 2 (Individual Subtask
Training) and Phase 3 (Task Switching). For example, the enhanced cognitive load imposed in Phase 3
might have encouraged participants to adopt simpler strategies than they had previously used in the
initial training phases (resulting in higher proportions of random guessing in RB tasks, and/or higher

proportions of unidimensional rule use in Il tasks).

To address this possibility, we used DBM to describe each participant’s best-fitting decision
bounds at the end of Phase 3 (Task Switching). We separately considered the final 100 trials from
each of the two subtasks on which each individual participant had been trained (RBF and RBO in the
RB-RB condition; IIN and IIP in the II-Il condition). As evidenced by Table 1, participants’ best fitting
decision bounds remained broadly consistent between Phases 1 and 2 (Individual Subtask Training)
and Phase 3 (Task Switching). Indeed, the group-level distributions for each of the RBF and IIN
subtasks were identical across phases, while the group-level distributions for each of the RBO and IIP

subtasks displayed only slight differences (these differences were nonsignificant in each case, both
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Fisher’s Exact ps > .700). Likewise, in our post-experiment questionnaire (see Method), no participant

reported changes in strategy during the task switching phase.

Having determined that participants’ strategies did not meaningfully differ as a consequence
of task switching, we next considered their task switching performance. Given the dissociations that
have previously been reported between declarative and associative task switching paradigms (e.g.,
Forrest et al., 2012; Meier et al., 2013; Li et al., 2019a), we expected to observe large switch costs
and small congruency effects in RB-RB group, whereas we expected to observe small switch costs

and large congruency effects in the IlI-Il group.

Overall, performance in the task switching phase was robust (Figure 4A). Participants in the
RB-RB group achieved an average accuracy of 84.74% (SD = 7.03%), whereas participants in the lI-l|
group achieved an average accuracy of 70.21% (SD = 15.26%). To assess participants’ task switching
performance, we classified each trial as either a switch trial (meaning that trial N involved a different
subtask than trial N-1) or a stay trial (meaning that trial N shared the same subtask as trial N-1).
Additionally, we classified each stimulus as either congruent (meaning that it shared the same
correct response under both trained subtasks) or incongruent (meaning that the correct response

differed depending on the subtask).
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A) Human Task Switching Performance (Experiment 1)
Accuracy Response Time (RT)
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B) Pigeon Task Switching Performance (Experiment 2A; Simultaneous Presentation)
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C) Pigeon Task Switching Performance (Experiment 2B; Successive Presentation)
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421 Figure 4. Task switching performance. The top panels (A) depict humans’ performance in Experiment 1; the middle panels

422 (B) depict pigeons’ performance in Experiment 2A; the bottom panels (C) depict pigeons’ performance in Experiment 2B. In
423 each case, the lefthand panels depict participants’ choice accuracies, and the righthand panels depict participants’
424 response times. Error bars reflect the standard error of the mean, and the dashed lines in the lefthand panels represent

425 chance-level performance.

426 Next, we asked whether participants’ choice accuracies varied as a function of trial type
427  and/or congruency. We submitted participants’ choice accuracies to a logistic regression with task

428  condition (RB-RB vs. lI-Il; effects-coded), trial type (stay vs. switch; dummy-coded with stay trials as
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the reference), and response congruency (congruent vs. incongruent; dummy-coded with congruent

trials as the reference) as factors.”

The main effect of task condition was significant, B =-0.69, SE = 0.04, Z=-16.93, p < .001;
however, it was qualified by a significant interaction between task condition and congruency, B =
0.53, SE=0.05,Z=9.24, p < .001. To probe this interaction, we conducted two follow-up logistic
regressions that separately examined the effect of congruency for each of the RB-RB and II-Il task
conditions. The effect of congruency was significant in each case; however, whereas participants in
the RB-RB group were less accurate on incongruent trials (mean = 81.17%, SD = 6.74%) than on
congruent trials (mean = 88.31%, SD = 5.36%), B=-0.53, SE=0.07,, Z=-7.78, p < .001, participants
in the ll-Il group were more accurate on incongruent trials (mean = 76.11%, SD = 12.22%) than on

congruent trials (mean = 65.97%, SD = 14.98%), B=0.52, SE=0.06, Z = 8.46, p < .001.

The fact that participants in the II-ll group performed better on incongruent trials is
surprising; however, this pattern may reflect the way in the stimulus distributions were rotated to
generate each subtask. In the II-1l group, the incongruent regions of the stimulus space encompassed
the extreme ends of the frequency dimension, whereas in the RB-RB group, the extreme ends of the
frequency distribution were 50% congruent and 50% incongruent (see Supplemental Materials). Past
research in our laboratory has found that spatial frequency may be more salient than line orientation
both for people and pigeons (e.g., O’'Donoghue et al., 2020; O’Donoghue et al., 2022; see also

Herbranson, Karas, & Hardin, 2017); so, among participants in the ll-ll group, the benefits of extreme

’For all regression models reported in these experiments, we began by calculating the intraclass correlation
coefficient (ICC) for an intercept-only model to determine whether mixed-effects modelling was justified. We
used the guideline that an ICC < .10 indicates no advantage of mixed-effects modeling over standard
regression, whereas an ICC >= .10 justifies mixed-effects modeling (Garcia-Patos & Olmos, 2020). Ultimately,
none of our accuracy analyses incorporated mixed-effects modeling, whereas all of our reaction time analyses
incorporated random intercepts at the subject level. Although not reported here, we also confirmed that none
of our accuracy analyses meaningfully differed when random intercepts were included. In our mixed-effects
models, all t-tests were calculated using the ImerTest package for R Studio (Kuznetsova, Brockhoff, &
Christensen, 2017), which uses Satterthwaite's method to approximate degrees of freedom.
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spatial frequency values may have outweighed any potential costs associated with incongruency. We

are thus reluctant to draw strong conclusions based on our obtained congruency effects.

We also observed a significant interaction between trial type and congruency, B =-0.19, SE =
0.10, Z=-1.98, p = .048. To probe this interaction, we separately examined the effect of trial type at
each level of congruency. For congruent stimuli, the effect of trial type was nonsignificant, B = -.09,
SE=0.07,Z=-1.43, p =.153; but, for incongruent stimuli, accuracy was significantly lower on switch
trials (mean = 75.99%, SD = 10.69%) than on stay trials (mean = 81.33%, SD = 8.99%), B =-0.31, SE =
0.06, Z=-4.75, p < .001. Similar interactions have previously been reported in the task switching
literature [e.g., Forrest et al., 2012; Gopher, Armony, & Greenshpan, 2000 (Experiment 1); Hughes,
Linck, Bowles, Koeth, & Bunting, 2014], and they may be driven by the fact that, when responding to

congruent stimuli, participants need not attend to the task cue.

No other main effects or interactions were significant, all ps >.092. The absence of a main
effect of trial type (and of higher-order interactions between task condition and trial type) was
surprising given that accuracy-based switch costs have been observed in past literature (e.g., Meier
et al., 2013; Monsell, 2003). However, speed-accuracy trade-offs can also preclude differences in
accuracy while still yielding strong switch costs in response times (Samavatyan & Leth-Steensen,
2009; see also Li et al., 2019b). So, we next considered participants’ response times. We logged all
response times for analysis, and excluded all incorrect trials as well as all response times that fell
more than three standard deviations beyond each individual participant’s mean score. We then
conducted a linear mixed-effects model analysis (see footnote 4) with random intercepts at the
subject-level, and with task condition (RB-RB vs lI-1l), congruency (congruent vs. incongruent), and

trial type (stay vs. switch) as factors, all coded as previously described.

As above, we observed a significant interaction between task condition and congruency, b = -
0.01, SE<0.01, t(9678) = -2.40, p = .016. Follow-up probes indicated that participants in the RB-RB

group were slower to respond to incongruent stimuli (mean = 1120.84 ms, SD = 334.20 ms) than to
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congruent stimuli (mean = 1092.87 ms, SD = 370.81 ms), b = 0.01, SE < .01, t(6011) = 3.85, p <.001,
whereas participants in the II-1l group displayed no differences in response time as a function of

congruency, b < .01, SE < .01, t(3670) = 0.40, p = .687.

Critically, we also observed a main effect of switch type, b = 0.09, SE < 0.01, t(9676) = 17.07,
p < .001, indicating that participants were generally slower to respond on switch trials (mean =
1305.26 ms, SD = 446.15 ms) than on stay trials (mean = 1035.07 ms, SD = 349.23 ms). No other

main effects or interactions were significant, all ps > .141.

Of particular note, the fact that the two-way interaction between task condition and trial
type was not significant indicates that, contrary to our predictions, switch cost magnitudes did not
meaningfully differ between the RB-RB and II-Il task conditions. The fact that both the RB-RB group
and the lI-1l group displayed comparable switch costs suggests two interpretive possibilities. First,
participants may have deployed declarative learning mechanisms regardless of their assigned task
condition; that is, in our paradigm, the majority of successful Il learners may have relied on
declarative decision rules rather than on associative learning mechanisms (see also Edmunds et al.,
2016). This conclusion would be consistent with participants’ self-reported strategies, but broadly
inconsistent with the results of DBM, and we revisit it (alongside the broader debate surrounding

whether RB and Il tasks reliably encourage different learning mechanisms) in the General Discussion.

Alternatively, it is possible that switch costs might not reliably dissociate declarative rule
users from associative learners in the context of tasks that preclude exemplar memorization. To
further explore this possibility, we turned to a new participant sample —and to a new species —in

Experiment 2.

Experiment 2A

In Experiment 2A, we asked whether pigeons — which appear to rely solely on associative

learning mechanisms to solve RB and Il tasks (O’Donoghue et al., 2020; Qadri et al., 2019; Smith et
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al., 2012), as well as various other paradigms that encourage rule-use among human participants
(Lea, Wills, Leaver, Ryan, Bryant, & Miller, 2009; Maes et al., 2015; Navarro, Jani, & Wasserman,
2019) — would display switch costs when trained to solve RB and Il tasks in the same manner as the
human participants in Experiment 1. Based on past comparative research (Castro & Wasserman,
2016; Meier et al., 2013; Meier et al., 2016; O’Donoghue & Wasserman, 2021), we expected that
pigeons would not display significant switch costs in either task condition (RB-RB or II-1l), consistent

with the possibility that associative learning mechanisms can preclude switch costs.

Method

Subjects and Apparatus. Eight pigeons took part in Experiment 2A. Our sample size was
determined by availability; we selected only the pigeons in our laboratory that had no prior
experience with the present tasks or stimuli. The pigeons were individually housed and maintained
at 85% of their free-feeding weights. All experimental procedures were approved by the Institutional

Animal Care and Use Committee at The University of lowa.

The pigeons were trained in 36 x 36 x 41 cm operant conditioning chambers with white noise
played during all sessions. The stimuli were presented on 800 x 600 px LCD monitors equipped with
AccuTouch® touchscreens (Elo TouchSystems, Fremont, CA). The screen area visible to each pigeon
measured 28.5 x 17 cm. Food reinforcement (1 to 3 45-mg pigeon pellets) was delivered on each trial

via a rotary dispenser connected to a food tray mounted on the wall opposite the touchscreen.

Stimuli and Apparatus. We programmed Experiment 2A and generated the stimuli using
Matlab and its Psychtoolbox-3 extensions (Kleiner, Brainard, & Pelli, 2007), using the same stimulus

sampling procedures as in Experiment 1.

Phases 1 and 2: Individual Subtask Training. As were the humans in Experiment 1, the

pigeons were trained to criterion on each individual subtask prior to entering the critical task
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switching phase. Four pigeons were randomly assigned to each of the RB-RB and II-Il conditions. The

order in which the subtasks were trained was counterbalanced across the pigeons in each condition.

Each trial began with the presentation of a 4.50 x 4.50 cm star-shaped start stimulus in the
center of the screen (Figure 2B). After the pigeon pecked the start stimulus once, the start stimulus
disappeared and was replaced by a 7.00 x 7.00 cm circular task cue. As in Experiment 1, this task cue
could be either blue (RGB value: [0, 0, 255]) or red (RGB value: [255, 0, 0]). Cue-subtask relationships
were counterbalanced across pigeons. The pigeons had to peck the task cue once, at which point the
4.50 x 4.50 cm trial stimulus was overlaid on the cue. The pigeons then had to complete a variable
response requirement to the trial stimulus, which began with one peck and was adjusted upwards
with performance to a maximum of 10 pecks (such upward adjustment is common in the
comparative literature because larger response requirements promote attention to onscreen stimuli,
while the gradual increase helps ensure that the pigeons do not suddenly stop responding
altogether; e.g., Kelleher, Riddle, & Cook, 1962). Once the response requirement was completed, the
trial exemplar disappeared and was immediately replaced with the two choice keys, which were
replicas of the trial exemplar that appeared to the left and right sides of the screen, 4.00 cm from the
nearest edge. Each choice key was overlaid on a replica of the 7.00 x 7.00 cm circular task cue. Choice
key-category relationships (e.g., [left key-Category A]; [right key-Category B]) were counterbalanced
across pigeons, and a single peck to either choice key was recorded as a response. Correct responses
were followed by food reinforcement, whereas incorrect responses were followed by a variable 6-10
s delay, and then by a correction trial. Correction trials continued until the pigeons made the correct

response. The next trial then began after a variable 6-10 s intertrial interval (ITl).

Phase 3: Blocked Subtask Training. Because the pigeons were trained over a much longer
timeframe than the humans in Experiment 1, we worried that they might have forgotten some
aspects of the first subtask (Phase 1) after reaching criterion on the second subtask (Phase 2). So,

before advancing the pigeons to the critical task switching phase, we next shifted them onto a
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blocked training phase wherein both subtasks were presented in a blocked sequence within each
individual session. Each subtask continued for 60 trials, with each full session comprising 120 trials.

The procedure was otherwise identical to that described above.

We had originally planned to train the pigeons to an 85% criterion in the blocked subtask
training phase; however, this criterion proved slightly too challenging for most pigeons to achieve
(note that this phase of training functionally comprised a partial midsession reversal — a procedure
wherein 50% of the prevailing reward contingencies are reversed midway through an experimental
session —which is very difficult for pigeons to master; Zentall, 2020). We instead trained each pigeon
for a fixed number of sessions (30 sessions) before advancing that pigeon to the intermixed task
switching phase. Because the blocked subtask training phase was not of theoretical interest, we did

not further analyze the data from it.

Phase 4: Task switching. Finally, each pigeon progressed to the task switching phase. As for
the humans in Experiment 1, the subtasks were now intermixed, with the trial order partially
randomized such that a subtask switch occurred on one third of all trials. The trial sequence was
otherwise identical to that described above. We maintained each pigeon on the task switching phase

for 24 sessions, with each session comprising 120 trials.

Results and Discussion

Learning Speeds. Figure 3B depicts our pigeons’ learning curves throughout Phases 1 and 2
(Individual Subtask Training). The pigeons reached the 85% learning criterion rapidly in each of the
RBF (mean = 5.00 sessions, min = 4.00 sessions, max = 7.00 sessions), IIN (mean = 6.25 sessions, min
= 3.00 sessions, max = 10.00 sessions), and |IP subtasks (mean = 6.25 sessions, min = 5.00 sessions,
max = 9.00 sessions). Reaching criterion in the RBO subtask proved to be more difficult (mean =
18.50 sessions, min = 11.00 sessions, max = 24.00 sessions). This finding is consistent with prior
research in our laboratory, as well as with the broader literature suggesting that, for pigeons, spatial

frequency is more salient than line orientation (Herbranson et al., 2017; O’Donoghue et al., 2020).



570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

Running Head: RB-Il TASK SWITCHING 31

After collapsing across the subtasks in each task condition (RBF and RBO; IIN and IIP), an
independent-samples t-test revealed that, on average, the pigeons in the RB-RB group took
significantly longer to reach criterion than the pigeons in the II-1l group, t(5.66) = 2.99, p = .026.
Given that pigeons do not typically display overall learning speed differences between RB and Il
paradigms (O’Donoghue et al., 2020; Smith et al., 2012), this finding was unexpected. Nevertheless,
the difference was driven by the amount of time required to reach criterion in the RBO subtask and,
critically, the direction of the effect is inconsistent with the possibility that the pigeons may have
deployed declarative decision rules (in which case the pigeons in the RB-RB group should have

reached criterion more quickly than the pigeons in the lI-Il group).

Decision Bound Modeling. As in Experiment 1, we next used decision bound modeling (DBM)
to characterize the pigeons’ decision bounds in Phases 1 and 2 (Individual Subtask Training). We
separately fit the same four models described in Experiment 1 (RGM, 1DF, 1DO, and 2DL) to the final
240 trials (i.e., to the 85% criterion window) from each pigeon, and from each subtask on which that

pigeon was trained.®

As detailed in Table 1, most pigeons were best described by the optimal decision bound for
each task condition. In the RB-RB group, three of the four pigeons (75%) were best-described by the
1DF model in the RBF subtask; likewise, three of the four pigeons (75%) were best-described by the
1DO model in the RBO subtask. In the II-1l group, all four pigeons (100%) were best-described by the
2DL model in each of the IIN and IIP subtasks. Across all four subtasks, our observed distributions did
not differ significantly from the optimally expected distributions (wherein 100% of pigeons would

converge on the optimal model), all Fisher’s Exact ps = 1.00.

8Note that we modelled 240 trials from each pigeon in Experiment 2A, but just 30 trials from each human in
Experiment 1. We selected different window sizes because we wanted to assess both species’ performance at a
common accuracy criterion (85%); however, we acknowledge that including different numbers of trials might
impact model fits. For transparency, we also ran a separate DBM analysis using just the last 30 trials from each
individual pigeon, and from each subtask on which that pigeon was trained. The results do not differ from
those reported here except that, with a 30 trial window, 100% of the pigeons trained on the RBO subtask were
best described by the 1DO model.
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If we interpreted these data as humans’ data are typically interpreted (Experiment 1; see
also Casale et al., 2012; O’Donoghue et al., 2022; Smith et al., 2014), then we might be tempted to
conclude that most pigeons in the RB-RB group deployed declarative decision rules. This claim would
surely be controversial. The between-group differences in learning speeds that we observed in
Experiment 2 were inconsistent with this possibility, and to our knowledge, pigeons have thus far
shown no compelling evidence for declarative rule use in any categorization paradigm that promotes
rule use among humans (Lea et al., 2009; Maes et al., 2015; Navarro et al., 2019; O’'Donoghue et al.,

2020; Smith et al., 2012).

However — and critically — DBM is not a process model (Ashby & Valentin, 2018). Any
individual decision bound is compatible with multiple underlying processes, meaning that a
participant’s best-fitting decision bound may not always be useful for inferring which mechanisms
that participant actually deployed. Here, the RB-RB group’s model fits could readily be
accommodated by the fact that unidimensional sorting need not implicate declarative rule use (Wills
et al., 2009; see also Smith et al., 2011). We agree with this interpretation, but also stress that the
same caveats and considerations must apply when interpreting humans’ model fits (Edmunds et al.,

2016; Edmunds et al., 2018). We revisit this issue in the General Discussion.

Task switching. Finally, we considered the pigeons’ task switching performance (Figure 4B).
As in Experiment 1, we first sought to confirm that the pigeons’ response strategies (as indexed by
DBM) did not meaningfully differ between Phases 1 and 2 (Individual Subtask Training) and Phase 4
(Task Switching). To do so, we fit DBM separately to the final 100 trials from each individual subtask
that each pigeon was exposed to in the task switching phase (RBF and RBO in the RB-RB group; IIN
and lIP in the II-1l group). The group-level distributions of best-fitting models were identical across
phases for all four subtasks (Table 1), indicating that the introduction of the task switching

requirement did not meaningfully influence pigeons’ decision bounds.
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As had the humans in Experiment 1, the pigeons achieved noteworthy levels of accuracy in
the task switching phase (RB-RB group: mean = 88.83%, SD = 2.08%; II-1l group: mean = 89.94%, SD =
1.72%). We assessed the pigeons’ task switching performance using the same approach and the
same statistical models described in Experiment 1 [briefly: we considered trial type (stay vs. switch),
congruency (congruent vs. incongruent), and task condition (RB-RB vs II-1l) as predictors of both
choice accuracies and response times]. In our analysis of choice accuracy, we observed a significant
main effect of congruency, B =-0.19, SE =0.05, Z=-3.62, p < .001, indicating that the pigeons were
generally less accurate on incongruent trials (mean = 88.21%, SD = 1.73%) than on congruent trials

(mean =89.86%, SD = 1.71%). No other main effects or interactions were significant, all ps > 0.214.

In our analysis of response times, we likewise obtained a significant main effect of
congruency, b = 0.01, SE < 0.01, t(20010) = 2.34, p = .019; however, this effect was qualified by a
significant interaction between task condition and congruency, b = 0.01, SE < 0.01, t(20010) = 2.65, p
=.008. No other main effects or interactions were significant, all ps > .050. Follow-up probes
indicated that, for the pigeons in the RB-RB group, response times did not reliably differ as a function
of congruency, b =-.01, SE < .01, t(9982) = -1.77, p = .077. Conversely, the pigeons in the ll-Il group
were significantly slower to respond on incongruent trials (mean = 1249.04 ms, SD = 380.69 ms) than

on congruent trials (mean = 1210.55 ms, SD = 400.21 ms), b = .02, SE < .01, t(10030) = 3.87, p < .001.

Importantly, the pigeons did not display any evidence of switch costs in either their
accuracies or their response times. This finding is consistent with past research involving task
switching among pigeons (Castro & Wasserman, 2016; Meier et al., 2013; Meier et al., 2016;
O’Donoghue & Wasserman, 2021) and with our original assumption that ‘true’ associative learners

may not display strong switch costs in RB and Il paradigms.

Nevertheless, recent research on pigeons’ task switching performance prompted us to

consider an alternative possibility: namely, that the lack of switch costs displayed by our pigeons may
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not result from their deployment of associative learning mechanisms, but instead from the manner

in which they process the events of each trial.

Meier and colleagues (Meier et al., 2013; Meier et al., 2016) have previously argued that,
when task cues and trial exemplars are simultaneously visible (as they were in Experiments 1 and 2A;
Figure 2), humans may generally process those trial events in a hierarchical manner, whereas pigeons
may generally process those trial events in a configural manner. Indeed, we recently found support
for configural processing of task cues and discriminative stimuli among pigeons trained on a

simultaneous conditional discrimination (O’Donoghue, Castro, & Wasserman, 2022).

Critically, whereas hierarchical processing (among humans) may produce switch costs,
configural processing (among pigeons) may preclude switch costs. As argued by Meier et al. (2013),
configural processing may lead pigeons to perceive the same trial exemplar in a very different
manner depending on which task cue accompanies it — meaning that, from a pigeon’s perspective,
switch trials are functionally no different from stay trials. With this possibility in mind, in Experiment
2B, we asked whether pigeons would display switch costs under conditions that were quite unlikely
to facilitate configural processing. If they did not, then we could be more confident that the lack of
switch costs observed in Experiment 2A reflects the participation of associative learning

mechanisms, rather than interspecies differences in stimulus processing.

Experiment 2B

Past research supports the conclusion that, whereas simultaneous stimulus presentation
may be more likely to encourage configural processing, successive stimulus presentation may be
more likely to encourage hierarchical stimulus processing (e.g., Holland, 1985). So, in Experiment 2B,
we asked whether pigeons might produce switch costs when the task cue and the trial exemplar

were not simultaneously available.

Method
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Subjects, Apparatus, and Stimuli. We used the same subjects (N = 8), apparatus, and stimulus
sampling procedures as in Experiment 2A. The pigeons progressed to Experiment 2B immediately

after completing Phase 4 (task switching) in Experiment 2A.

Phase 1: 50% Successive, 50% Simultaneous. We worried that, if the pigeons had processed
the task cues and trial exemplars configurally in Experiment 2A, then abruptly shifting them to
entirely successive cue-exemplar presentation might disrupt their performance. Thus, we began with
a preliminary phase of training wherein 50% of the trials involved simultaneous cue-exemplar
presentation (as in Experiment 2A; Figure 2B), while the other 50% of trials involved successive cue-
exemplar presentation (Figure 2C). On successive trials, the task cue disappeared as soon as the
pigeon completed its observing response requirement; then, the trial exemplar appeared after a
brief (10 ms) delay. The choice buttons were likewise presented without the task cues that had

previously accompanied them in Experiment 2A (Figure 2).

The proportions of simultaneous and successive trials were evenly divided across the two
subtasks on which each pigeon had been trained. As in the task switching phase of Experiment 2A,
the subtasks themselves were pseudo-randomly intermixed such that a subtask-switch occurred on

one third of all trials.

Each pigeon completed 30 sessions in this first phase of training, with each session
comprising 120 trials (as in the blocked phase of Experiment 2A, we initially planned to train the
pigeons to an 85% criterion; however, this criterion proved slightly too demanding for most pigeons
to achieve). Because we were not theoretically interested in this phase of training, we did not further

analyze the data from it.

Phase 2: 100% Successive. Finally, we shifted each pigeon to a second phase wherein all trials
involved successive cue-exemplar presentation (Figure 2C). The trial sequence was otherwise
identical to that described above. Each pigeon remained on this final phase for 24 sessions, with

each session comprising 120 trials.
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Results and Discussion

Task switching performance. Unsurprisingly, the successive cue-exemplar availability
arranged here proved more challenging than the simultaneous cue-exemplar availability that had
previously been arranged in Experiment 2A. Nevertheless, the pigeons achieved impressive levels of
accuracy in the second, fully successive phase of training (Figure 4C; RB-RB group: mean = 77.82%,

SD = 15.78%; II-1l group: mean = 82.69%, SD = 11.19%).

We assessed task switching performance using the same general approach as in Experiment
2A. However, for all models, we conducted omnibus tests that combined the data from Experiments
2A and 2B; accordingly, each model also contained experimental phase (2A vs. 2B) as an additional
predictor [alongside trial type (stay vs. switch), congruency (congruent vs. incongruent), and task
condition (RB-RB vs. lI-I1)]. This omnibus approach revealed a main effect of experimental phase,
confirming that accuracy was significantly lower in Experiment 2B relative to Experiment 2A, B =

0.29, SE = 0.06, Z = 4.96, p < .001.

In our omnibus analysis of choice accuracy, we additionally observed a significant main
effect of congruency, B=1.35, SE=0.12, Z=11.56, p <.001, which was qualified by significant two-
way interactions between task condition and congruency, B =-0.25,SE=0.12,Z=-2.14, p=0.32, and
between task condition and experimental phase, B =-1.54, SE =0.07, Z=-21.18, p < .001, as well as
by a significant three-way interaction between task condition, congruency, and experimental phase,
B=0.25,SE=0.07,Z=13.38, p <.001. No other main effects or interactions were significant, all ps >

.196.

Follow-up probes to investigate the three-way interaction indicated that, in Experiment 2B,
the pigeons displayed a two-way interaction between task and congruency that they had not
previously displayed in Experiment 2A (Experiment 2A: B=0.02, SE =0.09, Z=0.25, p = .803;
Experiment 2B: B =-0.50, SE = 0.08, Z=-6.14, p <.001). The nature of this two-way interaction was

such that, regardless of task condition, the pigeons were less accurate on incongruent trials than on
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congruent trials; however, this effect was stronger in the RB-RB task condition, B =-2.01, SE =0.06, Z
=-34.88, p <.001 (incongruent trials: mean = 62.87%, SD = 4.28%; congruent trials: mean = 92.78%,
SD = 2.05%), than in the II-Il task condition, B=-1.51, SE =0.06, Z =-25.75, p < .001 (incongruent
trials: mean =72.93%, SD = 6.93%; congruent trials: mean = 92.44%, SD = 1.46%). As for the humans
in Experiment 1, we hypothesize that the salience of extreme spatial frequency values (which
entirely corresponded to incongruent stimuli for the pigeons in the Il-1l group, but not for the
pigeons in the RB-RB group; see Supplemental Materials) may have provided a buffer against the

effects of incongruency.

The two-way interaction between congruency and experimental phase also indicated that
the congruency effects observed in Experiment 2B were significantly stronger than the congruency
effects observed in Experiment 2A (Figure 4B; Figure 4C; Experiment 2A: B=-0.18, SE=0.04, Z = -
4.16, p < .001; Experiment 2B: B =-1.77, SE = 0.04, Z =-43.18, p < .001). This disparity likely reflects
the fact that, under the successive contingencies arranged here, the pigeons needed to maintain the
task cue in working memory in order to determine the correct response on incongruent trials.
Conversely, on congruent trials, stimuli required the same response regardless of the task cue — so,

the pigeons could respond correctly even if they had forgotten the task cue.

In our omnibus analysis of response times, we observed significant main effects of task
condition, b =-0.10, SE = 0.04, t(38066) = -2.44, p = .049, and phase, b =-0.06, SE < .01, t(38066) = -
15.78, p < .001. These effects were qualified by significant two-way interactions between task
condition and congruency, b = 0.03, SE < .01, t(38066) = 3.40, p < .001, and between experimental
phase and congruency, b = 0.02, SE < .01, t(38066) = 2.91, p = .004, as well as by a significant three-
way interaction between task condition, experimental phase, and congruency, b =-0.02, SE < .01,

t(38066) = -3.37, p < .001. No other main effects or interactions were significant, all ps > .116.

Follow-up probes to investigate this three-way interaction indicated that, contrary to

Experiment 2A — wherein the pigeons had previously displayed a two-way interaction between task



738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

Running Head: RB-Il TASK SWITCHING 38

condition and congruency, b = 0.01, SE < .01, t(20023) = 3.99, p < .001 — no such interaction was
observed in Experiment 2B, p = .092. Instead, the pigeons in Experiment 2B displayed a simple main
effect of congruency, b = 0.02, SE < .01, t(18043) = 7.56, p < .001, indicating that the pigeons were
generally slower to respond on incongruent trials (mean = 1469.05 ms, SD = 731.38 ms) than on

congruent trials (mean = 1352.39 ms, SD = 647.03 ms).

As in Experiment 2A, the pigeons displayed no evidence of switch costs despite the
successive availability of the task cue and the trial exemplar, a manipulation that should encourage
hierarchical stimulus processing (Holland, 1985). This finding indicates that the lack of switch costs
observed in Experiments 2A and 2B likely reflects the contributions of pigeons’ associative learning

mechanisms, rather than interspecies differences in stimulus processing.

General Discussion

To date, most research involving task switching has investigated the contributions of
declarative mechanisms, which reliably yield strong switch costs relative to weak congruency effects
among human learners (Kiesel et al., 2007; Monsell, 2003). Conversely, among both human (e.g.,
Forrest et al., 2012; Li et al., 2019; Meier et al., 2013) and nonhuman learners (e.g., Castro &
Wasserman, 2016; Meier et al., 2013; Meier et al., 2016; O’Donoghue & Wasserman, 2021),

associative mechanisms may yield weak (or no) switch costs relative to strong congruency effects.

Thus far, investigations of humans’ associative task switching performance have deployed
small stimulus sets that facilitate (and at times explicitly encourage) exemplar memorization.
Whether such memorization is truly associative remains a matter of debate (Edmunds et al., 2016;
Bower & Winzenz, 1970; Forrest et al., 2012; Smith et al., 2012). In the present study, we asked
whether participants would still display disparate task switching response profiles when trained to
switch either between rule-based (RB) subtasks (which encourage declarative rule use) or between
information-integration (Il) subtasks (which encourage associative learning, but discourage exemplar

memorization because they employ trial-unique stimuli).
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In Experiment 1, we found that human participants displayed strong switch costs regardless
of task condition. Conversely, in Experiment 2, we found that pigeons displayed no switch costs in
either task condition. These conflicting results raise two possibilities: (1) that our human participants
may have employed declarative mechanisms to solve both RB and Il tasks, and (2) that at least
among human learners, declarative and associative mechanisms may not reliably yield dissociable

task switching performance. We discuss each of these considerations below.

Did Human Il Learners use Declarative Rules?

Many researchers have argued that, whereas responding in RB tasks is predominately
governed by declarative rule use, responding in Il tasks is predominately governed by associative
learning (see Ashby & Valentin, 2017, for a review). However, our human participants displayed task
switching response profiles characteristic of declarative rule use in both RB and |l paradigms, raising
the possibility that, in Experiment 1, most successful Il learners could have actually been rule-users
(see also Edmunds et al., 2016; Edmunds et al., 2018; Nosofsky, Stanton, & Zaki, 2005; Wills et al.,

2019; Zaki & Kleinschmidt, 2014).

The suggestion that several of our ll-1l group participants might have used declarative rules is
consistent with their task switching response profiles and self-reported strategies, but inconsistent
with the results of our DBM analyses, wherein most lI-Il group participants converged on the optimal
two-dimensional model. Past research has likewise reported that self-report and DBM can yield

opposing conclusions (e.g., Edmunds et al., 2016).

On the one hand, dual-systems perspectives often assume that self-reports cannot yield valid
insights into implicit learning mechanisms (e.g., Ashby & Rosedahl, 2017). Conversely, some
researchers have asserted that associative learners either conceivably might (e.g., Edmunds et al.,
2016) or actually do produce self-reports reflecting their reliance on implicit processes; for example,
Chandrasekaran et al. (2014) reported that many successful Il learners reported responding

according to “gut feeling”. Here, we make no strong claims concerning the validity of self-report; but,
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because self-reports can accurately predict performance in other category learning tasks (e.g.,
probabilistic categorization: Lagnado, Newell, Kahan, & Shanks, 2006), and because they have been
used in efforts to capture various facets of implicit learning (e.g., Edmunds et al., 2016; Weinberger &

Green, 2022), we do believe that they warrant further study in the context of RB and Il learning.

In contrast to self-report, DBM provides an objective index of participants’ actual
categorization behavior. However, under at least some real-world conditions, DBM may not reliably
allow for mechanistic inferences. A relevant consideration is raised by our data from Experiment 2A.
In our DBM analysis, we found that most pigeons’ data were best fit by the optimal models in each of
the RB and Il task conditions (unidimensional models in the case of RB tasks; bidimensional models
in the case of Il tasks). Based on this result, one could argue that — as did the humans in Experiment 1
—the pigeons in Experiment 2A used declarative rules to solve RB tasks. Given that pigeons have thus
far shown no compelling evidence of rule use in any categorization paradigm known to promote rule
use among humans (including RB paradigms, Smith et al., 2012; O’Donoghue et al., 2020; among
others, Lea et al., 2009; Maes et al., 2015; Navarro et al., 2019), this interpretation is clearly

implausible.

More reasonably, one could also conclude that the responses of pigeons in the RB-RB group
were primarily controlled by the relevant stimulus dimension in each subtask (as indicated by their
best-fitting decision bounds), but that such unidimensional control need not implicate declarative
rule use (see Wills et al., 2019). We agree with this interpretation (see also Smith et al., 2011).
However, we extend it further to stress that the same considerations must apply when interpreting
humans’ decision bounds. In particular, and although diagonal decision bounds among human II-
learners do suggest attention to both dimensions, they need not implicate associative mechanisms
(Edmunds et al., 2016; Edmunds et al., 2018; see also Donkin, Newell, Kalish, Dunn, & Nosofsky,
2015). This consideration is particularly relevant because, of the four models that we considered

(which we selected because they are the four models most commonly used in the broader RB-I
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literature), only the bidimensional model can yield criterion-level (85%) accuracy on either Il subtask.
It is therefore unsurprising that the responses of most II-1l group participants performing at criterion

were best-described by it.

Importantly, we do not wish to claim that DBM cannot yield relevant insights into
participants’ learning mechanisms (see Hélie, Turner, Crossley, Ell, & Ashby, 2017), nor do we intend
to claim that self-reported strategies (which may certainly be subject to bias, as previously discussed)
are a superior diagnostic tool. Instead, and for parsimony, we recommend interpreting humans’
model fits with the same considerations and level of caution that we (and others) would typically
extend to pigeons. That is, we caution against the assumption that a participant best fit by a specific
decision bound is necessarily deploying a specific learning mechanism (for relevant considerations,

see Edmunds, Wills, & Milton, 2025; Roark, Minda, Kalra, & Cruz, 2025).

Taken together, our data add to a growing body of evidence that RB and Il tasks might not
reliably engage disparate learning mechanisms among human learners (e.g., Carpenter, Wills,
Benattayallah, & Milton, 2013; Edmunds et al., 2016; Newell et al., 2010). This conclusion would have
clear implications for the ongoing debate surrounding the validity of RB-Il dissociations (for reviews
from each perspective, see Ashby & Valentin, 2017; Wills et al., 2019), as well as for the broader
theoretical debate surrounding dual- vs. single-systems models of categorization (see Minda et al.,
2024). Although our data cannot concretely resolve either issue, they do highlight the challenges
inherent to the effort to isolate the contributions of associative mechanisms among human learners

(McLaren et al., 2019), particularly in Il tasks.

To this end, we also join Wills et al. (2019) in arguing that future research surrounding dual-
vs. single-systems categorization would benefit from considering alternatives to standard RB and |l
paradigms that might allow for more reliable inferences surrounding participants’ learning
mechanisms (in particular, Wills and colleagues highlight the merits of the Shanks-Darby procedure;

Shanks & Darby, 1998).
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Do Declarative and Associative Mechanisms Produce Disparate Patterns of Task Switching

Performance?

Of course, it is also possible that most of our human participants did arrive at the optimal
strategies for each task condition, but that humans’ declarative and associative mechanisms did not
reliably produce different patterns of task switching performance in the context of the tasks
considered here (Li et al., 2017). This possibility is at odds with past research suggesting that, among
human learners, associative learning mechanisms may not produce switch costs (e.g., Forrest et al.,
2012; Li et al., 2019a; Meier et al., 2013). However, this past research often involved tasks with small

numbers of repeated stimuli, which are amenable to exemplar memorization.

Thus, the patterns of performance observed in prior studies of associative switching —
characterized by small or no switch costs relative to large congruency effects (Forrest et al., 2012,
Meier et al., 2013; Li et al., 2019a) — could reflect effortful memorization, which is arguably a
declarative process (Edmunds et al., 2016; Smith et al., 2012; c.f. Bower & Winzenz, 1970; Forrest et
al., 2012). By contrast, in the present project, we discouraged CSR memorization by instructing
participants to learn about randomly-sampled stimuli through trial-and-error. Of course, if we then
assume that our own lI-Il group participants were “true” associative learners (while noting the strong
caveats discussed in the previous section), then our results beg the question as to why human
associative learners might at least sometimes display switch costs when nonhuman associative
learners rarely do so (Castro et al., 2016; Meier et al., 2013; Meier et al., 2016; O’Donoghue &
Wasserman, 2021; see also Forrest et al., 2012, for proof-of-concept that associative mechanisms can

produce small switch costs).

Of note, switch costs need not stem entirely from executive task set reconfiguration. As
stressed by Logan and colleagues (Arrington & Logan, 2004; Logan & Bundesen, 2003; Schneider &
Logan, 2005), many task switching paradigms (including ours) confound switching tasks with

switching task cues. Logan and colleagues have argued that on stay trials, human participants may



863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

Running Head: RB-Il TASK SWITCHING 43

benefit from repetition priming of the task cue. This benefit is absent on switch trials, which thus
incur switch costs. Nonetheless, subsequent research has demonstrated that executive task sets do
play a substantial role in generating switch costs independently of repetition priming (Jost et al.,
2013), and that even cue-switch costs might reflect the involvement of executive control processes

(Grange & Houton, 2010).

In our paradigm, we cannot disentangle the effects of switching tasks from the effects of
switching cues. It is possible that that the switch costs we observed among human RB-RB and II-II
group participants, although similar in magnitude, may have differed in origin. For example, among
the RB-RB group participants, switch costs may predominately reflect the influence of executive task
sets, whereas among the II-1l group participants, switch costs may predominately reflect repetition

priming.

However, Meier et al. (2013) found that, when two cues were used to signal each of two RB
subtasks, human associative learners (i.e., participants who were unable to report either subtask rule
at the end of the experiment) did not display switch costs. As such, we have no compelling reason to
suspect that cue switch costs would have been strongly present among our llI-1l group participants

(although this remains an open question for future research).

Alternatively, it is also possible that the switch costs observed among our human Il-Il group
participants might reflect the overarching structure of the task switching paradigm (such that task
switching itself functions as a declarative task; we thank an anonymous reviewer for raising this
possibility). In other words, even if ll-1l group participants were using the optimal associative
strategies to solve each subtask, they might have nonetheless activated declarative task sets that
incorporated the relevant CSR associations for a given subtask (for relevant discussion, see also
Meier et al., 2013; Li et al., 2019). Of course, why such declarative task sets might have influenced
performance in our experiments, but not in past research surrounding associative task switching

using similar trial structures (e.g., Meier et al., 2013) remains to be determined.
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Finally, it is also worth noting that the average age of our sample (mean = 43.10; SD = 11.95)
skews slightly older than in past studies of associative task-switching. Although switch cost
magnitudes do generally increase with age (Wasylyshyn, Verhaeghen, & Sliwinski, 2011), and age
likewise slows overall learning speeds across RB and Il tasks (alongside reducing the proportion of
participants who converge on the optimal strategies according to DBM; e.g., Maddox, Pacheco,
Reeves, Zhu, & Schnyer, 2010), it remains unclear whether these age-related changes might also
influence the interaction between task condition (declarative vs. associative) and switch cost

magnitudes.

Conclusions

Our data add to a growing body of research demonstrating that associative mechanisms can
support robust task switching (Castro & Wasserman, 2016; Li et al., 2019a; Meier et al., 2013; Meier
et al., 2016; O’Donoghue & Wasserman, 2022). In Experiment 1, we highlighted the challenges of
isolating the contributions of associative mechanisms among human learners (particularly using II
tasks), a critical issue that has rarely been acknowledged in studies of associative task switching (but
see Mclaren et al., 2019). Our data also raised the question as to whether associative learning
mechanisms might still produce significant switch costs under at least some conditions (Forrest et al.,

2012; Liet al., 2017).

Conversely, in Experiment 2, we demonstrated that pigeons — which presumably rely
exclusively on associative mechanisms to solve both RB and Il tasks (O’'Donoghue et al., 2020; Smith
et al., 2012) — display no switch costs in either task condition. These data highlight the impressive
power and flexibility that associative mechanisms can afford (see also Lind, 2019; McMurray et al.,
2012; Sloutsky et al., 2017; Wasserman et al., 2023), despite the fact that they are often overlooked

in discussions of “complex” cognitive processes.

Overall, our data point to three clear directions for future research. First, more work is

needed to disentangle the contributions of declarative and associative mechanisms in RB- and II-
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learning (see also Edmunds et al., 2016; Edmunds et al., 2018; Wills et al., 2019). Second, future
research involving alternative paradigms could help determine whether human learners reliably do
produce switch costs in associative tasks wherein CSR memorization in precluded. Finally, we look
forward to continued research exploring the striking flexibility afforded by associative mechanisms
(Turner & Wasserman, 2023). Given the difficulties of isolating associative mechanisms among
human learners (Mclaren et al., 2019), we suspect that comparative investigations will prove

especially fruitful in this domain.
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