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Abstract 

Recent research has demonstrated that task switching – which has traditionally been attributed to 

declarative rule use and executive control – can also be supported by associative learning mechanisms. 

However, whereas declarative task switching is characterized by large switch costs and small congruency 

effects, associative mechanisms may produce small (or no) switch costs and large congruency effects. 

Here, we asked whether humans (who possess both declarative and associative learning mechanisms) 

and pigeons (which have thus far shown no evidence of possessing declarative learning mechanisms) 

would display different patterns of performance when switching either between two rule-based (RB) 

subtasks, which should encourage declarative rule use, or between two information-integration (II) 

subtasks, which should encourage associative learning. The pigeons showed no switch costs in either 

task condition, consistent with the view that they depend entirely on associative mechanisms to solve 

both RB and II tasks. Conversely, the humans showed strong switch costs in both task conditions. These 

data raise two possibilities: (1) that human learners may have used declarative mechanisms to solve 

both RB and II tasks, and (2) that among humans, associative learning mechanisms might not reliably 

preclude switch costs. The theoretical implications of each possibility are discussed. 

Keywords: Task-switching, categorization, pigeons, RB-II, dual-systems
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Several prominent theories of learning and categorization have argued that humans have 1 

two different learning mechanisms – one declarative, one associative – with the potential to 2 

promote adaptive responding (Ashby, Alfonso-Reese, Turken, & Waldron, 1998; McLaren et al., 2019; 3 

see also Minda, Roark, Kalra & Cruz, 2024). In comparison to declarative processes, which may be 4 

restricted to select species (including humans and possibly some nonhuman primates), associative 5 

processes are evolutionarily ancient and conserved across species (Smith et al., 2012; see also Pontes 6 

et al., 2020). Humans’ impressive cognitive achievements are often attributed to our capacity for 7 

declarative processing, and by contrast, some authors have drawn a sharp dividing line between 8 

associative learning and more “complex” forms of cognition (such as concept formation, language, 9 

and executive control; e.g., Allen & Bekoff, 1995; Marcus, Vijayan, Rao, & Vishton, 1999; Mulcahy & 10 

Call, 2006). 11 

Nevertheless, several lines of inquiry stemming from machine learning (Silver et al., 2016; 12 

Silver et al., 2017) and cognitive psychology (Lind, 2018; McMurray, Horst, & Samuelson, 2012; 13 

Sloutsky, Yim, Yao, & Dennis, 2017; Wasserman, Kain, & O’Donoghue, 2023) have demonstrated that 14 

associative learning can support highly flexible, goal-directed behaviour across varied cognitive 15 

domains. In line with this perspective, researchers have found that task switching – which has 16 

traditionally been viewed with the ambit of executive control and declarative processing (e.g., 17 

Monsell, 2003) – can likewise be accomplished through associative mechanisms (Castro & 18 

Wasserman, 2016; Meier, Lea, Forrest, Angerer, & McLaren, 2013; Meier, Lea, & McLaren, 2016; 19 

Forrest, Elchlepp, Monsell, & McLaren, 2012; Li, Li, Liu, Lages, & Stoet, 2019a; O’Donoghue & 20 

Wasserman, 2021). 21 

In a typical task switching paradigm, participants concurrently perform two or more tasks 22 

involving the same stimulus set. On every trial, a task cue is presented to signal which contingencies 23 

of reinforcement are in force on that trial. For example, a hypothetical participant might have to 24 

classify a number according to either quantity (high/low) or parity (odd/even), contingent on the 25 
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color of a background cue. These two tasks would be intermixed within each session, thereby 26 

requiring the participant to shift their classification strategies on a trial-by-trial basis. 27 

As in the above example, most task switching paradigms explore the effect of switching 28 

between declarative decision rules; indeed, participants are often directly informed of the rules prior 29 

to beginning the experiment (c.f., Meier et al., 2013). Under these circumstances, human participants 30 

evidence at least two characteristic patterns of responding. 31 

First, participants display small congruency effects: they are slightly, but reliably faster (and 32 

sometimes more accurate) to respond to stimuli which require the same response regardless of the 33 

task cue, relative to stimuli which require different responses depending on the task cue (Kiesel, 34 

Wendt, & Peters, 2007). For example, if “odd numbers” and “numbers < 5” are assigned to one 35 

response key, whereas “even numbers” and “numbers > 5” are assigned to the second response key, 36 

then “3” is a congruent stimulus (because it requires the same response in both tasks) and “7” is 37 

incongruent (because it requires a different response in each task). 38 

Second, participants display large switch costs: when trial N involves a different decision rule 39 

than trial N-1, response times increase and/or accuracies decrease relative to when the same 40 

decision rule repeats across trials (Monsell, 2003; Samavatyan & Leth-Steensen, 2009). These switch 41 

costs are often attributed to the need to discard the executive task set that was appropriate for trial 42 

N-1, and to recruit the task set that is appropriate for trial N. Switch costs have been framed as a 43 

hallmark of executive functioning (e.g., Monsell, 2003): they persist across a wide variety of 44 

paradigms and populations (Ardiale, Hodzik, & Lemaire, 2012; Ellefson, Shapiro, & Chater, 2006); 45 

they are not eliminated (although they can be reduced) through advanced preparation (Nieuwenhuis 46 

& Monsell, 2002), extended practice (Stoet & Snyder, 2007), or expertise (Slama, Rebillon, & Kolinsky, 47 

2017); and they may have adaptive value because they promote sustained attention to ongoing tasks 48 

(Li, Li, Lages, & Stoet, 2017) while they shield participants from irrelevant sources of variance 49 

(Dreisbach & Haider, 2008). 50 
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Associative Task Switching 51 

If switch costs are a byproduct of executive control, then they should be eliminated (or at 52 

least strongly reduced)1 in paradigms that do not encourage declarative rule use. Although 53 

associative task switching is less well-studied than declarative task switching, studies involving both 54 

human associative learners (e.g., Forrest et al., 2012; Li et al., 2019; Meier et al., 2013) and 55 

nonhuman species which may lack human-like executive functioning (e.g., Castro & Wasserman, 56 

2016; Meier et al., 2013; Meier et al., 2016; O’Donoghue, Broschard, & Wasserman, 2020; 57 

O’Donoghue & Wasserman, 2021) are thus far consistent with this prediction. In contrast to rule 58 

users, who typically produce large switch costs relative to small congruency effects, associative 59 

learners typically produce small (or no) switch costs relative to large congruency effects (e.g., Forrest 60 

et al., 2012; Li et al., 2019a; Meier et al., 2013; see Forrest et al., 2012, for proof-of-concept that a 61 

purely associative mechanism can produce small switch costs). 62 

Comparative investigations of associative task switching are complicated by the fact that 63 

humans are strongly biased toward declarative rule use (Ashby et al., 1998; Smith et al., 2012), which 64 

makes the contributions of associative mechanisms extremely difficult to isolate (McLaren et al., 65 

2019). In lieu of explaining task rules to human participants (as is standard in the declarative 66 

literature), most associative task switching paradigms either require research participants to 67 

memorize a comprehensive list of cue-stimulus-response (CSR) mappings (e.g. Li et al., 2019a) or to 68 

use small stimulus sets that are likewise amenable to exemplar memorization (Forrest et al., 2012; 69 

Meier et al., 2013). In some cases, extra precautions are taken to ensure that task rules are non-70 

discoverable; for example, Li, Li, Liu, Lages, and Stoet (2019b) investigated task switching 71 

performance among English-speaking participants tasked with categorizing Chinese numerals. 72 

 
1Note that switch costs can be incurred not just by switching tasks, but also by switching cues (e.g., Jost, De 
Baene, Koch, & Brass, 2013). We revisit this issue in the General Discussion. 
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Whether such memorization is truly associative remains a matter of debate. Some authors 73 

have asserted that CSR memorization primarily reflects the contributions of associative processes 74 

(Bower & Winzenz, 1970), whereas others have argued that associative learners should not have 75 

conscious access to their memory representations (e.g., Edmunds, Wills, & Milton, 2016; Smith et al., 76 

2012), meaning that effortful memorization would constitute a declarative learning strategy. 77 

With this debate in mind, we aimed to compare humans’ declarative and associative task 78 

switching performance using a paradigm that encourages associative learning (by making task rules 79 

difficult to verbalize) while also discouraging CSR memorization (through the use of trial-unique 80 

stimuli). To do so, we compared task switching performance among participants trained to solve rule-81 

based (RB) and information-integration (II) tasks like those depicted in Figure 1. 82 

 83 
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Figure 1. Sample rule-based (A) and information-integration (B) stimulus distributions. The color of the points denotes 84 

category assignment, and the dashed lines denote the optimal decision bounds. Note that, although the stimulus 85 

distributions shown here are circular and uniformly sampled, most RB-II research has instead used bivariate normal 86 

distributions (e.g., Crossley, Roeder, Hélie, & Ashby, 2018; Smith et al., 2012). In our laboratory, we prefer to use circular 87 

distributions because they ensure that both tasks and all four subtasks are sampled from shared regions of the stimulus 88 

space (O’Donoghue et al., 2020; O’Donoghue & Wasserman, 2021). 89 

RB and II tasks are created by sampling two categories from the same bidimensional stimulus 90 

space, often comprising sinusoidal gratings that vary in spatial frequency and line orientation (e.g., 91 

Crossley et al., 2018; Smith et al., 2012). In our RB tasks (Figure 1A), the optimal decision bound that 92 

separates the two categories lies perpendicular to a single dimension, rendering only that dimension 93 

relevant for categorization. Because these decision bounds are readily verbalizable (e.g., “if the lines 94 

are angled at less than 45°, then the stimulus belongs to category ‘A’; otherwise, it belongs to 95 

category ‘B’”), the RB tasks encourage declarative rule use (Ashby & Valentin, 2017). 96 

By contrast, the diagonal decision bounds that delineate the II distributions are not easy to 97 

verbalize. To solve the II tasks, participants must integrate information about both spatial frequency 98 

and line orientation, which is often assumed to encourage associative processing (e.g., Ashby & 99 

Valentin, 2017; Smith et al., 2012). 100 

Supporting the assertion that RB and II tasks may engage different learning mechanisms, 101 

human participants reliably learn RB tasks more quickly than II tasks. This discrepancy is often taken 102 

to reflect the fact that II learners begin by testing declarative decision rules, but must then abandon 103 

those rules to achieve task mastery (see Ashby & Valentin, 2017, for a review of the RB advantage 104 

alongside related RB-II dissociations). Critically, at least two nonhuman species believed to possess 105 

the associative system, but to lack the declarative system – namely, pigeons (O’Donoghue, et al., 106 

2020; Smith et al., 2011; Smith et al., 2012) and rats (Broschard, Kim, Love, Wasserman, & Freeman, 107 

2019) – show no differences in RB and II learning speed, suggesting that the disparities observed in 108 
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the human literature cannot be explained by task difficulty (see also Ashby & Valentin, 2017; c.f., 109 

Nosofsky, Stanton, & Zaki, 2005; Zaki & Kleinschmidt, 2014)2. 110 

To date, very few authors have examined humans’ task switching performance in the context 111 

of RB and II categorization. Meier et al. (2013) trained participants to switch between simplified 112 

versions of the two RB subtasks depicted in Figure 1A. After trial-and-error learning, participants who 113 

successfully verbalized the rules governing each subtask displayed strong switch costs and small 114 

congruency effects, consistent with declarative rule use. By contrast, participants who did not 115 

verbalize either categorization rule displayed no switch costs and strong congruency effects, 116 

consistent with associative learning. However, Meier et al.’s (2013) stimulus set comprised just four 117 

unique stimuli, which might have encouraged exemplar memorization even though their participants 118 

were not explicitly instructed to memorize the stimuli. 119 

Separately, Crossley et al. (2018) asked whether participants could simultaneously learn and 120 

switch between an RB subtask and an II subtask involving randomly sampled stimuli, under the 121 

assumption that this procedure necessitates trial-by-trial switching between declarative and 122 

associative mechanisms (see also Erickson, 2008). Such switches proved to be difficult, but possible. 123 

In addition, RB-II switches were more difficult than switches between a unidimensional RB subtask 124 

and a bidimensional RB task, suggesting that switching between declarative and associative 125 

mechanisms may be more costly than switching between two declarative rules. 126 

On the other hand, we were particularly interested in conditions that were not examined in 127 

any of this prior work: namely, requiring participants to switch between two unidimensional, 128 

randomly-sampled RB subtasks (Figure 1A), which should each depend on declarative rule use, or 129 

 
2 Beyond this basic RB advantage, RB and II tasks have yielded numerous behavioral and neurobiological 
dissociations suggesting that they engage different learning mechanisms (for a review, see Ashby & Valentin, 
2017). However, several of these dissociations have either failed to replicate (e.g., Edmunds, Wills, & Milton, 
2019; Newell, Dunn, & Kalish, 2010) or may have been confounded by other factors (e.g., Stephens & Kalish, 
2018; Newell, Moore, Wills, & Milton, 2013). A full review of the debate surrounding RB and II tasks lies 
beyond the scope of the present report; however, we revisit this issue in the General Discussion.  
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requiring participants to switch between two bidimensional, randomly-sampled II subtasks (Figure 130 

1B), which should each encourage associative mechanisms. If human learners engaged the optimal 131 

associative strategy to solve the two II subtasks, then we expected that they would show significantly 132 

weaker switch costs relative to human rule-users trained to switch between the two RB subtasks.  133 

To determine whether human learners arrived at the optimal strategies for each task 134 

condition, we considered the concordance between two manipulation checks: decision bound 135 

modelling (DBM; Ashby & Gott, 1988) and self-reported strategy use (e.g., Edmunds et al., 2016). 136 

Additionally, and in effort to better discern which elements of humans’ performance might be 137 

mediated by associative mechanisms (that are shared across species), and which elements might be 138 

mediated by declarative mechanisms (that may be unique to select species, including humans and 139 

possibly some nonhuman primates; Smith et al., 2012), we conducted a comparative investigation 140 

involving both humans (Experiment 1) and pigeons (Experiment 2A, wherein we trained pigeons 141 

using the same general approach used in Experiment 1, and Experiment 2B, wherein we asked 142 

whether differences in stimulus processing might explain our observed interspecies differences). 143 

Experiment 1 144 

In Experiment 1, we trained human participants to switch either between the two RB 145 

subtasks (the RB-RB group) or between the two II subtasks (the II-II group) using the full stimulus 146 

distributions depicted in Figure 1. If most participants converged on the optimal learning 147 

mechanisms for each task condition (declarative rule use in the RB-RB group; associative learning in 148 

the II-II group), then we suspected that participants in the RB-RB group would show significantly 149 

stronger switch costs than participants in the II-II group.  150 

Method 151 

Participants. We recruited 40 participants (mean age = 43.46, SD = 12.31) from Amazon’s 152 

Mechanical Turk, each of whom completed Experiment 1 on a personal computer in exchange for 153 
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monetary compensation ($10 USD). Twenty participants were randomly assigned to each of the RB-154 

RB and II-II task conditions. All participants provided informed consent, and all experimental 155 

procedures were approved by the Human Subjects Office at The University of Iowa. 156 

As described in the Results, we subsequently excluded 14 participants who did not meet our 157 

learning criterion (5 participants excluded from the RB-RB group, and 9 participants excluded from 158 

the II-II group, yielding a final RB-RB group N = 15 and a final II-II group N = 11). The mean age across 159 

the remaining 26 participants was 43.10 (SD = 11.95). 160 

A post hoc sensitivity analysis conducted in G*Power revealed that, with combined N = 26 161 

and a two-tailed, six-predictor model3, we had 80.00% power to detect regression coefficients for 162 

which f2 = 0.34 and 90.00% power to detect regression coefficients for which f2 = 0.45. Critically, the 163 

effect sizes obtained in past research exceed these thresholds: in Li et al. (2019b), the interaction 164 

between task condition (declarative vs. associative) and trial type (stay vs. switch) on reaction time-165 

based switch costs had an η2
p = 0.43 (converted f2

p
 = 0.43 / (1 - 0.43) = 0.75), while in Forrest et al. 166 

(2012), the effect of task condition (declarative vs. associative) on reaction-time based switch costs 167 

had an f2 = 0.53. Thus, our final sample size was sufficiently powered to detect differences in switch 168 

cost magnitude as a function of task condition (should such differences exist using the RB and II tasks 169 

deployed here). 170 

Stimuli. We generated the stimuli and programmed the experiment using JavaScript and the 171 

jsPsych library (de Leeuw, 2015). In each of the RB-RB and II-II task conditions, the stimuli were 172 

sinusoidal gratings that varied in spatial frequency and line orientation. These stimuli were randomly 173 

and uniformly sampled from the normalized circular distributions depicted in Figure 1, with raw 174 

 
3 As detailed in the Results, our statistical models included three individual predictors (task condition, 
congruency, and trial type) as well as all possible interactions between them (two two-way interactions and 
one omnibus three-way interaction).  
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spatial frequency values ranging from 0.01 to 0.10 cycles per pixel and raw line orientation values 175 

ranging from 0-90°. 176 

Phases 1 and 2: Individual Subtask Training. All participants were independently trained on 177 

two individual subtasks [the frequency (RBF) and orientation (RBO) subtasks in the RB-RB group, or 178 

the negative (IIN) and positive (IIP) subtasks in the II-II group; Figure 1] before progressing to the 179 

critical task switching phase. The order in which the subtasks were trained was counterbalanced 180 

across participants. Before beginning the first subtask, all participants were told that they would 181 

“learn one way of sorting the objects”, and before beginning the second subtask, all participants 182 

were told that they would “learn a different way of sorting the objects”. In both phases, learning 183 

progressed through trial-and-error; no further task instructions were provided. Participants were 184 

asked to respond as quickly and accurately as possible. 185 

Each trial began with the presentation of a 250 x 250 px circular task cue in the center of the 186 

screen (Figure 2A). This task cue could be either blue (RGB value: [0, 0, 255]) or red (RGB value: [255, 187 

0, 0]), with cue-subtask relationships randomized across participants. The participant then had to 188 

press the space bar, at which point the 200 x 200 px trial exemplar was overlaid on top of the task 189 

cue. Once the trial exemplar appeared, participants were immediately allowed to categorize it by 190 

pressing either the ‘q’ or ‘p’ key on their keyboard. Category-response assignments were 191 

counterbalanced across the full sample. Participants were provided with feedback 0.5 s after making 192 

their response; either the word “correct” or “error” appeared on-screen, and remained visible for 1.0 193 

s. The next trial then began automatically after a variable 0.8-1.2 s delay. No correction trials were 194 

provided. 195 
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 196 

Figure 2. Trial structures used in Experiments 1 and 2. The top row (A) depicts the trial structure given to the humans in 197 

Experiment 1; the middle row (B) depicts the trial structure given to the pigeons in Experiment 2A; the bottom row (C) 198 

depicts the trial structure given to the pigeons in Experiment 2B. In panels B and C, the word “correct” is included for 199 

illustrative purposes only. 200 

Training on each individual subtask continued either until the participant reached an 85% 201 

criterion (at least 85% overall accuracy in a 30-trial moving window) or to a maximum of 240 trials. 202 

For the purposes of our analyses, we classified participants as “learners” only if they met the 85% 203 

criterion separately on each individual subtask. We classified participants as “nonlearners” if they did 204 

not meet the 85% criterion on at least one subtask. 205 

After finishing each individual subtask, participants were prompted to self-report how they 206 

had solved that subtask. (“In this phase, what do you think determined which response was correct? 207 

What approach(es) did you take to sorting the objects? Please be as specific as possible.”) 208 

Phase 3: Task switching. After receiving independent training on each of the two subtasks in 209 

the manner described above, participants progressed to the critical task switching phase. At the 210 
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beginning of this phase, all participants were told that, having “learned two different ways of sorting 211 

the objects”, they would now have to “put them together”. Participants were reminded of the 212 

counterbalanced color-subtask mappings that they had learned in Phases 1 and 2. For example, a 213 

sample participant would be told: “when the background is blue, you should sort the objects as you 214 

did in Phase 1”, and “when the background is red, you should sort the objects as you did in Phase 2”. 215 

The trial sequence was identical to that described in Phases 1 and 2. All participants 216 

completed 480 trials in the task switching phase. As did Meier et al. (2013), we partially randomized 217 

the trial order such that a subtask switch occurred on one third of all trials. 218 

At the end of the task switching phase, participants were given two additional self-report 219 

prompts. The first asked whether their approaches to sorting the objects had changed in the task 220 

switching phase (“Did your approach to sorting the objects change in this final phase? If so, how?”), 221 

while the second asked whether they experienced any distractions during the study [“Were you 222 

distracted while you completed the task (e.g., by using your phone)?”]. No participants reported 223 

meaningful changes in their approach during the task switching phase nor did they report substantial 224 

distractions. 225 

Results and Discussion 226 

All data and scripts used for analysis are available via https://osf.io/3265r/ (O’Donoghue, 227 

2023). This study was not preregistered. 228 

Learning Speeds. To compare learning speeds in each of the RB-RB and II-II groups, we first 229 

excluded 14 nonlearners (five from the RB-RB group, and nine from the II-II group), defined as 230 

participants who did not meet the 85% criterion on at least one subtask during Phases 1 and 2 (see 231 

Method). After exclusion, there remained 15 participants in the RB-RB group, and 11 participants in 232 

the II-II group (total analyzable N = 26). We opted to exclude nonlearners from our analyses because, 233 

https://osf.io/3265r/
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given that they did not reach criterion on at least one subtask, they presumably had not adopted the 234 

optimal strategy for that subtask (which would in turn muddle the group-level analyses).  235 

Figure 3A depicts the average learning curves in each task condition (RB-RB vs. II-II), 236 

separated by subtask. For easier visualization, we divided each individual participant’s data into 10 237 

blocks (mean number of trials per block = 6.60; SD = 3.89). On average, participants acquired all four 238 

subtasks quite quickly – an impressive feat given the difficulty of our arranged stimulus distributions 239 

(Figure 1). As is typical of RB and II paradigms (see Ashby & Valentin, 2017), learning was numerically 240 

faster in each of the two RB subtasks (RBF: mean number of trials = 47.53; SD = 25.43; RBO: mean 241 

number of trials = 59.47; SD = 29.80) relative to each of the two II subtasks (IIN: mean number of 242 

trials = 81.91; SD = 40.84; IIP: mean number of trials = 84.27; SD = 47.66). An independent-samples t-243 

test with overarching task condition (RB-RB vs. II-II) as a between-subjects factor confirmed that 244 

participants in the RB-RB group reached criterion significantly faster than participants in the II-II 245 

group, t(13.48) = -2.40, p = .031. 246 

 247 
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248 

Figure 3. The top panels (A) depict learning curves for the humans in Experiment 1; the bottom panels (B) depict learning 249 

curves for the pigeons in Experiment 2A. In each case, individual participants’ data were divided into 10 blocks (humans: 250 

mean block size = 6.60 trials, SD = 3.89 trials; pigeons: mean block size = 108.00 trials, SD = 74.81 trials). Error bars 251 

represent the standard error of the mean. 252 

Decision Bound Modeling. Researchers investigating performance in RB and II paradigms 253 

typically implement manipulation checks to confirm that most RB and II learners arrived at the 254 

optimal strategies for each task condition (declarative rule use in the case of RB tasks; associative 255 

learning in the case of II tasks). The most commonly deployed manipulation check is decision bound 256 
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modelling (DBM), a simplified version of General Recognition Theory (Ashby & Gott, 1988; Ashby & 257 

Perrin, 1988), which assumes that participants assign category membership in accordance with 258 

deterministic decision bounds placed in psychological stimulus space. In DBM, multiple models are fit 259 

to each participant’s data to characterize their decision bound, and the best-fitting model is 260 

commonly assumed to reflect that participant’s underlying strategy. 261 

Typically, participants whose responses are best characterized by unidimensional decision 262 

bounds (i.e., decision bounds that lie perpendicular to the relevant dimension) are assumed to have 263 

relied on declarative rules, whereas participants whose responses are best characterized by diagonal 264 

decision bounds are assumed to have relied on associative mechanisms (e.g., Casale, Roeder, & 265 

Ashby, 2012; Maddox & Ashby, 2004; O’Donoghue, Broschard, Freeman, & Wasserman, 2022; Smith, 266 

Boomer, Zakrzewski, Roeder, Church, & Ashby, 2014; c.f., Edmunds, Milton, & Wills, 2018, and note 267 

that we revisit this assumption in Experiment 2). 268 

In our DBM analysis, we initially4 considered the four models that are most commonly used 269 

in the broader dual-systems literature: random guessing (RGM), which assumes that participants 270 

respond at random (allowing for possible response bias); two one-dimensional models, each of 271 

which assumes that participants used a single stimulus dimension to guide their responding (either 272 

spatial frequency in the case of the 1DF model or line orientation in the case of the 1DO model); and 273 

a linear two-dimensional model (2DL), which assumes that participants used both spatial frequency 274 

and line orientation. Assuming that most learners converge on the optimal strategies for their 275 

respective task conditions, most successful RB-RB learners’ choice behavior should be best-described 276 

by a one-dimensional model (1DF in the RBF subtask; 1DO in the RBO subtask), whereas most 277 

 
4 One valid critique of much existing RB-II literature is that using just these four models may be insufficient to 
capture the full range of strategies that participants might actually deploy to solve RB and II tasks. Of particular 
note, Edmunds et al. (2018) demonstrated that participants who use conjunctive rules to reach criterion on II 
tasks are often misidentified as associative learners (because they are best fit by linear two-dimensional 
models) even when conjunctive rule-based models are also fit to their data. With this result in mind, and for 
parsimony with the existing RB-II literature, we focus on just four models here; but, in the Supplemental 
Materials, we detail an alternative DBM analysis that also includes a fifth, conjunctive rule-based model. 
Additionally, we revisit broader theoretical concerns surrounding DBM in the General Discussion.  
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successful II-II learners’ choice behavior should be best-described by the 2DL model in both the IIN 278 

and IIP subtasks. 279 

For each participant, and for each subtask on which that participant was trained, we fit the 280 

four models to the last 30 trials (i.e., to the 85% criterion window) from that participant’s training 281 

phase. Through supplementary analyses, we also ruled out the possibility of strong idiosyncrasies 282 

within these 30-trial windows (which might, for example, have made some participants’ II 283 

distributions more amenable to rule use than others’; see Supplementary Materials). We used the 284 

Bayesian Information Criterion (BIC; Neath & Cavanaugh, 2012) as our measure of model fit. The BIC 285 

penalizes more complex models (i.e., models with more free parameters) more heavily, and a lower 286 

BIC indicates a better fit to the data. All model fits were calculated using the ‘grt’ package for R 287 

(Matsuki, 2017). 288 

The first subsection of Table 1 (“Humans (Experiment 1) – Individual Subtask Training”) 289 

summarizes the aggregate results of our DBM analysis for the Individual Subtask Training phase (see 290 

Supplemental Materials for details of individual participants’ model fits). Overall, and as expected, 291 

most participants in each subtask were best-described by the optimal model for that subtask. In the 292 

RB-RB group, 13 of 15 participants (86.67%) were best-described by the 1DF model in the RBF 293 

subtask, and 11 of 15 participants (73.33%) were best-described by the 1DO model in the RBO 294 

subtask. Fisher’s Exact Tests revealed that neither distribution significantly diverged from the 295 

optimally expected distributions (wherein 100% of participants would converge on the optimal 296 

unidimensional model for each subtask), both ps > 0.996. 297 

Table 1.     

Subtask RGM 1DF 1DO 2DL 

Humans (Experiment 1) – Individual Subtask Training 
RBF – 86.67% (13) – 13.33% (2) 

RBO – – 73.33% (11) 26.67% (4) 

IIN – 27.27% (3) 18.18% (2) 54.54% (6) 

IIP – 27.27% (3) 9.09% (1) 63.64% (7) 

Humans (Experiment 1) – Task Switching 
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RBF – 86.67% (13) – 13.33% (2) 

RBO 6.67% (1) – 60.00% (9) 33.33% (5) 
IIN – 27.27% (3) 18.18% (2) 54.54% (6) 

IIP – 36.36% (4) 18.18% (2) 45.45% (5) 

Pigeons (Experiment 2A) – Individual Subtask Training 
RBF – 75.00% (3) – 25.00% (1) 

RBO – – 75.00% (3) 25.00% (1) 

IIN – – – 100.00% (4) 

IIP – – – 100.00% (4) 

Pigeons (Experiment 2A) – Task Switching 
RBF – 75.00% (3) – 25.00% (1) 

RBO – – 75.00% (3) 25.00% (1) 

IIN – – – 100.00% (4) 

IIP – – – 100.00% (4) 

 298 

Table 1. DBM model fits. For each of the humans in Experiment 1 (first four rows) and the pigeons in Experiment 2A (last 299 

four rows), the cell values indicate the percentage of participants in each task condition who were best-described by each 300 

model, with the absolute number of participants in parentheses. 301 

The model fits for participants in the II-II group were slightly more variable (although the 302 

variability observed here is comparable to that observed in past research; e.g., Casale et al., 2012; 303 

Edmunds, Milton, & Wills, 2015; Edmunds et al., 2016). Nevertheless, and as expected, the majority 304 

of participants were best described by the 2DL model. Six of the 11 participants (54.54%) were best 305 

described by the 2DL model in the IIN subtask, and seven of the 11 participants (63.64%) were best 306 

described by the 2DL model in the IIP subtask. In the broader RB-II literature, these findings would 307 

commonly be taken to suggest that most participants converged on the optimal strategies for each 308 

task condition (c.f., Edmunds et al., 2016; Edmunds et al., 2018). Nevertheless, Fisher’s Exact Tests 309 

revealed that, in both the IIN and IIP subtasks, our data did diverge from the optimally expected 310 

distributions (wherein 100% of participants would be expected to converge on the 2DL model), both 311 

ps < .022.  312 

Self-Report. As an additional indicator of which mechanisms participants might have used in 313 

each of the RB-RB and II-II conditions, we next explored our own participants’ descriptions of how 314 

they solved each subtask. Formal dual-systems models of categorization typically make no 315 



Running Head: RB-II TASK SWITCHING 19 

predictions surrounding self-report (e.g., Ashby et al., 1998), and implicit theorists often assume that 316 

self-reports cannot yield relevant insights into associative processes (e.g., Ashby & Rosedahl, 2017). 317 

Nevertheless, some researchers have asserted that participants’ self-reports could plausibly differ 318 

between RB and II task conditions (e.g., Edmunds et al., 2016), while still others have reported that 319 

they do differ (e.g., Chandrasekaran, Koslov, & Maddox, 2014). With these opposing perspectives in 320 

mind, we were interested in exploring the concordance between self-reported strategy and other 321 

potential indicators of participants’ learning mechanisms (e.g., DBM; see also Edmunds et al., 2016). 322 

As described in the Method, participants were prompted to self-report which approaches 323 

they took to categorizing the stimuli after completing each of Phases 1 and 2 (Individual Subtask 324 

Training). All responses were independently coded by three raters (HF, RB, and EO) according to the 325 

following criteria, which were initially based on the guidelines developed by Edmunds et al. (2016) 326 

and then modified according to pilot data from a related project conducted in our laboratory. All 327 

raters were blind as to which task conditions and subtasks corresponded to which self-reports. 328 

Participants were classified as unidimensional rule users if they reported using a single 329 

stimulus dimension (e.g., “the direction of the stripes”)5. We additionally subdivided unidimensional 330 

rule users according to whether they relied on spatial frequency (“Freq”) or line orientation 331 

(“Orient”). 332 

Participants were classified as bidimensional rule users if they reported using both stimulus 333 

dimensions in an explicitly rule-like manner. This distinction includes participants who developed a 334 

unidimensional rule with a small number of exceptions (“RuleEX”; e.g., “it depended on the angle of 335 

the stripes, but if bars were thick enough, then the correct response was always ‘q’”), participants 336 

who described a clear strategy based on distance from the prototype of one category (“A/not A”; 337 

e.g., “the correct response was ‘q’ if the angle was close to 90° and if the lines were thin enough, 338 

 
5 The sample self-reports provided throughout this section are illustrative of our coding scheme and do not 
represent real data. 
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otherwise it was ‘p’”), and participants who developed any other verbalizable rule based on both 339 

stimulus dimensions (“Misc.”; e.g., “thick, vertical lines were in one category; thin, horizontal lines 340 

were in the other category”). 341 

Participants were classified as implicit learners if they reported relying on intuition, muscle 342 

memory, family resemblance, and/or having a ‘feeling’ for each response (“Implicit”). 343 

Participants were classified as miscellaneous strategy users if they reported any of the 344 

following: using both spatial frequency and line orientation in an unspecified manner (“Unclear”; 345 

e.g., “it depends on the width and the angle of the bars”, which could plausibly constitute either 346 

unspecified rule use or similarity-based, associative classification); guessing randomly (“Guessing”); 347 

explicitly memorizing the correct stimulus-response assignments (“Memory”)6, or relying on aspects 348 

of the task that were irrelevant to category membership (“Irrel.”; e.g., “I think there was a set 349 

sequence of correct responses”). 350 

Table 2 depicts the raters’ classifications of our participants’ self-reports. Inter-rater reliability 351 

was strong, Fleiss’ κ = .83. In cases of disagreement, we selected the strategy that was agreed upon 352 

by the majority of the raters (there were no instances in which all three raters selected different 353 

strategies). 354 

Table 2.    

 Unidimensional Rules Bidimensional Rules Implicit Miscellaneous Strategies 

Subtask Freq Orient RuleEX A/not A Misc. Implicit Unclear Guessing Memory Irrel 

RBF 
93.33% 

(14) 
– – – – – 

6.67% 
(1) 

– – – 

RBO – 
100.00% 

(15) 
– – – – – – – – 

IIN 
36.36% 

(4) 
9.09% 

(1) 
9.09% 

(1) 
– – – 

45.45% 
(5) 

– – – 

IIP 
36.36% 

(4) 
– – – 

18.18% 
(2) 

– 
45.45% 

(5) 
– – – 

 
6In our tasks, the stimuli were always randomly sampled; the likelihood of any individual stimulus appearing 
twice was effectively zero. However, in related pilot projects, a small subset of participants reported believing 
that the stimuli were repeated across trials and that the correct category-response assignments could be 
memorized. 
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 355 

Table 2. Self-reported strategies in Experiment 1. The cell values indicate the percentage of participants in each task 356 

condition who were classified as having reported each strategy, with absolute values in parentheses. 357 

The vast majority of participants in the RB-RB group reported using the optimal strategies to 358 

solve each subtask: 93.33% of participants trained on the RBF subtask reported using a 359 

unidimensional rule based on spatial frequency, and 100.00% of participants trained on the RBO 360 

subtask reported using a unidimensional rule based on line orientation. Neither of these 361 

distributions significantly diverged from the optimally expected distribution (wherein 100% of 362 

participants would report using the optimal unidimensional rule), both Fisher’s Exact ps = 1.00. 363 

The participants in the II-II group displayed much more variability in their reports. In each of 364 

the IIN and IIP subtasks, a slim majority of participants (54.54%) reported using either a 365 

unidimensional or a bidimensional decision rule. In theory, a single unidimensional decision bound 366 

could not achieve the 85% criterion on either II subtask (Figure 1B; and see Supplemental Materials 367 

for evidence that there were no strong idiosyncrasies across individual participants’ II distributions). 368 

However, multiple participants noted that, although they believed that the task was solvable by a 369 

unidimensional rule, they found it difficult to determine the exact category boundary. This 370 

uncertainty, in conjunction with our random stimulus sampling, may have allowed a small subset of 371 

unidimensional rule users to reach the 85% criterion.  372 

The remainder of participants (45.45%) reported using both spatial frequency and line 373 

orientation but did not provide further information as to how those dimensions were used, meaning 374 

that we could not confidently classify them as either declarative rule users or associative learners.  375 

Interestingly, no participants in the II-II group were classified as implicit learners according to 376 

our criteria; indeed, the observed distributions for each subtask significantly differed from the 377 

optimally expected distributions, wherein 100% of participants would report using Implicit strategies, 378 

both Fisher’s Exact ps < .001. Of course, we acknowledge that self-reports may be inaccurate, and 379 
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that asking participants to verbally describe their strategies might have biased them toward 380 

generating verbalizable decision rules (even if they did not actually use those rules to achieve task 381 

mastery). With this consideration in mind, we also acknowledge that at least some participants who 382 

were classified as miscellaneous bidimensional learners (“Unclear”; Table 2) may have deployed 383 

associative learning mechanisms. These participants did report which dimensions were relevant, but 384 

they may have been unable to describe how those dimensions were relevant, which would be 385 

consistent with the suggestion that associative learners might have difficulty accessing their memory 386 

representations (Edmunds et al., 2016; Smith et al., 2012). Nevertheless, even if we were to assume 387 

that all II-II group participants classified as having ‘Unclear’ self-reports were actually associative 388 

learners, then associative learners would still constitute less than half of our sample.  389 

Task switching. Finally, we considered the data from Phase 3 (Task Switching). Importantly, 390 

participants’ strategies could conceivably have changed between Phases 1 and 2 (Individual Subtask 391 

Training) and Phase 3 (Task Switching). For example, the enhanced cognitive load imposed in Phase 3 392 

might have encouraged participants to adopt simpler strategies than they had previously used in the 393 

initial training phases (resulting in higher proportions of random guessing in RB tasks, and/or higher 394 

proportions of unidimensional rule use in II tasks). 395 

To address this possibility, we used DBM to describe each participant’s best-fitting decision 396 

bounds at the end of Phase 3 (Task Switching). We separately considered the final 100 trials from 397 

each of the two subtasks on which each individual participant had been trained (RBF and RBO in the 398 

RB-RB condition; IIN and IIP in the II-II condition). As evidenced by Table 1, participants’ best fitting 399 

decision bounds remained broadly consistent between Phases 1 and 2 (Individual Subtask Training) 400 

and Phase 3 (Task Switching). Indeed, the group-level distributions for each of the RBF and IIN 401 

subtasks were identical across phases, while the group-level distributions for each of the RBO and IIP 402 

subtasks displayed only slight differences (these differences were nonsignificant in each case, both 403 



Running Head: RB-II TASK SWITCHING 23 

Fisher’s Exact ps > .700). Likewise, in our post-experiment questionnaire (see Method), no participant 404 

reported changes in strategy during the task switching phase. 405 

Having determined that participants’ strategies did not meaningfully differ as a consequence 406 

of task switching, we next considered their task switching performance. Given the dissociations that 407 

have previously been reported between declarative and associative task switching paradigms (e.g., 408 

Forrest et al., 2012; Meier et al., 2013; Li et al., 2019a), we expected to observe large switch costs 409 

and small congruency effects in RB-RB group, whereas we expected to observe small switch costs 410 

and large congruency effects in the II-II group. 411 

Overall, performance in the task switching phase was robust (Figure 4A). Participants in the 412 

RB-RB group achieved an average accuracy of 84.74% (SD = 7.03%), whereas participants in the II-II 413 

group achieved an average accuracy of 70.21% (SD = 15.26%). To assess participants’ task switching 414 

performance, we classified each trial as either a switch trial (meaning that trial N involved a different 415 

subtask than trial N-1) or a stay trial (meaning that trial N shared the same subtask as trial N-1). 416 

Additionally, we classified each stimulus as either congruent (meaning that it shared the same 417 

correct response under both trained subtasks) or incongruent (meaning that the correct response 418 

differed depending on the subtask). 419 
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 420 

Figure 4. Task switching performance. The top panels (A) depict humans’ performance in Experiment 1; the middle panels 421 

(B) depict pigeons’ performance in Experiment 2A; the bottom panels (C) depict pigeons’ performance in Experiment 2B. In 422 

each case, the lefthand panels depict participants’ choice accuracies, and the righthand panels depict participants’ 423 

response times. Error bars reflect the standard error of the mean, and the dashed lines in the lefthand panels represent 424 

chance-level performance. 425 

Next, we asked whether participants’ choice accuracies varied as a function of trial type 426 

and/or congruency. We submitted participants’ choice accuracies to a logistic regression with task 427 

condition (RB-RB vs. II-II; effects-coded), trial type (stay vs. switch; dummy-coded with stay trials as 428 
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the reference), and response congruency (congruent vs. incongruent; dummy-coded with congruent 429 

trials as the reference) as factors.7 430 

The main effect of task condition was significant, B = -0.69, SE = 0.04, Z = -16.93, p < .001; 431 

however, it was qualified by a significant interaction between task condition and congruency, B = 432 

0.53, SE = 0.05, Z = 9.24, p < .001. To probe this interaction, we conducted two follow-up logistic 433 

regressions that separately examined the effect of congruency for each of the RB-RB and II-II task 434 

conditions. The effect of congruency was significant in each case; however, whereas participants in 435 

the RB-RB group were less accurate on incongruent trials (mean = 81.17%, SD = 6.74%) than on 436 

congruent trials (mean = 88.31%, SD = 5.36%), B = -0.53, SE = 0.07, , Z = -7.78, p < .001, participants 437 

in the II-II group were more accurate on incongruent trials (mean = 76.11%, SD = 12.22%) than on 438 

congruent trials (mean = 65.97%, SD = 14.98%), B = 0.52, SE = 0.06, Z = 8.46, p < .001. 439 

The fact that participants in the II-II group performed better on incongruent trials is 440 

surprising; however, this pattern may reflect the way in the stimulus distributions were rotated to 441 

generate each subtask. In the II-II group, the incongruent regions of the stimulus space encompassed 442 

the extreme ends of the frequency dimension, whereas in the RB-RB group, the extreme ends of the 443 

frequency distribution were 50% congruent and 50% incongruent (see Supplemental Materials). Past 444 

research in our laboratory has found that spatial frequency may be more salient than line orientation 445 

both for people and pigeons (e.g., O’Donoghue et al., 2020; O’Donoghue et al., 2022; see also 446 

Herbranson, Karas, & Hardin, 2017); so, among participants in the II-II group, the benefits of extreme 447 

 
7For all regression models reported in these experiments, we began by calculating the intraclass correlation 
coefficient (ICC) for an intercept-only model to determine whether mixed-effects modelling was justified. We 
used the guideline that an ICC < .10 indicates no advantage of mixed-effects modeling over standard 
regression, whereas an ICC >= .10 justifies mixed-effects modeling (García-Patos & Olmos, 2020). Ultimately, 
none of our accuracy analyses incorporated mixed-effects modeling, whereas all of our reaction time analyses 
incorporated random intercepts at the subject level. Although not reported here, we also confirmed that none 
of our accuracy analyses meaningfully differed when random intercepts were included. In our mixed-effects 
models, all t-tests were calculated using the lmerTest package for R Studio (Kuznetsova, Brockhoff, & 
Christensen, 2017), which uses Satterthwaite's method to approximate degrees of freedom. 
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spatial frequency values may have outweighed any potential costs associated with incongruency. We 448 

are thus reluctant to draw strong conclusions based on our obtained congruency effects. 449 

We also observed a significant interaction between trial type and congruency, B = -0.19, SE = 450 

0.10, Z = -1.98, p = .048. To probe this interaction, we separately examined the effect of trial type at 451 

each level of congruency. For congruent stimuli, the effect of trial type was nonsignificant, B = -.09, 452 

SE = 0.07, Z = -1.43, p = .153; but, for incongruent stimuli, accuracy was significantly lower on switch 453 

trials (mean = 75.99%, SD = 10.69%) than on stay trials (mean = 81.33%, SD = 8.99%), B = -0.31, SE = 454 

0.06, Z = -4.75, p < .001. Similar interactions have previously been reported in the task switching 455 

literature [e.g., Forrest et al., 2012; Gopher, Armony, & Greenshpan, 2000 (Experiment 1); Hughes, 456 

Linck, Bowles, Koeth, & Bunting, 2014], and they may be driven by the fact that, when responding to 457 

congruent stimuli, participants need not attend to the task cue. 458 

No other main effects or interactions were significant, all ps > .092. The absence of a main 459 

effect of trial type (and of higher-order interactions between task condition and trial type) was 460 

surprising given that accuracy-based switch costs have been observed in past literature (e.g., Meier 461 

et al., 2013; Monsell, 2003). However, speed-accuracy trade-offs can also preclude differences in 462 

accuracy while still yielding strong switch costs in response times (Samavatyan & Leth-Steensen, 463 

2009; see also Li et al., 2019b). So, we next considered participants’ response times. We logged all 464 

response times for analysis, and excluded all incorrect trials as well as all response times that fell 465 

more than three standard deviations beyond each individual participant’s mean score. We then 466 

conducted a linear mixed-effects model analysis (see footnote 4) with random intercepts at the 467 

subject-level, and with task condition (RB-RB vs II-II), congruency (congruent vs. incongruent), and 468 

trial type (stay vs. switch) as factors, all coded as previously described. 469 

As above, we observed a significant interaction between task condition and congruency, b = -470 

0.01, SE < 0.01, t(9678) = -2.40, p = .016. Follow-up probes indicated that participants in the RB-RB 471 

group were slower to respond to incongruent stimuli (mean = 1120.84 ms, SD = 334.20 ms) than to 472 
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congruent stimuli (mean = 1092.87 ms, SD = 370.81 ms), b = 0.01, SE < .01, t(6011) = 3.85, p < .001, 473 

whereas participants in the II-II group displayed no differences in response time as a function of 474 

congruency, b < .01, SE < .01, t(3670) = 0.40, p = .687. 475 

Critically, we also observed a main effect of switch type, b = 0.09, SE < 0.01, t(9676) = 17.07, 476 

p < .001, indicating that participants were generally slower to respond on switch trials (mean = 477 

1305.26 ms, SD = 446.15 ms) than on stay trials (mean = 1035.07 ms, SD = 349.23 ms). No other 478 

main effects or interactions were significant, all ps > .141.  479 

Of particular note, the fact that the two-way interaction between task condition and trial 480 

type was not significant indicates that, contrary to our predictions, switch cost magnitudes did not 481 

meaningfully differ between the RB-RB and II-II task conditions. The fact that both the RB-RB group 482 

and the II-II group displayed comparable switch costs suggests two interpretive possibilities. First, 483 

participants may have deployed declarative learning mechanisms regardless of their assigned task 484 

condition; that is, in our paradigm, the majority of successful II learners may have relied on 485 

declarative decision rules rather than on associative learning mechanisms (see also Edmunds et al., 486 

2016). This conclusion would be consistent with participants’ self-reported strategies, but broadly 487 

inconsistent with the results of DBM, and we revisit it (alongside the broader debate surrounding 488 

whether RB and II tasks reliably encourage different learning mechanisms) in the General Discussion. 489 

Alternatively, it is possible that switch costs might not reliably dissociate declarative rule 490 

users from associative learners in the context of tasks that preclude exemplar memorization. To 491 

further explore this possibility, we turned to a new participant sample – and to a new species – in 492 

Experiment 2. 493 

Experiment 2A 494 

In Experiment 2A, we asked whether pigeons – which appear to rely solely on associative 495 

learning mechanisms to solve RB and II tasks (O’Donoghue et al., 2020; Qadri et al., 2019; Smith et 496 
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al., 2012), as well as various other paradigms that encourage rule-use among human participants 497 

(Lea, Wills, Leaver, Ryan, Bryant, & Miller, 2009; Maes et al., 2015; Navarro, Jani, & Wasserman, 498 

2019) – would display switch costs when trained to solve RB and II tasks in the same manner as the 499 

human participants in Experiment 1. Based on past comparative research (Castro & Wasserman, 500 

2016; Meier et al., 2013; Meier et al., 2016; O’Donoghue & Wasserman, 2021), we expected that 501 

pigeons would not display significant switch costs in either task condition (RB-RB or II-II), consistent 502 

with the possibility that associative learning mechanisms can preclude switch costs.  503 

Method 504 

Subjects and Apparatus. Eight pigeons took part in Experiment 2A. Our sample size was 505 

determined by availability; we selected only the pigeons in our laboratory that had no prior 506 

experience with the present tasks or stimuli. The pigeons were individually housed and maintained 507 

at 85% of their free-feeding weights. All experimental procedures were approved by the Institutional 508 

Animal Care and Use Committee at The University of Iowa. 509 

The pigeons were trained in 36 x 36 x 41 cm operant conditioning chambers with white noise 510 

played during all sessions. The stimuli were presented on 800 x 600 px LCD monitors equipped with 511 

AccuTouch® touchscreens (Elo TouchSystems, Fremont, CA). The screen area visible to each pigeon 512 

measured 28.5 x 17 cm. Food reinforcement (1 to 3 45-mg pigeon pellets) was delivered on each trial 513 

via a rotary dispenser connected to a food tray mounted on the wall opposite the touchscreen. 514 

Stimuli and Apparatus. We programmed Experiment 2A and generated the stimuli using 515 

Matlab and its Psychtoolbox-3 extensions (Kleiner, Brainard, & Pelli, 2007), using the same stimulus 516 

sampling procedures as in Experiment 1. 517 

Phases 1 and 2: Individual Subtask Training. As were the humans in Experiment 1, the 518 

pigeons were trained to criterion on each individual subtask prior to entering the critical task 519 
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switching phase. Four pigeons were randomly assigned to each of the RB-RB and II-II conditions. The 520 

order in which the subtasks were trained was counterbalanced across the pigeons in each condition. 521 

Each trial began with the presentation of a 4.50 x 4.50 cm star-shaped start stimulus in the 522 

center of the screen (Figure 2B). After the pigeon pecked the start stimulus once, the start stimulus 523 

disappeared and was replaced by a 7.00 x 7.00 cm circular task cue. As in Experiment 1, this task cue 524 

could be either blue (RGB value: [0, 0, 255]) or red (RGB value: [255, 0, 0]). Cue-subtask relationships 525 

were counterbalanced across pigeons. The pigeons had to peck the task cue once, at which point the 526 

4.50 x 4.50 cm trial stimulus was overlaid on the cue. The pigeons then had to complete a variable 527 

response requirement to the trial stimulus, which began with one peck and was adjusted upwards 528 

with performance to a maximum of 10 pecks (such upward adjustment is common in the 529 

comparative literature because larger response requirements promote attention to onscreen stimuli, 530 

while the gradual increase helps ensure that the pigeons do not suddenly stop responding 531 

altogether; e.g., Kelleher, Riddle, & Cook, 1962). Once the response requirement was completed, the 532 

trial exemplar disappeared and was immediately replaced with the two choice keys, which were 533 

replicas of the trial exemplar that appeared to the left and right sides of the screen, 4.00 cm from the 534 

nearest edge. Each choice key was overlaid on a replica of the 7.00 x 7.00 cm circular task cue. Choice 535 

key-category relationships (e.g., [left key-Category A]; [right key-Category B]) were counterbalanced 536 

across pigeons, and a single peck to either choice key was recorded as a response. Correct responses 537 

were followed by food reinforcement, whereas incorrect responses were followed by a variable 6-10 538 

s delay, and then by a correction trial. Correction trials continued until the pigeons made the correct 539 

response. The next trial then began after a variable 6-10 s intertrial interval (ITI). 540 

Phase 3: Blocked Subtask Training. Because the pigeons were trained over a much longer 541 

timeframe than the humans in Experiment 1, we worried that they might have forgotten some 542 

aspects of the first subtask (Phase 1) after reaching criterion on the second subtask (Phase 2). So, 543 

before advancing the pigeons to the critical task switching phase, we next shifted them onto a 544 
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blocked training phase wherein both subtasks were presented in a blocked sequence within each 545 

individual session. Each subtask continued for 60 trials, with each full session comprising 120 trials. 546 

The procedure was otherwise identical to that described above. 547 

We had originally planned to train the pigeons to an 85% criterion in the blocked subtask 548 

training phase; however, this criterion proved slightly too challenging for most pigeons to achieve 549 

(note that this phase of training functionally comprised a partial midsession reversal – a procedure 550 

wherein 50% of the prevailing reward contingencies are reversed midway through an experimental 551 

session – which is very difficult for pigeons to master; Zentall, 2020). We instead trained each pigeon 552 

for a fixed number of sessions (30 sessions) before advancing that pigeon to the intermixed task 553 

switching phase. Because the blocked subtask training phase was not of theoretical interest, we did 554 

not further analyze the data from it. 555 

Phase 4: Task switching. Finally, each pigeon progressed to the task switching phase. As for 556 

the humans in Experiment 1, the subtasks were now intermixed, with the trial order partially 557 

randomized such that a subtask switch occurred on one third of all trials. The trial sequence was 558 

otherwise identical to that described above. We maintained each pigeon on the task switching phase 559 

for 24 sessions, with each session comprising 120 trials. 560 

Results and Discussion 561 

Learning Speeds. Figure 3B depicts our pigeons’ learning curves throughout Phases 1 and 2 562 

(Individual Subtask Training). The pigeons reached the 85% learning criterion rapidly in each of the 563 

RBF (mean = 5.00 sessions, min = 4.00 sessions, max = 7.00 sessions), IIN (mean = 6.25 sessions, min 564 

= 3.00 sessions, max = 10.00 sessions), and IIP subtasks (mean = 6.25 sessions, min = 5.00 sessions, 565 

max = 9.00 sessions). Reaching criterion in the RBO subtask proved to be more difficult (mean = 566 

18.50 sessions, min = 11.00 sessions, max = 24.00 sessions). This finding is consistent with prior 567 

research in our laboratory, as well as with the broader literature suggesting that, for pigeons, spatial 568 

frequency is more salient than line orientation (Herbranson et al., 2017; O’Donoghue et al., 2020). 569 
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After collapsing across the subtasks in each task condition (RBF and RBO; IIN and IIP), an 570 

independent-samples t-test revealed that, on average, the pigeons in the RB-RB group took 571 

significantly longer to reach criterion than the pigeons in the II-II group, t(5.66) = 2.99, p = .026. 572 

Given that pigeons do not typically display overall learning speed differences between RB and II 573 

paradigms (O’Donoghue et al., 2020; Smith et al., 2012), this finding was unexpected. Nevertheless, 574 

the difference was driven by the amount of time required to reach criterion in the RBO subtask and, 575 

critically, the direction of the effect is inconsistent with the possibility that the pigeons may have 576 

deployed declarative decision rules (in which case the pigeons in the RB-RB group should have 577 

reached criterion more quickly than the pigeons in the II-II group). 578 

Decision Bound Modeling. As in Experiment 1, we next used decision bound modeling (DBM) 579 

to characterize the pigeons’ decision bounds in Phases 1 and 2 (Individual Subtask Training). We 580 

separately fit the same four models described in Experiment 1 (RGM, 1DF, 1DO, and 2DL) to the final 581 

240 trials (i.e., to the 85% criterion window) from each pigeon, and from each subtask on which that 582 

pigeon was trained.8 583 

As detailed in Table 1, most pigeons were best described by the optimal decision bound for 584 

each task condition. In the RB-RB group, three of the four pigeons (75%) were best-described by the 585 

1DF model in the RBF subtask; likewise, three of the four pigeons (75%) were best-described by the 586 

1DO model in the RBO subtask. In the II-II group, all four pigeons (100%) were best-described by the 587 

2DL model in each of the IIN and IIP subtasks. Across all four subtasks, our observed distributions did 588 

not differ significantly from the optimally expected distributions (wherein 100% of pigeons would 589 

converge on the optimal model), all Fisher’s Exact ps = 1.00. 590 

 
8Note that we modelled 240 trials from each pigeon in Experiment 2A, but just 30 trials from each human in 
Experiment 1. We selected different window sizes because we wanted to assess both species’ performance at a 
common accuracy criterion (85%); however, we acknowledge that including different numbers of trials might 
impact model fits. For transparency, we also ran a separate DBM analysis using just the last 30 trials from each 
individual pigeon, and from each subtask on which that pigeon was trained. The results do not differ from 
those reported here except that, with a 30 trial window, 100% of the pigeons trained on the RBO subtask were 
best described by the 1DO model. 
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If we interpreted these data as humans’ data are typically interpreted (Experiment 1; see 591 

also Casale et al., 2012; O’Donoghue et al., 2022; Smith et al., 2014), then we might be tempted to 592 

conclude that most pigeons in the RB-RB group deployed declarative decision rules. This claim would 593 

surely be controversial. The between-group differences in learning speeds that we observed in 594 

Experiment 2 were inconsistent with this possibility, and to our knowledge, pigeons have thus far 595 

shown no compelling evidence for declarative rule use in any categorization paradigm that promotes 596 

rule use among humans (Lea et al., 2009; Maes et al., 2015; Navarro et al., 2019; O’Donoghue et al., 597 

2020; Smith et al., 2012). 598 

However – and critically – DBM is not a process model (Ashby & Valentin, 2018). Any 599 

individual decision bound is compatible with multiple underlying processes, meaning that a 600 

participant’s best-fitting decision bound may not always be useful for inferring which mechanisms 601 

that participant actually deployed. Here, the RB-RB group’s model fits could readily be 602 

accommodated by the fact that unidimensional sorting need not implicate declarative rule use (Wills 603 

et al., 2009; see also Smith et al., 2011). We agree with this interpretation, but also stress that the 604 

same caveats and considerations must apply when interpreting humans’ model fits (Edmunds et al., 605 

2016; Edmunds et al., 2018). We revisit this issue in the General Discussion. 606 

Task switching. Finally, we considered the pigeons’ task switching performance (Figure 4B). 607 

As in Experiment 1, we first sought to confirm that the pigeons’ response strategies (as indexed by 608 

DBM) did not meaningfully differ between Phases 1 and 2 (Individual Subtask Training) and Phase 4 609 

(Task Switching). To do so, we fit DBM separately to the final 100 trials from each individual subtask 610 

that each pigeon was exposed to in the task switching phase (RBF and RBO in the RB-RB group; IIN 611 

and IIP in the II-II group). The group-level distributions of best-fitting models were identical across 612 

phases for all four subtasks (Table 1), indicating that the introduction of the task switching 613 

requirement did not meaningfully influence pigeons’ decision bounds. 614 
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As had the humans in Experiment 1, the pigeons achieved noteworthy levels of accuracy in 615 

the task switching phase (RB-RB group: mean = 88.83%, SD = 2.08%; II-II group: mean = 89.94%, SD = 616 

1.72%). We assessed the pigeons’ task switching performance using the same approach and the 617 

same statistical models described in Experiment 1 [briefly: we considered trial type (stay vs. switch), 618 

congruency (congruent vs. incongruent), and task condition (RB-RB vs II-II) as predictors of both 619 

choice accuracies and response times]. In our analysis of choice accuracy, we observed a significant 620 

main effect of congruency, B = -0.19, SE = 0.05, Z = -3.62, p < .001, indicating that the pigeons were 621 

generally less accurate on incongruent trials (mean = 88.21%, SD = 1.73%) than on congruent trials 622 

(mean = 89.86%, SD = 1.71%). No other main effects or interactions were significant, all ps > 0.214.  623 

In our analysis of response times, we likewise obtained a significant main effect of 624 

congruency, b = 0.01, SE < 0.01, t(20010) = 2.34, p = .019; however, this effect was qualified by a 625 

significant interaction between task condition and congruency, b = 0.01, SE < 0.01, t(20010) = 2.65, p 626 

= .008. No other main effects or interactions were significant, all ps > .050. Follow-up probes 627 

indicated that, for the pigeons in the RB-RB group, response times did not reliably differ as a function 628 

of congruency, b = -.01, SE < .01, t(9982) = -1.77, p = .077. Conversely, the pigeons in the II-II group 629 

were significantly slower to respond on incongruent trials (mean = 1249.04 ms, SD = 380.69 ms) than 630 

on congruent trials (mean = 1210.55 ms, SD = 400.21 ms), b = .02, SE < .01, t(10030) = 3.87, p < .001. 631 

Importantly, the pigeons did not display any evidence of switch costs in either their 632 

accuracies or their response times. This finding is consistent with past research involving task 633 

switching among pigeons (Castro & Wasserman, 2016; Meier et al., 2013; Meier et al., 2016; 634 

O’Donoghue & Wasserman, 2021) and with our original assumption that ‘true’ associative learners 635 

may not display strong switch costs in RB and II paradigms. 636 

Nevertheless, recent research on pigeons’ task switching performance prompted us to 637 

consider an alternative possibility: namely, that the lack of switch costs displayed by our pigeons may 638 
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not result from their deployment of associative learning mechanisms, but instead from the manner 639 

in which they process the events of each trial. 640 

Meier and colleagues (Meier et al., 2013; Meier et al., 2016) have previously argued that, 641 

when task cues and trial exemplars are simultaneously visible (as they were in Experiments 1 and 2A; 642 

Figure 2), humans may generally process those trial events in a hierarchical manner, whereas pigeons 643 

may generally process those trial events in a configural manner. Indeed, we recently found support 644 

for configural processing of task cues and discriminative stimuli among pigeons trained on a 645 

simultaneous conditional discrimination (O’Donoghue, Castro, & Wasserman, 2022). 646 

Critically, whereas hierarchical processing (among humans) may produce switch costs, 647 

configural processing (among pigeons) may preclude switch costs. As argued by Meier et al. (2013), 648 

configural processing may lead pigeons to perceive the same trial exemplar in a very different 649 

manner depending on which task cue accompanies it – meaning that, from a pigeon’s perspective, 650 

switch trials are functionally no different from stay trials. With this possibility in mind, in Experiment 651 

2B, we asked whether pigeons would display switch costs under conditions that were quite unlikely 652 

to facilitate configural processing. If they did not, then we could be more confident that the lack of 653 

switch costs observed in Experiment 2A reflects the participation of associative learning 654 

mechanisms, rather than interspecies differences in stimulus processing. 655 

Experiment 2B 656 

Past research supports the conclusion that, whereas simultaneous stimulus presentation 657 

may be more likely to encourage configural processing, successive stimulus presentation may be 658 

more likely to encourage hierarchical stimulus processing (e.g., Holland, 1985). So, in Experiment 2B, 659 

we asked whether pigeons might produce switch costs when the task cue and the trial exemplar 660 

were not simultaneously available. 661 

Method 662 
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Subjects, Apparatus, and Stimuli. We used the same subjects (N = 8), apparatus, and stimulus 663 

sampling procedures as in Experiment 2A. The pigeons progressed to Experiment 2B immediately 664 

after completing Phase 4 (task switching) in Experiment 2A. 665 

Phase 1: 50% Successive, 50% Simultaneous. We worried that, if the pigeons had processed 666 

the task cues and trial exemplars configurally in Experiment 2A, then abruptly shifting them to 667 

entirely successive cue-exemplar presentation might disrupt their performance. Thus, we began with 668 

a preliminary phase of training wherein 50% of the trials involved simultaneous cue-exemplar 669 

presentation (as in Experiment 2A; Figure 2B), while the other 50% of trials involved successive cue-670 

exemplar presentation (Figure 2C). On successive trials, the task cue disappeared as soon as the 671 

pigeon completed its observing response requirement; then, the trial exemplar appeared after a 672 

brief (10 ms) delay. The choice buttons were likewise presented without the task cues that had 673 

previously accompanied them in Experiment 2A (Figure 2). 674 

The proportions of simultaneous and successive trials were evenly divided across the two 675 

subtasks on which each pigeon had been trained. As in the task switching phase of Experiment 2A, 676 

the subtasks themselves were pseudo-randomly intermixed such that a subtask-switch occurred on 677 

one third of all trials. 678 

Each pigeon completed 30 sessions in this first phase of training, with each session 679 

comprising 120 trials (as in the blocked phase of Experiment 2A, we initially planned to train the 680 

pigeons to an 85% criterion; however, this criterion proved slightly too demanding for most pigeons 681 

to achieve). Because we were not theoretically interested in this phase of training, we did not further 682 

analyze the data from it. 683 

Phase 2: 100% Successive. Finally, we shifted each pigeon to a second phase wherein all trials 684 

involved successive cue-exemplar presentation (Figure 2C). The trial sequence was otherwise 685 

identical to that described above. Each pigeon remained on this final phase for 24 sessions, with 686 

each session comprising 120 trials. 687 
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Results and Discussion 688 

Task switching performance. Unsurprisingly, the successive cue-exemplar availability 689 

arranged here proved more challenging than the simultaneous cue-exemplar availability that had 690 

previously been arranged in Experiment 2A. Nevertheless, the pigeons achieved impressive levels of 691 

accuracy in the second, fully successive phase of training (Figure 4C; RB-RB group: mean = 77.82%, 692 

SD = 15.78%; II-II group: mean = 82.69%, SD = 11.19%). 693 

We assessed task switching performance using the same general approach as in Experiment 694 

2A. However, for all models, we conducted omnibus tests that combined the data from Experiments 695 

2A and 2B; accordingly, each model also contained experimental phase (2A vs. 2B) as an additional 696 

predictor [alongside trial type (stay vs. switch), congruency (congruent vs. incongruent), and task 697 

condition (RB-RB vs. II-II)]. This omnibus approach revealed a main effect of experimental phase, 698 

confirming that accuracy was significantly lower in Experiment 2B relative to Experiment 2A, B = 699 

0.29, SE = 0.06, Z = 4.96, p < .001. 700 

 In our omnibus analysis of choice accuracy, we additionally observed a significant main 701 

effect of congruency, B = 1.35, SE = 0.12, Z = 11.56, p < .001, which was qualified by significant two-702 

way interactions between task condition and congruency, B = -0.25, SE = 0.12, Z = -2.14, p = 0.32, and 703 

between task condition and experimental phase, B = -1.54, SE = 0.07, Z = -21.18, p < .001, as well as 704 

by a significant three-way interaction between task condition, congruency, and experimental phase, 705 

B = 0.25, SE = 0.07, Z = 3.38, p < .001. No other main effects or interactions were significant, all ps > 706 

.196. 707 

Follow-up probes to investigate the three-way interaction indicated that, in Experiment 2B, 708 

the pigeons displayed a two-way interaction between task and congruency that they had not 709 

previously displayed in Experiment 2A (Experiment 2A: B = 0.02, SE = 0.09, Z = 0.25, p = .803; 710 

Experiment 2B: B = -0.50, SE = 0.08, Z = -6.14, p < .001). The nature of this two-way interaction was 711 

such that, regardless of task condition, the pigeons were less accurate on incongruent trials than on 712 
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congruent trials; however, this effect was stronger in the RB-RB task condition, B = -2.01, SE = 0.06, Z 713 

= -34.88, p < .001 (incongruent trials: mean = 62.87%, SD = 4.28%; congruent trials: mean = 92.78%, 714 

SD = 2.05%), than in the II-II task condition, B = -1.51, SE = 0.06, Z = -25.75, p < .001 (incongruent 715 

trials: mean = 72.93%, SD = 6.93%; congruent trials: mean = 92.44%, SD = 1.46%). As for the humans 716 

in Experiment 1, we hypothesize that the salience of extreme spatial frequency values (which 717 

entirely corresponded to incongruent stimuli for the pigeons in the II-II group, but not for the 718 

pigeons in the RB-RB group; see Supplemental Materials) may have provided a buffer against the 719 

effects of incongruency. 720 

The two-way interaction between congruency and experimental phase also indicated that 721 

the congruency effects observed in Experiment 2B were significantly stronger than the congruency 722 

effects observed in Experiment 2A (Figure 4B; Figure 4C; Experiment 2A: B = -0.18, SE = 0.04, Z = -723 

4.16, p < .001; Experiment 2B: B = -1.77, SE = 0.04, Z = -43.18, p < .001). This disparity likely reflects 724 

the fact that, under the successive contingencies arranged here, the pigeons needed to maintain the 725 

task cue in working memory in order to determine the correct response on incongruent trials. 726 

Conversely, on congruent trials, stimuli required the same response regardless of the task cue – so, 727 

the pigeons could respond correctly even if they had forgotten the task cue. 728 

In our omnibus analysis of response times, we observed significant main effects of task 729 

condition, b =-0.10, SE = 0.04, t(38066) = -2.44, p = .049, and phase, b = -0.06, SE < .01 , t(38066) = -730 

15.78, p < .001. These effects were qualified by significant two-way interactions between task 731 

condition and congruency, b = 0.03, SE < .01, t(38066) = 3.40, p < .001, and between experimental 732 

phase and congruency, b = 0.02, SE < .01, t(38066) = 2.91, p = .004, as well as by a significant three-733 

way interaction between task condition, experimental phase, and congruency, b = -0.02, SE < .01, 734 

t(38066) = -3.37, p < .001. No other main effects or interactions were significant, all ps > .116. 735 

Follow-up probes to investigate this three-way interaction indicated that, contrary to 736 

Experiment 2A – wherein the pigeons had previously displayed a two-way interaction between task 737 
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condition and congruency, b = 0.01, SE < .01, t(20023) = 3.99, p < .001 – no such interaction was 738 

observed in Experiment 2B, p = .092. Instead, the pigeons in Experiment 2B displayed a simple main 739 

effect of congruency, b = 0.02, SE < .01, t(18043) = 7.56, p < .001, indicating that the pigeons were 740 

generally slower to respond on incongruent trials (mean = 1469.05 ms, SD = 731.38 ms) than on 741 

congruent trials (mean = 1352.39 ms, SD = 647.03 ms).  742 

 As in Experiment 2A, the pigeons displayed no evidence of switch costs despite the 743 

successive availability of the task cue and the trial exemplar, a manipulation that should encourage 744 

hierarchical stimulus processing (Holland, 1985). This finding indicates that the lack of switch costs 745 

observed in Experiments 2A and 2B likely reflects the contributions of pigeons’ associative learning 746 

mechanisms, rather than interspecies differences in stimulus processing. 747 

General Discussion 748 

To date, most research involving task switching has investigated the contributions of 749 

declarative mechanisms, which reliably yield strong switch costs relative to weak congruency effects 750 

among human learners (Kiesel et al., 2007; Monsell, 2003). Conversely, among both human (e.g., 751 

Forrest et al., 2012; Li et al., 2019; Meier et al., 2013) and nonhuman learners (e.g., Castro & 752 

Wasserman, 2016; Meier et al., 2013; Meier et al., 2016; O’Donoghue & Wasserman, 2021), 753 

associative mechanisms may yield weak (or no) switch costs relative to strong congruency effects. 754 

Thus far, investigations of humans’ associative task switching performance have deployed 755 

small stimulus sets that facilitate (and at times explicitly encourage) exemplar memorization. 756 

Whether such memorization is truly associative remains a matter of debate (Edmunds et al., 2016; 757 

Bower & Winzenz, 1970; Forrest et al., 2012; Smith et al., 2012). In the present study, we asked 758 

whether participants would still display disparate task switching response profiles when trained to 759 

switch either between rule-based (RB) subtasks (which encourage declarative rule use) or between 760 

information-integration (II) subtasks (which encourage associative learning, but discourage exemplar 761 

memorization because they employ trial-unique stimuli).  762 
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In Experiment 1, we found that human participants displayed strong switch costs regardless 763 

of task condition. Conversely, in Experiment 2, we found that pigeons displayed no switch costs in 764 

either task condition. These conflicting results raise two possibilities: (1) that our human participants 765 

may have employed declarative mechanisms to solve both RB and II tasks, and (2) that at least 766 

among human learners, declarative and associative mechanisms may not reliably yield dissociable 767 

task switching performance. We discuss each of these considerations below. 768 

Did Human II Learners use Declarative Rules? 769 

Many researchers have argued that, whereas responding in RB tasks is predominately 770 

governed by declarative rule use, responding in II tasks is predominately governed by associative 771 

learning (see Ashby & Valentin, 2017, for a review). However, our human participants displayed task 772 

switching response profiles characteristic of declarative rule use in both RB and II paradigms, raising 773 

the possibility that, in Experiment 1, most successful II learners could have actually been rule-users 774 

(see also Edmunds et al., 2016; Edmunds et al., 2018; Nosofsky, Stanton, & Zaki, 2005; Wills et al., 775 

2019; Zaki & Kleinschmidt, 2014). 776 

The suggestion that several of our II-II group participants might have used declarative rules is 777 

consistent with their task switching response profiles and self-reported strategies, but inconsistent 778 

with the results of our DBM analyses, wherein most II-II group participants converged on the optimal 779 

two-dimensional model. Past research has likewise reported that self-report and DBM can yield 780 

opposing conclusions (e.g., Edmunds et al., 2016). 781 

On the one hand, dual-systems perspectives often assume that self-reports cannot yield valid 782 

insights into implicit learning mechanisms (e.g., Ashby & Rosedahl, 2017). Conversely, some 783 

researchers have asserted that associative learners either conceivably might (e.g., Edmunds et al., 784 

2016) or actually do produce self-reports reflecting their reliance on implicit processes; for example, 785 

Chandrasekaran et al. (2014) reported that many successful II learners reported responding 786 

according to “gut feeling”. Here, we make no strong claims concerning the validity of self-report; but, 787 
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because self-reports can accurately predict performance in other category learning tasks (e.g., 788 

probabilistic categorization: Lagnado, Newell, Kahan, & Shanks, 2006), and because they have been 789 

used in efforts to capture various facets of implicit learning (e.g., Edmunds et al., 2016; Weinberger & 790 

Green, 2022), we do believe that they warrant further study in the context of RB and II learning. 791 

In contrast to self-report, DBM provides an objective index of participants’ actual 792 

categorization behavior. However, under at least some real-world conditions, DBM may not reliably 793 

allow for mechanistic inferences. A relevant consideration is raised by our data from Experiment 2A. 794 

In our DBM analysis, we found that most pigeons’ data were best fit by the optimal models in each of 795 

the RB and II task conditions (unidimensional models in the case of RB tasks; bidimensional models 796 

in the case of II tasks). Based on this result, one could argue that – as did the humans in Experiment 1 797 

– the pigeons in Experiment 2A used declarative rules to solve RB tasks. Given that pigeons have thus 798 

far shown no compelling evidence of rule use in any categorization paradigm known to promote rule 799 

use among humans (including RB paradigms, Smith et al., 2012; O’Donoghue et al., 2020; among 800 

others, Lea et al., 2009; Maes et al., 2015; Navarro et al., 2019), this interpretation is clearly 801 

implausible. 802 

More reasonably, one could also conclude that the responses of pigeons in the RB-RB group 803 

were primarily controlled by the relevant stimulus dimension in each subtask (as indicated by their 804 

best-fitting decision bounds), but that such unidimensional control need not implicate declarative 805 

rule use (see Wills et al., 2019). We agree with this interpretation (see also Smith et al., 2011). 806 

However, we extend it further to stress that the same considerations must apply when interpreting 807 

humans’ decision bounds. In particular, and although diagonal decision bounds among human II-808 

learners do suggest attention to both dimensions, they need not implicate associative mechanisms 809 

(Edmunds et al., 2016; Edmunds et al., 2018; see also Donkin, Newell, Kalish, Dunn, & Nosofsky, 810 

2015). This consideration is particularly relevant because, of the four models that we considered 811 

(which we selected because they are the four models most commonly used in the broader RB-II 812 
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literature), only the bidimensional model can yield criterion-level (85%) accuracy on either II subtask. 813 

It is therefore unsurprising that the responses of most II-II group participants performing at criterion 814 

were best-described by it. 815 

Importantly, we do not wish to claim that DBM cannot yield relevant insights into 816 

participants’ learning mechanisms (see Hélie, Turner, Crossley, Ell, & Ashby, 2017), nor do we intend 817 

to claim that self-reported strategies (which may certainly be subject to bias, as previously discussed) 818 

are a superior diagnostic tool. Instead, and for parsimony, we recommend interpreting humans’ 819 

model fits with the same considerations and level of caution that we (and others) would typically 820 

extend to pigeons. That is, we caution against the assumption that a participant best fit by a specific 821 

decision bound is necessarily deploying a specific learning mechanism (for relevant considerations, 822 

see Edmunds, Wills, & Milton, 2025; Roark, Minda, Kalra, & Cruz, 2025).  823 

 Taken together, our data add to a growing body of evidence that RB and II tasks might not 824 

reliably engage disparate learning mechanisms among human learners (e.g., Carpenter, Wills, 825 

Benattayallah, & Milton, 2013; Edmunds et al., 2016; Newell et al., 2010). This conclusion would have 826 

clear implications for the ongoing debate surrounding the validity of RB-II dissociations (for reviews 827 

from each perspective, see Ashby & Valentin, 2017; Wills et al., 2019), as well as for the broader 828 

theoretical debate surrounding dual- vs. single-systems models of categorization (see Minda et al., 829 

2024). Although our data cannot concretely resolve either issue, they do highlight the challenges 830 

inherent to the effort to isolate the contributions of associative mechanisms among human learners 831 

(McLaren et al., 2019), particularly in II tasks.  832 

To this end, we also join Wills et al. (2019) in arguing that future research surrounding dual- 833 

vs. single-systems categorization would benefit from considering alternatives to standard RB and II 834 

paradigms that might allow for more reliable inferences surrounding participants’ learning 835 

mechanisms (in particular, Wills and colleagues highlight the merits of the Shanks-Darby procedure; 836 

Shanks & Darby, 1998). 837 
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Do Declarative and Associative Mechanisms Produce Disparate Patterns of Task Switching 838 

Performance? 839 

Of course, it is also possible that most of our human participants did arrive at the optimal 840 

strategies for each task condition, but that humans’ declarative and associative mechanisms did not 841 

reliably produce different patterns of task switching performance in the context of the tasks 842 

considered here (Li et al., 2017). This possibility is at odds with past research suggesting that, among 843 

human learners, associative learning mechanisms may not produce switch costs (e.g., Forrest et al., 844 

2012; Li et al., 2019a; Meier et al., 2013). However, this past research often involved tasks with small 845 

numbers of repeated stimuli, which are amenable to exemplar memorization. 846 

Thus, the patterns of performance observed in prior studies of associative switching – 847 

characterized by small or no switch costs relative to large congruency effects (Forrest et al., 2012, 848 

Meier et al., 2013; Li et al., 2019a) – could reflect effortful memorization, which is arguably a 849 

declarative process (Edmunds et al., 2016; Smith et al., 2012; c.f. Bower & Winzenz, 1970; Forrest et 850 

al., 2012). By contrast, in the present project, we discouraged CSR memorization by instructing 851 

participants to learn about randomly-sampled stimuli through trial-and-error. Of course, if we then 852 

assume that our own II-II group participants were “true” associative learners (while noting the strong 853 

caveats discussed in the previous section), then our results beg the question as to why human 854 

associative learners might at least sometimes display switch costs when nonhuman associative 855 

learners rarely do so (Castro et al., 2016; Meier et al., 2013; Meier et al., 2016; O’Donoghue & 856 

Wasserman, 2021; see also Forrest et al., 2012, for proof-of-concept that associative mechanisms can 857 

produce small switch costs). 858 

Of note, switch costs need not stem entirely from executive task set reconfiguration. As 859 

stressed by Logan and colleagues (Arrington & Logan, 2004; Logan & Bundesen, 2003; Schneider & 860 

Logan, 2005), many task switching paradigms (including ours) confound switching tasks with 861 

switching task cues. Logan and colleagues have argued that on stay trials, human participants may 862 
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benefit from repetition priming of the task cue. This benefit is absent on switch trials, which thus 863 

incur switch costs. Nonetheless, subsequent research has demonstrated that executive task sets do 864 

play a substantial role in generating switch costs independently of repetition priming (Jost et al., 865 

2013), and that even cue-switch costs might reflect the involvement of executive control processes 866 

(Grange & Houton, 2010). 867 

In our paradigm, we cannot disentangle the effects of switching tasks from the effects of 868 

switching cues. It is possible that that the switch costs we observed among human RB-RB and II-II 869 

group participants, although similar in magnitude, may have differed in origin. For example, among 870 

the RB-RB group participants, switch costs may predominately reflect the influence of executive task 871 

sets, whereas among the II-II group participants, switch costs may predominately reflect repetition 872 

priming.  873 

However, Meier et al. (2013) found that, when two cues were used to signal each of two RB 874 

subtasks, human associative learners (i.e., participants who were unable to report either subtask rule 875 

at the end of the experiment) did not display switch costs. As such, we have no compelling reason to 876 

suspect that cue switch costs would have been strongly present among our II-II group participants 877 

(although this remains an open question for future research).  878 

Alternatively, it is also possible that the switch costs observed among our human II-II group 879 

participants might reflect the overarching structure of the task switching paradigm (such that task 880 

switching itself functions as a declarative task; we thank an anonymous reviewer for raising this 881 

possibility). In other words, even if II-II group participants were using the optimal associative 882 

strategies to solve each subtask, they might have nonetheless activated declarative task sets that 883 

incorporated the relevant CSR associations for a given subtask (for relevant discussion, see also 884 

Meier et al., 2013; Li et al., 2019). Of course, why such declarative task sets might have influenced 885 

performance in our experiments, but not in past research surrounding associative task switching 886 

using similar trial structures (e.g., Meier et al., 2013) remains to be determined. 887 
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Finally, it is also worth noting that the average age of our sample (mean = 43.10; SD = 11.95) 888 

skews slightly older than in past studies of associative task-switching. Although switch cost 889 

magnitudes do generally increase with age (Wasylyshyn, Verhaeghen, & Sliwinski, 2011), and age 890 

likewise slows overall learning speeds across RB and II tasks (alongside reducing the proportion of 891 

participants who converge on the optimal strategies according to DBM; e.g., Maddox, Pacheco, 892 

Reeves, Zhu, & Schnyer, 2010), it remains unclear whether these age-related changes might also 893 

influence the interaction between task condition (declarative vs. associative) and switch cost 894 

magnitudes. 895 

Conclusions 896 

Our data add to a growing body of research demonstrating that associative mechanisms can 897 

support robust task switching (Castro & Wasserman, 2016; Li et al., 2019a; Meier et al., 2013; Meier 898 

et al., 2016; O’Donoghue & Wasserman, 2022). In Experiment 1, we highlighted the challenges of 899 

isolating the contributions of associative mechanisms among human learners (particularly using II 900 

tasks), a critical issue that has rarely been acknowledged in studies of associative task switching (but 901 

see McLaren et al., 2019). Our data also raised the question as to whether associative learning 902 

mechanisms might still produce significant switch costs under at least some conditions (Forrest et al., 903 

2012; Li et al., 2017). 904 

Conversely, in Experiment 2, we demonstrated that pigeons – which presumably rely 905 

exclusively on associative mechanisms to solve both RB and II tasks (O’Donoghue et al., 2020; Smith 906 

et al., 2012) – display no switch costs in either task condition. These data highlight the impressive 907 

power and flexibility that associative mechanisms can afford (see also Lind, 2019; McMurray et al., 908 

2012; Sloutsky et al., 2017; Wasserman et al., 2023), despite the fact that they are often overlooked 909 

in discussions of “complex” cognitive processes. 910 

Overall, our data point to three clear directions for future research. First, more work is 911 

needed to disentangle the contributions of declarative and associative mechanisms in RB- and II-912 
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learning (see also Edmunds et al., 2016; Edmunds et al., 2018; Wills et al., 2019). Second, future 913 

research involving alternative paradigms could help determine whether human learners reliably do 914 

produce switch costs in associative tasks wherein CSR memorization in precluded. Finally, we look 915 

forward to continued research exploring the striking flexibility afforded by associative mechanisms 916 

(Turner & Wasserman, 2023). Given the difficulties of isolating associative mechanisms among 917 

human learners (McLaren et al., 2019), we suspect that comparative investigations will prove 918 

especially fruitful in this domain. 919 

  920 
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