

GENETICS

Sex-stratified GWAS meta-analyses reveal novel sex-specific association with CSF biomarkers of Alzheimer's Disease

Ting-Chen Wang^{1,2} | Jigyasha Timsina^{3,4} | Chenyang Jiang^{5,6,7} |
 Daniel L McCartney⁸ | Feifei Tao⁹ | Federica Anastasi^{10,11} | Patricia Genius^{10,11} |
 Blanca Rodríguez-Fernández^{10,11} | Arcadi Navarro^{11,12} | Raquel Puerta¹³ |
 Sven J van der Lee^{5,6,7} | Riccardo E Marioni⁸ | Lars Bertram¹⁴ | Nagle W. Michael⁹ |
 Rebecca Sims¹⁵ | Natalia Vilor-Tejedor^{10,11,16} | Joseph Bradley^{3,4} |
 Muhammad Ali^{3,4} | Ciyang Wang^{3,4} | Menghan Liu^{3,4} | Agustin Ruiz^{17,18,19,20,21} |
 Maria Victoria Fernandez¹⁷ | Julie Williams¹⁵ | John P. Budde^{3,4} | Betty Tijms^{5,6} |
 Atahualpa Castillo¹⁵ | Kaj Blennow^{22,23} | Henrik Zetterberg^{22,24,25,26,27,28} |
 Alberto Lleo^{29,30} | Virginia M. M.-Y. Lee³¹ | Amanda J Heslegrave^{27,32} |
 Pau Pastor^{33,34} | Elaine R. Peskind³⁵ | Andrew J. Saykin³⁶ | John C. Morris^{37,38} |
 Suzanne E. Schindler^{37,38} | David M. Holtzman^{37,39} | Matthias Riemenschneider⁴⁰ |
 Marilyn S. S. Albert⁴¹ | Vivianna M Van Deerlin^{42,43} | Leslie M. Shaw^{44,45} |
 Yun Ju Ju Sung^{3,4,46} | Timothy J. Hohman^{1,47} | Carlos Cruchaga^{3,48,49} |
 Logan Dumitrescu^{1,2}

¹Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA²Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA³NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA⁴Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA⁵Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, Netherlands⁶Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands⁷Section Genomics of Neurodegenerative Diseases and Aging, Department of Human Genetics, Vrije Universiteit Amsterdam, Amsterdam, Noord-Holland, Netherlands⁸University of Edinburgh, Edinburgh, United Kingdom⁹Human Biology Integration Foundation, Genetics-Guided Dementia Discovery, Eisai Inc, Cambridge, MA, USA¹⁰Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain¹¹Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain¹²BarcelonaBeta Brain Research Center (BBRC), Barcelona, Spain¹³Research Center and Memory Clinic, Fundació ACE Institut Català de Neurociències Aplicades - Universitat Internacional de Catalunya (UIC), Barcelona, Spain¹⁴University of Lübeck, Lübeck, Germany¹⁵Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom

This is an open access article under the terms of the [Creative Commons Attribution](#) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2025 The Alzheimer's Association. *Alzheimer's & Dementia* published by Wiley Periodicals LLC on behalf of Alzheimer's Association.

¹⁶Radboud University Medical Center, Nijmegen, Netherlands

¹⁷Ace Alzheimer Center Barcelona – International University of Catalunya (UIC), Barcelona, Spain

¹⁸Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), National Institute of Health Carlos III, Madrid, Madrid, Spain

¹⁹Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA

²⁰Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA

²¹Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA

²²Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden

²³Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden

²⁴Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom

²⁵Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China

²⁶Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA

²⁷UK Dementia Research Institute at UCL, London, United Kingdom

²⁸Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Gothenburg, Sweden

²⁹Neurology Department, Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Pau Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain

³⁰Center for Networker Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Spain

³¹Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA

³²Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, United Kingdom

³³Division of Neurosciences, Neurogenetics Laboratory, Center for Applied Medical Research, University of Navarra School of Medicine, Pamplona, Spain

³⁴CIBERNED, Instituto de Salud Carlos III, Madrid, Spain

³⁵University of Washington, Seattle, WA, USA

³⁶Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA

³⁷Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA

³⁸Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA

³⁹Knight Alzheimer Disease Research Center, St. Louis, MO, USA

⁴⁰Saarland University Medical Center, Homburg, Germany

⁴¹Johns Hopkins University School of Medicine, Baltimore, MD, USA

⁴²Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

⁴³Center for Personalized Diagnostics, Hospital of the University of Pennsylvania, Philadelphia, PA, USA

⁴⁴Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

⁴⁵Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA

⁴⁶Division of Biostatistics, Washington University in St. Louis, St. Louis, MO, USA

⁴⁷Vanderbilt Memory and Alzheimer's Center, Vanderbilt University School of Medicine, Nashville, TN, USA

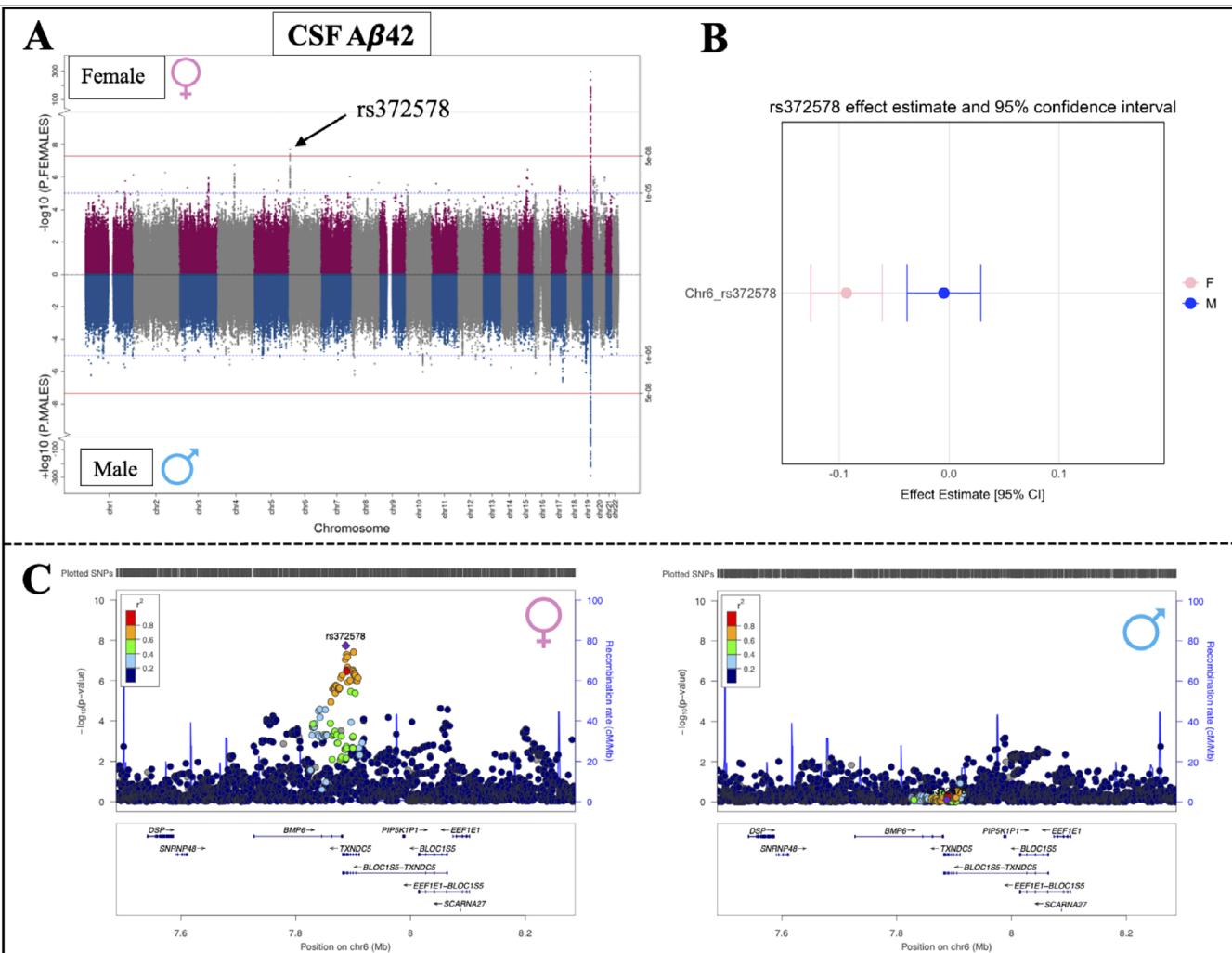
⁴⁸Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO, USA

⁴⁹Washington University School of Medicine, St. Louis, MO, USA

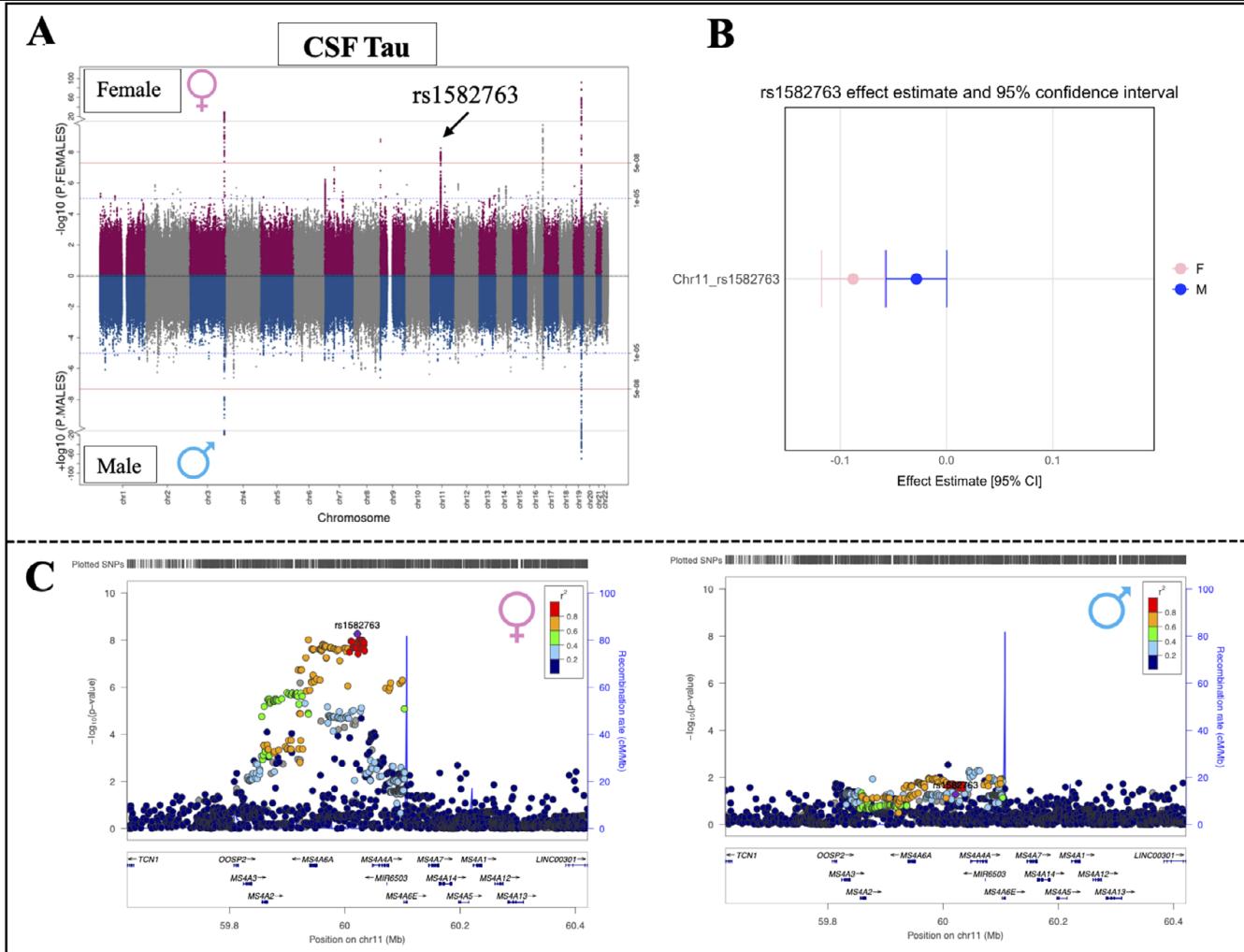
Correspondence

Ting-Chen Wang, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA.
Email: ting-chen.wang@vanderbilt.edu

Abstract


Background: Cerebrospinal fluid (CSF) biomarkers, including amyloid- β 42 (A β 42), have emerged as essential endophenotypes in genome-wide association studies (GWAS) of Alzheimer's disease (AD), advancing our understanding of AD biological processes beyond traditional case-control studies. Using the largest sample size to date ($N = 18,491$), we aim to elucidate sex-specific associations with AD pathology by performing sex-stratified GWAS of three well-established CSF endophenotypes, A β 42, Tau, and phosphorylated tau (pTau181).

Method: We conducted meta-analyses of sex-stratified GWAS for each CSF biomarker, leveraging 22 US and European cohorts with available raw CSF and genotype data ($N = 6,785$; 51.84% male; age=68), along with summary statistics from six external


cohorts ($N = 11,706$; 45.27% male; age=69). Consistent quality control was applied prior to genetic analyses, including z-score standardization on raw CSF biomarker values in internal cohorts. The GWAS adjusted for age, ten principal components of genetic ancestry, and cohort-array combination as applicable. We defined a sex-specific effect as a variant association that reached genome-wide significance in one sex and had non-overlapping 95% confidence intervals of the effect estimates between sexes.

Result: We identified seven genome-wide significant loci, including four previously reported loci and three novel female-specific associations, including one for $\text{A}\beta42$ (rs372578, $p(\text{Females})=1.86\text{E-}08$, $b(\text{F})=-0.09$, $p(\text{Males})=0.78$, Figure 1), one for Tau (rs1582763, $p(\text{F})=5.56\text{E-}09$, $b(\text{F})=-0.09$, $p(\text{M})=0.05$, Figure 2), and one for pTau181 (rs6434518, $p(\text{F})=2.95\text{E-}08$, $b(\text{F})= 0.17$, $p(\text{M})=0.80$, Figure 3). The lead $\text{A}\beta42$ variant, rs372578, is an eQTL for *BMP6* ($p = 8.00\text{E-}04$, <http://www.braineac.org>), which encodes a TGF-beta ligand involved in iron homeostasis and bone/fat development. Increased expression of *BMP6* is linked to hippocampal neurogenesis defects in AD patients and APP-transgenic mice. The lead Tau variant, rs1582763, is in the *MS4* locus, an established genetic risk factor for AD with some evidence of female-specificity, and has been linked to soluble *TREM2* level regulation in CSF. Finally, the top pTau181 variant, rs6434518, is an eQTL for immune response genes *STAT4*, *STAT1* ($p = 2.40\text{E-}02$), and *MYO1B* ($p = 2.60\text{E-}02$) involved in lipid metabolism and proteostasis.

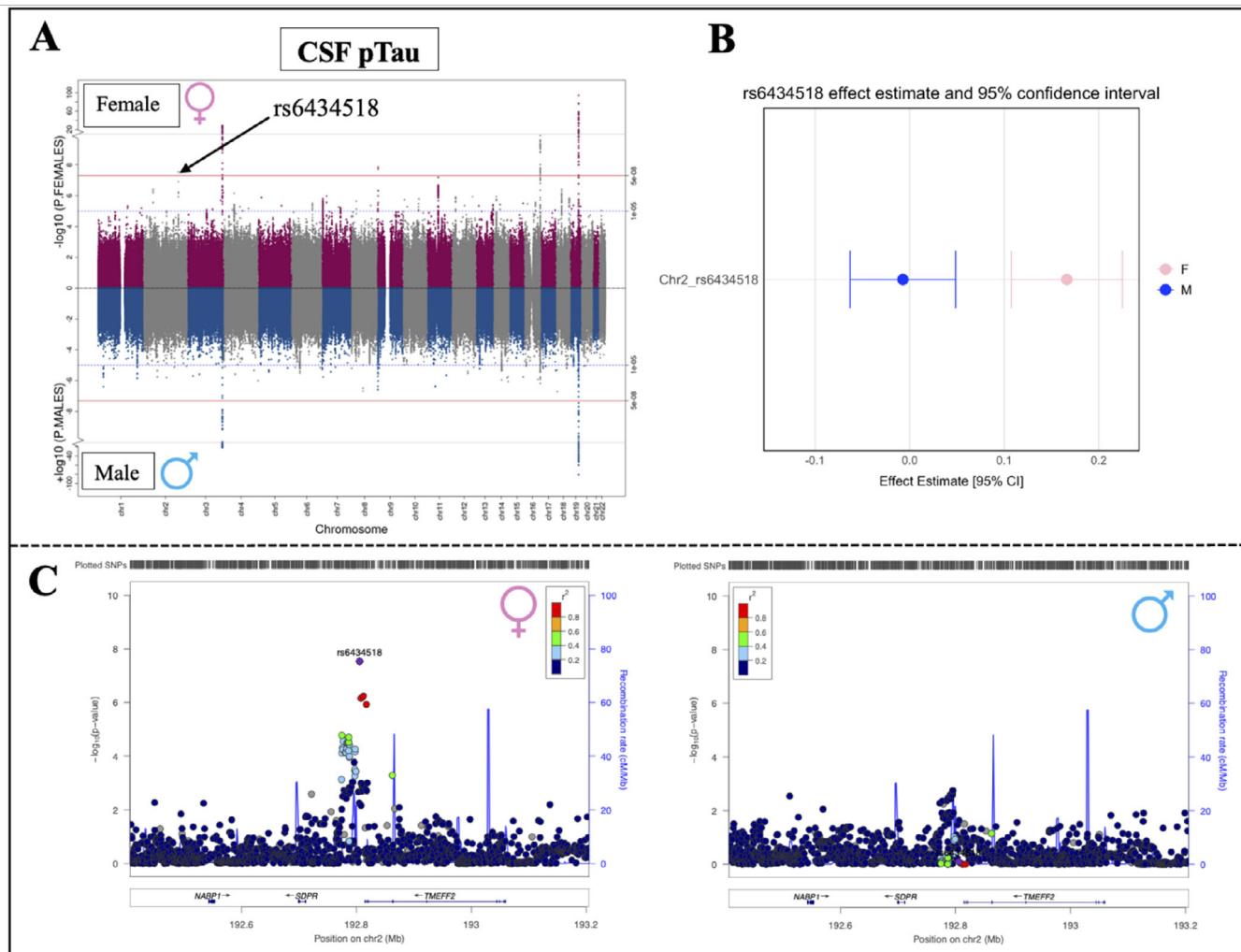

Conclusion: Our results highlight significant female-specific genetic associations across CSF biomarkers, underscoring the importance of sex-specific genetic analyses in deepening understanding of AD genetic architecture.

Fig 1. Minor allele of female-specific genome-wide significant locus on chromosome 6 (rs372578) associated with CSF A β 42 levels. (A) Miami plot with female variant associations on the top in pink and male variant associations on the bottom in blue. (B) Forest plot of rs372578 by sex, including meta-analysis estimates and 95% CI. (C) Locus Zoom plots displaying the genomic region surrounding the chromosome 6 locus by sex, with female on the left and male on the right.

Fig 2. Minor allele of female-specific genome-wide significant locus on chromosome 11 (rs1582763) associated with CSF Tau levels. (A) Miami plot with female variant associations on the top in pink and male variant associations on the bottom in blue. **(B)** Forest plot of rs1582763 by sex, including meta-analysis estimates and 95% CI. **(C)** Locus Zoom plots displaying the genomic region surrounding the chromosome 11 locus by sex, with female on the left and male on the right.

Fig 3. Minor allele of female-specific genome-wide significant locus on chromosome 2 (rs6434518) associated with CSF pTau181 levels. (A) Miami plot with female variant associations on the top in pink and male variant associations on the bottom in blue. **(B)** Forest plot of rs6434518 by sex, including meta-analysis estimates and 95% CI. **(C)** Locus Zoom plots displaying the genomic region surrounding the chromosome 2 locus by sex, with female on the left and male on the right.