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Deep-out-of-the-money options

1. Introduction

The option-implied risk-neutral density (RND) summarizes market expectations about the underlying asset’s future price. However,
despite its informational richness, a key limitation of the RND lies in its representation as a continuous function, which complicates its
direct application in empirical analysis. Researchers, therefore, use the RND’s moments as discrete summaries. These moments provide
a parsimonious and interpretable representation of the RND, facilitating their use in a wide range of empirical studies that examine the
informational content of options markets and their implications.

The development of the model-free implied moment estimators by Bakshi et al. (2003, BKM) has been a key driver behind the
widespread use of the moments of the RND as variables in empirical research. The estimators compute volatility, skewness, and
kurtosis from out-of-the-money (OTM) prices without strong model assumptions. By parsimoniously capturing the fundamental
characteristics of the RND and ensuring robustness against model misspecifications, the BKM estimators have become a cornerstone of
the literature. Investor demand for higher moments (Buckle et al., 2016), informative OTM prices (Hu et al., 2022; Jiang & Zhou, 2024;
Lee et al., 2021), and the asymmetric and non-normal price effects (Cheema et al., 2023; Han et al., 2022; Jin et al., 2020; Zhang et al.,
2023) all promote these estimators. These factors matter for BKM estimators because they shape the implied-volatility surface (Chen
etal., 2022). Recent studies use these estimators to proxy the option-implied risk about the underlying price (Sautner et al., 2023; Zhan
et al., 2022), the price of the insurance against left-tail events (Ilhan et al., 2021), and the moments themselves (Ai et al., 2022;
Augustin & Izhakian, 2020; Chabi-yo & Loudis, 2020; Wang et al., 2024).

However, despite their theoretical robustness and empirical convenience, the BKM estimators face challenges in satisfying their
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assumptions due to the inherent incompleteness of real-world options markets. While the estimators require OTM option prices that
cover a continuous set of strike prices spanning the positive real line, such a set is unavailable in virtually every options market. The
study of Jiang and Tian (2005) (hereafter, JT) highlights this issue and breaks it down into two distinct phenomena. First, options price
quotes are available only for a discontinuous set of strikes. Second, a large portion of the deep out-of-the-money (DOTM) region in the
strike price domain lacks observable option prices or has prices removed during filtering, a problem termed “truncation” by JT.
Truncation presents a particularly challenging problem for at least two reasons. First, extrapolation requires stronger assumptions than
interpolation. Second, as demonstrated by Lee et al. (2025a), truncation not only distorts implied moment estimates but also in-
troduces biases that are systematically interrelated with the underlying price and implied moments in a complex manner.

Literature on model-free implied moment estimation proposes at least two model-free approaches to address truncation. First, JT
suggests obtaining missing DOTM prices by extending the implied volatility curve with flat lines attached at both ends. We refer to this
method as “flat extrapolation.” Second, Dennis and Mayhew (2002) propose making the two ends of the integration domain equally
distant from the underlying price by further discarding available OTM price observations for implied skewness estimation. This
method is referred to as “domain symmetrization” in this study. Despite their popularity, both methods have well-documented
drawbacks. Pan et al. (2022, 2024) argue that flat extrapolation can distort the implied tail density, complicating both implied
moment estimation and its interpretation. Lee and Ryu (2024a) demonstrate that implied skewness and kurtosis estimators remain
sensitive to truncation, even when flat extrapolation is applied. Shelton et al. (2021) show that domain symmetrization does not
always reduce truncation error and may result in biased and inconsistent implied skewness estimation. Lee et al. (2025b) also
demonstrate that the relationship between estimation bias and domain symmetry is unclear.

To provide an alternative truncation treatment method, the recent study by Lee et al. (2025¢) (hereafter, LRY) proposes domain
stabilization (DS) to mitigate the impact of truncation on estimation. DS stabilizes truncation to reduce estimation noise and improve
the information in implied moment dynamics. LRY demonstrates that, when applied to S&P500 index options data, DS significantly
enhances the in-sample predictive accuracy and out-of-sample forecasting performance of implied moment estimates for underlying
log returns. Their test results indicate that, when DS is applied with an appropriate intensity level, implied moment estimates
outperform those derived using alternative truncation treatment methods in both in-sample and out-of-sample tests. These findings
highlight the potential of DS as a valuable tool for improving the information content of implied moment estimates.

Based on these findings, we test DS in the Korean Composite Stock Price Index 200 (KOSPI200) options market. We broaden our
methodology to evaluate DS more comprehensively in an emerging options market. From a market environment perspective, we focus
on one of the leading emerging markets, the Korean market. This ensures that the market is qualitatively distinct from the U.S. market
while maintaining active trading in options with informative prices (Kim et al., 2025). Methodologically, we go beyond testing the
in-sample and out-of-sample return predictive and forecasting performance by also examining the contemporaneous relationship
between the underlying price and implied moment estimates. To provide a comprehensive analysis, we investigate this contempo-
raneous relationship at both the levels and first-order differences, offering deeper insights into the effectiveness of DS.

Our empirical findings demonstrate that DS is an effective truncation treatment method for the KOSPI200 options market,
consistent with the results reported by LRY for the S&P500 index options market. DS enhances the contemporaneous explanatory
power of implied moment estimates for the underlying asset, both at the levels and first-order differences, while also improving the in-
sample return predictive accuracy and out-of-sample forecasting performance of implied moment estimates. Although the enhance-
ment generally becomes more pronounced as the intensity level of DS increases, it diminishes when DS is applied too intensively. The
optimal improvement is observed when the intensity level is between 50 % and 75 %. Despite these enhancements, the in-sample
predictive and out-of-sample forecasting abilities of implied moment estimates remain weaker in the KOSPI200 options market
compared to the S&P500 options market, even after applying DS. This disparity may be attributed to differences in the participation
rates of retail investors between the two markets.

The main implication of this study is that DS can be considered a valid truncation treatment method for implied moment estimation
in a broader and more general context than previously examined in LRY. From the perspective of market diversity, this study dem-
onstrates that DS is effective not only in the U.S. market but also in the Korean market, a leading emerging market. From an infor-
mational standpoint, this study shows that DS not only enhances the return predictive and forecasting performance of implied moment
estimates but also clarifies the concurrent relationship between the underlying price and implied moments. This empirical evidence
highlights the potential of DS as a valuable tool and encourages future empirical research to adopt DS to maximize the informational
content of implied moment estimates.

The remainder of this paper is organized as follows. Section 2 reviews the theoretical and empirical background, and Section 3
details the data sources, filtration criteria, and descriptive statistics for the KOSPI200 options market dataset. Section 4 outlines the
methodology for implied moment estimation, and Section 5 presents the empirical results. Section 6 concludes with a discussion of the
findings and their implications.

2. Research background

BKM proposes a model-free implied moment estimation approach, restructuring the volatility, skewness, and kurtosis of the
implied RND as functions of the fair values of volatility, cubic, and quartic contracts, denoted as V, W, and X, respectively. These
contracts are named based on their payoff functions, which correspond to R?, R%, and R*, where R represents the underlying asset’s
holding period log return until maturity. At time t, BKM’s implied moment estimators for maturity r are defined as follows:
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where r denotes the risk-free rate and y(t, 7) represents the underlying asset’s expected holding period risk-neutral log return. BKM
demonstrates that the fair values V, W, and X can be derived from a continuum of OTM option prices as follows:
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where S(t) represents the underlying price at time t, and C(t, 7; K) and P(t, 7; K) denote the OTM call and put option prices for strike K,
respectively. The fair value of x(t,7) is approximated as:
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When truncation occurs, the observed OTM prices span a strike price domain of finite width, expressed as [Kmin(t,7), Kmax(t, 7)],
where Kiin(t, 7) and Knax(t, 7) represent the minimum and maximum strike prices of the integration domain, respectively. Because the
integration domain has finite, non-zero endpoints, estimating the fair values of the implied moments under truncation implicitly
assumes that OTM option prices are zero outside the observed strike range. LRY demonstrates that this assumption is equivalent to
truncating the implied RND itself, such that the risk-neutral probability is zero for the subset of strike prices outside the observed
domain. Given this relationship, if implied moments are estimated using daily observations with varying levels of truncation, the
moments are effectively derived from daily implied RNDs that are truncated randomly. Therefore, proceeding with implied moment
estimation under such truncation implies reliance on time-varying assumptions about the shape of implied RND, undermining the
consistency and suitability of the estimation approach. LRY addresses this concern through DS, whose detailed implementation

procedure is explained in Section 4.

3. Data

We employ data from the KOSPI200 options market, globally recognized as one of the most liquid derivatives markets. The index
derivatives market is a cornerstone of Korea’s financial system because of its high trading volume and distinctive market structure
(Ahn et al., 2008; Chung et al., 2016; Park & Ryu, 2019, 2021; Yu et al., 2024). The market attracts a diverse range of participants, with
retail investors playing a particularly significant role, introducing distinct trading dynamics compared to institution-dominated
markets (Ryu, 2011; Ryu & Yang, 2019). Due to the active participation of retail traders, the market exhibits high volatility and
unique trading dynamics influenced by behavioral biases and informational asymmetries, characteristics often observed in emerging
markets (Ryu & Yang, 2020; Ryu et al., 2022a, 2022b; Song et al., 2016). At the same time, the market’s high trading activity and the
availability of granular tick-by-tick transaction data support rigorous empirical analysis (Yang et al., 2019).

The empirical dataset comprises every on-exchange transaction in KOSPI200 options from January 2015 through December 2023,
together with time-stamped levels of the underlying index, all supplied by the Korea Exchange. Because each tick record reports the
exact execution price and time, using transaction prices rather than quoted bids and asks eliminates the need for midpoint approxi-
mations or extensive quote filters, while providing more accurate, higher-resolution price information. To convert this tick stream into
a daily panel for model-free moment estimation, we keep only trades executed during the final 60 s of regular trading. Restricting the
sample to that interval achieves two goals. First, it pairs every retained option price with the closing level of the underlying index,
ensuring a consistent time stamp across spot and options markets. Second, it aligns prices across strikes so that the implied volatility
surface is constructed from near-simultaneous transactions.

We approximate the risk-free and dividend rates for each maturity by linearly interpolating the rates of adjacent maturities on the
zero-coupon and futures-implied dividend curves. To approximate zero-coupon curves, we use the daily Korea Interbank Offered Rate
(KORIBOR) data provided by the Bank of Korea. We collect daily closing prices of KOSPI200 futures from the Korea Exchange to
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estimate daily futures-implied continuously compounded dividend rate curves. After retrieving all the necessary datasets, we apply a
series of data filtering criteria to ensure that the empirical analysis is conducted using only relevant and reliable option price ob-
servations, as outlined below. First, we remove options that are not OTM. Second, observations are discarded if the corresponding
transaction price is below 0.03." Third, we exclude any observations with incomplete data entries. Finally, observations are discarded
if they violate the no-arbitrage condition.’

Table 1 presents the summary statistics for the final dataset. Panel A reports the statistics for Black-Scholes d;, used in this study to
measure option moneyness as in LRY. d; is defined as

In[S(t) /K] + [r + 6* /2]t
oVt

where ¢ is the volatility of the underlying returns. Descriptive statistics are separately reported for observations with 15-45 calendar
days to expiration in Panel A because these options bracket the one-month target maturity used in our moment estimation procedure.
Each trading day, we construct a synthetic one-month contract by linearly interpolating implied volatilities across the nearest shorter-
and longer-dated maturities. Options that mature in 15-45 days influence the interpolation result most directly, and focusing on the
15- to 45-day range keeps the descriptive statistics aligned with the option set that drives the empirical analysis.

The table reveals four noteworthy findings. First, the magnitude of d;, used in this study to measure option moneyness as in LRY, is
greater for OTM puts than calls, suggesting that OTM puts are deeper out-of-the-money on average. The asymmetry implies that the
wider portion of the integration domain for implied moment estimation is covered by OTM puts, which is equivalent to a stronger
impact of truncation on OTM calls. This tendency is also reflected in the percentile values. Second, the implied volatility level is higher
for OTM puts than for OTM calls. This difference explains why truncation has a more severe impact on OTM call observations. Given
the monotonic relationship between implied volatility and option price for a fixed level of moneyness, lower implied volatility
translates into lower option prices, which increases the likelihood of exclusion by the minimum price filter. Third, as a result of the first
two features, the final sample contains more puts than calls as the minimum-price screen removes a disproportionate share of DOTM
calls. Negative implied volatility skew, which is common in equity options markets (Mixon, 2009; Wu & Tian, 2024), makes OTM puts
more expensive than equidistant OTM calls, so the minimum-price filter removes many calls but almost no puts. Fourth, compared to
other observations, the observations with a time to maturity between 15 and 45 days do not exhibit significant differences. Therefore,
although we focus on a single time to maturity of one month, it can be argued that the empirical results are representative of the entire
KOSPI200 options market.

Fig. 1 illustrates the relationship between OTM moneyness and the implied volatility level across different sample subperiods. The
figure reveals that, throughout the entire sample period, the implied volatility curve consistently exhibits a volatility smirk or skew,
irrespective of the subperiod or the daily average implied volatility level. Building on evidence that links implied moments to the shape
of the implied volatility curve (Zhang & Xiang, 2008), we expect the implied RND to be negatively skewed and leptokurtic, and Section
5 confirms this pattern.

d:[S(t),K,0,1,7] = (8)

4. Methodology

Our empirical analysis proceeds in three steps: (i) construct the implied volatility curve, (ii) estimate implied moments with and
without DS, and (iii) run regressions comparing the information content of the two sets of moment estimates. We first extract daily one-
month implied volatility curves from the final implied volatility surface, following prior work that fixes the maturity (Aspris et al.,
2024; van Binsbergen et al., 2012). The selection of a one-month maturity is motivated by two factors: the liquidity of markets for
nearby maturities and the feasibility of interpolating between maturities shorter and longer than the target maturity. To construct the
surfaces, we apply bilinear approximation to minimize the impact of abnormal observations and ensure feasibility even when data are
available for no more than two maturities. After extracting the implied volatility curve, we convert the implied volatility values into
corresponding OTM option prices, further filtering out DOTM prices by reapplying a minimum price threshold of 0.03 to maintain
consistency in data filtering. To minimize the effect of strike price discreteness, we set the strike price gap to 0.1, which is one
twenty-fifth of the original gap.

After constructing a series of daily implied volatility curves for a fixed maturity, we proceed with DS as follows. First, we measure
the locations of the minimum and maximum endpoints of daily implied volatility curves with respect to moneyness, which correspond
to the endpoints of integration domains for implied moment estimators over the sample period. Following the approach of LRY,
moneyness is expressed in terms of d;, defined as in Equation (8). Using d; to measure moneyness is appropriate for two reasons when
estimating implied moments with BKM estimators: (1) d; considers log moneyness, which is more directly related to the log return
density than alternative measures such as percentage moneyness, and (2) d; is standardized in terms of return volatility, aligning it

1 This threshold is based on the “three-minimum-price-change” rule used by LRY. In their S&P500 sample, the tick size is 0.25, and because they
work with bid-ask midpoints, the smallest possible price change is half a tick, 0.125 points, and multiplying that minimum change by three produces
their 0.375-point filter. For KOSPI200 options, the tick is 0.01 points, and we rely on transaction prices, so the minimum price change equals the tick
itself, and three such increments amount to 0.03, which becomes our threshold.

2 To check no-arbitrage conditions, we enforce the standard static no-arbitrage conditions by requiring that option prices must be at least as large
as the intrinsic value and no greater than the underlying index level.
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Panel A. Black-Scholes d;

Maturity between 15 and 45 days

Other maturities

Puts Calls Puts Calls
Mean 1.376 -1.130 1.405 -1.178
Std. dev. 0.676 0.671 0.621 0.611
Minimum 0.025 —2.693 0.008 —2.736
25th pct. 0.846 -1.675 0.959 —1.642
Median 1.409 -1.125 1.425 —1.187
75th pet. 1.907 -0.571 1.877 -0.726
Maximum 3.083 0.110 3.244 0.267
# of obs. 32,564 21,775 21,461 16,075
Panel B. Black-Scholes implied volatility

Maturity between 15 and 45 days Other maturities

Puts Calls Puts Calls
Mean 0.229 0.153 0.233 0.155
Std. dev. 0.105 0.064 0.119 0.065
Minimum 0.079 0.046 0.051 0.043
25th pct. 0.159 0.118 0.160 0.119
Median 0.202 0.138 0.200 0.137
75th pet. 0.264 0.169 0.262 0.167
Maximum 0.968 0.728 1.165 0.624
# of obs. 32,564 21,775 21,461 16,075

Notes: This table presents summary statistics for the KOSPI1200 options dataset used in this study. After data filtration, the daily sample of option prices
comprises 91,875 observations. The following criteria are applied to exclude inappropriate observations: (1) the option is not out-of-the-money; (2)
the closing price is below 0.03; (3) any corresponding data entries are missing; and (4) the no-arbitrage condition is violated. Panels A and B report the
summary statistics for Black-Scholes d; and implied volatility, respectively.

Panel A. 2015 to 2017

Implied volatility

0.0+,
-3 -2

Implied volatility

-1

-d1

Fig. 1. Black-Scholes implied volatility by moneyness and time period
Notes: This figure illustrates the level of Black-Scholes implied volatility for out-of-the-money options, categorized by moneyness and time period. To
enhance the clarity of the implied volatility curve, we focus exclusively on options with a time to maturity between 15 and 45 calendar days.
Moneyness is measured using Black-Scholes d;, which has been sign-switched to adhere to the convention of displaying puts on the left and calls on

the right.

Implied volatility

Implied volatility

Panel B. 2018 to 2019

-d1
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with the definition of higher moments in BKM.

Next, we determine the percentiles of the minimum and maximum endpoints, considering the extent to which OTM price obser-
vations will be further discarded. Once the percentiles are chosen, we apply DS by discarding observations whose strike prices fall
outside these percentile values. Specifically, for an intensity level of i percent, we discard an OTM put price observation if the cor-
responding d; exceeds the i percentile of daily maximum endpoint observations. We exclude an OTM call price observation if the
corresponding d; is more negative than the (100 — i) percentile of daily minimum endpoint observations. When the daily implied
volatility curve does not span the range between the lower and upper endpoint percentiles, we extend the curve to those percentiles by
flat extrapolation. After these treatments, we obtain a series of implied volatility curves with consistent endpoint locations across the
sample period.

After applying DS at various intensity levels, we estimate implied volatility, skewness, and kurtosis using the BKM estimators and
conduct a set of regression analyses to investigate whether DS enhances the information content of implied moment estimates. The
regression analysis begins by examining the concurrent explanatory power of implied moment estimates for the underlying price.
Because both underlying prices and implied moments reflect expectations about future price dynamics, we expect a strong contem-
poraneous relation between them, as the stock and options markets at least partly share information. This idea is supported by the
literature, which shows that moments, including higher ones, are priced factors (Dittmar, 2002; Mitton & Vorkink, 2007).

We test the concurrent relationship in two ways. First, we evaluate the explanatory power of implied moment levels for the un-
derlying price level using the following model:

In[S(t)] =a + p, - VOL(t) + B, - SKEW(t) + p, - KURT(t) + &(t) 9

where In[S(t)] is the natural logarithm of the underlying KOSPI200 level on day t, VOL(t), SKEW(t), and KURT(t) denote the levels of
implied volatility, skewness, and kurtosis estimates on day t, respectively. Next, we investigate the explanatory power of the first-order
differences of implied moments for the underlying log returns with the following model:

Aln[S(t)] =a+ f, - AVOL(t) + f, - ASKEW(t) + f, - AKURT(t) + &(t) (10)

where A is the first-order difference operator.

We then investigate whether DS enhances the predictive and forecasting performance of implied moment estimates. Evidence of
informed OTM trading (Kang et al., 2022; Lin et al., 2018) suggests that implied moments can predict returns (Conrad et al., 2013;
Kumar, 2009). If the predictive and forecasting abilities are distorted by the noise introduced by time-varying truncation, these
abilities should improve when DS is applied, as shown by LRY. To evaluate this, we conduct in-sample return predictability and
out-of-sample return forecasting ability tests using the following model:

Aln [S(t)]=a+ fy- Aln [S(t—1)] +y, - AVOL(t—1) 4+ 7, - ASKEW(t — 1) +y, - AKURT(t — 1) + (t) 11

Through this set of empirical analyses, we comprehensively evaluate the explanatory, predictive, and forecasting performance of
implied moments for underlying returns, providing a more diverse perspective on the effectiveness of DS. A list of variable definitions
is provided in Table 2.

5. Empirical results
5.1. Degree of truncation and moment estimates

Before evaluating the effectiveness of DS, we first examine the basic properties of implied moment estimates to understand the
primary characteristics of the estimation results. Table 3 presents the summary statistics of implied moment estimates, with DS not
applied during their collection. The table reveals that the implied RND is generally negatively skewed and leptokurtic, consistent with
findings from several previous studies. The KOSPI200 return distribution is likewise negatively skewed and leptokurtic (Lee & Ryu,
2024b; Song et al., 2018), shaping the implied RND moments. Hence, the statistics suggest that the implied moment estimates reflect
the shape of the realized density. However, it is noteworthy that the kurtosis of the underlying log return distribution is significantly
higher than the implied kurtosis on average, a difference that may be attributed to truncation.

We further investigate the implied moment estimation results by examining their time-series dynamics. Fig. 2 illustrates the dy-
namics of daily implied moment estimates over the sample period. Panel A presents the implied volatility estimate dynamics, which
demonstrates a time trend without significant noise. The clear dynamics suggest that the implied volatility estimates are not

Table 2
Variable descriptions.
Symbol Definition Source/Notes
S KOSPI200 spot level Korea Exchange
VOL Option-implied volatility Korea Exchange; Bakshi et al. (2003) estimator
SKEW Option-implied skewness Same as above
KURT Option-implied kurtosis Same as above

Notes: This table lists the key variables used in the empirical analysis and their sources.
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Table 3
Underlying price and implied moment estimates.
Panel A. Levels Panel B. Daily first-order differences
In(S) VOL SKEW KURT Aln(S)e10? AVOL ASKEW AKURT
Mean 5.694 0.164 —0.988 5.081 0.022 0.000 0.000 0.000
Std. dev. 0.159 0.062 0.414 1.857 1.209 0.016 0.245 1.350
Minimum 5.363 0.092 —2.945 1.373 -12.175 -0.127 -1.124 —7.465
25th pct. 5.559 0.126 —-1.205 3.884 —-0.571 —0.006 —0.144 —0.724
Median 5.685 0.146 —0.943 4.665 0.059 0.000 0.005 —0.033
75th pet. 5.789 0.182 —0.710 5.697 0.627 0.005 0.005 0.703
Maximum 6.087 0.615 0.304 10.098 5.527 0.230 0.146 6.471
# of obs. 1703 1703 1703 1703 1702 1702 1702 1702

Notes: This table presents summary statistics for the daily closing underlying log prices and implied moment estimates, calculated without applying
domain stabilization. To estimate the implied moments, we approximate option prices for a one-month time to maturity based on daily implied
volatility surfaces. Panels A and B report the summary statistics for the levels and first-order differences, respectively.
Panel A. Implied volatility estimates
0.6

0.4

0.

N

o L A P %me

2015 2016 2017 2018 2019 2020 2021 2022 2023

Panel B. Implied skewness estimates
! ‘M i WWW

2015 2016 2017 2018 2019 2020 2021 2022 2023

Panel C. Implied kurtosis estimates
20

=
o

2 AJMWM MMWMWMWMWW b

2015 2016 2017 2018 2019 2020 2021 2022 2023

Fig. 2. Dynamics of implied moment estimates.

Notes: This figure depicts the daily dynamics of implied moment estimates, calculated using the BKM estimators, for a fixed one-month time to
maturity. We do not consider any truncation error correction method for implied moment estimation. Panels A, B, and C depict the dynamics of
implied volatility, skewness, and kurtosis estimates, respectively.

significantly affected by noise factors such as truncation. By comparison, Panels B and C, which depict the implied skewness and
kurtosis estimate dynamics, respectively, reveal that the estimate dynamics are heavily affected by noisy fluctuations. These fluctu-
ations are likely attributable to variations in the degree of truncation, implying that applying DS could be effective.

To evaluate the consistency of daily integration domains, it is essential to examine how their shape varies over time. Fig. 3 il-
lustrates the dynamics of the integration domain’s shape, measured in various ways, throughout the sample period. Panels A and B
show that when the width of the integration domain is measured in nominal price terms, it begins to expand notably from 2020,
coinciding with the onset of the COVID-19 period. This widening is primarily attributed to an increase in implied volatility, as evi-
denced in Panel A of Fig. 2. In contrast, Panel C of Fig. 3, which examines the integration domain in terms of d;, shows that the noisy
fluctuations are more pronounced, indicating that these fluctuations are a key factor driving the variability in the integration domain.
This, in turn, may contribute to the noisy dynamics observed in the implied higher moment estimates, as noted by LRY. We conclude



G. Lee et al. International Review of Economics and Finance 105 (2026) 104799

Panel A. Strike price level

500
400 f”‘$&h ‘
A Jr " 1’ Iy 1 I‘ﬂ‘ﬂ“} ) NP
300 M NN e et Al M%WWM“”ﬁNM
{”rm\’” ot W&MN ﬂ"m‘% MTMM{’H"‘WM\;)WHQ*{Mﬁ”ﬂl ﬁ‘r»‘1 "WJ lvu J[ ‘nl' &’I PJ'{"\’I'M r
200 M Y ” ”\J i“ ‘ uI
100

2015 2016 2017 2018 2019 2020 2021 2022 2023

Panel B. Strike price gap from underlying price

100

5 WWWWNMWW

e s W e o T S it N
Wi 1)1 i al i
-100 (T |
|

-200

2015 2016 2017 2018 2019 2020 2021 2022 2023

Panel C. Black-Scholes d,

‘ WW'I'W“Wv"J'HW‘M WM‘WW ‘MWWMMF"’\"’\'M‘w'tm‘\ Hi g
Y YT e~

-4
2015 2016 2017 2018 2019 2020 2021 2022 2023

Fig. 3. Dynamics of the integration domain

Notes: This figure illustrates the time-series dynamics of the integration domain after data filtering. The minimum and maximum endpoints of the
integration domain are defined as Kiin and Kmax in Panel A, Kpin — S and Kmax — S in Panel B, and d; (Kmin) and d; (Kmax) in Panel C. Here, Kiin and
Knax represent the minimum and maximum strike prices of the integration domain, S is the underlying price, and d; refers to the Black-Scholes d;.

that the dynamics in the shape of the integration domains are noisy and may require treatment to improve stability. Motivated by this
finding, we proceed to apply DS and explore its consequences.

5.2. Stabilizing integration domain

Fig. 4 illustrates the shape of the integration domain, measured in terms of d;, after applying DS at intensity levels of 0 %, 50 %, and
100 %. Panel A shows that with a 0 % intensity level, DS stabilizes the integration domain without discarding observations, but relies
entirely on flat extrapolation up to the sample maximum put and minimum call d; . While this no-exclusion approach avoids data loss,
the assumption of a flat implied-volatility curve, which is significantly different from actual observations in options markets, may
introduce substantial bias into the implied-moment estimates. As demonstrated by Lee and Ryu (2024a), this type of estimation bias
differs fundamentally from truncation errors, and the interplay between these two types of biases may complicate the structure of
implied moment estimation errors. By contrast, Panel C of Fig. 4 reveals that when the DS intensity level is set at 100 %, the effects of
DS differ significantly from those observed in Panel A. At this maximum intensity, DS avoids flat extrapolation entirely and stabilizes
the integration domain solely by discarding additional observations. While this approach simplifies the structure of estimation bias, the
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Fig. 4. Integration domain after domain stabilization

Notes: This figure depicts the dynamics of the integration domain endpoints following the implementation of domain stabilization at varying in-
tensity levels. Under n percent stabilization, OTM option price observations are excluded if their d; values fall below the n'! percentile of the daily
minimum d; values or exceed the (100 — n)th percentile of the daily maximum d; values. Dark-shaded areas represent portions of the integration
domain with observed OTM option prices, while light-shaded areas indicate regions with extrapolated prices. Panels A, B, and C depict the cases for
0 %, 50 %, and 100 % stabilization, respectively.

extreme truncation introduced by DS leads to severe information loss. Panels A and C highlight the trade-off involved in selecting the
DS intensity level. Setting the intensity at a medium level, as shown in Panel B, where the intensity level is set at 50 %, may provide a
reasonable balance between simplifying estimation bias and minimizing information loss.

Exploring how DS alters the time-series dynamics of implied moment estimates is valuable for a deeper understanding of its
consequences. Fig. 5 illustrates the time-series dynamics of implied moment estimates for DS intensity levels of 0 %, 50 %, and 100 %.
The figure reveals two noteworthy findings. First, DS does not significantly impact the implied volatility estimates. Even when the
intensity level is set at 100 %, the pattern of the implied volatility dynamics remains largely unchanged, although the overall level of
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Fig. 5. Dynamics of implied moment estimates after domain stabilization.
Notes: This figure shows the dynamics of implied moment estimates after applying domain stabilization at different intensity levels. Panels A, B, and
C depict the cases for 0 %, 50 %, and 100 % stabilization, respectively.

the estimates decreases to some degree. As suggested by LRY, this negligible impact can be attributed to the property of the BKM
implied volatility estimator, which does not heavily rely on DOTM observations and is, therefore, less affected by truncation. Second,
DS substantially alters implied skewness and kurtosis estimates. The magnitude of the higher moment estimates decreases signifi-
cantly, while the noisy component becomes less pronounced, particularly for the implied kurtosis estimates. These changes likely
reflect the trade-off highlighted in Fig. 4, which suggests that while extensive truncation may effectively reduce noise, it can also
obscure true dynamics in implied moments, especially for higher moments.

The notable features in Fig. 5 can be further validated by examining the changes in the statistical properties of implied moment
estimates as DS intensity levels vary. Table 4 presents the summary statistics of implied moment estimates for DS intensity levels of 0
%, 25 %, 50 %, 75 %, and 100 %. Consistent with Fig. 5, the table shows that DS substantially alters the statistical properties of implied
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Table 4
Moment estimates after domain stabilization.

Panel A. Volatility

Level First-order difference

Intensity 0% 25 % 50 % 75 % 100 % 0% 25 % 50 % 75 % 100 %
Mean 0.167 0.166 0.164 0.162 0.130 0.000 0.000 0.000 0.000 0.000
Std. dev. 0.065 0.065 0.064 0.063 0.048 0.018 0.018 0.017 0.017 0.013
Minimum 0.093 0.093 0.092 0.092 0.073 -0.133 -0.138 -0.139 -0.138 -0.101
25th pct. 0.128 0.127 0.126 0.124 0.100 —0.006 —0.006 —0.006 —0.006 —0.005
Median 0.148 0.147 0.146 0.145 0.117 0.000 0.000 0.000 0.000 0.000
75th pet. 0.183 0.182 0.181 0.179 0.144 0.005 0.005 0.005 0.005 0.004
Maximum 0.710 0.709 0.707 0.701 0.541 0.314 0.313 0.312 0.309 0.233
# of obs. 1703 1703 1703 1703 1703 1702 1702 1702 1702 1702

Panel B. Skewness

Level First-order difference

Intensity 0% 25 % 50 % 75 % 100 % 0% 25 % 50 % 75 % 100 %
Mean -1.072 -1.018 —0.958 —-0.879 —0.307 0.000 0.000 0.000 0.000 0.000
Std. dev. 0.430 0.337 0.288 0.240 0.073 0.217 0.161 0.134 0.110 0.041
Minimum —3.146 —2.234 —2.035 —1.810 —0.556 —1.223 —0.937 —0.768 —0.606 —0.209
25th pet. —1.300 -1.216 -1.123 -1.015 —0.349 -0.114 —0.091 —0.072 —-0.057 —-0.018
Median —-1.018 —0.982 -0.927 —0.852 —-0.314 0.004 0.005 0.006 0.004 —0.001
75th pet. —-0.770 —-0.779 —0.755 —-0.714 -0.275 0.125 0.097 0.076 0.058 0.015
Maximum -0.134 -0.271 —0.308 —-0.332 0.047 1.016 0.723 0.693 0.658 0.410
# of obs. 1703 1703 1703 1703 1703 1702 1702 1702 1702 1702

Panel C. Kurtosis

Level First-order difference

Intensity 0% 25 % 50 % 75 % 100 % 0% 25 % 50 % 75 % 100 %
Mean 6.089 5.289 4.710 4.043 1.095 0.000 0.000 0.000 0.000 0.000
Std. dev. 2.053 1.115 0.792 0.547 0.072 1.273 0.635 0.425 0.276 0.045
Minimum 3.125 2.985 2.796 2.510 0.674 —8.581 —2.851 —1.661 -1.396 —0.281
25th pct. 4.750 4.485 4.144 3.663 1.058 —0.652 —0.392 —-0.239 —0.141 —0.022
Median 5.599 5.107 4.602 3.954 1.092 —-0.037 —0.008 —0.003 0.000 0.000
75th pet. 6.748 5.817 5.123 4.308 1.126 0.617 0.385 0.236 0.140 0.022
Maximum 21.672 10.362 8.091 6.440 1.443 6.381 3.205 2.186 1.435 0.217
# of obs. 1703 1703 1703 1703 1703 1702 1702 1702 1702 1702

Notes: This table provides summary statistics for the implied moment estimates after applying domain stabilization at different intensity levels. 0 %,
25 %, 50 %, 75 %, and 100 % indicate the intensity levels. Panels A, B, and C report the summary statistics for implied volatility, skewness, and
kurtosis estimates, respectively.

higher moments, while it affects implied volatility only modestly, except when the intensity level is 100 %. The table also shows that
DS substantially influences the distribution of both the levels and first-order differences of implied skewness and kurtosis, including the
higher moments of these distributions. Notably, intensive DS tends to make the distribution of higher moment estimates less skewed
and less leptokurtic, provided the intensity level is below 100 %. This tendency implies that DS can help mitigate the impact of outliers
in implied moment estimates, although excessive truncation may lead to unintended consequences.

The changes in statistical properties due to DS can also be examined by analyzing the correlations across implied moment estimates
and the underlying price, as demonstrated in LRY. Table 5 presents the correlation coefficient estimates between the underlying log
price and the implied moment estimates, with and without DS applied, and for intensity levels of 0 %, 25 %, 50 %, 75 %, and 100 %.
The table shows that DS significantly impacts the correlations between the underlying log price and the implied moment estimates,
both in terms of levels and first-order differences. The correlation between the underlying log price and the implied higher-moment
estimates becomes more pronounced as DS is applied and the intensity level increases, except when the intensity level is set to 100 %. A
similar pattern is observed in the correlations of first-order differences, suggesting that the dynamics of implied higher moments
become more closely linked to underlying log returns as DS is applied more intensively.

The empirical results thus far demonstrate that DS and its intensity level significantly influence the dynamics and statistical
properties of implied moment estimates, suggesting that the choice of intensity level is a critical factor when applying DS. To gain
deeper insights into selecting the optimal intensity level, we investigate how effectively DS enhances the informativeness of implied
moment estimates under various intensity levels. Specifically, we first examine the concurrent explanatory power of the estimates for
underlying log returns, followed by a series of in-sample and out-of-sample tests to evaluate their predictive and forecasting
performance.

5.3. Contemporaneous relationship
Table 6 presents the regression results for the model specified in Equation (9), which tests the contemporaneous explanatory power
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Panel A. No stabilization

Level First-order difference

In(S) VOL SKEW KURT Aln(S) AVOL ASKEW AKURT
In(S) 1.00 Aln(S) 1.00
VOL 0.05%* 1.00 AVOL —0.63%** 1.00
SKEW 0.04* i 1.00 ASKEW 0.10%** —0.25%** 1.00
KURT 0.03 * 1.00 AKURT 0.00 0.14%** —0.86%** 1.00
Panel B. 0 % stabilization

Level First-order difference

In(S) VOL SKEW KURT Aln(S) AVOL ASKEW AKURT
In(S) 1.00 Aln(S) 1.00
VoL 0.04* 1.00 AVOL —0.64%** 1.00
SKEW 0.07%** —0.39%** 1.00 ASKEW 0.20%** —0.29%%* 1.00
KURT —0.01 0.20%** —0.88%** 1.00 AKURT —0.04* 0.12%** —0.88%*** 1.00
Panel C. 25 % stabilization

Level First-order difference

In(S) VOL SKEW KURT Aln(S) AVOL ASKEW AKURT
In(S) 1.00 Aln(S) 1.00
VOL 0.04* 1.00 AVOL —0.64%*** 1.00
SKEW 0.09%** —0.40%** 1.00 ASKEW 0.27%** —0.33%** 1.00
KURT —-0.02 0.247%* 1.00 AKURT —0.12%%* 0.17%** —0.87%** 1.00
Panel D. 50 % stabilization

Level First-order difference

In(S) VOL SKEW KURT Aln(S) AVOL ASKEW AKURT
In(S) 1.00 Aln(S) 1.00
VoL 0.04* 1.00 AVOL —0.64%** 1.00
SKEW 0.11%** —0.41%** 1.00 ASKEW 0.30%** —0.34%%* 1.00
KURT —0.03 0.25%%* —0.87%%* 1.00 AKURT —0.15%** 0.18%** —0.85%** 1.00
Panel E. 75 % stabilization

Level First-order difference

In(S) VOL SKEW KURT Aln(S) AVOL ASKEW AKURT
In(S) 1.00 Aln(S) 1.00
VoL 0.04* 1.00 AVOL —0.64*** 1.00
SKEW 0.12%** —0.40%** 1.00 ASKEW 0.32%*x —0.35%** 1.00
KURT —0.04* 0.25%%* —0.86*** 1.00 AKURT —0.17%** 0.18%** —0.82%** 1.00
Panel F. 100 % stabilization

Level First-order difference

In(S) VoL SKEW KURT Aln(S) AVOL ASKEW AKURT
In(S) 1.00 Aln(S) 1.00
VOL 0.05%* 1.00 AVOL —0.65*" 1.00
SKEW 0.29%** 0.15%** 1.00 ASKEW 0.11%** —0.08*** 1.00
KURT —0.05** 0.02 —0.60%** 1.00 AKURT —0.08%** 0.01 —0.57%** 1.00

Notes: This table presents the estimated Pearson correlation coefficients among the log price, implied volatility, implied skewness, and implied
kurtosis, which are denoted as In(S), VOL, SKEW, and KURT, respectively. Panels A-F report the correlation coefficient estimates for the cases of no
stabilization, 0 %, 25 %, 50 %, 75 %, and 100 % stabilization, respectively. ***, **, and * indicate statistical significance at the 1 %, 5 %, and 10 %
levels, respectively.

of implied moment estimate levels on the underlying log price level. Since we employ Newey-West standard errors to address residual
autocorrelation and heteroskedasticity, issues identified through Breusch-Godfrey and Breusch-Pagan tests conducted during OLS
estimation, it is inappropriate to rely solely on R? for comparing goodness-of-fit across models. To enhance robustness in evaluating
model fit, we additionally calculate Akaike Information Criterion (AIC) values. The results reveal two noteworthy findings. First, the
explanatory power of the model, as measured by the goodness-of-fit using AIC, increases as DS is applied and the intensity level rises.
Second, the statistical significance of the coefficient estimate, measured by t-statistics, increases monotonically with higher DS in-
tensity for the implied skewness estimate, though this pattern is not observed for the other moments. The increase in the explanatory
power suggests that DS enhances the explanatory power of implied moment estimates primarily through the implied skewness esti-
mate. Overall, the regression results indicate that the levels of implied moment estimates explain the underlying price level more
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Table 6
Explanatory power of implied moments for underlying log price: Levels.
No 0% 25% 50 % 75 % 100 %
VOL(t) 0.294 0.324 0.360 0.361 0.360 —0.042
(0.91) (1.03) (1.17) (1.17) (1.43) (-0.13)
SKEW(t) 0.134%** 0.151%** 0.229%** 0.255%** 0.287%** 0.869***
(2.63) (2.80) (3.33) (3.40) (4.20) (4.81)
KURT(t) 0.027%** 0.025%** 0.054%** 0.068*** 0.085%** 0.422%%*
(2.87) (2.61) (2.98) (2.89) (3.27) (2.88)
Intercept 5.641%** 5.650%*** 5.583%** 5.559%** 5.542%** 5.505%**
(125.27) (122.01) (94.09) (80.61) (82.40) (44.47)
# of obs. 1703 1703 1703 1703 1703 1703
Unadjusted R* 0.031 0.033 0.044 0.045 0.047 0.104
AIC Value —1474.3 —1494.2 —1496.0 —1499.0 —1604.6
Diff. —4.1 —24.0 —25.8 —28.8 —134.4
BG 1679.1%** 1675.0%** 1675.4%** 1675.3%** 1640.5%**
BP 9. 8. 7.3 5.5%* 43.5%*

Notes: This table presents the regression results of the underlying log price on the levels of implied moments, using domain stabilization at intensity
levels of 0, 25, 50, 75, and 100 percent. The dependent variable, InS(t), represents the natural logarithm of the underlying index on day t. VOL(t),
SKEW(t), and KURT(t) denote the daily levels of implied volatility, skewness, and kurtosis estimates on day t, respectively. Newey-West standard
errors are employed to address residual autocorrelation and heteroskedasticity, with a lag length of nine selected according to the Newey-West rule of
thumb. The difference in information criteria (Diff.) reflects the variation in OLS-based Akaike information criterion (AIC) values relative to the no
stabilization case. The Breusch-Godfrey (BG) and Breusch-Pagan (BP) tests report Chi-square statistics for testing autocorrelation and hetero-
skedasticity for OLS estimation, respectively. t-statistics are presented in parentheses. *** and ** indicate statistical significance at the 1 % and 5 %
levels, respectively.

effectively when DS is applied and the intensity level increases.

Table 7 summarizes the regression results for the model specified in Equation (10), which tests the contemporaneous explanatory
power of the first-order differences of implied moment estimates on the underlying log returns. The results highlight two noteworthy
findings. First, while DS improves the model’s explanatory power, the degree of improvement plateaus when the DS intensity level
exceeds 25 %. This finding suggests that the optimal DS intensity level may vary depending on the estimation objective and market
conditions, and it does not necessarily need to be set at 100 %, consistent with the findings of LRY. Second, in contrast to the re-
lationships observed for levels, the first-order differences of the implied volatility estimate show a stronger and more significant
relationship with log returns compared to higher-moment estimates. This can be attributed to the asymmetric volatility phenomenon
documented in several prior studies (Bekaert & Wu, 2000; Engle & Mistry, 2014). The enhancement in the explanatory power of
implied moment estimates is evident in both levels and first-order differences. However, the magnitude and consistency of this

Table 7
Explanatory power of implied moments for underlying log price: First-order differences.

No 0% 25% 50 % 75 % 100 %

AVOL(t) —0.472%** —0.408 —0.410%*** —0.415%** —0.423* —0.600%**
(-19.20) (-16.88) (-16.39) (-16.35) (-16.43) (-19.06)

ASKEW(t) 0.003 0.015%** 0.018%*** 0.018%*** 0.018%*** 0.009
(0.90) (3.96) (3.52) (3.13) (2.65) (0.70)

AKURT(t) 0.001** 0.002%** 0.004*** 0.004** 0.003 —0.016**
(2.54) (4.31) (3.28) (2.37) (1.31) (-2.11)

Intercept 0.000 0.000 0.000 0.000 0.000 0.000
(0.99) (0.99) (0.99) (0.99) (1.00) (1.00)

# of obs. 1702 1702 1702 1702 1702 1702

Unadjusted R? 0.410 0.422 0.423 0.423 0.423 0.423

AIC Value —11090.4 -11126.4 —11129.0 -11128.7 -11129.0 -11127.9

Diff. 0.0 —36.0 —38.6 —38.3 —38.6 -37.4
BG 10.9* 11.4%* 11.1%* 11.2%* 11.4%* 11.2%*
BP 1.1 0.8 0.5 0.8 1.1 12.0%**

Notes: This table presents the regression results of the underlying log return on the first-order differences of implied moments, using domain sta-
bilization at intensity levels of 0, 25, 50, 75, and 100 percent. The dependent variable, AlnS(t), represents the log return of the underlying index on
day t. AVOL(t), ASKEW(t), and AKURT(t) denote the daily first-order differences of implied volatility, skewness, and kurtosis estimates on day ¢,
respectively. Newey-West standard errors are employed to address residual autocorrelation and heteroskedasticity, with a lag length of nine selected
according to the Newey-West rule of thumb. The difference in information criteria (Diff.) reflects the variation in OLS-based Akaike information
criterion (AIC) values relative to the no stabilization case. The Breusch-Godfrey (BG) and Breusch-Pagan (BP) tests report Chi-square statistics for
testing autocorrelation and heteroskedasticity for OLS estimation, respectively. t-statistics are presented in parentheses. ***, ** and * indicate
statistical significance at the 1 %, 5 %, and 10 % levels, respectively.
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enhancement are less pronounced for first-order differences compared to levels.

5.4. In-sample and out-of-sample return prediction

Table 8 presents the in-sample test results for the model specified by Equation (11), which evaluates the predictive accuracy of
implied moment dynamics on underlying log returns. The results reveal three noteworthy findings. First, the predictive ability of the
model is enhanced by DS when the intensity level is appropriately chosen. Specifically, the goodness-of-fit, measured by the AIC value,
improves when DS is applied at intermediate intensity levels. In contrast, AIC tends to increase when the intensity level is either too
low (0 % or 25 %) or too high (100 %). Second, when DS enhances the predictive ability of implied moment estimates, the coefficient
estimate for implied kurtosis is statistically significant at the 10 % level, whereas the estimates for implied volatility, implied skewness,
and lagged returns are statistically insignificant. This finding contrasts with LRY, which demonstrates the statistical significance of
implied skewness estimates only. This difference suggests that the overall price levels of DOTM options, relative to near-the-money
options, contain distinct information in the KOSPI200 options market. This insight contributes to the existing literature, which pri-
marily focuses on the differences between OTM put and call markets in Korea (Ryu et al., 2021; Ryu & Yang, 2018; Ryu & Yu, 2021).
Third, although an enhanced predictive ability is observed when DS is applied at an appropriate intensity level, the degree of
enhancement, as well as the explanatory power, remains modest compared to LRY, which examines the S&P500 index market. The
results in Table 8 suggest that both the increases in R? and decreases in AIC are relatively minor. Overall, the regression results indicate
that DS moderately enhances the in-sample predictive power of implied moment estimates for underlying returns, particularly when
the intensity level is chosen appropriately. However, the observed enhancement is less significant compared to the findings from LRY.
We further investigate the reason for the less significant information content of implied moment estimates and the impact of DS in the
KOSPI200 options market in Sections 5.5 and 5.6.

We evaluate the out-of-sample forecasting performance of implied moment estimates on underlying log returns using the model
specified in Equation (11). To assess the magnitude of improvement in out-of-sample return forecasting ability, we calculate the R,
statistic, as proposed by Campbell and Thompson (2008), which is defined as follows:

Ros=1- {Zfl(n—rﬁf} / {Zfl(n—r—f} 12)

where T is the number of samples in the out-of-sample forecast period, 7; is the fitted value derived from a predictive regression
estimated through the rolling window ending at time t — 1, and 7; is the benchmark return for the rolling window, defined as the
historical average return. A positive R3; value indicates that the predictive regression produces a lower mean-squared prediction error
than the benchmark return. We evaluate the model using sixteen rolling window lengths, ranging from five to eighty months, with five-
month intervals.

Table 8
In-sample return predictive ability of implied moments.
No 0% 25 % 50 % 75 % 100 %
AlnS(t-1) 0.021 0.007 0.003 0.003 0.003 —0.002
(0.61) (0.23) (0.10) (0.11) (0.10) (-0.05)
AVOL(t-1) —0.014 —0.033 —0.030 —0.029 —0.029 —0.038
(-0.36) (-0.76) (-0.65) (-0.64) (-0.65) (-0.70)
ASKEW(t-1) —0.007* —0.006 —0.002 0.000 0.002 —0.007
(-1.76) (-1.51) (-0.33) (0.08) (0.33) (-0.87)
AKURT(t-1) —0.001 —0.001 0.001 0.002* 0.004* 0.010
(-1.49) (-1.18) (1.12) (1.84) (1.86) (0.98)
Intercept 0.000 0.000 0.000 0.000 0.000 0.000
(0.74) (0.76) (0.76) (0.76) (0.76) (0.76)
# of obs. 1701 1701 1701 1701 1701 1701
Unadjusted R* 0.006 0.004 0.006 0.007 0.007 0.004
AIC Value —10193.9 —10189.9 —10193.4 —10195.6 —10195.4 —10190.5
Diff. 0.0 4.0 0.5 -1.7 -1.5 3.4
BG 11.3%* 14.9%** 12.4%* 12.3%* 12.2%* 19.0%**
BP 37.5%%* 60.0%** 52.3%** 61.0%** 75.8%%* 70.8%%*

Notes: This table presents the regression results of the underlying log return on the first-order differences of implied moments, using domain sta-
bilization at intensity levels of 0, 25, 50, 75, and 100 percent. The dependent variable, AlnS(t), represents the log return of the underlying index on
day t. The lagged log-return, AlnS(t — 1), is included as an independent variable to control for return reversals. AVOL(t — 1), ASKEW(t — 1), and
AKURT(t—1) denote the lagged daily first-order differences of implied volatility, skewness, and kurtosis estimates, respectively. Newey-West
standard errors are employed to address residual autocorrelation and heteroskedasticity, with a lag length of nine selected according to the
Newey-West rule of thumb. The difference in information criteria (Diff.) reflects the variation in OLS-based Akaike information criterion (AIC) values
relative to the no stabilization case. The Breusch-Godfrey (BG) and Breusch-Pagan (BP) tests report Chi-square statistics for testing autocorrelation
and heteroskedasticity for OLS estimation, respectively. t-statistics are presented in parentheses. ***, ** and * indicate statistical significance at the 1
%, 5 %, and 10 % levels, respectively.
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Table 9 summarizes the out-of-sample test results, revealing three notable features. First, when DS is not applied, incorporating
implied moments does not enhance out-of-sample return forecasting, regardless of the rolling window length. The first column of R%¢
statistics indicates that the values are consistently negative when DS is not applied. As noted in the interpretation of Table 8, this result
may be attributed to the dominance of retail investors in the KOSPI200 options market. Second, when DS is applied with an appro-
priate intensity level and rolling window length, out-of-sample forecasting performance improves with the inclusion of implied mo-
ments. The second to fourth R2; columns demonstrate that the statistic becomes positive in most cases when the rolling window length
is set to 75 or 80 months. This result implies that DS can make the originally uninformative implied moment estimates informative.
Third, even when DS does not significantly enhance forecasting performance, it still improves the forecasting ability of implied
moment estimates under suboptimal intensity levels. Table 9 shows that, when the intensity level is set to 0 % or 100 %, R%¢ values still
exceed the maximum R% observed in the no-stabilization case when the rolling window length is 70 months or longer. This increase in
R2 suggests that the lack of informativeness in implied moment estimates is primarily due to the limited information content of the
moments themselves, which DS can enhance under various circumstances. In summary, the results suggest that both the return
predictive accuracy and out-of-sample forecasting performance of implied moment estimates are enhanced when DS is employed at an
appropriate intensity level.

Our results show that, with an adequately chosen intensity level, DS improves the explanatory, predictive, and forecasting power of
implied moments for underlying log returns. These findings also highlight a strong association between implied moments and both the
level and dynamics of the underlying price, an association that becomes more apparent when DS is applied. Although the results are
somewhat less pronounced compared to those reported in LRY, this difference can, at least partially, be attributed to the higher rate of
retail trader participation in the KOSPI200 options market. Based on this reasoning, we argue that this study provides evidence that DS
consistently enriches the information content of implied moment estimates across multiple markets.

5.5. Subperiods and volatility regimes

We next divide the data into calendar subperiods and volatility states to learn whether our findings are shaped by period-specific
factors. The subperiods focus on two structural changes in the KOSPI200 index options market, namely the contract size adjustment
and the later introduction of weekly options, so that we can isolate any influence these events may have on DS. The contract multiplier
was reduced from KRW 500,000 to KRW 250,000 on March 27th, 2017, and the Korea Exchange began listing weekly options on
September 23rd, 2019. The smaller contract likely widened retail participation, and the weekly listings concentrated trading near
expiration, both of which could change quote availability and the noise in implied moment estimates. We therefore split the sample at
these dates and repeat the analysis within each segment to see how these market-specific changes affect the performance of DS.

Table 10 presents the regression results for the contemporaneous explanatory power of implied moment estimate levels on the
underlying log price level, as in Table 6, for each subperiod. This table demonstrates an interesting difference before and after the
contract size change. Although Panel A shows that DS does not improve contemporaneous explanatory power in the period before the
contract size reduction, Panels B and C show that the procedure becomes effective once market participation broadens. This pattern

Table 9
Out-of-sample return forecasting ability of implied moments after stabilization.
Rolling window R%¢ (%)
length
No 0% 25% 50 % 75 % 100 %

5 months -9.79 —13.96 -13.40 —13.12 —13.51 —13.06
10 months —-4.77 —7.66 —7.86 -7.76 —7.96 —6.58
15 months -3.97 —6.07 —5.94 —5.75 —-5.87 —4.69
20 months -2.36 -4.21 —4.12 —4.01 —4.11 -3.17
25 months -1.93 -3.40 -3.09 —2.98 —3.08 —2.65
30 months —-1.98 —2.80 —-2.37 —-2.23 —-2.33 -1.95
35 months —1.64 -2.12 -1.74 -1.61 -1.74 -1.62
40 months -1.53 -1.91 -1.62 —1.52 —1.66 -1.51
45 months -1.27 -1.59 -1.33 -1.20 -1.26 -1.27
50 months -0.93 -1.29 -1.05 —0.88 —-0.91 -1.05
55 months -1.01 -1.35 —1.10 —0.87 —0.86 -1.03
60 months —0.86 -1.00 —0.53 —0.36 —0.40 -0.71
65 months -1.33 -1.16 —0.45 -0.25 —0.31 -0.57
70 months —-1.00 —0.66 —0.28 -0.21 —0.25 —0.38
75 months -1.15 —0.56 -0.21 0.11 0.05 —0.53
80 months —-2.29 —0.84 0.07 0.45 0.59 —0.14

Notes: This table presents the results of the out-of-sample return forecasting ability test at intensity levels of 0, 25, 50, 75, and 100 percent. Following
Campbell and Thompson (2008), we report the R% statistic, which is defined as R =1 — [ZLI (re — ﬁ)z} / {Z;(
value derived from a predictive regression estimated through the rolling window that ends at time t — 1, and 7; is the benchmark value for the rolling

window. Benchmark value is defined as the historical mean log return. A positive value of R% indicates that the predictive regression produces a
lower mean squared prediction error than the benchmark value.

- rﬁ)z} , where 1, is the fitted
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Table 10
Explanatory power of implied moments by subperiod: Log price levels.

Panel A. Subperiod #1: Before contract size change

No 0% 25 % 50 % 75 % 100 %
VOL(®) —1.015%%** —0.957%** —1.019%** —1.069%** —1.119%** —1.506%**
(-8.67) (-7.22) (-7.09) (-7.14) (-7.32) (-10.97)
SKEW(t) 0.036%* 0.041%* 0.050% 0.050 0.046 —0.016
(2.13) (2.10) (1.88) (1.61) (1.31) (-0.35)
KURT(t) 0.027%** 0.011%** 0.019%** 0.024%* 0.029* 0.034
(3.33) (3.06) (2.60) (1.80) (0.61)
Intercept 5.638%** 5.629%%* 5.610%** 601 %** 5.598%** 5.642%%*
(318.96) (289.52) (209.70) (166.36) (133.21) (105.50)
# of obs. 474 474 474 474 474 474
Unadjusted R? 0.536 0.533 0.532 0.528 0.522 0.514
AIC Value —1916.1 -1912.7 -1911.6 —1907.8 —1902.0 —1893.6
Diff. 0.0 3.4 4.5 8.3 14.1 22.5
BG 405.77%%* 406.2%%* 402.2%%* 403.2%** 406.0%** 413.77%%*
BP 2.8% 1.1 0.1 0.0 0.0 1.8
Panel B. Subperiod #2: After contract size change, before weekly options listing
No 0% 25 % 50 % 75 % 100 %
VOL(®) —1.414%%** —1.415%** —1.138%** —1.119%** —1.161%** —1.739%**
(-4.63) (-4.46) (-3.44) (-3.36) (-3.46) (-5.05)
SKEW(t) —0.001 —0.005 0.070 0.094 0.107 0.192%
(-0.04) (-0.17) (1.40) (1.61) (1.59) (1.91)
KURT(t) 0.004 0.003 0.030%* 0.046%* 0.063** 0.249%*
(0.61) (0.46) (2.02) (2.27) (2.20) (2.19)
Intercept 5.864%** 5.863%** 5.760%** 5.715%%* 5.684%** 5.666%**
(128.60) (116.61) (83.20) (70.97) (60.98) (45.50)
# of obs. 493 493 493 493 493 493
Unadjusted R? 0.251 0.254 0.290 0.303 0.308 0.305
AIC Value -1276.3 —1278.2 —1302.5 -1311.6 —1315.2 —1313.1
Diff. 0.0 —26.2 —35.3 -38.9 —36.8
BG 471. 464.8%** 463.5%** 464.4%*%* 464.2%%*
BP 7.5% 1.6 0.8 0.7 6.1%*
Panel C. Subperiod #3: After weekly options listing
No 0% 25 % 50 % 75 % 100 %
VOL(t) —0.885%%** —0.788%*x —0.779%** —0.794%%* —0.818%%* —1.128%**
(-5.80) (-4.66) (-4.60) (-4.55) (-4.51) (-6.05)
SKEW(t) —0.007 0.048 0.161% 0.193* 0.212* 0.127
(-0.12) (0.67) (1.76) (1.99) (1.92) (0.63)
KURT(t) 0.014 0.022 0.073%** 0.103*** 0.138*** 0.531%**
(0.97) (1.40) 2.749) (2.98) (3.00) (2.55)
Intercept 5.904%** 5.885%** 5.749%%* 5.673%%* 5.604%** 5.447%%*
(119.09) (110.61) (72.00) (58.11) (47.16) (26.91)
# of obs. 737 737 737 737 737 737
Unadjusted R* 0.189 0.190 0.229 0.234 0.231 0.205
AIC Value —892.5 —893.5 —929.8 —934.5 —931.4 —907.3
Diff. 0.0 -1.0 —-37.3 —42.0 —-38.9 —14.8
BG 715.9%** 715.4%%* 704.4%%* 704.3%%* 706.47%* 709.8%**
BP 0.3 0.3 0.0 0.1 0.0 0.6

Notes: This table presents the regression results of the underlying log price on the levels of implied moments, using domain stabilization at intensity
levels of 0, 25, 50, 75, and 100 percent. The dependent variable, InS(t), represents the natural logarithm of the underlying index on day t. VOL(t),
SKEW(t), and KURT(t) denote the daily levels of implied volatility, skewness, and kurtosis estimates on day t, respectively. Newey-West standard
errors are employed to address residual autocorrelation and heteroskedasticity, with a lag length of five for Panels A and B and six for Panel C, selected
according to the Newey-West rule of thumb. The difference in information criteria (Diff.) reflects the variation in OLS-based Akaike information
criterion (AIC) values relative to the no stabilization case. The Breusch-Godfrey (BG) and Breusch-Pagan (BP) tests report Chi-square statistics for
testing autocorrelation and heteroskedasticity for OLS estimation, respectively. t-statistics are presented in parentheses. ***, **, and * indicate
statistical significance at the 1 %, 5 %, and 10 % levels, respectively.

suggests that a wider investor base may lead to more active and informed trading in OTM options, which makes truncation treatment
more valuable for extracting information from these contracts. However, this interpretation should be made with caution, and the
impact of truncation needs to be examined from several perspectives, as in the earlier sections.

Table 11 presents the regression results for the contemporaneous relationship between returns and the first differences of implied
moments as in Table 7. The implications of the results are similar to those in Table 10. While Panel A reveals that DS does not improve
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contemporaneous explanatory power before the contract size reduction, Panels B and C show that explanatory power increases after
the reduction. This increase, however, levels off when the intensity is stronger than about 50-75 percent, suggesting that a moderate
balance between trimming and extrapolation remains optimal. Overall, this evidence confirms that domain stabilization meaningfully
strengthens the contemporaneous link between implied moments and returns only after the investor composition broadens.

Table 12 reports the in-sample return predictability regressions and yields conclusions that differ from those in Tables 10 and 11.

Table 11
Explanatory power of implied moments for underlying log price: First-order differences, before and after contract size change.

Panel A. Subperiod #1: Before contract size change

No 0% 25 % 50 % 75 % 100 %
AVOL(t) —0.414%** —0.365%** —0.382%** —0.391%** —0.401%** —0.539%**
(-8.43) (-6.90) (-7.09) (-7.34) (-7.67) (-8.81)
ASKEW(t) 0.004 0.010%** 0.006 0.003 0.000 —0.008
(1.41) (2.00) (0.99) (0.52) (0.00) (-0.63)
AKURT(t) 0.002%** 0.002%** 0.002 0.001 —0.001 —0.022%**
(3.36) (3.10) (1.33) (0.49) (-0.35) (-2.02)
Intercept 0.000 0.000 0.000 0.000 0.000 0.000
(0.99) (1.00) (1.33) (0.98) (0.98) (0.98)
# of obs. 473 473 473 473 473 473
Unadjusted R? 0.406 0.397 0.381 0.380 0.381 0.392
AIC Value —3391.3 —3384.2 —3372.0 —3371.0 —3372.1 —3383.6
Diff. 0.0 7.1 19.3 20.3 19.2 7.7
BG 10.4* 10.1* 9.8* 10.1* 10.7* 10.5*
BP 0.5 0.0 2.0 3.2* 3.6* 9.1%¥*

Panel B. Subperiod #2: After contract size change, before weekly options listing

No 0% 25% 50 % 75 % 100 %
AVOL(t) —0.424%** —0.357*** —0.353%*** —0.357%** —0.366%** —0.569%**
(-6.10) (-4.93) (-4.80) (-4.80) (-4.81) (-6.54)
ASKEW(t) 0.005 0.016%* 0.023** 0.023** 0.022** 0.008
(1.14) (2.57) (2.49) (2.35) (2.01) (0.33)
AKURT(t) 0.001* 0.002%** 0.004** 0.004* 0.003 —0.015
(1.88) (2.75) (2.33) (1.87) (0.95) (-1.01)
Intercept 0.000 0.000 0.000 0.000 0.000 0.000
(-0.05) (-0.04) (-0.04) (-0.04) (-0.05) (-0.05)
# of obs. 493 493 493 493 493 493
Unadjusted R* 0.262 0.291 0.297 0.296 0.295 0.270
AIC Value —3339.2 —3358.7 —3362.8 —3362.5 —3361.6 —3344.0
Diff. 0.0 -19.5 —-23.6 -23.3 —22.4 —4.8
BG 2.7 1.4 1.5 1.6 1.9 3.2
BP 0.4 6.9%** 13.2%%* 13.4%%* 12.7%%* 0.1

Panel C. Subperiod #3: After weekly options listing

No 0% 25 % 50 % 100 %
AVOL(t) —0.494%** —0.418%*** —0.417%*** —0.420%** —0.622%**
(-17.46) (-14.94) (-14.43) (-14.13) (-13.94) (-16.95)
ASKEW(t) 0.001 0.022%** 0.030%** 0.032%** 0.034%** 0.032*
(0.21) (3.19) (3.07) (2.85) (2.66) (1.66)
AKURT(t) 0.001 0.003*** 0.006** 0.007** 0.007 —0.013
(1.02) (2.94) (2.53) (2.00) (1.50) (-0.96)
Intercept 0.000 0.000 0.000 0.000 0.000 0.000
(0.82) (0.79) (0.79) (0.80) (0.80) (0.83)
# of obs. 737 737 737 737 737 737
Unadjusted R? 0.454 0.471 0.476 0.477 0.478 0.475
AIC Value —4521.1 —4544.9 —4551.2 —4552.7 —4554.3 —4549.6
Diff. 0.0 —23.8 -30.1 -31.6 —33.2 —28.5
BG 7.6 7.6 7.9 7.8 7.9 7.6
BP 0.3 1.9 1.1 1.3 1.5 9.4%**

Notes: This table presents the regression results of the underlying log return on the first-order differences of implied moments, using domain sta-
bilization at intensity levels of 0, 25, 50, 75, and 100 percent. The dependent variable, AlnS(t), represents the log return of the underlying index on
day t. AVOL(t), ASKEW(t), and AKURT(t) denote the daily first-order differences of implied volatility, skewness, and kurtosis estimates on day ¢,
respectively. Newey-West standard errors are employed to address residual autocorrelation and heteroskedasticity, with a lag length of five for Panels
A and B and six for Panel C, selected according to the Newey-West rule of thumb. The difference in information criteria (Diff.) reflects the variation in
OLS-based Akaike information criterion (AIC) values relative to the no stabilization case. The Breusch-Godfrey (BG) and Breusch-Pagan (BP) tests
report Chi-square statistics for testing autocorrelation and heteroskedasticity for OLS estimation, respectively. t-statistics are presented in paren-
theses. ***, ** ‘and * indicate statistical significance at the 1 %, 5 %, and 10 % levels, respectively.
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Table 12
In-sample return predictive ability of implied moments.

International Review of Economics and Finance 105 (2026) 104799

Panel A. Subperiod #1: Before contract size change

No 0% 25 % 50 % 75 % 100 %
AlnS(t-1) —0.037 —0.036 —0.044 —0.043 —0.043 —0.047
(-0.78) (-0.77) (-0.96) (-0.92) (-0.92) (-0.99)
AVOL(t-1) 0.014 —0.019 —-0.019 —-0.019 —0.021 0.000
(0.31) (-0.76) (-0.43) (-0.44) (-0.47) (0.00)
ASKEW(t-1) —0.002 —0.008** —0.006 —0.005 —0.005 —0.012
(-0.75) (-2.06) (-1.12) (-0.86) (-0.76) (-1.01)
AKURT(t-1) 0.000 —0.001 0.000 0.001 0.001 —0.001
(-0.09) (-1.37) (0.03) (0.43) (0.45) (-0.05)
Intercept 0.000 0.000 0.000 0.000 0.000 0.000
(0.79) (0.79) (0.79) (0.79) (0.78) (0.81)
# of obs. 472 472 472 472 472 472
Unadjusted R? 0.007 0.013 0.014 0.015 0.013 0.002
AIC Value —-3138.9 -3141.3 —3142.2 —3142.6 -3141.7 —3138.6
Diff. 0.0 -2.4 -3.3 -3.7 -2.8 0.3
BG 3.1 2.1 2.6 3.1 4.1 3.8
BP 2.0 0.9 0.4 0.0 0.0 1.9
Panel B. Subperiod #2: After contract size change, before weekly options listing
No 0% 25 % 50 % 75 % 100 %
AlnS(t-1) —0.031 -0.027 —0.034 —0.033 —0.030 —0.031
(-0.71) (-0.59) (-0.71) (-0.69) (-0.64) (-0.70)
AVOL(t-1) —-0.070 —0.049 —0.045 —0.052 —-0.057 —0.093
(-1.42) (-1.02) (-0.92) (-1.05) (-1.14) (-1.43)
ASKEW(t-1) —0.003 0.000 0.007 0.007 0.007 0.004
(-0.86) (0.05) (1.03) (0.91) (0.91) (0.33)
AKURT(t-1) 0.000 0.000 0.003* 0.003 0.005* 0.016
(-0.08) (0.67) 1.77) (1.64) (1.75) (1.53)
Intercept 0.000 0.000 0.000 0.000 0.000 0.000
(-0.07) (-0.06) (-0.06) (-0.05) (-0.05) (-0.06)
# of obs. 493 493 493 493 493 493
Unadjusted R? 0.006 0.006 0.012 0.010 0.010 0.008
AIC Value —3183.2 —3182.9 —3186.1 —3185.1 —3185.0 —3184.3
Diff. 0.0 0.3 -2.9 -1.9 -1.8 -1.1
BG 9.0 9.6% 10.4* 10.9% 10.8% 10.2*
BP VA 2.8* 2.0 2.9* 2.8* 3.3*
Panel C. Subperiod #3: After weekly options listing
No 0% 25 % 50 % 75 % 100 %
AlnS(t-1) 0.050 0.028 0.022 0.021 0.020 0.019
(1.049) (0.62) (0.49) (0.46) (0.43) (0.42)
AVOL(t-1) —0.009 —0.032 —0.028 —0.025 —0.024 —0.032
(-0.18) (-0.57) (-0.48) (-0.44) (-0.42) (-0.45)
ASKEW(t-1) —0.016* —0.010 —0.003 0.002 0.004 -0.013
(-1.84) (-1.20) (-0.29) (0.20) (0.44) (-0.72)
AKURT(t-1) —0.002* —0.001 0.001 0.003 0.006 0.013
(-1.87) (-1.21) (0.53) (1.21) (1.26) (0.66)
Intercept 0.000 0.000 0.000 0.000 0.000 0.000
(0.63) (0.63) (0.62) (0.61) (0.61) (0.62)
# of obs. 736 736 736 736 736 736
Unadjusted R* 0.015 0.005 0.006 0.008 0.008 0.006
AIC Value —4077.6 —4070.5 —4070.7 —4072.5 —4072.8 —4070.9
Diff. 0.0 7.1 6.9 5.1 4.8 6.7
BG 6.4 12.8%* 8.6 7.2 7.4 15.1%%*
BP 17.6%** 35.2%%* 44.9%%* 45.2%%* 51.7%%* 41.9%**

Notes: This table presents the regression results of the underlying log return on the first-order differences of implied moments, using domain sta-
bilization at intensity levels of 0, 25, 50, 75, and 100 percent. The dependent variable, AlnS(t), represents the log return of the underlying index on
day t. The lagged log-return, AlnS(t — 1), is included as an independent variable to control for return reversals. AVOL(t — 1), ASKEW(t — 1), and
AKURT(t—1) denote the lagged daily first-order differences of implied volatility, skewness, and kurtosis estimates, respectively. Newey-West
standard errors are employed to address residual autocorrelation and heteroskedasticity, with a lag length of five for Panels A-B and six for Panel
C selected according to the Newey-West rule of thumb. The difference in information criteria (Diff.) reflects the variation in OLS-based Akaike in-
formation criterion (AIC) values relative to the no stabilization case. The Breusch-Godfrey (BG) and Breusch-Pagan (BP) tests report Chi-square
statistics for testing autocorrelation and heteroskedasticity for OLS estimation, respectively. t-statistics are presented in parentheses. ***, ** and
* indicate statistical significance at the 1 %, 5 %, and 10 % levels, respectively.
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Moderate domain stabilization lowers the AIC in the period before the contract size change, indicating stronger return predictability.
However, the added fit declines after the size reduction, and it disappears after the introduction of weekly options. These results
suggest that domain stabilization, although it strengthens contemporaneous relations in Tables 10 and 11, does not maintain its
benefits for return forecasts in the later periods. One possible explanation is that broader retail participation and the growth of very
short maturities allow option prices to adjust more quickly to new information, leaving little lead-lag pattern for DS to uncover.

Overall, the subperiod analysis indicates that the consequence of DS shifts with changes in market structure. Before the contract
size change, DS enhances the return predictability of implied moments while offering little additional insight into their contempo-
raneous relation with the underlying. After the multiplier is halved, and more visibly after weekly options are introduced in 2019,
stabilization instead strengthens the same-day explanatory power of the moments but no longer improves return predictability. These
findings suggest that heavier retail trading and the rising share of short-maturity options compress the daily lead-lag between implied
moments and returns, leaving little one-day-ahead information for our procedure to detect. Across all subperiods, trimming roughly
50-75 % continues to best balance noise reduction and information loss, indicating that DS remains effective even though the specific
facet of price discovery it improves varies with market conditions.

Next, we explore how volatility affects the performance of DS by conducting a set of analyses for different volatility regimes. Using
the sample median of implied volatility estimated without DS, 0.146, we split the data into high and low volatility regimes and es-
timate explanatory and predictive regressions for each group. Table 13 reports the contemporaneous regressions of implied moment
levels on the log index level. The explanatory power increases after DS throughout the high volatility regime, but in the low volatility
regime, such increases can be found only when the intensity level reaches its maximum. This pattern suggests that DS can reveal more
information when market risk is elevated. One possible explanation is that investors trade OTM options more actively during turbulent
periods to manage volatility exposure, which makes those prices more informative. As in the subperiod analysis, however, this

Table 13
Explanatory power of implied moments for the underlying log price in different volatility regimes: Levels.

Panel A. High volatility regime

No 0% 25 % 50 % 100 %
VOL() —0.226 —0.083 —0.049 —0.056 —0.725%**
(-0.85) (-0.36) (-0.22) (-0.26) (-2.77)
SKEW(t) 0.262%** 0.316%** 0.436%** 0.472%** 0.984x**
(3.75) (4.41) (4.56) (4.34) (3.63)
KURT(t) 0.049%** 0.049%** 0.096%** 0.116%** 0.360*
(3.42) (3.57) (3.65) (3.32) (1.67)
Intercept 5.808%** 5.815%** 5.709%** 5.674%** 5.747%***
(114.42) (121.42) (81.37) (64.99) (32.08)
# of obs. 852 852 852 852 852
Unadjusted R* 0.095 0.130 0.147 0.146 0.141
AIC Value —605.4 —639.0 —656.2 —655.1 —649.4
Diff. 0.0 —33.6 -50.8 —49.7 —44.0
BG 822,.1%** 820.0%** 815.1%** 816.0%** 818.0%**
BP 0.5 0.5 0.3 0.5 10.0%**
Panel B. Low volatility regime
No 0 % 25 % 50 % 75 % 100 %
VOL(t) 0.589 0.593 0.662 0.642 0.618 0.052
(0.86) (0.86) (0.97) (0.94) (0.91) (0.07)
SKEW(t) 0.122%** 0.118%*** 0.168*** 0.186%*** 0.210%*** 0.663***
(3.18) (2.85) (3.26) (3.33) (3.40) (4.12)
KURT(t) 0.025%** 0.022%** 0.043%*** 0.056%** 0.075%** 0.383%**
(3.53) (3.01) (3.10) (3.06) (3.04) (3.08)
Intercept 5.569%** 5.563%** 5.506%** 5.480%*** 5.451*** 5.442%**
(64.00) (61.12) (53.77) (50.07) (46.29) (35.69)
# of obs. 851 851 851 851 851 851
Unadjusted R? 0.039 0.030 0.034 0.035 0.036 0.089
AIC Value —1108.8 —1100.4 -1104.3 —1104.9 —1106.1 —1154.5
Diff. 0.0 8.4 4.5 3.9 2.7 —45.7
BG 820.3*** 826.3%** 825.5%** 825.4%** 825.2%** 801.3%**
BP 5.0%* 1.3 2.1 1.7 1.2 24.3%%*

Notes: This table presents the regression results of the underlying log price on the levels of implied moments, using domain stabilization at intensity
levels of 0, 25, 50, 75, and 100 percent. The dependent variable, InS(t), represents the natural logarithm of the underlying index on day t. VOL(t),
SKEW(t), and KURT(t) denote the daily levels of implied volatility, skewness, and kurtosis estimates on day t, respectively. Newey-West standard
errors are employed to address residual autocorrelation and heteroskedasticity, with a lag length of six selected according to the Newey-West rule of
thumb. The difference in information criteria (Diff.) reflects the variation in OLS-based Akaike information criterion (AIC) values relative to the no
stabilization case. The Breusch-Godfrey (BG) and Breusch-Pagan (BP) tests report Chi-square statistics for testing autocorrelation and hetero-
skedasticity for OLS estimation, respectively. t-statistics are presented in parentheses. ***, ** and * indicate statistical significance at the 1 %, 5 %,
and 10 % levels, respectively.
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interpretation remains tentative until the effectiveness of DS is tested with further specifications. Table 14 repeats the exercise with
first differences and delivers a similar message that DS strengthens the contemporaneous link in high volatility markets and yields
limited gains in calm markets unless intensity is set at its highest level.

Table 15 presents in-sample return predictability test results for the two volatility regimes, and their implications contrast with
Table 14. DS is not found to contribute to better return predictability in the high volatility regime, while a modest contribution is
observed when volatility is low. Again, the results suggest that the aspect of the relationship between implied moments and the un-
derlying price that is improved by DS could be determined by specific market conditions. One explanation is that high volatility both
enriches the information in option prices and speeds its incorporation into underlying prices, leaving little lead-lag structure for DS to
uncover, consistent with our subperiod evidence.

The findings in this section show that the effectiveness of DS varies with market conditions. After structural reforms that widen
participation and shorten option maturities, or when volatility is elevated, DS strengthens the contemporaneous link between implied
moments and the underlying. In the earlier subperiod and calmer markets, the same procedure yields only small explanatory gains yet
adds modest forecasting power. These patterns imply that DS refines empirical results by sharpening the information where implied
moments are already informative, which is consistent with the findings of LRY.

5.6. Alternative truncation treatment methods

We next test whether the benefits of DS can be reproduced with other truncation treatment methods. Following LRY, we introduce
domain reduction (DR) and domain symmetrization (DSym) as alternative methods. DR keeps the integration domain in its original
shape but trims it uniformly until the average width of the remaining domain matches that produced by DS at the same intensity. DSym

Table 14
Explanatory power of implied moments for the underlying log price in different volatility regimes: First-order differences.

Panel A. High volatility regime

No 0 % 25 % 50 % 75 % 100 %
AVOL(t) —0.489%** —0.412%** —0.412%** —0.416%** —0.425%** —0.611%**
(-19.07) (-15.29) (-14.70) (-14.56) (-14.59) (-18.57)
ASKEW(t) —0.002 0.017%** 0.022%* 0.023%** 0.022* 0.011
(-0.33) (2.53) (2.26) (2.03) (1.78) (0.59)
AKURT(t) 0.000 0.003%** 0.004* 0.004 0.004 —0.022
(0.45) (2.44) (1.83) (1.33) (0.81) (-1.61)
Intercept 0.000 0.000 0.000 0.000 0.000 0.000
(-0.34) (-0.27) (-0.25) (-0.25) (-0.26) (-0.28)
# of obs. 852 852 852 852 852 852
Unadjusted R* 0.467 0.477 0.480 0.480 0.481 0.483
AIC Value —5242.6 —5258.2 —5262.4 —5263.4 —5264.2 —5267.3
Diff. 0.0 -15.6 -19.8 —20.8 -21.6 —24.7
BG 7.0 6.3 6.4 6.4 6.5 6.8
BP 2.2 1.8 1.3 1.5 2.0 9.8%**
Panel B. Low volatility regime
No 0 % 25 % 50 % 75 % 100 %
AVOL(Y) —0.366%** —0.320 —0.331%** —0.340%** —0.349*
(-5.72) (-5.02) (-5.19) (-5.37) (-5.53)
ASKEW(t) 0.007 0.014%** 0.017%*** 0.016*** 0.015%** 0.011
(3.07) (4.50) (3.83) (3.31) (2.72) (0.85)
AKURT(t) 0.002%** 0.003%** 0.004+** 0.004+** 0.003 —0.010
(4.49) (4.92) (3.82) (2.72) (1.41) (-1.36)
Intercept 0.001*** 0.001*** 0.001*** 0.001%*** 0.001%*** 0.001***
(2.90) (2.99) (2.94) (2.92) (2.91) (2.84)
# of obs. 850 850 850 850 850 850
Unadjusted R? 0.192 0.210 0.203 0.200 0.198 0.187
AIC Value —6039.4 —6058.0 —6051.2 —6047.6 —6045.7 —6034.0
Diff. 0.0 —18.6 -11.8 -8.2 -6.3 5.4
BG 6.0 8.2 6.8 6.5 10.7* 4.5
BP 34.1%%* 53.5%%* 52.4%%x 48.8%** 3.6* 30.7%**

Notes: This table presents the regression results of the underlying log return on the first-order differences of implied moments, using domain sta-
bilization at intensity levels of 0, 25, 50, 75, and 100 percent. The dependent variable, AlnS(t), represents the log return of the underlying index on
day t. AVOL(t), ASKEW(t), and AKURT(t) denote the daily first-order differences of implied volatility, skewness, and kurtosis estimates on day ¢,
respectively. Newey-West standard errors are employed to address residual autocorrelation and heteroskedasticity, with a lag length of six selected
according to the Newey-West rule of thumb. The difference in information criteria (Diff.) reflects the variation in OLS-based Akaike information
criterion (AIC) values relative to the no stabilization case. The Breusch-Godfrey (BG) and Breusch-Pagan (BP) tests report Chi-square statistics for
testing autocorrelation and heteroskedasticity for OLS estimation, respectively. t-statistics are presented in parentheses. ***, ** and * indicate
statistical significance at the 1 %, 5 %, and 10 % levels, respectively.
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Table 15
In-sample return predictive ability of implied moments in different volatility regimes.

Panel A. High volatility regime

No 0% 25 % 50 % 75 % 100 %
AlnS(t-1) 0.040 0.022 0.015 0.015 0.014 0.012
(0.93) (0.52) (0.36) (0.36) (0.34) (0.30)
AVOL(t-1) —-0.017 —0.034 —0.025 —0.021 —0.019 —0.035
(-0.37) (-0.70) (-0.51) (-0.43) (-0.40) (-0.59)
ASKEW(t-1) —0.014* —0.008 0.002 0.007 0.011 0.003
(-1.66) (-1.11) (0.28) (0.95) (1.32) (0.19)
AKURT(t-1) —0.002 —0.001 0.002 0.005%* 0.008%* 0.026
(-1.54) (-0.99) (1.41) (2.20) (2.19) (1.40)
Intercept —0.001 —0.001 —0.001 —0.001 —0.001 —0.001
(-1.22) (-1.19) (-1.21) (-1.22) (-1.23) (-1.21)
# of obs. 851 851 851 851 851 851
Unadjusted R* 0.011 0.004 0.007 0.010 0.011 0.007
AIC Value —4707.7 —4702.1 —4704.7 —4707.3 —4707.7 —4704.1
Diff. 0.0 5.6 3.0 0.4 0.0 3.6
BG 5.0 7.8 4.5 4.2 4.3 7.1
BP 17.7%** 32.4%%x 29.1%** 31.7%%* 37.5%%* 35.7%%*
Panel B. Low volatility regime
No 0% 25 % 50 % 75 % 100 %
AlnS(t-1) —0.004 0.000 —-0.010 0.000 0.000 —0.001
(-0.10) (0.01) (-0.03) (-0.01) (0.01) (-0.04)
AVOL(t-1) 0.035 0.029 0.027 0.024 0.022 0.045
(1.01) (0.85) (0.79) (0.69) (0.61) (0.99)
ASKEW(t-1) —0.002 —-0.003 —0.002 —0.003 —0.003 —-0.012
(-0.99) (-1.07) (-0.56) (-0.57) (-0.59) (-1.55)
AKURT(t-1) 0.000 0.000 0.000 0.001 0.001 —0.001
(-0.47) (-0.43) (0.33) (0.42) (0.44) (-0.16)
Intercept 0.001*** 0.001 *** 0.001*** 0.001*** 0.001*** 0.001***
(4.31) (4.31) (4.31) (4.31) (4.30) (4.31)
# of obs. 849 849 849 849 849 849
Unadjusted R? 0.006 0.007 0.008 0.008 0.007 0.007
AIC Value —5853.1 —5854.1 —5855.1 —5854.9 —5854.3 —5854.5
Diff. 0.0 -1.0 -2.0 -1.8 -1.2 -1.4
BG 4.4 3.9 3.8 3.9 3.9 3.8
BP 4.5%* 4.5%* 2.5 1.6 1.3 8.2%**

Notes: This table presents the regression results of the underlying log return on the first-order differences of implied moments, using domain sta-
bilization at intensity levels of 0, 25, 50, 75, and 100 percent. The dependent variable, AlnS(t), represents the log return of the underlying index on
day t. The lagged log-return, AlnS(t — 1), is included as an independent variable to control for return reversals. AVOL(t — 1), ASKEW(t — 1), and
AKURT(t—1) denote the lagged daily first-order differences of implied volatility, skewness, and kurtosis estimates, respectively. Newey-West
standard errors are employed to address residual autocorrelation and heteroskedasticity, with a lag length of six selected according to the Newey-
West rule of thumb. The difference in information criteria (Diff.) reflects the variation in OLS-based Akaike information criterion (AIC) values
relative to the no stabilization case. The Breusch-Godfrey (BG) and Breusch-Pagan (BP) tests report Chi-square statistics for testing autocorrelation
and heteroskedasticity for OLS estimation, respectively. t-statistics are presented in parentheses. ***, ** and * indicate statistical significance at the 1
%, 5 %, and 10 % levels, respectively.

removes options until the minimum and maximum values of the integration domain are equally distant from the spot price. Comparing
DS with DR shows whether its performance comes mainly from moving weight toward near-the-money prices. Comparing DS with
DSym lets us see whether the gains from DS instead reflect a more balanced integration domain. We measure domain symmetry for
DSym either in terms of the strike price or d;.

Table 16 presents the empirical results. Panel A demonstrates the results for the contemporaneous regressions of implied moment
levels on the level of the underlying log index. The results suggest that while DSym leads to better explanatory power, DR does not
provide such performance. Although DSym can strengthen the explanatory power, the performance is not better than DS. By contrast,
when we examine the contemporaneous relationship between underlying returns and first-order differences of implied moments,
DSym shows better performance than DR and even DS, as reported in Panel B. This is consistent with LRY, who show that DSym
demonstrates better performance than symmetric DS. Although Panel C indicates that DR delivers the largest gain in in-sample return
predictive power, Panel D shows that the out-of-sample forecasting accuracy of implied moments is highest when DS is used. Because
we do not test an asymmetric version of DS, which LRY reports as the best performer, a suitably asymmetric DS would likely improve
forecasting ability further. Overall, DS provides benefits beyond merely shrinking or symmetrizing the integration domain, although
its advantage in the KOSPI200 market is smaller than in the U.S. market studied by LRY.
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Table 16

Effectiveness of alternative treatment methods.
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Panel A. Explanatory power of implied moments: Log price levels

No treatment 25 % reduction 50 % reduction 75 % reduction Symmetrization Symmetrization
(Strike price) (d1)
VOL(t) 0.294 0.287 0.276 0.253 0.331 0.380
(0.91) (0.89) (0.84) 0.77) (1.01) (1.06)
SKEW(t) 0.134%** 0.127%* 0.113%* 0.073 0.157%** 0.140%**
(2.63) (2.51) (2.19) (1.34) (2.80) (2.03)
KURT(t) 0.027%*** 0.027%*** 0.026%*** 0.020* 0.049%** 0.057%***
(2.87) (2.83) (2.63) (1.82) (2.44) (3.15)
Intercept 5.641%** 5.639%** 5.635%** 5.634%** 5.556%** 5.543%**
(125.27) (124.63) (123.04) (119.70) (73.34) (91.70)
# of obs. 1703 1703 1703 1703 1703 1703
Unadjusted R? 0.031 0.030 0.027 0.020 0.038 0.040
AIC Value —1470.2 —1468.6 —1464.0 —1451.0 —1482.7 —1486.1
Diff. 0.0 1.6 6.2 19.2 -12.5 -15.9
BG 1672.9%** 1672.4%** 1672.7%%* 1676.6%** 1678.3%** 1672.0%**
BP 25.3%** 30.7%** 43.9%** 93.5%** 15.9%** 30.0%**
Panel B. Explanatory power of implied moments: First-order differences
No treatment 25 % reduction 50 % reduction 75 % reduction Symmetrization Symmetrization
(Strike price) (dy)
AVOL(t) —0.472%** —0.480%** —0.488*** —0.486%** —0.416%** —0.484%**
(-19.20) (-18.92) (-18.20) (-16.02) (-16.34) (-17.72)
ASKEW(t) 0.003 0.001 —0.002 —0.008 0.020%** 0.014%**
(0.90) (0.32) (-0.50) (-1.37) (4.51) (3.23)
AKURT(t) 0.001%* 0.001%* 0.001 0.000 0.004%** 0.006%**
(2.54) (2.07) (1.15) (-0.19) (3.15) (5.63)
Intercept 0.000 0.000 0.000 0.000 0.000 0.000
(0.99) (0.99) (0.98) (0.97) (1.00) (1.01)
# of obs. 1702 1702 1702 1702 1702 1702
Unadjusted R* 0.410 0.405 0.393 0.361 0.439 0.426
AIC Value —11090.4 —-11075.7 —11041.5 —10954.6 —-11174.4 —11137.0
Diff. 0.0 14.7 48.9 145.8 —84.0 —46.6
BG 10.9* 10.7* 10.9* 13.9%* 7.8 7.1
BP 1.1 1.3 4.3%* 50.4*** 0.2 0.8
Panel C. In-sample return predictive ability
No treatment 25 % reduction 50 % reduction 75 % reduction Symmetrization Symmetrization
(Strike price) (d1)
AlnS(t-1) 0.021 0.025 0.030 0.035 0.000 0.015
(0.61) (0.67) (0.78) (0.92) (0.01) (0.42)
AVOL(t-1) —0.014 —0.008 0.002 0.017 —0.029 —0.018
(-0.36) (-0.22) (0.06) (0.53) (-0.58) (-0.32)
ASKEW(t-1) —0.007* —0.007* —0.007* —0.006** —0.002 —0.005
(-1.76) (-1.77) (-1.81) (-2.07) (-0.45) (-1.10)
AKURT(t-1) —0.001 —0.001 —0.001 —0.001* 0.001 —0.001
(-1.49) (-1.51) (-1.57) (-1.86) (0.57) (-0.93)
Intercept 0.000 0.000 0.000 0.000 0.000 0.000
(0.74) (0.74) (0.74) (0.73) (0.76) (0.75)
# of obs. 1701 1701 1701 1701 1701 1701
Unadjusted R? 0.006 0.007 0.008 0.011 0.002 0.002
AIC Value —10193.9 —10194.7 —10196.6 —10202.0 —10187.0 —10186.3
Diff. 0.0 -0.8 —2.7 -8.1 6.9 7.6
BG 11.3%* 11.4%* 11.5%* 12.7%* 23.4%x* 19.7%%*
BP 37.5%%* 32.2%%* 23.8%** 16.2%%* 90.4%** 42.1%**
Panel D. Out-of-sample return forecasting ability
Rolling R2¢ (%)
window
length No treatment 25 % reduction 50 % reduction 75 % reduction Symmetrization Symmetrization
(Strike price) (d1)
5 months —9.79 —11.66 —11.84 —16.68 —14.94 -12.78
10 months —4.77 —5.37 —5.07 —5.84 -8.71 —6.96
15 months -3.97 —4.47 —4.26 —4.41 —6.08 -5.21
20 months —2.36 —3.06 —2.84 —2.64 —4.69 —4.20
25 months -1.93 —2.47 —2.30 —2.07 —3.64 -3.23
30 months —-1.98 —-2.37 —2.34 —-2.31 —2.84 —-2.76
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Table 16 (continued)

Panel D. Out-of-sample return forecasting ability

Rolling R2¢ (%)
window
length No treatment 25 % reduction 50 % reduction 75 % reduction Symmetrization Symmetrization
(Strike price) (dy)
35 months —1.64 -1.78 -1.75 -1.71 -2.10 —-2.14
40 months —-1.53 -1.64 —-1.60 —1.46 —2.00 —2.03
45 months -1.27 -1.23 -1.15 —0.87 -1.70 —1.83
50 months —-0.93 —0.88 -0.74 -0.32 —1.45 —1.52
55 months -1.01 —-0.99 —-0.85 —-0.35 —1.47 —-1.61
60 months —0.86 —0.59 —0.55 —0.48 —0.87 —0.96
65 months -1.33 -1.11 -1.10 —1.08 -0.74 —-1.02
70 months —1.00 -0.71 -0.74 —0.82 —0.50 -0.77
75 months -1.15 -1.13 -1.32 -1.78 —0.42 -0.71
80 months —2.29 -1.81 —2.23 -3.31 0.18 —0.89

Notes: This table presents the regression results for testing alternative truncation treatment methods, which are domain reduction and symmetri-
zation. VOL(t), SKEW(t), and KURT(t) denote the daily levels of implied volatility, skewness, and kurtosis estimates on day t, respectively. Newey-
West standard errors are employed to address residual autocorrelation and heteroskedasticity, with a lag length of six selected according to the
Newey-West rule of thumb. The difference in information criteria (Diff.) reflects the variation in OLS-based Akaike information criterion (AIC) values
relative to the no stabilization case. The Breusch-Godfrey (BG) and Breusch-Pagan (BP) tests report Chi-square statistics for testing autocorrelation

and heteroskedasticity for OLS estimation, respectively. t-statistics are presented in parentheses. ***, ** and * indicate statistical significance at the 1
%, 5 %, and 10 % levels, respectively.

6. Conclusion

This study investigates the effectiveness of DS in a broader context by examining whether the truncation treatment method en-
hances the informational content of model-free implied moment estimates in the KOSPI200 options market. As an emerging market,
the KOSPI200 options market provides a significantly different environment compared to the U.S. market, which is the focus of LRY.
Thus, testing the effectiveness of DS in the KOSPI200 options market offers reliable evidence that the method is valid across diverse
market conditions. Moreover, we extend the assessment of DS by adopting a more comprehensive framework to evaluate the infor-
mativeness of implied moments. Specifically, we assess not only the in-sample and out-of-sample predictive and forecasting abilities
but also the contemporaneous explanatory power of implied moment estimates and their first-order differences with respect to the
underlying log price and log returns.

The empirical results indicate that DS enhances the contemporaneous explanatory power, improves in-sample predictive accuracy,
and strengthens out-of-sample forecasting performance of implied moment estimates. These findings align with those of LRY, sug-
gesting that DS is a robust truncation treatment method applicable under diverse market conditions. Future research can use DS to
enhance the informativeness of implied moment estimates across different options markets and for various aspects of the price-moment
relationship. Choosing the right DS intensity is critical. A preliminary analysis should be conducted to identify the optimal intensity
level, ensuring the fluctuation in the integration domain width is minimized while avoiding excessive information loss due to the
exclusion of OTM price observations.
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