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Abstract

Bearings are important elements of mechanical systems and the correct forecasting of their
remaining useful life (RUL) is key to successful predictive maintenance. Nevertheless, noise
interference during different operating conditions is also a significant problem in predicting
their RUL. Existing denoising-based RUL prediction models often show degraded perfor-
mance when exposed to heterogeneous and non-stationary noise, resulting in unstable
feature extraction and reduced generalisation. To address the challenge of heterogeneous
and non-stationary noise in bearing RUL prediction, this study proposes a hybrid frame-
work that combines a noise-conditioned convolutional denoising autoencoder (NC-CDAE)
and a temporal attention transformer (TAT). The NC-CDAE adaptively suppresses diverse
noise types through conditional modulation, while the TAT captures long-term temporal
dependencies to enhance degradation trend learning. This synergistic design improves both
the noise robustness and temporal modelling capability of the system. To further validate
the model under varying conditions, synthetic datasets with different noise intensities were
generated using a conditional generative adversarial network (cGAN). Comprehensive
experiments show that the proposed NC-CDAE + TAT framework achieves lower and
more stable errors than state-of-the-art methods, reducing RMSE by up to 23.6% and MAE
by 18.2% on average and maintaining consistent performance (an RMSE between 0.155 and
0.194) across diverse conditions.

Keywords: deep learning; remaining useful life; prognostic and health management;
transformer network

1. Introduction

In industrial machinery, bearings are both crucial and common in industries like rail,
aerospace, and wind. Nevertheless, industrial applications have many bearings that work
under rather severe conditions, being more prone to corrosion, wear, or other types of
degradation [1,2]. Proper forecasting of the remaining useful life (RUL) of bearings is hence
very important [3]. However, in different working conditions, the occurrence of various
noise interferences tends to the introduction of errors in RUL forecasting. Not only does
reliable and efficient prediction of life assist in predicting maintenance of machines and
avoiding unexpected downtime [4], but it also helps to reduce economic losses and safety
risks. Therefore, predicting the robustness of models to various forms of interference is an
essential component of RUL prediction.
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The current methods of bearing signal denoising and RUL prediction are traditional
signal processing methods and deep learning-based methods. Indicatively, the simplest
deep learning denoising methods, including denoising autoencoders (DAEs), convolutional
autoencoders (CAEs) [5], and recurrent neural network-based denoising models, have been
used to pre-process raw vibration data. Although such methods can minimise noise to a
reasonable degree and enhance further feature extraction, they have several drawbacks.
DAEs can have difficulties predicting local structure on highly non-stationary signals,
CAEs can be subject to changes in noise distributions, and RNN-based models can be
computationally expensive and unstable in long sequences [6]. Consequently, single-
method solutions tend not to be very robust to a wide range of noise.

Due to the high pace of development of deep learning, modularised model design has
emerged as a promising path to solving complex problems. Regarding the case of RUL
prediction, a denoising step before feature extraction has been demonstrated to improve the
prediction accuracy. Convolutional denoising autoencoders (CDAEs) are capable of good
preservation of local spatial correlations and wavelet thresholding can maintain valuable
time-frequency data [7]. Variational Autoencoders (VAEs) [8] and noise distribution-
learnable generative adversarial network (GAN)-based denoising techniques have also been
considered, which provide flexibility in learning noise distributions. Although each of them
have their own benefits, including strong local feature learning (CDAEs), adaptive multi-
resolution analysis (wavelet thresholding) [9], and generative robustness (VAEs/GANSs),
all of them have difficulties in ensuring consistent robustness under various levels of noise
and different operational conditions. This drawback highlights the significance of noise
adaptability as a defining factor for measuring denoising models in RUL tasks.

In practical bearing prognostics, vibration signals are inevitably affected by heteroge-
neous and non-stationary noise caused by varying operating conditions, environmental
disturbances, and sensor-related interference. A common drawback of the current data-
driven RUL prediction algorithms is that their performance cannot remain steady under
circumstances where the noise properties during testing are not the same as those in train-
ing and, as a result, it is challenging to attain a high level of prediction accuracy and a
high level of robustness simultaneously. Most of the current methods employ fixed or
intuitively acquired denoising methods, which can either insufficiently suppress noise or
excessively smooth degradation-related features, particularly when different noise levels
are used. To overcome such difficulties, this paper will use a noise-sensitive, time-sensitive
RUL prediction model that serves to trade-off accuracy and robustness in realistic scenarios
of noise. The specifics of the model are as follows:

e A noise-conditioned convolutional denoising autoencoder (NC-CDAE) is introduced
to explicitly estimate the noise influence level prior to signal reconstruction, enabling
adaptive denoising that avoids unnecessary computational effort and reduces the risk
of over- or under-denoising.

e By conditioning the denoising process on estimated noise characteristics, the framework
preserves degradation-sensitive features while adapting to different noise conditions.

e A temporal attention transformer (TAT) is employed to model the intrinsic tempo-
ral dependencies of bearing degradation, allowing the network to selectively focus
on fault-relevant time segments and capture long-term degradation trends that are
essential for remaining useful life prediction.

Through the integration of noise-conditioned denoising and a TAT, the proposed
framework provides a principled solution to the accuracy—robustness trade-off that com-
monly limits existing RUL prediction approaches under complex noise environments.

The rest of this paper is organised as follows. Section 2 is a review of the related
literature on RUL prediction and the application of synthetic data (SDG) and denoising
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techniques in predictive tasks. Section 3 presents the suggested methodology, both the
model architecture and the temporal attention mechanism. Section 4 represents the datasets,
ablation studies, and parameter settings. Section 5 gives the results of the experiment and
further analysis. Lastly, Section 6 wraps up the paper and gives future research directions.

2. Related Works
2.1. Denoising Methods for Degradation Signal Processing

Denoising methods are a popular strategy to make RUL prediction more accurate for
lithium-ion batteries. Models based on neural networks and their variations can be used
extensively in such tasks [10]. As an example, a denoising transformer neural network
(DTNN) has been proposed to predict lithium-ion battery RUL and has proved to be capable
of handling complicated degradation signals [11]. Moreover, a more recent method of
data-driven decomposition, the complete ensemble empirical mode decomposition with
adaptive noise (CEEMDAN), was used to break down battery capacity degradation into
multi-scale component sequences [12]. These deconstructed characteristics have also been
used to enhance accuracy in the prediction of RUL in battery systems [13]. In general, it has
been observed that the predictive power and strength of battery degradation modelling
improve greatly when denoising methods are added.

Regarding bearings, denoising has been one of the main areas of study in the field
of RUL prediction [14,15]. Some of the most popular methods include autoencoder-based
methods that have the potential to learn representative latent features. Convolutional
denoising autoencoders (CDAEs) are demonstrated to be effective in preserving local fault-
related patterns [7,16], whereas stacked denoising autoencoders (SDAs) with thresholding
strategies have been found to balance sensitivity and robustness in various operating
conditions [17]. Even more advanced architectures, including adaptive denoising residual
networks (AD-ResNets) [18] and recurrent denoising autoencoders (R-DAEs) [19], are
also shown to be highly performing by incorporating temporal modelling capabilities or
adaptive shrinkage processes.

In addition to autoencoders, classical time-frequency denoising techniques (wavelet
thresholding [20,21] and empirical wavelet transform [22]) have been widely applied to
obtain stable indicators of degradation. A more recent hybrid method jointly trains wavelet-
based denoising images using CNNs or transformer encoders [23] and tries to combine
handcrafted multi-resolution analysis with feature-based image generation. These works
underline the significance of the combination of denoising and feature learning.

Over the past few years, denoising approaches to mechanical degradation cues have
gradually evolved to be no longer based on explicit signal filtering, but on representation-
conscious and adaptive learning processes. Alternatively, rather than simply reducing noise
in the raw signal space, several studies seek to reduce the effects of noise by improving
the strength of feature representations. Indicatively, Spirto et al. [24] contrasted time-
frequency image-based CNNs with Symmetrical Dot Pattern (SDP)-based CNNs to prove
that different signal-to-image mappings can reach similar diagnostic accuracy but use less
computation, hence enhancing robustness and real-time application under noisy conditions.
In addition to representation transformation, a learnable interpretable wavelet Kolmogorov—
Arnold convolutional LSTM, which added a learnable wavelet kernel to convolutional
layers to learn noise-resilient spatial features and attention-enhanced temporal modelling,
which addresses non-stationary and noisy operating conditions, was proposed by Chen
et al. [25]. More recently, Guo et al. [26] suggested an end-to-end RUL prediction scheme
that integrates an autoencoder-based soft-thresholding denoising block and a multiscale
temporal attention transformer, allowing denoising thresholds and temporal relationships
to be adaptively adjusted according to signal properties.. These papers suggest that there
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is an apparent shift in the direction of adaptive and structure-conscious denoising, in
which noise resilience is increasingly realised in the design of a model, not necessarily by
hard-and-fast filtering choices.

Overall, current denoising methods of degradation signal processing have shown
that the use of learning-based representations is much more effective to enhance the
performance of RUL prediction in the presence of noise. The classical signal processing
techniques and traditional autoencoder-based denoisers work well in reducing noise when
the statistical behaviour of the noise is mostly stable, but their effectiveness has been
found to fall in real-world situations of non-homogeneous types of noise, non-stationary
operating environments, and a variety of signal-to-noise ratios. More recent advancements
demonstrated that stronger robustness may be encouraged by incorporating domain-
sensitive representations, adaptive thresholding, or attention-centred mechanisms into the
denoising process. However, in most current approaches, noise adaptation is implicit and it
is performed by the choice of representations or the learning of parameters, not by explicitly
training the denoising behaviour based on learned perceptions of noise. This weakness
demonstrates that it is necessary to have denoising models which can model noise explicitly
as a condition-dependent variable, thus inspiring the construction of noise-conditioned
denoising models, like the NC-CDAE presented in this paper.

2.2. Deep Learning Frameworks for RUL Prediction

The development of deep learning techniques has largely enabled vibration-based RUL
predictions, taking advantage of their ability to model dynamic degradation of vibration
signals with little processing. Recurrent models like LSTM and GRU are well-used since
they are good at learning temporal variations [27,28] and better versions like DOS-ELM use
adaptive forgetting factors to overcome degradation that is of a non-stationary nature [29].
The CNN-based or convolution-recurrent hybrid models [30-32] are capable of both local
fault transient and longer-term behaviour and they perform highly in some situations. Also
popular is time-frequency feature learning, where inputs are time-frequency transformed
to an STFT or a wavelet and the result is used as an input to the CNNs to enhance their
ability to handle non-stationary behaviours [20,21,23,33].

Although these improvements have been achieved, it is observed that most of these
architectures degrade their performance when subjected to heterogeneous operating condi-
tions or in complicated, noisy environments. This has resulted in the search for more expres-
sive sequence models. Recently, transformer-based architectures, which have the advantage
of a long-range dependency modelling capability, have attracted considerable interest in
RUL prediction [34—41]. Better predictive stability has been shown in frequency-aware
attention [42], multi-scale hierarchical transformers [40], and hybrid convolution—attention
structures [43-45]. Nevertheless, conventional self-attention remains prone to instability
when exposed to noisy inputs and most transformer-based RUL models do not have a
specific denoising or noisy input adaptation mechanism.

The other area of research is synthetic data generation (SDG). Due to the expensive
and time-intensive nature of high-quality degradation datasets, synthetic augmentation is
also an attractive method to enhance robustness and decrease overfitting. Multiple-mode
or condition-dependent degradation patterns have also been modelled with GAN-based
synthetic data generation, demonstrating potential [46-48]. However, the application of
conditional GANSs to explicitly recreate different noise regimes is not well studied in bearing
prognostics. This opens the possibility of integrating SDG with the noise-robust learning of
features to yield more generalizable RUL models.

In conclusion, in the available literature, there are two major conclusions. First,
denoising is necessary and is particularly successful in cases when the noise properties
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are different under different conditions. Second, attention-based temporal modelling is a
prospective path that can be used to model both short- and long-term cues of degradation,
although its resiliency to various noise distributions remains insufficient. Based on such
insights, the paper presents a hybrid framework in which a noise-conditioned denoiser
(NC-CDAE) is combined with the TAT model, with the assistance of cGAN-generated
multi-noise data, in order to guarantee stability under operating conditions.

3. Methodology

This section describes the proposed methodology for RUL prediction with noisy and
varying operating conditions. The benchmark datasets XJTU-SY and PRONOSTIA are
first used as the baseline and a conditional generative adversarial network (cGAN) is
proposed to augment the data and mimic various noise scenarios in a more realistic way
than either Gaussian perturbations or fixed SNR. Figure 1 provides the network structure.
The added signals are then processed through the NC-CDAE, which adaptively denoises
while retaining important degradation patterns. Finally, the TAT is used to capture long-
range dependencies and make accurate RUL estimations. Together, these elements create a
powerful and noise-resistant predictive maintenance system.
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Figure 1. cGAN for the Synthetic Data.

3.1. Data Acquisition and Preprocessing

To overcome the data shortage issue and simulate different noise levels, a conditional
generative adversarial network (cGAN) is adopted for synthetic bearing vibration signal
generation in this paper. Figure 1 shows the cGAN for the synthetic data. The framework
is composed of two major components, a generator and a discriminator. The generator
takes, as input, a random noise vector z along with a condition vector c, where c describes
varying levels of noise (e.g., low, medium, and high). Through a series of dense and LSTM
layers, the generator generates time series signals as output in the same dimension as the
real bearing data. The discriminator, in turn, takes the real and generated samples along
with the condition vector and attempts to determine their authenticity. In the process of
adversarial training, the generator learns that it is making realistic signals under specified
noise conditions, while the discriminator improves at telling which are real and which
are synthetic. This iterative process leads to a synthetic dataset that closely matches the
statistical properties of the original data but with controllable noise variability.
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3.2. NC-CDAE

The NC-CDAE is used as the denoising module in our framework. In contrast to
the general CDAE, the proposed model uses a noise-conditioning module to ensure the
model can adapt to the various noise distributions that occur in the adversarial simulation
stage. In terms of the denoising activity, this design helps improve effectiveness at variable
operation conditions or noise intensities.

The architecture of the NC-CDAE comprises an encoder, a bottleneck with noise
conditioning, and a decoder. The encoder progressively reduces the temporal resolution of
the input signal, X;,y;s, extracting hierarchical feature maps. An auxiliary noise estimation
branch is introduced at the top of the encoder to estimate a noise descriptor, 0:

Sigmad = h(Xnm-sy) 1)

where ¢ represents either the estimated noise variance or a vector encoding the noise
type. This descriptor is then injected into the bottleneck layer through feature-wise linear
modulation (FiLM).

In the bottleneck, the latent representation f is modulated according to the estimated
noise descriptor as follows:

fr=(0)-f+B(0) 2

The noise modulation functions y(-) and () are applied to two separate two-layer
multilayer perceptrons (MLPs) in the proposed NC-CDAE. Both MLPs are composed
of an input layer, one ReLU-activated hidden layer, and an output layer with the same
number of channels as the latent features. In particular, the noise descriptor ¢ is initially
run through the MLPs to obtain the scaling and shifting parameters that are involved in
the feature-wise linear modulation (FiLM) process. The dimension of the noise features
is 16. This value has been chosen as a compromise between representation capacity and
computational complexity and is based on early experiments. It was identified that a lower-
dimensional descriptor was not sufficient to represent heterogeneous noise properties, but
higher dimensions only offered marginally better performance with a correspondingly
more complex model. Noise descriptors of 16 dimensions were thus considered a stable
and effective setting for any experiment.

The specific mechanism of noise modulation is depicted in Figure 2. The encoder
is a two-layer one-dimensional convolutional network that has a kernel size of 5 and a
stride of 2, sequentially taking out the hierarchical temporal features of the noisy input
signal. The encoder output includes a dedicated noise estimation branch that applies global
average pooling followed by a fully connected layer, producing a 16-dimensional noise
descriptor &. The noise descriptor is then input to two separate two-layer MLPs using
ReLU activation to produce the FiLM modulation parameters 'y and . These parameters
are adaptive parameters that adjust the latent features in the bottleneck through feature-
wise linear modulation. The decoder is a structure that reflects the encoder structure
through transposed convolution layers to restore the denoised signal. This architecture
will allow adaptive denoising in heterogeneous noise environments, as well as having a

Global Avg MLPs v(-),
Paol Nmse |3 )
Descriptor
Convl Con\ 2 . Decoder
Input k=5,5=2 k=5,5=2 Moleluleafmn Deconvx<2
(1>256) (64 % 128) 5 (64 % 64) (1 % 256)

Figure 2. Architecture of the NC-CDAE.

lightweight structure.
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The model is trained with a combined objective. The main term is an L reconstruction
loss to ensure signal fidelity and an auxiliary term supervises the noise estimation branch
when ground truth noise information is available:

L= HXclezzn - Xcleanul + >\||0' - U||1 (3)

By incorporating noise conditioning, the NC-CDAE can handle multiple noise envi-
ronments in a unified framework. It avoids over-smoothing while preserving the impulsive
features that are critical for fault-related signal analysis.

3.3. Temporal Attention Transformer for RUL Prediction

After denoising, the cleaned signals are fed to the temporal attention transformer
(TAT), which is designed to model short-term and long-term dependencies in vibration
signals. This stage allows the model to identify degradation patterns and better forecast
fault progression.

Input embedding: The denoised signals are divided into overlapping windows of a
length of 256 samples with a stride of 128. Each window is passed through a linear layer to
obtain a feature embedding of 128 dimensions. A sinusoidal positional encoding is applied
to maintain temporal order so that the transformer is able to differentiate between different
time steps.

Self-attention layer: A multi-head self-attention module with 8 heads and 128 hidden
dimensions is used as the self-attention module for each embedding sequence. The self-
attention mechanism enables the model to give more weight to fault-relevant transients
while deflating irrelevant background fluctuations. This feature makes the transformer
more robust than purely recurrent architectures.

Feed-forward layer. The output of the attention module goes through a feed-forward
network with two linear layers and ReLU activation. The chosen covert size is 256, which
is large enough to provide enough modelling power without too much computational
cost. Layer normalisation and residual connections are used to stabilise training and
improve convergence.

Stacked layers: The TAT is made up of 4 stacked transformer layers. Stacking multiple
layers allows the model to learn temporal features in a hierarchical manner: shallow layers
capture local vibration features, whereas deeper layers capture long-range dependencies
and degradation features.

Prediction head: Global average pooling is performed to aggregate the contextualised
features and pass them over a fully connected layer to generate the final output. In the
case of classification tasks, this head returns class probabilities for each type of fault. For
regression tasks like this, it gives us an estimated RUL.

The overall network architecture of the proposed NC-CDAE + TAT framework is
illustrated in Figure 3. The combination of the NC-CDAE and the TAT yields complemen-
tary advantages. The NC-CDAE performs adaptive noise shaping of the input signals,
allowing the fault transients that are frequently masked in noise to be maintained. The TAT
then extends this with the ability to capture temporal dependencies and selective attention
to fault-critical time steps. Combined, the two modules constitute a strong end-to-end
framework that increases fault detection accuracy, increases prediction stability, and adapts
well to changing noise conditions.
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Figure 3. Network structure.

3.4. Training and Evaluation

The proposed framework is trained and tested on synthetic noisy datasets created
by extending XJTU-SY and PRONOSTIA with a conditional GAN that adds various noise
conditions beyond the typically assumed Gaussian noise. The NC-CDAE + TAT framework
presented has several hyperparameters that control the temporal resolution, modelling
capacity, and computational efficiency. These parameters were chosen according to the
characteristic timescale of bearing degradation, as opposed to an automated network
optimisation algorithm. In particular, the vibration signals were divided into sliding
windows of 256 samples with a stride of 128 samples, which offers a compromise between
transient fault-related signal localities and the possibility to model the longer periods of
degradation evolution between successive windows with a stride of 128 samples. When
carrying out prognostics, long-term temporalities gain more influence towards the later
degradation phase, and the chosen length of the window enables the temporal model to
identify long-term temporalities, without unduly decreasing the training samples.

In the TAT, there are four layers of transformers with eight attention heads that cre-
ate a hierarchical temporal feature learning with complementary attention to the various
degradation-related patterns at the various timescales. To achieve a trade-off between the
efficacy of the denoising and the complexity of the model, the NC-CDAE module used four
convolutional layers with a kernel size of 5 and 64 filters, and a noise features dimension
of 16 in order to code the noise attributes without over-parameterisation. The optimiser
used was the Adam optimiser and the learning rate was 0.0005 with a batch size of 64 and
80 training epochs. No specific hyperparameter optimisation step was presented; rather,
the chosen network setup was later confirmed by ablation trials of network depth
and attention head count, as presented in Section Ablation of Network Depth and
Attention Heads.

4. Experimental Study
4.1. Data Description

In order to assess the performance of the proposed framework, the experiments are
carried out on two popular bearing degradation datasets: XJTU-SY and PRONOSTIA. In
addition, both datasets deliver run-to-failure vibration signals gathered under different
speeds and loads and as a result, they serve as ideal benchmarks for RUL prediction.
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https://doi.org/10.3390/machines14010075

Machines 2026, 14, 75

9 of 20

Since the noise condition used in the real world is more complex than what the datasets
directly provide, a conditional generative adversarial network (cGAN) is used to augment
the original signals. The generator adds several types of noise, including Gaussian noise,
impulse noise, and mixed noise with different signal-to-noise ratios (SNRs). This method
produces synthetic noisy data by maintaining the degradation trend of the original data
while emulating realistic noisy environments. These synthetic datasets are used for training
and evaluation, thus ensuring that the model is evaluated on different noise conditions.

4.2. Modal Setup

The vibration signals are firstly normalised and divided into fixed-length windows
of 256 samples with a stride of 128 samples. Each window is considered a sample to be
trained for the model. The NC-CDAE module is set up with four convolutional layers
with a kernel size of five and 64 filters. The noise descriptor dimension of the conditioning
branch is set to 16. The TAT module consists of 4 transformer layers, where each layer
has 8 attention heads, a model dimension of 256, and a feedforward dimension of 1024.
Dropout is set to 0.2 in order to prevent overfitting.

Training is performed with the Adam optimiser and an initial learning rate of 0.0005,
a batch size of 64, and for 80 epochs. The decayed learning rate is applied to the learning
rate after every 20 epochs. All experiments were implemented using PyTorch 1.10.0
and executed on a workstation equipped with an NVIDIA GeForce RTX GPU (NVIDIA
Corporation, Santa Clara, CA, USA).

Synthetic Data Generation Parameter Study

Although the main interest of this work is concentrated on denoising and RUL predic-
tion, the quality of the synthetic data generated by the conditional GAN (cGAN) is also
important to develop reliable datasets. To make sure that the generated data is similar
enough to the real signals, we have conducted a small parameter study on the cGAN.
Four representative configurations were tested, with different latent noise dimensions,
conditional vector sizes, generator and discriminator learning rates, and discriminator
layer numbers. These hyperparameters were selected because they have a direct impact on
the diversity and fidelity of the generated sequences. The quality of the generated samples
was assessed from two points of view.

e  The distributional similarity, measured by the PCA overlap percentage and KL diver-
gence between the real and synthetic feature distributions.

e  The downstream relevance, assessed by the RMSE and the MAE, was evaluated when
the synthetic data were used to train the prediction pipeline and validated on the
real data.

4.3. Ablation Experiments

In addition to cross-model comparisons, ablation studies are designed to probe the
contribution of the individual components in the proposed framework.

e  Without Noise Conditioning (CDAE + TAT). This setting removes the noise descriptor
modulation, reducing the denoiser to a conventional CDAE. The purpose is to investi-
gate whether conditioning on noise information is critical for adaptability to varying
noise distributions.

o  Without Denoising (TAT only). Here, raw noisy signals are directly input into the
TAT. This experiment is designed to explore whether temporal attention alone can
compensate for noise or whether explicit denoising remains necessary.

o  Without Attention (NC-CDAE + GRU). In this variant, the temporal predictor is
simplified by replacing the transformer with a GRU. This setup allows us to analyse the
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relative importance of self-attention in capturing long-range dependencies compared
to recurrent sequence modelling.

These ablation studies are not only intended to validate the necessity of each com-
ponent but also to provide insights into the design space of noise-aware denoising and
temporal modelling for prognostics.

Ablation of Network Depth and Attention Heads

To further investigate the trade-off between model complexity and denoising/feature
extraction ability, we designed an ablation study by varying two structural hyperparame-
ters. First, the number of convolutional layers in the NC-CDAE was set to 3, 4, and 5, which
directly affects the network’s denoising capacity and reconstruction quality. Second, the
number of attention heads in the TAT module was set to 4 and 8, which controls the granu-
larity of temporal dependency modelling and influences computational cost. Combining
these factors yields six experimental settings: (3, 4), (3, 8), (4, 4), (4, 8), (5, 4), and (5, 8),
where the first value denotes the NC-CDAE layers and the second indicates the TAT heads.

All other training protocols remained identical to Section 4.3 to ensure fair comparison,
including the data augmentation strategies, optimiser settings, and evaluation metrics. Each
configuration was trained and evaluated three times, and average results were reported in
terms of the RMSE, MAE, parameter size, and inference latency. This design enables us
to quantify the contribution of network depth and attention width to both performance
and efficiency.

4.4. Compare with Different Models

To demonstrate the effectiveness of the proposed NC-CDAE + TAT framework, we
compare it with three representative baselines from traditional machine learning, signal
processing, and deep learning:

o  Traditional Machine Learning (PCA + RF): This baseline applies Principal Component
Analysis (PCA) for noise reduction, followed by a Random Forest (RF) regressor for
RUL prediction.

e  Time-Frequency Transformation + CNN (STFT + CNN): This method employs Short-
Time Fourier Transform (STFT) to transform vibration signals into time-frequency
representations, which are then processed by a convolutional neural network for
RUL prediction.

e  GRU + Attention: This baseline applies a Gated Recurrent Unit (GRU) network for
sequence modelling, enhanced with an attention mechanism to highlight critical
time steps.

e  CNN-TAT: A model that uses convolutional layers for feature extraction but without a
denoising module.

e CDAE + TAT: A pipeline that employs the conventional CDAE as a denoiser before
the TAT predictor.

These comparisons highlight the diversity of the baseline models considered, ranging
from traditional CNNs to advanced hybrid architectures. This comprehensive evaluation
ensures a fair and robust assessment of the proposed approach’s performance relative to
existing methods.

5. Results and Discussion
5.1. Synthetic Data Quality Evaluation

Table 1 shows that larger latent and conditional dimensions gave better distributional
similarity (a higher PCA overlap and a lower KL divergence) and downstream predic-
tion accuracy (a reduced RMSE). A-D denote different cGAN parameter configurations
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evaluated in the synthetic data generation study. The quality of the synthetic data was
improved in all indicators, which proves that the selected cGAN hyperparameters have a
substantial impact on the quality of the synthetic data. In the settings that were tested, the
best overall balance was configuration C, which had maximum PCA overlap and minimum
prediction errors. Based on these findings, configuration C is taken as the default for
further experiments.

Table 1. Synthetic data quality and prediction results under different cGAN settings.

Param Setting Noise Dim Cond. Dim LR (x10~%) LDISC' PCA o KL Divergence RMSE MAE
ayers Overlap (%)

A 64 16 5 3 825 0.124 0.185 0.162

B 128 16 5 3 85.2 0.102 0.179 0.157

C 128 32 5 4 88.7 0.095 0.172 0.149

D 256 32 3 4 90.1 0.081 0.169 0.146

To further improve the completeness and transparency of the synthetic data analysis,
Figure 4 presents a representative real vibration signal selected from the bearing degra-
dation dataset together with synthetic signals generated by the conditional GAN under
different noise conditions. The real signal reflects the typical oscillatory behaviour and
long-term degradation trend observed in run-to-failure bearing data. Based on this refer-
ence, the cGAN produces multiple noisy variants conditioned on predefined noise levels,
resulting in synthetic signals with gradually increasing noise intensity. Importantly, despite
the added noise, the temporal alignment, oscillatory structure, and degradation-related
trend remain consistent across all synthetic samples. This confirms that the cGAN does not
arbitrarily alter the underlying signal characteristics but instead introduces realistic noise
perturbations while preserving fault-relevant information.

cGAN-style synthetic signals under different noise conditions

2.0 4

151
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(=]
o
|
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~1.04

—— Selected real degradation signal
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Figure 4. Real bearing vibration signals and cGAN-generated synthetic signals under different
noise conditions.

Along with the quantitative analysis presented in Table 1, the intuitive validation of
the cGAN model is presented in Figure 4. Although measures like PCA are similar and
the KL divergence is used to evaluate the distributional similarity in the feature space, the
visual representation in time shows that the signals generated can be physically interpreted
and used in the prognostic modelling. The existence of the same predictable patterns of
degradation when subjected to varying conditions of noise confirms that the synthetic data
can be effectively used to support downstream denoising and RUL prediction tasks. The
above observations reveal that the cGAN has a good compromise between diversity of
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noise and signal fidelity, hence justifying its application in augmenting training and testing
data when diverse noise conditions exist.

5.2. Ablation Experiment

To facilitate conducting a clear and consistent assessment of the proposed framework
in varying noise conditions, six artificial datasets are developed and employed during the
experimental study. These datasets are created with the help of the cGAN when applied
to the actual bearing vibration signals of two reference datasets, i.e., XJTU-SY [49] and
PRONOSTIA [50]. Datasets 1-3 are acquired by dropping noise onto the vibration signals
of three bearing operating conditions in the XJTU-SY dataset, and Datasets 4-6 are acquired
in the same way using three bearing operating conditions of the PRONOSTIA dataset.
On a dataset, the cGAN generates noisy versions whose noise property is heterogeneous
and maintains the original trend of degradation of the original signals. Each dataset
is split at random into 80% training and 20% testing, respectively, which is used in all
experimental setups. The data structure used in this type of dataset construction allows
a systematic comparison of model performance across various source datasets and noise
conditions and all the later tables and figures in this section use these six datasets unless
otherwise indicated.

Table 2 reports the RMSE and MAE values for six experimental runs under different
ablation settings, bold values indicate the best (lowest) RMSE or MAE for each dataset. The
full model (“Original,” i.e., NC-CDAE + TAT) consistently achieves the lowest errors across
all six groups, with an RMSE ranging from 0.155 to 0.205 and an MAE ranging from 0.137
to 0.177. Removing noise conditioning and reverting to a conventional CDAE + TAT con-
figuration leads to a moderate performance drop, while using TAT alone further increases
both the RMSE and the MAE. The weakest performance is observed when the transformer
is replaced by a GRU (“NC-CDAE + GRU”), where errors rise significantly (e.g., a RMSE
above 0.25 in several cases). These results indicate that both noise conditioning in the
denoiser and temporal attention in the predictor are necessary for optimal performance.

Table 2. Ablation experiments for six synthetic datasets (Datasets 1-3 are derived from XJTU-SY [49]
and Datasets 4-6 are derived from PRONOSTIA [50]).

Metric 1 2 3 4 5 6
Original 0.173 0.199 0.205 0.163 0.155 0.184
CDAE + TAT 0.192 0.226 0.224 0.202 0.164 0.197
RMSE TAT only 0.214 0.259 0.247 0.219 0.175 0.213
NC-CDAE + GRU 0.279 0.337 0.286 0.259 0.199 0.252
Original 0.166 0.175 0.177 0.149 0.137 0.167
CDAE + TAT 0.181 0.210 0.211 0.186 0.146 0.183
MAE TAT only 0.194 0.231 0.223 0.198 0.163 0.201
NC-CDAE + GRU 0.215 0.306 0.263 0.233 0.185 0.226

Figure 5 presents an RMSE comparison across the six synthetic datasets under different
ablation settings. Figure 6 shows the corresponding MAE comparison for the same datasets.
The differences in performance seen can also be explained in the framework of noise
distribution adaptation and long-term dependency modelling. In a traditional CDAE,
denoising is implicitly learned on the training noise distribution and its fixed reconstruction
behaviour is suboptimal in novel noisy conditions, which can be either residual noise or
over-smoothing of features of degradation. In comparison, the denoiser proposed is noise
conditioned on a noise signal and actively changes its latent features using a feature-
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wise linear transformation to address noise distribution disparity and stabilise feature
representations across noise regimes. In terms of temporal modelling, the GRU-based
predictor is based on recurrent state propagation and is prone to poor effective memory
and information decay on long horizons, particularly when the input is noisy. However,
the self-attention mechanism in the TAT enables direct interactions across distant time steps
and selectively highlights fault-relevant segments. This attribute is especially useful in the
later degradation phase, in which long-term dependencies prevail over the RUL evolution,
which is why the NC-CDAE + TAT setup always performs better.

RMSE across Ablation Settings
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Figure 5. RMSE comparison for the six synthetic datasets under different ablation settings.
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Figure 6. An MAE comparison for the six synthetic datasets.

The comparison brings out two important insights. First, the better results of the
complete model prove that the noise-conditioned denoiser is efficient in reducing vari-
ous noise and retaining degradation-relevant features that are important to predict RUL
correctly. The deterioration of the CDAE + TAT and TAT-only conditions indicate that
denoising is not as adaptive as conditioning and conditioning is not as adaptive as denois-
ing. Second, the significant error reduction in the NC-CDAE + GRU condition indicates
the significance of multi-head self-attention for capturing long-range dependencies and
targeting fault-relevant time steps. Collectively, the results confirm the rationale of the
combination of NC-CDAE and TAT, that the synergistic effect of noise-sensitive denoising
and temporal attention is critical towards realising powerful performance across different
noise conditions.

5.3. Ablation Experiment on Network Depth and Attention Heads

The results in Table 3 highlight two main trends. First, increasing the number of
NC-CDAE layers from three to five generally improves denoising quality, as reflected in
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the lower RMSE and MAE, but the marginal gains diminish when moving from four to
five layers, while computational cost continues to grow. Second, using eight attention heads
in the TAT consistently outperforms four heads in terms of accuracy, especially under more
challenging noise conditions, though it comes at the expense of higher latency and more
FLOPs. Overall, the (4, 8) configuration provides the best trade-off between performance
and efficiency, which aligns with the default setting used in the main experiments. For
resource-constrained environments, (4, 4) may be preferable due to its lower computational
burden, while (5, 8) offers slightly better robustness in highly noisy scenarios at the cost of
heavier computation.

Table 3. Results of ablation of NC-CDAE depth and TAT attention heads.

Combination Parameters Relative Avg. Latency
(Layers, Heads) RMSE MAE ™M) FLOPs (ms)
3,4 0.206 0.188 2915 0.741 1.002
3, 8) 0.197 0.181 3.324 0.893 1.121
4,4) 0.191 0.173 3.550 0.925 1.083
4,8) 0.184 0.167 3.971 1.003 1.227
(5,4 0.188 0.171 4.254 1.139 1.205
5, 8) 0.183 0.165 4.733 1.280 1.362

In addition to the general decrease in the RMSE and MAE, a deeper analysis of the
prediction performance at various stages of degradation gives additional information about
the performance benefits of the suggested framework. At the initial degradation phase, the
frequency noise can often overwhelm the vibration signal and it is hard to identify weak
fault-related vibration patterns using conventional models. The noise-conditioning of the
NC-CDAE assists in the reduction of irrelevant variations and the maintenance of finer
degradation signals, leading to more consistent early-stage predictions. The longer-term
temporal dependencies develop as the degradation moves to the middle and later phases,
as there are non-linear and cumulative trends of fault development. During this stage, the
self-attention mechanism of the TAT allows the adaptive weighting of temporally distant
but degradation-relevant features and this is why the later stages of RUL prediction show
enhanced stability and lower error variance.

Moreover, the proposed framework has rather stable performance when using small
sample training conditions in contrast to baseline models. This strength is explained by
the fact that noise suppression and temporal modelling are decoupled: the NC-CDAE
reduces input variability by its conditioning on noise attributes, whereas the attention-
based predictor predicts salient degradation regions as opposed to looking at dense
sequential patterns. This makes the model less susceptible to the lack of data, and
thus, it can be more advantageous in real-life prognostic situations with limited labelled
run-to-failure information.

5.4. Comparison with Different Models

Table 4 presents the RMSE and MAE values of the different methods across six test
cases, bold values indicate the best (lowest) RMSE or MAE for each dataset. The proposed
framework consistently achieves competitive or superior performance, with the lowest
RMSE and MAE values in most groups, such as 0.135/0.127 in Test 5 and 0.194/0.177 in
Test 6. Compared with the CNN-TAT and CDAE + TAT conditions, which both exceed
a 0.24 RMSE in several cases, the proposed model maintains more stable error levels
across all test groups. The PCA + RF model performs relatively well in some lower-
noise scenarios (e.g., Test 1, RMSE = 0.184), but its performance fluctuates more strongly
in later cases. The STFT + CNN model provides competitive results in Tests 4 and 5
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(RMSE = 0.168 and 0.147), indicating that time-frequency representations can be effective,
but performance deteriorates under other conditions. The GRU + Attention model shows
moderate accuracy but is consistently outperformed by our method. Overall, the data
confirm that the proposed NC-CDAE + TAT achieves lower and more stable error rates
compared to both traditional and deep learning baselines.

Table 4. The detailed results for the six synthetic datasets. (Datasets 1-3 are derived from XJTU-SY [49]
and Datasets 4-6 are derived from PRONOSTIA [50]).

Test CNN-TAT CDAE + TAT PCA +RF STFT + CNN GRU + Attention Proposed (Ours)
RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

Dataset 1 0.297 0.277 0.278 0.265 0.184 0.161 0.167 0.155 0.174 0.161 0.168 0.154
Dataset 2 0.305 0.278 0.280 0.252 0.244 0.221 0.211 0.190 0.237 0.211 0.199 0.184
Dataset 3 0.327 0.299 0.321 0.293 0.199 0.164 0.203 0.174 0.228 0.199 0.216 0.197
Dataset 4 0.387 0.369 0.449 0.421 0.172 0.167 0.168 0.145 0.193 0.144 0.190 0.166
Dataset 5 0.245 0.195 0.242 0.231 0.187 0.158 0.147 0.123 0.141 0.132 0.135 0.127
Dataset 6 0.214 0.189 0.183 0.161 0.205 0.172 0.198 0.180 0.200 0.189 0.194 0.177

Figure 7 compares the RMSE performance of different models across the six synthetic
datasets. Figure 8 illustrates representative predicted RUL trajectories of the proposed
method and baseline models under different noise conditions. The comparative results
highlight the strengths and weaknesses of different approaches. Traditional PCA + RF is
computationally efficient but limited in capturing complex degradation patterns, leading
to inconsistent performance. The STFT + CNN model leverages time-frequency features to
improve robustness in non-stationary cases, but its handcrafted transformation and higher
computational burden reduce its generalizability. The GRU + Attention model is strong
in sequence modelling but lacks an explicit denoising stage, making it vulnerable to noise
contamination. In contrast, the proposed method integrates noise-conditioned denoising
with temporal attention, allowing it to adaptively suppress diverse noise while focusing
on fault-relevant time steps. This synergy explains why it consistently achieves the best
balance between accuracy and robustness across different test conditions.

RMSE across Comparative Models
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Figure 7. An RMSE comparison for the six synthetic datasets.
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Figure 8. A comparison of the predicted RUL trajectories between the proposed method and baseline
models under representative noise conditions.

In a further initial assessment under small sample conditions (with 20-25% of the
initial training data only) all the baseline models showed a notable degradation. As an
illustration, the PCA + RF and STFT + CNN models recorded a mean improvement in the
RMSE of 18.7% and 14.3%, respectively, whereas the GRU + Attention model experienced
erratic convergence with occasional prediction drift during the late stage of degradation. In
comparison, the suggested NC-CDAE + TAT model had a relatively small RMSE increment
of 6.1% and the predicted RUL curves of the model were smooth and trend-following.
Small-sample prediction is not a major scope of this work; however, these findings sug-
gest that the proposed framework still holds rather good stability even in conditions of
data scarcity.

5.5. Discussion

The experimental results demonstrate that the suggested NC-CDAE + TAT framework
attains consistent and precise RUL prediction in various cases of noise. It was revealed
that the cGAN-based augmentation is necessary; more similar configurations tended to
improve downstream values, which proves that the quality of the synthetic data is a direct
condition of the robustness of the model. The experiments concerning ablation also showed
that noise conditioning and temporal attention are inseparable, as the removal of each of
the modules resulted in a considerable decrease in performance and the interchange of the
self-attention module with the GRU produced the lowest results. These results explain
why adaptability is the result of two complementary functions: adaptive denoising and
long-range temporal modelling.

The trade-off between accuracy and efficiency was brought out by the parameterised
ablation of NC-CDAE depth and the number of heads in the TAT. Though more profound
networks and broader attention enhanced the accuracy of prediction, there was a decrease
in returns after moderate sizes and the (4, 8) configuration was found to be the most
balanced. Lastly, these findings were supported by cross-model comparisons: PCA + RF,
STFT + CNN, and GRU + Attention performed competitively in some limited conditions,
but varied widely in their performance when exposed to complex noise. On the contrary,
the NC-CDAE + TAT offered fewer and more consistent errors, making its robustness
aspect its most important advantage.
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Besides the accuracy of prediction, computational complexity and real-time interrup-
tiveness are also important factors for deployment in industry. According to Table 3, the
proposed NC-CDAE + TAT framework is of moderate model size and inference latency
with a trade-off between performance and efficiency. The framework can respond to the
needs of standard industrial condition monitoring systems, where diagnostics based on
vibrations are carried out at a fixed rate, as the framework requires an average of millisec-
onds to make an inference. The architecture proposed is simple, with a limited depth and
width of attention, as compared to more complex and deeper attention-based models, and
yet the model is capable of noise-robust RUL prediction. All these attributes indicate that
the proposed approach is effective not only in terms of accuracy but also expedient in the
context of real-time or near-real-time predictive maintenance services.

Beyond the quantitative results, this study also provides several conceptual insights.
By explicitly conditioning the denoising process on noise characteristics, the proposed
NC-CDAE framework demonstrates that noise can be treated as informative contextual
input rather than merely a nuisance to be suppressed. This perspective enables the model
to adapt its feature representations across different noise regimes, contributing to more
robust RUL prediction. Moreover, the conditioning mechanism can be naturally extended
beyond noise to incorporate other operational factors, such as load or temperature, offering
a flexible pathway for further improving model adaptability. The ablation analysis on
network depth and attention heads further suggests that practical deployment does not
always require maximum model complexity, but rather an appropriate balance between
accuracy, robustness, and computational efficiency. Together, these findings highlight the
potential of noise-aware and context-conditioned architectures as a promising direction for
future prognostic model design.

6. Conclusions

A noise-robust bearing RUL prediction framework was proposed in this paper that
combines an NC-CDAE with a TAT. The paramount input of the suggested solution is that
noise is explicitly modelled as a condition-dependent variable as opposed to its emergence
as an implicit nuisance parameter. The framework, by conditioning the denoising process
on perceived noise properties, as well as pairing it with an attention-based temporal
model, overcomes a long-standing problem in the field of data-driven prognostics, which
is the desirable balance between prediction accuracy and resilience to non-stationary and
heterogeneous noise.

Experiments carried out on datasets with the addition of cGAN-generated multi-noise
signals show that the proposed NC-CDAE + TAT framework outperforms representative
traditional machine learning, signal processing, and deep learning baselines. The findings
indicate that they not only had reduced average prediction errors, but also that their perfor-
mance variability over various noise regimes is significantly lower. Ablation experiments
further substantiate the need for the two components: noise conditioning increases adapt-
ability to the different noise intensities, whereas temporal attention increases the modelling
of the long-range dependencies of degradation, especially in the later stages of life of the
bearing when degradation dependencies become more significant.

In addition to its empirical performance, the suggested framework also provides a
number of conceptual insights. To begin with, the noise-conditioning process enables
noise characteristics to be explicitly incorporated as contextual information, allowing the
model to adapt its denoising behaviour dynamically across different noise conditions.
This view creates an opportunity to transfer the conditioning mechanism beyond noise to
other factors of operation, like load, speed, or temperature. Second, the temporal attention
mechanism offers a flexible means of capturing short-term fault-related transients and
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long-term degradation trends, which is in line with the inherent nature of RUL prediction
as a time-series regression problem.

Although these are the benefits, this study has a few limitations that indicate how
future research can be conducted. Vibration signals are considered the central concern
of the current framework and the inclusion of multi-sensor data (temperature, acoustic
emission, or electrical signals) might provide additional benefits for the strength of pre-
diction. Also, the noise diversity of the cGAN-based synthetic data generation could be
enhanced; however, the realism of the simulated noise pattern may be further confirmed
through field data from industrial settings. Modelling-wise, future work might consider
lightweight or scarified attention mechanisms to make them more computationally efficient
to deploy in real-time. In addition, engineers can further use the noise-conditioned design
to jointly model various operating conditions, which could offer a more holistic solution in
prognostics when the industrial environment is highly variable.

In general, the proposed NC-CDAE + TAT framework has methodological and practi-
cal implications for noise-robust bearing RUL prediction. This work presents a principled
and generalizable noise-sensitive denoising model with a TAT by clearly combining the for-
mer with the latter to make predictions in the context of realistic and challenging operating
conditions in predictive maintenance.
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