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Abstract 

Machining energy consumption (MEC) prediction plays an important role in energy planning, management, 

and conservation in the manufacturing industry. Existing MEC prediction techniques are commonly classified 

into physics-based models (PBMs) and data-driven approaches (DDAs), which rely on physical knowledge and 

data learning, respectively. While DDAs alleviate limitations associated with PBMs due to assumptions needed 

to simplify the complexity, most of them ignore the underlying physical knowledge and may struggle with 

generalization under varying machining conditions. Moreover, machining data is inherently heterogeneous in 

modalities, such as sensor signals and process parameters, making data fusion another challenge. To address 

the above issues, this paper proposes a physics-informed multimodal transformer (PIMT) model for MEC 

prediction. Firstly, based on the studies of machining energy nature, a synthetic data augmentation strategy is 
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proposed to incorporate energy-relevant physical principles from PBMs. Secondly, a structured multimodal 

network is designed to align and fuse features from diverse data modalities. Then, a transformer with multi-

head attention is employed to capture complex temporal dependencies and cross-modal interactions within the 

fused data. Finally, three groups of comparative experiments with different machine tools, materials, cutting 

tools, and machining parameters are designed to validate and demonstrate the proposed approaches. The results 

showed that the proposed PIMT model achieves the lowest RMSE (0.048) and MAPE (12.33%), while reducing 

the training time (at least 152s, 1.7s, and 29.9s) and the number of trainable parameters (at least 49.7%, 51.3% 

and 67.6%) compared to state-of-the-art methods. Furthermore, the PIMT model consistently produces smaller 

errors across nearly all evaluation metrics, and accurately forecasts MEC throughout continuous machining 

conditions. 

 

Keywords: Physics-informed machine learning; Multimodal data fusion; Transformer; Energy consumption 

prediction; Machining. 

 

 

 

1. Introduction 

Global energy consumption exerts a profound impact on both the environment and national economies [1]. 

Within manufacturing sectors, machining is a major contributor to carbon dioxide emissions and energy usage, 

responsible for over 74.7% of global energy consumption and 99% of carbon footprint [2-3]. It is a strong 

motivation to reduce machining energy consumption (MEC). Thus, various strategies, such as process parameter 

optimization and energy-saving scheduling, have been proposed to decrease the energy consumption and carbon 

dioxide emissions of machining [4]. However, the absence of an accurate MEC model has hindered the effective 

implementation of these strategies [5]. 

 

Existing MEC prediction techniques are commonly classified into physics-based models (PBMs) and data-

driven approaches (DDAs). PBMs primarily rely on understanding energy transmission and conversion laws in 

machining, incorporating principles of thermodynamics [6], or energy flow theory [7]. One limitation in PBMs 

is the model fidelity, as the physical parameters in equations may only be roughly approximated due to the non-

linearity involved, which will limit the prediction accuracy. With the development of machining learning and 

deep learning technologies, DDAs gain attention as a viable alternative to resolve this issue [8]. DDAs do not 

assume physical knowledge about the system to be available a priori. Instead, they establish numerical mappings 

that directly associate sensing data to system variables of interest by learning from the training samples [9]. 

However, DDAs often act as a type of “black box” where the inputs and outputs are known, but the underlying 

process for deriving the relationships among these remains a mystery [10]. Moreover, machining conditions are 

often dynamically changing (such as variations in machine tools, machining processes, and workpieces), which 

introduces inherent uncertainties in MEC prediction and may also lead to potential inaccuracies in the results of 

DDAs. These limitations of both PBMs and DDAs highlight the need for an approach that integrates physical 

principles with data-driven learning. To bridge this gap, the emerging paradigm of Physics-Informed Machine 

Learning (PIML) offers a promising path forward. PIML addresses these shortcomings by incorporating 

physical prior knowledge, which can be achieved by modifying various components of the machine learning 

pipeline, including the data, model architecture, or loss function, etc [11]. Therefore, a key task within this 

paradigm is to explore effective strategies for integrating these inherent physical prior knowledge into DDAs. 
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Moreover, the machining data is inherently heterogeneous in modalities. For instance, the information of 

machine tools, cutting tools, and workpieces, such as machine type, tool diameter, and workpiece material is 

typically used to describe the entities involved in machining and usually remain unchanged during machining, 

thus representing static data. Process parameters, such as cutting speed, feed rate, and cut depth are often 

collected from numerical control (NC) codes or manual operator input, describing the "intent" and "instructions" 

of the machining process, and are typically discrete event sequence data. Sensor data, such as spindle motor 

power, feed-axis power, and three-directional cutting forces, are generally high-frequency, continuous time-

sequence data. Additionally, the machining condition data, such as workshop temperature and coolant flow rate, 

are typically structured data. These multimodal data provide a unique perspective for understanding the nature 

of energy consumption in machining, and their effective utilization may enhance the prediction accuracy and 

generalization of MEC models. However, existing research mostly focuses on single-modality inputs or simple 

early/late fusion strategies. Each modality exhibits unique data patterns, making it difficult to transfer models 

trained on one modality to another [12]. 

 

To address these challenges, this paper focuses on the data level of PIML and employs PBMs to generate 

synthetic features (i.e., synthetic data) that encapsulate underlying physical principles. This synthetic data acts 

as a physical prior, guiding the model to learn representations consistent with the known physics. These 

synthetic data are then used as additional input features, aligned with the other modalities for MEC prediction. 

Consequently, we propose a physics-informed multimodal transformer (PIMT) model. The intellectual 

contributions of this paper can be summarized as follows: (a) a strategy for exploring and integrating the 

machining physical knowledge in DDAs based on data-level PIML paradigm is proposed, enhancing the 

accuracy and physical consistency of the MEC model, and (b) a multi-channel transformer is designed to process 

the multimodal data for improving the model's generalization capability, providing a systematic and effective 

solution to the challenge of fusing heterogeneous data (static, sequential, and structured) in manufacturing. 

 

The rest of this paper is organized as follows. Section 2 reviewed the relevant studies of the PBMs and 

DDAs, as well as multi-modal data fusion for MEC modelling and prediction. Section 3 introduces the 

methodology of the proposed PIMT model. Section 4 reports a series of experimental studies, and the results 

are demonstrated and discussed in Section 5. Finally, conclusions were presented in Section 6 to summarize our 

contributions and to outline the need for future research. 

 

2. Literature Review 

2.1. MEC modelling and prediction 

MEC prediction can be primarily divided into PBMs and DDAs. PBMs rely on understanding of physical 

principles or empirical formulas in machining, such as machining mechanisms and energy rules. Gutowski et al. 

presented an exergy-based theoretical model for MEC [6]. Subsequently, other researchers conducted studies 

to develop empirical models to predict energy consumption in machining processes, including turning, milling, 

drilling, etc. [13]. Liu et al. developed power balance equations of machine tool steady and transient periods 

based on the energy flow theory [14]. Similarly, Mori et al. established an energy consumption model that 

considers both cutting and non-cutting periods of machine tools, with a specific focus on energy consumption 

resulting from spindle positioning and acceleration [15]. Balogun and Mativenga established a predictive model 

that accounts for energy consumption in the basic state, ready state, and cutting state, offering valuable insights 

for managing the energy demand of machine tools [16]. Ma et al. proposed a material removal energy 
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consumption model during milling, considering the cutting and air-cutting status of machine tools [17]. Liu et 

al. extended the scope of their study by developing a model to estimate MEC, including both the direct and 

indirect energy consumption associated with the embodied energy of cutting fluid, cutting tool, and workpiece 

[18]. With further advancements in research, more precise energy consumption PBMs for machine tools have 

been developed. 

 

In contrast to PBMs, DDAs leverage machine learning techniques to establish numerical mappings directly 

correlating collected data with MEC. The performance of DDAs is mainly affected by the quality of raw data, 

features used as model inputs and prediction techniques used for model establishment [19]. In most of the DDAs, 

sensor data, process parameter, equipment information, and machining condition data are commonly used. Hu 

et al. established an energy consumption model during cutting based on feature technology [20]. Brillinger et 

al. [21] investigated the ability of machine learning algorithms for MEC prediction, e.g., Decision Tree, Random 

Forest, and boosted Random Forest. Bhinge et al. [22] developed a Gaussian regression-based data-driven 

model for predicting milling energy consumption. Sheng et al. proposed a self-adaptive hybrid approach for 

machining quality prediction with multimodal sensing data in the manufacturing workshop [23]. More recently, 

the application of deep learning has emerged in this domain, capitalizing on its advantages in feature extraction 

and large-scale data processing. Techniques such as one-dimensional Convolutional Neural Networks (1D-CNN) 

[24] and deep learning-embedded semi-supervised learning (DLeSSL) [25] are gaining traction. This evolution 

underscores the burgeoning potential of DDAs in MEC forecasting, fuelled by the enrichment of data and 

advancements in data processing technologies. Recently, deep learning has significantly improved the 

performance of DDAs by enabling them in massive data processing and complex high-level feature extraction 

[26]. Particularly, the Transformer, proposed by Vaswani et al. in 2017 [27], has made a significant difference 

in deep learning. The Transformer eliminates the constraint of sequential processing and enables parallel 

processing. Moreover, benefitting from the multi-head self-attention mechanism, both long-term and short-term 

dependencies of sequential data could be captured effectively. In our previous work, the Transformer was 

employed to diagnose compound faults of industrial robots [28], further highlighting its potential utility in MEC 

modelling and prediction. 

 

DDAs have made significant progress on MEC prediction. However, existing DDAs for MEC prediction 

primarily focus on feature extraction from machining data, failing to fully exploit the underlying physical 

knowledge behind these data. To this end, researchers have recently turned to the paradigm of PIML, which 

provides a systematic framework for integrating physical prior knowledge into models. To be specific, the 

training of a machine learning model involves several fundamental components including data, model 

architecture, loss functions, etc. The incorporation of physical prior knowledge can be achieved through 

modifications to one or more of these components. For example, Liu et al. [29] suggested a hybrid approach 

that combines data-driven machine learning with machining mechanics for specific cutting energy (SCE) 

modelling. Lv et al. [30] proposed a comprehensive framework to integrate both the mechanical and data aspects 

of MEC, and it provided valuable insights for energy consumption evaluation and management. Simultaneously, 

several efforts have been made to develop physics-informed modelling techniques in tool remain life prediction 

and heat transfer modelling, aiming to improve the performance of DDAs [31]. These studies offer practical 

physically consistent solutions by introducing appropriate observational, inductive, or learning biases that can 

steer the learning process. To the best of our knowledge, the application of these methods in MEC modelling 

and prediction has not been explored in the existing literature. 
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2.2. Multimodal data fusion 

Multi-modal data fusion is defined as a framework that combines data from diverse sources and formats, 

and aims to achieve enhanced accuracy and reliability of inferences compared to individual data sources [32]. 

This technique has gained significant traction in manufacturing industries, including aerospace, automotive, and 

additive manufacturing, leveraging advanced sensing and Internet of Things technologies [33]. Existing 

methods for multi-modal data fusion can be broadly categorized into model-independent and model-based 

approaches. Model-independent methods, such as early, intermediate, and late integration, have been 

successfully applied across various domains [34]. However, the relative data for MEC modelling, such as 

machine tool type, workpiece material, and cutting tool type, can be acquired from process manuals, CAD 

models and CAM systems, while other data require the use of auxiliary devices, such as ultrasonic sensors, AE 

sensor, current sensor, and similar devices. Moreover, in some physics-informed neural networks, the data used 

for DDAs is derived from empirical equations of PBMs [35]. Therefore, directly applying these methods to 

integrate these multimodal data presents challenges.  

 

Model-based data integration approaches have become popular in multi-modal data fusion due to their high 

accuracy and usefulness [36]. The data utilized for MEC are obtained from various information sources and 

presented in different formats, leading to heterogeneity in terms of their characteristics [37]. Specifically, these 

data formats include static data, discrete event sequence data, continuous time-sequence data, and structured 

data. Various methods are commonly used in this context, including multi-kernel learning, image modelling, 

and neural networks. Among these methods, deep learning, including various sub-neural networks, is skilled in 

multi-modal data processing [38], such as static data, structured data, image data, and sequential data, 

respectively. Zamiela et al. proposed a thermal physics-informed PointNet methodology and fused multi-modal 

position, weld parameters, and thermal data to monitor the process for defects [39]. Chen et al. developed a 

dual-branch deep neural network to fuse satellite and street-view images [40]. Mou et al. [41] established a 

CNN-LSTM model to fuse multi-modal data, including eye data, vehicle data, and environmental data. 

Consequently, multi-modal data fusion can therefore play an essential role in understanding the energy nature 

of machine tools. The development of deep learning has improved the ability for multi-modal data fusion, and 

it has generated great interest in multimodal data processing and general concern among researchers. 

 

From the literature, MEC modelling and prediction have been developed based on both PBMs and DDAs. 

PBMs provide a theoretical foundation for understanding the energy nature of machine tools, while DDAs offer 

flexibility and adaptability for modelling. However, a fundamental challenge lies in exploiting the physical 

knowledge of MEC. Research on PBMs of MEC has yielded significant results, but existing DDAs typically 

employ data collected from various machining conditions, and the physical knowledge hidden in PBMs is 

insufficiently exploited, resulting in DDAs that are not adequately physically informed. Another important 

challenge arises from the complexity of data. The data related to MEC provide a multidimensional 

understanding of the energy nature, but the lack of integration of these multisource and heterogeneous data 

limits the performance of DDAs. Therefore, it is critical to explore and utilize the physical knowledge and 

integrate diverse sources and heterogeneous information to gain a comprehensive understanding of MEC. 

 

3. Methodology 

The proposed PIMT model for MEC prediction is grounded in the data level of the PIML paradigm. This 

approach integrates physical knowledge by generating synthetic features from PBMs. These features serve as 

physical priors that enrich the input space and guide the model toward physically consistent representations. As 
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illustrated in Fig. 1, the overall framework of the approach consists of two core modules: physical knowledge 

exploration and PIMT model for MEC prediction. 
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Figure 1. The general framework of the PIMT model for MEC prediction 

 

(1)The physical knowledge exploration module is utilized to discover the latent physical insights within 

PBMs. In this study, we employ an exploration strategy to generate synthetic data characterizing physical 

knowledge. To initiate this process, PBMs for total MEC were formulated including different energy categories, 

mainly considering air cutting energy consumption and cutting energy consumption. Subsequently, synthetic 

data were generated using empirical equations of each category. 

 

(2)The PIMT model module is established to integrate multi-modal data using a hybrid neural network and 

predict MEC with a transformer. Firstly, suitable deep learning networks are designed to extract the high-level 

features from synthetic data and other data (sensor data, process parameters, equipment information, and 

machining condition data). Alignment and merging strategies are then applied to fuse these features. Second, 

the fused features are fed into a transformer with a multi-head self-attention mechanism for MEC prediction. 

The model takes the five aforementioned data streams as input and outputs the real-time energy consumption. 

 

3.1. Physical knowledge exploration 

In general, the energy consumption during CNC machining with complicated dynamic changes, exhibiting 

a multi-category energy nature. Specifically, the energy consumption can be divided into mainly four categories, 

i.e., standby, air cutting, cutting, tool change and external auxiliary. A machine tool power profile during a 

typical face milling process is shown in Fig. 2. 

 

Throughout the machining process, standby time is strongly affected by the operator’s skill level. Because 

operators generally lack energy-saving awareness, the machine’s runtime under the standby state tends to 

fluctuate randomly. To simplify calculations, the energy consumed during this state is excluded. Moreover, the 

energy required for spindle and feed-axis acceleration and deceleration is negligible, as these transient events 

are extremely brief. Consequently, the total energy consumption totalE  of the entire machining process can be 

calculated directly using Equation (1). 
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Figure 2. Power profile of machine tool during the machining process 
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where totalE  represents the total energy consumption of the entire machining process. airE , cutE , and auxE , 

denotes energy consumption in air cutting, cutting, and auxiliary state, respectively; airP , cutP , and. 1T , 2T  

are the power and duration corresponding to these stages, respectively; jE  is the energy consumption of the 

auxiliary subsystem ( 0,1,2, )j n=  , ( )jS t  is the switch function as shown in Eq. (2), indicating whether the 

auxiliary subsystem is on or off. 

 

 
1

( )
0

j

 systems on 
S t

 systems off 


= 


 (2) 

 

Considering the linear accumulation characteristics of auxiliary system energy consumption on a 

macroscopic time scale, this study simplifies it into a constant C  based on the empirically measured average 

value during auxiliary system operation, thereby striking a balance between model complexity and engineering 

practicality. 

 

During face milling, the cutter and the workpiece rotate continuously relative to each other while the table 

feeds radially at a constant rate. Because the spindle speed and the feed motion are coupled through a fixed 

transmission ratio, the instantaneous power of the spindle motor can be regarded as a single-factor function of 

the cutter speed. Moreover, variations in the radial feed rate have a negligible effect on the feed-axis motor 

power, so this contribution can be treated as constant. Consequently, the air cutting power of the milling machine 

can be simplified to a function of the cutter speed. Experimental fitting results and published studies both 
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indicate a quadratic relationship between total motor power and spindle speed [17]. Therefore, the air cutting 

power airP  is expressed as Equation (3): 

 

 2( ) ( ) ( )airP n An t Bn t C= + +  (3) 

where ( )n t  represents the spindle rotation speed of machine tools; A , B , and C  are physical parameters. 

 

In the cutting state, material removal is accomplished through the combined action of the spindle and feed 

axes, achieved by changing the tool position. Therefore, the cutting power cutP  is expressed as Equation (4). 

 

 ( , , , ) ( )D E F G

cut sp se sp seP n a f a K n t a f a=      (4) 

where ( )n t , spa , f , and sea  represent the spindle rotation speed, depth of cut, feed rate, and width of cut, 

respectively; K , D , E , F , and G  are physical parameters. 

 

The multi-categories Eqs. (3)–(4) express machining power as a function of real-time process parameters 

(e.g., spindle speed, feed rate). Then, the physical parameters (i.e., synthetic data) corresponding to a specific 

machining state are fitted using empirical equations, with real-time measured process parameters (e.g., spindle 

speed and feed rate) as inputs and corresponding machining powers (i.e., airP , cP ) as outputs. It is worth noting 

that the aforementioned process parameters and corresponding powers are grouped under the same machining 

state. Finally, all synthetic data are used as additional input features, which are aligned with the other modalities 

for MEC prediction. The symbols for synthetic data of every machining state acquisition are shown in Table 1. 

 

Table 1. The synthetic data acquisition 

Machining state Energy category Empirical equation Input Synthetic data 

State 1 

Air cutting 
2

airP An Bn C= + +  n  

1 1 1
A B C    

State 2 2 2 2
A B C    

‧‧‧‧‧‧ ‧‧‧‧‧‧ 

‧‧‧‧‧‧ 

Cutting 
D E F G

c sp seP K n a f a=      , , ,sp sen a f a  

‧‧‧‧‧‧ 

State n  n n n n nK D E F G  

 

3.2. Physics-informed multimodal transformer model 

In this work, the generated synthetic data, sensor data, process parameters, equipment information, and 

machining condition data are used for MEC prediction. From the perspective of the modal characteristics of 

these data, the equipment information and machining condition data are static and structured data, which formats 

apply to FCNN. Among these, one-hot encoding is used to convert categorical equipment information (e.g., 

type of machine tool, type of material) into numerical formats suitable for the FCNN. The sensor data and 

process parameters are continuous time-sequence data and discrete event sequence data, which formats apply 

to 1D-CNN. Similarly, since the synthetic data is fitted from the process parameter, its sampling frequency is 

the same as the process parameter, which also applies to 1D-CNN. Thus, a PIMT model including an FCNN 
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and a 1D-CNN is proposed to fuse these multimodal data, then a Transformer with multi-head self-attention is 

employed to predict the EMC, and the architecture of the model is shown in Fig. 3. 
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Figure 3. The architecture of the proposed PIMT model. 

 

3.2.1 1D-CNN 

A 1D-CNN is possibly the latest achievement in the era of deep learning, which is very suitable for pattern 

recognition in multi-channel signal processing [42]. Considering the temporal nature of sensor data, process 

parameter and synthetic data, a 1D-CNN is adopted to effectively integrate these sequential data. In this 

approach, the preprocessed sequential data samples are fed from the input layer to the convolutional layer, where 

the generation of feature maps constitutes the most computationally intensive task. Within each convolutional 

layer, the input data undergoes convolution with a kernel that has a localized receptive domain. Then, a bias 

term is added to generate an output feature map through a nonlinear activation function, which is fed into 

subsequent convolutional layers. The convolution operations can be expressed mathematically as equation (5). 

 

 
1,( )

l

T

i l i j Fz W x b
−+= +  (5) 

where lF
W R represents the convolutional kernel, b represents the bias term, 

1, li j Fx
−+  is a subsequence of x 

with length Fl from point i, and zi represents the learned feature. ( )  denotes the activation function. 

 

3.2.2 Transformer network 

A transformer network can extract valuable temporal features from time series data and achieves better 

performance than other neural networks in various tasks. The Transformer consists of two essential components, 

positional encoding and a multi-head attention mechanism [43]. The extracted features are initially input into 

the multi-head self-attention layer to capture crucial information from diverse perspectives. To obtain the 

attention output, it is necessary to establish the relationship between a query and a set of key-value pairs. The 

attention output is a weighted sum of the values, which indicate the location of captured information. Meanwhile, 

the weights are computed using a compatibility function that relates the query to the corresponding key. The 
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standard self-attention layer calculates attention score by computing the query vector q, key vector k, and value 

vector v. When a new input i is fed into a self-attention layer, the attention score is calculated as follows: 

 

 max( )i i iScore soft q k v=   (6) 

 

The multi-head self-attention utilizes three matrices, Q , K , and V  to replace the individual vectors q , 

k , and v , respectively. Within these matrixes, the information is beneficial for comprehensively assessing the 

importance of features from various perspectives. 

 

For the input data  1 2, , , nX x x x=  , a linear transformation is initially applied to obtain the matrices Q , 

K , and V , as shown in Eqs (7)-(9). 

 

 qQ XW=  (7) 

 

 kK XW=  (8) 

 

 vV XW=  (9) 

where qW , kW , and vW  are trainable projection matrices. 

 

Next, the obtained matrices Q , K , and V  are used as the input for the scaled dot-product attention. The 

expressions of the multi-head attention mechanism are described as follows. 

 

 
max( )T

j j j

j

soft Q K V
h

d

 
=  (10) 

 

 1 2( , , ) ( , , )m oMultiHead Q K V Concat h h h W=   (11) 

where d  is a scalable factor, jh  denotes the j th scaled dot-product attention mechanism, m  is the number 

of heads, and oW  is a trainable weighted matrix. The output of the multi-head self-attention is then 

concatenated with its input and processed by the normalization layer to avoid overfitting, which can be 

expressed as follows. 

 

 ( )normy LayerNorm X MultiHead X= +    (12) 

where X  is the input to the multi-head self-attention layer. 

 

Subsequently, the extracted features normy  are sent into two feed-forward layers with a skip connection. 

Finally, another layer-normalisation operation is adopted to generate the output of the Transformer network. 

The operation can be expressed as follows: 

 

 ( )( )1 1 2 2max 0,feedforward norm normy LayerNorm y y W b W b = + + +   (13) 

where 1W  and 2W  are the weight of feed-forward layers, 1b  and 2b  are the biases of the feed-forward layers. 
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Through the process of Transformer, the long-term dependency within the integrated data can be further 

revealed. Then, the output is flattened and fed into two fully connected layers to predict MEC. 

 

3.3. Evaluation metrics 

To verify the effect of physical knowledge and predictive accuracy of the proposed method, this paper uses 

four metrics, mean square error (MSE), mean absolute error (MAE), mean absolute percentage error (MAPE) 

and root mean square error (RMSE) to evaluate the performance on MEC prediction. The four metrics are listed 

as follows. 

 

( )
2

1

1 n

t t

t

MSE A F
n =

= −                                  (14) 

 

1

1 n

t t

t

MAE A F
n =

= −                                   (15) 

 

1

100% n
t t

t t

A F
MAPE

n A=

−
=                                   (16) 

 

( )
2

1

1 n

t t

i

RMSE A F
n =

= −                                  (17) 

where, n  is the number of observations, tA  is the actual value and tF  is the predicted value. 

 

4. Experimental setup 

4.1. Data collection and PIMT model description 

In this paper, equipment information encompasses property information from machine tools, cutting tools, 

and workpieces, including machine tool models, cutting tool dimensions, and workpiece material etc. Sensor 

data, including spindle motor power, feed-axis power, and three-directional cutting forces. Process parameters 

comprise cutting speed, feed rate, and cut depth. Machining condition data, such as workshop temperature and 

coolant flow rate. To conduct machining operations and gather machining data, an experimental platform for 

MEC prediction is established in this paper. Illustrated in Figure 4, the platform consists of a machining 

execution system and a data acquisition system. The machining execution system is utilized for conducting 

machining operations. The data acquisition system is employed to collect machining data. Specifically, a power 

tester typed WT1800 is used to measure the power signals of the machine tools, utilizing a sampling frequency 

of 1 kHz. Additionally, the data of workshop temperature and coolant flow rate are acquired by air conditioning 

and other equipment. Conversely, the sources of equipment information and process parameter include CAD 

models, CAM systems, and process manuals. In addition, the synthetic data is fitted from the process parameter. 

Through this platform and experimental design, a total of 16,665 samples were collected, forming a substantial 

foundation for training and evaluating the proposed PIMT model. 
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Figure 4. Experimental platform for MEC prediction 

 

As mentioned in Section 3.2, synthetic data, sensor data, process parameter, equipment information, and 

machining condition data exhibit diverse modalities, encompassing static data, structured data, discrete event 

sequence data, and continuous time-sequence data. The details of the data are provided in Table 2. 

 

Following data collection, one crucial issue is integrating them into the proposed PIMT model. Parameter 

configuration holds the potential to influence the performance of the PIMT model. In this study, Batch 

Normalization was implemented for input multi-modal data, and the vital network parameters are detailed in 

Table 3. Moreover, determining the training parameters is essential. The chosen optimizer was Adam, with a 

learning rate of 0.05 and a training epoch count of 100. An early stopping strategy was also implemented to 

achieve optimal results throughout the training process. The mean square error was selected as the loss function 

due to its suitability for the regression task. 

 

Table 2. Data description 

Classification Items  Data characteristic 

Equipment information 

Machine model static data 

Machine type static data 

Power Rating static data 

Workpiece material static data 

Workpiece geometry static data 

Tool type static data 

Tool material static data 

Tool diameter static data 

Cutting edges static data 

Sensor data Spindle motor power continuous time-sequence data 
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Feed-axis power continuous time-sequence data 

Three-directional cutting forces continuous time-sequence data 

Process parameter 

cutting speed discrete event sequence data 

feed rate discrete event sequence data 

cut depth discrete event sequence data 

Machining condition 

data 

workshop temperature structured data 

coolant flow rate structured data 

Synthetic data 
A, B, C discrete event sequence data 

K, D, E, F, G discrete event sequence data 

 

Table 3. Detailed parameter configuration of the PIMT model. 

Layer parameter 

Convolutional kernel size 10 

Number of 1D-convolutional layers 3 

Number of fully connected layers in the sub-network 2 

Number of neurons in the hidden layers of the Transformer 100 

Number of heads for multi-head self-attention 4 

Dropout  0.5 

 

4.2. Comparative Experiments 

In this subsection, three comparative experiments are designed and set up to assess the feasibility and 

superiority of the proposed PIMT model for MEC prediction. The specifics of these experiments are outlined 

as follows. 

 

(1) Experiment 1 involves utilizing the PIMT model to forecast MEC for two industrial milling machine 

tools (XK714D, XK713) with three workpiece types (PA66, Al 6061, and 1045 steel) and three cutting tool 

diameters (8mm, 10mm, and 12mm) to reveal the effects of physical knowledge exploration. The evaluation 

metrics are applied to assess the outcomes when synthetic data is introduced as an additional input to the PIMT 

model, and when it is not used. The data partitioning strategy uses an 8:2 split to divide the dataset (with/without 

synthetic data) into fixed training and test sets. 

 

(2) In Experiment 2, two comparisons between energy consumption predicted values and actual values are 

established, one between real-time predicted values and actual values, and the other between predicted values 

and actual values in cutting and air cutting states. These comparisons aim to illustrate how multimodal data 

fusion enhances the prediction accuracy of energy consumption in MEC. The data partitioning strategy uses an 

8:2 split to divide the dataset (including synthetic data) into fixed training and test sets. 

 

(3) Experiment 3 aims to demonstrate the effectiveness of the proposed PIMT model by comparing its 

predicted results with state-of-the-art benchmarking algorithms, including Bi-long-short term memory network 

(Bi-LSTM), spatial attention-based convolutional transformer (SAConvFormer), and Merged-long-short term 

memory network (M-LSTM). The evaluation was conducted using a 10-fold cross-validation strategy to ensure 

robust performance comparison. It is important to note the architectural differences among the benchmarks. For 

Bi-LSTM and SAConvFormer, which are purely temporal prediction algorithms, all the variables are considered 

temporal data and fed into the network. In contrast, for M-LSTM and the proposed PIMT, different types of 

variables are fed into separate networks. The configuration details of the algorithms are described as follows. 
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⚫ Bi-LSTM [44]: A neural network that consists of three bi-directional LSTM layers and a fully 

connected layer, with 1000 nodes in the hidden layers.  

⚫ SAConvFormer [45]: A neural network comprising convolutional layers, spatial attention modules, 

max-pooling layers for sequential feature extraction, and a transformer network for sequential pattern 

mining, with 1000 nodes in the hidden layers. 

⚫ M-LSTM [46]: A neural network consisting of LSTM layers and a fully connected layer, designed to 

handle both sequential data and ordinary numeric data simultaneously, with 1000 nodes in the hidden 

layers. 

 

In the above comparative experiments, the Taguchi methods are employed to set the machining parameters 

during machining, the details are provided in Table 4. 

 

Table 4. Detailed machining parameters of the experiments. 

Parameters Information Unit 

Tool material PCBN / 

Blade diameter 8/10/12 mm 

Workpiece material PA66/Al 6061/AISI 1045 steel / 

Spindle rotation speeds 600/900/1200/1500/1800 r/min 

Feed rates 10/20/30/40/50 mm/min 

Cutting depth 0.5/1/1.5/2/2.5 mm 

 

5. Experimental results 

5.1. The results of the PIMT model 

To demonstrate the performance of the proposed PIMT model, comparison experiments involving Bi-

LSTM, SAConvFormer, and M-LSTM are assessed using 10-fold cross-validation. The evaluation metrics 

employed are MAPE and RMSE, as illustrated in Figure 5.  
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Figure 5. Comparison of algorithm performance in terms of RMSE and MAPE 
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To further illustrate the performance of the proposed algorithm, the computation load of the benchmarking 

algorithms was also evaluated in two aspects: (1) the number of trainable parameters, and (2) the training time 

for 100 epochs. All tests were performed on a computer with an Intel i9-10920X 3.50 GHz CPU and an Nvidia 

GeForce RTX 3090 graphics card. The results are presented in Figure 6 and Table 5. 

 
Figure 6. Convergence curves for various algorithms 

 

Table 5. Comparison of algorithm cost 

 PIMT-Net Bi-LSTM SAConvFormer M-LSTM 

Trainable parameters 13,964 27,737 28,689 42,121 

Training time (s) 43 195 44.7 72.9 

 

5.2. The results of physical knowledge exploration 

To illustrate the effect of physical knowledge exploration on MEC prediction, the results are compared 

with and without synthetic data in Experiment 1. These results encompass two types of machine tools, three 

workpiece materials, and three cutting tools. The evaluation metrics encompass MSE, MAE, RMSE, and MAPE, 

with the results depicted in Figures 7-9. 
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Figure 7. The prediction results of the machine tools 
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Figure 8. The prediction results of three workpiece materials 

 

MSE MAE RMSE MAPE

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
S

E
 /

 M
A

E
 /

 R
M

S
E
（

k
W

h
）

M
A

P
E
（

%
）

MSE MAE RMSE MAPE

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

M
S

E
 /

 M
A

E
 /

 R
M

S
E
（

k
W

h
）

M
A

P
E
（

%
）

MSE MAE RMSE MAPE

0

5

10

15

20

25

0

5

10

15

20

25

M
S

E
 /

 M
A

E
 /

 R
M

S
E
（

k
W

h
）

M
A

P
E
（

%
）

(c)12mm

(b)10mm(a)8mm

 

Figure 9. The prediction results of three cutting tools 
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5.3. The results of multi-modal data fusion 

Experiment 2 involves a two-group comparison between predicted values and actual values of MEC to 

reveal the performance of multi-modal data fusion. The first group validated the effectiveness of the PIMT 

model for energy consumption prediction by analysing the real-time values of the first 1000 data points under 

continuous processing conditions and performing cumulative summation on these real-time values (as shown 

in Figures 10 and 11). In the second group, the energy consumption predicted values for air cutting and cutting 

were computed and compared with the actual values, as presented in Figure 11. 
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Figure 10. Real-time MEC prediction with the PIMT model 

 

 

Figure 11. Comparison of accumulated values 
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Figure 12. The comparison between actual values and predicted values of different energy consumption 

 

5.4. Discussion 

The comparative experimental results unequivocally demonstrate the feasibility and superiority of the 

proposed PIMT model, which achieves the lowest values in both RMSE (0.048 ± 0.004) and MAPE (12.327% 

± 1.1%), as illustrated in Figure 5. More importantly, an in-depth analysis of the error bars reveals distinct 

advantages in model stability. While Bi-LSTM and M-LSTM exhibit the largest error fluctuations (e.g., RMSE 

ranges of approx. 0.063 ± 0.009 and 0.056 ± 0.009, respectively), indicating high prediction uncertainty, the 

proposed PIMT maintains a consistently tight error distribution. Although SAConvFormer shows a comparable 

fluctuation range to PIMT, its overall performance is inferior, as all the metrics of PIMT lie below those of 

SAConvFormer. This indicates that PIMT not only achieves higher accuracy on average but also delivers stable 

and reliable predictions under varying conditions. Therefore, the integration of physical knowledge and 

multimodal data in PIMT contributes to both enhanced predictive accuracy and improved robustness. 

 

Figure 6 and Table 5 highlight the computational advantages of the PIMT model. When comparing PIMT 

with SAConvFormer, both of which incorporate transformer networks, the results indicate a significantly 

superior performance of PIMT in comparison to SAConvFormer. This can be attributed to the complex 

operational conditions of machining, which make it challenging to systematically describe the energy nature of 

machine tools through sensor data, process parameter, equipment information, and machining condition data, 

alone. The findings demonstrate a positive contribution to enhancing the prediction accuracy of MEC through 

the enrichment of synthetic data. A comparison between PIMT, Bi-LSTM, and M-LSTM demonstrates that the 

transformer network exhibits more efficient performance. This is attributed to the multi-head self-attention 

mechanism of the transformer network, which directly captures long-range dependencies for various position 

combinations in a sequence, significantly enhancing the ability to represent correlations in sequence information. 

Furthermore, deep learning techniques such as PIMT and M-LSTM outperform Bi-LSTM, which treats all 

variables as temporal data. In summary, the PIMT not only achieves a lower final loss but also demonstrates 

significantly faster convergence than other models, all while maintaining a close alignment between training 

and validation loss, which indicates robust performance without overfitting. And the method exhibits superior 

performance in MEC modelling and prediction, especially when dealing with diverse types of variables. 
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As shown in Figures 7–9, the evaluation results obtained using synthetic data are mostly lower than those 

without synthetic data. For example, based on the four evaluation metrics (MSE, MAE, RMSE, MAPE), the 

results for XHK714D show relative reductions of 40%, 27%, 39%, and 35%; for 1045 steel, relative reductions 

of 31%, 9%, 10%, and 17%; and for the 8 mm tool diameter, relative reductions of 42%, 23%, 24%, and 23%. 

The occasional higher evaluation values observed for the 10 mm tool diameter, when compared to the scenario 

without synthetic data, are likely attributable to the limited data available for this specific diameter. Despite this 

particular case, the overall findings demonstrate that incorporating physical knowledge can further improve 

MEC prediction accuracy. These results also underscore the effective generalization capability of the proposed 

physical knowledge exploration strategy across MEC prediction scenarios. 

 

Analysing the comparison between predicted and actual values in Figure 10, it is observed that the trend 

in predicted values largely aligns with that observed under actual machining conditions. Further accumulation 

of the real-time values indicates minimal discrepancy between the cumulative values derived from actual and 

predicted scenarios (Figure 11), demonstrating the method's capability to accurately predict the MEC under 

continuous machining conditions. Furthermore, Figure 12 shows that the predicted values exhibit high 

correlation with actual values across both energy consumption categories. These findings indicate the robust 

performance of the proposed method for MEC prediction. It is noteworthy that the energy consumption 

prediction highest percentage error in the case of XK713 (3.09%) is higher than that in XHK714D (0.78%). 

This difference can likely be attributed to the smaller data sample size available for XK713. Concurrently, the 

multi-modal data fusion approach proposed in this paper can maintain diversity and integrity, optimizing the 

potential of synthetic data, sensor data, process parameter, equipment information, and machining condition 

data.  

 

To the best of our knowledge, most prevailing DDAs for MEC prediction have depended on algorithm 

performance and data-efficient integration. This study employs the FCNN and 1D-CNN as tools for efficiently 

integrating multi-modal data, including synthetic data, sensor data, process parameter, equipment information, 

and machining condition data. Furthermore, the Transformer network establishes a precise prediction model 

leveraging its multi-head self-attention mechanism. In comparison with Bi-LSTM, SAConvFormer and M-

LSTM, the PIMT effectively resolves the proposed model, achieving superior accuracy while minimizing 

computation expenses. The results can be adopted by engineers, analysts, and researchers to establish an 

enhanced energy management framework within the manufacturing industry. However, the multi-modal data 

fusion approach presented in this study necessitates the creation of tailored deep learning networks based on the 

data formats, a process predominantly reliant on expert knowledge. Thus, how to establish a unified framework 

to integrate multi-modal data requires further in-depth research. 

 

6. Conclusions 

This study established a PIMT model to address the physical knowledge integration and data fusion 

limitations in DDAs for MEC prediction. In this model, a synthetic data fitting approach from the empirical 

equations of MEC is introduced. With this data, it not only enhances the performance of DDAs but also 

harnesses the latent physical knowledge. The PIMT model, consisting of an FCNN, a 1D-CNN and a 

Transformer, represents a significant advancement in multimodal data (synthetic data, sensor data, process 

parameter, equipment information, and machining condition data) fusion. It further enhances the prediction 

accuracy of the DDAs in MEC prediction. The combination of physical knowledge exploration, multimodal 
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data fusion, and transformative capabilities establishes a promising avenue for future research endeavours 

within this domain. 

 

While this study has implemented PIML at the data level by incorporating synthetic features, this represents 

merely an initial step. To further explore the integration of physical principles, our future work will prioritize 

introducing physics-informed loss functions in PIML. Beyond this, the emergence of powerful generative AI 

presents significant potential. We plan to leverage these techniques, such as diffusion models, to generate high-

fidelity data for rare or costly-to-measure machining scenarios, thereby further enhancing the model's robustness 

and ability to generalize to unseen conditions. This concrete technical pathway, which progresses from data-

level to loss-level physics integration and is augmented by generative AI for data augmentation, will establish 

a solid foundation for developing more reliable, generalizable, and automation-friendly MEC prediction systems. 
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