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Abstract

Accurate volatility forecasting is essential for risk management in increasingly intercon-
nected financial markets. Traditional econometric models capture volatility clustering
but struggle to model nonlinear cross-market spillovers. This study proposes a Temporal
Graph Attention Network (Temporal GAT) for multi-horizon volatility forecasting, inte-
grating LSTM-based temporal encoding with graph convolutional and attention layers to
jointly model volatility persistence and inter-market dependencies. Market linkages are
constructed using the Diebold-Yilmaz volatility spillover index, providing an economically
interpretable representation of directional shock transmission. Using daily data from major
global equity indices, the model is evaluated against econometric, machine learning, and
graph-based benchmarks across multiple forecast horizons. Performance is assessed using
MSE, R, MAFE, and MAPE, with statistical significance validated via Diebold-Mariano
tests and bootstrap confidence intervals. The study further conducts a strict expanding-
window robustness test, comparing fixed and dynamically re-estimated spillover graphs in
a fully out-of-sample setting. Sensitivity and scenario analyses confirm robustness across
hyperparameter configurations and market regimes, while results show no systematic
gains from dynamic graph updating over a fixed spillover network.

GARCH model; graph neural network; temporal GAT; volatility cluster;
optimization; LSTM; volatility spillover
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1. Introduction

Volatility forecasting is essential for effective risk management, portfolio optimization,
and informed decision-making in global financial markets. Volatility reflects the degree
of variation in asset prices over time and acts as a fundamental indicator of financial
risk and market uncertainty. A particularly challenging characteristic of volatility is its
tendency to cluster, whereby periods of high volatility are typically followed by further
turbulence, and periods of calm tend to persist [1]. These volatility clusters, often triggered
by macroeconomic shocks, news events, or shifts in market sentiment [2], complicate the
forecasting landscape and heighten the need for robust predictive models that can adapt to
evolving market regimes.

Traditional econometric models such as the generalized autoregressive conditional
heteroskedasticity (GARCH) family have long been employed to capture stylized features
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of financial returns, including volatility clustering and leptokurtosis. While these models
provide valuable insights into time-varying volatility dynamics, they struggle to account
for the nonlinear interdependencies and spillover effects that characterize increasingly
interconnected global markets. As financial systems become more integrated, volatility
in one market can rapidly propagate to others, demanding modelling frameworks that
capture not only individual market behaviour but also the structural relationships that
govern cross-market transmission.

Graph Neural Networks (GNNs) offer a powerful means of representing such inter-
connected systems by exploiting the graph structure underlying financial markets. Their
ability to model dependencies between nodes makes them particularly suitable for volatil-
ity forecasting, where spillovers and contagion effects play a critical role. Recent studies
have demonstrated the promise of GNNs for incorporating network information to en-
hance predictive accuracy. For example, Son et al. [3] shows that spatiotemporal GNNs
combined with volatility spillover indices can improve volatility forecasts across global
markets, underscoring the importance of embedding financial network structure into
predictive models.

Building on these developments, this paper proposes a tailored framework for volatil-
ity forecasting: the Temporal Graph Attention Network (Temporal GAT). Our approach
represents global equity markets as dynamic graphs, where nodes correspond to stock
indices and edges encode time-varying interdependencies derived from either correlation
networks or, more effectively, the Diebold-Yilmaz volatility spillover index. The pro-
posed architecture adopts a temporal-first design: a Long Short-Term Memory (LSTM) first
encodes the history of each index’s volatility proxies, after which Graph Convolutional
Networks (GCN) and Graph Attention Networks (GAT) layers capture structural spillover
effects and assign adaptive attention weights to influential markets. This separation of
temporal and spatial learning allows the model to capture sequential volatility dynamics
alongside evolving cross-market relationships more precisely.

A key contribution of this work is the demonstration that volatility spillover networks
outperform traditional correlation networks in capturing the directional transmission of
market shocks. Our empirical analysis shows that spillover-based graphs yield more ac-
curate forecasts by modelling the asymmetric and dynamic nature of financial contagion.
Furthermore, the Temporal GAT is evaluated using a comprehensive set of experiments
over fifteen years of data from eight major global stock indices. The model is assessed across
multiple forecast horizons, from short-term to monthly volatility predictions, and bench-
marked against GARCH, MLP, LSTM, and alternative GNN architectures. Extensive
sensitivity and scenario analyses are conducted to evaluate robustness under different
hyperparameter configurations and varying market regimes. These analyses reveal that
while the model produces higher prediction errors during turbulent periods—an expected
outcome given increased market unpredictability—it remains stable and maintains strong
relative performance compared to competing methods.

Overall, this study advances the literature by presenting a domain-specific LSTM—
GCN-GAT hybrid architecture that aligns closely with the econometric structure of volatil-
ity transmission. By integrating temporal encoding with piecewise-static spillover-based
graph modelling, the Temporal GAT provides a more nuanced and accurate representation
of global market interdependencies. The rest of the paper is organized as follows: Section 2
introduces the literature studies in terms of volatility clustering, machine learning ap-
proaches to volatility forecasting, GNN in financial modelling and the concepts of volatility
spillovers and the GNNs. Section 3 introduces the mathematical and methodological pre-
liminaries, Section 4 presents the full methodology, Section 5 details the empirical results,
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including data visualization, sensitivity and scenario analyses, and the final section offers
concluding remarks.

2. Related Works

Accurate forecasting of financial market volatility has been a central theme in financial
econometrics; yet it remains a significant challenge due to the complex, non-linear, and in-
terconnected nature of global markets. This section reviews the evolution of financial and
volatility modelling, as well as the impact of the GNNs in such modelling.

2.1. Traditional Volatility Models and Early Machine Learning Approaches

Early efforts in volatility modelling were primarily dominated by econometric models.
The concept of volatility clustering, where periods of high volatility are followed by periods
of high volatility and vice versa, was first observed by [4] in 1963 and further developed
by [5] with the introduction of the Autoregressive Conditional Heteroskedasticity (ARCH)
model. Engle’s work demonstrated that volatility is not constant over time but can be mod-
elled based on past behaviours, marking a significant shift in understanding financial time
series. Building on this, Bollerslev [6] extended the ARCH model by proposing the GARCH
model in 1986. The GARCH model improved upon its predecessor by incorporating past
volatilities in addition to past shocks, allowing for more accurate forecasting of future
volatility. Traditionally, models like the GARCH model have been widely used to capture
volatility clustering by analyzing time-series data. While effective to some extent, these
models often fail to account for the more complex, non-linear relationships among multiple
assets, or even among networks of interdependent assets, in global financial markets [7].
This limitation becomes particularly evident when markets are highly interconnected,
and the volatility of one market affects others through intricate spillover effects [8].

Several variations of the GARCH model have been developed to account for specific
market behaviours. For instance, the Exponential GARCH (EGARCH) model introduced
by [7] addresses asymmetries in financial data, particularly the tendency for adverse market
shocks to increase volatility more than positive ones. Similarly, the Threshold GARCH
(TGARCH) model proposed by [9] captures the idea that markets respond differently
to different types of shocks. Despite their widespread adoption, GARCH models have
notable limitations. They often rely heavily on historical data, which can be problematic in
rapidly evolving markets. Moreover, they assume that volatility follows a single process,
overlooking the complex, interconnected relationships among global financial markets [8].

These limitations prompted the exploration of alternative approaches, including ma-
chine learning (ML) techniques, which have gained prominence due to their ability to model
complex, non-linear relationships. Andersen et al. [10] demonstrated the effectiveness of re-
alized volatility in providing more accurate volatility estimates by utilizing high-frequency
intraday data. Additionally, the concept of volatility spillovers, as measured by the Volatil-
ity Spillover Index, has been instrumental in understanding how volatility in one market
can influence others. Neural networks, such as LSTMs, have been successfully applied to
volatility forecasting, demonstrating improved capacity to capture long-term dependen-
cies in financial data [11,12]. Hybrid models combining machine learning with GARCH
have also shown effectiveness in various markets, including energy, metals, and stock
markets [13]. Other ML techniques, such as Artificial Neural Networks (ANNs), Support
Vector Machines (SVMs), and Random Forests, have been utilized in financial forecasting.
While ANNSs are effective at capturing non-linear patterns, they often require extensive
datasets and are prone to overfitting [14,15]. SVMs have been applied for market condition
classification, and Random Forests have shown robustness, especially with large datasets.
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However, a common drawback of many of these models is their tendency to treat assets
independently, thereby failing to capture the inherent interconnectedness of global markets.

2.2. Graph Neural Networks in Financial Modelling

To address the challenge of interconnectedness, GNNs have emerged as powerful tools
for modelling complex graph-structured systems, such as financial markets. GNNs are
designed to operate on graph-structured data, providing a sophisticated way to model time-
series patterns and relationships among market indices by treating them as nodes within a
dynamic graph. Each edge in this graph represents a relationship or correlation between
indices, capturing the dynamic interdependencies between global markets. Traditional
machine learning applications handle graph-structured data by applying a preprocessing
step that transforms the graph’s structure into a more straightforward form, such as real-
valued vectors. However, crucial information, such as the topological relationships between
nodes, can be lost during preprocessing. As a result, the outcome may be unpredictably
influenced by the specifics of the preprocessing algorithm [16]. Other approaches that
attempt to preserve the graph-structured nature of the data prior to the processing phase
have been investigated by researchers in [17-19]. This capability is crucial, as traditional
machine learning methods often lose vital topological information when converting graph
data into simpler forms.

In recent years, GNNs have gained attention, especially in financial modelling and
research, due to their capacity to capture both structural and temporal dependencies
evident in a financial system. This ability to account for both structural topology and
temporal dynamics makes GNNs a powerful tool for tasks such as risk assessment, fraud
detection, stock price prediction, and portfolio optimization in modern finance. Several
comprehensive reviews on GNNs have been published. Bronstein et al. [20] offers an in-
depth review of geometric deep learning, discussing key challenges, solutions, applications,
and future directions, whereas [21] provides a detailed overview of graph convolutional
networks. Other recent papers on GNN models are presented by researchers in [22-25].

The foundational work by [19] introduced a framework for applying neural networks
to graph-structured data, laying the groundwork for iterative updates of node representa-
tion based on neighbour information. K. Xu et al. [26] provided a theoretical framework
for analyzing the representational power of GNNs and their variants, whereas [3] recently
demonstrated how GNNs, combined with a volatility spillover index, can improve the pre-
dictive accuracy of stock market volatility in different regions. GCNs aggregate information
from neighbouring nodes, updating node features based on the graph’s topology, making
them effective for semi-supervised learning. GCNs can also incorporate temporal dynam-
ics, which is vital for fast-paced financial markets [27]. Applications of GCNs in financial
modelling include predicting stock prices using correlation graphs, as demonstrated by [28],
who combined a GCN with a gated recurrent unit (GRU) to capture temporal dependencies.
Other recent work on GCN implementations in finance is found in [29-33].

Further on improving GCNs, Velickovi¢ et al. [34] developed the GATs, which integrate
attention mechanisms to dynamically assign weights to neighbouring nodes, enabling
the model to focus on the most relevant connections. This innovation is beneficial in
multivariate time series prediction [35], financial fraud detection [36], and other financial
modelling frameworks in which specific market indices exert greater influence than others.
GATs utilize attention mechanisms to assign varying importance to nodes within a graph,
making them practical for modelling relationships between financial entities. The model
enhances the traditional methods of analyzing financial data by incorporating both the
GCNs and GATs [32]. This allows the model to focus on the most relevant relationships
between indices, improving the accuracy of predictions related to volatility clustering.
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However, traditional GATs struggle to capture temporal dependencies in data, which is
crucial in the financial domain where time plays a key role.

To address this limitation, Temporal GATs have been developed to enhance GATs
by incorporating temporal data. Using a temporal attention mechanism, the temporal
GAT dynamically adjusts the impact of past events, allowing the model to capture not
only the structure of the financial graph but also the time-dependent patterns that shape
market behaviour [37,38]. This phenomenon makes temporal GATs particularly effective
for financial applications, where it is crucial to account for both entity relationships and
their changes over time. Unlike traditional models that consider only individual asset
behaviours, the Temporal GAT model enables a deeper understanding of how assets
influence one another, providing a more comprehensive analysis of market volatility. This
research aims to push the boundaries of financial econometrics and machine learning by
applying GNNs to better understand volatility clustering and predict it. By capturing the
interconnected nature of global financial markets, this paper offers new tools for financial
analysts, risk managers, and investors to improve risk assessment and make more informed
decisions [39].

2.3. Volatility Spillovers and Graph-Based Models

Understanding volatility spillovers, that is, the phenomenon where volatility in one
market influences volatility in another, is crucial for comprehending systemic risk and mar-
ket dynamics. Diebold; Yilmaz [8,40] developed a framework to measure these spillovers
using Vector Autoregressive (VAR) models. However, traditional VAR-based measures may
not fully capture non-linear relationships. To overcome these limitations, recent research
has increasingly turned to GNNs to model the global financial system as a dynamic graph.
By representing markets as nodes and volatility relationships as edges, GNNs provide a
more comprehensive understanding of volatility spillovers. A notable contribution in this
area is the work of [3], who demonstrated that incorporating volatility spillover indices
into a spatial-temporal GNN framework significantly improves the accuracy of volatility
predictions across global markets. Their research highlighted the effectiveness of combining
GNNs with spillover indices to enhance predictive accuracy for stock market volatility.

2.4. Contributions of This Research

While [3] laid the necessary groundwork by applying spatial-temporal GNNs with
volatility spillovers, our research extends this knowledge through a more specialised and
theoretically aligned modelling framework. In contrast to the general “spatial-temporal
GNN model” examined by [3], the proposed TemporalGAT adopts a temporal-first archi-
tecture in which an LSTM encodes each market’s volatility history before any spatial
aggregation occurs. This separation enables more precise and more accurate modelling of
sequential volatility dynamics. Furthermore, integrating graph attention layers enables
the model to learn adaptive, time-varying importance weights for neighbouring markets,
capturing heterogeneity in spillover strengths that fixed diffusion-based approaches cannot
represent. Finally, the study incorporates extensive sensitivity, robustness, and scenario
analyses, demonstrating that the Temporal GAT remains stable across hyperparameter con-
figurations and maintains strong relative performance under both high- and low-volatility
regimes. These distinctions collectively advance the methodological precision of temporal
GNN modelling for financial applications and address key limitations in prior work.

The key contributions of this paper are as follows:

* Development of a Temporal GAT for Volatility Forecasting: This paper presents
a novel TemporalGAT architecture tailored for volatility prediction in global stock
markets. By combining LSTM-based temporal encoding with GCN and GAT layers,
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the model effectively captures both sequential dependence and evolving cross-market
spillovers, outperforming traditional approaches such as GARCH and MLP.

*  Volatility Spillover Index as a Superior Graph Construction Method: The study
demonstrates that constructing graphs using the Diebold—Yilmaz volatility spillover
index significantly improves the modelling of directional shock transmission relative
to conventional correlation-based methods, thereby enhancing forecasting accuracy
and interpretability.

*  Strict Expanding Window Robustness: Beyond the standard validation-based evalua-
tion, the study introduces a strict expanding-window robustness check that compares
fixed and dynamically re-estimated spillover graphs in a fully out-of-sample setting,
showing that dynamically updating the graph structure does not yield systematic
forecasting gains over a carefully constructed fixed graph, thereby strengthening the
credibility and stability of the proposed modelling approach.

e Comprehensive Sensitivity and Scenario Analysis: The model is evaluated under
a wide range of hyperparameter settings and market regimes, including both high-
and low-volatility periods. These analyses highlight the robustness of the Temporal-
GAT architecture and provide practical guidance for its application across diverse
financial environments.

The practical significance of this research lies in its ability to capture and model com-
plex interdependencies between multiple indices, enhance volatility predictions, and opti-
mize risk management techniques. Traditional models like GARCH focus on each asset’s
volatility but fail to account for how volatility in one asset can spill over to other assets
and vice versa. GNNs address this limitation by representing assets as nodes in a graph,
with edges reflecting relationships such as correlations or mutual volatility impacts. This
allows GNN s to capture interconnected market behaviour more effectively, yielding more
accurate volatility-clustering models. Some of the practical benefits are seen in modelling
complex asset relationships, cross-asset and multi-asset volatility spillovers, real-time sys-
tematic risk monitoring in terms of financial contagion, algorithmic trading and portfolio
optimization for risk-adjusted returns, as well as handling correlation breakdowns in the
face of market turmoil.

3. Preliminaries

This section introduces the fundamental concepts and methodologies essential for
understanding the subsequent analysis of volatility clustering using GNNs. The topics
covered include volatility proxy, the GARCH model, correlation, the volatility spillover
index, and the architectures of GCNs and GATs. These concepts form the backbone of the
proposed Temporal GAT model.

3.1. Volatility and Correlation Analytics

In the absence of intraday high-frequency data, we construct a daily volatility proxy
based on the squared daily return. Let P;; denote the closing price of asset i on day ¢.
The daily log return is defined as

rip =In(P;;) —In(P;;_q). 1)

Following standard practice when only daily observations are available, we compute
volatility using the squared daily return:

~2 2
(%5 t == T’i,t. (2)
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We refer to 31-2,t as a volatility proxy rather than realized volatility (The term “realized
volatility” is typically reserved for volatility measures constructed from high-frequency
intraday returns, such as the sum of squared intraday price changes (e.g., [10]), and
this is considered one limitation of this study). Despite this limitation, squared daily
returns remain a widely used approximation in empirical finance when intraday data are
unavailable. Furthermore, because all benchmark models in our study utilize the same
volatility proxy, our comparative evaluation remains consistent and informative regarding
relative predictive performance under daily-frequency constraints.

3.1.1. Generalized Autoregressive Conditional Heteroskedasticity (GARCH)

The GARCH model, introduced by [6], is a widely used statistical model for estimating
volatility in financial time series data. It extends the ARCH model by incorporating both
past squared returns and past variances [9], allowing for a more flexible and accurate
modelling of volatility clustering [8].

Let €; be the real-valued discrete-time stochastic process, and f; as the information
set (r—field) of all information through time ¢, then the standard GARCH (p, 4) model is
defined as

re=p+e€, €lfi—1 ~ N0, hy) 3)

P q
hy = wo + Z 061‘654 + ﬁ]‘ht,]‘ 4)
i=1 =1

where (note: for g = 0, the process reduces to the ARCH(p) process and for p = g =0, ¢
becomes the white noise)

g=>20,p>0
wo>0, ;>0 fori=12,---p
B >0; forj=1,2---¢q

and

e 7;is the return at time .

* pand ¢ are the mean return and the error term, respectively.
* i is the conditional variance (volatility) at time .

* w,w, and B are parameters to be estimated.

The GARCH model captures volatility clustering by allowing the current variance to
depend on both past squared errors (€2 ;) and past variance (/;_1). Since 2013, GARCH
modelling has seen significant advancements, particularly with the emergence of non-linear
and hybrid approaches that enhance volatility forecasting. Recent work by [41] introduces
graph-based multivariate GARCH models that capture complex dependencies in time
series data. Additionally, neural network-augmented GARCH models, such as Neural
GARCH [42] and deep learning-enhanced realized GARCH variants [43], have improved
the ability to model dynamic, non-linear volatility patterns. Other innovations include
ordinal GARCH models, which allow for a flexible structure of serial dependence [44],
as well as hybrid frameworks that combine GARCH with deep learning techniques [43],
which have demonstrated superior performance in capturing regime shifts and long-
memory effects.

3.1.2. Volatility Spillover Index

The Volatility Spillover Index measures the extent to which volatility shocks can
transfer from one market to another, reflecting the interconnectedness of the global fi-
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nancial market. Diebold and Yilmaz (2009, 2012) developed a framework using variance
decompositions from the VAR models to quantify these spillovers [8,40]. This measure
captures the transmission of volatility across financial assets or markets and provides a
more dynamic and directional understanding of market interconnectedness than static
correlation measures.

The calculation of the volatility spillover index typically involves a VAR model ap-
plied to a set of time series (in our case, volatility proxies of multiple market indices).
The forecast error variance decomposition from the VAR model is then used to determine
the contribution of shocks from market j to the forecast error variance of market i. This
contribution forms the basis for the weights in our graph construction, wj;, representing
the spillover from market j to market i. The spillover index is calculated using the forecast
error variance decompositions from the VAR model [40]:

—1vH-1(, 2
05 Lo (€A Lej)

0% (H) = — (5)
! Yilo (¢An L Aje:)
where
*  His the forecast horizon.
*  0jjis the standard deviation of the error term for variable j.
*  ¢;is the selection vector with one at the i — th position and zeros elsewhere.
* Ay is the coefficient matrix at lag .
e Y isthe covariance matrix of the error terms.
The total spillover index is then given by
TN B () TN B ()
sg(H):%xmo:MXmO (6)
Yij=10(H) N

Note: To calculate the spillover index using the information available in the variance
decomposition matrix, each matrix entry is normalized by

65 (H)
I

This index provides insights into how volatility in one market influences others, which
is essential for understanding systemic risk and market dynamics. The full derivation is
provided in Appendix A.

3.2. Graph Theory Fundamentals

Our methodology leverages graph theory to model the interdependencies within
global financial markets. A graph is formally defined as G = (V,E), where V is a set
of nodes (or vertices), representing the individual market indices in our context and E
is a set of edges (or links), representing the relationships or connections between these
market indices.

Each edge (i,j) € E indicates a relationship between node i and node j. In a weighted
graph, each edge (i, j) is associated with a numerical weight w;;, quantifying the strength or
nature of the relationship. In a directed graph, edges have a specific direction (e.g., i — j),
meaning the relationship from i to j is distinct from j to i. The connectivity of a graph
is represented by its adjacency matrix A, where A;; > 0 if an edge exists from i to j,
and A;; = 0 otherwise. For weighted graphs, A;; = w;;.
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3.3. Graph-Based Deep Learning Models
3.3.1. Graph Neural Networks (GNNSs)

GNN:s are a class of neural networks designed to operate on graph-structured data,
capturing dependencies among nodes via message passing between nodes. GNNs are par-
ticularly useful for modelling relational data and have been successfully applied in various
domains, including social networks, recommendation systems, and financial markets.

3.3.2. Graph Convolutional Networks (GCNs)

GCNs aggregate feature information from a node’s neighbours to compute its new
representation [32]. The first spatial component of the Temporal GAT architecture is a GCN
layer, which captures coarse structural relationships among market indices. The GCN
operates on the spillover network encoded by the Diebold-Yilmaz adjacency matrix,
where edges represent the magnitude and direction of cross-market volatility transmission.
The layer-wise propagation rule for a multilayer GCN is given by

HF = U(D*%AD%HU)WU)) )

where

o HW is the feature matrix at layer ; H?) € RN*D.

e A= A+ Iy is the adjacency matrix of the undirected graph G with added self-loops,
and Iy is the identity matrix.

*  Di=Y;A

o WU is the layer-specific trainable weight matrix.

* risan activation function (e.g., ReLU).

GCNs effectively capture local neighbourhood structures in graphs, making them
suitable for semi-supervised learning tasks on graph-structured data. In the proposed
architecture, the GCN layer takes as input the temporal embeddings generated by the
LSTM and transforms them into intermediate spatial representations. This step allows
the model to incorporate structural connectivity in the spillover network before applying
more expressive attention-based refinements. Consequently, the GCN layer acts as a
foundational spatial encoder, capturing general cross-market interactions and preparing
the representations for subsequent graph attention operations.

3.3.3. Graph Attention Networks (GATs)

GATs introduce an attention mechanism to GNNSs, allowing the model to assign
different importance weights to different nodes in a neighbourhood. Following the GCN
layers, the architecture incorporates GAT layers to learn heterogeneous spillover effects
via attention-based message passing. While GCNs treat neighbouring nodes uniformly,
GATs assign adaptive weights to neighbours based on their relevance, enabling the model
to emphasize influential volatility transmitters. The core idea is to compute attention
coefficients 0;; that indicate the importance of node j's features to node i [34,45].

E; = 0'( z LKZJWE]> (8)

JEN;

e (LeakyReLu (3T {Wﬁz | |WE]} ) )
S e T ’

where
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e h-= i;l, i?z, cee ,h_;\] ; Ez € RF are the input, with N = number of nodes and F, the number
of features in each node.

e WeR'Fisthe weight matrix.

e a:RF xRF — Ris the attention mechanism’s weight vector.

e || denotes concatenation and [.]” is the transposition.

e N is the set of neighborhood of node i in the graph.

Through this mechanism, GAT layers learn to assign higher importance to nodes that
exert stronger spillover effects, such as major global indices or structurally central markets.
Multi-head attention further stabilizes the learning process and improves expressiveness
by allowing the model to attend to different relational patterns simultaneously. In the
Temporal GAT architecture, GAT layers refine the spatial embeddings produced by the
preceding GCN layers, enabling the network to capture asymmetric, time-varying, and non-
uniform volatility transmission. This makes the GAT component essential for modelling
complex cross-market dynamics that uniform graph convolutions cannot capture.

3.3.4. Temporal Graph Attention Network (Temporal GAT)

The Temporal GAT combines the strengths of GCNs and GATs to model both the
structural and temporal dynamics in graph-structured financial data [46]. This architecture
is well-suited to tasks in which relationships among nodes evolve and in which capturing
temporal behaviour is essential for modelling volatility clustering and spillovers. The model
consists of three key components, which individually contribute to learning spatio-temporal
dependencies across financial markets:

¢  Temporal Layers: Model the evolution of volatility proxies for each market index
over time.

*  GCN Layers: Aggregate structural information from neighbouring indices based on
the spillover graph.

*  GAT Layers: Assign adaptive attention weights to spillover linkages, emphasizing
the most influential cross-market transmissions.

Temporal Layer: Explicit LSTM-Based Temporal Modelling—Temporal GAT Module
(LSTM + GCN + GAT).

For each node i, we construct a rolling window of length w from the volatility proxy
series. The input sequence at time ¢ is given by

Xit—wt1:t = [Xit—wot1s- -5 Xig], (10)

where x;; is the one-dimensional volatility feature at time t. This sequence is processed by
an LSTM network with hidden size d}:

(higcip) = LSTM(Xj t—wi1:t), (11)

and we take the final hidden state /1;; € R% as the temporal representation of node i at time
t. Collecting all nodes, we form the matrix H;, which serves as input to the graph module.

hi,
Hi=| : | e RN, (12)
I
The spatial block consists of two GCN layers followed by two GAT layers, applied on

the spillover (or correlation) network. Let A denote the normalized adjacency matrix and
W), W) the trainable weight matrices of the GCN layers. We compute
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HY = o(AHWO), (13)
HP? = o(AHY WD), (14)

where ¢ (+) is a nonlinear activation function.

Next, we apply graph attention to the GCN features Ht(z). For nodes i and j, the at-

tention coefficient is given by Equation (9). The attention-weighted node representation is

given by
3) /. 2
HY () =o| ¥ aWH? |, (15)
JEN (i)
and a second GAT layer is then applied analogously to refine the node embeddings further,
yielding Ht(GAT).

Finally, the output of the graph block is passed through fully connected layers to
produce either a single-horizon forecast (e.g., t + 15) or a vector of multi-horizon forecasts.
For node i, the prediction is

9i¢ = frc (HAT (), (16)

where frc(-) denotes a small multilayer perceptron. In our main multi-horizon experiments,
we set

9l',t S R4/ (17)

corresponding to (t + 1, +5,t + 15, + 21)-day ahead volatility forecasts. This architecture
makes the temporal component explicit via the LSTM, while the subsequent GCN + GAT
stack captures the cross-sectional spillover structure encoded in the Diebold—-Yilmaz or
correlation-based graphs. Thus, it can be summarized as

Xif—wity — LSTM — GCN — GAT — §;,1.

3.4. Rationale for the Combined GCN-GAT Architecture and Its Distinction from Existing
Temporal GNNs

The combined use of GCN and GAT layers in our Temporal GAT architecture is a
deliberate design choice that leverages the complementary strengths of the two operators.
GCN layers provide a stable mechanism for aggregating information over the graph’s
topology, making them well-suited for capturing the broad, relatively persistent struc-
ture of cross-market connectivity. By diffusing information from both direct and indirect
neighbours, GCNs establish a strong baseline representation of how volatility propagates
through the market network.

GAT layers, in turn, introduce an adaptive mechanism that assigns learnable attention
weights to neighbouring nodes. This allows the model to focus on the most influential
spillover channels at each point in time, an essential capability in financial markets, where
interdependencies can shift abruptly in response to macroeconomic announcements, geopo-
litical events, or regime changes. The sequential use of GCN followed by GAT thus enables
the model to capture long-term structural dependencies while dynamically reweighting
short-term shocks, producing richer and more context-sensitive volatility forecasts.

Our architecture differs from existing temporal GNNs and “Temporal-GAT” variants
in the machine-learning literature. For example, [3] builds two rolling financial networks,
a Diebold-Yilmaz spillover network and a correlation network and feeds these into a
diffusion convolutional recurrent neural network (DCRNN), where diffusion convolution
models spatial dependence and a GRU implicitly handles temporal dynamics. Their model
uses only realized volatility as an input and produces single-horizon forecasts. In contrast,
our framework constructs multiple piecewise-static graph forms and explicitly separates
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temporal and spatial learning: each node’s volatility history is encoded by an LSTM, af-
ter which the resulting embeddings propagate through stacked GCN — GAT layers. This
separation allows the model to learn directional, weighted, and time-varying interdepen-
dencies with adaptive attention, rather than relying on a single recurrent mechanism to
capture both temporal and spatial structure.

Furthermore, whereas standard temporal GNNs often apply attention directly across
time or operate on event-driven dynamic graphs, our approach cleanly decouples the two
dimensions. Temporal persistence is modelled exclusively through a node-level LSTM
applied to rolling windows of volatility proxies or GARCH volatility proxies. At the
same time, spatial dependencies are captured through GCN/GAT layers operating on
econometrically constructed spillover or correlation networks, rather than on learned or
time-stamped interaction graphs. The GAT component is used strictly in its spatial-attention
form [34], rather than as a temporal attention mechanism. Finally, the architecture is
tailored to financial forecasting by supporting multi-horizon prediction and enabling formal
econometric evaluation through Diebold-Mariano tests and bootstrap confidence intervals.
Thus, the proposed model is not intended as a universal temporal-GNN architecture
but rather as a domain-specific LSTM-GCN-GAT hybrid designed to capture volatility
persistence and cross-market spillovers in an interpretable and empirically grounded
manner (see Table 1).
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Table 1. Comparison of Our Temporal GAT With Existing Temporal GNN Architectures.

Aspect

This Study

[3]

[47]

[37]

[34]

Primary Inputs

Graph Construction

Temporal Modelling

Number of Nodes/ Assets

Evaluation Metrics

Spatial Modelling

Forecasting Task

Dynamic Graph Handling

Domain

Volatility/GARCH volatility
proxies; rolling windows;
price/volume

Econometric
spillover/correlation
networks
(directed /weighted)

LSTM temporal encoder per
node

8 global stock indices

MAFE, MAPE, MSE, RMSE;
DM tests, bootstrap
confidence intervals

2GCN — 2GAT

Multi-horizon volatility
forecasting (t + 1,5,15,21)

Reconstructed spillover
graphs across periods;
adaptive GAT

Financial volatility &
spillover transmission

High-frequency realized
volatility (RV) only

Net pairwise VAR spillover
index + correlation graph

DCRNN (diffusion
convolution + GRU)

8 global indices (SPX, GDAXI,
FCHI, FTSE, OMXSPI, N225,

KS11, HSI)

MAFE; DM test; MCS

Diffusion convolution

Volatility forecasting
(h=1,5,10,22)

Static spillover graph

Global realized volatility
forecasting

Time-stamped interaction
events

Continuous-time dynamic
event graph

Continuous-time memory +
temporal message passing

Thousands

AP, ROC-AUC

Temporal message passing
with memory

Link prediction; node
classification

Fully dynamic
continuous-time graph

General temporal graphs

Historical stock prices
encoded via Transformer;
graph from price correlations

Dynamic heterogeneous
graph updated daily from
positive/negative
price-correlation edges

Transformer encoder for price
history + two-stage temporal
attention

Hundreds of equities (S&P
500; CSI 300)

ACC, ARR, AV, MDD, ASR,
CR, IR

Heterogeneous Graph
Attention Network

Binary price movement

prediction; portfolio
optimization

Graph updated every trading
day; dynamic heterogeneous

Financial price predictions

Static node features
(bag-of-words, gene features)

Fixed citation or biological
graphs (static structure)

None (GAT is purely spatial;
no temporal component)

Up to 20 k nodes in citation
networks; 60 k in PPI graphs

Accuracy (transductive),
Micro-F1 (inductive)

Multi-head masked
self-attention over neighbors

Node classification (Cora,
Citeseer, Pubmed; PPI
multilabel)

Static graphs only; no
dynamic updates

General-purpose GNN5s
(citation networks, protein
interactions)
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4. Methodology

This section outlines the comprehensive methodology adopted to explore and analyze
volatility clustering in global stock markets using a Temporal GAT approach. The research
aims to advance the understanding and forecasting of volatility by leveraging the financial
markets” dynamic and interconnected nature. A systematic, step-by-step approach is
presented, clarifying the strategies, techniques, and tools employed throughout the study,
ensuring transparency and replicability of the findings.

4.1. Problem Formulation

Given a dynamic financial system represented as a time-evolving graph sequence
{G¢}L,, where each node v; € V corresponds to a global stock market index and each edge
eij+ € Et captures the directional relationship between indices i and j at time ¢ (e.g., through
correlation or volatility spillover), the objective is to predict the volatility proxies computed
from daily returns of each index at a future time step t 4- h using historical information up
to time ¢.

Formally, the learning task is to estimate a function:

9i,t+h = ]'—(Gt—wﬂzt, Xz’,t—w+1:t)9)

where

* it € Ris the predicted volatility proxies of index i at time ¢ + h.
*  Xit—wt1t €RY *d js the historical sequence of node features for index i over a look-

back window of size w.

*  Gi_y+1:t is the sequence of regime-dependent graph snapshots representing market
structure from time t —w 41 to ¢.

¢ 0 denotes the model parameters to be learned.

*  dis the dimensionality of node features (e.g., volatility proxies, closing price, or trad-
ing volume).

The task is modelled as a temporal graph-based regression problem. The proposed
Temporal GAT is designed to capture temporal dependencies (i.e., past patterns and
trends in volatility for each market index) and structural dependencies (i.e., dynamic
interrelationships among market indices over time). For this study, we consider the look-
back window w € {5,15,21,40} (denoting the number of past trading days used as
input), the forecast horizon i € {1,5,15,21} (corresponding to short-term (1-day) to long-
term (1-month) predictions), the node features which includes primarily volatility proxies,
with comparative experiments using closing prices and trading volumes. The piecewise-
static graphs G; are constructed using either the Pearson correlation coefficient or the
Volatility Spillover Index derived from a VAR model.

4.2. Graph Construction

The core of our methodology lies in representing the stock market as a directed graph,
where the indices are nodes and the relationships between them form directed edges. In a
directed graph, each edge has a direction, indicating the flow of influence or information
from one node (market index) to another. This structure is particularly suitable for capturing
asymmetric relationships often observed in financial markets, in which one market can
significantly impact another without necessarily experiencing a reciprocal effect [40]. We
employed two primary methods for constructing these directed graphs: the Correlation
Method and the Volatility Spillover Index Method.

Correlation Method: In this method, Pearson correlation coefficients between the volatility
proxies of the indices during the training period were calculated. These coefficients form
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the graph’s edges, yielding a symmetric adjacency matrix with self-loops on the diagonal
(each entry is 1). The Net Correlation Index (NCI) for each market was calculated as the
sum of its correlations with other markets [See Figure 1]. This method helps identify
the strength of the correlation between different indices, providing a clear view of the
interconnectedness of these markets [48,49].

Correlation Graph (Training Data) Correlation Graph (Validation Data)
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Figure 1. Visualization of graphs by the correlation method

Volatility Spillover Index Method: Based on the framework by [8,40], this method mea-
sures the degree of volatility transmission between indices using variance decomposition
from a VAR model. We employed a lag order of 4 (p = 4) and a 5-step ahead forecast hori-
zon (H = 5) to derive these indices [See Figure 2]. The resulting spillover index matrices
illustrate the directional influence one market exerts over another, capturing the dynamic
nature of volatility transmission in the financial markets.

Figures 1 and 2 represent a graph where each node is a global stock market index
(e.g., HSI, FTSE), and the directed edges show relationships between them. The numbers
on the edges indicate the strength of the connection between two indices, which can be
measured using correlation or the volatility spillover index method. For instance, HSI has a
connection strength of 0.229 (spillover method) to FTSE in the training data. The comparison
between training, testing, and validation data reflects how these relationships change over
time, with the numbers indicating varying connection strengths.

Consider the training dataset in Figure 1, when stock indices are highly correlated,
as seen between indices like GSPC vs. FCHI, HSI, KS11 (correlations of 0.91, 0.87, 0.90
respectively), KS11 vs. FTSE, HSI, GSPC, GDAXI (correlations of 0.91, 0.92, 0.90, 0.90
respectively), FTSE vs. GDAXI, HSI (correlations of 0.92, 0.90 respectively) and GDAXI vs.
FCHI (correlation of 0.96), it suggests that these markets are likely to experience volatility
clustering together. If one market (e.g., GSPC) enters a period of high volatility due to
market turbulence or tensions in the USA, this volatility can affect the French market
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(CAC 40) because the two markets are highly correlated. In addition, moderate-to-low
correlations (e.g., between NSEI vs. FCHI, and N225 and GDAXI, with correlations of
0.66, 0.67, and 0.69, respectively) indicate that while there is some shared volatility, these
indices do not always cluster together. Thus, these cluster effects reflect interconnectedness
because regions with strong trade links, similar industry exposures, or shared investor
bases tend to exhibit co-movement in volatility. This is especially true for global markets
such as the US and Europe, as well as for regional clusters such as Europe and Asia.

Volatility Spillover index (Training Data) Volatility Spillover index (Validation Data)
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Figure 2. Visualization of graphs by the volatility spillover method.

4.3. Graph Construction via Volatility Spillovers

To capture cross-market dependence in volatility dynamics, we construct directed
graphs based on volatility spillover effects using the Diebold-Yilmaz framework. Specifi-
cally, volatility proxies for all indices are modelled jointly using a Vector Autoregression
(VAR), and generalized forecast error variance decompositions (GFEVD) are employed to
quantify the proportion of forecast uncertainty transmitted from one market to another.

Let RV; = (RVyy,...,RVy ;)" denote the vector of volatility proxies across N equity
indices. For a given data partition, a VAR model is estimated on RV;, and the resulting
GFEVD yields a spillover matrix S € RN*N, where the (i, j)-th entry measures the con-
tribution of shocks in market j to the forecast error variance of market i. This matrix is
interpreted as a weighted, directed adjacency matrix, with nodes representing indices and
edge weights capturing the magnitude of volatility transmission.

To ensure a strict separation of information sets, the spillover networks are constructed
in a piecewise-static, regime-dependent manner. Separate adjacency matrices are estimated for
the training, validation, and test periods, using only the volatility proxies data contained
within each respective partition. Within each period, the resulting graph topology is held
fixed and represents the average spillover structure of that regime. This design prevents
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information leakage across evaluation phases while providing a stable and statistically
robust representation of cross-market volatility linkages.

We emphasize that the resulting graphs are not updated at every forecasting origin
within a period. While rolling-window or fully time-varying spillover networks are concep-
tually appealing, such approaches can be statistically unstable in small systems (eight stock
indices) and short samples, particularly when VAR-based variance decompositions are em-
ployed. Accordingly, the adopted piecewise-static construction offers a principled trade-off
between econometric reliability and temporal segmentation. Extending the framework to
fully dynamic spillover networks is left for future research.

Remark 1 (On Graph Construction and Look-Ahead Bias). The spillover-based adjacency
matrices are constructed separately for the training, validation, and test sets, using only information
available within each respective period. As a result, no future observations beyond the boundaries of
a given partition are used when defining the graph topology for that period. While the graph remains
fixed within each regime, this piecewise-static design avoids look-ahead bias across evaluation phases
and preserves a strictly out-of-sample forecasting setup. A fully rolling or expanding-window graph
construction, although feasible, is beyond the scope of this study and left for future work.

4.4. Node Features

The target variable of interest is the daily volatility proxies ¢; ; for each index i. In the
baseline specification, the volatility proxy is also used as the primary node feature. Specifi-
cally, for each node i and time ¢, we construct a look-back window of length w,

Xy = [Ui,t7w+1r0'i,t7w+l/' : '(Ti,t] ’

which serves as the input feature vector for node i in the spillover graph at time t. The Tem-
poralGAT therefore learns a mapping from past volatility proxy and contemporaneous
network structure to future volatility proxy.

4.5. Model Architecture Quverview

The proposed Temporal GAT integrates temporal sequence modelling with graph-
based spatial learning, enabling joint extraction of time-series patterns and cross-market
spillover effects. The architecture is designed to forecast volatility proxy across multiple
international equity indices by leveraging both historical dynamics and contemporane-
ous interconnections encoded in the Diebold-Yilmaz spillover network. At a high level,
the architecture processes information through four sequential modules:

1.  Temporal Module (LSTM): Each market index is represented by a rolling look-back
window of volatility proxies. An LSTM network transforms this sequence into a tem-
poral embedding that captures persistence, structural breaks, and nonlinear dynamics
in volatility.

2. GCN Layers: Two GCN layers first aggregate neighbourhood information based
on the adjacency structure, producing a shared spatial embedding for each node.
The first GCN layer transforms the node features from their initial dimension to a
hidden dimension. This transformation is tested with hidden dimensions of 32, 64,
and 128 in our implementation to determine the optimal size. The second GCN layer
further processes these transformed features by applying a ReLU activation function
to introduce nonlinearity, which is crucial for capturing complex patterns.

3.  GAT Layers: The output is passed to two GAT layers, which adaptively learn the in-
fluence weights across markets through attention coefficients. This enables the model
to differentiate between strong and weak spillover relationships. These layers focus
on significant nodes, prioritizing crucial information within the graph. The attention
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mechanism in each GAT layer is configured with multiple heads (specifically 4 or
8 heads in our tests), allowing the model to learn different aspects of the data from
multiple representation subspaces simultaneously. This setup enhances the model’s
ability to capture diverse relational patterns among data points [50].

4. Multi-Horizon Output Head: A series of three fully connected layers maps the spatio-
temporal embeddings to volatility forecasts across multiple future horizons. They
incorporate a ReLU activation function, and each applies nonlinear transformations
to capture higher-order interactions. The final output layer produces a scalar one-
step-ahead volatility forecast for each index. These layers are crucial in synthesizing
the learned graph-based features into a comprehensive form suitable for the final
prediction task [19].

5. Training and Optimisation: The model is trained end-to-end using the Adam optimiser
and the mean squared error (MSE) loss function. The entire architecture—temporal
feature extraction, spatial propagation, and prediction—is updated jointly to minimize
forecasting error. A grid search strategy is utilized to fine-tune the model’s hyper-
parameters, including the number of hidden dimensions, attention heads, and the
learning rate. The learning rate values tested are 0.0001, 0.001, and 0.01. This optimiza-
tion involves training the model across a predefined grid of parameter combinations
and monitoring performance through the Mean Squared Error (MSE) on a validation
set. The goal is to minimize MSE across 70 training epochs, refining the model’s ability
to forecast market volatility accurately.

The overall pseudocode is provided in Algorithm 1. Thus, the combination of temporal
sequence learning and graph-based relational modelling allows the architecture to capture
both volatility clustering in individual markets and contagion effects across the global
financial network.

Figure 3 illustrates the complete processing pipeline. The model first extracts temporal
features through an LSTM, then applies graph convolutions and attention mechanisms to
capture spatial spillovers, and finally outputs a vector of predicted volatilities for horizons
h e {1,515,21}.

Jtt1

LSTM Encoders GCN Layers GAT Layers FullyConnected Jt45
Ritwx1 _y Riem RN X dye, (Attention) Layers T™ Tit15
Yr+21

Figure 3. General design for the Temporal GAT model.
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Algorithm 1 Pseudocode for the Temporal GAT Multi-Horizon Forecasting Framework

Initialize model parameters, tickers, date range, rolling window w, and forecasting horizons
H = {1,5,15,21}.
1: Data Collection and Preprocessing:

*  Download daily price data for each index using yfinance.
e  Compute volatility proxies using squared returns over a rolling window.
. Split each series into training, validation, and test subsets.

2: Construct Spillover Networks:

. For each dataset (train/validation/test), construct a VAR model.
¢ Compute Diebold-Yilmaz spillover matrices using FEVD decomposition.
e Build a directed graph G = (V, E) where edge weights correspond to spillover intensities.

3: Graph-to-PyG Conversion:

¢  For each node i, extract the last w volatility proxies as temporal input window X; ;1.
¢ For each forecast horizon i € H, define targets y; , = RV ;1.
*  Construct PyTorch-Geometric (version 2.9.0) Data objects containing:

} T, edge_index

T
x:[Xl"'XN] , y:[yl,'H"'yN,H
4: Model Architecture (Temporal GAT):
e  Temporal Layer: Apply an LSTM to each window:

LSTM : R?*1 — Reftemp,

*  GCN Layers: Apply two stacked GCN layers to incorporate first-order graph structure.
*  GAT Layers: Apply multi-head attention to capture weighted spillover importance.
*  Output Head: Feed-forward layers produce a multi-horizon vector:

Vi = [Dip+1 G50 Gipi1s, Gipra1]-
5: Training:
*  For each epoch:

-  Forward pass: compute predictions §.
-  Compute multi-horizon loss:

1N )
L= Nz; Iy — yill2-

- Backpropagate gradients and update model parameters.
6: Hyperparameter Grid Search:

. Define search sets for hidden dimension, attention heads, and learning rate.
. For each parameter combination:

- Train the Temporal GAT model.
- Evaluate validation loss and record best configuration.

7: Evaluation:

¢  Compute multi-horizon metrics for each 1 € H:
MAFE, MSE, RMSE, MAPE, R?.
¢  Compute per-index metrics:
Metrics(i, h) = f(Yin, 9in)-

*  Generate tables of cross-index forecast accuracy.

8: Return: Trained model, best hyperparameters, and multi-horizon forecast performance.

4.6. Other Models for Comparison

To evaluate the performance of the Temporal GAT model (TGATM), we compared it
against six alternative models, each utilizing different methodologies:
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Baseline Model(BM): The BM is crafted to process the volatility proxies for transform-
ing and capturing the volatility spillover index of financial markets without integrating
graph-based complexities. This model is included to isolate the contribution of graph
structure and temporal modelling. The model receives each index’s feature vector
independently and performs forecasting without any spatial or temporal interaction
between nodes. The architecture consists of three fully connected hidden layers with
ReLU activations and dropout regularization, followed by a final linear layer that
outputs the 15-day-ahead volatility forecast. Since the MLP processes each index in
isolation and lacks access to spillover relationships or historical sequences, it serves as
a minimal, non-graph and non-temporal benchmark for evaluating the value added
by both the spatial message-passing components and the temporal encoders used
in the Temporal GAT and GARCH-TGAT models. The architecture comprises three
hidden layers, each with dimensions configurable to be either 32, 64, or 128, allowing
the model to adapt its complexity to the richness of the input data.
Static GNN-GATM (SGNN-GATM): As a non-temporal benchmark, we implement
an SGNN-GATM that uses only cross-sectional spillover structure and ignores all
time-series dynamics. Each index is represented by a node whose feature is the most
recent observed volatility value, and information is propagated solely across the static
spillover graph. The model consists of a single GCN layer followed by a single GAT
layer, enabling capture of first- and second-order spatial dependencies but no temporal
evolution. A fully connected output layer then maps the learned node embeddings
to a one-step-ahead volatility prediction. Because this model does not use historical
windows, recurrent units, or temporal attention mechanismes, it serves as a minimal
spatial baseline. All hyperparameters (hidden dimensions and attention heads) are
kept consistent with those used in TGATM for fair comparison.
Deeper GNN-GATM (DGNN-GATM): To ensure that the weaker performance of the
simple static GNN is not merely due to under-capacity, we additionally construct a
DGNN-GATM baseline. This model extends the shallow spatial architecture by stack-
ing multiple graph convolutional layers (GCN — GCN — GAT — GAT), allowing
the network to aggregate spillover information from higher-order neighbourhoods
without incorporating any temporal structure. Node features consist solely of the
most recent observed volatility value, with no historical window or recurrent com-
ponent. After spatial message passing, two fully connected layers refine the node
embeddings before a final linear layer produces the 15-day-ahead forecast. All hyper-
parameters (hidden dimensions and attention heads) are kept consistent with those
used in TGATM for fair comparison.
GARCH Temporal GAT Model (GARCH-TGATM): The GARCH-TGATM incorporates
the GARCH methodology for transforming raw data into a format suitable for graph-
based analysis, enhancing the traditional volatility modelling approach. This model
leverages the strengths of both GCNs and GATs to effectively model the dynamic
relationships within financial markets. To integrate econometric volatility structure
into the graph-based forecasting framework, we construct a GARCH-TGAT model in
which node features are derived from GARCH(1,1) conditional volatility estimates.
For each index i, a GARCH(1,1) model is fitted to daily log-returns, yielding the
(i)

conditional volatility series 0, ’. The TGAT node feature vector is formed by taking

the most recent W values (‘Tt(l—)w+1/ ceey t(l)

clustering, and mean-reversion properties captured by the GARCH process. These

), which encode the nonlinear persistence,
GARCH-based temporal windows are fed into the TGAT architecture, which consists

of an LSTM temporal encoder followed by stacked GCN and GAT layers that learn
the cross-market spillover structure. Thus, unlike TGAT variants operating on raw

https://doi.org/10.3390 /math14020289


https://doi.org/10.3390/math14020289

Mathematics 2026, 14, 289

21 of 45

price-based volatility measures, the GARCH-TGAT explicitly embeds traditional
econometric volatility dynamics within a temporal-spatial neural representation.

*  Correlation Temporal GAT Model (C-TGATM): The Correlation-TGAT model uses a
correlation-based graph structure to capture static interdependencies between global
equity indices. Instead of estimating directional spillovers, the model constructs
an undirected graph where edges represent statistically significant return—volatility
correlations computed from a rolling window of historical data. This graph encodes
the strength of co-movement between markets, allowing TGAT to propagate temporal
features across highly correlated nodes. Each node is assigned a temporal sequence
of volatility proxies (or GARCH-based volatility proxies), which is then processed
through the Temporal-GAT architecture combining LSTM-based temporal encoding
and GAT-based spatial attention. The resulting framework provides a benchmark that
isolates pure correlation-driven connectivity, enabling comparison with the Spillover-
TGAT model, which uses structural VAR-based spillover linkages.

*  Long Short-Term Memory (LSTM): To isolate the contribution of temporal dynamics
from the graph-learning component, we include a pure LSTM network as a non-graph
baseline. The LSTM operates solely on the historical volatility sequence of each index,
without incorporating any cross-market relational structure. For each node, the model
receives a sliding window of past volatility proxies and predicts the 15-day-ahead
volatility target. This baseline is intentionally structured to match the temporal depth
of the TGAT model, ensuring a fair comparison focused exclusively on temporal
modelling capacity. Because LSTMs are well known for their ability to capture long-
range dependencies and nonlinear dynamics in time-series data, this experiment helps
determine whether the performance improvements observed in TGAT stem from the
graph-based message passing or simply from the temporal modelling framework.

5. Empirical Results and Discussion

This section presents the data visualization, model analysis, sensitivity studies, and ro-
bustness tests.

5.1. Data Visualization and Analysis

The data used in this study focuses on eight major global market indices: GSPC—
S&P 500 (USA), GDAXI—DAX (Germany), FCHI—CAC 40 (France), FISE—FTSE 100
(UK), NSEI—Nifty 50 (India), N225—Nikkei 225 (Japan), KS11—KOSPI (South Korea) and
HSI—Hang Seng Index (Hong Kong). These indices were selected due to their significant
influence on global financial markets [3]. The dataset was sourced from Yahoo Finance and
spans November 2007 to June 2022. The volatility proxy (VP) data were computed using
daily adjusted closing prices, following the approach suggested by Andersen et al. [51].
The dataset was divided into three subsets: a training set (1891 datasets spanning from
November 2007 to August 2014), a validation set (756 datasets from September 2014 to
December 2017), and a test set (1136 datasets from January 2018 to June 2022). These subsets,
respectively, cover 50%, 20%, and 30% of the total data, ensuring a robust evaluation of the
model’s performance across different time periods [3].

Descriptive statistics (Table 2) of the volatility proxy data were computed to gain in-
sights into the underlying distribution and characteristics of the market indices. The mean
volatility ranged from 0.046 to 0.059, reflecting the average level across the indices. The stan-
dard deviation, varying between 0.028 and 0.034, indicated the extent of dispersion in the
volatility data. Skewness and kurtosis metrics highlighted the non-normality of the volatil-
ity distributions, with positive skewness values ranging from 2.28 to 3.23 and kurtosis
values ranging from 10.47 to 20.04, suggesting heavy tails. The Augmented Dickey—Fuller
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(ADF) test results confirmed the stationarity of the data across all indices, with p-values
significantly below 0.05. These statistics ensure that the time series data is stable and
suitable for GNN modelling without further transformations [52].

Table 2. Statistical properties of selected indices.

Ticker = Mean Std. Deviation Skewness Kurtosis ADF Statistic ADF p-Value

GSPC  0.047322 0.034962 3.144922 16.101063 —5.540181 1.70867 x 10~°
GDAXI 0.054093 0.038324 3.144921 15.566453 —5.604956 1.06869 x 107°
FCHI 0.057695  0.02082 2.288022 14.471417 —5.423957 3.22759 x 10~
FTSE 0.040868 0.023625 2.838757 13.337729 —5.237459 7.06389 x 10°
NSEI 0.052276  0.03306 2.763412 12.677778 —4.887057 3.69459 x 1075
N225 0.05592  0.031903 3.234541 20.204222 —5.484947 7.20239 x 10~7
KS11 0.048637  0.028237 3.098161 13.453776 —4.902201 3.45269 x 107>
HSI 0.085911  0.033861 3.188015 18.540499 —4.435595 2.56614 x1074

To provide a visual representation of the volatility proxy data across the eight global
market indices, a time-series plot was generated that captures the daily adjusted closing
prices. Figures 4 and 5 present the volatility proxy data for the eight selected indices,
highlighting periods of high and low volatility. The graph illustrates the volatility proxy
data over the training, validation, and test periods, enabling a better understanding of
market behaviour during major global events, such as the 2008 financial crisis, Brexit,
and the COVID-19 pandemic, all of which contributed to significant market volatility.
The analysis of volatility proxy data reveals significant clustering behaviour across global
market indices, particularly during major financial events.
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Figure 4. Volatility proxy data for selected indices (Part I).
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Figure 5. Volatility proxy data for selected indices (Part II).

Furthermore, to evaluate and compare the models’ forecasting performance, several
commonly used error metrics are calculated. These metrics quantify forecast accuracy
by measuring deviations between observed and predicted values. Below are some of the
assessment metrics employed in this study.

Let y; represent the actual observed value at time ¢, and #J; the corresponding forecasted
value and 7, the sample size. Then,

e  Mean Absolute Forecast Error (MAFE):
1 n
MAFE = 1 Y[y — g4
i3

*  Mean Squared Error (MSE):

n

1
MSE = — Y (y: — 1)
ni3

*  Mean Absolute Percentage Error (MAPE):

100% - |y; — O

Yt

MAPE = (where y; # 0)

t=1

¢  R-squared:

R2 -1— Z?:l(yt _ﬁt)z

i (yr —9)?

5.2. Comparative Analysis with Traditional Econometric Models
The empirical results in Table 3 show that the TGATM consistently outperforms the
classical econometric benchmarks — GARCH(1,1), EGARCH(1,1), and HAR-RYV, across both
evaluation metrics. Temporal GAT achieves the lowest average MSE (0.01165), indicating
superior robustness to large forecast deviations and volatility shocks. Its ability to minimize

significant errors suggests that the model effectively captures nonlinear dependencies,
cross-asset spillovers, and regime-switching patterns that traditional parametric models
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are unable to represent. Furthermore, Temporal GAT achieves the smallest average MAFE
(1.81 x 10~*), substantially lower than that of the econometric alternatives. This highlights
its exceptional precision in predicting daily volatility levels across all indices, providing
forecasts that more closely align with observed market dynamics.

The econometric models perform relatively worse because they rely on rigid paramet-
ric structures that impose smooth and gradual volatility adjustments, causing them to lag
during periods of rapid volatility shifts. Although EGARCH offers modest improvements
by modeling asymmetry, its performance remains constrained by static functional forms.
In contrast, the Temporal GAT architecture leverages graph attention mechanisms and deep
temporal representations, enabling it to learn complex, nonlinear relationships in the data
and adapt effectively to abrupt market changes. The combined superiority of TGAT in both
MSE and MAFE underscores its advantage in capturing real-world volatility behaviour, sug-
gesting that graph-based deep learning approaches provide a more accurate and resilient
framework for financial volatility forecasting than traditional econometric methods.

Table 3. Out-of-sample error values (TGATM vs. Econometric models).

Indices TGATM GARCH(1,1) EGARCH(1,1) HAR-RV
MSE
GSPC 0.022141 0.111975 0.030199 0.055457
GDAXI 0.008971 0.023510 0.032299 0.027697
FCHI 0.010928 0.033062 0.037769 0.038240
FISE 0.017812 0.026167 0.021205 0.034271
NSEI 0.017396 0.032884 0.027441 0.036480
N225 0.000373 0.013279 0.012935 0.015714
KS11 0.010277 0.016869 0.016905 0.018984
HSI 0.005280 0.034410 0.031404 0.045763
Average 0.011647 0.036520 0.026270 0.034076
MAFE
GSPC 490 x 1074 1.25 x 1072 9.12 x 1074 3.08 x 1073
GDAXI 8.05 x 10> 5.53 x 1074 1.04 x 1073 7.67 x 1074
FCHI 119 x 104 1.09 x 1073 1.43 x 1073 1.46 x 1073
FTSE 317 x 1074 6.85 x 1074 450 x 1074 1.18 x 1073
NSEI 3.03 x 1074 1.08 x 1073 7.53 x 10~* 1.33 x 1073
N225 1.39 x 1077 1.76 x 1074 1.67 x 10* 247 x 1074
KS11 1.06 x 1074 2.85 x 1074 2.86 x 1074 3.60 x 1074
HSI 2.79 x 107° 1.18 x 1073 9.86 x 10~* 2.09 x 1073
Average 1.81 x 10~4 2.2 x 1073 7.53 x 10~4 1.31 x 1073

Note: Bold values in the footer denote the average MSE and MAFE across all indices.

5.3. Comparative Analysis with ML-Related Models

This section compares the out-of-sample error values for the following models: BM,
LSTM, SGNN-GATM, DGNN-GATM, TGATM, GARCH-TGATM, C-TGATM. The fore-
casting results presented in Table 4 compare the predictive performance of several neural
and econometric architectures across eight major global equity indices (window size of
15 days).

The TGATM consistently achieves the lowest or near-lowest MAFE and MSE values for
most markets, particularly for indices with strong temporal dependencies such as the S&P
500 (GSPC), DAX (GDAXI), and Hang Seng Index (HSI). This demonstrates the model’s
ability to capture dynamic cross-market interactions effectively. In contrast, the GARCH-
augmented variant of TGAT model performs notably worse, with substantially higher
errors across all indices. These findings suggest that integrating GARCH-type volatility
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priors may introduce noise that disrupts the temporal attention mechanism rather than
complementing it. Meanwhile, models such as the DGNN-GATM and LSTM perform
competitively, especially on relatively stable markets like N225 and KS11, highlighting that
purely temporal or purely structural learning can be effective when market regimes are
less volatile.

Table 4. Out-of-sample error values for forecast window value of 15.

GARCH- DGNN- SGNN-

Indices TGATM TGATM GATM BM C-TGATM GATM LSTM
MAFE
GSPC 0.021264 0.036186 0.023119 0.024957 0.049222 0.025125 0.022225
GDAXI  0.008093 0.033118 0.009949 0.011840 0.019283 0.011954 0.009449
FCHI 0.010050 0.033684 0.011906 0.013765 0.025039 0.013912 0.011180
FTSE 0.016934 0.034712 0.018789 0.020612 0.011514 0.020795 0.017746
NSEI 0.000518 0.034465 0.018374 0.020216 0.013853 0.020380 0.017515
N225 0.000505 0.032778 0.001351 0.003284 0.015841 0.003357 0.001188
KS11 0.009399 0.033281 0.011254 0.013131 0.004507 0.013260 0.010652
HSI 0.004403 0.032198 0.006258 0.008171 0.043946 0.008264 0.005931
MSE
GSPC 452 x107% 131 x107% 535x107% 623x107% 242x1073 631 x107% 494 x10°*
GDAXI 655 x107° 1.10x1073 990 x 107> 140x107* 372x107% 143 x107* 893 x107°
FCHI 101 x107% 113x 1073 142x107* 1.89x10* 627x10* 194x10"%* 1.25x10*
FTSE 287 x107% 120x1073 353x10* 425x10% 133x10%* 432x10* 3.15x10°*
NSEI 273 x107% 119 x1073 338 x107* 409 x107* 192x107* 415x107* 3.07 x10*
N225 255 x 1077 1.07x107% 183x107® 1.08x10° 251x10% 113 x107° 141 x10°°
KS11 883 x107° 1.11x1073 127x107% 1.72x107* 203x10™° 176x10"%* 1.13x10°*
HSI 194 x 107°> 104 x1073 392 x107° 668x10° 193 x10% 683x10° 352x107°

The C-TGAT model performs well on some indices (e.g., KS11) but, overall, exhibits
larger errors than the TGATM, indicating that static correlation structures alone are insuf-
ficient to capture the nonlinear, time-varying dependencies inherent in global financial
markets. Traditional baseline approaches, including the BM and SGNN models, show
consistently higher error magnitudes, reinforcing the importance of temporal attention
and piecewise-static graph modelling in financial forecasting. Collectively, these results
highlight the superiority of the TGAT family, especially the standard TGATM, over static or
correlation-based architectures. The performance differences across indices also underscore
the varying degrees of temporal complexity and interconnectedness among global markets,
demonstrating the necessity of models capable of capturing both sequential patterns and
evolving inter-market relationships.

Furthermore, based on the average errors (See Figure 6), TGATM achieves the lowest
MAFE and MSE, confirming it as the most accurate and stable model across all indices.
LSTM and DGNN-GATM also show strong performance, indicating that temporal and
graph-based structures can generalize well but still fall short of TGATM'’s efficiency. In con-
trast, GARCH-TGATM records the highest average errors, suggesting that incorporating
GARCH-based volatility components negatively impacts forecasting accuracy.

Remark 2. When constructing a financial forecast model, it is essential to balance the trade-
off between forecast window size and the model’s predictive performance. For tasks that require
short-term accuracy, such as day trading, a shorter forecast window can improve performance by
focusing on near-term patterns and increasing reliability. On the other hand, medium- to long-term
forecasting requires a larger forecast window size to capture broader trends. In the case of the
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TGATM, reducing the window size tends to improve short-term forecasts, but an optimal window
size is needed, as a smaller window can lead to model overfitting, thereby degrading performance.

Average MAFE per Model Average MSE per Model
GARCH-TGATM GARCH-TGATM
CTGATM CTGATM
SGNN-GATM SGNN-GATM
BM BM
DGNN-GATM DGNN-GATM
LSTM LSTM
TGATM x * Best MAFE TGATM x * Best MSE
0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.0000 0.0002 0.0004 0.0006 0.0008 0.0010 0.0012
Average MAFE Average MSE

Figure 6. Model-wise comparison of average prediction errors.

5.4. Model Analysis

In this section, we analyze the distinctions between the correlation matrix and volatility
spillover index heatmaps as tools for assessing relationships among market indices. Both
methodologies provide valuable insights into the interconnectedness of financial markets,
but they do so through different avenues. The correlation matrix provides a snapshot of
linear relationships, while the volatility spillover index heatmap offers a dynamic view
of how volatility transmits between indices over time. Utilizing both tools together can
provide a more comprehensive understanding of market interactions and risk dynamics.

In Figure 7, we display the correlation matrix heatmaps for the training, validation
and testing datasets. The figures show high interdependence across all US and European
Markets datasets, with consistently strong correlations (above 0.90) between the S&P 500
and major European indices like FTSE, GDAXI, and FCHI. These relationships indicate
that Western markets move closely together, likely due to similar economic factors. For the
Asian markets, the HSI shows the most independence, with lower correlations in the test
data, especially with the US market. Japan (N225) shows moderate correlations, while
South Korea (KS11) is more aligned with global markets. India (NSEI) shows increasing
integration over time, with its correlations rising in the test data. Finally, regarding changes
across datasets, we observed that training data exhibits the most robust correlations, partic-
ularly between the US, European, and South Korean markets. The validation data presents
slightly lower correlations but maintains the same general trends. In contrast, the test data
shows more variability, especially with HSI (Hong Kong) becoming more independent and
NSEI (India) increasing its correlations with global indices.

In contrast, the volatility spillover index focuses specifically on the transmission of
volatility between indices. Using the Diebold—-Yilmaz methodology, this approach captures
how shocks to one index affect the volatility of others over time. The spillover index matrix
provides a directional measure of volatility transfer, illustrating which indices are net
transmitters or receivers of volatility. This is particularly useful during periods of market
stress, as it identifies the channels through which volatility propagates, offering a deeper
understanding of market dynamics beyond mere correlation.
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Figure 7. Correlation index heatmaps of train, validation and test.

In Figure 8, we observe the strongest spillover (49.17) in the training dataset, which
indicates that fluctuations in GDAXI significantly influence FCHI's volatility. This relation-
ship remains robust in both the training and test datasets (51.28), suggesting a consistent
dynamic between these indices. There is also a spillover value of 34.05 in the training
dataset, suggesting a significant relationship, and these indicate that movements in the
S&P 500 can affect the volatility of GDAXI. Also, the spillover value remains high at 35.97
in the test dataset, further confirming the interconnectedness between these indices. The di-
agram also indicates some changes in the spillover graphs, especially between FCHI and
GSPC. We observed that the spillover from the training data (18.19) to the test data (14.34)
decreased, suggesting that the influence of French market volatility on US markets may
be weaker. This phenomenon could result from varying market conditions or economic
factors that affect regions differently over time. Finally, the spillover between the HSI and
the NSEI is low. These indices often exhibit spillover values close to zero, indicating that
fluctuations in the other markets studied have less influence on them. For example, NSEI
has several spillover values of 0.00, highlighting its independence.
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Volatility Spillover Index Heatmap (Test Data) Volatility Spillover Index Heatmap (Validation Data)

0.00 3120 3316 | AN 2330 2171 19.83  17.00

~GDAXI ~GSPC

- n

s
51
so1
S
S

35.97 3284 32.06 18.19 23.86 14.34
072

8.89
81

~FTSE ~FCHI ~GDAXI ~GSPC

~KS11 ~N225 ~NSEl ~FTSE "FCHI

o
%)
z
<

n
~
I}
b4
<

—
=
1%
X
<

@
b
<

~HSI

(a) Test data (b) Validation data

Volatility Spillover Index Heatmap (Training Data)

34.05 ekl 28.48 ik 8.64

40

10

~HSI ~KS11 ~N225 ~NSEl ~FTSE ~FCHI ~GDAXI ~GSPC

(c) Training data

Figure 8. Volatility Spillover index heatmaps of train, validation and test.

Thus, the Temporal GAT model, when applied to volatility spillover indices, exhibits
superior performance compared to models based solely on correlation analysis. The model
identifies not just the relationships between indices but also how volatility evolves and
impacts markets over time, leading to a more robust prediction and analysis framework.
This makes the Temporal GAT model a valuable tool for understanding the complexities of
financial markets, especially in periods of heightened volatility.

5.5. Sensitivity Analysis

The sensitivity analysis in this section focuses on evaluating the Temporal GAT model’s
response to varying configurations and input parameters. The aim is to assess how changes
in the temporal aspects and node features impact the model’s performance. We investigate
three specific configurations, starting with variations in time window size to capture
different levels of temporal dependencies, then evaluating the impact of different node
features and concluding with analyzing the influence of hyperparameter tuning. Each of
these aspects is explored in the subsections below.
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5.5.1. Temporal Aspects (Time Window Size)

The time window size is a critical parameter that determines the extent of historical
data used for volatility prediction. The Temporal GAT model is exposed to different
temporal patterns by varying the time window size, thereby capturing short- or long-term
dependencies in financial time series data. In this analysis, we analyze the trend using
four time window sizes (Note: Window size of 21 represents approximately one trading
month.), 5, 15, 21, and 40 days, to investigate their effect on the prediction accuracy and
model stability. Table 5 summarizes the comparative performance of different time window
sizes for each metric—MAFE, MSE, RMSE, and MAPE across the eight market indices.
This comparison highlights the Temporal GAT model’s sensitivity to temporal aspects and
guides the selection of an optimal window size across different forecasting scenarios.

Table 5. MAFE, MSE, RMSE and MAPE values for Different Window Sizes.

Indices Window Size5 Window Size 15 Window Size21 Window Size 40

MAFE
GSPC 0.012568 0.009735 0.013323 0.014385
GDAXI 0.009990 0.008592 0.008714 0.012625
FCHI 0.010539 0.007646 0.008255 0.011707
FTSE 0.010932 0.005371 0.007062 0.005915
NSEI 0.009947 0.007371 0.009622 0.010220
N225 0.011270 0.011244 0.011852 0.018505
KS11 0.011495 0.009918 0.013362 0.014923
HSI 0.008951 0.006308 0.006439 0.008495
MSE
GSPC 0.000192 0.000124 0.000215 0.000249
GDAXI 0.000152 0.000123 0.000126 0.000248
FCHI 0.000168 0.000108 0.000116 0.000220
FTSE 0.000154 0.000040 0.000067 0.000052
NSEI 0.000127 0.000106 0.000169 0.000184
N225 0.000244 0.000268 0.000300 0.000607
KS11 0.000158 0.000156 0.000263 0.000349
HSI 0.000123 0.000081 0.000086 0.000122
RMSE

GSpPC 0.013854 0.011133 0.014654 0.015787
GDAXI 0.012341 0.011079 0.011232 0.015744
FCHI 0.012975 0.010415 0.010778 0.014818
FISE 0.012402 0.006360 0.008201 0.007222
NSEI 0.011273 0.010314 0.013000 0.013582
N225 0.015627 0.016380 0.017319 0.024636
KS11 0.012561 0.012508 0.016211 0.018693
HSI 0.011093 0.008983 0.009269 0.011024
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Table 5. Cont.

Indices Window Size5 Window Size 15 Window Size21 Window Size 40

MAPE

GSPC 163.77 50.09 54.71 39.59
GDAXI 81.60 21.27 18.58 16.45
FCHI 83.23 20.40 20.03 16.50
FTSE 104.93 22.98 25.55 14.62
NSEI 89.19 26.02 28.67 20.52
N225 75.61 23.24 20.56 21.86
KS11 inf 40.78 44.77 33.51
HSI 59.45 15.64 13.95 12.85

From Table 5 and Figure 9, we observe that across most indices, the error metrics
(MAFE, MSE, RMSE) generally increase with window size. When window sizes are smaller,
such as 15, FTSE performs well across a wide range of error metrics, suggesting that it is
simpler to forecast with high accuracy. Across all metrics and window sizes, N225 typically
exhibits higher errors, especially at larger window sizes (e.g., window size 40), making
accurate forecasting more difficult. In particular, MAPE shows a wide range of errors in
GSPC, indicating that its percentage forecast error varies considerably across window sizes.

Furthermore, regarding the MAFE, we observe that the GSPC and GDAXI exhibit
increasing errors as the window size increases, whereas the FTSE has the lowest MAFE
values, particularly for smaller window sizes. For the MSE, the errors generally increase
with larger window sizes across all indices, though some, like FTSE, maintain relatively low
values throughout. For the RMSE, the errors grow with window size, with N225 consistently
showing higher RMSE than other indices. Finally, the GSPC and KS11 demonstrate the
highest variation in percentage error, while HSI and GDAXI tend to have more stable MAPE
values across different window sizes when considering MAPE. Hence, this indicates that
smaller window sizes generally lead to more accurate forecasts, whereas larger window
sizes result in increased error and reduced model precision.

5.5.2. Graph Properties (Node Features)

In this section, we explore the Temporal GAT model’s sensitivity to variations in
node features. Within the proposed framework, each stock index is represented as a node
whose features are constructed from different market-based time-series inputs, enabling
the model to capture both temporal dynamics and cross-market spillover effects. Four
node feature configurations are evaluated: volatility proxies, closing price, trading volume,
and a combined price-and-volume specification, to assess how distinct sources of market
information contribute to forecasting volatility proxies. Models using volatility proxies or
closing prices as node features achieve comparatively strong predictive accuracy, reflecting
the fact that both past volatility and price levels carry information relevant to future
volatility dynamics.
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Figure 9. MAFE , MSE, RMSE and MAPE values for Different Window Sizes.

In contrast, trading volume used in isolation yields substantially poorer results, consis-

tent with its well-documented noisiness, regime dependence, and relatively weak short-run

relationship with future volatility when not conditioned on price movements [53]. Volume

has unstable and limited predictive power for future return volatility once information in
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prices and returns is taken into account. In most cases, its apparent explanatory power
disappears entirely when proper return-based volatility dynamics are modelled [53]. Thus,
feeding the GNN with volume alone deprives the model of the more direct signals about
price variability and return magnitudes that are critical for short-horizon volatility forecast-
ing, leading to much weaker performance than feature sets that include volatility proxies
or closing prices.

To provide a richer representation, the combined specification assigns each node a two-
dimensional feature vector that integrates the closing price and trading volume. This design
allows the GNN to learn interactions between price dynamics and liquidity conditions
and to evaluate whether volume adds incremental predictive value once contextualized
by price behaviour, offering a more comprehensive view of how different market features
jointly shape volatility outcomes.

The empirical results presented in Table 6 reinforce these findings across multiple
evaluation metrics (MAFE, MSE, MAPE, and R?) for all eight indices. Averaged across
all indices, the RV feature set shows the strongest performance, achieving the lowest av-
erage errors (MAFE = 0.0117, MSE = 0.000281, MAPE = 30.68%) and the least negative
R? (—0.028), confirming that past volatility proxy remains the most informative predic-
tor of future volatility. The CP configuration performs moderately with higher error
values (MAFE = 0.5866; MSE = 0.5235) but still substantially better than the V specifi-
cation, which performs the worst by a wide margin across all metrics (MAFE = 0.8723;
MSE = 0.8765; MAPE = 198.9%; R? = —2.400), indicating that volume alone contributes
little meaningful predictive content. The P+V configuration markedly improves on the
volume-only model and achieves error levels close to RV (MAFE = 0.0158; MSE = 0.000416),
demonstrating that trading volume becomes informative primarily when contextualised by
closing-price information.

Table 6. Forecasting performance across node feature specifications.

GSPC GDAXI FCHI FTSE NSEI N225 KSII HSI
MAFE
RV 0.01038 0.01203 0.01369 0.00953 0.01147 0.01647 0.00958 0.01054
CP 0.53324 0.65825 0.54672 0.39054 0.62633 0.62317 0.56203 0.74837
A% 0.70695 0.94387 1.00618 0.77059 1.85584 0.83266 0.72560 0.65147
P+V 0.01512 0.01669 0.01940 0.01352 0.01837 0.02243 0.00144 0.01445
MSE
RV 0.00020 0.00031 0.00033 0.00020 0.00027 0.00052 0.00019 0.00023
CP 0.34938 0.50789 0.43353 0.22730 0.47758 0.57127 0.70354 0.79847
A% 0.67781 1.09315 1.29038 0.89725 4.02200 1.00947 0.96413 0.75261
P+V 0.00030 0.00042 0.00053 0.00029 0.00043 0.00073 0.00028 0.00032
MAPE
RV 37.04211 22.93590 34.40292 23.65555 34.19568 33.55663 33.73245 21.24218
CP 21.81313 24.96826 30.48960 78.10573 25.68947 22.99444 38.66971 43.49560
\Y% 303.37488 158.96262 168.50649 299.64072 106.86623 161.10662 163.27484 224.37820
P+V 62.84003 44.57061 57.61976 43.13610 63.60684 51.70399 54.46960 36.23097
RZ
RV 0.17858 0.35234 0.38208 0.38691 —0.63729 0.32501 —0.93044 —0.28627
CP 0.17633 0.03132 0.06643 0.53770 0.08088 —0.16583 —0.29396 0.28376
A% —1.18369 —2.97524 —1.68093 —1.07109 —6.06159 —0.48633 0.03771 —0.28328
P+V  —0.02347 0.11547 0.00925 0.11637 —1.59084 0.05192 —1.90584 0.01636
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Overall, the results show that the choice of node features substantially influences
forecasting performance. While closing prices provide moderately informative signals for
volatility prediction, trading volume alone offers a highly unstable and weak foundation for
short-term forecasts, as reflected in its significant average errors and strongly negative R?
values. In contrast, the volatility proxy and the combined price-and-volume specification
deliver the highest accuracy, indicating that these feature sets best capture the dynamics
relevant for the Temporal GAT model across multiple forecast horizons.

Remark 3 (Volume-Based Features). The strongly negative R* values for volume-based models
likely stem from the pronounced non-stationarity of raw trading volume, which exhibits long-
term trends and structural shifts that standardization alone cannot remove. During the data
preprocessing phase of this research, the volume is z-score normalized on a per-asset basis. This
preprocessing addresses scale differences but does not correct underlying temporal instabilities
that hinder generalization. As a result, volume provides a limited predictive signal for future
volatility in the considered setting, leading to degraded out-of-sample performance. This explains
the inferior performance of volume-based models relative to return- or volatility-based specifications
and motivates the focus on volatility proxies as the primary predictive features.

5.5.3. Model Hyperparameters

In this section, we explore the sensitivity of the Temporal GAT model to variations
in key hyperparameters, including hidden dimensions, number of heads, and learning
rates. Adjusting these parameters is crucial in determining the model’s ability to generalize
and capture complex relationships within the data. To identify the optimal configura-
tion, we conducted a comprehensive grid search over a range of hyperparameter values,
as described below.

1. Hidden Dimensions: We experimented with three values for the hidden dimensions:
32, 64, and 128. The hidden dimension defines the size of the feature space in the
hidden layers of the model. A larger hidden dimension allows the model to learn
more complex patterns, but can lead to over-fitting if not appropriately regularised.

2. Number of Heads in GAT Layer: We tested two values for the number of heads: 4
and 8. The number of heads controls the level of attention the model can distribute
across different nodes in the graph, influencing the aggregation of information from
neighbouring nodes.

3. Learning Rates: We evaluated three learning rates, 0.0001, 0.001, and 0.01, to de-
termine the optimal step size for updating the model’s parameters. An appropriate
learning rate ensures effective convergence during training while avoiding oscillations
or premature stagnation.

Furthermore, the model was implemented and trained using Google Colab with GPU
acceleration. The training set covered 50% of the data, with 20% used for validation and 30%
for testing. Performance metrics included MAFE, MSE, R?, and MAPE, computed across
different forecasting horizons (h = 1, 5, 15, 21) corresponding to short-term (1 day), mid-
term (1 week and 2 weeks), and long-term (1 month) forecasts. The model’s robustness was
tested under different market conditions, including the COVID-19 crisis, which introduced
significant market stress. The grid search was conducted over all possible combinations
of these hyperparameters, yielding 18 configurations. Each configuration was rigorously
evaluated over 70 epochs using MSE as the loss function. The training and validation
losses for each configuration were tracked to monitor convergence and identify the best-
performing model. The results showed that the configuration with a hidden dimension
of 64, 4 heads, and a learning rate of 0.001 achieved the lowest validation loss, indicating
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the best generalization capability. Table 7 summarizes the performance metrics for the
best configuration.

Table 7. Performance of the best model configuration.

Hyperparameter Value
Hidden Dimensions 64
Number of Heads 4
Learning Rate 0.001
Final Training MSE 0.000085
Final Validation MSE 0.000163
Final Validation MAPE 34.71%

The training and validation loss trends for the best configuration are shown in
Figure 10. The loss values decrease steadily over the epochs, converging to a low value
without significant overfitting. This indicates that the selected hyperparameters provide a
good balance between model complexity and training stability.

Training and Validation Loss Over Epochs
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Figure 10. Loss function for optimal hyperparameters.

Overall, the hyperparameter tuning process revealed that moderate hidden dimen-
sions and fewer heads in the GAT layer, combined with a learning rate of 0.001, yielded the
best predictive performance. These settings will be used as the default configuration for
subsequent model evaluations.

Remark 4 (Layer Depth in GATs). While attention heads and hidden dimensions are important
hyperparameters in GATS, the number of stacked layers plays a move critical role in defining the
model’s effective receptive field. Each additional GAT layer allows a node to aggregate information
from one hop farther in the graph. Consequently, a two-layer GAT agqregates from a node’s second-
order neighbourhood, capturing both direct and indirect structural dependencies. This study adopts
two GAT layers, reflecting an assumption that volatility spillovers are primarily transmitted within
two degrees of separation. This configuration offers a practical balance between model expressiveness
and the risk of over-smoothing, which can degrade performance in deeper GNNs. Empirical trials
confirmed that increasing the number of layers beyond two yielded marginal improvement but
increased training instability. However, this architectural choice implicitly limits the model’s
capacity to capture long-range dependencies that may be relevant in global financial systems. Future
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extensions could investigate deeper GAT architectures or dynamic neighbourhood expansion to
model higher-order spillover pathways more effectively.

5.6. Robustness Test

Robustness tests were conducted to evaluate the performance of the Temporal GAT
model under different market conditions.

5.6.1. Scenario Analysis Using Temporal GAT

Specifically, two distinct periods were selected: a high-volatility period (1 May 2008
to 1 September 2009) and a low-volatility period (1 April 2014 to 1 March 2016). The com-
parison between these periods allows a detailed examination of how the model performs
under markedly different levels of market uncertainty and price fluctuations. During the
high-volatility period, the model was exposed to significant market turbulence, including
the 2008 global financial crisis. This period is characterized by abrupt changes in asset
prices and increased uncertainty. As a result, the volatility proxies were significantly
higher, and the prediction errors tended to increase. Table 8 shows the error metrics for a
high-volatility period for each stock index across different forecast horizons.

Table 8. Error Metrics by Horizon and Index for high-volatility period.

Horizon Index MAFE MSE RMSE MAPE
1 GSPC 0.010560 0.000164 0.012824 8.99%

1 GDAXI 0.009123 0.000117 0.010810 8.83%

5 FCHI 0.009927 0.000153 0.012350 10.07%

10 FTSE 0.016336 0.000389 0.019730 19.42%

22 NSEI 0.012764 0.000255 0.015970 15.27%

For the Short-term Forecasts (Horizon 1), the MSE and the RMSE values for the high-
volatility period were generally higher compared to the low-volatility period, indicating
that the model struggled to capture the rapid price changes accurately. The MAPE for
most indices ranged from 7.9% to 18.8%, reflecting the difficulty of predicting extreme
price movements. FTSE and NSEI exhibited the highest prediction errors, likely due to
their higher exposure to the financial crisis. For the Medium-term Forecasts (Horizon
5 and 15), and with increased horizons, the prediction errors compounded, as shown
by the increasing MSE and RMSE values. This suggests that while the Temporal GAT
model could capture short-term fluctuations, its ability to predict long-term trends in
highly volatile environments diminished. This effect is most noticeable in NSEI and KS11,
where the MAPE reached 18% and 17%, respectively, for horizon 15. Finally, the errors
became more pronounced for the Long-term Forecasts (Horizon 21), with MAPE values
exceeding 16% for most indices. This outcome is expected, as long-term predictions under
high-volatility conditions are inherently challenging due to the increased uncertainty in
market movements.

Next, we consider the low-volatility period, spanning from 1 April 2014 to 1 March
2016, which represents a more stable market environment with less pronounced price
movements. During this period, the model exhibited considerably higher prediction
accuracy. Table 9 shows the error metrics for the low-volatility period for each stock index
across different forecast horizons.
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Table 9. Error Metrics by Horizon and Index for low-volatility period.

Horizon Index MAFE MSE RMSE MAPE

1 GSPC 0.008006 0.000081 0.009014 28.78%

1 GDAXI 0.024644 0.000693 0.026334 37.68%

5 FCHI 0.019780 0.000554 0.023547 30.93%

10 FTSE 0.004384 0.000027 0.005168 11.86%

22 HSI 0.021983 0.000867 0.029452 30.22%

For the Short-term Forecasts (Horizon 1), the MSE and RMSE values were signif-
icantly lower compared to the high-volatility period, indicating that the model could
better capture the more predictable price trends. For instance, the MAPE values for most
indices ranged from 11.4% to 37.6%, indicating improved predictive capability relative
to the high-volatility period. This outcome suggests that the Temporal GAT model can
accurately track minor price variations when the market is stable. For the Medium-term
and Long-term Forecasts (Horizon 5, 15, and 21), we observed that as the forecast horizon
increased, the model maintained its robustness, with MAPE values stabilizing between
13% and 30% for most indices. However, there was a noticeable increase in errors for some
indices, such as GDAXI and FCHI, which may be attributed to sporadic price shocks even
in low-volatility environments.

Furthermore, the scenario analysis demonstrated that the Temporal GAT model re-
sponds differently across market regimes, performing better under stable conditions than
during turbulent ones. During high-volatility periods, the model naturally exhibits greater
prediction errors due to sudden market shocks, rapid structural changes, and heightened
uncertainty that reduce the predictability of financial time series. These spikes in volatil-
ity disrupt previously learned temporal patterns and alter spillover relationships more
abruptly than the model or any forecasting method can fully adapt to in real time. Nonethe-
less, the increase in error does not indicate model instability, and the model maintains
robust relative performance. The model continues to capture evolving cross-market dy-
namics more effectively than traditional econometric models or static GNN benchmarks,
even when the environment becomes substantially more unpredictable.

Conversely, during low-volatility periods, the model benefits from smoother tempo-
ral behaviour and more consistent spillover structures. Under these conditions, patterns
in volatility proxy evolve gradually, enabling the model to leverage temporal attention
and piecewise-static graph relationships more effectively. As a result, the Temporal GAT
achieves lower MSE and MAPE values across all forecasting horizons. This comparison
highlights the importance of market regimes in shaping forecasting accuracy and under-
scores that no model performs equally well across all conditions. Instead, different volatility
environments require distinct modelling considerations, and the Temporal GAT’s ability to
remain stable while adjusting to changing structural dependencies reinforces its practical
value despite the inherent challenges of forecasting during turbulent periods.

5.6.2. Model Comparison Using Diebold-Mariano Tests

To statistically evaluate the predictive accuracy of competing models, we applied the
DM test [54]. The DM test assesses whether the forecast errors of two competing models
differ significantly in expected loss, and it was implemented using squared-error loss
functions over identical evaluation periods. A significant DM statistic (typically at the 5%
level) indicates that one model statistically outperforms the other in forecasting accuracy.

The DM analysis (Table 10) provides strong and consistent evidence that the Temporal
GAT architecture is the most accurate volatility forecasting model across the entire model set.
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The pattern that emerges is strongly asymmetric: the TGATM consistently dominates nearly
all other architectures, with large negative DM MSE statistics against GARCH-TGATM
(—9.86), DGNN-GATM (—3.17), BM (—3.99), C-TGATM (—2.23), SGNN-GATM (—4.48) and
LSTM (—3.06). These values indicate significantly lower forecast errors for Temporal GAT
relative to all competing models, with associated p-values typically well below 0.01. This
superiority underscores the importance of combining temporal sequence modelling with
graph attention mechanisms, which jointly capture both cross-market spillover dynamics
and nonlinear volatility evolution.

The cross-model comparison reveals broader structural insights into forecasting per-
formance. The GARCH-TGATM, despite embedding a parametric GARCH volatility
structure, performs substantially worse than the TGATM, indicating that the hybridization
does not yield additional predictive benefit and may instead introduce noise. The SGNN-
GATM and DGNN-GATM, lacking explicit temporal encoding, show particularly poor
performance, as reflected in consistently large-magnitude DM statistics. In contrast, LSTM
and BM models perform moderately well, benefiting from temporal modelling but failing
to reach the accuracy of graph-aware temporal architectures. The C-TGATM sits between
these extremes: although it incorporates graph structure and temporal encoding, its DM
statistics against other models (particularly the TGATM) are smaller in magnitude and
occasionally insignificant, suggesting more modest forecast improvements.

Table 10. Diebold-Mariano Test Results (MSE and MAFE Loss).

Model A Model B DM (MSE)  p-Value (MSE) DM (MAFE) p-Value (MAFE)
GARCH-TGATM TGATM 9.863707 0.000023 7.100276 1.936 x 10~*
GARCH-TGATM SGNN-GATM —2.642857 0.033285 —2.620082 3.441 x 1072
GARCH-TGATM LSTM 0.010493 0.991921 0.678914 5.190 x 1071
DGNN-GATM TGATM 3.171346 0.015678 3.893770 5.946 x 1073
DGNN-GATM GARCH-TGATM 0.367177 0.724336 —0.319405 7.587 x 107!
DGNN-GATM SGNN-GATM —7.092131 0.000195 —inf 0.000 x 10°
DGNN-GATM LSTM 3.952497 0.005514 7.331685 1.584 x 1074
BM TGATM 3.993997 0.005230 4.730426 2131 x 1073
BM GARCH-TGATM 2.517910 0.039932 2.517277 3.997 x 102
BM DGNN-GATM 1.593996 0.154966 1.596603 1.544 x 107!
BM C-TGATM —0.361873 0.728124 0.167757 8.715 x 1071
BM SGNN-GATM 0.352707 0.734690 0.357023 7.316 x 1071
BM LSTM 1.772022 0.119682 1.767575 1.205 x 107!
C-TGATM TGATM 2.028853 0.082052 2.597088 3.558 x 1072
C-TGATM GARCH-TGATM 1.475456 0.183596 1.136454 2932 x 1071
C-TGATM DGNN-GATM 1.455573 0.188845 1.209097 2.659 x 1071
C-TGATM SGNN-GATM 0.691030 0.511804 0.122774 9.057 x 1071
C-TGATM LSTM 1.537160 0.168138 1.341608 2216 x 1071
SGNN-GATM TGATM 4.487091 0.002842 6.715716 2.735 x 1074
LSTM TGATM 3.059730 0.018330 3.683617 7.822 x 1073
LSTM SGNN-GATM —6.614966 0.000300 —72.518043 2494 x 10~ 11

The visualization of DM statistics and p-values (Figure 11) further reinforces these
findings. Heatmaps reveal strong and consistent blocks of significant negative DM values in
the Temporal GAT row and column, confirming its dominance across nearly all competitors.
The MAFE-based DM tests expand this narrative: for example, the TGATM produces
substantially lower absolute forecast errors than the DGNN-GATM (with DM = —3.84)
and SGNN-GATM (DM = —7.09), while the SGNN-GATM exhibits extreme instability,
such as an implausibly large DM (MAFE) of —72.5 when compared with LSTM. Overall,
the combined MSE and MAFE evidence supports a unified conclusion: the TGAT is the only
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model that consistently delivers statistically superior forecasts across all major financial
indices, validating it as the most reliable architecture for multi-horizon volatility prediction.
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Figure 11. MSE and MAFE comparison of DM test statistics and corresponding p-values.

Furthermore, from the p-value heatmaps in Figure 11, the lighter cells represent lower
p-values (typically below 0.05), indicating that the difference in forecasting accuracy be-
tween the two models is statistically significant and unlikely to be due to random variation;
such cells show that the models do not perform equivalently. Conversely, darker cells cor-
respond to higher p-values (0.05 or greater), indicating no statistically significant difference
in their predictive performance, and any observed variation may reflect random noise.
Applying this interpretation to the model comparisons reveals that TGATM is significantly
different from all other models, which explains why TGATM is light-coloured across all
comparisons. SGNN-GATM and LSTM differ significantly from most competing models,
and the remaining models—GARCH-TGATM, DGNN-GATM, BM, and C-TGATM—form
a cluster with no statistically significant differences among them.

5.6.3. Bootstrap Confidence Interval Analysis for Forecasting Accuracy

Bootstrap Procedure: Let L¢(m) denote the forecasting loss (MAFE or MSE) of model
m forindex t, and let L (TGATM) denote the corresponding loss for the TGATM benchmark.
For each model m, we compute the loss differential

dy(m) = Ly(m) — L(TGATM). (18)

The bootstrap test proceeds as follows:
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¢  Compute the sample mean loss differential

- 1 &
d(m) = T Z%dt(m). (19)
t

*  Generate B bootstrap samples by drawing from {d;(m),dy(m),...,dr(m)} and com-
puting the resampled mean d* (m) for each bootstrap iteration. Note: The bootstrap
procedure generates many resampled datasets (e.g., 5000). Each dataset is formed
by drawing T loss differentials with replacement from the original set, meaning some
observations may appear multiple times while others may not appear in a given
resample.

¢ Construct a 95% confidence interval from the empirical bootstrap distribution.

Interpretation:

e If the 95% confidence interval for d(m) excludes zero, then TGATM performs signifi-

cantly better than model m.

e If the interval includes zero, there is no statistically significant difference in forecast-
ing accuracy.

To assess the statistical robustness of the performance differences between the pro-
posed TGATM model and the benchmark forecasting architectures, we apply a nonparamet-
ric bootstrap procedure to the loss differentials. Figure 12 displays the mean differences in
MAFE and MSE, respectively, between each competing model and the TGATM benchmark,
together with their associated 95% bootstrap confidence intervals. Across both metrics, all
confidence intervals lie strictly above zero, indicating that every competing model exhibits
significantly higher forecasting errors than TGATM at the 5% level.

Mean Difference in MSE with 95% Confidence Intervals (vs. TGATM) Mean Difference in MAFE with 95% Confidence Intervals (vs. TGATM)
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Figure 12. Mean differences in MAFE and MSE between each competing model and the TGATM
benchmark, together with 95% bootstrap confidence intervals.

The relative widths of the intervals provide additional insight into the stability of
each model’s forecasting behaviour. Certain models (from MSE plot), such as DGNN-
GATM, GARCH-TGATM, and LSTM, produce comparatively narrow intervals, implying
more stable, though consistently inferior, forecast accuracy. Conversely, models such as
C-TGATM and SGNN-GATM exhibit broader intervals, reflecting greater variability in
their predictive performance. Crucially, however, even the widest intervals remain entirely
above zero for both MAFE and MSE. Taken together, these results demonstrate that TGATM
outperforms all benchmark models by a margin sufficiently large that sampling uncertainty
does not overturn its advantage.

In our empirical application, all bootstrap confidence intervals for both MAFE and
MSE lie strictly above zero, confirming that none of the competing models match the
predictive accuracy of TGATM. This provides strong statistical evidence of TGATM's
superior and robust forecasting performance across global financial indices.
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5.6.4. Expanding-Window Forecasting with Fixed and Dynamic Spillover Graphs

To further examine the robustness of the proposed model, we adopt an expanding-
window forecasting framework for multi-asset volatility proxies based on the TGATM.
The experimental design considers two alternative strategies for modelling cross-asset
dependence during the out-of-sample evaluation: fixing the spillover graph at the end
of the validation period, and re-estimating the graph in a rolling or expanding-window
manner throughout the test phase. This dual setup is specifically intended to address
two key empirical challenges in graph-based forecasting, namely information leakage and
structural instability.

Under the fixed-graph specification, volatility series are first aligned across all assets,
and a single static spillover network is estimated once using only the training and validation
samples. The resulting graph, obtained at the end of the initial validation period, is then
held constant and used throughout the expanding-window forecasting exercise on the test
dataset at regular forecast intervals. At each forecast origin, the training window expands
while the validation window remains fixed. The TGATM is retrained from scratch using
the same pre-estimated spillover graph, and multi-horizon forecasts (1, 5, 15, and 21 days
ahead) are produced for all assets. By construction, no test-period observations enter the
graph estimation stage, thereby preventing look-ahead bias and eliminating information
leakage. Forecast accuracy is assessed using both asset-level and aggregated error metrics,
which are subsequently averaged over time to summarise horizon-specific performance.

The dynamic graph specification follows the same expanding-window forecasting
protocol but replaces the static dependency structure with a time-varying spillover network.
In this case, the graph is re-estimated at each forecast origin within the test set using
an expanding window that incorporates all information available up to that date. This
rolling graph estimation allows the cross-asset volatility transmission network to evolve
as new data arrive, directly addressing potential structural instability in financial markets.
For each iteration, a new spillover graph is constructed, graph-based datasets are rebuilt
accordingly, and the TGATM is retrained from scratch before generating multi-horizon
forecasts. Performance metrics are collected across forecast origins and averaged, enabling
a direct and transparent comparison with the fixed-graph benchmark.

In both setups, the volatility panel spans 3783 trading days, with the first 1891 days
used for initial training and the next 756 days reserved for validation, leaving the remainder
for out-of-sample testing under an expanding-window scheme. Forecasts are generated at
multiple prediction origins spaced at monthly intervals of 21 trading days. The model uses
a rolling feature history window of 20 days and produces forecasts at 1-, 5-, 15-, and 21-
day horizons, corresponding to the maximum forecast horizon considered. The above
two expanding-window graph estimations are compared with the original framework
utilized in this work(We refer to it as Baseline Graph). Forecast accuracy is evaluated using
per-ticker and aggregated error metrics, which are then averaged over time to summarise
performance by forecast horizon. Table 11 reports the performance.

The Dynamic and Fixed Graph approaches exhibit nearly identical performance at
all horizons, with very small differences in MAFE, MSE, RMSE, and MAPE, indicating
that re-estimating the spillover network over time provides no systematic advantage
over using a single static graph in the expanding-window test. Both graph-based test
strategies show relatively large errors and strongly negative R? values, suggesting limited
explanatory power relative to a naive benchmark. In contrast, the Baseline Graph, which
reflects validation-period performance, achieves substantially lower error levels at short
horizons and R? values closer to zero, highlighting a notable degradation in out-of-sample
performance when moving from the validation setting to the more demanding expanding-
window test evaluation, particularly at longer forecast horizons.
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Table 11. Multi-horizon volatility forecasting performance under alternative network specifications.

Graph Type Horizon MAFE MSE RMSE MAPE (%) R?

Dynamic Graph 1 0.022398 0.001277 0.024755 429318 —5.7202
Dynamic Graph 5 0.023415 0.001319 0.025755 45.9362 —6.2180
Dynamic Graph 15 0.024036 0.001393 0.026295 47.4470 —8.1918
Dynamic Graph 21 0.023514 0.001338 0.025778 45.3593 —5.9914
Fixed Graph 1 0.022390 0.001275 0.024749 42.9295 —5.7231
Fixed Graph 5 0.023435 0.001321 0.025773 45.9643 —6.2282
Fixed Graph 15 0.024089 0.001394 0.026349 47.5727 —8.2449
Fixed Graph 21 0.023508 0.001336 0.025772 45.3399 —5.9886
Baseline Graph 1 0.006305 0.000055 0.007442 21.4795 —0.0599
Baseline Graph 5 0.006034 0.000050 0.007104 27.8136 —0.1739
Baseline Graph 15 0.011800 0.000184 0.013566 46.3775 —3.1084
Baseline Graph 21 0.017903 0.000372 0.019276 69.4633 —6.2783

6. Conclusions

This study examined the critical task of volatility forecasting, a fundamental com-
ponent of financial risk management and investment decision-making. While traditional
econometric models such as GARCH effectively capture volatility clustering, they remain
limited in their ability to represent the nonlinear, interconnected, and dynamically evolving
structure of global financial markets. To address these limitations, this research introduced
a Temporal Graph Attention Network (Temporal GAT) that models international markets
as graphs, with nodes representing equity indices and edges encoding interdependencies
derived from correlation and volatility spillover networks. By integrating an LSTM-based
temporal encoder with GCN and GAT layers, the proposed framework jointly captures
sequential volatility patterns and cross-market spillover effects, providing a richer and
more flexible modelling approach than conventional methods.

Using 15 years of daily data from eight major global stock indices, the empirical
evaluation demonstrates that Temporal GAT achieves strong predictive performance across
multiple forecast horizons and consistently competes with or outperforms a range of bench-
marks, including GARCH, MLP, LSTM, and alternative GNN architectures. Spillover-based
graphs were shown to be more informative than correlation-based graphs, yielding more
precise representations of directional shock transmission across markets. Forecast accuracy,
assessed using MSE and MAFE, was further validated through Diebold-Mariano tests
and bootstrap confidence interval analysis, confirming the statistical robustness of the
comparative results. Scenario analyses indicate that, although forecast errors increase dur-
ing turbulent market periods, reflecting heightened uncertainty and structural instability,
the proposed model remains stable and maintains strong relative performance. Sensitivity
and leave-one-out analyses further highlight the robustness of the framework and the
central role of major indices such as the S&P 500 and DAX in global volatility transmission.

Overall, the findings demonstrate that Graph Neural Networks, and the Temporal GAT
architecture in particular, offer a robust and interpretable framework for modelling volatility
in interconnected financial markets. Several limitations also point to promising avenues
for future research. First, because intraday data are not consistently available across
markets, volatility is approximated using squared daily returns, which are noisier than
range-based or high-frequency estimators. Future work may therefore explore the use
of more efficient daily volatility measures, such as Garman—Klass or Rogers—Satchell
estimators, as well as alternative loss functions such as QLIKE, which are standard in
econometric volatility forecasting. In addition, while the present study adopts a piecewise-
static graph structure, further extensions could incorporate fully dynamic or intraday-
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informed graph construction to better capture rapid structural breaks during extreme
market events. Extending the framework to other asset classes and integrating additional
information sources such as macroeconomic indicators, market sentiment, or microstructure
signals also represent valuable directions for advancing adaptive and robust volatility
forecasting systems.
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Appendix A. Derivation of the Total Spillover Index

The normalized spillover index quantifies the proportion of the system’s total forecast
error variance that is attributable to spillovers, shocks originating from other variables,
rather than to its own idiosyncratic innovations.

Appendix A.1. Vector Autoregression VAR(p) Model and Moving-Average Representation
Consider an N-dimensional VAR(p) model:

Xt =

4
Dix;_j + €, g~ (0,2), (A1)

i=1

where ¥ is the covariance matrix and the diagonal element is denoted by oj;.
Transforming the VAR model into an infinite moving-average representation:

0
Xy = 2 Aigt—ir (AZ)
i=0

where Ag = Iy and A; are recursively defined by the VAR coefficients.

Appendix A.2. Forecast Error Variance

To measure the impact of one variable’s shock on another, the methodology employs
the Generalized Variance Decomposition (GVD). The total forecast error variance for
variable i at horizon H is

H-1
Var(eg(xtJrH — Etxt+H)) = Z egAhZA;lei, (A3)
h=0
where }_ is the Var matrix for the error vector € and E¢(-) denotes the conditional expectation.

Appendix A.3. Generalized Variance Decomposition

The generalized contribution from shocks in variable j is

& 2
o' ) (€jAnZe;)
h=0
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Note: We divide by oj; in order to standardize the size of shocks in variable j, since they are not
orthogonal. The H—step generalized shock contribution from j to the forecast error variance
of i is given by

o L (¢ Ane)?
g(H) _ ( h )

= , fori,j=1,2,---,N. A4
g Z e’AhZAheZ J (A9

Since the shocks are not orthogonalized in the generalized framework, the row sums

are not 1; thatis, }_ GI(J-H) #1,forj=1,2,---,N. Next, we perform row-wise normalization.

Appendix A.4. Normalized Spillover Index

. Row sum for variable i

j=1
*  Normalized spillover share from j to i
o 4 gl
0 = 2 = vy forij=12- N
: AR

N o~
) o = 1; foreveryi.

Appendix A.5. Total Spillover Index

The average share of variance coming from off-diagonal terms

5}. ) %100,  where N = Z o) (A5)
i,j=1

) _ 1
S N 4

l:\:\H M=
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