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Categorizing medical samples is a difficult and time-consuming task that
directly impacts patient outcomes. Recent technological advancements may
hold the key to improving medical professionals’ diagnostic accuracy. One
of these advancements is EchoNet-Dynamic, a convolutional neural network
that segments echocardiograms—ultrasound videos of the heart—producing a
red overlay onto the left ventricle, the area of the heart relevant to diagnosis.
We investigated the potential for EchoNet-Dynamic's segmentation to aid
naive non-clinician humans and pigeons in their diagnosis of cardiac function.
Humans were trained to categorize either segmented or non-segmented
echocardiograms as depicting normal or abnormal heart function. Then, roughly
half of the subjects in each group were tested with videos of the opposite type
they were trained with. We found that more humans trained with segmented
videos adequately learned the task than those trained with non-segmented
videos; they also learned more quickly, exhibited higher accuracies at the end
of training, and reliably generalized to non-segmented videos during testing.
Despite these apparent benefits, there was no general improvement in the
accuracy of humans trained with non-segmented videos when testing with
segmented videos. Pigeons, trained with segmented videos, successfully learned
the task. However, unlike humans, they failed to generalize their learning to non-
segmented videos, even after a fading procedure was employed. We conclude
that EchoNet-Dynamic’'s segmentation is an effective visual aid that enhances
learning and enables reliable transfer to non-segmented videos for humans, and
provides a means of learning what otherwise might have been an incredibly
difficult task for pigeons.

KEYWORDS

category learning, comparative cognition, medical perception, two-alternative forced
choice, visual aids

1 Introduction

Categorizing medical samples is a difficult and time-consuming task that can mean
life or death for a patient. Despite extensive training, medical professionals’ diagnoses are
influenced by numerous factors. In the field of cardiology, for instance, the variability
of cardiologists’” assessments of heart function heavily depends on the imaging method
used (Malm et al., 2004; Pellikka et al., 2018; Pillai et al., 2024). In extreme cases,
different imaging methods can result in a lack of agreement among diagnosticians and,
consequently, differing rates of misdiagnosis (Huang et al., 2017). Image quality also plays
a crucial role in the reliability of diagnoses, as lower quality images can lead to less
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agreement among diagnosticians (Cole et al., 2015). This issue is
particularly problematic when considering that differences in image
quality often go undetected by individual diagnosticians (Cole et al.,
2015). Another challenge arises when patients must rely on more
generalist medical professionals to make specialized diagnoses.
For example, in breast cancer assessments, non-specialists in
breast histology show less diagnostic reproducibility compared to
specialists and they tend to evaluate the severity of tumors less
conservatively (Dunne and Going, 2001; Zhang et al., 2010).

Given the numerous challenges that medical professionals
face, it is crucial to both standardize and improve diagnostic
techniques (Lang et al., 2015). Many medical imaging tasks entail
significant clinical heterogeneity, reflecting differences in opinion
across both providers and the inherent subjectivity of certain
diagnoses and assessments. To alleviate these issues, some have
proposed replacing human diagnoses with diagnoses made by
convolutional neural networks (CNNs). CNNs have demonstrated
the ability to accurately predict patients’ risk of disease (Betancur
et al., 2018; Gandomkar et al, 2019) and even to perform
diagnoses directly from medical samples (Ouyang et al., 2020;
Zhang et al., 2018). Although CNNs demonstrate diagnostic
strengths comparable to those of medical professionals, they are
constrained by their computational requirements and reliance on
available datasets, which can be difficult to obtain in large, high-
quality, and well-labeled forms (Varoquaux and Cheplygina, 2022).
Other research efforts suggest a more collaborative relationship
between automated systems and medical professionals, aiming to
develop tools that assist professionals throughout the diagnostic
workflow. Recent research has developed methods to guide medical
professionals’ attention to the most diagnostic features of medical
samples (Liao et al., 2022), enhance the images of the samples
themselves (Firoz et al., 2016), and combine professional diagnoses
with machine learning analysis (Gandomkar et al., 2019).

In addition to technological advancements, research has
explored the use of surrogate animal models to study medical
image perception. These studies represent a parallel approach to
improving diagnostic accuracy by understanding the underlying
perceptual and cognitive mechanisms, particularly with species
that are affordable to house, extensively trainable, and whose
prior experience is readily accounted for. Pigeons, for example,
have shown remarkable abilities in domains such as histology,
radiology and cardiology. In work done by Levenson et al.
(2015), pigeons could accurately discriminate between benign
and malignant tumors in histology samples and identify micro
calcifications in mammograms. In a separate study, Navarro et al.
(2020) demonstrated that pigeons could also reliably distinguish
between normal and abnormal heart perfusion levels in humans.
Although prior research has proven pigeons competency as a
model for studying medical image perception, their perception of
medical videos remains unexplored. Pigeons have been shown to
reliably discriminate and categorize actions (Asen and Cook, 2012),
biological motion (Dittrich et al., 1998; Johansson, 1973; Giese and
Poggio, 2003), and motion in general (Cook and Murphy, 2012;
Dittrich and Lea, 1993). This evidence prompts us to ask whether
pigeons can categorize medical stimuli where motion is a key factor.

Here, we evaluate the utility of a CNN, EchoNet-Dynamic
(Ouyang et al., 2020), as an assistive tool for naive non-clinician
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humans and pigeons diagnosing videos of cardiac function.
EchoNet-Dynamic is a CNN trained to diagnose heart function
using echocardiogram data by attending to, among other things,
the relationship between the diastolic (relaxed) and systolic
(contracted) volumes of the heart. EchoNet-Dynamic quantifies
this relationship by utilizing self-made segmentations, or tracings,
of echocardiograms to calculate the heart’s left ventricular ejection
fraction (EF). Abnormal hearts tend not to contract very much,
leading to minimal movement and a lower EF, whereas normal
hearts contract more, leading to greater movement and a higher
EF. While the diagnostic power of EchoNet-Dynamic is itself
impressive, its potential as a visual aid is made most apparent
from its ability to create segmentations. Figure 1A depicts video
frames from echocardiograms of an abnormal and normal heart,
both with and without the segmentation of EchoNet-Dynamic. The
added saliency that the segmentations provide could be a key tool
in learning to diagnose heart function.

To evaluate the segmentation’s utility for humans, we
trained undergraduates at the University of Iowa to categorize
echocardiograms as depicting normal or abnormal heart function.
We were particularly interested in whether including the
segmentation would enhance acquisition, so we trained subjects
with either segmented videos or non-segmented videos. After
training, we assessed whether subjects trained with segmented
videos could generalize their learning to non-segmented videos
and whether the accuracy of subjects trained with non-segmented
videos would improve when tested with segmented videos. We
found that more subjects trained with segmented videos learned
the task than those trained with non-segmented videos; they
also learned the task more quickly, achieved higher diagnostic
accuracy by the end of training, and could reliably generalize
to non-segmented videos. Despite this, there was no general
improvement in the accuracy of those trained with non-segmented
videos when testing with segmented videos. Pigeons, which we
anticipated would have more difficulty with the task, were trained
with segmented videos only. We were primarily interested in
whether pigeons were capable of learning this difficult task, and,
if so, whether the utility of EchoNet-Dynamic’s segmentation was
different for them than humans. We found that pigeons, like
humans, could learn to accurately categorize segmented videos.
Unlike humans, though, pigeons could not reliably generalize
to even familiar videos without the segmentation. Even when
we attempted to aid generalization by progressively fading the
segmentation, none of the pigeons achieved adequate performance
without it. We conclude that EchoNet-Dynamic’s segmentation is
an effective visual aid. For humans, it enhances learning outcomes
and supports generalization to non-segmented videos. For pigeons,
it provides a potentially necessary tool to learn the task.

2 Materials and methods

2.1 Humans

2.1.1 Subjects

A total of 125 undergraduate students participated in the
experiment. Sixty of them only underwent training with either
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FIGURE 1

Video Count

Exemplars that were shown during the experiment. (A) An exemplar from the abnormal category (top two rows) and an exemplar from the normal
category (bottom two rows). The EF of each exemplar is depicted in parentheses. The first and third columns of this panel represent the most
contracted frame of the exemplars. The second column represents the most expanded frame of the exemplars. The segmented versions of the
exemplars can be seen below their non-segmented counterparts. (B) The distribution of EFs for the EchoNet-Dynamic dataset. The dotted line
represents the median EF value of the dataset (59.21%). In blue are the abnormal videos we selected, in orange are the normal videos we selected,
and in gray are the videos we did not select. (C) An exemplar with segmentations at various opacities by 20% increments.
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segmented (n = 30) or non-segmented (n = 30) videos only,
whereas 65 underwent both training and testing (n = 32 for those
trained with segmented videos and tested with non-segmented
videos; n = 33 for those trained with non-segmented videos and
tested with segmented videos). We combined the training data
of all subjects trained with segmented videos into one Segmented
Training Group (n = 62), regardless of whether they were also
tested with non-segmented videos. Similarly, we combined the
training data of all subjects trained with non-segmented videos
into one Non-segmented Training Group (n = 63). This seemed
reasonable, as their training procedures were identical.

Subjects were recruited from the elementary psychology
participant pool in the Department of Psychological and Brain
Sciences at The University of Towa. All subjects provided their
informed consent prior to the start of the experiment and received
course credit for their participation. All experimental procedures
accorded with the Declaration of Helsinki and were approved by
the Institutional Review Board at The University of Iowa (ID:
201808798; Approved: 08/22/2018).

2.1.2 Apparatus
All human studies were carried out in an online modality, with
subjects completing the task on their own personal computers.

2.1.3 Stimuli

The full set of echocardiogram videos consisted of 10,030 left
ventricle videos from the EchoNet-Dynamic database (Ouyang
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et al., 2020). The videos were either segmented, containing an
EchoNet-Dynamic-generated red overlay that tracked the volume
of the ventricle, or non-segmented, containing no overlay (see
Figure 1A). EchoNet-Dynamic’s segmentations were previously
reported to be highly similar to those of expert human clinicians
(Ouyang et al., 2020), so we saw no need for further quality control
of segmented videos. Videos were 112 x 112 pixels in size and had
an average duration of 3.46s. Because subjects completed the task
on their personal computers, the final size of the stimuli could not
be controlled. Instead, the stimulus region was scaled so it occupied
500 x 500 pixels on the screen.

A total of 512 videos (256 per category) from the full set were
selected to be used for both training and testing. For the abnormal
category, we selected the 256 videos with the lowest EF. For the
normal category, we attempted to select the first 256 videos above
the median EF of the full dataset. Due to an experimenter error,
however, the videos we selected fell slightly below the median. Due
to the small magnitude of this discrepancy as well as the wide
separability between the EFs of the categories we curated, we do
not believe this error had any appreciable impact on our results.
The distribution of EFs for the full dataset and our sample can be
seen in Figure 1B.

Training videos were randomly sampled from the predefined
set on a subject-by-subject basis without replacement (i.e., no
videos repeated). Testing videos were randomly sampled in the
same manner, but from videos of the opposite modality (i.e., if
trained with segmented videos, testing included non-segmented
videos, and vice versa). Because testing videos were sampled from
the same predefined set of videos that were sampled from during
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training, testing included both familiar and novel videos of the
opposite modality (e.g., if trained with segmented videos, testing
included non-segmented versions of videos shown during training
and completely novel non-segmented videos).

2.1.4 Procedure
2.1.4.1 Overview

Upon accepting the task, subjects were given a hyperlink to
the online task, programmed using the jsPsych library (de Leeuw,
2015). Once on the website, they were welcomed with a consent
form explaining the nature of the task, their compensation, and
their rights as subjects. Once subjects consented to participate
in the study, they were presented with task instructions
(Supplementary material 1) and then quizzed via three, multiple-
option questions (Supplementary material 2, following Le Pelley
et al,, 2019). Subjects started the task after correctly answering
those three questions; any incorrect answers had them reread the
instructions and try the quiz again. Upon completing the task,
subjects were debriefed on the aims of the study. At no point were
subjects explicitly instructed on the features relevant to diagnosis.

2.1.4.2 Training with segmented or non-segmented videos
All subjects completed 300 training trials with segmented or
non-segmented videos only. On each trial, a randomly sampled
video began playing. After 2s, a prompt [“Normal (F) or
Dysfunctional (J)?” choice keys, counterbalanced) indicated to
subjects that they were allowed to respond. Videos looped until
subjects pressed one of the keys, after which visual feedback was
given for 1s (“Correct!” or “Error!” for correct and incorrect
responses, respectively). Incorrect responses led to correction trials
with the same video until a correct response was made. Data from
correction trials were excluded from all statistical analyses.

2.1.4.2 Testing with videos of the opposite modality seen
in training

Subjects who underwent testing completed an additional 40
testing trials after training. Testing trials were identical to training,
except that no feedback or correction trials were given.

2.1.5 Analyses
2.1.5.1 Overview

All data were subjected to logistic mixed-effects modeling
with accuracy as the dependent variable and with all possible
interactions among fixed factors included. Models were fit using
the maximal random-effects structure supported by the data
(Matuschek et al., 2017). All analyses were conducted in R, v4.4.2
(R Core Team, 2024) using the Ime4 v1.1-35.5 (Bates et al., 2015),
tidyverse v2.0.0 (Wickham et al, 2019), and emmeans v1.10.5
(Lenth, 2024) packages. The original data and code used for the
analyses are available in the OSF repository at https://doi.org/10.
17605/OSE.1I0/7C9HK.

2.1.5.2 Assessing acquisition with segmented vs.
non-segmented videos

Training was divided evenly into six 50-trial blocks. Successful
acquisition was defined as achieving a proportion of correct
responses of at least 0.60 in the last block for both categories, which
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is above chance (0.50). Because no empirically established criterion
exists for this task, we adopted this threshold to balance evidence of
learning with humans’ task constraints: they received only 300 trials
with non-repeating stimuli, and they were given no instructions on
what features to pay attention to.

To assess whether segmentation enhanced learning, we first
conducted a two-proportion z-test to see if a greater proportion of
subjects in the Segmented Training Group met criterion than those
in the Non-segmented Training Group. Then, we used a logistic
mixed-effects model to assess (1) whether the rate of acquisition
was higher for the Segmented Training Group and (2) whether
accuracy in the final block was higher for the Segmented Training
Group. To account for non-linear learning rates and for potential
differences in performance across categories, the model included
the logarithm of 50-trial blocks (1 to 6, centered on the last block)
and category (contrast coded with normal at 0.5 and abnormal at
—0.5) as fixed factors. The model also included our primary factor
of interest: group (contrast coded with segmented training at 0.5
and non-segmented training at —0.5). Finally, the model included
random subject intercepts and random subject slopes for category
and block. To focus on the dynamics of successful acquisition, only
subjects who met criterion were included in this analysis.

2.1.5.3 Assessing generalization from segmented to
non-segmented videos

Our primary question in this phase was whether subjects from
the Segmented Training Group could generalize their learning
to non-segmented videos. We assessed this for non-segmented
versions of the videos seen during training and for non-segmented
videos that were completely novel.

Recall that 32 of the 62 subjects in the Segmented Training
Group underwent testing; the remaining 30 only completed
training. Only tested subjects who met the training criterion were
included in this analysis. To assess generalization for these subjects,
we compared performance on the 40 non-segmented testing trials
with performance in the last block of training. We chose these
training trials because they represent baseline performance at the
end of training, and because they ensure a comparable sample size
(50 trials) to compare testing trials to.

The model used to assess these data included video type
(segmented training, familiar non-segmented testing, or novel non-
segmented testing) as a fixed factor and random subject intercepts.
Video type was dummy coded to assess two comparisons: one
between segmented training and familiar non-segmented testing,
and one between segmented training and novel non-segmented
testing. To maximize power for our primary question, we excluded
category as a fixed factor in this analysis; category-level accuracies
are reported in Supplementary material.

2.1.5.4 Assessing generalization from non-segmented to
segmented videos

Our primary question in this phase was whether subjects from
the Non-segmented Training Group would benefit from EchoNet-
Dynamic’s segmentation. However, a related question arises when
considering this: Does the segmentation differentially benefit those
who failed to meet the training criterion? To address this, we
included both subjects who met the criterion and those who
did not in our analysis. As in our analysis of the Segmented
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Training Group, we assessed this for segmented versions of the
videos seen during training and for segmented videos that were
completely novel.

Recall that 33 of the 63 subjects in the Non-segmented Training
Group underwent testing; the remaining 30 only completed
training. Only subjects who underwent testing were included
in this analysis. Like before, we compared performance on the
40 segmented testing trials with performance on non-segmented
videos in the last 50-trial block of training. The model used to
assess these data included video type (non-segmented training,
familiar segmented testing, or novel segmented testing) and learner
(contrast coded with learner at 0.5 and non-learner at —0.5) as
fixed factors. The model also included random subject intercepts.
Video type was dummy coded to assess two comparisons: one
between non-segmented training and familiar segmented testing,
and one between non-segmented training and novel segmented
testing. To maximize power, we excluded category as a fixed
factor in this analysis; category-level accuracies are reported in
Supplementary Material.

2.2 Pigeons

2.2.1 Subjects

Four pigeons (Columba livia) participated in the experiment.
They were food-deprived to 85% of their free-feeding weight and
given free access to water and grit. All four pigeons had previously
participated in visual categorization experiments, forgoing the need
for additional training to respond in the operant conditioning
chambers. However, the birds had only been exposed to still images,
requiring a brief pre training phase to accustom them to the
videos. The housing and training procedures were approved by the
Institutional Animal Care and Use Committee at the University of
Towa (ID: 9021693; Approved: 02/13/2019).

2.2.2 Apparatus

We used four 36 x 36 x 41 cm conditioning chambers (detailed
in Gibson et al., 2004), located in a dark room with continuous
white noise. Figure 2A depicts one of the conditioning chambers.
Each chamber was equipped with a 15-in LCD monitor (1,024 x
768 resolution) behind a resistive touchscreen. The visible portion
of the screen was 28.5 x 17.0cm. The screen had one 2.0 x
2.0cm area for the start stimulus, a 6.0 x 6.0cm area for the
target stimulus, and two 4.5 x 4.5 cm areas for the choice buttons.
The start stimulus and target stimulus were located 13.0cm and
9.0 cm, respectively, above the wire mesh floor and were centered
horizontally. Choice buttons were presented to the left and right of
the target stimulus, with 3.5cm of separation. A rotary dispenser
delivered 45-mg food pellets through a vinyl tube into a plastic
cup in the center of the rear wall opposite the touchscreen.
Ilumination during experimental sessions was provided by a house
light mounted on the upper rear wall of the chamber. Both
the pellet dispenser and the house light were controlled by a
serial I/O interface. A separate computer controlled each chamber,
using programs developed in MATLAB® with Psychtoolbox-3
extensions (Brainard, 1997; Pelli, 1997) (http://psychtoolbox.org/).
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2.2.3 Stimuli

The same set of 512 videos used with human subjects was also
used with the pigeons. Training and testing sets were created in
advance by sorting the videos from each category into 10 equally
populated quantiles, based on the EF range for the category. We
then randomly selected five videos per bin to create the testing set,
for a total of 100 videos (50 per category). The remaining 412 videos
(206 per category) constituted the training set. This sampling
process was done on a subject-by-subject basis. An alternative set of
the training videos in which the opacity of the segmentation ranged
from 100 to 0% (in steps of 10%) was also used (see Figure 1C). A
white star served as the start stimulus, and a yellow (RGB: 255, 255,
0) and a blue (RGB: 0, 0, 255) rectangle served as choice buttons.
Lastly, the segmented video with the median EF relative to the
EchoNet-Dynamic dataset was used for pre-training.

2.2.4 Procedure
2.2.4.1 Pre-training

Prior to starting the experiment, pigeons underwent a single
pre-training session consisting of 100 trials. See Figure 2B for an
overview of a typical trial. Each trial started with the display of a
start stimulus. Once pecked, the start stimulus disappeared and the
pre-training video was displayed in the center of the screen. The
first peck made to the video after 7s caused two choice buttons to
appear to the left and right sides of the video. A final peck to either
of the choice buttons terminated the trial. During pre-training,
trials were non-differentially reinforced, so no matter which button
was chosen, one to three food pellets were randomly delivered and
a 6 to 7 s intertrial interval (ITT) ensued.

2.2.4.2 Training with segmented videos

Pigeons received daily training sessions until their proportion
of correct responses in a session was 0.70 or more for both
categories. In contrast to humans, pigeons could be trained
extensively with repeating stimuli, so we required this higher
criterion to ensure robust learning. In each session, 100 segmented
videos (50 per category) from the training set were randomly
presented. The trial structure for training was identical to pre-
training, except for the observing requirement and the presence
of corrective feedback. The observing requirement for each video
started at 7s and increased across sessions based on each pigeon’s
level of performance; final values ranged from 15 to 20 s depending
on the pigeon. If pigeons chose the button corresponding to the
category of the video being displayed, then one to three food pellets
were randomly delivered; otherwise, no food was delivered and a
correction trial with the same video was given after the ITI (6 to
7's), until they made the correct choice. Data from correction trials
were excluded from all statistical analyses. The button assignment
for each category was counterbalanced across birds, such that the
blue and yellow buttons were associated with normal and abnormal
videos, respectively, for two of the birds, and vice versa for the other
two birds.

2.2.4.3 Testing with novel segmented videos

Unlike the humans, who were trained with non-repeating
stimuli, the pigeons were trained with stimuli that could be
repeated. To assess whether the pigeons had formed category
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FIGURE 2
Apparatus and trial structure for the pigeons. (A) One of the operant conditioning chambers in which the pigeons performed. Stimulus sizes and
placements are approximate. (B) The order of events for a typical trial. The number labels are presented as a visual aid only and were not present
during the experiment. The panel labeled “4” was not present during the experiment either; it merely indicates when feedback (food reward/no
reward) occurred on a given trial. Stimulus sizes and placements are approximate.

knowledge beyond mere memorization, pigeons completed 20 daily
sessions containing a random mixture of 100 segmented training
trials and 20 trials with segmented videos from the testing set. The
trial structure was identical to training, except that testing trials
involved non-differential reinforcement.

2.2.4.4 Testing with familiar non-segmented videos

Pigeons completed 20 daily sessions containing 100 segmented
training trials and 20 testing trials with non-segmented videos
from the training set. Testing with familiar but non-segmented
videos allowed us to assess whether pigeons were at all capable
of generalizing to that video modality before testing them with
novel non-segmented videos. Again, the trial structure was
identical to training, except that testing trials involved non-
differential reinforcement.

2.2.4.5 Opacity reduction phase

Prior work has shown that fading—the progressive removal of
a salient, assistive cue—can aid in the learning of multidimensional
categories (Pashler and Mozer, 2013). To aid pigeons in learning to
categorize non-segmented videos, we employed a fading procedure
in which we gradually reduced the opacity of the segmentation in
the training videos. Starting with videos in which the segmentation
was at 100% opacity, pigeons received daily sessions containing
100 training trials at a set opacity (see Figure 1C). Once pigeons
achieved a proportion of correct responses of 0.70 for 3 days in a
row, the opacity of the segmentation was reduced by 10%. Pigeons
that met this criterion for videos at 0% opacity (i.e., fully non-
segmented videos) were to be tested with novel non-segmented
videos to assess generalization. We did not specify an alternative
terminating criterion; instead, we terminated data collection when
we determined, via visual inspection, that performance had
plateaued for all pigeons.
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FIGURE 3

The mean proportion of correct responses made by human subjects
to each category during training with either segmented or
non-segmented videos. Only subjects who met the training
criterion are included. Error bars represent the within-subject
standard error of the mean (Morey, 2008), and the dotted line
indicates chance-level performance (0.50).

2.2.5 Analyses
2.2.5.1 Overview

All pigeon analyses were conducted in the same manner as the
human analyses, including model selection and model type. The
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original data and code used for the analyses are available in the OSF
repository at https://doi.org/10.17605/OSF.10/7C9HK.

2.2.5.2 Assessing acquisition with segmented videos

All the pigeons met the training criterion, so there was
no need to exclude those that did not. However, pigeons
met criterion at different rates; from fastest to slowest, they
met criterion on sessions 42, 60, 61, and 90. To focus on
initial learning and ensure equal data contribution from each
subject, we limited our analysis to the first 42 sessions: the
minimum required for any pigeon to meet criterion. Like with
the humans, we accounted for non-linear learning rates and
potential differences in performance across categories by including
the logarithm of 700-trial blocks (1-6, centered on the last
block) and category (contrast coded as before) as fixed factors.
The model also included random subject intercepts and random
subject slopes for category and the interaction between category
and block.

2.2.5.3 Assessing generalization to novel
segmented videos

To evaluate the pigeons™ ability to generalize their learning
to novel segmented videos, we compared their performance on
trials with novel segmented videos to their performance on trials
with segmented training videos during the same phase. Due to
an experimenter error, one pigeon received 19 testing sessions
instead of 20. For purposes of analysis, the data for this bird
was thus limited to its first 19 sessions, while the data for the
other birds included all 20 sessions. The model used to assess
these data included video type (contrast coded with segmented
training at 0.5 and novel segmented testing at —0.5) and category
(contrast coded as before) as fixed factors. The model also
included random subject intercepts and random subject slopes
for category.

2.2.5.4 Assessing generalization to familiar
non-segmented videos

To assess the pigeons’ ability to generalize to familiar non-
segmented videos, we compared their performance on trials
with familiar non-segmented videos to their performance on
trials with segmented training videos during the same phase.
The model used to assess these data included video type
(contrast coded with segmented training at 0.5 and familiar
non-segmented testing at —0.5) and category (contrast coded
as before) as fixed factors. The model also included random
subject intercepts.

2.2.5.5 Assessing the opacity reduction phase

Recall that the pigeons were required to maintain a proportion
of correct responses of at least 0.70 for 3 consecutive days
before progressing to a reduced opacity. Our original intention
was to assess pigeons generalization to novel non-segmented
videos after they met criterion at an opacity of 0% (i.e.,
after they met criterion with fully non-segmented videos).
Unfortunately, because no bird met criterion at 0% opacity, we
were unable to assess this. Instead, we present graphs depicting
their performance during this phase up until we terminated
data collection.

Frontiers in Psychology

10.3389/fpsyg.2025.1680346

0.9

I o
~ o

Proportion Correct
o
(2]

0.5t

0.4

Novel
Nonsegmented

Familiar
Nonsegmented

Video Type

Segmented
Training

FIGURE 4

The mean proportion of correct responses made by human subjects
from the Segmented Training Group who were tested with
non-segmented videos. Only subjects who met the training
criterion are included (n = 12). Segmented training videos constitute
segmented videos from the last 50-trial block of training. Familiar
non-segmented videos constitute videos from testing that were
non-segmented versions of training videos. Novel non-segmented
videos constitute non-segmented videos from testing that were
completely novel. Error bars represent the within-subject standard
error of the mean (Morey, 2008), and the dotted line indicates
chance-level performance (0.50). See Supplementary material 3 for
category-level accuracies.

3 Results

3.1 Humans

3.1.1 Acquisition with segmented vs.
non-segmented videos

The categorization task proved to be difficult for humans, with
only 28 out of 62 subjects from the Segmented Training Group
and 16 out of 63 subjects from the Non-segmented Training Group
meeting criterion in the last block of training. The z-test revealed
that significantly more subjects from the Segmented Training
Group met criterion than those in the Non-segmented Training
Group (p = 0.033).

Figure 3 shows the mean proportion of correct responses these
subjects made for each category as a function of 50-trial blocks
during training with segmented (n = 28) or non-segmented videos
(n = 16). The model used to assess these data revealed a reliable
increase in categorization accuracy across blocks of training for
both groups (b = 0.42, 95% CI [0.31, 0.53], Z = 7.34, p < 0.001).
This increase was faster for normal videos than for abnormal
videos (b = 0.30, 95% CI [0.17, 0.43], Z = 4.64, p < 0.001), with
subjects also being more accurate in categorizing normal videos
than abnormal videos by the end of training (b = 0.52, 95% CI [0.33,
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FIGURE 5

The mean proportion of correct responses made by human subjects
from the Non-segmented Training Group who were tested with
segmented videos (n = 33). Non-learners (n = 27) are those that
failed to meet the training criterion, whereas learners (n = 6) are
those that met the criterion. Non-segmented training videos
constitute non-segmented videos from the last 50-trial block of
training. Familiar segmented videos constitute videos from testing
that were segmented versions of training videos. Novel segmented
videos constitute segmented videos from testing that were
completely novel. Error bars represent the within-subject standard
error of the mean (Morey, 2008), and the dotted line indicates
chance-level performance (0.50). See Supplementary material 4 for
category-level accuracies.

0.70], Z = 5.39, p < 0.001). More importantly, this increase was
also faster for subjects trained with segmented videos than for those
trained with non-segmented videos (b = 0.31, 95% CI [0.08, 0.53],
Z = 2.68, p = 0.007), with those trained with segmented videos
also being more accurate than those trained with non-segmented
videos by the end of training (b = 0.91, 95% CI [0.50, 1.31], Z =
4.42, p < 0.001). The model did not disclose any other significant
interactions, either between category and group (b = 0.10, 95% CI
[—0.27, 0.48], Z = 0.53, p = 0.596) or among all three variables (b
= —0.03,95% CI [—-0.28, 0.23], Z = —0.22, p = 0.827).

3.1.2 Generalization from segmented to
non-segmented videos

Of the 28 subjects that met criterion during segmented training,
12 were in the group that was also tested with non-segmented
videos. Figure 4 shows the mean proportion of correct responses
that these subjects (n = 12) made to segmented videos in the last
block of training, familiar non-segmented testing videos, and novel
non-segmented testing videos. Unsurprisingly, the model used to
assess these data revealed accuracy to be significantly lower for both
familiar non-segmented videos (b = —0.84, 95% CI [—1.19, —0.49],
Z = —4.75, p < 0.001) and novel non-segmented videos (b = —0.67,
95% CI [—1.07, —0.28], Z = —3.34, p < 0.001) compared to the
segmented training videos. More importantly, humans categorized
both familiar and novel non-segmented videos at above chance
levels (both p < 0.001).
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FIGURE 6

The mean proportion of correct responses made by pigeons to each
category during training with segmented videos. The data is limited
to the minimum number of daily sessions required for any pigeon to
meet the training criterion (i.e., 42 sessions). Error bars represent the
within-subject standard error of the mean (Morey, 2008), and the
dotted line indicates chance-level performance (0.50).

3.1.3 Generalization from non-segmented to
segmented videos

Figure 5 shows the mean proportion of correct responses that
subjects (n = 33) made to non-segmented videos in the last block
of training, familiar segmented testing videos, and novel segmented
testing videos as a function of whether subjects achieved criterion
(n=6) or not (n = 27).

The model used to assess these data revealed that subjects
who met the training criterion generally outperformed subjects
who did not (b = 0.60, 95% CI [0.27, 0.93], Z = 3.56, p
< 0.001). Interestingly, the model also revealed a significant
interaction between the novel segmented testing video contrast
and learner (b = —0.94, 95% CI [—1.45, —0.43], Z = —3.63,
p < 0.001). Follow-up analyses indicated that subjects who met
the training criterion experienced a generalization decrement to
these novel videos (p = 0.002), whereas those who did not
meet the criterion actually performed better with these novel
videos (p = 0.040). All other effects assessed in the main model
were not significant, including the familiar segmented testing
video contrast (b = —0.18, 95% CI [—0.42, 0.05], Z = —1.54,
p = 0.123), the novel segmented testing video contrast (b =
—0.25, 95% CI [—0.50, 0.01], Z = —1.89, p = 0.058), and the
interaction between the familiar segmented testing video contrast
and learner (b = —0.44, 95% CI [—0.90, 0.03], Z = —1.85,
p=0.065).
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FIGURE 7

The mean proportion of correct responses made by pigeons to
each category during testing with novel segmented videos.
Segmented training videos constitute familiar videos from training
that were presented in the same phase as the novel testing videos.
Novel segmented videos constitute completely novel testing videos
presented in the same phase as the training videos. Error bars
represent the within-subject standard error of the mean (Morey,
2008), and the dotted line indicates chance-level performance.

3.2 Pigeons

3.2.1 Acquisition with segmented videos

All of the pigeons met the training criterion. Figure 6 shows
the mean proportion of correct responses the pigeons made for
each category during the first 42 training sessions as a function
of 700-trial blocks. The model used to assess these data disclosed
a significant increase in categorization accuracy across blocks
of training (b = 0.39, 95% CI [0.34, 0.44], Z = 14.45, p <
0.001). Contrary to the humans, though, neither category was
learned significantly faster or slower than the other (b = —0.23,
95% CI [—0.52, 0.06], Z = —1.58, p = 0.115), and there was
no reliable difference in accuracy between the categories by the
end of training (b = —0.04, 95% CI [-0.75, 0.67], Z = —0.11,
p=0915).

3.2.2 Generalization to novel segmented videos

Figure 7 shows the mean proportion of correct responses the
pigeons made during testing with novel segmented videos as a
function of video type (segmented training or novel segmented)
and category (normal or abnormal).

The model revealed a significant interaction between category
and video type (b = —0.29, 95% CI [—0.52, —0.05], Z = —2.39,p =
0.017). Follow-up contrasts indicated that accuracy was lower for
novel segmented videos compared to segmented training videos,
but only for videos from the abnormal category (p = 0.015).
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FIGURE 8

The mean proportion of correct responses made by pigeons to
each category during testing with familiar non-segmented videos.
Segmented training videos constitute familiar videos from training
that were presented in the same phase as the non-segmented
testing videos. Familiar non-segmented videos constitute testing
videos that were non-segmented versions of training videos,
presented in the same phase as the training videos. Error bars
represent the within-subject standard error of the mean (Morey,
2008), and the dotted line indicates chance-level performance.

Videos from the normal category exhibited no such difference
(p = 0.310). The interaction was qualified by a significant main
effect of category, such that pigeons were generally more accurate
in categorizing normal videos than abnormal videos (b = 0.54,
95% CI [0.01, 1.07], Z = 2.00, p = 0.046), but there was no
main effect of video type (b = 0.05, 95% CI [—0.06, 0.17], Z
= 0.88, p = 0.379). Most importantly, pigeons categorized novel
segmented videos from both categories at above chance levels (both
ps < 0.001).

3.2.3 Generalization to familiar non-segmented
videos

Figure 8 shows the mean proportion of correct responses the
pigeons made during testing with familiar non-segmented videos
as a function of video type (segmented training or familiar non-
segmented) and category (normal or abnormal).

The model used to assess these data revealed a significant
interaction between category and video type (b = —1.79, 95% CI [-
2.04, —1.55], Z = —14.32, p < 0.001). Follow-up contrasts indicated
that, for videos from the abnormal category, accuracy for non-
segmented videos was significantly lower than that for segmented
videos (p < 0.001). This effect was so dramatic that performance
on these non-segmented videos was significantly below chance (p
< 0.001; see Figure 8). Conversely, for videos from the normal
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FIGURE 9
The number of daily sessions pigeons spent at each opacity level. The last point for each bird represents the number of sessions they received at their
last opacity level before we terminated data collection. Each point before that represents the number of sessions that each bird took to meet
criterion for each opacity. The dotted line indicates the opacity the pigeons were required to meet criterion for to be tested with novel
non-segmented videos; no pigeon met criterion at this opacity.

category, accuracy for non-segmented videos was significantly
higher than that for segmented videos (p = 0.017). These results
strongly suggest that the pigeons merely exhibited a bias on trials
with non-segmented videos, such that they were more likely to
choose the report button corresponding to the normal category
than the button corresponding to the abnormal category. This effect
was qualified by pigeons’ significantly higher accuracy for videos
from the normal category compared to the abnormal category (b =
1.26, 95% CI [1.14, 1.38], Z = 20.13, p < 0.001), as well as their
significantly higher accuracy for segmented videos compared to
non-segmented videos (b = 0.68, 95% CI [0.55, 0.80], Z = 10.82,
p < 0.001).

3.2.4 Opacity reduction phase

Figure 9 shows the number of days the pigeons spent at each
opacity. Although they initially progressed at a relatively steady
rate, each bird eventually hit a point at which they struggled
to meet the criterion. Only one of the birds ever progressed
to an opacity of 0%, but even it failed to meet the criterion
for these videos. Figure 10 shows pigeons’ accuracy during each
day of training at the last opacity they were exposed to. Given
the stagnant levels of performance after extended training, it
seemed reasonable to terminate data collection when we did. Thus,
our fading procedure did not support pigeons generalization to
non-segmented videos.
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4 Discussion

We evaluated the

a technological aid for humans and pigeons

efficacy of EchoNet-Dynamic as
diagnosing

cardiac function. Specifically, we asked: (1) Does EchoNet-

Dynamic’s segmentation enhance human learning? (2)
Does adding the segmentation benefit people previously
trained with non-segmented videos? (3) Can pigeons

learn with segmented videos? (4) Does segmented training
support  generalization to  non-segmented videos in
both species?

We found that more humans trained with segmented videos
successfully learned the task than humans trained with non-
segmented videos. They also learned more quickly and exhibited
higher diagnostic accuracy by the end of training (Figure 3).
Despite this, there was no general benefit to adding the
segmentation after non-segmented training. Instead, those that had
successfully learned with non-segmented videos performed worse
with segmented videos, whereas those that hadn’t successfully
learned performed better, but only if the segmented videos
were completely novel (Figure 5). Pigeons, like humans, could
learn to categorize segmented videos (Figures6, 7). However,
only humans could generalize their learning to non-segmented
videos (Figures4, 8). Even when given a training regime
meant to wean them off EchoNet-Dynamic’s segmentation, no

pigeon could achieve accurate generalization to non-segmented
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videos (Figures9, 10). Our results provide initial evidence
of the segmentation’s utility as a visual aid: it enhances
learning outcomes for humans and provides a means of
learning what might otherwise be a difficult task for pigeons.
Despite these promising results, further work is needed to
fully understand how and when the segmentation can benefit
each species.

Firstly, it is unclear why adding the segmentation yielded
no general improvement after non-segmented training. One
possibility is that the segmentation masked the features to
which people had attended during non-segmented training.
This seems counterintuitive given that people who underwent
segmented training could still accurately categorize non-segmented
videos. Moreover, this explanation fails to account for why
subjects who initially failed to learn with non-segmented videos
only benefitted from the segmentation when it was applied to
completely novel videos. These results suggest there is more
to EchoNet-Dynamic’s segmentation than a mere enhancement
of the features relevant to diagnosis. Future research should
address this by including post-experiment interviews, which
we did not include in our study. This could help reveal
strategies or cues used by participants. Future work should also
systematically manipulate the segmentation itself. This could help
distinguish between whether the segmentation operates via low-
level salience or higher-level attentional guidance. Evaluating
what features of the segmentation most effectively improve
performance and how is essential to successfully implementing it
as a visual aid.
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In addition to better understanding how and when
segmentation is beneficial, it is also important to assess how
other stimulus properties impact performance. In the present
study, for example, the abnormal category encompassed a wider
EF range than the normal category due to unaccounted for
constraints in the EF distribution of the available video set
(see Figure 1B): videos with lower EFs were more infrequent
and covered a wider EF range than videos with higher EFs.
This increased within-category variability likely reduced the
cohesiveness of videos from the abnormal category, which
could explain why human subjects learned this category more
slowly. Future research should manipulate EF range and other
stimulus characteristics to understand what is most conducive to
learning and generalization for these stimuli. As with research
on the properties of the segmentation itself, this can help inform
enhanced training procedures.

Another potential future direction is to explore how task
instructions affect performance. In our own study, we did not
instruct human subjects on what features were relevant for
diagnosis. This is one possible explanation for why so few subjects
learned the task: our subjects were naive non-clinicians, so they
could only learn via trial-and-error. If the goal is to eventually
use the segmentation to aid learning in a clinical context, then
providing subjects with a basic understanding of what features they
should attend to is necessary. This would better reflect the level
of understanding that novice clinicians might have. If the primary
goal is to instead make comparisons across species, then it may
be more beneficial to ensure that task constraints like this are as
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similar as possible across species. Either way, future work should be
mindful of what knowledge is afforded to subjects before beginning
the task.

Before discussing why pigeons differed from humans in
their ability to generalize from segmented to non-segmented
videos, there are several procedural differences in our study
that warrant consideration. Pigeons received substantially more
training than humans. Their training videos were also repeatable,
whereas they were non-repeatable for humans. Furthermore,
testing trials were intermixed with training trials for pigeons
but occurred separately for humans. Lastly, their observation
requirements differed: pigeons were required to peck the videos
for the response keys to appear, while humans only needed
to view each video for at least 2s. Future work aiming
to make cross-species comparisons should control for these
differences; otherwise, apparent species differences may reflect
procedural confounds.

One of the purposes of our study was to evaluate whether
pigeons’ utility as a low-cost, high-throughput model for medical
classification extends to a domain where motion is diagnostic.
Although pigeons learned with EchoNet-Dynamic’s segmentation,
they failed to generalize to non-segmented videos, unlike humans.
Differences in visual processing, learning, memory, and procedural
factors may underlie this disparity. Our study was not designed to
distinguish among these possibilities, but prior work shows that
in the presence of multiple cues, pigeons preferentially attend to
those involving color (Jones, 1954; Lazareva et al., 2005; Navarro
et al,, 2020). Additionally, pigeons experience attentional tradeofts
when attending to multiple cues—tradeoffs that can be exacerbated
in particularly challenging tasks (Gottselig et al., 2001). Thus,
pigeons likely relied heavily on EchoNet-Dynamic’s segmentation
during training, testing, and during the Opacity Reduction Phase.
If so, our results provide limited support for using pigeons as
surrogates for studying the medical classification of these stimuli.
Because their learning depended entirely on the segmentation,
they likely did not form a medical concept comparable to
humans. Future research should test pigeons ability to learn
with non-segmented videos and develop training procedures that
minimize reliance on segmentation. This would clarify whether
pigeons can model human performance within this challenging
medical domain.
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