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Abstract Identifying phases and analyzing the stability of dynamic states are com-
mon and important problems that appear in a variety of physical systems. However, 
drawing a phase diagram in high-dimensional and large parameter spaces has proven 
to be challenging. In this chapter, we will look at a data-driven method to obtain the 
phase diagram of lasing modes in photonic topological insulator lasers. The classi-
fication is based on the temporal behaviour of the topological modes obtained via 
numerical integration of the rate equation. An unsupervised learning method is used 
and an adaptive library is constructed in order to distinguish the different topological 
modes present in the generated parameter space. We start by introducing photonic 
topological lasers and Su-Schrieffer-Heeger lattices with saturable gain. Then, we 
look at different dynamic mode decomposition methods for a parameter space defined 
as the gain and loss parameters. Finally, we classify the topological phases of the 
topological lasing modes using the library automatically determined by top-down 
and bottom-up classification approaches. 

1 Introduction 

A laser is a light emitting device composed of an optical resonator, called optical 
cavity, and gain medium which provides optical gain. Nowadays lasers are widely 
used in our life as well as in various fields of scientific research. The optical cavities 
of those lasers are made up of one optical resonator or an array of coupled optical 
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resonators. The laser is referred to as a photonic topological insulator (PTI) laser 
when the optical resonators are coupled to each other to form a topological insula-
tor and lase with topological modes. They are also called topological lasers. These 
PTI lasers are particularly interesting because they can lase with topological edge 
modes [1] or corner modes [2] which are robust to structural defects and show phase-
locking between the optical resonators. Therefore, significant research efforts have 
been made on PTI lasers especially focusing on spatial stability, i.e., the robustness 
of lasing modes to geometrical defects. However, lasers are open systems and thus 
non-Hermitian systems in which energy is exchanged with the surrounding external 
systems making the lasing modes dynamic with time-varying optical fields and car-
rier populations. Moreover, they are nonlinear due to the optical gain that depends 
on the mode intensities and complex light-matter interactions in the gain medium. 
Consequently, without taking into account their dynamic nature, a description of 
lasing is incomplete. 

To explore the dynamics and temporal stability of lasing modes, one can use 
the linear stability analysis to solutions of coupled rate equations [3]. However, it 
becomes challenging when we apply it to more complex systems such as lasing modes 
in coupled lasers. This is because the analytical approach easily fails due to the lack 
of analytical solutions for high-dimensional parameter space and the emergence of 
complex and diverse dynamic phases [4]. Yet, numerical methods can offer solutions 
for the coupled rate equations enabling us to classify the lasing modes based on 
simulation results. For a high-dimensional and large parameter space, however, the 
simulation can be very costly and drawing the phase diagram is not a straightforward 
task. It is even more challenging when we do not know all the possible phases present 
in the laser system. Unfortunately, this is true for most of dynamic systems in nature. 

Machine learning (ML) can be advantageous in tackling such problems that 
require repeated numerical simulations, since it can significantly reduce the number 
of simulations. Depending on the type of dataset, i.e., whether the data are labelled 
or not, different strategies of ML can be used: a supervised learning and an unsuper-
vised learning. On one hand, the supervised learning strategy relies on labelled data, 
a dataset of input-output pairs. This strategy has been utilized in topological photon-
ics [5] to draw topological phase diagrams [6], calculate topological invariants [7], 
or explore topological band structures [8]. On the other hand, in the unsupervised 
learning strategy, we extract information from the dataset which does not have labels. 
This strategy is useful for dimensional reductions which keep only the main features 
of the high-dimensional structure of the dataset, or for clustering problems where 
the data is classified into different types [9]. For instance, this has been successful in 
obtaining the phase transition in the Ising model [10], and clustering Hamiltonians 
that belong to the same symmetry classes [11]. 

In this chapter, we introduce a representation classification method to study the 
spatio-temporal dynamics of nonlinear topological systems. The results will be ana-
lyzed based on the phase diagram of the Su-Schrieffer-Heeger (SSH) lattice [12] with 
a domain wall and with saturable gain [4, 13]. Without involving any detailed knowl-
edge on the complex system, the algorithm constructs an appropriate library of the 
different phases automatically. To build the library, we will employ two approaches:
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a top-down approach in which the library has numerous phases that are merged into 
the equivalent phases, and a bottom-up approach in which the library is constructed 
on the fly to obtain the most accurate classification. 

2 Physics of Photonic Topological Insulator Lasers 

The field of PTI lasers has sparked interest since the first topological lasers were 
demonstrated [1, 14], resulting in a great success story [15–17]. While we refer to 
recent overview articles on the latest developments on PTI lasers [18, 19], we here 
briefly highlight the main concepts of a PTI laser. 

2.1 A Brief Introduction to Photonic Topological Insulator 
Lasers 

PTI lasers combine the advantages of topological photonics with laser physics by an 
optical cavity designed with a topological array. A topological array or a topological 
insulator is a special photonic crystal structure that features unique edge modes that 
are topologically protected. Such edge modes form when combining two materi-
als that differ in their properties regarding their wave function, mostly quantified 
by a winding number. The topological array can be one-dimensional (1D) or two-
dimensional (2D) and the arrangement can be of different types depending on how 
different coupling coefficients are arranged. 

The 2D photonic topological structures are interesting because it is possible to 
create waveguides which guide the light without losses in arbitrary paths, in par-
ticular around edges. In contrast, a perfect bending of light is not possible in con-
ventional waveguides, where bending always leads to scattering losses. Designing 
such topological waveguides is achieved by topological edge modes. Examples of 
2D photonic topological structures are the perturbed honeycomb lattice [21] and 
the perturbed kagome lattice [16]. The honeycomb lattice features a photonic Dirac 
cone, but when slightly distorted, i.e., when the hexagons are stretched or com-
pressed, bands with distinct topologies appear [21]. Combining a stretched with a 
compressed honeycomb lattice results in the occurrence of topological modes at the 
interface. The topological modes are topologically protected and as such also robust 
against defects and disorders. 

Examples of 2D photonic structures are shown in Fig. 1.  In  Fi  g. 1a, a combination 
of a compressed Kagome lattice (upper part in red) and a stretched Kagome lattice 
(lower part, blue) are shown. Then, a topological edge mode is formed at the interface 
between the two parts which due to construction has sharply curved corners. In the 
lower panel the light field amplitude of the edge mode travelling along the interface 
is displayed. Due to its spatial symmetry, bending the light is possible without scat-
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Fig. 1 Structures for PTI lasers: a A combination of two Kagome lattices supporting a topo-
logical edge mode between them. Light can travel along the edge mode with minimal losses, even 
though there exist strong bendings as shown in the simulated electric field. Kagome lattices can 
be used for PTI lasers. Reprinted (adapted) with permission from [16]. Copyright 2020 American 
Chemical Society. All Rights Reserved. b Artistic view of two honeycomb lattices featuring an edge 
mode between them. Each site is a VCSEL made from semiconductor nanostructures. Due to their 
arrangements, the VCSELs lase into the topological mode, forming a PTI laser. Figure provided 
by Sebastian Klembt, a similar figure can be found in Ref. [17]. c Schematic of a one-dimensional 
topological array on a hybrid silicon platform. Each ring is a nanostructure of InGaAsP quantum 
well layers on top of silicon. Every other ring has an additional layer of Cr. This structure is an 
implementation of the 1D-SSH model. Figure reproduced from [20], published under a CC BY 4.0 
license 

tering and reflection losses, which in a regular waveguide would be associated with 
significant losses [16]. 

In a PTI laser, topological edge modes or topological cavities are combined with 
lasing materials to make use of the great advantage of photonic topological modes. 
Figure 1b shows a PTI laser based on the deformed honeycomb lattice. In the outer 
part the hexagons are compressed, in the inner part the hexagons are stretched. 
Each site is a vertical microcavity featuring a gain medium between distributed 
Bragg mirrors, thus, forming a vertical-cavity surface-emitting laser (VCSEL). When 
pumped, in total 30 of the VCSEL structures lase coherently into the topological 
mode [17]. 

PTI lasers also exists in 1D, as shown in Fig. 1c. The lattice is now formed by the 
combination of two nano-rings, each composed of a layered semiconductor structure. 
Every other ring has an additional Cr layer. On the right and left side the arrangement 
changes, such that in the center a topological mode is formed, which can feature
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lasing. This 1D structure is interesting, because it is a realization of the SSH model 
[20], which is a well-established theoretical model in the condensed matter physics. 

2.2 Su-Schrieffer-Heeger Model for PTI Lasing 

The SSH model describes a one-dimensional chain lattice with topological fea-
tures [12]. Originally it was derived to describe electrical conductivity and soliton 
physics, while nowadays it is a standard model in topological photonics. A sketch 
of the SSH lattice is shown in Fig. 2a. Two lattice sites .A and .B form the unit cell. 
Within that unit cell the sites are coupled via the parameter . t1, while the coupling 
between unit cells is given by the parameter . t2. In the center, the lattice changes and 
accordingly a topological mode is formed. 

To include lasing in the SSH model, at each site. n a linear gain.gn and a linear loss 
.γn is introduced. This leads to a dynamics at each lattice site, which can be described 
by solving the equations of motion 

Fig. 2 Phase diagram of the domain-wall-type Su-Schrieffer-Heeger (SSH) lattice with sat-
urable gain. a Sketch of the SSH lattice feature unit cells composed of site. A and site. B. The coupling 
within the unit cell is of strength. t1 and between cells. t2. In the center the lattice changes leading to a 
topological mode. To introduce lasing, gain of the strength.gA acts on each site. A and losses.γAB act 
on all lattice sites. b Representative time-evolution of the total intensity.IA (and.IB )  of  the. A (and 
. B) sublattice for the non-oscillating (top) and oscillating (bottom) topological lasing mode. c Phase 
diagram of the SSH lattice shown in panel (a). The red pentagon and star mark the parameter space 
position of the time-evolutions plotted in panel (b). The oscillating (red star) and non-oscillating 
(red pentagon) topological modes displayed are chosen at (.γAB , gA − γAB) = (0.16, 0.44) and 
.(0.48, 0.06), respectively
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.i
dap

dt
= i

gA

1 + |ap|2 − γA ap + t1,2bp + t2,1bp−1, (1) 

.i
dbp

dt
= i

gB
1 + |bp|2 − γB bp + t1,2ap + t2,1ap+1, (2) 

where .ap and .bp are respectively the amplitudes of the .A and .B sites on the .p-th 
unit cell, .gσ and .γσ are the linear gain and linear loss at the site .σ = A, B, and 
the couplings .t1,2 (and .t2,1) are either . t1 or . t2 (and . t2 or . t1) depending on the lattice 
sites [see Fig. 2a]. If the dynamics is coherent, lasing occurs. We quantify this by 
considering the dynamics of the amplitude .IA of the sum of all lattice sites .A (and 
.IB respectively). 

In our calculations, we set the gain just to occur at the . A sites with .gA, while the 
gain at all . B sites is zero.gB = 0. The losses are assumed to be the same for all sites 
with.γA = γB = γAB ,  as  in  Refs. [4, 13]. We take a lattice consisting of.Ns = 21 sites. 
Depending on the parameters, we can find two different behaviours/modes as shown 
in Fig. 2b: In the non-oscillating mode (top) the amplitudes .IA,B stay constant for 
all times and no dynamics occurs. In the oscillating mode (bottom), the amplitudes 
.IA,B oscillate in a steady state. 

The parameters to distinguish between the modes are given in the phase diagram 
shown in Fig. 2c with the examples in Fig. 2b marked by red symbols. For one-
dimensional cases like the SSH model with gain/loss, the equations of motion can 
be solved and the phase diagram can be calculated exactly. However, as soon as we 
consider higher dimensions obtaining the phase diagram is not as simple and new 
methods have to be sought. 

In the following, we will thus explore whether ML learning techniques are helpful 
to draw the phase diagram of the PTI laser. For this, we need to classify the dynamical 
behaviour of the lasing modes. The solutions presented in Fig. 2c, from Ref. [4], will 
act as a benchmark for the ML results, by showing the shaded areas in our results. 

3 Dynamical Behavior Identified by Representation 
Classification 

Given a set of samples with unknown dynamical behaviors, we aim to identify their 
dynamical behaviors using representation classification. The fundamental idea of the 
representation classification method consists of identifying the samples based on a 
constructed library . L. The manual construction of the library constitutes the super-
vised learning part of the representation classification method where the dynamical 
behaviors of interest are utilized to construct the library for subsequent identifica-
tion of their dynamics. Figure 3 shows the outcomes of this classification method. 
While it fails to correctly reproduce the phase diagram in the literature [4], leverag-
ing the supervised learning part in an adaptive construction of the library gives more 
reasonable results [22], as we will see later in this chapter.
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Fig. 3 Outcome of the representation classification. Phase diagram obtained with representa-
tion classification (a) from a fixed library composed two regimes (one oscillating and one non-
oscillating), b from a top-down adaptive library, c from a bottom-up adaptive library. The purple, 
green and yellow dots correspond respectively to the identified oscillating, non-oscillating and tran-
sient regimes. The black dots represent the regimes used for the construction of the library. The fixed 
library is composed of the black dots located at (.γAB , gA − γAB) = (0.48, 0.06) and.(0.16, 0.44), 
.γAB and.gA are, respectively, the linear loss and gain on the A sites. The white and grey areas are 
overlays of the referenced phase diagram obtained in Fig. 2 

The process of constructing the library .L in the representation classification 
method relies on the dynamical behaviors we want to identify. If we assume that 
the dynamical behavior of the topological laser evolves on a low .D-dimensional 
attractor, meaning that the system will behave the same over time once the transient 
is passed, then the underlying behaviors of the system can be accurately approxi-
mated by a reduced-order model. In particular, this means that the dynamics of the 
system can be described by a low.D-dimensional vector space, where the basis vec-
tors. = {φi }i=1,...,D are used to approximate the system’s spatio-temporal dynamics 
.x(t) (or the measured state at time . t) close to the attractor as: 

.x(t) ≈ xD (t) :=
D

i=1

φiβi (t) = t) (3) 

where.βi are the weighted coefficients in the above linear combination of basis states 
. φi . The library will therefore be composed of the bases representing each nonlinear 
regime of interest in order to identify the dynamical regimes of each samples, namely 
to classify the samples into different phases. Specifically, the library .L is a set of 
bases each of them spanning the appropriate desired dynamical behaviors: 

.L = { 1 J } = {φ j,i } j=1,...,J , i=1,...,D, (4)
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where. J is the number of regimes,. j are the bases of each of the dynamical regime. j , 
and.φ j,i are the corresponding basis states. Therefore, the spatio-temporal dynamics 
.x(t) can now be approximated as: 

.x(t) ≈ xJD (t) :=
J

j=1

D

i=1

φ j,iβ j,i (t) =
J

j=1

jβ j (t) (5) 

where .β j,i are coefficients corresponding to the contributions of the dynamical 
regimes in the library. 

The dynamical regime of each sample is identified by finding the basis with the 
highest contribution to the approximated reconstruction dynamics [Eq. (5)]. More 
precisely, the classification strategy consist of finding the vector space within each 
dynamics in the library that has the highest projection measurement at a particular 
time . ti (or time window.[ti : ti+Nw

]): 

. j∗ = arg max
j=1,...,J

Pj x(ti : ti+Nw
) 2, (6) 

where .x(ti : ti+Nw
) is the notation for the state measured within the time window 

.[ti , ti+Nw
]with.Nw the time step window size, namely the vector.[x(ti ), . . . , x(ti+Nw

)], 
and .Pj is the projection operator onto the bases of the regime . j in the library . L: 

.Pj = j
+
j (7) 

with .
+
j being the pseudo-inverse of . j .  In  Eq  . (6), . 2 is the .

2-norm of a vector 

defined as . v 2 := i |vi |2, and .argmax is the function that returns the index 
corresponding to the maximum value. 

3.1 Decomposition Method 

The basis vectors . j approximating the dynamical regime . j can be found via dif-
ferent decomposition methods. Depending on the decomposition methods, the clas-
sification will yield different results as it focuses on different features (see Fig. 4). In 
this section, three methods will be covered with an highlight on the features trans-
lated into the bases: The proper orthogonal decomposition (POD), the dynamical 
mode decomposition (DMD), and the augmented dynamical mode decomposition 
(aDMD). 

Common to all the decomposition methods is the use of the data matrix .X built 
from the dynamical data at hand. The data matrix is a .(Ns × Nt )-matrix that gathers 
the .Nt data snapshots .x(ti ) into columns: 

.X = (t1), . . . , x(tNt ) . (8)
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Here, .Ns is the number of sites in the system, namely .Ns = 21. In the remaining of 
the chapter, the vectors .x(ti ) are chosen to be the complex-valued amplitudes of the 
modes at the A and B sites. Exploring alternative “observables”, such as the absolute 
values or the total intensities per sublattice, is reserved for a future investigation and 
is beyond the scope of this chapter. 

3.1.1 Proper Orthogonal Decomposition 

The proper orthogonal decomposition (POD) [23] method is a common decomposi-
tion method based on the singular value decomposition (SVD) of the data matrix. 

The data matrix is first decomposed via SVD: 

.X = U V † (9) 

where.U and.V † are.(Ns × N ) and.(N × Nt ) unitary matrices, respectively, and. is 
a diagonal.(N × N )-matrix.diag(σ1, . . . , σN ), with.N = min(Ns, Nt ). The diagonal 
entries of. are the so-called singular values, and are ordered in ascending order. σ1 >

σ2 > . . . > σN ≥ 0. Because the singular values can be obtained from the eigenvalue 
of .XXT , they can be interpreted as the variance of the data matrix. The columns of 
. U , called the singular vectors, are thus ordered according to the variance .σi they 
capture in the data matrix. 

Intuitively, the POD method can be seen as performing a space-time separation 
of the data matrix as the SVD of .X can explicitly be written as: 

.Xim =
N

n=1

UinσnV
†
nm, (10) 

where the columns of .U contain the spatial information, while the rows of .V † have 
the temporal information at each spatial grid point. 

The POD method consists of choosing the singular vectors, also called the POD 
modes, as being the basis . j used for approximating the spatio-temporal dynamics. 
Yet, given the data matrix is typically large, the resulting size of the POD basis 
is correspondingly large as well, making the computation of the projector in the 
classification [Eq. (7)] impractical. To reduce the number of basis vectors used to 
approximate the dynamics, the POD basis.U is truncated according to a cut-off value 
. r while retaining the main information of the data matrix. More precisely, this is 
realized by keeping only the. r highest terms in the decomposition [Eq. (10)], namely 
by keeping the POD modes with the. r highest variance they capture in the data matrix 
. X : 

.Xim

r

n=1

UinσnV
†
nm . (11)
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In a matrix form, the truncation reads: 

.X Ur r V
†
r , (12) 

where.Ur ,. r and.V †
r are the truncated matrix of. U ,. and.V †, respectively. Although 

the cut-off value. r can be chosen based on different criteria [24],. r implicitly depends 
on the dimension of the vector space needed to approximate the attractor and is 
typically chosen so that the POD modes retain a certain amount of the variance . σX

in the data, namely: 

.

r

n=1

σi > σX . (13) 

The vectors used to build the basis . j are therefore the reduced POD basis, namely 
.

(POD)
j = Ur . 
However, the POD modes represent a static picture of dynamics and do not explic-

itly model the temporal dynamics of the time series. This method will therefore most 
likely fail to identify the correct dynamical regime in the classification step [see dis-
cussion in Sect. 3.2]. Nonetheless, for didactic purposes, it is important to introduce 
this concept. 

3.1.2 Dynamical Mode Decomposition 

The dynamical mode decomposition (DMD) [23, 25, 26] method is an alternative to 
the POD method for learning the dynamics of nonlinear systems. 

Indeed, the DMD method can extract the spatio-temporal patterns of the data 
matrix by considering the linear mapping, namely the matrix. A, between the dynam-
ics starting at time .t1 and at time . t2. Explicitly, the linear mapping .A is defined 
by 

.X2 = AX1, (14) 

where .X1 is the data matrix starting at some time steps . t1, and .X2 is the data matrix 
starting at the next time step . t2, namely: 

.X1 = x(t1), x(t2), . . . , x(tNt−1) (15) 

and 
.X2 = x(t2), x(t3), . . . , x(tNt ) . (16) 

The definition of the matrix .A [Eq. (14)] is similar to the equation for a linear sta-
bility analysis of discrete maps. Solving the eigenvalue problem for the matrix . A
will therefore give us information about both the spatial profiles and the temporal 
evolutions with its eigenvectors and eigenvalues, respectively. In particular, if the 
eigenvalue problem is written as:
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.A = (17) 

where the columns of. are called the DMD modes.ψi and the corresponding DMD 
eigenvalues .λi are the diagonal entry of . , then the DMD modes .ψi give us the 
spatial profile of the eigenmodes while their corresponding eigenvalues .λi have 
their temporal information. Because the DMD eigenvalues .λi are eigenvalues of an 
evolution operator, they are of the form.λi = e i t , with. t = t2 − t1. The temporal 
evolution quantities of interest are thus given by . i : 

. i = ln (λi )

t
= iωi + μi (18) 

where.ωi is the oscillation frequency of the DMD modes.ψi , and.μi is its growth (or 
decay) rate if .μi > 0 (or .μi < 0). 

At its core, the DMD method decomposes the data into a set of coupled spatio-
temporal modes. Conceptually, the DMD combines the POD method in the spatial 
domain with the discrete Fourier transform in the time domain for the oscillating 
behavior. Notably, DMD goes even beyond these comparisons by additionally pro-
viding an estimation of the growth (or decay) rate in time via .μi > 0 (or .μi < 0). 

In the DMD method, the basis vectors used for the construction of the library . L
are the DMD modes . . However, the eigendecomposition is not feasible by direct 
computation as the size of the matrix .A is typically large, and all the DMD modes 
are not needed for similar reasons to the POD method. Instead, the DMD modes 
and eigenvalues can be obtained via the truncated data matrices of .X1 and .X2.  The  
algorithm starts with the truncated SVD o f.X1 ≈ Ur rV †

r in which Eq. (14) becomes: 

.X2 ≈ AUr r V
†
r . (19) 

The matrix . A is then projected onto the truncated POD subspace: 

.Ar := U †
r AUr ≈ U †

r X2Vr
−1
r . (20) 

The eigenvalue problem for .Ar is solved with: 

.ArW = W (21) 

from which the truncated DMD modes can now be written as [27]: 

. r = X2Vr
−1
r W, (22) 

and still approximately satisfy the relation in Eq. (17). The basis vectors used in the 
library construction are therefore .

(DMD)
j = r . 

Nevertheless, it is the DMD eigenvalues .λi that carry the temporal information. 
Akin to the POD method, the DMD basis captures only the spatial information, lead-
ing outcomes comparable to those of the POD method [see discussion in Sect. 3.2].
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3.1.3 Time-Augmented Dynamical Mode Decomposition 

The time-augmented DMD (aDMD) consists in incorporating the temporal informa-
tion into the DMD basis [28]. 

Indeed, although the DMD captures the temporal evolution of the dynamics, 
the temporal information is not directly incorporated in the DMD modes used for 
constructing the basis of the attractor’s vector space. Instead, the set of vectors 
.{(ψr,i ), (λiψr,i ), (λ

2
i ψr,i ), . . . , (λ

Nw

i ψr,i )} gives an idea of the evolution of the DMD 
mode.ψr,i ,  a  s.λi is similar to a time-evolution operator, i.e., multiplying by.λi is equiv-
alent to shifting by one time step. The temporal information is therefore included in 
the DMD by constructing a time-augmented basis [28]: 

.ψ
(Nw)
r,i =

⎡
⎢⎢⎢⎣

ψr,i

λiψr,i
...

λ
Nw

i ψr,i

⎤
⎥⎥⎥⎦ . (23) 

Because the time-augmented vectors Eq. (23) exhibit the time-evolution of the DMD 
vectors, these vectors constitute the basis used for constructing the library. L, namely 
.

(aDMD)
j = (Nw)

r,i , with .
(Nw)
r,i = [ψ(Nw)

r,1 , ψ
(Nw)
r,2 , . . .]. 

The identification is now slightly different than for the POD and DMD, as the 
projection measurement is realized over a time window .[ti , ti + Nw],  as  shown  in  
Eq. (6). In consequence, the outcome of the aDMD method gives now better results, 
even though this is far from being accurate as we will see in the next section. 

3.2 Classification 

After acquiring the basis composing the library . L, we can now proceed with clas-
sifying the samples using the basis derived from the representative dynamics. The 
representative dynamics are here randomly chosen within each known dynamical 
phases, namely the oscillating and non-oscillating modes [see Fig. 2], and they are 
depicted by the black dots in Fig. 4. In order to avoid the transient regime and to get 
closer to the attractor’s dynamics, the bases are constructed from the time series after 
starting at the .1800-th time step. 

The phase diagram results from the identification of the sample with respect to the 
representative dynamics as shown in Eq. (6). In the phase diagrams, we color-coded 
the different identified regimes, where the purple (and pink) dots always mark the 
oscillating regime, and the green dots the non-oscillating regime. As we will see 
later, the yellow dots correspond to the transient regime and the orange dots to the 
transition regime. The white and grey areas are overlays of the referenced phase 
diagram obtained in Fig. 2.



Machine Learning for Identifying Dynamical Phases … 179

Fig. 4 Representation classification using different decomposition methods. Phase diagrams 
derived using a fixed library composed of two regimes (one in the oscillating and one in the non-
oscillating phase), and with the bases in the library generated using the a POD, b DMD, c aDMD 
with.Nw = 25. d Same as in panel (c) but with four regimes in the fixed library (one in the oscillating 
and three in the non-oscillating phase) The purple and green dots correspond respectively to the 
identified oscillating and non-oscillating regimes. The black dots represent the regimes used for 
the construction of the library. These black dots are located at (.γAB , gA − γAB) = (0.16, 0.44) and 
.(0.48, 0.06) for panel (a), (b) and (c); and additionally at .(0.31, 0.11) and .(0.17, 0.24) for panel 
(d). The white and grey areas are overlays of the referenced phase diagram obtained in Fig. 2 

Figure 4 shows the phase diagrams obtained from the different decomposition 
methods described in the previous section. In Fig. 4a, b and c, the purple (green) dots 
are the identified regime. j∗ [see Eq. (6)] from the oscillating (non-oscillating) regime. 
On one hand, Fig. 4a, b display the phase diagrams obtained from the POD and DMD 
method, respectively. As anticipated, the POD method fails to accurately reproduce 
the reference phase diagram [see Fig. 2] as the bases do not contain any temporal 
information: We observe that many time series are not correctly identified [Fig. 4a]. 
Similarly, the DMD method does not correctly identify the dynamics [Fig. 4b] as the 
bases from the DMD are similar to the POD bases. On the other hand, Fig. 4c illus-
trates that the aDMD (with .Nw = 25) has better classification results: Less samples
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are being misidentified as the aDMD basis contains the temporal information of the 
dynamics. 

While one might consider utilizing a different set of representative dynamics in 
the parameter space to construct the library . L for potential improved results, such 
an approach would likely results in only marginal improvement of the classification. 
Instead, Fig. 4d demonstrates that redundantly increasing the number of representa-
tive dynamics in the library . L–in this case, four in total–yields much better results 
in correctly identifying the oscillating to the non-oscillating regime. In this context, 
the blue and red dots are the identified samples from the two new added represen-
tative dynamics: The identified oscillating and non-oscillating regimes now have a 
better fitting with the referenced phase diagram [Fig. 2], despite belonging to distinct 
regimes, namely having different index. j∗. Therefore being able to identify the three 
colored for the oscillating regimes (green, blue, red) as corresponding to a single 
oscillating regime would give a more accurate diagram. This is the rationale of the 
methods, termed top-down and bottom-up adaptive classification, developed in the 
next sections: Adding redundant representative dynamics in the library . L and being 
able to merge them corresponding to the oscillating or non-oscillating regime could 
potentially bring us closer to the desired phase diagram. The implications of these 
adaptive classification methods are two-fold: Firstly, prior knowledge of the system 
would not be needed, only measurement of its dynamics; secondly, the phase diagram 
would be constructed automatically from the samples. 

4 Top-Down Adaptive Representation Classification 

The top-down adaptive representation classification consist of adaptively refining 
the library initially composed of a redundant set of representative dynamics. This 
eliminates the manual process of selecting representative dynamics known from prior 
knowledge of the complex system considered. In practice, this top-down approach 
starts with many samples for the construction of the library, and then reduce the library 
size by merging some of them. From the previous section, this would mean that we 
merge the three phases in the non-oscillating region in Fig. 4d, and consider them 
as a single regime. Based on some measures in the decision process, this automated 
construction of the library thus removes the manual construction of the regimes. 

The regimes are merged when considered to be equivalent, which is defined based 
on the dissimilarity between the subspace of different regimes. More precisely, the 
equivalence relation relied on the subspace alignment .γi j that measures the dissimi-
larity between two subspaces . i and . j by projecting one subspace onto the other: 

.γi j := Pi Pj
2
F

Pi F Pj F
, (24)
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with. F the Frobenius norm of a matrix,. M F := i j |Mi j |2, and the projection 
operator defined as .Pj = j

+
j [Eq. (7)]. Therefore, the regimes . i and . j are said 

to be equivalent, denoted by .i ∼ j , if the fraction of information retained after the 
projection onto each other, .γi j ∈ [0, 1], is high enough: 

.γi j > γth, (25) 

where .γth ∈ [0, 1] is a hyper-parameter deciding the threshold value for merging 
different regimes. Essentially, the relation Eq. (25) is numerically computed with a 
crucial emphasis on preserving the transitivity property of the equivalence relation, 
meaning that if .i ∼ j and . j ∼ k then .i ∼ k. The relation Eq. (25) is then indeed an 
equivalence relation because the reflexive (.i ∼ i) and symmetric (.i ∼ j ⇒ j ∼ i) 
property of the relation is automatically satisfied from the definition of.γi j [Eq. (24)]. 
Figure 5a illustrates the algorithm of the top-down approach. With an initial library 
.L composed of a large number of representative regimes, the subspace alignment 
between all the bases is calculated, which can be viewed as being the .(i, j) entries 
of a symmetric matrix. γ [left of panel of Fig. 5a]. Then, the bases having a subspace 
alignment higher than .γth are grouped together, while ensuring the transitivity rela-
tion is satisfied. Visually, this grouping procedure resemble a block diagonalization 
procedure of the subspace alignment matrix [middle panel of Fig. 5a]. Finally, for 
each of the blocks, one basis is selected and considered as the representative of the 
dynamical regime, which are plotted Fig. 5c. 

In its core, the top-down representation classification entails in identifying the time 
series based on a comprehensive library of bases. It is only after this classification 
that equivalent identified regimes are merge using alignment subspace .γi j and the 
equivalence relation specified in Eq. (25). Figure 5 shows the phase diagram resulting 
from the top-down algorithm with an initial library composed of .J = 60 randomly 
chosen regimes. With this top-down approach, the resulted phase diagram is closed 
to the reference one [see Fig. 2] as we can see that the oscillating (purple dots) 
and non-oscillating (green dots) regimes can be distinguished. We can also see that a 
third regime is being distinguished from the oscillating and non-oscillating dynamics 
present in the literature. This is the transient regime (yellow dots) situated close to the 
.γAB = 0 or.gA − γAB = 0 axis. Because we start looking at the dynamics after a time 
. t0, the transient regimes is an indication that a longer starting time and therefore longer 
simulation might be needed to consider them being in either one of the oscillating or 
non-oscillating regimes. In general, varying the parameter values also changes the 
relaxation times of the system, and the transient regime may then be the dominant 
regime. If that is the case, this would mean that the simulation has not run long 
enough to observe the main dynamical regimes. 

The threshold parameter .γth controlling the merging process is a critical quantity 
in the algorithm, as a low threshold .γth will easily merge regimes while a high . γth
will still yield a relatively large size of the library as demonstrated in Fig. 5d. As a 
consequence, the two extreme cases will either consider all the dynamical regimes 
as being equivalent and identify all of them as being the same, or will not be able
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Fig. 5 Principle of the top-down adaptive representation classification. a Schematic of the top-
down library generation: Starting with an initial library composed of.J = 60 regimes, the subspace 
alignment matrix.γi j is plotted (left panel), grouped into equivalent regimes with.γth = 0.75 (middle 
panel), then the subspace alignment matrix from the reduced library is plotted after the equivalent 
regimes are merged (right panel). b Representative time-evolution of the total intensity.IA (and.IB ) 
of the A (and B) sublattice for the non-oscillating (top), oscillating (middle) topological lasing mode, 
and for the transient mode (bottom). c Phase diagram obtained using the top-down representation 
classification approach with an initial library composed of randomly chosen.J = 60 regimes, with 
the hyper-parameter threshold.γth = 0.75. d Library size against the hyper-parameter threshold.γth, 
with an initial library composed of randomly chosen .J = 60 regimes. e Phase diagrams obtained 
using the top-down classification approach with.γth = 0.55 (left) and.γth = 0.95 (right). The purple, 
green, yellow and orange dots correspond respectively to the identified oscillating, non-oscillating, 
transient and transition regimes. The white and grey areas are overlays of the referenced phase 
diagram obtained in Fig. 2
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to see similarities between the time series, respectively. Therefore, the threshold 
is arbitrarily chosen based on the refinement of the desired library [see Fig. 5d, 
e]. Figure 5e shows examples of the phase diagram obtained with two different . γth
values. With .γth = 0.55, the threshold value is too low as all the oscillating and 
non-oscillating regimes are being considered as equivalent, despite being able to 
distinguish the transient regimes with the others. However, using the same initial 
library but with a finer threshold value.γth = 0.95, the top-down classification method 
is able to resolve six regimes grouped into four main regimes: The oscillating and 
non-oscillating known from the reference phase diagram [see Fig. 2], along with the 
regimes corresponding to the transient regime and to the transition between the two 
topological phases. Out of the six regimes, two are grouped into the oscillating phases, 
and two are grouped into the transient phases. The transition regime is different 
than the transient regimes, as the dynamics has already been reached the stationary 
regimes, and corresponds to the parameter values along the boundary between the 
two topological phases [see grey and white shaded areas in Fig. 5e]: therefore the 
method cannot correctly classify the regimes in this region as either oscillatory or 
non-oscillatory. Notably, this finer threshold provides distinct sets of modes in the 
oscillating parameter space region [see the purple and pink dots in Fig. 5e]. Those 
distinct oscillating modes were not present in the reference diagram [Fig. 2], and may 
have been overlooked as only the dynamics of the total intensity were considered in 
the literature [4]. 

Despite the success of the classification using the top-down approach, we can 
still see misclassification of the samples in the low .γAB and low .gA − γAB region 
(bottom-left region of the present phase diagram [Fig. 5b]), where some time series 
are interpreted as oscillating instead of non-oscillating regime. This is demonstrative 
of the limitation of this top-down automatic method where the initially constructed 
library may not encompass certain paths connecting similar bases. For example, the 
regimes. i and. kmay not be similar enough to be considered as equivalent with respect 
to .γth, but an “intermediate” regime . j missing in the initial library and equivalent 
to both regimes . i and . k, i.e., .i ∼ j and . j ∼ k, might make the regimes . i and . k
equivalent thanks to the transitivity relation. This issue is dubbed here as the library 
having missing path, and the natural strategy to overcome this problem is to increase 
the initial library size to fill all the missing paths, as we will see in the next section. 

5 Bottom-Up Adaptive Representation Classification 

As an alternative approach to the top-down method, we propose the bottom-up clas-
sification which adaptively adds samples to the library on the fly. In practice, this 
bottom-up approach starts with few samples in the library and add bases to the library 
whenever the library is consider to be not good enough. The library is then reduced 
using the top-down approach to merge equivalent regimes. The key advantage of this 
bottom-up approach is the automatic construction of a library based on its quality. 
Therefore, the method does not rely on a more or less good choice of samples com-



184 S. Wong et al.

posing the library and has the potential to overcome the missing issue present in the 
top-down classification. 

A sample is added to the library whenever the library cannot retrieve the dynamics 
of the given sample using its bases. This construction procedure is assessed via the 
maximal projection of the measurement onto the regimes’ subspace . : 

. := max
j=1,...,J

Pj y(t) − y(t) 2

y(t) 2
, (26) 

with. 2 the.L2-norm of a vector, and.Pj is the projector defined in Eq. (7). In other 
words, the library is said to be good enough if the worst relative reconstruction error, 
. , is low enough: 

. th, (27) 

where . th is the hyper-parameter deciding the threshold quality of the library. 
Figure 6a depicts the bottom-up approach algorithm. The library begins with a single 
sample, and is adaptively constructed based the relative reconstruction error [see left 
of panel Fig. 6a]. Once the library is established [see middle of panel Fig. 6a], the 
top-down approach is employed in order to merge equivalent regimes [see right of 
panel Fig. 6a]. Figure 6c shows the representative of the dynamical regimes after the 
top-down method is employed. 

Fundamentally, the bottom-up representation classification scheme consists in ini-
tially classifying time series based on a given library or incorporating the sample into 
the library if the library is not good enough. Subsequently, the different phases are 
merged into equivalent regimes using the top-down method. Starting with a library 
composed of a single randomly chosen sample, the phase diagram obtained from the 
bottom-up classification is depicted in Fig. 6c. Comparable to the top-down approach 
shown in Fig. 5c, three distinct regimes are identified, corresponding to the oscillat-
ing (purple dots), non-oscillating (green dots) and transient (yellow dots) regimes. 
Notably, the phase diagram obtained from the bottom-up classification demonstrates 
an improved accuracy in identifying the regimes. The misclassifications previously 
observed of the oscillating and non-oscillating regimes, which were attributed to 
missing paths in the library, are now considerably reduced. Only few samples near 
the topological transition boundary are not correctly identified. Similarly to the top-
down approach, the transient regimes indicates the need of a longer simulation time 
to correctly classify them. 

Together with the hyper-parameter .γth, the threshold hyper-parameter . th plays a 
crucial role in the bottom-up approach. Indeed, the decision of whether to add a sam-
ple to the library is a critical step in the algorithm. Setting a low threshold parameter 
will add too many samples, while a high. th will not add samples to the library at all, as 
shown in Fig. 6d. Therefore, the threshold value. th is, again, arbitrarily chosen based 
on the desired quality of the library [Fig. 6d, e]. Figure 6e illustrates two examples 
with different threshold parameter value, given.γth = 0.95.  Usin  g. th = 0.05, namely 
with a library that gives less than.5% of the reconstruction error of the measurement, 
the resulting phase diagram has four main regimes corresponding to the oscillating,
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Fig. 6 Principle of the bottom-up adaptive representation classification. a Schematic of the 
bottom-up library generation: Starting with an initial library composed of a single randomly chosen 
regime (left panel), the library is increased according to the library quality where the subspace 
alignment matrix.γi j of the final library is plotted (middle panel), then the subspace alignment matrix 
from the reduced library via the top-down approach is plotted (right panel). b Representative time-
evolution of the total intensity.IA (and.IB ) of the A (and B) sublattice for the non-oscillating (top), 
oscillating (middle) topological lasing mode, and for the transient mode (bottom). c Phase diagram 
obtained using the bottom-up representation classification approach with an initial library composed 
of single randomly chosen regime, with the hyper-parameters threshold. th = 0.005,.γth = 0.75. d 
Library size against the hyper-parameter threshold . th, with .γth = 0.95 and with an initial library 
composed of a single randomly chosen regime. e Phase diagrams obtained using the bottom-up 
classification approach with .γth = 0.95,  and  wit  h . th = 0.005 (left) and . th = 0.05 (right). The 
purple, green, yellow and orange dots correspond respectively to the identified oscillating, non-
oscillating, transient and transition regimes. The white and grey areas are overlays of the referenced 
phase diagram obtained in Fig. 2
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non-oscillating, transition and transient regimes. However, there are instances of 
misidentification between the two oscillating and non-oscillating phases, likely due 
to missing paths in the obtained library, and suggesting that some samples need to be 
added in the library. With a better library quality, specifically setting. th = 0.005,  the  
missing paths are recovered, leading to a more accurate prediction of the topolog-
ical phases in the resulting phase diagram: Both the oscillating and non-oscillating 
regimes are well positioned in their respective parameter space region. Moreover, a 
better library quality yields a more detailed phase diagram with the transition points 
not being able to be considered as oscillatory or non-oscillatory as this regime corre-
spond to the transition boundary between the two topological phases, although some 
points are within the oscillatory regime. Significantly, the bottom-up representation 
classification distinguishes two oscillating modes [see the purple and pink dots in 
the right panel of Fig. 6e], instead of a single oscillating regime as shown in the 
reference diagram [see Fig. 2]. The identification of the distinct oscillating modes 
highlight the potential novel insights given by the data-driven classification method. 
In the context of this chapter, the classification method takes into account the com-
plex values of the amplitudes of.x(t), rather than solely focusing on the total intensity 
of each sublattice . A and .B as done in Ref. [4, 13]. The use of complex valued here 
therefore enables a more detailed description of the dynamic pattern based on the 
entire lattice, incorporating information such as the relative phase difference of the 
sites or the absolute value of amplitudes. 

6 Summary 

In this chapter, we introduced an unsupervised machine-learning approach to identify 
topological phases of dynamic systems. In principle, this identification process is a 
representation classification, which finds a library that associates a finite number of 
labels for phases to parameters of a dynamic system. As an example, we explained 
how to draw the phase diagrams of the domain-wall-type SSH lattice with saturable 
gain. 

As a mean to characterize the dynamic property, we introduced different decom-
position methods including the POD, the DMD and the aDMD. By comparing the 
representation classification results using a fixed library based on the different meth-
ods, we observed that the aDMD works best for the domain-wall-type SSH lattice 
which has spatial and temporal variations in its field amplitudes. 

In constructing the library, one can employ two schemes: top-down and bottom-
up approaches that merge similar phases in a library or adaptively construct a library 
according to its quality, respectively. It is noteworthy that the libraries are constructed 
automatically and it does not require any detailed knowledge on the system. The 
libraries are optimized to represent all possible phases in a given parameter space 
by considering different measures defined on the libraries’ bases. In the SSH laser 
example, we found the bottom-up adaptive scheme was the best approach to tackle 
the problem of drawing the phase diagram.
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The bottom-up adaptive scheme can avoid pitfalls that can be encountered when 
using reverse engineering, such as missing paths in the equivalence relations, and 
can be used as a strategy to extend the method to more complex systems. While 
maybe not all phases might be identified on the first try, it is capable of clustering 
similar behaviour and gives a first classification of the different modes in the system. 
It should be complemented by a thorough analysis of these modes. Nonetheless, 
because of its different approach to drawing the phase diagram and its capability of 
clustering similar behaviour, reverse engineering holds the potential to find novel 
topological lasing modes, which could have been overlooked in other approaches. 

Additionally, the machine-learning approach can be applied to many other 
dynamic systems composed of nonlinear resonators, for example, an array of quan-
tum emitters and coupled mechanical resonators. 
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