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Abstract

The effectiveness of peritoneal dialysis (PD) relies on dialysate-

induced solute and water transport across the peritoneal membrane, 

facilitated by concentration and type of osmotic agents. Standard PD 

solutions predominantly use glucose as an osmotic agent due to its 

well-known metabolism, effective ultrafiltration during shorter 

dwells, and low cost. However, glucose exposure may damage the 

structure and function of the peritoneal membrane and cause 

systemic metabolic complications, including insulin resistance and 

cardiovascular disease, underscoring the need for glucose-sparing 

strategies with alternative solutions, such as solutions with 

icodextrin and amino acids as osmotic agents, and glucose-based, 

less bioincompatible fluids with physiological pH and reduced 

glucose degradation products. This brief narrative review examines 

the unwanted effects of glucose-based solutions and the clinical 

rationales behind glucose-sparing strategies that may reduce these 

effects and potentially improve clinical outcomes. 
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Key words: Glucose sparing; Peritoneal dialysis; Clinical outcomes; 

Adverse events; PD solutions.

Background

End-stage kidney disease (ESKD) necessitating kidney replacement 

therapies such as kidney transplantation, hemodialysis (HD), or 

peritoneal dialysis (PD) represents a significant global health burden 

[1]. Among these, PD is a well-established, cost-effective modality 

with notable advantages over HD, including greater preservation of 

residual kidney function (RKF), improved quality of life, and lower 

dependency on healthcare infrastructure [2-5]. Unlike HD, which 

requires extracorporeal blood circulation through vascular access, 

PD employs the peritoneal membrane (PM) for solute and fluid 

exchange, and like home HD, PD allows patients to undergo dialysis 

at home, which leads to greater independence and flexibility 

[6,7].The effectiveness of PD relies on dialysate-induced solute and 

water transport across the peritoneal membrane, facilitated by 

concentration and type of osmotic agents [8-10]. Standard PD 
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solutions predominantly use glucose as an osmotic agent due to its 

high efficiency and low cost [4,7-12]. However, prolonged exposure 

to high glucose solutions poses significant risks, including the 

formation of glucose degradation products (GDP), structural and 

functional PM damage, and systemic metabolic complications, 

including insulin resistance and cardiovascular disease [12-18]. The 

risk of the rare but catastrophic complication of PD in the form of 

encapsulating peritoneal sclerosis has also been associated with 

higher glucose exposure and GDPs [19]. These adverse effects 

underscore the need for innovative glucose-sparing strategies.

The bioincompatibility of conventional glucose-based dialysis fluid 

has driven the development of alternative solutions, such as glucose 

free fluids with icodextrin and amino acids as osmotic agents, and 

glucose-based biocompatible fluids with neutral or physiological pH 

and reduced GDPs. Icodextrin, a glucose polymer derived from corn 

starch, offers iso-osmolar properties without glucose-induced 

toxicity. Studies highlight its ability to mitigate risks of ultrafiltration 

(UF) failure, cardiovascular events, and RKF decline, particularly in 

patients with glucose intolerance [7,20-23].  Other advantages 

include increased flexibility in schedules due to the long dwell times, 

which is of importance for the two increasingly common modalities, 

assisted PD and incremental PD.  However, although well-tolerated 

by most patients, an increased incidence of skin rashes has been 

reported with icodextrin. 
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Current practice limits icodextrin to a single daily fluid exchange, 

and most patients thus remain dependent on glucose-based solutions 

for many daily exchanges of dialysis fluid. However, while the 

manufacturer’s recommendation is for one icodextrin exchange per 

day, off-label use of two icodextrin exchanges per day is practiced 

and reported to be viable [24]. 

Another approach to limit PM damage due to glucose toxicity is the 

use of multi-compartment PD solutions. These enable the separation 

of glucose and buffer components during sterilization, reducing GDP 

formation and minimizing PM damage [7,20-23,25-27].

Despite these advancements, long-term PD and the cumulative PM 

exposure to hyperosmolar glucose-based solutions often lead to 

structural changes, including peritoneal fibrosis and functional 

changes such as increasing peritoneal solute transfer rate (PSTR) 

and insufficient UF capacity [28].

Additionally, complications such as loss of residual kidney function, 

peritonitis and patient fatigue contribute to the eventual transition 

from PD to HD in many cases [3,7-11,18,20-23,25-29]. While glucose-

sparing PD solutions, and other glucose-sparing strategies such as 

pharmacological therapies are promising in reducing such 

complications, their cost and uncertain impact on long-term survival 

necessitate further investigation [7,10,12,20,21].

This narrative review examines the clinical rationale behind glucose-

sparing strategies in PD. By analyzing improvements in dialysate 

formulations and their implications for PM preservation as well as 
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the  reduction of metabolic and cardiovascular risk factors, we aim to 

highlight the potential of these and other glucose-sparing 

innovations to enhance patient outcomes and address persistent 

challenges in PD therapy. 

Methods

Search Strategy and Eligibility Criteria

A comprehensive non-systematic review of the literature was 

conducted in August 2025, covering all relevant publications indexed 

in PubMed, MEDLINE, Central, and Google Scholar up to that date. 

The search targeted studies published in English, French, 

Portuguese, Italian, or Spanish, utilizing MeSH terms such as 

[“peritoneal dialysis” AND “glucose-based dialysate”], [“peritoneal 

dialysis” AND “Glucose sparing”], and [“peritoneal dialysis AND 

“glucose-based dialysate” AND “Complications”].

Additionally, a free-text search of titles and abstracts included terms 

such as kidney failure, peritoneal dialysis, hemodialysis, renal 

replacement therapy, and other relevant items in different 

combinations helped to identify relevant literature. Reference lists of 

identified studies were hand-searched, and domain experts 

recommended key articles. Eligible publications included systematic 

reviews, meta-analyses, randomized controlled trials, observational 

studies (cohort, cross-sectional, case-control), and case series. This 

approach ensured the inclusion of diverse study designs to capture a 

broad perspective on the impact of glucose-based and glucose-

sparing dialysates in peritoneal dialysis. 
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During the process of manuscript writing and discussions between 

experts, additional relevant articles were identified and added as 

references.

Glucose-Based Dialysate: Implications for Glycemic Control 

and Metabolic Status

Glucose is the predominant osmotic agent in PD solutions in clinical 

practice, containing, in most cases, depending on the manufacturer, 

either dextrose monohydrate concentrations of 1.5%, 2.5%, and 

4.25%, corresponding to anhydrous glucose levels of 1,360, 2,270, 

and 3,860 mg/dL, i.e., 1.36%, 2.27%, and 3.86%, respectively, or 

anhydrous glucose concentrations 1.5%, 2.3% or 4.25% (Table 1).  

These solutions facilitate UF by generating an osmotic gradient 

across the peritoneal membrane. Solute clearance on PD depends on 

diffusion and convection. Convective clearance (dependent on net 

UF) makes a strong contribution to overall clearance, especially of 

large molecules. Convection and net UF are centrally important to 

salt and water homeostasis in PD patients without well-preserved 

urine output. 

However, glucose absorption into systemic circulation is inevitable, 

driven by the concentration gradient. Absorption rates vary with 

dwell time, solution volume, and membrane transport properties 

[17,30-34].

Glucose Absorption and Caloric Load 

Glucose's small molecular size facilitates its rapid systemic 

absorption, diminishing the osmotic gradient and contributing to a 
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net daily glucose uptake that may vary from less than 50 g to more 

than 200 g [32] depending on glucose concentration in blood and 

dialysate, volume, number and frequency of exchanges of dialysis 

fluid, and PM characteristics [35-38]. Approximately 75% of the 

glucose instilled is absorbed over a 6-hour dwell, with 50% occurring 

within the first 90 minutes [32]. Glucose absorption for a 6-hour 

dwell using 2 liters of dialysate ranges from 15–22 g with a 1.5% 

solution to 46–60 g with a 4.25% solution [31]. Caloric intake from 

glucose absorption corresponds to 4–13 kcal/kg/day [39,40]. 

Predictive tools, including kinetic modeling programs, offer 

personalized estimates of glucose absorption and caloric intake from 

PD [41,42]. 

The substantial peritoneal energy intake contributes to metabolic 

disturbances including gains in body weight that sometimes impede 

the listing and eligibility for kidney transplantation [43,44]. 

Hyperglycemia and Carbohydrate Burden in PD 

Unlike oral glucose intake, PD-associated glucose absorption 

prolongs hyperglycemia [45]. In a study of non-diabetic Chinese 

patients, 8.3% had fasting glucose levels exceeding 200 mg/dL after 

one month of PD, and 19.6% experienced elevated fasting glucose, 

demonstrating the glycemic effects of sustained glucose exposure 

[46]. Furthermore, patients undergoing PD with glucose-based 

solutions have an increased risk of developing new-onset diabetes 

[18]. An important underpinning mechanism may be that glucose-

based PD solutions are thought to exacerbate insulin resistance, due 
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to the continuous absorption of glucose from the peritoneal cavity 

[47]. Continuous glucose monitoring in diabetic CAPD patients 

revealed worsened glycemic control with standard glucose-based 

dialysates compared to glucose-sparing alternatives [48] and a loss of 

physiological nighttime glucose dipping in patients treated with 

automated PD, APD [49].

Clinical Implications and Long-Term Impact 

Although glucose-induced hyperglycemia is well recognized, its long-

term impact on patients undergoing PD remains debated. Initiating 

PD may initially improve insulin sensitivity by alleviating uremia, 

partially mitigating the glucose burden [50]. Epidemiological data 

and meta-analyses suggest PD does not significantly increase the 

risk of new-onset hyperglycemia compared to hemodialysis [51,52]. 

However, small-scale physiological studies consistently demonstrate 

elevated plasma glucose with glucose-based PD solutions in both 

diabetic and non-diabetic populations [48,53-56]. 

The Global Fluid Study highlighted the positive association between 

glucose exposure and elevated random glucose levels, reflecting the 

metabolic demands of PD [56].

Given the complex metabolic milieu in dialysis patients, 

characterized by insulin resistance and multiple hyperglycemia risk 

factors, the precise impact of peritoneal glucose absorption on the 

deterioration of long-term glycemic control remains uncertain [57]. 

These findings underscore the urgent need for glucose-sparing 
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strategies and alternative osmotic agents to reduce carbohydrate 

overload and mitigate glucose-related metabolic complications.

Glucose exposure, oxidative stress, and cardiovascular risk

Chronic hyperglycemia initiates a cascade of metabolic disruptions 

that severely compromise vascular function [58-62]. Prolonged 

elevation of glucose concentrations promotes the formation of 

advanced glycation end products (AGEs), which bind to their 

receptor, RAGE, on endothelial cells. This receptor-ligand interaction 

activates pro-inflammatory signaling pathways, thereby inducing 

oxidative stress (OS) and promoting vascular remodeling [58-62]. 

These molecular events significantly impair endothelial function, 

laying the groundwork for endothelial dysfunction, a pivotal 

precursor to atherosclerosis and other cardiovascular complications 

[62,63].

Hyperglycemia further amplifies OS by increasing reactive oxygen 

species (ROS) production while concurrently diminishing antioxidant 

defenses. The resultant ROS accumulation drives lipid peroxidation, 

protein oxidation, and deoxyribonucleic acid (DNA) damage, all of 

which compromise endothelial integrity [64]. The oxidative 

deterioration of vascular components not only impairs vascular 

reactivity but also escalates inflammation, hastening the progression 

of atherosclerosis [61,62].

Lipid peroxidation, a key consequence of ROS activity, disrupts 

membrane stability, while protein fragmentation and DNA oxidation 

impair cellular functions [65]. Specifically, hydroxyl radicals initiate 
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lipid oxidation by abstracting hydrogen ions, generating lipid 

radicals that perpetuate further oxidative chain reactions. This 

cascade yields malondialdehyde (MDA), a critical mediator of 

atherogenesis [66]. The cumulative oxidative damage induces 

endothelial dysfunction, systemic inflammation, and atherosclerosis, 

thus intensifying the link between cardiovascular and renal disease 

[67]. This interconnected cycle involving OS, inflammation, and 

endothelial dysfunction substantially contributes to the elevated 

cardiovascular morbidity and mortality in patients with ESKD [67].

In chronic dialysis patients, OS is exacerbated by nicotinamide 

adenine dinucleotide phosphate (NADPH) oxidase activation and 

RhoA/Rho kinase (ROCK) signaling, pathways implicated in 

cardiovascular pathology. Inhibiting ROCK signaling is associated 

with cardioprotective effects [67,68].

In the context of PD, OS primarily arises from AGEs and glucose-

derived pro-oxidants [69]. GDPs, generated during heat sterilization 

of glucose-based dialysates, accumulate and further promote AGE 

formation [70]. 

Recent molecular biology studies have confirmed exacerbated OS in 

PD patients, as demonstrated by increased OS markers. Elevated 

levels of p22phox, MYPT1 activity (a Rho kinase signaling marker), 

and ferritin were observed, with further increases recorded after six 

months of PD therapy [71].

The oxidative burden in PD is further amplified by the properties of 

conventional PD solutions with high glucose concentration, elevated 
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osmolarity, and acidic pH—factors that render them non-

physiological and harmful to cellular homeostasis [70,71].  

Additionally, glucose in PD solutions influences lipid metabolism, 

potentially elevating triglyceride (TG) and total cholesterol (TC) 

levels [72,73]. The association between an atherogenic lipid profile 

induced by high-glucose dialysates and increased cardiovascular 

disease (CVD) risk is well-documented [74]. Wen et al. reported a 

correlation between higher peritoneal glucose concentrations and 

increased all-cause and CVD mortality [75]. However, findings by 

Law et al. indicated no significant relationship between glucose 

absorption and serum lipid profiles after adjusting for confounders 

[76].

The relationship between CVD, mortality, and lipid alterations in PD 

patients remains complex and contentious. A phenomenon of reverse 

epidemiology has been observed, where lower cholesterol levels and 

lower BMI paradoxically correspond with higher mortality rates in 

PD populations [77-79]. It is thought that malnutrition and 

inflammation present greater cardiovascular risks than dyslipidemia 

[80]. Wang et al. recently identified a positive relationship between 

glucose absorption and lipid profiles; however, increased glucose 

absorption was linked to lower CVD risk in patients with reduced 

protein intake, but elevated risk in those with higher high-sensitivity 

C-reactive protein (hs-CRP) or greater protein consumption [81].

These findings underscore the need for more biocompatible dialysis 

solutions, including those formulated with amino acids or other non-
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glucose alternatives, to mitigate OS and inflammatory injury in PD 

patients.

Glucose-based Solutions and Peritoneal Membrane: Oxidative 

Stress and Structural Damage in Long-Term Peritoneal 

Dialysis

The prolonged use of glucose-based PD solutions leads to cumulative 

structural and functional alterations of PM [19,69,70,82-85]. 

Exposure of PM cells to high-glucose dialysates intensifies AGE 

accumulation, eliciting oxidative and inflammatory responses that 

contribute to peritoneal tissue damage [70] and the continuous 

exposure to non-biocompatible PD solutions initiates progressive 

damage [19,82-86]. High glucose content, GDPs, and AGEs induce 

OS, a major pathological driver of PM injury [87]. Chronic exposure 

leads to fibrosis, vasculopathy, neo-angiogenesis, and mesothelial 

cell (MC) transformation, impairing dialysis efficacy and leading to 

adverse patient outcomes [88-90]. Clinical consequences of these 

changes can include encapsulating peritoneal sclerosis.

Structural Changes of the Peritoneal Membrane 

The PM consists of a monolayer of MCs adhered to a basement 

membrane, beneath which lies the submesothelial layer containing 

fibroblasts and blood vessels [86]. According to the three-pore model 

of peritoneal transport, the main routes or barriers for solute and 

fluid transport through the PM are the ultrasmall transcellular pores 

(aquaporins) of the endothelial cells, and the small and large pores in 

between the endothelial cells of the capillary walls. Exposure to 
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hyperosmotic and bioincompatible solutions initiates histologic 

alterations, including microvilli loss, cellular hypertrophy, and 

mesothelial cell detachment. The thickened submesothelial zone, 

combined with altered solute transport and reduced UF capacity, 

marks the progression to peritoneal fibrosis [91].

Epithelial -to-Mesenchymal Transition (EMT) 

Prolonged mesothelial injury promotes EMT, where epithelial-like 

mesothelial cells acquire mesenchymal characteristics, enhancing 

motility and extracellular matrix secretion [92]. This reversible 

process involves loss of cellular polarity and dissolution of 

intercellular junctions. Downregulation of epithelial markers, such as 

E-cadherin, occurs due to Snail induction, while tight junction 

proteins, including claudin and occludin, are disrupted [93]. 

Cytokines, inflammatory factors, and transcription regulators 

orchestrate EMT through the transforming growth factor-beta (TGF-

β) pathway. TGF-β1 triggers Smad-dependent and non-Smad 

signaling, regulating fibrosis-associated genes such as Snail, alpha-

smooth muscle actin (α-SMA), and collagen [93.94].

Functional Changes of the Peritoneal Membrane 

Glucose-based PD solutions have been associated with functional 

impairment of the PM over long-term use, primarily through the loss 

of UF capacity [36]. The BalANZ Study, the largest randomized trial 

examining the effect of biocompatible solutions on membrane 

function, showed that initial PSTR was faster with biocompatible 

solutions compared to standard solutions [95]. Notably, over a two-
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year period, PSTR remained stable in patients treated with 

biocompatible solutions, while it increased in those receiving 

standard glucose-based solutions, indicating a slower deterioration 

in membrane function with biocompatible alternatives [95]. Several 

studies have demonstrated a relationship between PSTR and adverse 

health outcomes, including mortality and PD technique failure [96].

A secondary analysis of the BalANZ trial revealed that peritoneal 

GDP exposure may be a more important consideration in preserving 

peritoneal membrane function over time than peritoneal glucose 

exposure [97]. 

Three meta-analyses comparing neutral-pH, low-GDP, and 

conventional solutions have been published by Cho et al. [20], Seo et 

al. [98], and Yohanna et al. [99]. These studies indicate that 

treatment durations longer than 6 months with neutral-pH, low-GDP 

solutions, as compared to conventional PD solutions, are associated 

with enhanced RKF.

On the other hand, Cho et al. [100] found that, in comparison to PD 

solutions with high-GDP levels, those with low-GDP levels exhibited a 

reduced UF volume during the peritoneal equilibration test, as well 

as a lower daily UF volume during the first year following the 

initiation of peritoneal dialysis.

Glucose-induced pseudohypoxia

Continuous exposure of the peritoneum to high-glucose dialysis 

solutions causes pseudohypoxia. This causes increased expression of 

hypoxia-inducible factor-1 (HIF-1) by interstitial cells, leading to 
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increased expression of glucose transporter type 1 (GLUT-1) and 

profibrotic factors (TGFb, vascular endothelial growth factor [VEGF], 

plasminogen activator inhibitor-1 [PAI-1], and connective tissue 

growth factor [CTGF]). Compensatory mechanisms may be impaired 

in PD due to mitochondrial dysfunction and the use of lactate as a 

buffer in PD solutions [101].

Glucose-induced pseudohypoxia is likely a key driver of long-term 

peritoneal alterations. This condition mimics true hypoxia by 

increasing the intracellular reduced and oxidized nicotinamide 

adenine dinucleotide (NADH/NAD⁺) ratio, thereby disrupting cellular 

redox homeostasis. Pseudohypoxia activates the transcription factor 

HIF-1, which upregulates fibrotic mediators such as TGF-β, CTGF, 

PAI-1, and GLUT-1 [102]. These changes contribute to interstitial 

fibrosis and to a progressive decline in peritoneal free water 

transport (FWT) in long-term PD treatment, and peritoneal 

thickening [103]. The association between pseudohypoxia and 

upregulation of CD24 further supports its central role in peritoneal 

remodeling during long-term PD [104,105].

Oxidative Stress in Peritoneal Membrane Injury 

High-glucose PD solutions exacerbate ROS production, 

overwhelming antioxidant systems, and damaging mitochondrial 

DNA. GDPs and AGEs activate RAGE, amplifying ROS-driven pro-

inflammatory and fibrotic cascades [106]. Elevated nuclear factor 

kappa-light-chain-enhancer of activated B cells (NF-κB) and VEGF 

levels induce PM thickening, fibrosis, and angiogenesis. Mesothelial 
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apoptosis exceeds 60% within two hours of exposure to 4.25% 

glucose solutions, indicating rapid cellular damage [107].

Cytokine and Chemokine Pathways 

OS-induced cytokine production by MCs, including interleukin-1 (IL-

1), IL-6, and IL-8, activates inflammatory signaling. IL-6 and IL-8 

initiate Janus kinase (JAK)/signal transducer and activator of 

transcription (STAT) pathways, promoting mesenchymal marker 

deposition [108]. TGF-β1 signaling further enhances EMT and 

fibrosis [93,109]. Chronic inflammation stimulates neo-angiogenesis, 

expanding the PM surface area for solute transport. VEGF, 

upregulated by TGF-β and pro-inflammatory cytokines, drives 

vascular changes. Reduced VEGF levels after switching to glucose-

free solutions demonstrate the glucose-dependency of VEGF 

expression [93].

Macrophage Polarization and Inflammation 

Persistent glucose exposure induces macrophage polarization, 

favoring M2 macrophages via the Arginase 1 pathway. This shift 

contributes to EMT, fibrosis, and impaired repair. High-glucose 

environments suppress M1 macrophages through microsomal 

prostaglandin E synthase-1 activation, exacerbating extracellular 

matrix synthesis. Autophagy, a compensatory mechanism to mitigate 

ROS, may fail under prolonged stress, causing lysosomal 

dysfunction, apoptosis, and intensified inflammation [110,111].

Figure 1 provides an overview of the local and systemic effects 

induced using conventional hyperglycemic PD solutions.
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Bioincompatible Solutions and pH Effects 

The acidic pH of conventional PD solutions aggravates oxidative 

damage. Acidic environments promote the release of free iron from 

transferrin, driving lipid peroxidation and protein carbonylation. 

Neutral pH, low GDP solutions reduce OS and enhance mesothelial 

viability. Bicarbonate-based buffers outperform lactate buffers in 

preserving PM integrity [112-114]. Animal models demonstrate 

diminished fibrosis and angiogenesis with improved buffer 

composition [114]. 

Both pH and lactate are also implicated in alterations of peritoneal 

defenses, such as decreased phagocytic capacity of macrophages, 

leading to intracellular acidification and thus altered neutrophil 

function. On the other hand, both pH and lactate increase 

mesothelial cytotoxicity and the adverse effects of these solutions. In 

PD, compensatory mechanisms may be compromised because of 

mitochondrial dysfunction and the reliance on lactate as the 

buffering agent in dialysis solutions [113].

In conclusion, OS is central to PM injury in PD, driven by 

hyperglycemia, GDPs, and AGEs. Effective mitigation requires 

enhanced biocompatible solutions and antioxidant therapies. 

Innovations targeting oxidative pathways are imperative to sustain 

long-term dialysis efficacy and patient health.
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Metabolic and Therapeutic Strategies for Preserving 

Peritoneal Membrane Function and Mitigating Fibrosis in 

Peritoneal Dialysis

Metabolic Modulation as an Antifibrotic Strategy

Targeting glycolysis, fatty acid oxidation, and pyruvate metabolism 

offers additional avenues for fibrosis prevention. Pharmacological 

activation of carnitine palmitoyl transferase 1 (CPT1) or suppression 

of malonyl-CoA via malonyl-CoA decarboxylase (MCD) reduces 

glycolytic reliance. Alternatively, inhibiting pyruvate dehydrogenase 

kinase isoenzyme 1 (PDK1) with dichloroacetate (DCA) activates 

pyruvate dehydrogenase (PDH), channeling pyruvate into the 

tricarboxylic acid cycle instead of lactate production, mitigating 

extracellular matrix acidification [115-117]. Direct glycolytic 

inhibition using 2-deoxyglucose, a hexokinase 2 inhibitor, effectively 

disrupts glycolysis and decreases TGF-β1-induced fibrotic 

phenotypes in mesothelial cells [118,119].

The switch from oxidative phosphorylation to glycolysis, driven by 

TGF-β1, highlights the Warburg effect’s role in EMT and fibrosis. 

Attenuating glycolytic flux with 2-deoxyglucose substantially reduced 

glucose-induced fibrosis in animal models, though the relative safety 

of glycolysis inhibition versus promoting oxidative metabolism 

requires further investigation [119-121].

Therapeutic Strategies for OS Mitigation 

Biocompatible solutions incorporating low GDPs, neutral pH, and 

alternative osmotic agents like icodextrin offer some OS protection. 
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Antioxidants such as N-acetylcysteine (NAC), pyruvate, and alanyl-

glutamine (AlaGln) are promising in ROS reduction. NAC scavenges 

ROS, preventing lipid peroxidation and DNA fragmentation. Pyruvate 

buffers hydrogen peroxide, preserving mitochondrial function, while 

AlaGln restores mesothelial defenses and reduces OS markers [122-

126].

Managing PM fibrosis in PD requires a multifaceted approach that 

addresses both metabolic and OS pathways. Interventions targeting 

fatty acid oxidation, pyruvate oxidation, and glycolysis, alongside 

strategies to modulate extracellular factors such as TGF-β, VEGF, 

and inflammatory cytokines, are crucial. Additionally, intracellular 

mediators like HIF-1α should be considered in the development of 

biocompatible PD solutions. OS, which plays a central role in PM 

injury, is driven by factors such as hyperglycemia, GDPs, and AGEs 

[70,93,127]. To mitigate these effects, enhanced biocompatible 

solutions and antioxidant therapies are necessary. Targeting 

oxidative pathways is essential for the design of effective antifibrotic 

therapies aimed at sustaining long-term dialysis efficacy and 

improving patient health.

Other approaches targeting oxidative pathways and fibrosis have 

included AlaGln-supplemented PD fluid which was reported to 

improve biomarkers of PM integrity, immune competence, and 

systemic inflammation compared to not supplemented PD fluid with 

neutral pH and low GDPs [125]. The same group have also reported 

that addition of lithium chloride to the PD solution could counteract 
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mesothelial cell death, peritoneal membrane fibrosis, and 

angiogenesis [128]. 

Innovative Alternatives to Conventional Glucose-Based 

Peritoneal Dialysis Solutions: Biocompatibility and Metabolic 

Impact 

Glucose remains the predominant osmotic agent in conventional PD 

solutions due to its cost-effectiveness, safety, and efficient UF 

properties. However, elevated glucose concentrations in PD solutions 

result in increased absorption, leading to metabolic issues such as 

hyperglycemia, hyperinsulinemia, obesity, and hyperlipidemia [129]. 

As a result, non-glucose-based osmotic agents such as icodextrin and 

amino acids are increasingly used in glucose-sparing regimens to 

mitigate these metabolic side effects. Table 1 shows an overview of 

the composition of some common commercially available PD 

solutions, while Table 2 summarizes the main characteristics of 

current and new PD solutions.

Icodextrin, a glucose polymer derived from starch, has been shown 

to induce a slower but sustained UF rate, offering improved fluid 

balance and blood pressure regulation [130], with potential benefits 

for left ventricular mass reduction [131]. Furthermore, icodextrin´s 

effects on glucose metabolism have been favorable in clinical trials 

[21] and real-world studies [132], and it may prolong the survival of 

ESKD patients on PD [133].
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Amino-acid-based PD solutions, like Nutrineal®, present an 

alternative with no glucose content and may replace up to 50% of the 

daily glucose load [84]. These solutions are particularly beneficial for 

malnourished PD patients, as they improve nitrogen balance and 

nutritional markers such as albumin and other plasma proteins 

[134,135]. However, despite these improvements, no clear mortality 

benefit has been observed. The biocompatibility of amino-acid-based 

solutions remains debated, with studies showing preservation of 

peritoneal UF and reduced sub-mesothelial fibrosis in animal models 

[136], although concerns about nitric oxide generation have been 

raised [137]. 

The clinical impact of the combined use of low-GDP glucose-based 

solutions, icodextrin, and amino-acid based solutions (Physioneal, 

Extraneal and Nutrineal, PEN or NEPP) has been explored in both 

APD and CAPD patients. The IMPENDIA study investigated the 

effects of such a glucose-sparing PD regimen in diabetic patients 

[138]. The findings indicated that substituting icodextrin and amino 

acid–based dialysis fluids for glucose-based solutions in two daily PD 

exchanges leads to a reduction in HbA1c levels. Additionally, this 

approach resulted in moderate yet significant improvements in lipid 

parameters, including reductions in triglycerides, very-low-density 

lipoprotein (VLDL), and apolipoprotein B levels [138]. However, the 

study also identified a higher incidence of severe adverse events, 

such as mortality and heart failure, in the glucose-sparing cohort. 

These results suggest that while a low-glucose PD regimen enhances 
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metabolic outcomes, it may elevate the risk of extracellular fluid 

volume overload if patients are not adhering to fluid intake 

restrictions. It should be noted that there are non-responders to 

icodextrin with respect to UF [139]. Therefore, careful monitoring of 

fluid balance is essential when implementing glucose-sparing dialysis 

strategies [138].

The recently published DiDo study is a randomized control trial that 

demonstrated that the use of two icodextrin bags per day is safe, 

significantly increases ultrafiltration, and concurrently reduces 

glucose exposure [24].

Improvement of nutritional status by increased synthesis of proteins 

is only achieved if enough calories (carbohydrates) are ingested 

simultaneously [140], and higher incidence of adverse events may 

occur due to disregard of these aspects.

The development of neutral-pH, low-GDP PD solutions, containing 

lactate and/or bicarbonate buffers, which aim to reduce the 

bioincompatibility of conventional glucose-based dialysis fluid have 

shown benefits in preserving PM integrity, and in some studies 

preservation of RKF [7,20,99,141-143].

L-carnitine, through its role in fatty acid oxidation and pyruvate 

metabolism, can be used in carnitine-enriched PD solutions to 

mitigate PM fibrosis by enhancing pyruvate oxidation and reducing 

myofibroblast activation in patients with ESKD [21,144,145], see 

Table 2.
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Used for over 50 years in food, cosmetic, and pharmaceutical 

industries, endogenously produced sugar alcohol sweeteners 

erythritol and xylitol minimally affect plasma glucose and insulin 

levels while promoting the release of beneficial gastrointestinal 

hormones, such as e.g., glucagon-like peptide-1[146]. Xylitol (151 

Da) is a five-carbon sugar alcohol naturally produced in humans 

through D-xylulose reduction and is approved as a glucose substitute 

for parenteral nutrition in some countries [21]. Intravenous 

administration does not induce hyperglycemia, leads to lower insulin 

secretion than glucose, and is primarily metabolized in the liver. In 

vitro studies suggest better biocompatibility compared to glucose, 

while clinical trials indicate its effectiveness as an osmotic agent and 

its potential to improve glycemic control in diabetic PD patients 

[147]. Reducing glucose exposure in PD solutions may be beneficial 

especially if coupled with strategies that address insulin resistance 

directly and reduce excessive use of insulin treatment in type 2 

diabetes [148]. The use of L-carnitine and xylitol in PD solutions may 

contribute to an ‘osmo-metabolic approach’ to a glucose-sparing PD 

strategy by supporting ultrafiltration and metabolic regulation [21]. 

ELIXIR (ClinicalTrials.gov Identifier: NCT03994471) is an ongoing 

phase III, open-label, randomized controlled trial assessing 

Xylocore®, a formulation containing xylitol and L-carnitine, against 

conventional glucose-based regimens in patients with kidney failure 

undergoing CAPD [149]. 
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While studies have demonstrated the preservation of endothelial 

glycocalyx and vascular function in adult patients treated with 

neutral-pH, low-GDP solutions [150,151], the long-term effects on 

PM health are uncertain. In pediatric populations, research has 

indicated that despite less severe morphological changes in the PM 

with neutral-pH fluids, there is still evidence of peritoneal fibrosis 

and vascular changes [150,152,153]. These findings suggest that the 

biocompatibility of neutral-pH, low-GDP solutions is not yet fully 

established and warrants further investigation. While non-glucose-

based PD solutions offer promising metabolic and fluid-handling 

benefits, the overall biocompatibility and long-term effects on 

peritoneal health require further study to optimize these solutions 

for clinical use.

Bimodal solutions 

Another approach to improve fluid removal and thereby potentially 

reducing the need for additional glucose-based solutions is to 

combine crystalloid (glucose) and colloid (icodextrin) osmotic agents 

to markedly enhance peritoneal fluid and solute transport during the 

long PD dwell [154,155]. There are different variants of bimodal PD 

solutions with different combinations of icodextrin and dextrose to 

provide more efficient UF and sodium removal than traditional PD 

solutions [154-157].

Glucose-sparing using alternative prescription patterns and 

drugs 
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Maintaining RKF is of critical importance to reduce the need for 

high-glucose solutions and strategies to achieve this include, in 

addition to glucose-free solutions, biocompatible solutions, 

appropriate prescriptions, and pharmacological therapies [158]. 

Alternative glucose-sparing strategies, in addition to or together with 

use of glucose-free dialysis solutions, include prescriptions such as 

incremental PD that may reduce glucose exposure or absorption. 

Furthermore, use of new classes of anti-diabetic drugs such as 

sodium-glucose co-transporter 2 (SGLT2) inhibitors that preserve 

RKF as well as peritoneal membrane structure and function may 

facilitate adequate fluid removal and thus diminish the need for 

boosting peritoneal UF by increasing the concentration of glucose in 

PD solutions. A brief overview of mechanisms, benefits, limitations, 

and evidence strengths of these and other glucose-sparing strategies 

in PD is provided in Table 3.

Incremental PD

There are many ways by which UF and solute clearance can be 

maintained while exposure to intraperitoneal glucose and therefore 

absorption from the peritoneal cavity is kept low. Incremental PD, a 

prescribing modality used in an increasing number of centers and 

facilitated by the availability of icodextrin-based PD solutions for the 

long dwell, may have several advantages, including glucose-sparing 

effects in addition to facilitating assisted PD, reduced costs [159], 

and reduction of the rate of peritonitis [160,161].
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In Italy, incremental PD, which was used by 35.3% of incident PD 

patients in 2022 with a further increase thereafter, has been 

accompanied by a reduction in peritonitis rate (and dropouts due to 

peritonitis), and a reduction in sclerosing peritonitis. While the 

causes may be multiple, glucose-sparing through incremental 

prescriptions is thought to play a role [162]. 

SGL2 inhibitors and other glucose-sparing drugs

There is emerging evidence from experimental studies and post hoc 

analyses of randomized clinical trials that SGLT2 inhibitors are well 

tolerated and may also be effective in preventing cardiovascular and 

mortality outcomes in patients with severe chronic kidney disease, 

including patients receiving dialysis [163-170]. As such, extending 

the usage of SGLT2 inhibitors to dialysis patients could provide a 

major advancement in their care. Patients on PD have an additional 

unmet need for effective pharmacotherapy to preserve their RKF, 

with its associated mortality benefits, and for treatment options that 

help reduce the risk of transfer to hemodialysis. 

Experimental data suggest that SGLT2 inhibitors, via various 

mechanisms, may preserve RKF and protect the peritoneal 

membrane [163].

The use of oral SGLT-2 inhibitors resulted in reduced glucose uptake 

and, thus, increased ultrafiltration through murine peritoneum. That 

study also proved that SGLT-2 receptors are expressed in the human 

peritoneum and HPMC and that glucose consumption and uptake by 
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HPMC in conditions with high glucose concentrations have 

decreased with SGLT-2 [164].

Another study showed that canagliflozin inhibited the HIF-1α/TGF-β/ 

phospho-Smad3 signaling, prevented peritoneal fibrosis and 

peritoneal thickening, and improved peritoneal transportation and 

ultrafiltration. High glucose peritoneal dialysate increased the 

expression of peritoneal GLUT1, GLUT3 and SGLT2, all of which 

were inhibited by canagliflozin [165]. 

Considering that studies confirmed the expression of SGLT2 in the 

human peritoneum and experimental data suggest that SGLT2 

inhibitors may decrease glucose absorption from the PD solution, 

thereby potentially increasing the UF volume, there is a strong 

rationale for studies evaluating effects of SGLT2 inhibitors in PD 

patients.  Several studies have already been performed, and more 

are in the pipeline [163,166]. One clinical trial - in chronic diabetic 

PD patients - showed that use of SGLT-2 inhibition may increase UF 

volume and hemoglobin levels; however, SGLT-2 inhibition was 

linked to subclinical metabolic acidosis [167].

Several trials aim to assess whether an SGLT2 inhibitor such as 

empagliflozin may increase the ultrafiltration volume in patients on 

PD [168].

However, according to some studies, SGLT2 inhibition may not have 

a glucose-sparing effect in PD. One study showed that SGLT2 

inhibition does not reduce glucose absorption during experimental 

PD [169]. Another study showed that dapagliflozin usage in PD 
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patients did not result in a reduction in glucose absorption across the 

peritoneal membrane [170].

Another substance of potential importance is phloretin. 

Intraperitoneal phloretin treatment reduced glucose absorption by 

>30% and resulted in a >50% higher ultrafiltration rate compared 

with control animals [171].

Conclusion

Peritoneal dialysis plays a critical role in the management of ESKD 

and has many advantages compared with in-center hemodialysis as a 

life-saving kidney replacement therapy. However, its long-term 

effectiveness is compromised by the bioincompatibility of traditional 

glucose-based dialysis fluids, which induce both local and systemic 

toxicity. Because of the increased exposure to glucose and its 

byproducts, glucose-based PD solutions contribute to structural and 

functional changes of the PM accompanied by metabolic alterations 

and increased risk of cardiovascular morbidity and mortality. 

Efforts to improve the biocompatibility of PD solutions have focused 

on reducing the unfavorable cardiometabolic effects and enhancing 

the preservation of PM morphology and function. Glucose-sparing 

strategies, such as the use of amino acid-based dialysis fluid 

combined with icodextrin-based solutions, are promising by offering 

sustained ultrafiltration without the adverse metabolic impacts 

associated with glucose absorption. These innovations aim to 

mitigate the harmful consequences of glucose exposure and may 
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help preserve both systemic and peritoneal health. However, while 

initial short- and mid-term clinical studies indicate favorable safety 

profiles for these alternatives, long-term studies are needed to 

confirm their clinical efficacy and their potential to improve patient 

outcomes.

Moreover, adjunctive therapies targeting systemic metabolic 

complications, such as oxidative stress, are being explored to further 

enhance the therapeutic potential of PD and minimize adverse 

effects.

In summary, the evolution of PD therapies, driven by the 

development of glucose-sparing and biocompatible solutions, offers 

hope for improving the long-term efficacy of PD and preserving PM 

integrity. While progress has been made, ongoing clinical studies 

and further innovation are essential to address the persistent 

challenges in PD therapy and ensure optimal patient outcomes in the 

management of ESKD.

List of abbreviations

AGEs: Advanced glycation end products

AlaGln: Alanyl-glutamine

APD: Automated peritoneal dialysis

α-SMA: Alpha-smooth muscle actin 

BMI: Body mass index

CAPD: Continuous ambulatory peritoneal dialysis

CPT1: Carnitine palmitoyltransferase 1

CVD: Cardiovascular disease

DNA: Deoxyribonucleic acid

ACCEPTED MANUSCRIPTARTICLE IN PRESS



ARTIC
LE

 IN
 PR

ES
S

32

EMT: Epithelial -to-Mesenchymal Transition

ESKD: End-stage kidney disease

GDP: Glucose degradation products

GLUT-1: Glucose transporter type 1

CTGF: Connective tissue growth factor

DCA: Dichloroacetate

FWT: Free water transport

HD: Hemodialysis

HIF-1: Hypoxia-Inducible Factor-1

HPMC: Human peritoneal mesothelial cells

hs-CRP: High-sensitivity C-reactive protein

IL: Interleukin

JAK: Janus kinase

MC: Mesothelial cell

MCD: Malonyl-CoA via malonyl-CoA decarboxylase

MDA: Malondialdehyde

NAC: N-acetylcysteine 

NADH/NAD⁺: Reduced and oxidized nicotinamide adenine 
dinucleotide

NADPH: Nicotinamide adenine dinucleotide phosphate

NEPP: Extraneal and Nutrineal, and Physioneal

NF-κB : Nuclear factor kappa-light-chain-enhancer of activated B 
cells

OS: Oxidative stress

PAI-1: Plasminogen Activator Inhibitor-1

PD: Peritoneal dialysis

PDH: Pyruvate dehydrogenase

PDK1: Pyruvate dehydrogenase kinase, isoenzyme 1

PEN: Physioneal, Extraneal. and Nutrineal

PM: Peritoneal membrane

PSTR: Peritoneal solute transfer rate
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RAGE: Receptor of advanced glycation end products

RKF: Residual kidney function

ROCK: RhoA/Rho kinase

ROS: Reactive oxygen species

SGLT2: Sodium-glucose co-transporter 2

STAT: Signal transducer and activator of transcription

TC: Total cholesterol

TG: Trigliceride

TGF-β: Transforming growth factor-beta

UF: Ultrafiltration
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Figure Legends

Figure 1. Schematic representation of proposed beneficial effects of 

novel peritoneal dialysis solutions. Reproduced with permission of 

the copyright owner from García-López E et al (Reference 27) and 

examples of glucose sparing PD solutions and other interventions. 

Abbreviations: 

Abbreviations: AGE: Advanced glycation end product; PD: Peritoneal 

dialysis; RKF: Residual kidney function; UF: Ultrafiltration; AA-PD: 

amino acid-based PD solution; GDP: glucose degradation product; 

Ala-Gln: Alanyl-Glutamine PD solution supplemented with the 

dipeptide alanyl-glutamine; SGLT-2i: sodium-glucose cotransporter-2 

inhibitors; GLP-1 RA: glucagon-like peptide-1 receptor agonists. 

+, ++ and +++ denote potential estimated positive local/peritoneal 

or systemic effects of glucose sparing interventions.  
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Table 1. Composition of common commercially available peritoneal dialysis solutions.

Component 
(mmol/L)

Dianeal 
PD4/PD2® Stay-Safe® Physioneal 

35®
Physioneal 

40 ® Balance® BicaVera® Nutrineal® Extraneal®

Sodium 132 134 132 132 134 134 132 132
Calcium 1.25 1.25/1.75 1.75 1.25 1.25/1.75a 1.25/1.75 1.25 1.75
Magnesium 0.25/1.75 0.50 0.25 0.25 0.50 0.50 0.25 0.25
Chloride 95/96 102.5/103.5 101 95 100.5/101.5 103.5 105 96
Lactate 40 35 10 15 35 0 40 40
Bicarbonate — — 25 25 — 34 — —
pH 5.2-5.5 pH 5.5 7.4 7.4 7.4 7.4 6.7 5.5
Osmotic 
Agent Glucose# Glucose Glucose# Glucose# Glucose Glucose Amino 

Acids Icodextrin
Osmotic 
agent
 (% w/v / 
gL)

1.36%,
2.27%,
3.86%

1.5%
2.3%

4.25%

1.36%/13.6
2.27%/22.7
3.86%/38.6

1.36%/13.6
2.27%/22.7
3.86%/38.6

1.5%
2.3%

4.25%

1.5%
2.3%

4.25%
1.1%/11.1 7.5%/75

Osmotic 
agent 
(mmol/L)

75.5
126
214

83.2
126.1
235.8

75.5
126
214

75.5
126
214

83.2
126.1
235.8 

83.25
126.1
235.9

87.2 4.7b

Osmolarity 
(mOsm/L)

344/346
395/395
483/485

356/358
399/401
509/511

345
396
484

344
395
483

356/358
399/401
509/511

356/358c

399/401d

509/511e

365 284

Sources: The composition of peritoneal dialysis solutions is from summaries of product characteristics from respective 
manufacturers, Vantive (former Baxter) or Fresenius Medical Care
# Anhydrous glucose; a 1.75 mmol/L calcium is not available for the 4.25% glucose solution; bassuming an average 
molecular weight of icodextrin of 16,000 g/mol, the concentration of icodextrin in Extraneal PD solution is approximately 
0.0047 mol/L, 4.7 mmol/L; cGlucose 1.5% and calcium 1.25 mmol/L; dGlucose 2.3% and calcium 1.75 mmol/L; eGlucose 
4.25% and calcium 1.75 mmol/L.
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Table 2. Key characteristics and in vivo advantages and disadvantages of different peritoneal dialysis solutions. 
Adapted from Bonomini et al [84], Low & Liew [142], and Bonomini et al [143].

Peritoneal Dialysis 
Solution

Glucose 
Load

Glucose 
Sparing

GDP 
Formation

Systemic 
Potential 
Benefit

Peritoneal 
Potential 
Benefit

Osmo-
Metabolic 
Benefits*

Glucose-Based 
Lactate Buffer

High 
exposure No High 

production Nutritional Osmotic No
Biocompatible 
Glucose-Based 
Lactate and/or 
Bicarbonate Buffer

High 
exposure No Low 

production Nutritional Osmotic and pH 
modulation No

Icodextrin None Yes Minimal 
formation

Volume 
regulation

Uremic toxins 
clearance 
Metabolic 

control

Long-dwell 
ultrafiltration 

(UF)
Yes

Amino Acids None Yes None Protein 
synthesis Osmotic Yes

Glycerol and 
Amino Acids None Yes None Nutritional Osmotic Yes

Xylitol–Carnitine–
Glucose

Reduced 
exposure Yes Moderate 

production Antidiabetic
Osmotic, 

antifibrotic, and 
antiangiogenic

Yes

Glucose and 
Carnitine

Conventional 
Exposure No Moderate 

production
Carnitine 
deficiency

Osmotic and 
membrane 

preservation
Yes
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Glucose and 
Alanyl-Glutamine

Conventional 
Exposure No Moderate 

production
Reduced 

protein loss
Osmotic and 
membrane 

preservation
No

Glucose and 
Sulodexide

Conventional 
Exposure No Moderate 

production
Anti-

inflammatory

Osmotic and 
enhanced 
dialysis 

efficiency
No

*Osmo-metabolic benefits: PD solutions demonstrate osmotic and metabolic effects. GDP: Glucose degradation 
products; UF: Ultrafiltration.
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Table 3.  Overview of mechanisms, benefits, limitations, and evidence strengths of different glucose-
sparing strategies in peritoneal dialysis. 

Strategy / 
modality

Mechanism / 
description Benefits Limitations Evidence strength

Icodextrin 
[21,130-133]

Colloid osmotic 
agent for the 
long dwell.

Improved long-
dwell UF, reduced 
glucose exposure, 

better fluid control.

One exchange per 
day (off label two), 

non-responders, 
rash, BG 

monitoring.

High (multiple RCTs 
for UF; moderate for 

long-term 
outcomes).

Amino-acid PD 
solutions
[84,134-137]

Amino acids as 
osmotic agent.

Reduced glucose 
load; improves 

nitrogen balance in 
malnourished 

patients.

Limited to one daily 
exchange due to 
nitrogen load; 

possible 
biocompatibility 

issues.

Moderate (small 
RCTs).

Low-GDP, 
neutral-pH 
glucose 
solutions 
[7,20,99,141-
143]

Reduced GDPs; 
more 

biocompatible 
formulation.

Preservation of RKF 
and urine volume; 

improved 
biocompatibility.

Higher cost; 
uncertain long-term 
effects on mortality.

High for RKF; 
moderate for other 

outcomes.

Bimodal / 
combination 
solutions 
[21,140]

Glucose plus 
icodextrin 
combines 

osmotic profiles.

Enhanced UF and 
sodium removal; 
reduced glucose 

load.

Limited clinical 
trials; regulatory 

issues.
Low–moderate (pilot 

trials).
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Osmo-
metabolic 
solutions 
(xylitol, 
carnitine) 
[21,84,142-153]

Sugar alcohols 
and metabolic 

cofactors.

Lower glucose 
absorption; 

improved metabolic 
profile.

Investigational; 
limited safety data. Low (ongoing trials).

Incremental PD 
& glucose-
sparing 
prescriptions 
[154-157,159-
162]

Fewer glucose 
exchanges when 

RKF present.

Lower glucose 
exposure; preserves 

RKF; reduces 
peritonitis.

Risk of 
underdialysis if RKF 

declines.

Moderate 
(observational 

evidence).

SGLT2 
inhibitors 
[158,163-171]

Reduced 
peritoneal 

glucose uptake; 
systemic renal 

benefits.

Potential PM 
protection; CV/renal 

benefits.

Limited PD-specific 
data; possible 

adverse metabolic 
effects.

Low–moderate 
(emerging evidence)

GLP-1 RAs
[172-175]

Improved 
glycemic and BP 

control;
systemic organ 

protection

Improved metabolic
control in patients 
with obesity and 

diabetes

Limited PD-specific 
data; possible 

adverse metabolic 
effects

Low (emerging 
evidence)

Additives (Ala-
Gln, NAC, 
pyruvate) [122-
126]

Cytoprotective / 
antioxidant 
additives.

Improved 
biomarkers of PM 

integrity.

Limited clinical 
outcomes; 

regulatory hurdles.

Low 
(mechanistic/early 

clinical).
Experimental 
metabolic 
modulators 
[115-121]

Modulate 
glycolysis or 

transport 
pathways.

Promising 
antifibrotic 

preclinical data.
Preclinical only; 
safety unknown. Very low.
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Abbreviations: BG: blood glucose; UF: Ultrafiltration; RCT: Randomized clinical trial; PD: Peritoneal 
dialysis; GDP: Glucose degradation products; RKF: Residual kidney function; SGLT2: Sodium-glucose co-
transporter 2; GLP-1 RA: glucagon-like peptide-1 receptor agonists; BP: blood pressure; PM: Peritoneal 
membrane; CV: Cardiovascular; Ala-Gln: Alanyl-glutamine; NAC: N-acetylcysteine
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