GARDY ORCA - Online Research @
CARDY® Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/184019/

This is the author’s version of a work that was submitted to / accepted for publication.
Citation for final published version:

Moreno, Josue, Patino, José J., Helguero, Carlos G. and Saldarriaga, Carlos 2025. Synthesis of dynamic

responses of redundant robot manipulators. Presented at: 2025 IEEE 64th Conference on Decision and

Control (CDC), Rio de Janeiro, Brazil, 10-12 December 2025. Proceedings of the 64th CDC. IEEE, pp.
5405-5410. 10.1109/cdc57313.2025.11313005

Publishers page: https://doi.org/10.1109/cdc57313.2025.11313005

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published
source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made
available in ORCA are retained by the copyright holders.




Synthesis of Dynamic Responses
of Redundant Robot Manipulators

Josue Moreno', José J. Patifio?, Carlos G. Helguero! and Carlos Saldarriaga®

Abstract—1In this paper, we present and validate a novel
methodology that synthesizes the dynamic response of robotic
manipulators performing Cartesian impedance-related tasks.
By leveraging linear system theory and addressing the kine-
matic redundancies inherent in the system, we derive and
directly solve equations to compute the damping parameters
based on desired control criteria (damping ratios). The pro-
posed equations correspond to the complex eigenvalues gov-
erning the system’s dynamics. Unlike existing approaches, this
method bypasses complex optimization or iterative processes,
providing direct solutions to damping or stiffness parame-
ters. Our approach applies broadly, irrespective of specific
redundancy conditions or Cartesian task coordinates. Using
a 7-DoF robot, we demonstrate that multiple solutions can
impose similar dynamic responses. We further show that the
system’s natural frequencies must align with defined criteria,
and while imposing damping ratios may suggest infinite possible
frequency values, physically meaningful natural frequencies
are calculated based on robot geometry, stiffness, and mass
matrices. This ensures that these values are not arbitrary.
This methodology contributes significantly to the field by
simplifying implementation and improving system stability and
predictability.

I. INTRODUCTION

In modern robotics, impedance control is a well-
established technique for managing the interaction between
robots and their environment, particularly in tasks that re-
quire precise torque management. Impedance control adjusts
the system’s stiffness and damping to ensure safe and effec-
tive interactions. One key capability of impedance control in
robotic manipulators, particularly redundant ones with more
degrees of freedom (DoF) than those needed for a task, is
the ability to modulate their dynamic response. These robots
offer flexibility and robustness, but selecting the appropriate
parameters for control poses challenges.

Several recent studies propose diverse methods to deter-
mine stiffness and damping parameters by different analyt-
ical or data-based methods, with the goal of suppressing
unwanted vibrations. However, these methods often require
iterative optimization processes or trial-and-error techniques.

In this article, we introduce an innovative methodology
that directly calculates damping parameters from specific
desired damping ratios, bypassing the need for complex
optimization and considering the configuration dependent
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dynamics of the coupled robotic system. By addressing and
mathematically handling redundancies, we derive and solve
equations that directly provide the damping parameters for a
multi-dimensional, highly coupled, and positive semidefinite
robotic system. This approach does not assume or limit
redundancy conditions, making it broadly applicable. Addi-
tionally, while imposing damping ratios can yield multiple
possible frequency values, by utilizing the robot’s geometry,
stiffness, and mass matrices, we ensure that the obtained
natural frequencies are theoretically correct, grounded in
the robot’s physical properties, avoiding arbitrary values.
This methodology simplifies the implementation process and
enhances system stability and predictability. We demonstrate
the efficacy of our approach using a 7-DoF Panda robotic
arm in two specific cases: Cartesian impedance control with
3 task coordinates (x, y, z directions) and with 5 task
coordinates (x, y, z, «, 3 directions). This work contributes
significantly to the field by providing a straightforward and
reliable method to modulate dynamic responses in redundant
robotic systems.

II. RELATED WORK

In classical control theory, the analysis of the damping
ratio is fundamental in characterizing the dynamic behav-
ior of mechanical systems. In particular, for a two-DoF
translational system, the damping ratio dictates key response
characteristics such as overshoot, settling time, and stability.
The mathematical modeling of such systems is typically
based on mass-spring-damper equations, where the damping
ratio () is defined as ( = 5 \/Ck;m with ¢ representing the
damping coefficient, k the stiffness, and m the mass [1].

A detailed discussion of these principles is presented in
Ogata’s Modern Control Engineering [1], which explores var-
ious analytical and design methodologies based on damping
ratio considerations. This theoretical foundation is particu-
larly relevant for extending impedance control strategies to
robotic applications, ensuring stable and predictable interac-
tions in dynamic environments.

Impedance control is a well-established technique in the
field of robotics for managing a robot’s interaction with its
environment, including handling fragile or dangerous objects,
people, or other robots. This is achieved by modifying
the mechanical impedance, adjusting parameters such as
the stiffness and damping of the system. Hogan’s work
introduced the concept of impedance control, laying the theo-
retical foundation that many researchers have since expanded
to address challenges in dynamic and unstable environments

(2], [3]. [4], [5].




An important advance in this field is the work described
in [6], where an analytical method is presented to modulate
the dynamic response of robotic manipulators by selecting
suitable stiffness and damping parameters. The approach
focuses on mapping these parameters (matrices) into the joint
space and analyzing the vibration dynamics to suppress unde-
sirable vibration modes, thus avoiding the use of commonly
used trial and error methods. This closed-form approach is
particularly beneficial for redundant robots, as demonstrated
in their experimental validation on 7-DoF robotic manipula-
tors [6]. However, while the presented methodology provides
valuable insights into how damping parameter selection
affects the system’s behavior, it does not directly impose
a desired dynamic behavior on the system. This process
involves multiple iterations and trade-offs between damping
and control criteria.

A complementary study expanded on the application of
damping ratio prediction for redundant Cartesian impedance-
controlled robots using machine learning techniques. This re-
search leveraged large datasets and advanced computational
models to predict appropriate damping ratios, optimizing
control parameters for better dynamic response. Thus, the
combination of analytical methods and machine learning
provides a robust framework to improve robot performance
in complex interaction tasks [7].

Building upon these fundamental studies, we introduce a
novel analytical methodology to directly calculate the values
of the damping matrix from specified damping ratios, via
the complex eigenvalues of the system, which describe the
dynamic response of the system through their linear combi-
nation. While previous research focuses mainly on mapping,
predicting, or learning parameters using various analytical
and computational methods, our novel analytical approach
offers a straightforward and theoretically sound computa-
tional route that considers any number of redundancies
and simplifies the process. Unlike other existing methods,
our approach does not impose restrictions on redundancy
conditions, making it widely applicable in robotics.

This direct calculation methodology ensures precise con-
trol over the damping characteristics of the system, imposing
theoretically sound parameters that consider the dynamics.
By directly addressing the calculation of damping coeffi-
cients from given damping ratios, our research contributes
significantly to the field of impedance control in robotics,
improving both the accuracy of dynamic response modula-
tion and simplifying the implementation process for practical
applications.

ITI. THEORETICAL BACKGROUND
A. General equations
A robotic arm with n degrees of freedom is represented
by its general equation of motion
M(q)d(t) + G(q, 4)q(t) + g(a@) = 7+ Text (1)

where q corresponds to the vector of n joint angles , M
the mass matrix, G contains all the Coriolis and centrifugal
terms, g the gravity compensation term and 7, the external

torques. This arm operates in an m-dimensional task-space
coordinate system, limited to at most 6 task coordinates.
In case n is greater than m, the resulting robotic system
is kinematically redundant [8]. Implementing an impedance
control law, the applied motor torques 7 can be selected so
that the system in (1) becomes

M(q)g(t) + Cq(t) + Kq(t) = Text 2)

where C is the damping matrix and K is the stiffness matrix,
both in the joint space. However, for most robotic applica-
tions, the (usually diagonal) stiffness and damping matrices
are defined in the Cartesian space. Using the configuration
dependent Jacobian matrix of the robot, J,,, «,, the Cartesian-
space (mxm) terms K¢ = diag ([k &y kym)), and
Cc = diag ([cw Cy ... cm] can be mapped into the
joint space of the robot [9], [10]

K=J"KcJ+K,+J7CcJ, C=J"Ccd (3

where K, = {(%i?f) (%f) (%fﬂ, and f is the
external forces vector.

B. Methodology for synthesizing the dynamic response

Once the system is mapped into the joint space of the
robot, we can proceed to describe the methodology to estab-
lish a direct relationship between the damping matrix values
and the desired dynamic characteristics of the (positive
semi-definite in case of redundancies) system, and obtain
a solution to the synthesis problem.

The process begins by establishing the rigid body or zero-
potential energy (ZP) mode of the system through the null
space definition of the stiffness matrix K, which asserts that
the rigid body mode ug is an element of the null space of
matrix K [11].

KU.O =0 (4)

Note that for the intended robot configuration, the values
of the stiffness matrix are constant; the only variables are
the values of the diagonal damping matrix that we will try to
obtain so as to match with the desired damping ratios (’s of
the system. Next, the computed ug vector is normalized with
respect to the mass matrix using the relation ug Mug = 1.
Since it corresponds to the ZP or non-oscillatory mode, its
assigned frequency is 0, wy = 0.

Uo
ulMug
Here, ungo represents the normalized vector obtained by

scaling uy with respect to its weighted magnitude defined
by the matrix M. This normalized vector is then used to

decouple and isolate the zero-potential energy (ZP) mode
from the system

&)

uNo =

ugMq =0 (6)

If defined as udM = [s1s3 ...
equation becomes:

5,7, then the previous

Z 8¢ = 81q1 +S2g2 + ...+ 8,q, =0 @)
i=1



Thus, solving for ¢; we get:
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and we can obtain a constraint matrix S. This way, a reduced
space q' can be obtained, which is free from the ZP or the
effect of the redundant DoF of the robot [6].

1 0 0
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42 . q2
= : : : . 9
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4n _ 51 _ 52 __Sn—1 qn—1
q=Sq (10)

Using this expression, the system dynamic equation is
simplified and reformulated as a positive definite system.

M/d/ + C/(-l/ 4 K/ I STText
M’ =STMS, C' =sTcs, K =STKS

(1)
12)

If more than one redundant DoF is present, this process
of redundancy (or ZP) elimination described in equations
(4) to (12) is repeated n —m times using the matrices of the
newly reduced system and the subsequent constraint matrices
as necessary until the system becomes positive definite,
otherwise the system would not be analytically solvable.
From this formulation, and using linear system theory, it
is possible to determine the state matrix A. Therefore,
the eigenvalues of matrix A can be directly related to the
dynamic characteristics of the system, which is the main
objective of the paper.

0 I

(M/)flKI 7(M/)7IC/ (13)

A=
2mx2m

Since the only unknowns in matrix A are contained in
matrix C’, which is a linear combination of the damping
coefficients c;, ¢y, ... ,C, the eigenvalues of A are used to
establish a relationship with the desired damping ratios, as
they encapsulate the system’s dynamic behavior. Given an
eigenvalue \; of the matrix A, the characteristic polynomial
can be expressed as [12]:

A —X\I =0 (14)

N a2 agm i A 4 agm =0 (15)

where ¢ refers to each of the 2m modes of the reduced
positive definite system. To facilitate the interpretation and
handling of the system dynamics, the eigenvalues are ex-
pressed in polar form:

Ai = r; (cos(6;) + sin(6;) 7) ,

where j is the imaginary unit, defined as j2 = —1. In
this context, r; represents the system’s natural frequency

fori=1,...,2m (16)

(r; = w;), which can be analytically determined from the
actual reduced inertia and stiffness matrices using mechani-
cal vibration theory [13]:

Di, = (K))'M' (17)
/1

wp = 6—, forp=1,...,m (18)
p

Where &, corresponds to an eigenvalue of matrix Djy, in
Equation (17). Furthermore, ; represents the angle in polar
form (Equation 16), which, from a geometric perspective, is
directly related to the desired (given) damping ratios (;:

6 =t (209)

Substituting this expression into Equation (16), and sepa-
rating real and imaginary components leads to the following
system of equations:

19)

2™ cos((2m)6;) + arr2™ ! cos((2m — 1)6;)
+ agri™ 2 cos((2m — 2)0;) + ... +
Aom-_17} €08(0;) + agm =0 (20)

2™ sin((2m)6;) + arr2™ ! sin((2m — 1)6;)
+ agr?™ ?sin((2m — 2)0;) + ...+
agm_17;sin(0;) =0 (21)

In this way, the desired damping ratios of the system
are directly related to the equations to be solved for the
elements of the C. matrix. It is important to note that for
a system with m task coordinates, a total of 2m equations
with m unknowns are obtained, leading to a wide variety of
gf:,')); possible solutions, of which we always choose those
ensuring the positive definiteness and stability of the system
(eigenvalues on the left-hand side of the complex plane).
Figure 1 shows a summary of the methodology presented in

this Section.

IV. RESULTS

In order to validate the proposed methodology, we pro-
vide a set of simulation results with different (n — m)
number of redundant DoF’s. The synthesis of dynamics is
performed on a 7 DoF Franka Panda robotic arm. A Cartesian
impedance control task with m task (Cartesian) coordinates
is utilized to demonstrate the handling of multiple redun-
dancies and subsequent synthesis of dynamic responses.
The robotic arm has the following initial configuration:
q = [r/4,7/6,—7/4, —7/2,7/3,7/2,7/6] rad, and the
Cartesian stiffness matrices are shown in the Appendix.

A. Example for 4 redundant DoF’s (m = 3)

In this example, Cartesian impedance control with 3 Carte-
sian coordinates (m = 3) is considered, resulting in a redun-
dancy of 4 DoF. This redundancy setup comprises 3 task co-
ordinates for the translational directions (z, y, 2). The desired
damping ratios to be imposed are: { = [0.98 0.69 0.59].
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Fig. 1. Flowchart describing the proposed methodology

The corresponding (m X n) J(q) Jacobian matrix is
obtained, and the desired diagonal stiffness, and unknown
damping matrices are mapped to the joint space:

1261.0
77.03
1037.0
272.8

77.03
335.8
158.4
—199.4
1470 —19.73 112.6
—-160.4 —12.87 —132.7
0 0 0
147.0 —-160.4
—19.73 —-12.87
112.6  —132.7
75.73 13.34
75.73 25.97 —6.855
13.34 —6.855  41.58
0 0 0

1037.0
158.4
879.6

K= 162.2

272.8
—199.4
162.2
300.2

(NNl Nl N)

C = function(cz, ¢y, ¢2)7x7

After mapping the system to the joint space and reducing
it to a positive definite system by successively removing
the (n — m = 4) ZP modes, we derive the characteristic
polynomial and solve for the eigenvalues, which govern the
dynamic response of the system. This process results in a set
of six equations with three unknowns, leading to 20 sets of
possible solutions for the damping parameters. Below are the
three most representative Cartesian damping matrix solutions
with their corresponding errors presented in Table 1.

Cc1 = diag([78.3 227.0 76.3|);
Ccz = diag(|72.1 80.8 121.0]);
Ccs = diag([157.0 75.5 95.0]).

Solution C; generates the smallest error in all damping
ratios, making it the most suitable solution. This highlights
the precision of the proposed methodology in the synthesis
of dynamic responses through the imposed damping ratios.

TABLE I
COMPARISON OF SOLUTION FOR 3 CARTESIAN COORDINATES

Solution | ¢ Required | ¢ Obtained | Error
0.980 1.000 0.0200

Cci 0.690 0.698 0.0079
0.590 0.588 0.0019

0.980 0.990 0.0102

Cco2 0.690 0.663 0.0272
0.590 0.585 0.0049

0.980 1.000 0.0200

Ccs 0.690 0.735 0.0445
0.590 0.556 0.0341

B. Example for two redundant DoF’s (m=5)

In this example, a Cartesian impedance control with 5
Cartesian coordinates (m = 5) is considered, with a redun-
dancy of 2 DoF. This redundancy setup comprises 3 coordi-
nates for the translational directions (X, y, z) and 2 coordi-
nates for the orientation («, 3). The desired damping ratios to
be imposed are: ¢ = [0.99 0.89 0.78 0.66 0.57]. The
Jacobian matrix is adjusted and the stiffness and damping
matrices are mapped to the joint space of the robot.

1261.0 77.03  1037.0

77.03 345.8 158.4

1037.0  158.4 882.1

K=| 2728 -206.5 159.1

147.0 —26.8 115.7

—-1604 -164 —136.4

0 6.124 1.402

272.8 147.0 —160.4 0

—-206.5 —26.8 —16.4 6.124
159.1 115.7 —-136.4 1.402
308.9 76.98 20.36  —6.047
76.98 34.72 —8.881 —2.613
20.36 —8.881 48.29 —4.237
—6.047 —2.613 —4.237 4.536

C = function(cg, ¢y, €z, Cay C3)7xT

The methodology follows the same approach as in the pre-
vious example but requires only two steps for the reduction
to a positive definite system. Although there are more than
200 combinations (sets of possible solutions), some of them
generate lower errors than others. The obtained values for
the best three sets of damping coefficients are as follows:
Cc1 = diag([192.41 101.26 63.21 1.01 12.73]);
Ccz2 = diag(|151.89 105.26 83.04 1.59 6.04|);
Ccs = diag(|154.34 110.01 80.93 1.72 5.95]). Sim-
ilarly, a comparison of the errors is given in Table II.

V. DISCUSSION

The proposed methodology focuses on formulating a posi-
tive definite system by eliminating the redundancies in order
to establish a direct relationship between the damping matrix
values and the system’s dynamic characteristics. This ap-
proach offers significant advantages over traditional methods,
which often rely on iterative optimization processes or trial-
and-error practices. By not assuming or limiting redundancy
conditions, our methodology allows for broader applicability



TABLE II
COMPARISON OF SOLUTION FOR 5 CARTESIAN COORDINATES

Solution | ¢ Required | ¢ Obtained | Error
0.99 1.000 0.0100

Cc1 0.89 0.873 0.0170
0.78 0.810 0.0300

0.66 0.659 0.0001

0.57 0.566 0.0004

0.99 1.000 0.0100

Ceo 0.89 0.879 0.0110
0.78 0.809 0.0290

0.66 0.649 0.0110

0.57 0.564 0.0060

0.99 1.000 0.0100

Ccs 0.89 0.921 0.0310
0.78 0.777 0.0030

0.66 0.638 0.0220

0.57 0.565 0.0050

across various robotic systems, particularly in systems with
different degrees of freedom.

To demonstrate our methodology, we applied it to a 7-
degree-of-freedom (DoF) Panda robotic arm. Starting with
the Jacobian and mass matrices, we reduced the system by
analytically eliminating the n —m ZP modes of motion. This
involved normalizing the rigid modes vector and formulating
a positive definite system, which simplified the dynamic
equation. The eigenvalues from the resulting matrix were
used to calculate natural frequencies and establish a direct
relationship with the desired damping ratios, allowing us to
derive the required damping parameters.

For the 3 Cartesian coordinates case, where 4 redundant
DoFs were present, we needed to map the stiffness and
damping matrices to the joint space and performed ZP
redundancy reduction in four steps. With desired damping
ratios ¢ = [0.98,0.69,0.59], the method provided damping
parameters C. = diag([78.3,227.0,76.3]) generating a sys-
tem with minimal error with respect to the desired damping
ratios of the system.

In the 5 Cartesian coordinates case, including z,y, z, o,

and [ in the task space, we mapped the matri-
ces to the joint space and reduced redundancy in
two steps. For the desired damping ratios ¢ =

[0.99,0.89,0.78,0.66,0.57], the method yielded damping
parameters C. = diag([192.41,101.26,63.21,1.01,12.73]),
achieving high precision in damping with minimal error.

While imposing damping ratios might suggest an infinite
range of possible frequency values due to the nature of com-
plex eigenvalues, the actual natural frequencies are derived
from the robot’s stiffness and mass matrices, ensuring that
these frequencies are physically meaningful and not arbitrary.
This result confirms the practical viability of the proposed
methodology, which simplifies dynamic response synthesis
and ensures system stability, since our methodology allows
us to directly impose proper eigenvalues on the system.
A detailed comparison was performed with an alternative
method presented in [14], where the Cartesian damping
matrix is computed as:

Dq = 2Q(a)De, K5 Q" (q) 22)

In this equation, Dq represents the damping matrix, Q(q)
is assumed to be the identity matrix (as chosen in [14], Dy,
is the diagonal matrix of the desired damping ratios for each
direction (assuming a decoupled system), and Kgqo is the
diagonal Cartesian stiffness matrix. Using the stiffness values
Kao = diag([2000,3000,1000]) and the desired damping
ratios D¢, = diag([0.98,0.69,0.59]), the resulting damping
matrix is: Dq = diag([87.65 75.59 37.31]). Using these
values, the system’s state matrix A achieved high damping
ratios errors: of 0.22, 0.17, and 0.30 compared to the desired
values. This reveals a significant discrepancy compared to
the required values of 0.98, 0.69 and 0.59. It should also be
noted that the expression in equation (22) does not consider
neither the mass matrix nor the robot configuration.

In contrast, the proposed method achieved significantly
lower errors. For instance, solution C¢; achieved damping
ratios ¢ = [1  0.698 0.588] with errors 0.02, 0.0079, and
0.0019, respectively.

Unlike the approach in [14], which depends only on the
stiffness matrix K4 and remains configuration-independent,
the proposed approach incorporates the stiffness matrix,
Jacobian, and inertia matrix, dynamically adapting to the
robot’s pose. This adaptability is crucial for maintaining
optimal performance across configurations.

Additionally, the proposed method consistently outper-
forms the alternative, with errors below 0.1 and often as low
as 0.01, ensuring better control precision. Figure 2 shows
simulation results that compare the dynamic responses using
three different approaches: the proposed methodology, the
modal iterative method as shown in [6], and the arbitrary
method from equation (22), in blue, red, and yellow col-
ors, respectively. As we can see, the proposed methodol-
ogy and the iterative one are somewhat comparable, while
the arbitrary one had significantly more oscillations and
higher settling time and overshoot, as expected from theory.
Future work may explore hybrid strategies that combine
configuration-dependent adaptability with computational ef-
ficiency, including experimental validation in unstructured
environments.

The proposed methodology offers a more precise, direct
and adaptable solution to synthesize the dynamic response
of robotic manipulators. Its ability to adjust damping pa-
rameters based on the robot’s configuration ensures better
performance and stability, making it a more versatile and
effective approach for modern robotic applications.

VI. CONCLUSION

We have presented and validated an innovative method-
ology for synthesizing the dynamic response of redundant
robots performing Cartesian impedance control. We de-
veloped an approach that allows for direct calculation of
damping parameters from specific damping ratios, bypassing
complex iterative processes, and trial-and-error practices.
Notably, our methodology does not impose or limit the re-
dundancy conditions, making it broadly applicable to various
robotic systems.
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Fig. 2. Dynamic response comparison of a Panda 7 DoF robot subject to
an initial external perturbation using different damping matrices.

This approach ensures that, while imposing damping ratios
can suggest infinite associated frequency values, natural
frequencies are calculated based on the actual physical char-
acteristics of the robot. Our method has proven to be precise,
efficient, and flexible, adapting to different Cartesian degrees
of freedom while significantly enhancing the stability and
predictability of the system. By simplifying implementation,
this approach facilitates innovation in the design and control
of advanced robots, opening new possibilities in various
robotic applications and future research directions.

This methodology could be applied to collaborative robots
in manufacturing or autonomous vehicles, where adaptive
control is important. Potential future research includes inte-
grating this methodology with machine learning algorithms
to enhance adaptability in dynamic environments, further
improving computational efficiency and robotic performance
in real-world applications.

APPENDIX

A. Matrices from the example of impedance control for 3
cartesian DoF (all in SI units)

Cc = diag ([cI Cy Cz])§
K¢ = diag ([2000 3000 1000])

11400.0 13411.0 4445.0
13411.0 15855.0 5231.0
4445.0  5231.0 1734.0

Miv —

3.786 x 108
4.524 x 108
1.463 x 108

1.171 x 107
1.407 x 107
4.524 x 108

9.801 x 106
1.171 x 107
3.786 x 10°

Kiv —

B. Matrices from the example of impedance control for 5
cartesian DoF

Cc:diag([cI Cy C. Cq Cﬁ]);
KC:diag([2000 3000 1000 10 10])

[4]

[5]

[6]

[7]

[8]

[9]

(10]

(1]

[12]

[13]
[14]

2.135 0.393 1.434
0.393 2.027 0.7275
M" = 1.434 0.7275 1.16
0.3642 —0.8317 —0.00223
—0.005979 —0.06497 —0.01013
0.3642 —0.005979
—0.8317  —0.06497
—0.00223 —0.01013
0.8003 0.04175
0.04175 0.02876
1456.0 134.7 1130.0
134.7  354.3 198.9
K" = [1130.0 198.9 907.4
262.9 —210.5 155.6
151.3 —23.84 114.7
262.9 151.3
—210.5 —-23.84
155.6 114.7
309.4 77.24
77.24 34.59
REFERENCES

K. Ogata, Modern Control Engineering, 4th ed. USA: Prentice Hall
PTR, 2001.

N. Hogan, “Impedance control: An approach to manipulation: part i -
theory, part ii - implementation, part iii - applications.” Journ. of Dyn.
Systems, Measurement and Control, vol. 107, no. 1, pp. 1-24, 1985.
0. Khatib, “A unified approach for motion and force control of robot
manipulators: The operational space formulation,” IEEE Journal on
Robotics and Automation, vol. 3, no. 1, pp. 43-53, February 1987.
L. Villani and J. De Schutter, “Force control,” in Springer Handbook
of Robotics, B. Siciliano and O. Khatib, Eds.  Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008, pp. 161-185.

N. Brissonneau, B. He, G. C. Thomas, and L. Sentis, “Biologically-
inspired impedance control with hysteretic damping,” IEEE Control
Systems Letters, vol. 5, no. 5, pp. 1717-1722, 2021.

C. Saldarriaga, N. Chakraborty, and 1. Kao, “Damping selection for
cartesian impedance control with dynamic response modulation,” IEEE
Transactions on Robotics, vol. 38, no. 3, pp. 1915-1924, 2022.

J. Patino, A. Encalada-Davila, J. Sampietro, C. Tutiven,
C. Saldarriaga, and 1. Kao, “Damping ratio prediction for
redundant cartesian impedance-controlled robots using machine
learning techniques,” Mathematics, vol. 11, no. 4, 2023. [Online].
Available: https://www.mdpi.com/2227-7390/11/4/1021

B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: Mod-
elling, Planning and Control, ser. Adv Textbooks in Cont and Signal
Proc.  Springer London, 2010.

S.-F. Chen and I. Kao, “Conservative congruence transformation for
joint and cartesian stiffness matrices of robotic hands and fingers,”
The International Journal of Robotics Research, vol. 19, no. 9, pp.
835-847, 2000.

J. J. Patifio and C. Saldarriaga, “On mapping stiffness and damping in
robotic impedance control: a spatial validation of coupling,” in 2023
American Control Conference (ACC), 2023, pp. 774-779.

C. Saldarriaga and I. Kao, “Impedance Control on Redundant
Manipulators With Zero-Potential-Energy Motions: Theory and
Experimental Validation,” Journal of Mechanisms and Robotics,

vol. 15, no. 5, p. 051010, 11 2022. [Online]. Available:
https://doi.org/10.1115/1.4055966
G. Strang, Introduction to Linear Algebra, 4th ed. Wellesley-

Cambridge Press, 2009.

L. Meirovitch, Fundamentals of Vibrations. McGraw-Hill, 2001.

A. Albu-Schaffer, C. Ott, U. Frese, and G. Hirzinger, “Cartesian
impedance control of redundant robots: recent results with the
dir-light-weight-arms,” in 2003 [EEE International Conference on
Robotics and Automation (Cat. No.03CH37422), vol. 3, Sep. 2003,
pp- 3704-3709 vol.3.



