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Abstract: Extreme weather events increasingly challenge the operational resilience of distribution
systems by introducing dynamic and uncertain security limits (SLs), alongside data sparsity.
Traditional model-based approaches often rely on static assumptions and require complete system
modeling, making them difficult to adapt to rapidly evolving weather-induced constraints. To
address these limitations, this paper proposes a model-free resilience enhancement framework based
on deep reinforcement learning (DRL), integrating real-time weather-aware SL identification and
adaptive dispatch. First, an ensemble Bagging-XGBoost model is developed to classify weather
severity levels and determine whether static or dynamic SLs should be applied, enabling scenario-
adaptive SL switching. Second, a hybrid convolutional neural network—gated recurrent unit (CNN-
GRU) model, enhanced by transfer learning, is designed to accurately estimate dynamic SLs under
varying weather conditions. The CNN captures spatial meteorological patterns, while the GRU
models temporal evolution; transfer learning improves generalization under limited training data.
Third, the dispatch problem is formulated as a constrained Markov decision process (CMDP), and
solved using a primal—dual deep deterministic policy gradient (PD-DDPG) algorithm that explicitly
incorporates SL constraints into the policy learning process. An attention-based meteorological data
reconstruction model is further integrated to enhance the quality of input data and training efficiency.
Case studies on the improved IEEE-123 test feeder demonstrate that the proposed method reduces
average load loss by 23.30% and 12.10% compared to CNN-only and GRU-only baselines,
respectively. Moreover, it achieves an 88.77% improvement in computational efficiency over
conventional model-based resilience strategies, highlighting its robustness and applicability under
limited data and high-impact weather conditions.

Keywords: Grid resilience, extreme weather, security constraints, reinforcement learning, transfer
learning.

1 Introduction
1.1 Background and Motivation

Extreme weather events—such as hurricanes (e.g., Yagi, Harvey) and ice storms (e.g., Uri)—
have caused increasing disruptions to power distribution systems worldwide, leading to widespread
blackouts, equipment failures, and economic losses exceeding hundreds of millions of dollars [1,2].
These events highlight the limitations of conventional recovery strategies, particularly in promptly
restoring critical loads (CLs) under time-varying and uncertain operating conditions [3,4].

To address these challenges, enhancing resilience—defined as the system's ability to withstand,
adapt to, and recover from disturbances—has become a key focus in distribution system operation
and planning. Within the broader resilience enhancement process, real-time adaptive scheduling is
particularly vital, as it governs the dynamic restoration of CLs and the efficient deployment of
limited resources. However, such scheduling efforts are complicated by two interrelated technical
barriers: The time-varying nature of security limits (SLs)—such as voltage and power flow
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boundaries—that respond nonlinearly to environmental conditions (e.g., temperature, wind speed,
icing); and the lack of sufficient data to model or estimate these dynamic SLs under rare, high-
impact disaster events.

1.2 Literature Review

Prior efforts to enhance distribution system resilience under extreme weather conditions can
be categorized into three major groups: (1) model-based methods focusing on physical mechanism
modeling and optimization; (2) scenario-driven strategies relying on expert-defined control logic;
and (3) model-free approaches employing data-driven learning frameworks.

(1) Model-based methods

Model-based approaches typically aim to enhance resilience by explicitly representing system
physics and uncertainty, often requiring detailed knowledge of electrical equipment behavior under
stress conditions. Early efforts focused on pre-disaster planning and post-disaster resource
coordination [4]-[7], including vegetation maintenance [5], allocation of backup lines and
transformers [6], and stochastic dispatch of mobile resources [7]. These methods usually rely on
forecasted outage areas and known system parameters, which may be inaccurate or unavailable
during actual disaster events.

To address the weather-induced variation of security limits (SLs), researchers have explored
data-driven statistical models and physics-informed mechanisms. For instance, [8] and [9]
investigated the relationship between corona loss, icing, and insulator flashover through controlled
laboratory testing, revealing how surface discharge thresholds vary with ambient humidity and
contamination. Building on these experimental insights, [10] and [11] developed statistical
regression models to estimate flashover voltages, while [12] quantified the impact of ice accretion
on line ampacity.

More recently, [13] and [14] proposed mechanism-based dynamic SL models that link
environmental variables to power flow or voltage constraints through analytical formulations. These
studies laid the foundation for online SL adjustment. In particular, [15] introduced a weather-aware
SL identification model using field observations and supervised learning, providing a practical tool
for SL estimation under environmental stress.

However, the main limitations of these model-based approaches are threefold:

1) First, forecast dependency: they require accurate meteorological forecasts to update SLs

in real time, which is difficult to ensure under fast-changing conditions;

2) Second, computational overhead: solving multi-period, nonlinear formulations in large

networks is time-consuming and often incompatible with online decision-making;

3) Third, poor integration with dispatch: although SLs can be forecasted, most studies treat

SL identification and scheduling as two decoupled stages, missing the opportunity to use
SL dynamics for policy refinement.

To incorporate parameter uncertainty into resilience planning, optimization frameworks such
as stochastic programming [16], mixed-integer linear programming [17], distributionally robust
optimization (DRO) [18], and robust stochastic optimization [19] have been adopted. While these
techniques improve robustness by modeling worst-case or probabilistic uncertainty, they typically
depend on scenario enumeration or offline uncertainty sets, which are insufficient for handling the
continuous and real-time evolution of weather-sensitive constraints.

(2) Scenario-driven scheduling strategies

In addition to physics-based modeling, some researchers have proposed control strategies
tailored to specific disaster scenarios, emphasizing operational flexibility and local responsiveness.
These strategies typically do not explicitly model system physics but instead rely on heuristic rules,
rule-based reconfiguration, or offline simulations to guide actions under predefined contingencies.

For example, [20] and [21] explored intentional islanding and microgrid formation as a means
to enhance local autonomy and reduce restoration latency. [22] designed real-time topology
reconfiguration schemes for fast fault isolation and load balancing. [23] proposed coordinated
scheduling of multi-energy systems, incorporating gas and thermal networks to support electric
resilience, while [24] considered the spatiotemporal dispatch of mobile resources such as portable
energy storage or diesel generators.



These scenario-driven approaches are valuable for operational planning and coordination.
However, most of them:
1) Assume fixed SLs or network limits, regardless of evolving environmental conditions;
2) Depend heavily on static rules or threshold-based control, limiting generalizability across
different types and scales of disasters;
3) Do not rely on data-driven adaptation, which is essential when operating under complex
and nonlinear disturbances, such as heatwaves, floods, or ice storms.
Therefore, although scenario-driven methods improve operational flexibility, their limited
treatment of environmental variability and real-time system feedback renders them insufficient for
enhancing dynamic resilience.

(3) Model-free learning-based methods

To overcome the dependence on explicit modeling and scenario enumeration, recent research
has increasingly focused on model-free, data-driven learning techniques, with reinforcement
learning (RL) being a prominent example. RL formulates decision-making as a Markov decision
process (MDP), allowing agents to learn optimal policies via interactions with the environment
without requiring a system model [25,26].

Initial RL applications in power systems involved low-level control such as excitation
regulation, frequency support, and local voltage control [26]. With advances in neural networks and
the increasing availability of big data, RL has been extended to more complex tasks, such as demand
response [27], electricity market bidding [28], and post-disaster restoration planning [29,30].

For instance, [30] employed tabular RL to learn restoration policies in small distribution
systems; however, scalability was limited due to the high dimensionality of the state-action spaces.
To address this, deep reinforcement learning (DRL) emerged as a scalable alternative. Algorithms
such as deep Q-network (DQN) [31], proximal policy optimization (PPO) [32], and deep
deterministic policy gradient (DDPG) [33] support continuous action spaces and policy
approximation using deep neural networks.

Recent work has explored advanced DRL-based resilience strategies. [34] proposed Bayesian
RL to handle epistemic uncertainty in multi-energy microgrids. [35] developed a multi-buffer DQN
to enable resilient topological reconfiguration while maintaining radiality. In [36], an imitation
learning framework addressed stochastic N—k outages with tie-line coordination and reactive power
optimization. In [37], an actor-critic DRL approach was employed for three-phase unbalanced
distribution systems, improving restoration speed without prior model assumptions.

Although these DRL strategies significantly enhance adaptive decision-making, they generally
ignore the weather-dependent evolution of SLs, often assuming static or simplified network
constraints throughout the learning process. This decoupling between environmental dynamics and
operational limits can lead to dispatch strategies that are either too conservative or potentially
infeasible under rapidly changing weather conditions.

In summary, existing literature presents valuable contributions across physical modeling,
operational control, and learning-based scheduling. However, the following limitations persist:

1) Model-based and scenario-driven methods lack adaptability and fail to generalize across
event types;

2) DRL methods offer promising flexibility but do not consider dynamic SLs shaped by real-
time meteorological conditions;

3) To the best of our knowledge, no prior work has developed a unified framework that
integrates weather-aware SL identification with DRL-based resilience dispatch.

1.3 Research Gap and Motivation

Although various methods have been developed to enhance distribution system resilience
under extreme weather, most existing approaches do not consider the joint effect of real-time
weather evolution and dynamic security limits (SLs). In particular, the SLs—such as voltage and
power flow thresholds—are known to vary with environmental conditions, but they are often treated
as static or approximated by offline estimations during the decision-making process. A comparative
review (summarized in Table 1) indicates that:

1) Model-based approaches have attempted to capture weather—SL relationships using



2)

3)

physics-driven or data-driven formulations [8]-[15]. However, these methods generally
separate SL estimation from operational scheduling. The estimated SLs are rarely
integrated into real-time dispatch models, limiting the benefit of dynamic modeling under
rapidly changing conditions.

Learning-based scheduling methods, especially those based on reinforcement learning
(RL), have demonstrated improved adaptability and reduced reliance on system models
[29]-[37]. Nevertheless, most RL-based methods assume fixed SLs throughout training
and execution. The state representations used in these models do not reflect the time-
varying nature of SLs, leading to potential misalignment between environmental changes
and learned policies.

To the best of our knowledge, few studies have attempted to integrate real-time SL
identification with resilience-oriented dispatch within a unified learning framework.
Existing resilience strategies either focus on improving policy adaptability under fixed
constraints or estimate dynamic SLs without embedding them into sequential decision
processes. This methodological separation limits the ability to exploit environment-
dependent SL dynamics to improve dispatch robustness.

In addition, two practical challenges hinder the deployment of dynamic SL-aware strategies.
First, dynamic SL modeling may not always be necessary: when environmental changes are mild,
static SLs may suffice. Determining when to activate dynamic modeling is therefore essential for
computational efficiency. Second, training SL identification models typically requires large datasets
from diverse weather conditions, which may not be available for most distribution systems. Existing
studies often assume the availability of sufficient training samples [38], whereas real-world extreme
weather events are rare and varied.

This study aims to address the above limitations by proposing a unified framework that
integrates weather-aware SL identification with deep reinforcement learning-based resilience
dispatch. The approach is designed to support adaptive scheduling decisions under varying weather
severity, limited training data, and real-time constraints.

Table 1 Comparative Analysis of the Proposed Model against Alternative Resilience-

Enhancing Strategies

About forecasting About decision-making
SLs Dealing with Weather
Consideration . . weather uncertainty
Identification . .
References Weather of uncertainty handling
. method
uncertainty weather-aware based on based on methods
SLs model-free dynamlc based on
scenarios model-free
[8-14] No No - - _

[15] No Yes No - -
[16-19] Yes No - No -
[20-24] No No - - -

[25] Yes No - Yes No
[26-28] No No - - -
[29-37] Yes No - Yes Yes

Proposed Yes Yes Yes Yes Yes

1.4 Contributions

To address these challenges, this paper proposes a deep reinforcement learning-based resilience
enhancement framework that integrates real-time weather-aware SL identification with adaptive
scheduling policies. The contributions are summarized as follows:

1)

2)

3)

A DRL-based model is formulated, where SLs are treated as weather-dependent
parameters embedded in the system state space. The problem is formulated as a
Constrained Markov Decision Process (CMDP) to support sequential and robust policy
learning under uncertainty.

A Bagging-XGBoost ensemble classifier is designed to identify the severity of weather
conditions and determine whether dynamic SL modeling is necessary. This improves
computational efficiency and avoids unnecessary modeling during mild events.

A hybrid CNN-GRU architecture with transfer learning is developed to estimate weather-



aware SLs from historical meteorological data, capturing nonlinear spatiotemporal
dependencies with high accuracy even under limited training data.

4)  An attention-based meteorological data reconstruction module is constructed to enhance
the quality of weather input features, enabling more accurate SL predictions in cases of
missing or sparse data.

1.5 Paper Structure

The remainder of the paper is organized as follows. Section 2 presents the mathematical
formulation and overall problem structure. Section 3 details the proposed framework for weather-
aware SL identification. Section 4 presents simulation results for the improved IEEE-123 feeder and
compares the proposed approach with existing methods. Section 5 concludes the paper and outlines
future research directions.

2 Problem Definition and Mathematical Formulation

This section introduces a DRL-based resilience-enhancing strategy that optimizes load
shedding, adjusts DGs, and reconfigures system lines by distribution system operators (DSOs) under
extreme weather. These actions aim to enhance system resilience by developing strategies to
mitigate grid-wide overloads.

2.1 Weather-Impacted Resilience Challenges in Power Systems

Fig. 1 presents the overall framework for the regular operation of the distribution network
under extreme weather conditions. The framework comprises three main components: the DSO, the
distribution network, and the input/output information necessary for regular operation. First, the
DSO, as the overall coordinator of the distribution network operation, is responsible for managing
and scheduling the network. Second, the distribution network, as defined in this study, includes »
nodes connected by lines (denoted as nn') between adjacent nodes. The network contains load nodes
(denoted as b), CL nodes (denoted as d), and DG nodes (denoted as g). These nodes form the
following sets: Q™ , Q™ Q™ Q% Q. The lines comprise both dispatchable and non-
dispatchable lines, while the DGs include micro gas turbines, wind power, and photovoltaic power

generation. Thus, the set relationships can be represented as n € Q™ , nn'e Q™ (n eQ™,n'e Q") ,

beQ™ cQ™, deQ® < Q™. Finally, the input information required for the regular operation of
the distribution network includes historical and forecast data. The historical data includes weather
data, corresponding distribution network data, and SLs, while the forecast data includes weather
information and SLs. The output information necessary for regular operation consists of the grid's
resilience-enhancing strategy.

Under extreme weather conditions, within the time-space domain of T, the DSO dynamically
adjusts the SLs and operational strategies based on input information and the current status of the
distribution network. This is achieved by scheduling the resources within the network, such as
controlling the on/off status of dispatchable lines, adjusting the output of DGs, and managing load
shedding, in order to mitigate the adverse impacts of extreme weather.

Therefore, this study aims to examine how to efficiently schedule all internal resources of the
distribution network in real-time, taking into account the dynamically changing SLs in response to
weather conditions, with the objective of minimizing the negative consequences of strategy failure
during extreme weather events. The related decisions in this paper are as follows:

(1) At time ¢ € T, the output power of the DGs is P" ;

g

(2) At time ¢ € T, the power consumption of the load is P"};

t,b

(3) At time ¢ € T, the on/off status of the dispatchable line is 0™, where 0™

t,nn' 2 t,nn'

=0 represents

the line being disconnected, and 0™, =1 represents the line being connected.

t,nn'
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Fig. 1 Overall framework for the operation of the distribution network under extreme
weather conditions

2.2 Constrained Markov Decision Process Framework

Under extreme weather conditions, the distribution system may experience severe disruptions,
including damage to network topologies, power levels, DG status, and communication systems. In
such harsh situations, accurately developing resilience-enhancing strategies using model-based
approaches is challenging or even impossible, especially when data measurements and
transmissions in the communication systems are unavailable. Hence, this paper adopts a model-free
approach to enhance grid resilience to ensure the effective implementation of resilience-enhancing
strategies.

The training process for resilience-enhancing strategies can be viewed as a Constrained MDP
(i.e., CMDP), which can be expressed as:

CMDP :{S,A,p(st+l|st,at),R,C|t,‘r eT,seS,ae A} (D

The environment f,, includes weather conditions, grid topologies, power loads (PLs), DG

outputs, and distribution system SLs. It is represented explicitly as:

(1) State Space: The operating state of the distribution system is regarded as a Markov state,
typically comprising the DGs state, the PLs state, the line on-off state, the voltage security limit
(VSL), and the power flow security limit (PFSL) state. Nomenclature is provided in Appendix A.

PDG PPL Olinc Umax ﬁmax

_ t,g > t,b > tnn'> " tn 2T t,n
- DG PL lin nod )
teT,geQ™ beQ ™ nn'e Q™ ne Q™

(2) Action Space: Control actions encompass the dispatching of DGs, PL shedding, and
reconfiguring lines, represented by combinations of >, P"-and o

tg t,nn'*

(3) State Transition: After the action a, is determined, the DSOs interact with the environment

to obtain the next state s,,,, 1.e. s,,; = fis0 (5,.4, ) . Due to the different environments, the transition

from s, to s,,, hasuncertainty, i.e., there is a state transition probability p(s,+l |st,at) .

t+1

(4) Reward Space: Upon taking an action «, and generating a new state s,,, , the environment

t+1 2
provides a reward for taking that particular action. The reward function can be represented as a
normalized (Equation (4)) reward for restoring load, as shown in Equation (3). The reward for load
restoration is defined by the amount of restored load for different levels of importance, as presented
in Equation (5). The agent's goal is to train a policy, denoted as 7, that maps a given state s, to an

action ¢, in order to maximize the expected cumulative reward, as shown in Equation(6) . The
relevant quantities in these equations are obtained through observations from the actual system:
~CL
n=1 3)

’f;t _ U —mll’l(}’;) (4)

max (r; ) —min(r;)



CL _ CL CL pCL
I’; - Z[ETAEQ(‘L wd Ot,d R,d (5)

maxJ(7)=E,_, [Z:H Y } (6)

(5) Constraint Space: The cost function of the CMDP is defined as in Equation (7). The cost
function for violating power balance considers both the tolerance margin &, allowing the system to

self-regulate within a specified range without immediately resorting to load shedding, thus ensuring
the stability of the system's frequency, as shown in Equation (8). The cost function for violating
voltage constraints is represented by the sum of the severities of the violations at the two most
critical nodes among all over-limit nodes, as indicated in Equation (9). This choice of the two most
severely over-limit nodes highlights the impact of high-risk nodes while preventing excessive
interference of cost calculation by outliers from a single node. The cost function for violating flow
constraints is represented by the severity of the violation at the most critical node among all over-
limit nodes, as shown in Equation (10). This selection of the single most severely over-limit node
enables priority triggering of dispatch adjustments for overloaded lines and reduces the risk of
system collapse. In contrast, the cost function that satisfies the constraints is given in Equation (11).

€ =6, 16, TG, (7
pPe _P:bL —§| (8)

g

c , = E .
Lt [ET,gEQD(‘ et

max [0, (U[‘f‘fx -U,, )J +

= 9
Cyy ZleT,neQ max |:0,(Um —U:,nin ):| ( )
€30 = Y gy MaX[ 0, (B — Pl ) | (10)
J, =B | Y e, [<d, v e1,23 (11)

where d, denotes the constraint threshold for violating the power balance, d,denotes the constraint
threshold for violating voltage limits, and d, denotes the constraint threshold for violating flow
limits. ¥ and y, €[0,1]is the discount factor.

The mainstream methods for solving CMDP are divided into constraint policy optimization
and primal-dual optimization. Although the constrained policy optimization algorithm possesses
constraint-handling capabilities, it relies on complex action discretization operations in continuous
action spaces. This process increases computational complexity and undermines the efficiency of
real-time scheduling responses. In contrast, the primal-dual optimization, designed based on the
Actor-Critic architecture, features a core advantage: its Actor network directly outputs continuous
action values without requiring additional discretization steps. This characteristic enables it to
accurately match the continuous adjustment requirements of scheduling variables, thereby
fundamentally avoiding policy biases introduced by action discretization while ensuring the real-
time performance and accuracy of decision-making. Given that the system resilience-enhancing
process involves continuous decision-making and action space, this paper selects DDPG [39].
Additionally, to transform the inequality constraint problem into an unconstrained problem, a
Lagrange multiplier A is introduced, and the problem (as shown in Equations (6) and (11)) is
reformulated as an unconstrained min-max optimization as shown in Equation (12). This approach
is referred to as the primal-dual DDPG algorithm [40] (namely, PD-DDPG).

r}}’/lil(}m;’:lx[:(ﬁ,ﬁ/») (12)
L(mA )= I -3 4 (1, 0 -d) (13)

The PD-DDPG algorithm typically comprises two networks, namely, the actor network and the
critic network, which can be further subdivided into six deep neural networks: the main Actor
network © ,, the reward Critic network ©,, the cost Critic network ©_, the target Actor network

®,, the target reward Critic network © ., and the target cost Critic network ®_ . The primary

u
function of the actor network is to output an action that maximizes the Q-value by learning the
optimal policy for decision-making. Meanwhile, the critic network evaluates the Q-value of an
action within a particular state. The objective functions for the reward and cost Critic networks are
as follows:



1 2
0 )=— - ,a, ;0
L(0,)=52 [0 (5,4,:0,)] (14)
v, =1,+70.(s,,7 (5,30, ):0,)
1 ) 2
LL‘ (®L'): 520[2" _QL‘ (s(),a(),@c ):' (15)
2=, 47,0, (5,7 (5,6, ):0))

where r, and ¢, is the reward and cost value.

Additionally, the policy gradient of x is affected by the Q-values of the reward Critic Q-
network Q. and cost Critic Q-network Q,. The Dual variable 4 is updated with the dual gradient.

Vo, £(0,.2,)= ézoveﬂ [Q, (5,.7(5,:0,):0,)-2,0. (so,n(so;(aﬂ);@c)] (16)

vlﬁ(@)ﬂ,zf):ézo[g(so,ﬁ(so;(aﬂ))—df] (17)

During the training process, network parameters are updated via the uniform sampling of a
minibatch from the experience replay buffer.

Furthermore, the target networks have the same structure as the training networks. After the
actor updates, the parameters of all target networks are slowly tracked by the trained online networks
at a soft update rate x, which can be expressed as:

0, « 0, +(1-x)0O,
0, « k0, +(1-x)0, (18)
0, k0, +(1-x)0,

Considering that the action space encompasses both continuous and discrete actions, the
specific training process for PD-DDPG is outlined in Algorithm 1 as given in Appendix B.

Remarks: In equations (2), (9), and (10), s shall be assigned as static or dynamic SLs
according to the severity of system damage caused by extreme weather. When weather conditions
are extreme (with most weather factors being severe), dynamic SLs are employed to maximize the
effectiveness of resilience-enhancing strategies [15]. Conversely, when weather conditions are
moderately severe (with a few severe weather factors), dynamic SLs may not significantly enhance
effectiveness, and static limits can be utilized to conserve computational resources. The selection of
SLs enables an adaptable environment in the DRL-based model, which in turn affects its
effectiveness. Therefore, an important task in resilience optimization is to determine whether to
select static SLs or dynamic SLs as constraints for the optimization model, based on the severity of
the weather. This process involves first recognizing an ensemble weather pattern (Section 3.2) and
then determining appropriate SLs for the resilience-enhancing model based on the recognized
weather pattern (Section 3.3).

Moreover, accurate recognition of the severity of weather conditions is essential for selecting
the appropriate SLs. Since the ensemble weather pattern is represented by a combination of multiple
weather factors, and different weather factors influence the SLs in distinct ways [41], it is necessary
to reconstruct the meteorological data to accurately identify the weather state used for selecting SLs
(Section 3.1).

Therefore, based on the two aforementioned issues, the framework for enhancing resilience
while considering weather-aware security constraints is illustrated in Fig. 2. The strategy framework
comprises two main parts: the weather-aware SLs identification module and the DRL-based
strategies generation module. The SL's identification method is divided into three parts: first,
meteorological data are reconstructed using an attention mechanism (Section 3.1); second, the
Bagging-XGBoost method is employed for weather pattern recognition (Section 3.2). If the weather
is recognized as severe (output=1), the weather-aware SLs determination model is activated;
otherwise, the resilience strategies generation method is directly applied. Finally, the hybrid CNN-
GRU architecture and KT method are used to decide the dynamic SLs (Section 3.3). The SLs output
by the SLs identification module are input into the resilience strategies generation module. Then,
the main Actor network selects actions, stores samples in the buffer, and samples minibatches to
send to target networks. It updates reward and cost Critic networks via gradients, updates the main
Actor network, and performs soft parameter updates, ultimately producing the resilience-enhancing
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Fig. 2 The framework of resilience enhancement considering weather-aware security
constraints

3 Weather-Aware Security Limit Identification Framework

This section proposes a weather-aware SLs identification model based on meteorological data
reconstruction and ensemble weather pattern recognition, which consists of three parts: an attention-
enhanced meteorological data reconstruction model, an ensemble weather pattern recognition model
based on Bagging-XGBoost, and a hybrid deep learning model for dynamic SLs determination.

3.1 Attention-Enhanced Meteorological Data Reconstruction

The attention mechanism is employed to capture the most important features and suppress
redundant information, extracting meteorological data that has a significant impact on SLs. This
subsection presents the meteorological data for the model described in the preceding section. The
model employs an attention mechanism to assign weights to the input data, filtering out less
influential weather quantities and focusing on vital weather aspects to avoid distraction.

w

Let the i-th weather sequence be denoted as X' = (Sc,wl)?zi,wr) , and the attention weight

can be expressed as:
g =V, tanh(W,h, + U X}") (19)
By applying the softmax function to &/, the sum of attention weights is constrained between 0
and 1:
exp (8; )
J ;
2 exp(e)
By combining the input variables with the attention weights, the final reconstructed weather is
given by:

(20)

i
al,t -

x" =(a1)?l‘”,a2§czw,---,alflw) 1)
3.2 Ensemble Weather Pattern Recognition Based on Bagging-XGBoost

In some mildly severe weather conditions, changes in dynamic SLs are negligible and have
little impact on resilience-enhancing strategies, whereas in extremely severe weather conditions,
changes in dynamic SLs significantly affect these strategies. Therefore, in this subsection, a
Bagging-XGBoost-based ensemble model for weather pattern recognition is developed to identify
the severity of extreme weather events, thereby improving the efficiency of strategy formulation. It
is worth noting that, although this study focuses on ice disaster scenarios, the model's logic for
determining SL types (static or dynamic) can implicitly account for the impacts of different extreme
weather types. This is because the influence of any extreme weather type on the power system is
ultimately reflected through the five key meteorological factors (relative humidity, wind speed,
ambient temperature, freezing rain rate, and ice thickness) that serve as core inputs to the Bagging-
XGBoost model. The severity assessed by the model integrates the comprehensive effects of these
meteorological factors, which in turn encapsulate the system-related risks brought by various



extreme weather types. Feeding the reconstructed weather factors from Section 3.1 into the
Bagging-XGBoost model thus helps determine the weather severity (a synthesis of weather type
impacts and intensity), which enables DSOs to choose the appropriate type of SLs: when the model's
output is 0, static SLs are applied for mildly severe weather; when the output is 1, dynamic SLs are
applied.

Identifying the severity of extreme weather falls under classification and regression tasks
commonly addressed using XGBoost. The implementation process of XGBoost can be described as
follows:

(1) Constructing Objective Function: The objective function of XGBoost minimizes the
weights assigned to the weather samples, which can be expressed as:

obj ==Y\ [ ¢, Tog(£)+(1-¢, Jlog(1-£) ]
DINCITY 22
Q(f,,)=9V,,, +0.59[wf’

(2) Taylor Expansion of Objective Function: Directly solving Equation (22) requires handling
nonlinear expressions. To address this, in each iteration, the objective function undergoes a quadratic
Taylor expansion intended to simplify the solution process for complex objective functions. This
expansion approximates the original function as a quadratic function of the "difference between the
current predicted value and the output of the new tree." Compared to the first-order Taylor expansion,
which only retains linear terms, this second-order expansion additionally incorporates the second
derivative, enabling more accurate fitting of the curvature changes of the original objective function
and reducing approximation errors, which can be expressed as:

L(¢, 8 1 () R (4,0 ) f, (e )+ 2, 17 () (23)

(3) Greedy Addition of Decision Trees: All possible split points are traversed to reduce the
objective function, and the feature and split point with the maximum split gain are selected. The
gain can be expressed as:

w1 (@) (¢") (¢"+6")G
] T2l H 19 +HR+3 CH +HY+g, |
2 2 2

24)

(4) Logistic Regression: Set a threshold value and compare it with the determination
probability of adding up all the trees. When the cumulative value exceeds the threshold, the output
is 1; otherwise, the output is 0.

The Bagging algorithm is introduced and combined with the XGBoost, resulting in Bagging-
XGBoost to mitigate the risk of overfitting of XGBoost, as shown in Fig. 3. The process of Bagging-
XGBoost can be expressed as follows:

(1) Data Sampling: Multiple subsets of data, each of the same size as the original set, are
created from the reconstructed weather training set using bootstrapping, known as a "bootstrap
sample."

(2) Model Training: The XGBoost model is trained on each subset of data.

(3) Ensemble Weather Pattern Recognition: For each result, the individual sub-model results
are combined using a mean voting strategy and compared to a threshold.
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Fig. 3 Schematic diagram of Bagging-XGBoost algorithm

The training process for Bagging-XGBoost is outlined in Algorithm 2 in Appendix B.
3.3 Hybrid Deep Learning for Dynamic Security Limits Determination

This subsection proposes a weather-aware SLs determination model based on a hybrid deep
learning, a hybrid CNN-GRU architecture, and a KT algorithm, as depicted in Fig. 4. This model
can be abstractly represented as a combination of three modules: information input, black-box
determination, and information output. When determining SLs, two critical factors need to be
considered: 1) the spatiotemporal features of the extreme weather and SLs input information in the
information input module, and 2) the determination accuracy of the black-box determination module
when the data density of the input information is sparse (i.e., a system with less extreme weather).
The former must be considered because the SLs of nodes and lines at different locations are affected
differently by the weather, even in the same weather conditions, due to their varying setup positions
(e.g., angles). The latter must be considered because systems are less likely to experience extreme
weather and may lack operational data to achieve satisfactory accuracy.

For 1), the model incorporates a temporal dynamics extraction submodule and a spatial
correlation modeling submodule into the information input module. These two submodules are
referred to together as the hybrid CNN-GRU architecture. The temporal dynamics extraction
submodule extracts temporal features using a GRU based on the input historical SLs, reconstructed
future weather, and historical weather data. The spatial correlation modeling submodule extracts
spatial features based on these data using a CNN.

For 2), the black-box determination module, in addition to applying the information connection
submodule, also utilizes KT to determine SLs, thereby enhancing determination accuracy in cases
of low data density. The detailed formulation will be presented in the following subsections.
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Fig. 4 Weather-aware SLs determination model based on hybrid deep learning

(1) Information Input Module



The information input module contains the temporal dynamics extraction submodule and the
spatial correlation modeling submodule.

1) Temporal Dynamics Extraction: GRU and BIGRU with update and reset gates

Given the abrupt nature of extreme weather changes and the real-time requirements for strategy
formulation, the algorithm must effectively address these challenges. Since the GRU not only
accelerates training but also retains the ability to respond to changes in input sequences rapidly, this
subsection constructs a GRU-based temporal dynamics extraction module consisting of a BIGRU-
based encoder submodule, a temporal attention submodule, and a GRU-based decoder submodule,
as illustrated in Fig. 5. The encoder transforms the input data into hidden states, the temporal
attention module generates the context vector by attending to the hidden states, and the decoder
decodes the context vector to obtain the temporal features.

Encoder Attention Decoder

Attention
layer

. . ( *
Historical _|
data L)

Fig. 5 The structure of the temporal dynamics extraction module

Temporal Features

Reconstructed Weather

Since the encoder needs to capture all relevant information about the input sequence, BIGRU
can simultaneously process the input sequence from both directions, ensuring comprehensive
mining and integration of the information. Therefore, the encoder module utilizes BIGRU with the
following expression:

h, =[h;h; | (25)

h* =(1-2")oh +z" Oh" (26)
B/ tanh (W[ ©Oh[";x, |+b[") 27)
o = (W [hhix, ] es)
i =o (W [h%x, +b") (29)

A temporal attention module is essential after the encoder to improve the model's ability to
capture information when dealing with long data series, such as weather, which can be expressed
as:

p/ =V, tanh(Wps,f1 + Uph,j) , (30)
exp(p,,)
Boi =<7 > (1)
20, ijl exp(p,qj)
¢, =2 B, (32)

Since the decoder outputs temporal features using the mapping function ¢, , its output depends

only on the previously generated information and the contextual information of the temporal
attention. Therefore, it is sufficient to use the GRU. The expression for GRU is similar to BIGRU,
and GRU only requires the forward propagation process, which is given by (25)-(29).

2) Spatial Correlation Modeling: Graph CNN

Given that local variations in extreme weather have a more direct impact on the power grid
and that strategy formulation requires sufficient real-time responsiveness, the algorithm must be



capable of effectively addressing these demands. Since CNNs are not only advantageous in
processing local information but also efficient enough for this task, this subsection constructs a
CNN-based spatial correlation modeling module containing convolutional, pooling layers, and a
spatial attention layer. The convolutional submodule processes the input weather data through filter
convolution and activation functions, and its output is sent to the pooling layer. The pooling
submodule merges the output neuron clusters from the current layer into the next layer of neurons,
thereby outputting spatial features with reduced dimensionality. The spatial attention submodule
extracts the more important spatial features.
The convolutional submodule can be expressed as:

M
dlk,k' =0 (Zm:] Wr{z,k' : Xgﬂnfl,k' + bi" ) . (33)
The pooling submodule selects the maximum pooling method:
MPIi,k' = max dﬁc;lyﬁez,k' . (34)

The spatial attention submodule is similar to the temporal attention module, and the expression
can be referred to as Equations (30)-(32). First, calculate spatial attention scores. Take the spatial
feature matrix from the CNN pooling layer as input. For each spatial position and each spatial
feature dimension, compute a score that reflects the feature's importance for SL estimation. The
calculation involves linear transformations of the previous spatial position's hidden state and the
current position's feature, then uses the hyperbolic tangent activation function to map the result to a
reasonable range. Second, normalize spatial attention weights. A normalized weight closer to 1
indicates that the spatial position has a more significant impact on SL estimation, while a weight
closer to 0 indicates less impact. Third, generate spatially weighted feature outputs. Multiply each
normalized weight by the original spatial feature of the corresponding position. This amplifies
features of high-weight positions and suppresses those of low-weight positions. The resulting
features are the sub-module's final output, which is later combined with temporal features to
determine dynamic SL.

p,=V, tanh(Wps,H +U h ) (35)
€xXp (pi k)
Bovi=r— (36)
X e(p)
¢ = Z::|B3,k,ihk,i (37)

(2) Black-Box Determination Module

The black-box determination module contains the information connection submodule and the
transfer learning protocol submodule.

1) Information Connection: Hybrid CNN-GRU architecture-based feature aggregation

This subsection constructs the information connection submodule, comprising a concatenation
layer and two fully connected layers. The concatenation layer integrates spatial and temporal
features into spatiotemporal features. Finally, the fully connected layer maps spatiotemporal features
into decided SLs using a mapping function.

The objective function of the black-box determination module is expressed by the mean
squared error between the true and the decision-derived SLs and resilience indicators, as follows:

1 s s, ]
L 2 >t -y +292 (38)

The SLs determination module, based solely on a hybrid CNN-GRU architecture, employs four
evaluation metrics to assess the accuracy of various SLs determination methodologies: root mean
square error (RMSE), percent bias (PBIAS), and the coefficient of determination (R?). Lower RMSE,
PBIAS values closer to zero, and R? values closer to one indicate superior model performance and
vice versa [38]. The workflow of the SLs determination module, based solely on a hybrid CNN-
GRU architecture, is provided in Algorithm 3 of Appendix B.
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2) Transfer Learning Protocol: Dynamic ensemble strategy-guided knowledge transferring
algorithm



In this subsection, the transfer learning protocol, i.e., the KT algorithm, is utilized in the black-
box determination process of SLs to address the issue of insufficient training data, such as historical
extreme weather data measurements. Areas with frequent extreme weather occurrences are
designated as a source domain, while areas with infrequent extreme weather are designated as a
target domain. The KT process (Fig. 6) involves four steps:

(D Pre-training of source domain data: The model is pre-trained using SLs from lines or nodes
frequently impacted by extreme weather, denoted as the pre-trained (PT) model, Z .

(2 TL based on PT source domain knowledge: The parameters of the PT model are transferred
and frozen into the corresponding layer of another determination model for systems with infrequent
extreme weather. Subsequently, the parameters of the unfixed layer are fine-tuned via back-
propagation. This model is denoted as the TL model, S.

(3 Online learning based on knowledge of the target domain: The model is trained using data
from a distribution system with infrequent weather extremes and is continuously updated as the
number of weather extremes encountered increases. This model is denoted as the transfer learning
with fixed weight coefficients (OTL-F), F.

@ Online transfer learning based on dynamic ensemble strategy: An adaptive integration
strategy combines transfer and online determination models based on their online performance. The
resulting model is denoted as the OTL model, SF , which can be expressed as:

SF=w-S+v-F (39)

The dynamic update formulas for @ and v are as:

@,1,

1+ 0,71, (40)

n+l —

(41)

where, L is the mean absolute error, and yf = yﬁb a=1,---,m;b=1,---,N } represents the output

labels of the N-th SLs taken from the target domain.
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Fig. 6 The structure of the KT process

The workflow of the SLs determination module, based on hybrid deep learning, is provided in
Algorithm 4 of Appendix B.

4 Case Studies

In this section, the performance of the proposed method is tested in a modified IEEE 123-node



distribution system.
4.1 Benchmark Setup
In this paper, the IEEE-123 node system is modified by adding CLs, DGs, and dispatchable

lines, resulting in the modified IEEE 123-node system, as illustrated in Fig. 7. The data for the CLs
are presented in Table 2, while the data for the DGs are provided in Table 3.
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Fig. 7 The modified IEEE-123 node test system
Table 2 CLs parameters
CL Node Load(kW) CL Node Load(kW)
1 6 100 9 63 59
2 9 68 10 70 195
3 17 83 11 74 73
4 24 153 12 80 174
5 30 160 13 88 159
6 38 217 14 107 160
7 45 86 15 111 249
8 58 37 16 113 45
Table 3 DGs parameters
DG Node Maximum generation(kW) Minimum generation(kW)
1 25 600 60
2 41 580 58
3 52 500 50
4 60 400 40
5 97 600 60
6 110 370 37
7 47 730 73
8 18 340 34
9 77 390 39

Firstly, the study period is set to be 15:00-18:00, coinciding with an ice storm weather event.
DSOs dispatch every 15 minutes, and based on the significance of factors and engineering
practicality, the following five weather factors are adopted. The weather data represent the average
of the forecasts obtained from the weather station for the corresponding period [42], as shown in
Table 4.



Table 4 Reconstructed weather factor

Relative Wind Ambient Freezing rain Ice
Period humidity speed temperature rate thickness

(%) (m/s) (°C) (mm/h) (mm)
T1: 15:00-15:15 76 3.1 -7 4.673 0.387
T2: 15:15-15:30 72 32 -9 3.697 0.698
T3: 15:30-15:45 87 7.9 -11 14.659 2417
Ty: 15:45-16:00 91 5.1 -13 19.985 4.244
T5: 16:00-16:15 90 10 -15 18.785 6.772
Ts: 16:15-16:30 88 9.2 -16 16.895 8.937
T7:16:30-16:45 83 9.5 -17 13.957 10.800
Ts: 16:45-17:00 87 7.5 -18 15.853 12.589
T9: 17:00-17:15 78 4.6 -20 10.478 13.541
T10:17:15-17:30 67 2.1 -21 5.866 13.988
T11:17:30-17:45 83 72 -22 12.578 15.399
T12:17:45-18:00 95 9.1 -23 23.523 18.300

The network parameters of DRL [44,45] are presented in Table I in Appendix C, while the
parameters of the SLs determination model [46] are detailed in Table II in Appendix C.

4.2 Resilience Enhancement Performance

This subsection establishes four approaches for comparative analysis to assess the effectiveness
of the proposed resilience-enhancing strategies. The first approach utilizes the model-based
approach proposed in [15]. The last three use the proposed model-free approach, the difference
being whether meteorological data reconstruction and ensemble weather pattern recognition are
taken into account or not. They have the same SL inputs, which are calculated based on the SL
determination model proposed in this paper.

*  MI1: Model-based resilience-enhancing strategies [15] considering meteorological data
reconstruction and ensemble weather pattern recognition;

e M2: Model-free resilience-enhancing strategies considering meteorological data
reconstruction without ensemble weather pattern recognition;

e M3: Model-free resilience-enhancing strategies considering ensemble weather pattern
recognition without meteorological data reconstruction;

e M4: Model-free resilience-enhancing strategies considering meteorological data
reconstruction and ensemble weather pattern recognition (the method proposed in this paper).

The effectiveness of the model-free approach, the ensemble weather pattern recognition
module, and the meteorological data reconstruction module is evaluated in the following sections.

4.2.1 Model-free DRL vs. Model-based method

Table 5 provides a comparison of resilience enhancement strategies under four distinct methods,
using the mild disaster period (771) and the severe disaster period (712) as representative cases.
Compared to the model-based method (M1), the model-free methods (M2, M3, and M4) not only
exhibit notable differences in line scheduling but also demonstrate a substantial increase in the DGs'
generation.

Furthermore, Fig. 8(a) presents the percentage of non-exceedance and computation time for
the model-free method (M4) and the model-based method (M1). M4 shows a significant increase in
the percentage of non-exceedance across most periods when compared to M1, with only a slight
decline observed in a few intervals. Simultaneously, the computation time for M4 is consistently
lower throughout all periods, with a reduction of 88.77% compared to M1.

These results suggest that, while traditional model-based strategies can enhance resilience, they
fall short in both effectiveness and real-time performance relative to the model-free approach. This
underscores the necessity and efficacy of adopting model-free strategies.



4.2.2 Ensemble Weather Pattern Recognition Accuracy

Table 5 presents a comparison between the method incorporating ensemble weather pattern
recognition (M4) and the method without ensemble weather pattern recognition (M2), revealing no
significant differences in terms of both line scheduling and DGs' generation.

Fig. 8 (b) further illustrates the percentage of non-exceedance and computational time for M4
and M2. In the periods corresponding to non-mild ice disasters (73-712), the percentage of non-
exceedance remains unchanged mainly between the two methods, with a slight increase of 45.30%
in computational time for M4; the average calculation time increases by 14.07 seconds. However,
during the mild ice disaster periods (7’ and 72), while the percentage of non-exceedance shows no
notable difference, the computational time is significantly reduced, with the average calculation
time decreasing by 66.30 seconds, representing an 87.95% drop. The reduction in computational
time during 771 and 7> is notably greater than the increase observed during 73-T1,. It indicates that
the ensemble weather pattern recognition module sees an increase in computational time under non-
mild ice disasters, while its effect of reducing computational time is more significant under mild ice
disasters.

Considering the significantly higher occurrence probability of mild ice disasters in practical
scenarios, the reduction in computational time during these events outweighs the minor increase
observed during non-mild events. Consequently, although the ensemble weather pattern recognition
module marginally increases the computational time for non-mild disasters, it offers a substantial
reduction in computational time during mild ice disasters. These findings underscore the necessity
and effectiveness of the ensemble weather pattern recognition module.

4.2.3 Meteorological Data Reconstruction Efficacy

Table 5 demonstrates that the method incorporating meteorological data reconstruction (M4)
shows no significant differences in line scheduling compared to the method without meteorological
data reconstruction (M3). However, there is a slight but non-negligible increase in DGs' generation
under M4.

Furthermore, Fig. 8(c) compares the percentage of non-exceedance and computation time for
M4 and M3. M4 shows a slight or negligible increase in the rate of non-exceedance, while its
computation time is reduced by 3.67%, corresponding to a decrease of 1.49 seconds compared to
M3.

These findings indicate that the meteorological data reconstruction module, while maintaining
the effectiveness of the final strategy, contributes to a reduction in computation time. This further
validates the necessity and efficacy of incorporating meteorological data reconstruction.

Table 5 Resilience-enhancing strategies under four different approaches at 71 and 71,

. . . The outputs of DGs

Period  Approach  Dispatched lines —y 5 =15 55" 16 pG; DG, DG, DGs  DGo
M1 56-96 379 319 319 329 457 327 420 287 319
I M2 86-87 389 369 346 378 479 348 520 310 329
M3 86-87 403 318 320 398 438 369 512 318 324

M4 86-87 417 348 333 389 466 365 515 326 326

M1 71-114,108-109 186 197 384 187 176 295 175 276 41

- M2 71-114 256 237 442 227 219 335 236 316 62

M3 71-114 236 231 454 257 246 262 215 346 47

M4 71-114 265 276 438 259 236 279 253 346 53




S

b1 1.00 700

'j'é C'io &O oMl eM4 §Up §Down 600 |@M1 OM4 T Up lDow?, 9
g i O

é 095 ' \g 500 R

g 1 = 400

= 090 F} °

° g 300

) =

£ 085 | < 200

8 © 100

-

& 0.80 1 1 1 1 1 1 1 1 1 1 1 TAT& r.2f- AN 1 1? I ] I ff

(a;) The percentaMgle;)nfdnﬁléiexceeded under (a;) Computation time under M1 and M4

100 =3=s 100
M2 oM4 TUp §Down M2 ®M4 1 Up § Down

095 | 79 — 309 80 r

'O

090 I

l i 1
”'J.'.T'.T..'.T.'.T'.TI..

(b1) The percentage of non-exceeded under

Calculation time(s)

Percentage of non-exceeded(%)

(bz) Computation time under M2 and M4

M2 and M4 100
S 1.00 [F9 =9 M3 OM4 T Up. c'» Down M3 ®M4 T Up § Down
2 209 o~
9 @ 80 | 'y
3 L t
g 095 10 _ . z 1
2 * B B
¢ 1 = 60
£ 090 [ 2
= = 40
e E
5 08 S o0 b T %
=
8 0 80 1 1 1 1 1 1 1 1 1 1 1 1 0 l§ l§ 'l 1 'l 'l 1 1 1 1 1
& ' 123 456 7 8 9101112 123 456 7 8 9101112
Period Period
(c1) The percentage of non-exceeded under (c2) Computation time under M3 and M4
M3 and M4

Fig. 8 The percentage of non-exceeded and computation time under different models: (a;)
and (az) for M1 and M4; (b1) and (bz) for M2 and M4, and (c;) and (cz) for M3 and M4

4.3 Security Limit Determination Performance

This subsection establishes three approaches for comparative analyses to assess the
effectiveness of the proposed SLs determination:

*  MS5: An SL determination method considering the hybrid CNN-GRU architecture without
KT;

e M6: An SL determination method considering KT without the hybrid CNN-GRU
architecture;

*  M?7: An SL determination method considering the hybrid CNN-GRU architecture and KT.
In the 12 periods considered, the first two periods are classified by the ensemble weather
pattern recognition module as using static SLs, as verified in Fig. 8. In these periods, the CLs loss,
DGs' output, and associated costs are identical across all three methods. Consequently, a detailed
analysis of 771 and 73 is not provided in this section.
The effectiveness of KT and the hybrid CNN-GRU architecture is evaluated in the following
sections.

(1) Knowledge Transferring Impact

Fig. 9 presents the frequency distribution of the VSL and PFSL evaluation indicators under
different methods, specifically during periods 73, 77, and T11. Compared to M5, M7 demonstrates a
reduction in the average voltage RMSE and PBIAS of 0.015 and 0.338, respectively, along with a
decrease in current RMSE and PBIAS of 0.135 and 0.344. Additionally, the average voltage R? and



current R? increase by 0.147 V and 0.133 A, respectively. These results indicate that the application
of KT significantly enhances the determination accuracy of dynamic SLs.

Furthermore, Fig. 10 shows that during non-light ice disaster periods (73-712). M7 exhibits a
significantly lower percentage of critical load (CL) loss and associated costs compared to M5—
specifically, the average load loss of M7 is 23.30 % lower than that of M5, with the corresponding
costs decreasing by 23.37% —accompanied by higher distributed generation (DG) outputs and costs
for M7. This suggests that SLs derived through KT can train more effective strategies, ensuring that
a greater proportion of CLs remain unaffected by ice disasters.

Collectively, these findings confirm the effectiveness of KT in determining SL and formulating
strategies.

(2) Study of Hybrid CNN-GRU Architecture

In Fig. 9, a comparison between M6 and M7 reveals that M7 achieves reductions in average
voltage RMSE and PBIAS, as well as power flow RMSE and PBIAS, by 0.007, 0.181, 0.073, and
0.194, respectively. Furthermore, average voltage R? and power flow R? increase by 0.084 and 0.070,
respectively. These improvements indicate that the hybrid CNN-GRU architecture enhances the
determination accuracy of dynamic SLs by effectively extracting both temporal and spatial features.

As illustrated in Fig. 10, during periods 73-712, M7 demonstrates a significantly lower
percentage of critical load (CL) loss and associated costs compared to M6—specifically, the average
load loss of M7 is 12.10% lower than that of M6, with the corresponding costs decreasing by
12.11%—while also achieving relatively higher distributed generation (DG) outputs and costs. This
suggests that integrating the hybrid CNN-GRU architecture further mitigates the adverse impacts of
ice storms on the power grid.

Together, these results substantiate the effectiveness of the hybrid CNN-GRU architecture in
enhancing SLs determination and strategies development.
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4.4 Sensitivity Analysis

Many factors can directly or indirectly affect the accuracy of SL determinations. Therefore,
evaluations are conducted to assess the impact of specific factors on the proposed method through
three illustrative cases.

(1) Knowledge Transferring Completeness

In Section 3.3, the proposed KT contains four models, each contributing to different degrees
of completeness in the KT model. The completeness of the PT model alone is 25%. Combining the
PT and TL models yields 50%, and including the PT, TL, and OTL-F models achieves 75%.
Incorporating all four models results in 100% completeness. For the 75% model, both @ and v are
set to 0.5 while @ and v are adjusted to 0.8 and 0.2, respectively, for the 100% model.

Fig. 11 illustrates the metrics for four different completeness levels of the KT models. Initially,
at 25% completeness, the metrics remain static since the PT model is no longer involved in online
training after offline training. As completeness increases to 50%, all metrics outperform those of the
25% model, gradually improving as training iterations proceed. This improvement is attributed to
the prior knowledge from the source domain and the ability to fine-tune the PT model parameters
in the TL model. However, after reaching a certain iteration threshold, the metrics stabilize, possibly
due to disparities in target domain knowledge, limiting further model enhancements.

Meanwhile, at 75% completeness, accuracy surpasses that of the 25% and 50% models with a
sufficiently high number of iterations, owing to the accelerated convergence facilitated by online
learning. Ultimately, at 100% completeness, optimal accuracy is achieved through numerous online
iterations. @ and v for the 100% model are depicted in Fig. 12. Initially, as the number of iterations
is small, @ increases while v decreases due to the superior performance of the 50% model.
Consequently, SL determination accuracy steadily improves as the KT model achieves completeness.
This once again validates the KT model.
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(2) Meteorological Variability

The meteorological elements are reconstructed according to Section 3 to establish various
weather scenarios, where the severity of the disasters increases progressively from M8 to M10.

e MS8: Humidity, wind speed, freezing rain rate, and ice thickness are all at low levels, and the
temperature is -10°C;

e M9: Humidity, wind speed, freezing rain rate, and ice thickness are all at moderate levels,
and the temperature is -15°C;

e M10: Humidity, wind speed, freezing rain rate, and ice cover thickness are all at high levels,

and the temperature is -20°C.
Fig. 13 presents the frequency distribution of PBIAS and R? metrics for different scenarios.

Observing the median lines in the figure, it can be seen that as the severity of the ice disaster
increases, the median and overall distribution of the voltage and power flow evaluation metrics
approach optimal values (PBIAS=0, R?>=1). For voltage, the PBIAS reduces from 0.44 in M8 to
0.40 in M 10, while the R? increases from 0.73 in M8 to 0.75 in M10. For power flow, the PBIAS
decreases from 0.47 in M8 to 0.43 in M10, and the R? rises from 0.72 in M8 to 0.74 in M10,
indicating a gradual improvement in determination accuracy. The reason behind this lies in the
more pronounced characteristics of extreme weather as disaster severity intensifies. This
phenomenon enables more accurate reconstruction of meteorological data and more reliable
ensemble weather pattern recognition, which in turn makes the identified SLs closer to actual
values. Therefore, it can be inferred that SL determinations are more accurate under highly severe
ice disasters than under minor ice disasters.
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(3) Weather Forecast Accuracy

This subsection examines ten levels of weather forecast accuracy, ranging from 80% to 98%,
using the ice disaster data from T12 as input. Fig. 14 illustrates the average cumulative rewards of
the resilience-enhancing strategies for different weather forecast accuracies. As the accuracy of the
weather forecast decreases, the number of iterations gradually increases. When the number of
iterations is too large, there is a high probability that it will hinder the timely execution of resilience-
enhancing strategies in real-time during disasters. Fig. 15 presents the values of the three metrics
for various weather forecast accuracies, using ten nodes and ten lines as examples. There is no
significant discrepancy among the metrics when the accuracy ranges from 96% to 98%. However,
when the determination accuracies fall between 80% and 94%, RMSE and PBIAS show significant
increases, while R? notably decreases. This trend indicates a gradual decrease in the decision-
making accuracy of SLs, potentially rendering resilience-enhancing strategies ineffective.
Consequently, the optimal weather forecast accuracy interval for this study is 96%-98%.

Cumulative reward (10°)

10 20 30 40 50 60 70
Episode

Fig. 14 The average cumulative rewards of the resilience-enhancing strategies for different
weather forecast accuracies
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5 Conclusions

This paper presents an innovative model-free approach to enhance the resilience of distribution
systems by incorporating the variability of SLs in response to fluctuating weather conditions. The
proposed methodology integrates three primary components: a meteorological data reconstruction
model, an ensemble weather pattern recognition model, and a dynamic SLs determination model.
Initially, an attention-enhanced meteorological data reconstruction model is introduced to streamline
the training process by distilling input weather data. Furthermore, scenarios in which weather-aware
SLs are identified, and a Bagging-XGBoost-based ensemble model for weather pattern recognition
is proposed to replace static SLs with dynamic counterparts during periods of extreme weather. A
dynamic SLs determination model is then developed to address the multidimensional characteristics
of input data, recognizing the interaction between spatial and temporal factors through a hybrid
CNN-GRU architecture. To further extend the model's applicability to systems less susceptible to
extreme weather events, a KT approach is employed to decide dynamic SLs in such contexts.

The effectiveness of the proposed model is validated through case studies on a modified IEEE
123-node distribution test system. The simulation results clearly demonstrate the advantages of the
proposed model in terms of computation time and the percentage of non-exceeded SLs compared
to alternative approaches that either disregard weather-aware SLs or utilize model-based methods.
Moreover, the decision-making performance of the proposed SLs determination method, as
evidenced by key metrics and CLs loss ratios, surpasses that of existing techniques.

While the method has been rigorously validated for enhancing resilience and SLs
determination under ice disaster conditions, its application to other extreme weather scenarios
remains underexplored. Future work will focus on developing models tailored to a broader range of
extreme weather conditions and assessing the effectiveness of the proposed method in these diverse
contexts.
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Appendix B

Algorithm 1: PD-DDPG Algorithm

Input: Historical data (weather data, corresponding distribution network data, and SLs) and forecast data
(reconstructed weather data and SLs)
Initialize experience replay buffer, initialize network parameters

1:

10:

11:

12:

13:

16:

17:

Fo

En
d

each iteration period (episode=1 to maximum iterations), do

Initialize a random action exploration process and global state

Fo

each time step t=1 to T, do

Main Actor network selects discrete and continuous actions from the action space
Use a Softmax layer to output the probability distribution of discrete actions

Add action exploration for continuous actions

Combine discrete and continuous actions to form the complete action q,

Main Actor network receives sample (st,at,rt,ct,st +1) and stores it in the experience replay
buffer

Main Actor network randomly samples (so,ao,ro,co,s;) a mini-batch from the experience
replay buffer D and sends it to the target Actor, and reward and cost Critic network

Target Actor network computes the strategy a;, =u (sé;@yﬂ) and sends it to the target reward

and cost Critic network
Target reward and cost Critic network calculates the temporal difference target
y, =1, +70. (s;,,(s(',;@ﬂ);@'r) , 2, =Cp+ 7.0, (si,,(sL;@H;@L,) and sends it to the reward
and cost Critic network
The reward and cost Critic network computes the gradient V4 L.(©,) and V4 L.(©,)

based on Equation (14) and (15), then updates the ©, and ®,
Main Actor network calculates the gradient VQAE(ﬂ',ﬂf) and V Aﬁ(;r,ﬂf) based on
Equation (16) and (17) to updates ©,, and 4,
0, « k0, +(1-x)0),
Perform parameter soft update according to < @ < k@, + (l - K) 0,
G)'# «~ KO, +(1—K)®'#

Qutput: the resilience-enhancing strategy

Algorithm 2: Bagging-XGBoost Algorithm

Input: Reconstructed meteorological data
Initialize parameters
each iteration cycle, episode;=1 to N, do

A S o

11:
12:
13:
14:

15:

For

For

End

each iteration cycle, episode;=1 to N, do
Randomly sample one sample with replay from the reconstructed weather dataset

Accumulate outputs to obtain a data subset

each iteration cycle, episode;=1 to V| , do

For

End

each iteration cycle, episode;=1 to the maximum iteration number, do
For the subset v, , calculate the loss function using equation (22)

Calculate the first and second derivatives using equation (23)
Find the optimal splitting point using equation (24)

Add a tree at this point

Update the loss function

Accumulate outputs and calculate the average



End

16: If the mean > threshold

17: | Output: Dynamic limit
or

18: | Output: Static limit
End

Algorithm 3: SLs determination module based only on hybrid CNN-GRU architecture

Input: Historical data (reconstructed weather data, corresponding distribution network data, and SLs) and future
data (reconstructed weather data and SLs)

1: Initialize parameters for GRU, attention mechanism, and CNN, along with the experience replay buffer
2: For  each training epoch episode;=1 to maximum training value, do
3: For  each batch;=1 to maximum training batches, do
4: Sample a small batch from the experience replay buffer

Compute the forward reset gate, update gate, candidate hidden state, and current hidden
5: . .

state using equations (29) to (26)
6: Compute the backward parameters using equations (29) to (26)
7: Concatenate forward and backward hidden states using equation (25)
8: Compute the attention score using equation (30)
9: Calculate the attention weight using equation (31)
10: Compute the weighted features using equation (32)
11: Compute the relevant parameters for the decoder using equations (26) to (29)
12: Output the temporal features
13: Extract spatial features through convolution layer 1 using equation (33)
14: Reduce dimensions using pooling layer 1 according to equation (34)
15: Extract deeper spatial features through convolution layer 2 using equation (33)
16: Further reduce dimensions using pooling layer 2 based on equation (34)
17: Flatten the spatial features into a 1D vector
18: Compute the weighted spatial features using equations (30) to (32)
19: Output the spatial features
20: Combine the spatial and temporal features through a concatenation layer and a fully

: connected layer
21: Compute the loss function using equation (38)
22 Update the parameters of GRU, attention mechanism, and CNN using the Adam optimizer
) [46]
End

End
Qutput: Decision on the SLs

Algorithm 4: SLs determination module based on hybrid deep learning

Input: Historical data (reconstructed weather data, corresponding distribution network data, and SLs) and future
data (reconstructed weather data and SLs)

1: Extract sample space XnQ X ynﬂ from lines or nodes that frequently experience extreme weather events

2 Initialize the model Z ,S ,F and weights @, and v,

3: Train the model Z using Algorithm 3.1 within the sample space

4: For  n=1 to the maximum number of samples

5 Retrieve the label data, y,f’ = {x?’b,y?’b b=1,---.N } , of the target line or node for the
n-th extreme weather event

6: Update the sample space

7: Retrain the model ' and fine-tune S using Algorithm 3.1 on the updated sample space

8: Calculate the penalty factor based on Equation (41)

9: Calculate the weight using Equation (40)

10: Obtain the model SF output using Equation (39)

End
Output: Decision on the SLs




Appendix C

All experiments are conducted on a hardware platform equipped with an NVIDIA GTX 1050
graphics card and 16 GB of memory.

Table I The parameters of DRL

Parameter Value
Layer type dense
Hidden layer structure 64-128-64
Batch size 128
Number of episodes 100
Optimizer [0,1] normalization
Actor learning rate 0.0001
Critic learning rate 0.0001
Discount factor 0.75
Stochastic forward passes 50

Table II The parameters of the SLs determination model
Type Hyper-parameters

. Filter:8
Convolutional 1(C1) Kernel size:3
Pooling 1(P1) Kernel size:2
Convolutional 2(C2) Filter:16
Kernel size:3
Pooling 2(P2) Kernel size:2
Flatten None
GRU 1(G1) Cell size:32
GRU 2(G2) Cell size:16
Flatten None
Concatenate None
Self-Attention Mechanism None
Flatten None
Fully connected 1(D1) Neuron number:16

Fully connected 2(D2) Neuron number:12




