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Abstract: Extreme weather events increasingly challenge the operational resilience of distribution 

systems by introducing dynamic and uncertain security limits (SLs), alongside data sparsity. 

Traditional model-based approaches often rely on static assumptions and require complete system 

modeling, making them difficult to adapt to rapidly evolving weather-induced constraints. To 

address these limitations, this paper proposes a model-free resilience enhancement framework based 

on deep reinforcement learning (DRL), integrating real-time weather-aware SL identification and 

adaptive dispatch. First, an ensemble Bagging-XGBoost model is developed to classify weather 

severity levels and determine whether static or dynamic SLs should be applied, enabling scenario-

adaptive SL switching. Second, a hybrid convolutional neural network–gated recurrent unit (CNN-

GRU) model, enhanced by transfer learning, is designed to accurately estimate dynamic SLs under 

varying weather conditions. The CNN captures spatial meteorological patterns, while the GRU 

models temporal evolution; transfer learning improves generalization under limited training data. 

Third, the dispatch problem is formulated as a constrained Markov decision process (CMDP), and 

solved using a primal–dual deep deterministic policy gradient (PD-DDPG) algorithm that explicitly 

incorporates SL constraints into the policy learning process. An attention-based meteorological data 

reconstruction model is further integrated to enhance the quality of input data and training efficiency. 

Case studies on the improved IEEE-123 test feeder demonstrate that the proposed method reduces 

average load loss by 23.30% and 12.10% compared to CNN-only and GRU-only baselines, 

respectively. Moreover, it achieves an 88.77% improvement in computational efficiency over 

conventional model-based resilience strategies, highlighting its robustness and applicability under 

limited data and high-impact weather conditions. 

 

Keywords: Grid resilience, extreme weather, security constraints, reinforcement learning, transfer 

learning. 

 

1 Introduction  

1.1 Background and Motivation 

Extreme weather events—such as hurricanes (e.g., Yagi, Harvey) and ice storms (e.g., Uri)—

have caused increasing disruptions to power distribution systems worldwide, leading to widespread 

blackouts, equipment failures, and economic losses exceeding hundreds of millions of dollars [1,2]. 

These events highlight the limitations of conventional recovery strategies, particularly in promptly 

restoring critical loads (CLs) under time-varying and uncertain operating conditions [3,4]. 

To address these challenges, enhancing resilience—defined as the system's ability to withstand, 

adapt to, and recover from disturbances—has become a key focus in distribution system operation 

and planning. Within the broader resilience enhancement process, real-time adaptive scheduling is 

particularly vital, as it governs the dynamic restoration of CLs and the efficient deployment of 

limited resources. However, such scheduling efforts are complicated by two interrelated technical 

barriers: The time-varying nature of security limits (SLs)—such as voltage and power flow 
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boundaries—that respond nonlinearly to environmental conditions (e.g., temperature, wind speed, 

icing); and the lack of sufficient data to model or estimate these dynamic SLs under rare, high-

impact disaster events. 

1.2 Literature Review 

Prior efforts to enhance distribution system resilience under extreme weather conditions can 

be categorized into three major groups: (1) model-based methods focusing on physical mechanism 

modeling and optimization; (2) scenario-driven strategies relying on expert-defined control logic; 

and (3) model-free approaches employing data-driven learning frameworks. 

 

(1) Model-based methods 

Model-based approaches typically aim to enhance resilience by explicitly representing system 

physics and uncertainty, often requiring detailed knowledge of electrical equipment behavior under 

stress conditions. Early efforts focused on pre-disaster planning and post-disaster resource 

coordination [4]–[7], including vegetation maintenance [5], allocation of backup lines and 

transformers [6], and stochastic dispatch of mobile resources [7]. These methods usually rely on 

forecasted outage areas and known system parameters, which may be inaccurate or unavailable 

during actual disaster events. 

To address the weather-induced variation of security limits (SLs), researchers have explored 

data-driven statistical models and physics-informed mechanisms. For instance, [8] and [9] 

investigated the relationship between corona loss, icing, and insulator flashover through controlled 

laboratory testing, revealing how surface discharge thresholds vary with ambient humidity and 

contamination. Building on these experimental insights, [10] and [11] developed statistical 

regression models to estimate flashover voltages, while [12] quantified the impact of ice accretion 

on line ampacity. 

More recently, [13] and [14] proposed mechanism-based dynamic SL models that link 

environmental variables to power flow or voltage constraints through analytical formulations. These 

studies laid the foundation for online SL adjustment. In particular, [15] introduced a weather-aware 

SL identification model using field observations and supervised learning, providing a practical tool 

for SL estimation under environmental stress. 

However, the main limitations of these model-based approaches are threefold: 

1) First, forecast dependency: they require accurate meteorological forecasts to update SLs 

in real time, which is difficult to ensure under fast-changing conditions; 

2) Second, computational overhead: solving multi-period, nonlinear formulations in large 

networks is time-consuming and often incompatible with online decision-making; 

3) Third, poor integration with dispatch: although SLs can be forecasted, most studies treat 

SL identification and scheduling as two decoupled stages, missing the opportunity to use 

SL dynamics for policy refinement. 

To incorporate parameter uncertainty into resilience planning, optimization frameworks such 

as stochastic programming [16], mixed-integer linear programming [17], distributionally robust 

optimization (DRO) [18], and robust stochastic optimization [19] have been adopted. While these 

techniques improve robustness by modeling worst-case or probabilistic uncertainty, they typically 

depend on scenario enumeration or offline uncertainty sets, which are insufficient for handling the 

continuous and real-time evolution of weather-sensitive constraints. 

 

(2) Scenario-driven scheduling strategies 

In addition to physics-based modeling, some researchers have proposed control strategies 

tailored to specific disaster scenarios, emphasizing operational flexibility and local responsiveness. 

These strategies typically do not explicitly model system physics but instead rely on heuristic rules, 

rule-based reconfiguration, or offline simulations to guide actions under predefined contingencies. 

For example, [20] and [21] explored intentional islanding and microgrid formation as a means 

to enhance local autonomy and reduce restoration latency. [22] designed real-time topology 

reconfiguration schemes for fast fault isolation and load balancing. [23] proposed coordinated 

scheduling of multi-energy systems, incorporating gas and thermal networks to support electric 
resilience, while [24] considered the spatiotemporal dispatch of mobile resources such as portable 

energy storage or diesel generators. 



 

 

These scenario-driven approaches are valuable for operational planning and coordination. 

However, most of them: 

1) Assume fixed SLs or network limits, regardless of evolving environmental conditions; 

2) Depend heavily on static rules or threshold-based control, limiting generalizability across 

different types and scales of disasters; 

3) Do not rely on data-driven adaptation, which is essential when operating under complex 

and nonlinear disturbances, such as heatwaves, floods, or ice storms. 

Therefore, although scenario-driven methods improve operational flexibility, their limited 

treatment of environmental variability and real-time system feedback renders them insufficient for 

enhancing dynamic resilience. 

 

(3) Model-free learning-based methods 

To overcome the dependence on explicit modeling and scenario enumeration, recent research 

has increasingly focused on model-free, data-driven learning techniques, with reinforcement 

learning (RL) being a prominent example. RL formulates decision-making as a Markov decision 

process (MDP), allowing agents to learn optimal policies via interactions with the environment 

without requiring a system model [25,26]. 

Initial RL applications in power systems involved low-level control such as excitation 

regulation, frequency support, and local voltage control [26]. With advances in neural networks and 

the increasing availability of big data, RL has been extended to more complex tasks, such as demand 

response [27], electricity market bidding [28], and post-disaster restoration planning [29,30]. 

For instance, [30] employed tabular RL to learn restoration policies in small distribution 

systems; however, scalability was limited due to the high dimensionality of the state-action spaces. 

To address this, deep reinforcement learning (DRL) emerged as a scalable alternative. Algorithms 

such as deep Q-network (DQN) [31], proximal policy optimization (PPO) [32], and deep 

deterministic policy gradient (DDPG) [33] support continuous action spaces and policy 

approximation using deep neural networks. 

Recent work has explored advanced DRL-based resilience strategies. [34] proposed Bayesian 

RL to handle epistemic uncertainty in multi-energy microgrids. [35] developed a multi-buffer DQN 

to enable resilient topological reconfiguration while maintaining radiality. In [36], an imitation 

learning framework addressed stochastic N–k outages with tie-line coordination and reactive power 

optimization. In [37], an actor-critic DRL approach was employed for three-phase unbalanced 

distribution systems, improving restoration speed without prior model assumptions. 

Although these DRL strategies significantly enhance adaptive decision-making, they generally 

ignore the weather-dependent evolution of SLs, often assuming static or simplified network 

constraints throughout the learning process. This decoupling between environmental dynamics and 

operational limits can lead to dispatch strategies that are either too conservative or potentially 

infeasible under rapidly changing weather conditions. 

 

In summary, existing literature presents valuable contributions across physical modeling, 

operational control, and learning-based scheduling. However, the following limitations persist: 

1) Model-based and scenario-driven methods lack adaptability and fail to generalize across 

event types; 

2) DRL methods offer promising flexibility but do not consider dynamic SLs shaped by real-

time meteorological conditions; 

3) To the best of our knowledge, no prior work has developed a unified framework that 

integrates weather-aware SL identification with DRL-based resilience dispatch. 

1.3 Research Gap and Motivation 

Although various methods have been developed to enhance distribution system resilience 

under extreme weather, most existing approaches do not consider the joint effect of real-time 

weather evolution and dynamic security limits (SLs). In particular, the SLs—such as voltage and 

power flow thresholds—are known to vary with environmental conditions, but they are often treated 

as static or approximated by offline estimations during the decision-making process. A comparative 
review (summarized in Table 1) indicates that: 

1) Model-based approaches have attempted to capture weather–SL relationships using 



 

 

physics-driven or data-driven formulations [8]–[15]. However, these methods generally 

separate SL estimation from operational scheduling. The estimated SLs are rarely 

integrated into real-time dispatch models, limiting the benefit of dynamic modeling under 

rapidly changing conditions. 

2) Learning-based scheduling methods, especially those based on reinforcement learning 

(RL), have demonstrated improved adaptability and reduced reliance on system models 

[29]–[37]. Nevertheless, most RL-based methods assume fixed SLs throughout training 

and execution. The state representations used in these models do not reflect the time-

varying nature of SLs, leading to potential misalignment between environmental changes 

and learned policies. 

3) To the best of our knowledge, few studies have attempted to integrate real-time SL 

identification with resilience-oriented dispatch within a unified learning framework. 

Existing resilience strategies either focus on improving policy adaptability under fixed 

constraints or estimate dynamic SLs without embedding them into sequential decision 

processes. This methodological separation limits the ability to exploit environment-

dependent SL dynamics to improve dispatch robustness. 

In addition, two practical challenges hinder the deployment of dynamic SL-aware strategies. 

First, dynamic SL modeling may not always be necessary: when environmental changes are mild, 

static SLs may suffice. Determining when to activate dynamic modeling is therefore essential for 

computational efficiency. Second, training SL identification models typically requires large datasets 

from diverse weather conditions, which may not be available for most distribution systems. Existing 

studies often assume the availability of sufficient training samples [38], whereas real-world extreme 

weather events are rare and varied. 

This study aims to address the above limitations by proposing a unified framework that 

integrates weather-aware SL identification with deep reinforcement learning-based resilience 

dispatch. The approach is designed to support adaptive scheduling decisions under varying weather 

severity, limited training data, and real-time constraints. 

 

Table 1 Comparative Analysis of the Proposed Model against Alternative Resilience-

Enhancing Strategies 

References 

About forecasting About decision-making 

Weather 

uncertainty 

Consideration 

of 

weather-aware 

SLs 

SLs 

Identification 

method 

based on 

model-free 

Dealing with 

weather 

uncertainty 

based on 

dynamic 

scenarios 

Weather 

uncertainty 

handling  

methods 

based on 

model-free 

[8-14] No No - - - 

[15] No Yes No - - 

[16-19] Yes No - No - 

[20-24] No No - - - 

[25] Yes No - Yes No 

[26-28] No No - - - 

[29-37] Yes No - Yes Yes 

Proposed Yes Yes Yes Yes Yes 

1.4 Contributions 

To address these challenges, this paper proposes a deep reinforcement learning-based resilience 

enhancement framework that integrates real-time weather-aware SL identification with adaptive 

scheduling policies. The contributions are summarized as follows: 

1) A DRL-based model is formulated, where SLs are treated as weather-dependent 

parameters embedded in the system state space. The problem is formulated as a 

Constrained Markov Decision Process (CMDP) to support sequential and robust policy 

learning under uncertainty. 

2) A Bagging-XGBoost ensemble classifier is designed to identify the severity of weather 

conditions and determine whether dynamic SL modeling is necessary. This improves 

computational efficiency and avoids unnecessary modeling during mild events. 

3) A hybrid CNN–GRU architecture with transfer learning is developed to estimate weather-



 

 

aware SLs from historical meteorological data, capturing nonlinear spatiotemporal 

dependencies with high accuracy even under limited training data. 

4) An attention-based meteorological data reconstruction module is constructed to enhance 

the quality of weather input features, enabling more accurate SL predictions in cases of 

missing or sparse data. 

1.5 Paper Structure 

The remainder of the paper is organized as follows. Section 2 presents the mathematical 

formulation and overall problem structure. Section 3 details the proposed framework for weather-

aware SL identification. Section 4 presents simulation results for the improved IEEE-123 feeder and 

compares the proposed approach with existing methods. Section 5 concludes the paper and outlines 

future research directions. 

2 Problem Definition and Mathematical Formulation 

This section introduces a DRL-based resilience-enhancing strategy that optimizes load 

shedding, adjusts DGs, and reconfigures system lines by distribution system operators (DSOs) under 

extreme weather. These actions aim to enhance system resilience by developing strategies to 

mitigate grid-wide overloads. 

2.1 Weather-Impacted Resilience Challenges in Power Systems 

Fig. 1 presents the overall framework for the regular operation of the distribution network 

under extreme weather conditions. The framework comprises three main components: the DSO, the 

distribution network, and the input/output information necessary for regular operation. First, the 

DSO, as the overall coordinator of the distribution network operation, is responsible for managing 

and scheduling the network. Second, the distribution network, as defined in this study, includes n 

nodes connected by lines (denoted as nn') between adjacent nodes. The network contains load nodes 

(denoted as b), CL nodes (denoted as d), and DG nodes (denoted as g). These nodes form the 

following sets: bus , line , PL , CL , DG  . The lines comprise both dispatchable and non-

dispatchable lines, while the DGs include micro gas turbines, wind power, and photovoltaic power 

generation. Thus, the set relationships can be represented as busn   , ( )line bus' , ' nnn n n      , 

PL busb     , CL PLd     . Finally, the input information required for the regular operation of 

the distribution network includes historical and forecast data. The historical data includes weather 

data, corresponding distribution network data, and SLs, while the forecast data includes weather 

information and SLs. The output information necessary for regular operation consists of the grid's 

resilience-enhancing strategy. 

Under extreme weather conditions, within the time-space domain of T, the DSO dynamically 

adjusts the SLs and operational strategies based on input information and the current status of the 

distribution network. This is achieved by scheduling the resources within the network, such as 

controlling the on/off status of dispatchable lines, adjusting the output of DGs, and managing load 

shedding, in order to mitigate the adverse impacts of extreme weather. 

Therefore, this study aims to examine how to efficiently schedule all internal resources of the 

distribution network in real-time, taking into account the dynamically changing SLs in response to 

weather conditions, with the objective of minimizing the negative consequences of strategy failure 

during extreme weather events. The related decisions in this paper are as follows:  

(1) At time Tt  , the output power of the DGs is DG

,t gP ; 

(2) At time Tt  , the power consumption of the load is PL

,t bP ;  

(3) At time Tt  , the on/off status of the dispatchable line is line

, 't nn , where line

, ' 0t nn =  represents 

the line being disconnected, and line

, ' 1t nn =  represents the line being connected. 
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Fig. 1 Overall framework for the operation of the distribution network under extreme 

weather conditions 

2.2 Constrained Markov Decision Process Framework 

Under extreme weather conditions, the distribution system may experience severe disruptions, 

including damage to network topologies, power levels, DG status, and communication systems. In 

such harsh situations, accurately developing resilience-enhancing strategies using model-based 

approaches is challenging or even impossible, especially when data measurements and 

transmissions in the communication systems are unavailable. Hence, this paper adopts a model-free 

approach to enhance grid resilience to ensure the effective implementation of resilience-enhancing 

strategies. 

The training process for resilience-enhancing strategies can be viewed as a Constrained MDP 

(i.e., CMDP), which can be expressed as: 

 ( ) 1CMDP , , , , , , , ,t t tp s s a t s a+=   S A R C T S A  (1) 

The environment DSOf  includes weather conditions, grid topologies, power loads (PLs), DG 

outputs, and distribution system SLs. It is represented explicitly as: 

(1) State Space: The operating state of the distribution system is regarded as a Markov state, 

typically comprising the DGs state, the PLs state, the line on-off state, the voltage security limit 

(VSL), and the power flow security limit (PFSL) state. Nomenclature is provided in Appendix A. 

 

DG PL line max max

, , , ' , ,

DG PL line node
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  
=  

      Τ


 (2) 

(2) Action Space: Control actions encompass the dispatching of DGs, PL shedding, and 

reconfiguring lines, represented by combinations of DG

,t gP , PL

,t bP and line

, 't nn . 

(3) State Transition: After the action ta  is determined, the DSOs interact with the environment 

to obtain the next state 1ts + , i.e. ( )1 DSO ,t t ts f s a+ = . Due to the different environments, the transition 

from ts  to 1ts +  has uncertainty, i.e., there is a state transition probability ( )1 ,t t tp s s a+ . 

(4) Reward Space: Upon taking an action ta  and generating a new state 1ts + , the environment 

provides a reward for taking that particular action. The reward function can be represented as a 

normalized (Equation (4)) reward for restoring load, as shown in Equation (3). The reward for load 

restoration is defined by the amount of restored load for different levels of importance, as presented 

in Equation (5). The agent's goal is to train a policy, denoted as  , that maps a given state ts to an 

action ta  in order to maximize the expected cumulative reward, as shown in Equation(6) . The 

relevant quantities in these equations are obtained through observations from the actual system: 

 CLˆ
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(5) Constraint Space: The cost function of the CMDP is defined as in Equation (7). The cost 

function for violating power balance considers both the tolerance margin  , allowing the system to 

self-regulate within a specified range without immediately resorting to load shedding, thus ensuring 

the stability of the system's frequency, as shown in Equation (8). The cost function for violating 

voltage constraints is represented by the sum of the severities of the violations at the two most 

critical nodes among all over-limit nodes, as indicated in Equation (9). This choice of the two most 

severely over-limit nodes highlights the impact of high-risk nodes while preventing excessive 

interference of cost calculation by outliers from a single node. The cost function for violating flow 

constraints is represented by the severity of the violation at the most critical node among all over-

limit nodes, as shown in Equation (10). This selection of the single most severely over-limit node 

enables priority triggering of dispatch adjustments for overloaded lines and reduces the risk of 

system collapse. In contrast, the cost function that satisfies the constraints is given in Equation (11). 

 1, 2, 3,t t t tc c c c= + +  (7) 
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where 1d denotes the constraint threshold for violating the power balance, 2d denotes the constraint 

threshold for violating voltage limits, and 3d  denotes the constraint threshold for violating flow 

limits.   and c [0,1] is the discount factor. 

The mainstream methods for solving CMDP are divided into constraint policy optimization 

and primal-dual optimization. Although the constrained policy optimization algorithm possesses 

constraint-handling capabilities, it relies on complex action discretization operations in continuous 

action spaces. This process increases computational complexity and undermines the efficiency of 

real-time scheduling responses. In contrast, the primal-dual optimization, designed based on the 

Actor-Critic architecture, features a core advantage: its Actor network directly outputs continuous 

action values without requiring additional discretization steps. This characteristic enables it to 

accurately match the continuous adjustment requirements of scheduling variables, thereby 

fundamentally avoiding policy biases introduced by action discretization while ensuring the real-

time performance and accuracy of decision-making. Given that the system resilience-enhancing 

process involves continuous decision-making and action space, this paper selects DDPG [39]. 

Additionally, to transform the inequality constraint problem into an unconstrained problem, a 

Lagrange multiplier    is introduced, and the problem (as shown in Equations (6) and (11)) is 

reformulated as an unconstrained min-max optimization as shown in Equation (12). This approach 

is referred to as the primal-dual DDPG algorithm [40] (namely, PD-DDPG). 

 ( )
0

min max ,
f

f
 

 


  (12) 

 ( ) ( )3

1
, ( ) ( )

fcff f fJ J d    
=

= − −  (13) 

The PD-DDPG algorithm typically comprises two networks, namely, the actor network and the 

critic network, which can be further subdivided into six deep neural networks: the main Actor 

network  , the reward Critic network r , the cost Critic network c , the target Actor network 

'

  ,  the target reward Critic network '

r  , and the target cost Critic network '

c  . The primary 

function of the actor network is to output an action that maximizes the Q-value by learning the 

optimal policy for decision-making. Meanwhile, the critic network evaluates the Q-value of an 
action within a particular state. The objective functions for the reward and cost Critic networks are 

as follows: 
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where or and oc is the reward and cost value. 

Additionally, the policy gradient of   is affected by the Q-values of the reward Critic Q-

network rQ and cost Critic Q-network cQ . The Dual variable   is updated with the dual gradient.  

 ( ) ( )( ) ( )( )
1

, ; ; , ; ;, r o o r f c o of co
Q s s Q s s

O      
  =    −  
   (16) 

 ( ) ( )( )
1

, , ;o o fof cQ s s d
O

      −=
   (17) 

During the training process, network parameters are updated via the uniform sampling of a 

minibatch from the experience replay buffer. 

Furthermore, the target networks have the same structure as the training networks. After the 

actor updates, the parameters of all target networks are slowly tracked by the trained online networks 

at a soft update rate , which can be expressed as:  
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 (18) 

Considering that the action space encompasses both continuous and discrete actions, the 

specific training process for PD-DDPG is outlined in Algorithm 1 as given in Appendix B. 

Remarks: In equations (2), (9), and (10),    shall be assigned as static or dynamic SLs 

according to the severity of system damage caused by extreme weather. When weather conditions 

are extreme (with most weather factors being severe), dynamic SLs are employed to maximize the 

effectiveness of resilience-enhancing strategies [15]. Conversely, when weather conditions are 

moderately severe (with a few severe weather factors), dynamic SLs may not significantly enhance 

effectiveness, and static limits can be utilized to conserve computational resources. The selection of 

SLs enables an adaptable environment in the DRL-based model, which in turn affects its 

effectiveness. Therefore, an important task in resilience optimization is to determine whether to 

select static SLs or dynamic SLs as constraints for the optimization model, based on the severity of 

the weather. This process involves first recognizing an ensemble weather pattern (Section 3.2) and 

then determining appropriate SLs for the resilience-enhancing model based on the recognized 

weather pattern (Section 3.3). 

Moreover, accurate recognition of the severity of weather conditions is essential for selecting 

the appropriate SLs. Since the ensemble weather pattern is represented by a combination of multiple 

weather factors, and different weather factors influence the SLs in distinct ways [41], it is necessary 

to reconstruct the meteorological data to accurately identify the weather state used for selecting SLs 

(Section 3.1). 

Therefore, based on the two aforementioned issues, the framework for enhancing resilience 

while considering weather-aware security constraints is illustrated in Fig. 2. The strategy framework 

comprises two main parts: the weather-aware SLs identification module and the DRL-based 

strategies generation module. The SL's identification method is divided into three parts: first, 

meteorological data are reconstructed using an attention mechanism (Section 3.1); second, the 

Bagging-XGBoost method is employed for weather pattern recognition (Section 3.2). If the weather 

is recognized as severe (output=1), the weather-aware SLs determination model is activated; 

otherwise, the resilience strategies generation method is directly applied. Finally, the hybrid CNN-

GRU architecture and KT method are used to decide the dynamic SLs (Section 3.3). The SLs output 

by the SLs identification module are input into the resilience strategies generation module. Then, 

the main Actor network selects actions, stores samples in the buffer, and samples minibatches to 

send to target networks. It updates reward and cost Critic networks via gradients, updates the main 

Actor network, and performs soft parameter updates, ultimately producing the resilience-enhancing 



 

 

strategies.  
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Fig. 2 The framework of resilience enhancement considering weather-aware security 

constraints 

3 Weather-Aware Security Limit Identification Framework 

This section proposes a weather-aware SLs identification model based on meteorological data 

reconstruction and ensemble weather pattern recognition, which consists of three parts: an attention-

enhanced meteorological data reconstruction model, an ensemble weather pattern recognition model 

based on Bagging-XGBoost, and a hybrid deep learning model for dynamic SLs determination. 

3.1 Attention-Enhanced Meteorological Data Reconstruction 

The attention mechanism is employed to capture the most important features and suppress 

redundant information, extracting meteorological data that has a significant impact on SLs. This 

subsection presents the meteorological data for the model described in the preceding section. The 

model employs an attention mechanism to assign weights to the input data, filtering out less 

influential weather quantities and focusing on vital weather aspects to avoid distraction. 

Let the 𝑖-th weather sequence be denoted as ( )w w w w

,1 ,2 ,x , , ,i i i i Tx x x=


 , and the attention weight 

can be expressed as: 

 ( )wε tanh h xi

t t i  = +V W U


 (19) 

By applying the softmax function to i

t , the sum of attention weights is constrained between 0 

and 1: 

 
( )

( )
1,

1

exp ε
α

exp ε

i

ti

t J j

tj=

=


 (20) 

By combining the input variables with the attention weights, the final reconstructed weather is 

given by: 

 ( )w w w w

1 1 2 2 I I, , ,x x x  =x


  (21) 

3.2 Ensemble Weather Pattern Recognition Based on Bagging-XGBoost 

In some mildly severe weather conditions, changes in dynamic SLs are negligible and have 

little impact on resilience-enhancing strategies, whereas in extremely severe weather conditions, 

changes in dynamic SLs significantly affect these strategies. Therefore, in this subsection, a 

Bagging-XGBoost-based ensemble model for weather pattern recognition is developed to identify 

the severity of extreme weather events, thereby improving the efficiency of strategy formulation. It 

is worth noting that, although this study focuses on ice disaster scenarios, the model's logic for 

determining SL types (static or dynamic) can implicitly account for the impacts of different extreme 

weather types. This is because the influence of any extreme weather type on the power system is 

ultimately reflected through the five key meteorological factors (relative humidity, wind speed, 

ambient temperature, freezing rain rate, and ice thickness) that serve as core inputs to the Bagging-

XGBoost model. The severity assessed by the model integrates the comprehensive effects of these 

meteorological factors, which in turn encapsulate the system-related risks brought by various 



 

 

extreme weather types. Feeding the reconstructed weather factors from Section 3.1 into the 

Bagging-XGBoost model thus helps determine the weather severity (a synthesis of weather type 

impacts and intensity), which enables DSOs to choose the appropriate type of SLs: when the model's 

output is 0, static SLs are applied for mildly severe weather; when the output is 1, dynamic SLs are 

applied. 

Identifying the severity of extreme weather falls under classification and regression tasks 

commonly addressed using XGBoost. The implementation process of XGBoost can be described as 

follows: 

(1) Constructing Objective Function: The objective function of XGBoost minimizes the 

weights assigned to the weather samples, which can be expressed as: 
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V 0.5

q q

v v v vv

vv
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f
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   

 

=

  = − + − −
 


+ 


 = +




  (22) 

(2) Taylor Expansion of Objective Function:  Directly solving Equation (22) requires handling 

nonlinear expressions. To address this, in each iteration, the objective function undergoes a quadratic 

Taylor expansion intended to simplify the solution process for complex objective functions. This 

expansion approximates the original function as a quadratic function of the "difference between the 

current predicted value and the output of the new tree." Compared to the first-order Taylor expansion, 

which only retains linear terms, this second-order expansion additionally incorporates the second 

derivative, enabling more accurate fitting of the curvature changes of the original objective function 

and reducing approximation errors, which can be expressed as:  

 ( ) ( )( ) ( )( ) ( ) ( )
1 1 1 1 1 1 1 1 1

1 1w w 2 wˆ ˆ, ,
q q

v v q v v v v q v v q vL f x L h f x g f x   
− −

+  + +  (23) 

(3) Greedy Addition of Decision Trees: All possible split points are traversed to reduce the 

objective function, and the feature and split point with the maximum split gain are selected. The 

gain can be expressed as: 

 
( ) ( ) ( )

2 2
L R L R 2

Lgain

1L R L R

2 2 2

1
G

2

G G G G G

H H H H


  

 +
 = + − −
 + + + +
 

 (24) 

(4) Logistic Regression: Set a threshold value and compare it with the determination 

probability of adding up all the trees. When the cumulative value exceeds the threshold, the output 

is 1; otherwise, the output is 0. 

The Bagging algorithm is introduced and combined with the XGBoost, resulting in Bagging-

XGBoost to mitigate the risk of overfitting of XGBoost, as shown in Fig. 3. The process of Bagging-

XGBoost can be expressed as follows: 

(1) Data Sampling: Multiple subsets of data, each of the same size as the original set, are 

created from the reconstructed weather training set using bootstrapping, known as a "bootstrap 

sample." 

(2) Model Training: The XGBoost model is trained on each subset of data. 

(3) Ensemble Weather Pattern Recognition: For each result, the individual sub-model results 

are combined using a mean voting strategy and compared to a threshold. 
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Fig. 3 Schematic diagram of Bagging-XGBoost algorithm 

 

The training process for Bagging-XGBoost is outlined in Algorithm 2 in Appendix B. 

3.3 Hybrid Deep Learning for Dynamic Security Limits Determination 

This subsection proposes a weather-aware SLs determination model based on a hybrid deep 

learning, a hybrid CNN-GRU architecture, and a KT algorithm, as depicted in Fig. 4. This model 

can be abstractly represented as a combination of three modules: information input, black-box 

determination, and information output. When determining SLs, two critical factors need to be 

considered: 1) the spatiotemporal features of the extreme weather and SLs input information in the 

information input module, and 2) the determination accuracy of the black-box determination module 

when the data density of the input information is sparse (i.e., a system with less extreme weather). 

The former must be considered because the SLs of nodes and lines at different locations are affected 

differently by the weather, even in the same weather conditions, due to their varying setup positions 

(e.g., angles). The latter must be considered because systems are less likely to experience extreme 

weather and may lack operational data to achieve satisfactory accuracy. 

For 1), the model incorporates a temporal dynamics extraction submodule and a spatial 

correlation modeling submodule into the information input module. These two submodules are 

referred to together as the hybrid CNN-GRU architecture. The temporal dynamics extraction 

submodule extracts temporal features using a GRU based on the input historical SLs, reconstructed 

future weather, and historical weather data. The spatial correlation modeling submodule extracts 

spatial features based on these data using a CNN. 

For 2), the black-box determination module, in addition to applying the information connection 

submodule, also utilizes KT to determine SLs, thereby enhancing determination accuracy in cases 

of low data density. The detailed formulation will be presented in the following subsections. 
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Fig. 4 Weather-aware SLs determination model based on hybrid deep learning 

 

(1) Information Input Module 



 

 

 

The information input module contains the temporal dynamics extraction submodule and the 

spatial correlation modeling submodule. 

 

1) Temporal Dynamics Extraction: GRU and BIGRU with update and reset gates 

 

Given the abrupt nature of extreme weather changes and the real-time requirements for strategy 

formulation, the algorithm must effectively address these challenges. Since the GRU not only 

accelerates training but also retains the ability to respond to changes in input sequences rapidly, this 

subsection constructs a GRU-based temporal dynamics extraction module consisting of a BIGRU-

based encoder submodule, a temporal attention submodule, and a GRU-based decoder submodule, 

as illustrated in Fig. 5. The encoder transforms the input data into hidden states, the temporal 

attention module generates the context vector by attending to the hidden states, and the decoder 

decodes the context vector to obtain the temporal features. 
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Fig. 5 The structure of the temporal dynamics extraction module 

 

Since the encoder needs to capture all relevant information about the input sequence, BIGRU 

can simultaneously process the input sequence from both directions, ensuring comprehensive 

mining and integration of the information. Therefore, the encoder module utilizes BIGRU with the 

following expression: 

 b f;t t t
 =  h h h  (25) 

 ( )f/b f/b f/b f/b f/b

11t t t t t−= − +h z h z h  (26) 

 ( )f/b f/b f/b f/b f/b

1h h
tanh ;tt t t t−

 = + h W r h x b   (27) 

 ( )f/b f/b f/b f/b

z 1 z;t t t −
 = + z W h x b  (28) 

 ( )f/b f/b f/b f/b

1;t r t t r −
 = + r W h x b  (29) 

 

A temporal attention module is essential after the encoder to improve the model's ability to 

capture information when dealing with long data series, such as weather, which can be expressed 

as: 

 ( )1tanhj j

t p p t p t−= +p V W s U h , (30) 

 
( )

( )
,

2, ,

,1

exp
β

exp

j t

t j J

t jj=

=



p

p
, (31) 

 2, , ,1
β

J

t t j t jj=
= c h . (32) 

Since the decoder outputs temporal features using the mapping function 1 , its output depends 

only on the previously generated information and the contextual information of the temporal 

attention. Therefore, it is sufficient to use the GRU. The expression for GRU is similar to BIGRU, 

and GRU only requires the forward propagation process, which is given by (25)-(29). 

 

2) Spatial Correlation Modeling: Graph CNN  

 

Given that local variations in extreme weather have a more direct impact on the power grid 

and that strategy formulation requires sufficient real-time responsiveness, the algorithm must be 



 

 

capable of effectively addressing these demands. Since CNNs are not only advantageous in 

processing local information but also efficient enough for this task, this subsection constructs a 

CNN-based spatial correlation modeling module containing convolutional, pooling layers, and a 

spatial attention layer. The convolutional submodule processes the input weather data through filter 

convolution and activation functions, and its output is sent to the pooling layer. The pooling 

submodule merges the output neuron clusters from the current layer into the next layer of neurons, 

thereby outputting spatial features with reduced dimensionality. The spatial attention submodule 

extracts the more important spatial features. 

The convolutional submodule can be expressed as: 

 ( )0

, ' , ' 1, ' '1

Ml l l

k k m k k m k km
 + −=

=  +d W x b . (33) 

The pooling submodule selects the maximum pooling method: 

 
1 2

1

, ' , 'maxl l

k k k e e k

−

 +=MP d . (34) 

The spatial attention submodule is similar to the temporal attention module, and the expression 

can be referred to as Equations (30)-(32). First, calculate spatial attention scores. Take the spatial 

feature matrix from the CNN pooling layer as input. For each spatial position and each spatial 

feature dimension, compute a score that reflects the feature's importance for SL estimation. The 

calculation involves linear transformations of the previous spatial position's hidden state and the 

current position's feature, then uses the hyperbolic tangent activation function to map the result to a 

reasonable range. Second, normalize spatial attention weights. A normalized weight closer to 1 

indicates that the spatial position has a more significant impact on SL estimation, while a weight 

closer to 0 indicates less impact. Third, generate spatially weighted feature outputs. Multiply each 

normalized weight by the original spatial feature of the corresponding position. This amplifies 

features of high-weight positions and suppresses those of low-weight positions. The resulting 

features are the sub-module's final output, which is later combined with temporal features to 

determine dynamic SL.  

 ( )1tanhi i

k p p k p k−= +p V W s U h  (35) 
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 3, , ,1
β

I

k k i k ii=
= c h  (37) 

(2) Black-Box Determination Module 

 

The black-box determination module contains the information connection submodule and the 

transfer learning protocol submodule. 

 

1) Information Connection: Hybrid CNN-GRU architecture-based feature aggregation 

 

This subsection constructs the information connection submodule, comprising a concatenation 

layer and two fully connected layers. The concatenation layer integrates spatial and temporal 

features into spatiotemporal features. Finally, the fully connected layer maps spatiotemporal features 

into decided SLs using a mapping function. 

The objective function of the black-box determination module is expressed by the mean 

squared error between the true and the decision-derived SLs and resilience indicators, as follows: 

 
2 2

1 2

1 1

2 2

SL SL str strL y y y y
 

= − + − 


. (38) 

The SLs determination module, based solely on a hybrid CNN-GRU architecture, employs four 

evaluation metrics to assess the accuracy of various SLs determination methodologies: root mean 

square error (RMSE), percent bias (PBIAS), and the coefficient of determination (R2). Lower RMSE, 

PBIAS values closer to zero, and R2 values closer to one indicate superior model performance and 

vice versa [38]. The workflow of the SLs determination module, based solely on a hybrid CNN-

GRU architecture, is provided in Algorithm 3 of Appendix B. 

 

2) Transfer Learning Protocol: Dynamic ensemble strategy-guided knowledge transferring 

algorithm 



 

 

 

In this subsection, the transfer learning protocol, i.e., the KT algorithm, is utilized in the black-

box determination process of SLs to address the issue of insufficient training data, such as historical 

extreme weather data measurements. Areas with frequent extreme weather occurrences are 

designated as a source domain, while areas with infrequent extreme weather are designated as a 

target domain. The KT process (Fig. 6) involves four steps: 

① Pre-training of source domain data: The model is pre-trained using SLs from lines or nodes 

frequently impacted by extreme weather, denoted as the pre-trained (PT) model,  . 

② TL based on PT source domain knowledge: The parameters of the PT model are transferred 

and frozen into the corresponding layer of another determination model for systems with infrequent 

extreme weather. Subsequently, the parameters of the unfixed layer are fine-tuned via back-

propagation. This model is denoted as the TL model,  . 

③ Online learning based on knowledge of the target domain: The model is trained using data 

from a distribution system with infrequent weather extremes and is continuously updated as the 

number of weather extremes encountered increases. This model is denoted as the transfer learning 

with fixed weight coefficients (OTL-F),  . 

④ Online transfer learning based on dynamic ensemble strategy: An adaptive integration 

strategy combines transfer and online determination models based on their online performance. The 

resulting model is denoted as the OTL model,  , which can be expressed as: 

  =  +   (39) 

The dynamic update formulas for   and   are as: 
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where, 𝐿 is the mean absolute error, and  ,y 1, , ; 1, ,n a b a n b N = = =   represents the output 

labels of the 𝑁-th SLs taken from the target domain. 
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Fig. 6 The structure of the KT process 

 

The workflow of the SLs determination module, based on hybrid deep learning, is provided in 

Algorithm 4 of Appendix B. 

4 Case Studies 

In this section, the performance of the proposed method is tested in a modified IEEE 123-node 



 

 

distribution system. 

4.1 Benchmark Setup 

In this paper, the IEEE-123 node system is modified by adding CLs, DGs, and dispatchable 

lines, resulting in the modified IEEE 123-node system, as illustrated in Fig. 7. The data for the CLs 

are presented in Table 2, while the data for the DGs are provided in Table 3. 
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Fig. 7 The modified IEEE-123 node test system 

 

Table 2 CLs parameters 

CL Node Load(kW) CL Node Load(kW) 

1 6 100 9 63 59 

2 9 68 10 70 195 

3 17 83 11 74 73 

4 24 153 12 80 174 

5 30 160 13 88 159 

6 38 217 14 107 160 

7 45 86 15 111 249 

8 58 37 16 113 45 

 

Table 3 DGs parameters 

DG Node Maximum generation(kW) Minimum generation(kW) 

1 25 600 60 

2 41 580 58 

3 52 500 50 

4 60 400 40 

5 97 600 60 

6 110 370 37 

7 47 730 73 

8 18 340 34 

9 77 390 39 

 

Firstly, the study period is set to be 15:00-18:00, coinciding with an ice storm weather event. 

DSOs dispatch every 15 minutes, and based on the significance of factors and engineering 

practicality, the following five weather factors are adopted. The weather data represent the average 

of the forecasts obtained from the weather station for the corresponding period [42], as shown in 

Table 4. 



 

 

Table 4 Reconstructed weather factor 

Period 

Relative 

humidity 

(%) 

Wind 

speed 

(m/s) 

Ambient 

temperature 

(℃) 

Freezing rain 

rate 

(mm/h) 

Ice 

thickness 

(mm) 

T1: 15:00-15:15 76 3.1 -7 4.673 0.387 

T2: 15:15-15:30 72 3.2 -9 3.697 0.698 

T3: 15:30-15:45 87 7.9 -11 14.659 2.417 

T4: 15:45-16:00 91 5.1 -13 19.985 4.244 

T5: 16:00-16:15 90 10 -15 18.785 6.772 

T6: 16:15-16:30 88 9.2 -16 16.895 8.937 

T7: 16:30-16:45 83 9.5 -17 13.957 10.800 

T8: 16:45-17:00 87 7.5 -18 15.853 12.589 

T9: 17:00-17:15 78 4.6 -20 10.478 13.541 

T10:17:15-17:30 67 2.1 -21 5.866 13.988 

T11:17:30-17:45 83 7.2 -22 12.578 15.399 

T12:17:45-18:00 95 9.1 -23 23.523 18.300 

 

The network parameters of DRL [44,45] are presented in Table I in Appendix C, while the 

parameters of the SLs determination model [46] are detailed in Table II in Appendix C. 

4.2 Resilience Enhancement Performance 

This subsection establishes four approaches for comparative analysis to assess the effectiveness 

of the proposed resilience-enhancing strategies. The first approach utilizes the model-based 

approach proposed in [15]. The last three use the proposed model-free approach, the difference 

being whether meteorological data reconstruction and ensemble weather pattern recognition are 

taken into account or not. They have the same SL inputs, which are calculated based on the SL 

determination model proposed in this paper. 

 M1: Model-based resilience-enhancing strategies [15] considering meteorological data 

reconstruction and ensemble weather pattern recognition; 

 M2: Model-free resilience-enhancing strategies considering meteorological data 

reconstruction without ensemble weather pattern recognition; 

 M3: Model-free resilience-enhancing strategies considering ensemble weather pattern 

recognition without meteorological data reconstruction; 

 M4: Model-free resilience-enhancing strategies considering meteorological data 

reconstruction and ensemble weather pattern recognition (the method proposed in this paper). 

The effectiveness of the model-free approach, the ensemble weather pattern recognition 

module, and the meteorological data reconstruction module is evaluated in the following sections. 

4.2.1 Model-free DRL vs. Model-based method 

 

Table 5 provides a comparison of resilience enhancement strategies under four distinct methods, 

using the mild disaster period (T1) and the severe disaster period (T12) as representative cases. 

Compared to the model-based method (M1), the model-free methods (M2, M3, and M4) not only 

exhibit notable differences in line scheduling but also demonstrate a substantial increase in the DGs' 

generation. 

Furthermore, Fig. 8(a) presents the percentage of non-exceedance and computation time for 

the model-free method (M4) and the model-based method (M1). M4 shows a significant increase in 

the percentage of non-exceedance across most periods when compared to M1, with only a slight 

decline observed in a few intervals. Simultaneously, the computation time for M4 is consistently 

lower throughout all periods, with a reduction of 88.77% compared to M1. 

These results suggest that, while traditional model-based strategies can enhance resilience, they 

fall short in both effectiveness and real-time performance relative to the model-free approach. This 

underscores the necessity and efficacy of adopting model-free strategies. 



 

 

4.2.2 Ensemble Weather Pattern Recognition Accuracy 

 

Table 5 presents a comparison between the method incorporating ensemble weather pattern 

recognition (M4) and the method without ensemble weather pattern recognition (M2), revealing no 

significant differences in terms of both line scheduling and DGs' generation. 

Fig. 8 (b) further illustrates the percentage of non-exceedance and computational time for M4 

and M2. In the periods corresponding to non-mild ice disasters (T3-T12), the percentage of non-

exceedance remains unchanged mainly between the two methods, with a slight increase of 45.30% 

in computational time for M4; the average calculation time increases by 14.07 seconds. However, 

during the mild ice disaster periods (T1 and T2), while the percentage of non-exceedance shows no 

notable difference, the computational time is significantly reduced, with the average calculation 

time decreasing by 66.30 seconds, representing an 87.95% drop. The reduction in computational 

time during T1 and T2 is notably greater than the increase observed during T3-T12. It indicates that 

the ensemble weather pattern recognition module sees an increase in computational time under non-

mild ice disasters, while its effect of reducing computational time is more significant under mild ice 

disasters.  

Considering the significantly higher occurrence probability of mild ice disasters in practical 

scenarios, the reduction in computational time during these events outweighs the minor increase 

observed during non-mild events. Consequently, although the ensemble weather pattern recognition 

module marginally increases the computational time for non-mild disasters, it offers a substantial 

reduction in computational time during mild ice disasters. These findings underscore the necessity 

and effectiveness of the ensemble weather pattern recognition module. 

4.2.3 Meteorological Data Reconstruction Efficacy 

 

Table 5 demonstrates that the method incorporating meteorological data reconstruction (M4) 

shows no significant differences in line scheduling compared to the method without meteorological 

data reconstruction (M3). However, there is a slight but non-negligible increase in DGs' generation 

under M4. 

Furthermore, Fig. 8(c) compares the percentage of non-exceedance and computation time for 

M4 and M3. M4 shows a slight or negligible increase in the rate of non-exceedance, while its 

computation time is reduced by 3.67%, corresponding to a decrease of 1.49 seconds compared to 

M3. 

These findings indicate that the meteorological data reconstruction module, while maintaining 

the effectiveness of the final strategy, contributes to a reduction in computation time. This further 

validates the necessity and efficacy of incorporating meteorological data reconstruction. 

 

Table 5 Resilience-enhancing strategies under four different approaches at T1 and T12 

Period Approach Dispatched lines 
The outputs of DGs 

DG1 DG2 DG3 DG4 DG5 DG6 DG7 DG8 DG9 

T1 

M1 56-96 379 319 319 329 457 327 420 287 319 

M2 86-87 389 369 346 378 479 348 520 310 329 

M3 86-87 403 318 320 398 438 369 512 318 324 

M4 86-87 417 348 333 389 466 365 515 326 326 

T12 

M1 71-114,108-109 186 197 384 187 176 295 175 276 41 

M2 71-114 256 237 442 227 219 335 236 316 62 

M3 71-114 236 231 454 257 246 262 215 346 47 

M4 71-114 265 276 438 259 236 279 253 346 53 
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Fig. 8 The percentage of non-exceeded and computation time under different models: (a1) 

and (a2) for M1 and M4; (b1) and (b2) for M2 and M4, and (c1) and (c2) for M3 and M4 

4.3 Security Limit Determination Performance 

This subsection establishes three approaches for comparative analyses to assess the 

effectiveness of the proposed SLs determination: 

 M5: An SL determination method considering the hybrid CNN-GRU architecture without 

KT; 

 M6: An SL determination method considering KT without the hybrid CNN-GRU 

architecture; 

 M7: An SL determination method considering the hybrid CNN-GRU architecture and KT. 

In the 12 periods considered, the first two periods are classified by the ensemble weather 

pattern recognition module as using static SLs, as verified in Fig. 8. In these periods, the CLs loss, 

DGs' output, and associated costs are identical across all three methods. Consequently, a detailed 

analysis of T1 and T2 is not provided in this section. 

The effectiveness of KT and the hybrid CNN-GRU architecture is evaluated in the following 

sections. 

 

(1) Knowledge Transferring Impact 

 

Fig. 9 presents the frequency distribution of the VSL and PFSL evaluation indicators under 

different methods, specifically during periods T3, T7, and T11. Compared to M5, M7 demonstrates a 

reduction in the average voltage RMSE and PBIAS of 0.015 and 0.338, respectively, along with a 

decrease in current RMSE and PBIAS of 0.135 and 0.344. Additionally, the average voltage R2 and 



 

 

current R2 increase by 0.147 V and 0.133 A, respectively. These results indicate that the application 

of KT significantly enhances the determination accuracy of dynamic SLs. 

Furthermore, Fig. 10 shows that during non-light ice disaster periods (T3-T12). M7 exhibits a 

significantly lower percentage of critical load (CL) loss and associated costs compared to M5—

specifically, the average load loss of M7 is 23.30 % lower than that of M5, with the corresponding 

costs decreasing by 23.37%—accompanied by higher distributed generation (DG) outputs and costs 

for M7. This suggests that SLs derived through KT can train more effective strategies, ensuring that 

a greater proportion of CLs remain unaffected by ice disasters. 

Collectively, these findings confirm the effectiveness of KT in determining SL and formulating 

strategies. 

 

(2) Study of Hybrid CNN-GRU Architecture 

 

In Fig. 9, a comparison between M6 and M7 reveals that M7 achieves reductions in average 

voltage RMSE and PBIAS, as well as power flow RMSE and PBIAS, by 0.007, 0.181, 0.073, and 

0.194, respectively. Furthermore, average voltage R2 and power flow R2 increase by 0.084 and 0.070, 

respectively. These improvements indicate that the hybrid CNN-GRU architecture enhances the 

determination accuracy of dynamic SLs by effectively extracting both temporal and spatial features. 

As illustrated in Fig. 10, during periods T3-T12, M7 demonstrates a significantly lower 

percentage of critical load (CL) loss and associated costs compared to M6—specifically, the average 

load loss of M7 is 12.10% lower than that of M6, with the corresponding costs decreasing by 

12.11%—while also achieving relatively higher distributed generation (DG) outputs and costs. This 

suggests that integrating the hybrid CNN-GRU architecture further mitigates the adverse impacts of 

ice storms on the power grid. 

Together, these results substantiate the effectiveness of the hybrid CNN-GRU architecture in 

enhancing SLs determination and strategies development. 
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Fig. 9 The frequency distribution of evaluation indicators under different approaches: (a) for 

VSL and (b) for PFSL: (•1) at T3; (•2) at T7, and (•3) at T11 
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Fig. 10 The percentage of CLs loss, DGs outputs, and their costs 

4.4 Sensitivity Analysis 

Many factors can directly or indirectly affect the accuracy of SL determinations. Therefore, 

evaluations are conducted to assess the impact of specific factors on the proposed method through 

three illustrative cases. 

 

(1) Knowledge Transferring Completeness 

 

In Section 3.3, the proposed KT contains four models, each contributing to different degrees 

of completeness in the KT model. The completeness of the PT model alone is 25%. Combining the 

PT and TL models yields 50%, and including the PT, TL, and OTL-F models achieves 75%. 

Incorporating all four models results in 100% completeness. For the 75% model, both   and   are 

set to 0.5 while   and   are adjusted to 0.8 and 0.2, respectively, for the 100% model. 

Fig. 11 illustrates the metrics for four different completeness levels of the KT models. Initially, 

at 25% completeness, the metrics remain static since the PT model is no longer involved in online 

training after offline training. As completeness increases to 50%, all metrics outperform those of the 

25% model, gradually improving as training iterations proceed. This improvement is attributed to 

the prior knowledge from the source domain and the ability to fine-tune the PT model parameters 

in the TL model. However, after reaching a certain iteration threshold, the metrics stabilize, possibly 

due to disparities in target domain knowledge, limiting further model enhancements. 

Meanwhile, at 75% completeness, accuracy surpasses that of the 25% and 50% models with a 

sufficiently high number of iterations, owing to the accelerated convergence facilitated by online 

learning. Ultimately, at 100% completeness, optimal accuracy is achieved through numerous online 

iterations.   and   for the 100% model are depicted in Fig. 12. Initially, as the number of iterations 

is small,    increases while    decreases due to the superior performance of the 50% model. 

Consequently, SL determination accuracy steadily improves as the KT model achieves completeness. 

This once again validates the KT model. 

 



 

 

R
M

S
E

(p
.u

.)

5 10 15 20

0.00

0.01

0.02

0.03

Iteration number

25%

50%

75%

100%

1 5 10 15 20

0.3

0.5

0.7

0.9

P
B

IA
S

(%
)

Iteration number

1 5 10 15 20

0.5

0.6

0.7

0.8

R
2

Iteration number

R
M

S
E

(p
.u

.)

0.00

0.01

0.02

0.03

0.3

0.5

0.7

0.9

P
B

IA
S

(%
)

0.5

0.6

0.7

0.8

R
225%

50%

75%

100%

25%

50%

75%

100% 25%

50%

75%

100%

25%

50%

75%

100%

25%

50%

75%

100%

1

(a1) RMSE for VSL (a2)   PBIAS for VSL (a3)  R
2

 for VSL

(b1)  RMSE for PFSL (b2)  PBIAS for PFSL (b3) R
2

 for PFSL

 
Fig. 11 The three metrics under different completeness KT models: (a) for VSL; (b) for 

PFSL; (•1) for RMSE; (•2) for PBIAS, and (•3) for R2 
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Fig. 12 Weights of KT of 100% model: (a) for VSL and (b) for PFSL 

 

(2) Meteorological Variability 

 

The meteorological elements are reconstructed according to Section 3 to establish various 

weather scenarios, where the severity of the disasters increases progressively from M8 to M10. 

 M8: Humidity, wind speed, freezing rain rate, and ice thickness are all at low levels, and the 

temperature is -10°C; 

 M9: Humidity, wind speed, freezing rain rate, and ice thickness are all at moderate levels, 

and the temperature is -15°C; 

 M10: Humidity, wind speed, freezing rain rate, and ice cover thickness are all at high levels, 

and the temperature is -20°C. 

Fig. 13 presents the frequency distribution of PBIAS and R2 metrics for different scenarios. 

Observing the median lines in the figure, it can be seen that as the severity of the ice disaster 

increases, the median and overall distribution of the voltage and power flow evaluation metrics 

approach optimal values (PBIAS=0, R2=1). For voltage, the PBIAS reduces from 0.44 in M8 to 

0.40 in M10, while the R² increases from 0.73 in M8 to 0.75 in M10. For power flow, the PBIAS 

decreases from 0.47 in M8 to 0.43 in M10, and the R² rises from 0.72 in M8 to 0.74 in M10, 

indicating a gradual improvement in determination accuracy. The reason behind this lies in the 

more pronounced characteristics of extreme weather as disaster severity intensifies. This 

phenomenon enables more accurate reconstruction of meteorological data and more reliable 

ensemble weather pattern recognition, which in turn makes the identified SLs closer to actual 
values. Therefore, it can be inferred that SL determinations are more accurate under highly severe 

ice disasters than under minor ice disasters. 
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Fig. 13 The frequency distribution for different scenarios: (a) for PBIAS; (b) for R2; (•1) for 

M8 and M9; (•2) for M9 and M10 

 

(3) Weather Forecast Accuracy 

 

This subsection examines ten levels of weather forecast accuracy, ranging from 80% to 98%, 

using the ice disaster data from T12 as input. Fig. 14 illustrates the average cumulative rewards of 

the resilience-enhancing strategies for different weather forecast accuracies. As the accuracy of the 

weather forecast decreases, the number of iterations gradually increases. When the number of 

iterations is too large, there is a high probability that it will hinder the timely execution of resilience-

enhancing strategies in real-time during disasters. Fig. 15 presents the values of the three metrics 

for various weather forecast accuracies, using ten nodes and ten lines as examples. There is no 

significant discrepancy among the metrics when the accuracy ranges from 96% to 98%. However, 

when the determination accuracies fall between 80% and 94%, RMSE and PBIAS show significant 

increases, while R2 notably decreases. This trend indicates a gradual decrease in the decision-

making accuracy of SLs, potentially rendering resilience-enhancing strategies ineffective. 

Consequently, the optimal weather forecast accuracy interval for this study is 96%-98%. 
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Fig. 14 The average cumulative rewards of the resilience-enhancing strategies for different 

weather forecast accuracies 
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Fig. 15 The three metrics for different weather determination accuracies: (a) for VSL; (b) for 

PFSL; (•1) for RMSE; (•2) for PBIAS, and (•3) for R2 

 

5 Conclusions 

This paper presents an innovative model-free approach to enhance the resilience of distribution 

systems by incorporating the variability of SLs in response to fluctuating weather conditions. The 

proposed methodology integrates three primary components: a meteorological data reconstruction 

model, an ensemble weather pattern recognition model, and a dynamic SLs determination model. 

Initially, an attention-enhanced meteorological data reconstruction model is introduced to streamline 

the training process by distilling input weather data. Furthermore, scenarios in which weather-aware 

SLs are identified, and a Bagging-XGBoost-based ensemble model for weather pattern recognition 

is proposed to replace static SLs with dynamic counterparts during periods of extreme weather. A 

dynamic SLs determination model is then developed to address the multidimensional characteristics 

of input data, recognizing the interaction between spatial and temporal factors through a hybrid 

CNN-GRU architecture. To further extend the model's applicability to systems less susceptible to 

extreme weather events, a KT approach is employed to decide dynamic SLs in such contexts. 

The effectiveness of the proposed model is validated through case studies on a modified IEEE 

123-node distribution test system. The simulation results clearly demonstrate the advantages of the 

proposed model in terms of computation time and the percentage of non-exceeded SLs compared 

to alternative approaches that either disregard weather-aware SLs or utilize model-based methods. 

Moreover, the decision-making performance of the proposed SLs determination method, as 

evidenced by key metrics and CLs loss ratios, surpasses that of existing techniques. 

While the method has been rigorously validated for enhancing resilience and SLs 

determination under ice disaster conditions, its application to other extreme weather scenarios 

remains underexplored. Future work will focus on developing models tailored to a broader range of 

extreme weather conditions and assessing the effectiveness of the proposed method in these diverse 

contexts. 
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Appendix A 

Nomenclature DG Distributed generation 

 PL Power load 

MDP Markov decision process CL Critical load 

SL Security limit PT Pre-trained 

SC Security constraint TL Transfer learning 

VSL/PFSL Voltage/power flow SL OTL Online transfer learning 

RL Reinforcement learning OTL-F OTL with fixed weight coefficients 

DRL Deep reinforcement learning RMSE Root mean square error 

DQN Deep Q learning PBIAS Percent bias 

PPO Proximal policy optimization Parameters  

DDPG 
Deep deterministic policy 

gradient 
  A tolerable slack margin 

Bagging Bootstrap aggregating   Weights of different reward functions 

XGBoost Extreme gradient boosting   Relevant constants during soft update 

GRU Gated recurrent unit O  
The number of sub-policy sets from the 

replay buffer 

BIGRU Bi-directional GRU 
 

The distribution of states generated by the 

behavioural strategy   

CNN Convolutional neural network  , c  Discount factor 

KT Knowledge transferring   Regularization factor 

DSO Distribution system operator   

w  
Weights of weather in the 

Bagging-XGBoost model 
c  Context vector 

gainG  Gain value d  Output of the convolutional layer 

H ,
1

vh  The first-order derivative of 

the loss function 
MP  Pooling layer matrix 

G ,
1

vg  The second-order derivative of 

the loss function 
w

x


, w
x  

Unreconstructed and reconstructed 

meteorological data 

1e , 2e  
Step size and pooling 

operation size 
Variables  

1 , 2  
The number of output SLs and 

strategies data 
t ,  Current moment and time steps 

1 , 2  The penalty factor s , a , r  State, action, and reward 

  c  Cost function 

( )p   State transition probability CLr  Incentives to restore CLs 

( )J   Performance functions for 

policies 
n , b , d g  

All nodes, PL nodes, CL nodes, and DG 

nodes 

( )L   Loss function P ,U  Active power and voltage 

( )  
Lagrange function transformed 

from a CMDP model 
line , CL  

Line on-off state, where 0 represents off, 1 

represents on, and CLs restoration state, 

where 0 represents unrecovered, 1 

represents recovered. 

( )Q   Value function  ,   Network parameters, action strategy 

( )   Regularization function i , j  
Number of reconstructed weather factors 

and decoders 

 ;  Connection of two quantities  , ( )ˆ q
  

The actual weather probability and the 

weather probability accrued after q-th 

iterations 

( )   Activation function 1v , 2v , 3v  Number of samples, trees, and leaf nodes 

  Mapping function q  Number of iterations in the Bagging-

XGBoost model 

Index and set of 

DGs 
 k , 'k  Spatial location index 

S  , A  , R  , C  ,

T  

DRL state, action, reward, 

constraint, and time-space 
m , l  Number of filters and convolution layers 



 

 

DG , PL , 
The set of DGs, PLs, lines, and 

all nodes 
SLy , stry  

The value of resilience index and SLs of the 

output 
line , node  The set of lines, all nodes  ,  Weights of KT 

VV , VP  
The set of nodes and lines 

violating VSL and PFSL 
  

ε , p  Weight of attention min , max  
The minimum and maximum limits of the 

corresponding quantity  

α , β  The sum of attention weights , ̂ 
Correlation quantity of SLs, normalized 

quantity 

z , r  
The set of update and reset 

gates 
L , R  

The left and right subtrees of the 

corresponding quantity  

W , b  
Weights and bias matrices in 

the SLs determination model 
f , b  

Forward and reverse of correlation quantity 
 

h , h  
Current and candidate hidden 

layer matrices in an encoder 

 The decision value relative to true value   

s  Hidden state in a decoder   

V , W , U  Learning parameter matrix    

 







 

 

Appendix B 

Algorithm 1: PD-DDPG Algorithm 

Input: Historical data (weather data, corresponding distribution network data, and SLs) and forecast data 

(reconstructed weather data and SLs) 

1: Initialize experience replay buffer, initialize network parameters 

2: 
Fo

r 
each iteration period (episode=1 to maximum iterations), do 

3: 

  

Initialize a random action exploration process and global state 

4: 
Fo

r 
each time step 𝑡=1  to 𝑇, do 

5: 

  

Main Actor network selects discrete and continuous actions from the action space 

6: Use a Softmax layer to output the probability distribution of discrete actions    

7: Add action exploration for continuous actions 

8: Combine discrete and continuous actions to form the complete action ta  

9: 
Main Actor network receives sample ( )1, , , ,t t t t ts a r c s +  and stores it in the experience replay 

buffer 

10: 
Main Actor network randomly samples ( )', , , ,o o o o os a r c s  a mini-batch from the experience 

replay buffer D  and sends it to the target Actor, and reward and cost Critic network 

11: 
Target Actor network computes the strategy ( )' ' ' ';o oa s =   and sends it to the target reward 

and cost Critic network 

12: 

Target reward and cost Critic network calculates the temporal difference target 

( )( )' ' ' ' ', ; ;o o r o o ry r Q s s = +   , ( )( )' ' ' ' ', ; ;o o c c o o cz c Q s s = +    and sends it to the reward 

and cost Critic network 

13: 
The reward and cost Critic network computes the gradient ( )

r
r rL    and ( )

c
c cL   

based on Equation (14) and (15), then updates the r and c  

16: 
Main Actor network calculates the gradient ( ), f

     and ( ), f     based on 

Equation (16) and (17) to updates   and f  

17: Perform parameter soft update according to 

( )

( )

( )

' '

' '

' '

1

1

1

r r r

c c c

  

 

 

 

   + − 


   + − 


   + − 

 

 
En

d 
 

 
En

d 
  

Output: the resilience-enhancing strategy 

 

Algorithm 2: Bagging-XGBoost Algorithm 
Input: Reconstructed meteorological data 

1: Initialize parameters 

2: For each iteration cycle, episode1=1 to N, do 

3: 

  

For each iteration cycle, episode2=1 to N, do 

4:   Randomly sample one sample with replay from the reconstructed weather dataset 

5: End 

6: Accumulate outputs to obtain a data subset 

7: End 

8: For each iteration cycle, episode1=1 to 1V , do 

9: 

  

For each iteration cycle, episode2=1 to the maximum iteration number, do 

10: 

  

For the subset 1v , calculate the loss function using equation (22) 

11: Calculate the first and second derivatives using equation (23) 

12: Find the optimal splitting point using equation (24) 

13: Add a tree at this point 

14: Update the loss function 

 End 

15: Accumulate outputs and calculate the average 



 

 

 End 

16: If the mean ≥ threshold 

17:   Output: Dynamic limit 

 or  

18:   Output: Static limit 

 End  

 

Algorithm 3：SLs determination module based only on hybrid CNN-GRU architecture 

Input: Historical data (reconstructed weather data, corresponding distribution network data, and SLs) and future 

data (reconstructed weather data and SLs) 

1: Initialize parameters for GRU, attention mechanism, and CNN, along with the experience replay buffer 

2: For each training epoch episode1=1 to maximum training value, do 

3: 

  

For each batch1=1 to maximum training batches, do 

4: 

  

Sample a small batch from the experience replay buffer 

5: 
Compute the forward reset gate, update gate, candidate hidden state, and current hidden 

state using equations (29) to (26) 

6: Compute the backward parameters using equations (29) to (26) 

7: Concatenate forward and backward hidden states using equation (25) 

8: Compute the attention score using equation (30) 

9: Calculate the attention weight using equation (31) 

10: Compute the weighted features using equation (32) 

11: Compute the relevant parameters for the decoder using equations (26) to (29) 

12: Output the temporal features 

13: Extract spatial features through convolution layer 1 using equation (33) 

14: Reduce dimensions using pooling layer 1 according to equation (34) 

15: Extract deeper spatial features through convolution layer 2 using equation (33) 

16: Further reduce dimensions using pooling layer 2 based on equation (34) 

17: Flatten the spatial features into a 1D vector 

18: Compute the weighted spatial features using equations (30) to (32) 

19: Output the spatial features 

20: 
Combine the spatial and temporal features through a concatenation layer and a fully 

connected layer 

21: Compute the loss function using equation (38) 

22: 
Update the parameters of GRU, attention mechanism, and CNN using the Adam optimizer 

[46] 

 End  

 End  

Output: Decision on the SLs 

 

Algorithm 4：SLs determination module based on hybrid deep learning 

Input: Historical data (reconstructed weather data, corresponding distribution network data, and SLs) and future 

data (reconstructed weather data and SLs) 

1: Extract sample space n n
   from lines or nodes that frequently experience extreme weather events 

2: Initialize the model  ,  ,   and weights 1  and 1  

3: Train the model   using Algorithm 3.1 within the sample space 

4: For n=1 to the maximum number of samples 

5: 

  

Retrieve the label data,  , ,x , y 1, ,n n b n b b N  = =  , of the target line or node for the  

𝑛-th extreme weather event 

6: Update the sample space 

7: Retrain the model   and fine-tune   using Algorithm 3.1 on the updated sample space 

8: Calculate the penalty factor based on Equation (41) 

9: Calculate the weight using Equation (40) 

10: Obtain the model   output using Equation (39) 

 End 

Output: Decision on the SLs 



 

 

Appendix C 

 All experiments are conducted on a hardware platform equipped with an NVIDIA GTX 1050 

graphics card and 16 GB of memory. 

 

Table I The parameters of DRL 

Parameter Value 

Layer type dense 

Hidden layer structure 64-128-64 

Batch size 128 

Number of episodes 100 

Optimizer [0,1] normalization 

Actor learning rate 0.0001 

Critic learning rate 0.0001 

Discount factor 0.75 

Stochastic forward passes 50 

 

Table II The parameters of the SLs determination model 

Type Hyper-parameters 

Convolutional 1(C1) 
Filter:8 

Kernel size:3 

Pooling 1(P1) Kernel size:2 

Convolutional 2(C2) 
Filter:16 

Kernel size:3 

Pooling 2(P2) Kernel size:2 

Flatten None 

GRU 1(G1) Cell size:32 

GRU 2(G2) Cell size:16 

Flatten None 

Concatenate None 

Self-Attention Mechanism None 

Flatten None 

Fully connected 1(D1) Neuron number:16 

Fully connected 2(D2) Neuron number:12 

 


