

This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository:<https://orca.cardiff.ac.uk/id/eprint/184033/>

This is the author's version of a work that was submitted to / accepted for publication.

Citation for final published version:

Yang, Yuxiang, Li, Wei, Alves, Tiago M. , Jing, Song, Rebesco, Michele and Yang, Jin 2026. The role of submarine landslides in the initiation and evolution of moat-drift contourite systems. *Sedimentology: The Journal of the International Association of Sedimentologists* 10.1111/sed.70079

Publishers page: <http://dx.doi.org/10.1111/sed.70079>

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See <http://orca.cf.ac.uk/policies.html> for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.

The role of submarine landslides in the initiation and evolution of moat-drift contourite systems

3 YUXIANG YANG ^{a, c, f}, WEI LI ^{a, b*}, TIAGO M. ALVES ^d, SONG JING ^{b*}, MICHELE REBESCO
4 ^e and JIN YANG ^{f, g}

⁵ ^aNational Engineering Research Center of Gas Hydrate Exploration and Development, Guangzhou
⁶ Marine Geological Survey, China Geological Survey, Guangzhou, Guangdong 511458, China

⁷ ^b Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology,
⁸ Chinese Academy of Sciences, Guangzhou 510301, China

⁹ ^c School of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454003, China

¹⁰ ^d3D Seismic Lab, School of Earth and Environmental Sciences, Cardiff University, Main Building,
¹¹ Park Place, Cardiff, CF10 3AT, United Kingdom

¹² ^eIstituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Borgo Grotta Gigante 42/C,
¹³ Sgonico, 34010 Trieste, Italy

¹⁴ ^fCollege of Safety and Ocean Engineering, China University of Petroleum-Beijing, Beijing,
¹⁵ 102249, China

^g China National Offshore Oil Corporation South China Sea Oil & Gas Energy Academician Workstation, Haikou 570312, China

Correspondence to: Dr. Wei Li (wli@scsio.ac.cn) and Dr. Song Jing (jingsong@scsio.ac.cn)

20 ABSTRACT

21 Moat-drift contourite systems, formed by interaction of alongslope bottom currents with
22 bathymetric features, provide critical insights into paleoceanographic changes. However, the role of
23 submarine landslides in their initiation and evolution remains poorly understood. To investigate these
24 processes, this study utilizes multibeam bathymetric and three-dimensional seismic data from the
25 Baiyun Slide, located in the northern South China Sea. Our findings reveal a 600-m-wide, 50-m-deep

26 moat incised along the steep escarpment of the Baiyun Slide headwall, flanked by a ~50-m-thick
27 sediment drift. We propose that the landslide-induced escarpment acted as a bathymetric obstacle,
28 locally intensifying bottom current velocities and promoting flow turbulence and erosion, which
29 facilitated moat formation. In contrast, in areas distant from the escarpment, reduced current
30 velocities allowed for deposition of resuspended sediments, forming the drift deposits that fill the
31 slide scar. While the surrounding slope is dominated by gravity-driven downslope sedimentary
32 processes, the landslide-generated escarpment reconfigured local depositional system, enabling the
33 formation of a slide-controlled secondary contourite system driven by bottom currents. This system,
34 confined within the negative topography of the slide scar, represents a spatial shift in sedimentation
35 from a regional downslope to a localized alongslope control. As a corollary, we present a conceptual
36 model illustrating how submarine landslides can reshape seafloor morphology to drive bottom
37 current-induced sedimentation in otherwise gravity-dominated deep-marine environments. This study
38 highlights slide-controlled moat-drift contourite systems as significant components of deep-water
39 sedimentary archives, capable of recording dynamic interactions between bottom currents and
40 seafloor topography.

41 **Keywords:** Submarine landslides; Slide scar; Bottom currents; Moat-drift contourite system; South
42 China Sea

43

44 INTRODUCTION

45 Submarine continental slopes and rises are dynamic environments shaped by both downslope
46 and alongslope sedimentary processes (Mulder *et al.*, 2009; Ogata *et al.*, 2014; Rebesco *et al.*, 2014;
47 Miramontes *et al.*, 2019; Mosher & Boggild, 2021; Shanmugam, 2021). Gravity-driven downslope
48 sediment transport is primarily manifested as submarine landslides and turbidity currents (Lintern *et*
49 *al.*, 2016; Wang *et al.*, 2018; Heerema *et al.*, 2020; Li *et al.*, 2020). These phenomena are capable of
50 transporting vast volumes of sediment over long distances from the continental shelf and upper slope

51 into deep-water environments (Smoot & King, 1993; McAdoo *et al.*, 2000; Hutton & Syvitski, 2004;
52 ten Brink *et al.*, 2009). They significantly modify seafloor morphology and influence subsequent
53 sedimentary processes, forming a widely recognized feedback loop on most continental margins
54 (Normandeau *et al.*, 2019; Gatter *et al.*, 2021).

55 Concurrently with the across-slope transport of sediment, alongslope bottom currents (or contour
56 currents) shape the seafloor, generating distinct erosional features like moats and depositional features
57 such as sediment drifts (Stow *et al.*, 2002; Minisini *et al.*, 2006; Rebescu *et al.*, 2014; Wang *et al.*,
58 2020; Liu *et al.*, 2023; Stagna *et al.*, 2023). Importantly, depositional systems associated with contour
59 currents provide long-term, high-resolution records of paleoclimatic and paleoceanographic change
60 (Hernández-Molina *et al.*, 2003; Van Rooij *et al.*, 2010; Ercilla *et al.*, 2016), while holding economic
61 potential for oil and gas exploration (Rebescu *et al.*, 2014; Miramontes *et al.*, 2019).

62 Over the past few decades, there have been increasing interests in understanding the interaction
63 between submarine landslides, such as evacuation scars and accumulation zones, and gravitational
64 processes on continental margins (Ogata *et al.*, 2012; Uenzelmann-Neben *et al.*, 2017; Sun *et al.*,
65 2018; Yang *et al.*, 2024). These interests are driven by factors widely recognized in most offshore
66 regions: (1) the capacity of submarine landslides to significantly reshape seafloor morphology
67 (Laberg *et al.*, 2005; Rebescu *et al.*, 2016; Juan *et al.*, 2018); (2) their ability to initiate localized
68 seafloor erosion and new submarine channels and canyons through slide scars capturing gravity flows
69 (Kneller *et al.*, 2016; Qin *et al.*, 2017; Li *et al.*, 2020; Stagna *et al.*, 2023); and (3) the complex
70 interactions between turbidity currents and mass-transport deposits (MTDs), which facilitate the
71 accumulation of sandy sediments and potential hydrocarbon reservoir formation (Armitage *et al.*,
72 2009; Kneller *et al.*, 2016; Kremer *et al.*, 2018).

73 Despite this growing interest, the interaction between alongslope bottom currents and submarine
74 landslides has received comparatively less attention (Fig. 1). While moat-drift contourite systems can
75 be influenced by seafloor features such as seamounts, carbonate buildups and local troughs (Zhang
76 *et al.*, 2016; Zhao *et al.*, 2024), the existence of landslide-related moat-drift contourite systems has

77 rarely been documented, representing a significant gap in our understanding of their initiation and
78 evolution.

79 The South China Sea serves as an idea laboratory for studying the interaction between bottom
80 currents and seafloor topography due to its varied oceanographic processes operating at different
81 spatial and temporal scales (Fig. 2) (Yin *et al.*, 2019). This study uses multibeam bathymetric and
82 three-dimensional (3D) seismic data to investigate the combined influence of bottom currents and
83 submarine landslides on seafloor morphology and sedimentary processes (Fig. 3). The specific
84 objectives of this work are: (1) analyze the seafloor morphology and internal seismic characteristics
85 of the moat-drift contourite system; (2) investigate its development processes and relationship with
86 the Baiyun Slide scar; and (3) propose a conceptual model explaining the spatial and temporal
87 interaction between bottom currents and submarine landslides.

88

89 **GEOLOGIC AND OCEANOGRAPHIC SETTINGS**

90 **Geological setting**

91 The South China Sea (SCS) is one of the largest and deepest marginal seas in the Western Pacific
92 Ocean (Fig. 1). Located in the central part of the northern SCS, the Pearl River Mouth Basin (PRMB)
93 spans an area of $17.5 \times 10^4 \text{ km}^2$, being repeated failed during the Baiyun Slide Complex since
94 Quaternary (Yin *et al.*, 2019; Zhu *et al.*, 2019). During the Late Oligocene, continental breakup led
95 to the formation of an extensive continental slope in the northern SCS, extending over 1000 km and
96 accommodating substantial clastic deposits (Lin *et al.*, 2018). This period marked a transformative
97 phase for the study area, transitioning from a shallow shelf environment (no more than 200 m deep)
98 to a steep slope exceeding 3000 m in depth (Wang *et al.*, 2018).

99 The Pearl River delta front undergo successive developmental stages until Late Miocene,
100 contributing to the formation of an unstable upper continental slope. (Lüdmann *et al.*, 2001; Jiang *et*
101 *al.*, 2017; Wang *et al.*, 2018). At the same time, bottom currents intensified upper-slope instability by
102 eroding the base of the slope, contributing to the collapse of the Pearl River distal prodelta region

103 (Zhu *et al.*, 2010; Zhou *et al.*, 2015; Jiang *et al.*, 2017). At the end of the Miocene, the Dongsha
104 Tectonic Event was accompanied with localized uplift and faulting (Lüdmann & Wong, 1999; Lu *et*
105 *al.*, 2017), reshaping the PRMB to the largest deep-water depocenter in the northern SCS (Wang *et*
106 *al.*, 2018).

107

108 **Oceanographic setting**

109 Due to its semi-enclosed nature, the water column structure of SCS exhibits a complex pattern,
110 including surface, intermediate, and deep water currents at least (Li *et al.*, 2013). Surface water
111 currents, extending up to 500 m in depth, are primarily influenced by the East Asian monsoon, which
112 drives a clockwise flow during summer and a counterclockwise movement in winter (Zhu *et al.*, 2010)
113 (Fig. 2). Driven by the outflow of water to North Pacific, the clockwise intermediate water currents
114 were established during the Late Miocene, occupying depths of 500 to 1500 m (Fig. 2). Deep-water
115 currents, originating from the North Pacific, circulate counterclockwise at a depth exceeding 1500 m
116 (Chen, 2005; Tian *et al.*, 2006; Yang *et al.*, 2010; Gong *et al.*, 2012).

117

118 **DATA AND METHODS**

119 The dataset used in this work comprises multibeam bathymetric and high-resolution 3D seismic
120 data (Fig. 3). The 3D seismic data were acquired by the China National Offshore Oil Corporation
121 (CNOOC) with a frequency of 40 Hz, a crossline spacing of 12.5 m, and a vertical sampling interval
122 of 2 ms. These processes provide a vertical resolution of approximately 10-15 m at the depth relevant
123 to this work. The high-resolution dataset enabled a detailed investigation of the sedimentary
124 characteristics within the headwall area of the Baiyun Slide Complex.

125 Time-depth conversions were performed using average interval velocities of 1550 m/s for the
126 water column and 1700 m/s for the shallow strata deposited since the Quaternary (Wang *et al.*, 2018).
127 Multibeam bathymetric data were collected in water depths from 230 m to 2600 m and processed

128 using CARIS HIPS® software. This processing resulted in a vertical resolution of 1-3.3 m and a
129 horizontal resolution of approximately 100 m for the bathymetric data.

130 Schematic illustrations were used to facilitate a detailed interpretation and quantitative analysis
131 of seafloor features in the study area (Fig. 4). Key morphological parameters were measured based
132 on Miramontes et al. (2021) and Wilckens et al. (2023), including: (a) trough width, representing the
133 horizontal distance from the drift crest to the slide scarp; (b) trough depth, which is the vertical
134 distance from the base of the trough to the drift crest; and (c) drift crest, denoting the highest point of
135 a mounded sedimentary body within the trough. Additionally, we define the scarp angle as the average
136 gradient of the slide scarp, while the sediment angle represents the average gradient of the flank of
137 the drift facing the slide scarp. These parameters provide measurements for the trough's width, depth,
138 the position of the highest mounded sedimentary body, and the average angles between the base of
139 the trough and the landslide scarp, or between the base of the trough and the drift crest, enabling
140 precise quantification of the morphology of the main trough identified in the study area.

141

142 RESULTS

143 General seafloor morphology

144 The study area is located on the upper continental slope, directly below the shelf edge of the
145 Pearl River Mouth Basin (Fig. 3). This region serve as a transitional zone between the broad, flat
146 continental shelf and the continental slope. The shelf exhibits gradients typically less than 1° at depths
147 of approximately 300 m (Fig. 3), while the western part of the slope exhibits a slightly steeper average
148 inclination of around 2°. The headwall of the Baiyun Slide Complex is developed along this upper
149 slope segment (Figs. 3 and 5). Approximately 15 km to the northeast, a large-scale system of
150 submarine canyons, known as the Shenuh Canyon System, is observed (Fig. 3). These canyons trend
151 perpendicularly to the shelf edge, extending downslope from the shallow shelf break to the base of
152 the continental slope at a water depth of up to 2000 m.

153

154 **Baiyun Slide scar**

155 Multibeam bathymetric and 3D seismic data reveal that the geomorphology of the study area is
156 markedly irregular, with the headwall scarp of the Baiyun Slide Complex being its most prominent
157 feature (Figs. 5 and 6). This headwall scarp marks the location where upper slope failure occurs and
158 downslope movement initiates. In the study area, this scarp extends approximately 45 km with a
159 SSW-NNE orientation (Figs. 3 and 5). The headwall region of the Baiyun Slide Complex spans a
160 water depth from 1100 m to 1600 m, being ~18 km long and 20 km wide, on average (Figs. 3 and 5).
161 Morphologically, it has asymmetric concave and arcuate shapes, opening towards the east (Figs. 3
162 and 5). The average height of the slide scar's escarpment is approximately 90 m, with a maximum
163 reaching 120 m (Fig. 5).

164 Slope gradient reveals uniformly low gradients (approximately 1°) both upslope and downslope
165 of the escarpments of Baiyun Slide Complex. However, significant changes in slope angle are
166 observed in the headwall region of the landslide at a water depth of 1100 m (Figs. 5 and 6),
167 corresponding to the main failure initiation zone. Both transverse and longitudinal profiles record the
168 highest gradients, approximately 15° (Figs. 6a and 6b), at the headwall scarp of the Baiyun Slide
169 Complex (Fig. 6).

170

171 **Downslope-oriented channel**

172 Based on the analysis of multibeam and seismic data, several small-scale downslope-oriented
173 channels (labeled C1 to C6) were identified on the upper continental slope above the headwall region
174 of the Baiyun Slide Complex (Fig. 7a). These submarine channels are oriented perpendicularly to the
175 main trend of the headwall scarp and generally follow a NE–SW course. Morphologically, these six
176 (6) channels typically possess steep flanks and exhibit sinuous, groove-like features. Their length
177 ranges from 6 to 38 km, their width from 800 to 1500 m, and incision depth varies from 20 to 60 m
178 (Fig. 7b).

179 Seismic reflections across the six downslope-oriented channels are discontinuous, and
180 erosional truncations are observed in strata along both channel flanks (Fig. 7c). Moreover, channels
181 C1 and C2 incise the headwall escarpment of the Baiyun Slide Complex to extend eastward into the
182 interior of the landslide domain. In particular, channel C2 follows a well-defined downslope path,
183 incising deeply into the slide body. It is more than 15 km long and its incision depth reaches up to 60
184 m (Fig. 7a).

185

186 **Along-slope-oriented trough**

187 Analysis of bathymetric and seismic data reveals a prominent alongslope trough at the base of
188 the headwall scarp of Baiyun Slide Complex (Figs. 8, 9 and 10). This trough, spanning water depths
189 from 1100 m to 1350 m (Figs. 5 and 8a), is up to 600 m wide and 50 m deep (Figs. 8b, 8c, and 8d).
190 It incises the headwall scarp of the Baiyun Slide Complex forming a distinct U-shaped notch at its
191 base (Figs. 8b, 8c, and 8d). The trough aligns parallel to the headwall scarp (Fig. 8a) and shows
192 discontinuous seismic reflections and erosional truncations on both its flanks (Figs. 9, 10a and 10b).

193 Quantitative measurements indicate that the angles of the headwall and sidewall scarps are
194 significantly greater than those of the sediment accumulation surfaces within the trough (Figs. 8b, 8c,
195 and 8d). Importantly, the trough developed exclusively in post-MTD sediments, overlying the top
196 surface of the MTDs (Figs. 9a and 10a).

197

198 **Sedimentary body within the scar**

199 A sedimentary body with a thickness of up to 60 ms (two-way travel time, TWTT) is observed
200 within the Baiyun Slide scar (Figs. 9a, 10a and 10b). It reveals a layered architecture and medium- to
201 high-amplitude, sub-parallel internal seismic reflections demonstrating good lateral continuity. The
202 proximal part of the sedimentary body is adjacent to the moat and shows localized mounded

203 geometries, while the distal portion appears more tabular and laterally extensive. At the headwall
204 scarp, seismic reflections from the sedimentary body terminate abruptly within the moat (Figs. 9 and
205 10). All in all, the sedimentary body becomes relatively flat farther away from the trough, exhibiting
206 only minor undulations and slope angles of less than 1° (Figs. 9a and 10a).

207

208 **Internal seismic reflection configuration**

209 Seismic data illustrate that the slope is widely populated with a number of MTDs, some of which
210 are concealed beneath thick sediment (Figs. 9b and 10a). These MTDs are characterized by
211 discontinuous, chaotic, and transparent seismic facies, often with convoluted internal seismic
212 reflections, particularly within the slide complex (Figs. 9b and 10a).

213 Sediments within the slide scar were transported from upper slope to lower slope, resulting in
214 an expanding stack of MTDs when moving from west to east, thereby increasing the volume of the
215 mass-wasted strata. Despite the overall downslope direction of movement, MTD thickness is greatest
216 to the east. Compared to MTDs accumulated on the lower continental slope, discrete MTDs observed
217 near the headwall are relatively thin (Fig. 9a).

218 **DISCUSSION**

219 **Moat-drift contourite system near the Baiyun Slide scar**

220 Seismic profiles across the study area reveal the presence of MTDs characterized by chaotic,
221 transparent internal seismic reflections (Figs. 9 and 10a). Our findings indicate that the Baiyun Slide
222 was only partially evacuated, resulting in the deposition of MTDs within the slide scar (Figs. 9 and
223 10). The Baiyun Slide Complex is estimated to have evacuated volume of approximately 1035 km³
224 of sediment in four major MTDs (Sun et al., 2018). During the Quaternary, two major instability
225 events occurred in the headwall area of the Baiyun Slide Complex (Li *et al.*, 2014; Wang *et al.*, 2017),
226 dated to approximately 0.79 Ma and 0.54 Ma (Sun *et al.*, 2018). Notably, a 600 m wide and 50 m

227 deep trough can still be identified along the escarpment of the Baiyun Slide Complex (Figs. 8b, 8c,
228 and 8d).

229 Historically, geological literature has employed multiple terms to describe elongated troughs
230 formed by marine geological processes. Faugères et al. (1999) used 'moat channels', while Hernández-
231 Molina et al. (2006) described moats as elongated troughs primarily characterized by erosion and
232 non-deposition. In our study area, key observations within the Baiyun Slide further delineate the
233 observed trough: (1) it is oriented parallel to the slide margin and bounded by steep scarps on one
234 side (Figs. 5 and 8); (2) seismic profiles exhibit erosional truncations adjacent to the headwall scarp
235 of the Baiyun Slide Complex (Figs. 9 and 10); and (3) its main axis aligns with the flow direction of
236 bottom currents (Figs. 3 and 8a). Such characteristics are highly consistent with the established
237 diagnostic criteria for moats (Hernández-Molina et al., 2006; García et al., 2009; Sayago-Gil et al.,
238 2010; Gong et al., 2013; Miramontes et al., 2021; Chen et al., 2022). Therefore, we interpret the
239 trough along the headwall scarp of the Baiyun Slide as a moat generated by erosion from alongslope
240 bottom currents. This interpretation is supported by analogous features observed around seamounts
241 in the Alboran Sea (Palomino et al., 2011) and near the Maldives' carbonate platforms (Betzler et al.,
242 2013).

243 A distinct sedimentary body has been identified within the Baiyun Slide scar, stacked on top of
244 the MTDs and comprising post-slide depositional features (Figs. 9 and 10). The term 'Sediment drift'
245 refers to a depositional body formed by the accumulation of sediments influenced by alongslope
246 bottom currents in deep-water environments (Stow et al., 2002; Verdicchio & Trincardi, 2008). Based
247 on their morphology and formative processes, sediment drifts are generally categorized into several
248 types, including elongated, mounded drifts (Mulder et al., 2006), sheeted drifts (Gao, 2020), and
249 infilling drifts (Bryn et al., 2005). In the study area, sediment drifts developed within the Baiyun Slide
250 scar exhibit excellent lateral continuity (Figs. 9 and 10). They are recognized by distinct sediment
251 mounds near the distal end of the moat, where seismic reflections bend downslope toward the moat's

252 deepest part (Figs. 9 and 10). This seismic character aligns with established diagnostic criteria for
253 infilling drifts (Faugères *et al.*, 1999; Stow *et al.*, 2002; Rebesco & Camerlenghi, 2008; Miramontes
254 *et al.*, 2021; Wilckens *et al.*, 2023). Accordingly, the observed sedimentary body is classified as an
255 infilling drift (Faugères *et al.*, 1999; Bryn *et al.*, 2005; Rebesco & Camerlenghi, 2008).

256 Moats and sediment drifts are often intricately linked, leading scholars to consider them as a
257 joint entity known as a moat-drift contourite system (e.g., Wilckens *et al.*, 2023; Zhao *et al.*, 2024).
258 Building on this fact, we propose that a moat-drift contourite system developed within the Baiyun
259 Slide scar after the emplacement of the Baiyun Slide Complex. This system indicates that post-slide
260 sedimentation in this area was significantly influenced by alongslope bottom currents. Therefore, we
261 conclude that the Baiyun Slide and alongslope bottom currents jointly sculpted the seafloor
262 morphology in this region.

263 **The role of slide scarps in the initiation of moat-drift contourite systems**

264 Seismic data reveal the absence of any pre-existing moat-drift contourite systems underneath the
265 basal shear zone of the observed MTDs in the study area (Figs. 9 and 10a). Crucially, both the moat
266 and the sediment drift develop exclusively just above the MTDs' top surface (Figs. 9a and 10a),
267 confirming that the moat and sediment drift within the Baiyun Slide scar post-date the emplacement
268 of the Baiyun Slide. Therefore, we propose that the studied moat-drift contourite system is closely
269 associated with alongslope bottom currents and was initiated by the presence of the Baiyun Slide scar.

270 Our study area spans water depths from 800 to 1500 m, placing it within the influence of
271 intermediate water masses (Fig. 2). Previous studies have demonstrated the crucial role of seafloor
272 topography in influencing local water mass distribution and the flow paths of alongslope bottom
273 currents (Palomino *et al.*, 2011; Ercilla *et al.*, 2016; Rebesco *et al.*, 2016). Thus, we propose that the
274 Baiyun Slide Complex remobilized substantial volumes of sediment, thereby forming a permanent
275 negative bathymetric feature that resulted in the formation of pronounced sidewall and headwall
276 scarps. We infer that this significantly altered the flow paths and depositional patterns of bottom

277 currents in the study area. As intermediate water flows from southwest to northeast along the
278 continental slope in a permanent clockwise direction (Zhu *et al.*, 2010; Li *et al.*, 2013), it generated a
279 branch that flows across the headwall of the Baiyun Slide, following the slope morphology, and
280 subsequently flowing out the Baiyun Slide scar. Similar hydrodynamic behavior has been
281 documented in the Kveithola Trough in the Northwest Barents Sea (Rebesco *et al.*, 2016) and along
282 the Spanish Slope (Ercilla *et al.*, 2016). In these settings, bottom currents are inferred to enter slope
283 depressions, follow contour-parallel paths within the confined topography, and subsequently exit
284 along the deepest part of the trough.

285 Bottom current velocity along the continental slope is strongly affected by seafloor morphology
286 (Ercilla *et al.*, 2016; García *et al.*, 2016; Thiéblemont *et al.*, 2019). A number of studies have
287 confirmed that slide scars are preferential areas for enhanced bottom current activity (Bryn *et al.*,
288 2005; Laberg *et al.*, 2005; Masson *et al.*, 2006; Van Rooij *et al.*, 2010; García *et al.*, 2016; Martorelli
289 *et al.*, 2016). When encountering steep scarps, seamounts, or other morphological obstacles, the
290 velocity of bottom currents can increase by a factor of two or more (Sun *et al.*, 2016; Zhang *et al.*,
291 2016). Documented cases include an acceleration of bottom currents from 10 cm/s to 25 cm/s due to
292 the presence of Le Danois Bank and Vizco High (Liu *et al.*, 2019), a similar increase in bottom current
293 velocities in northwest Iberia from 7 cm/s to 35 cm/s (Zhang *et al.*, 2016), and in the Xisha Trough
294 from 15 cm/s to 30 cm/s (Chen *et al.*, 2016). We propose that the steep headwall scarps of the Baiyun
295 Slide have acted as morphological barriers that increased bottom-current velocity. This intensified
296 bottom current activity eroded unconsolidated sediment on the seafloor, or prevented its depositon,
297 leading to the formation of erosional or non-depositional features such as the moat (Rebesco &
298 Camerlenghi, 2008; Liu *et al.*, 2019; Thiéblemont *et al.*, 2019). Examples from the northern Campos
299 slope on the southwestern Atlantic margin (Viana *et al.*, 2002) and the shelf edge of Alboran Sea in
300 the southwestern Mediterranean (Ercilla *et al.*, 2016) further support this interpretation.

301 Sediment drifts represent important alongslope accumulations of sediment (Ercilla *et al.*, 2016;
302 Thiéblemont *et al.*, 2019). In the study area, sediment drifts filled the Baiyun Slide scar, but

303 demonstrating clear spatial differences: erosional features are observed near the moat, while
304 depositional features become increasingly important farther away from the moat (Figs. 9a and 10).
305 Such distinct erosional and sedimentary features serve as good indicators of water-mass intensity
306 (McCave & Carter, 1997; Palomino *et al.*, 2011). Hence, we propose that in areas without obstacles
307 such as scarps, bottom-current velocity may not be significantly enhanced, allowing deposition to
308 primarily occur in regions with relatively low current velocities. Over time, suspended sediment
309 particles settle out of the water column, leading to the formation of a sediment drift (Rebesco *et al.*,
310 2014; Cattaneo *et al.*, 2017). Eventually, sediment was accumulated on the seafloor and filled the
311 accommodation space generated by the Baiyun Slide Complex. Furthermore, the seismic reflections
312 close to the moat show mounded shapes (Figs. 7b and 8a), which are most likely attributed to the
313 presence of the headwall scarp. This suggests that enhanced bottom currents not only intensified
314 seafloor erosion or non-deposition but also led to the significant resuspension and redistribution of
315 sediments (Cacchione *et al.*, 2002; Pomar *et al.*, 2012; Thiéblemont *et al.*, 2019). Sediment was
316 deposited on one side of the moat, causing the drift to stack vertically, which explains the remarkable
317 mounded shapes observed in the sediment drift near the moat.

318 The modern oceanographic framework of the South China Sea has remained stable for
319 approximately 3 Ma, with the northern continental margin consistently influenced by the intermediate
320 water mass for an extended period (Zhu *et al.*, 2010; Liu *et al.*, 2011; Li *et al.*, 2013; Sun *et al.*, 2016).
321 Alongslope bottom currents associated with ocean circulation flow extensively within a given depth
322 range and remain stable over geological time, with their presence clearly identifiable in the
323 sedimentary record (Rebesco *et al.*, 2014; Miramontes *et al.*, 2021; Rodrigues *et al.*, 2022). Therefore,
324 we propose that the persistent alongslope bottom currents in the northern South China Sea interacted
325 with the Baiyun Slide scar, leading to alternating contourite deposition and erosion, and profoundly
326 altering the seafloor morphology in the study area.

327

328 **IMPLICATIONS**

329 **A conceptual model for slide-controlled moat–drift contourite systems**

330 Based on a detailed interpretation of multibeam bathymetric and seismic data, we develop a
331 conceptual model to explain the evolution of seafloor morphology in our study area (Fig. 11). The
332 initial emplacement of the Baiyun Slide resulted in the formation of negative topography and steep
333 escarpments. We infer that this was followed by the branching and along-contour flow of intermediate
334 water mass along the contours within the headwall region (Fig. 11a). Subsequently, localized
335 acceleration of bottom-current velocity along the slide escarpment led to sediment erosion and/or
336 non-deposition, initiating and driving the development of the moat (Fig. 11b). In contrast, regions
337 located away from these escarpments experienced decreased bottom flow velocity, resulting in the
338 generation of infilling drifts (Fig. 11c).

339 In the field of marine geology, contourites refer to sediments deposited or significantly reworked
340 under the persistent influence of bottom currents (Rebesco & Camerlenghi, 2008; Rebesco *et al.*,
341 2014). A moat–drift contourite system represents a composite depositional system that includes both
342 erosional (e.g., moats, furrows) and depositional (e.g., drifts) features associated with contourite
343 processes (Hernández-Molina *et al.*, 2006; Rebesco *et al.*, 2014). In our study area, the moat develops
344 along the headwall escarpment of the Baiyun Slide Complex, while the infilling drift accumulated
345 within the slide scar, jointly constituting the full expression of a moat–drift contourite system. In this
346 context, bottom currents serve as the principal driving mechanism for the initiation and evolution of
347 the system. The steep escarpment generated by the Baiyun Slide acts as a prominent bathymetric
348 obstacle, altering the flow pathway and intensifying current velocity along the slope break. This
349 hydrodynamic focusing promotes erosion and leads to the incision of the moat. In contrast, in areas
350 farther from the escarpment, where current velocity remains lower, the negative topography created
351 by the submarine landslide traps suspended sediments, facilitating their accumulation as infilling
352 drifts.

353 Previous studies have documented the presence of moat-drift contourite systems in various
354 geological settings, including open continental slopes (Alves, 2010; Vandorpe *et al.*, 2014;

355 Miramontes *et al.*, 2016; Liu *et al.*, 2020), around seamounts (Howe *et al.*, 2006; Palomino *et al.*,
356 2011; Chen *et al.*, 2014) and carbonate mounds (Micallef *et al.*, 2009; Betzler *et al.*, 2013). However,
357 this study confirms that submarine landslides represent a key mechanism in the formation of moat–
358 drift contourite systems in deep-water environments. We therefore propose the term “Slide-controlled
359 Moat–drift Contourite System” for this type of depositional system. The conceptual model presented
360 here may also explain the initiation and evolution of similar slide-related moat-drift contourite
361 systems globally (Bryn *et al.*, 2005; Laberg *et al.*, 2005; Masson *et al.*, 2006; Van Rooij *et al.*, 2010).
362 Given the widespread occurrence of submarine landslides across continental margins affected by
363 bottom currents, on both passive and active margins (Rebesco *et al.*, 2014; Li *et al.*, 2020), we propose
364 that moat-drift contourite systems influenced by submarine landslides might be more frequent and
365 extensive in the geological record than previously recognized. Such systems could occur not only in
366 currently active seafloor settings but also in buried and exhumed stratigraphic successions.

367

368 **Slide-controlled secondary contourite systems**

369 We propose that the broader slope region surrounding the Baiyun Slide Complex represents a
370 sedimentary environment predominantly governed by gravity-driven downslope sedimentary
371 processes. Multiple independent datasets support this interpretation: (1) Detailed analysis of
372 multibeam bathymetric and 3D seismic profiles reveal a series of small-scale submarine channels
373 (C1–C6) incised into the upper slope near the continental shelf break above the Baiyun Slide Complex
374 (Figs. 5, 7, 9b, 10a). Channels C1 and C2 cut through the headwall scarp and extend downslope into
375 the interior of the slide scar, with lengths of up to 15 km and incision depths reaching 60 m (Figs. 8b
376 and 9b), indicating sustained influence from sediment gravity flows. (2) Wang *et al.* (2018) analyzed
377 piston cores (P1, P2, P3, P4) collected from the upper slope above the headwall of the Baiyun Slide
378 and identified abundant turbidite deposits, suggesting frequent deposition by downslope gravity flows.
379 (3) The Baiyun Slide itself represents a large-scale mass-transport event, one of the most prominent
380 gravity-flow features along the northern South China Sea margin, and has played a key role in

381 sediment reworking and redistribution across the region. (4) Approximately 15 km northeast of the
382 Baiyun Slide Complex, the Shenuh Canyon System exhibits a deeply incised, multi-branch
383 morphology, reflecting long-term and voluminous downslope gravity-flow activity (Yu *et al.*, 2014).

384 However, our observations reveal the development of a local sedimentary system dominated by
385 bottom-current activity. This secondary depositional system, confined within the topographic
386 depression generated by the Baiyun Slide, contrasts markedly with the regional downslope
387 sedimentary regime and reflects a spatial shift in the dominant sedimentary process from downslope
388 to alongslope control. The presence of infilling drifts and a well-defined moat formed along the slide
389 scar escarpment provides compelling evidence that bottom currents, rather than gravity flows, have
390 played the primary role in sediment transport and deposition within this specific geomorphological
391 context. The formation of the steep escarpment reoriented bottom current pathways thereby
392 enhancing sediment reworking and promoting the development of depositional features that are
393 decoupled from the downslope gravity-flow processes. We interpret this as a localized reorganization
394 of sedimentary processes, induced by the topographic transformation caused by the landslide event.
395 To describe this phenomenon, we introduce the concept of a slide-controlled secondary contourite
396 depositional system. This system develops within a larger gravity-flow-dominated continental slope,
397 yet it exhibits clear sedimentological and morphological signatures typical of contourite processes,
398 such as moat, associated infilling drift, and erosional truncation surfaces. The proposed conceptual
399 model highlights a cascade of interactions.

400 Based on our findings, this distinction between primary (gravity flow-dominated) and secondary
401 (bottom current-controlled) depositional systems within a single slope domain offers a novel
402 perspective on sediment partitioning in tectonically and morphodynamically active continental
403 margins. Our results further underscore the role of submarine landslides not only as sediment delivery
404 mechanisms, but also as morphodynamic agents capable of reconfiguring deep-marine flow fields
405 and fostering the development of bottom current driven systems within otherwise gravity-dominated
406 environments.

407 **CONCLUSIONS**

408 This study utilizes multibeam bathymetric and 3D seismic data to investigate the
409 geomorphological features associated with the Bayiun Slide Complex on the northern South China
410 Sea margin. Our primary objective is to understand the initiation and evolution of a potentially
411 understudied moat-drift contourite system linked to submarine landslides, by identifying the main
412 sedimentary processes and analyzing the comprehensive impact of submarine landslides on
413 alongslope bottom currents. The key findings and conclusions of this study are as follows:

414 (1) A disntinct slide-controlled moat-drift contourite system has been identified within the
415 Baiyun Slide scar. This system comprises a 600 m-wide, 50 m-deep moat adjacent to the steep slide
416 escarpment and a ~54 m-thick sediment drift deposited in the interior of the scar.

417 (2) Near the slide escarpment, the velocity of alongslope bottom currents intensifies, promoting
418 turbulence and erosion, which facilitated the initiation and development of the moat. In contrast, in
419 areas more distal to the slide scarp, bottom currents are less intense, allowing for the settling of
420 resuspended particles and the formation of the sediment drift.

421 (3) Although the broader slope region surrounding the Baiyun Slide Complex is predominantly
422 governed by gravity-driven sedimentary processes, the development of this moat-drift contourite
423 system within the slide scar reveals a localized, slide-controlled secondary sedimentary system
424 dominated by bottom-current activity. This finding underscores the capacity of submarine landslides
425 to reconfigure local sedimentary regimes, facilitating a transition from downslope to alongslope
426 depositional processes in deep-marine environments.

427 (4) Based on these observations, we propose a new conceptual model for slide-controlled
428 secondary contourite systems, offering a mechanistic explanation for similar features observed
429 globally. This model not only explains the genesis of such systems but also emphasizes the
430 morphodynamic role of submarine landslides in enabling bottom-current-driven sedimentation in
431 otherwise gravity-dominated environments.

432 (5) The sedimentary architecture of such hybrid systems provides valuable archives for
433 reconstructing past changes in ocean circulation and slope instability. Given the widespread
434 occurrence of submarine landslides and bottom currents across passive and active margins, slide-
435 controlled contourite systems may be more common in the geological records than previously
436 recognized.

437

438 **ACKNOWLEDGEMENTS**

439 The authors acknowledge CNOOC for providing access to the geophysical data used in this
440 research. This research was financially supported by National Engineering Research Center of Gas
441 Hydrate Exploration and Development (No. NERCZ202402), National Natural Science Foundation
442 of China (U22B20126), the National Key Research and Development Program (2022YFC2806100),
443 National Natural Science Foundation of China (No. 42306070), and the Guangzhou Basic and
444 Applied Basic Research Program (No. 2024A04J3812). We thank the Chief Editor Dr. Piret Plink-
445 Björklund, Associate Editor Dr. Victoria Valdez Buso, Dr. Kei Ogata, Dr. Francisco Javier
446 Hernández-Molina and one anonymous reviewer for their positive comments which helped us
447 improve our manuscript.

448

449 **REFERENCES**

450 **Alves, T.M.** (2010) A 3-D morphometric analysis of erosional features in a contourite drift from offshore SE
451 Brazil: Morphometric analysis of erosional features. *Geophysical Journal International*, **183**, 1151–
452 1164.

453 **Armitage, D.A., Romans, B.W., Covault, J.A. and Graham, S.A.** (2009) The Influence of Mass-Transport-
454 Deposit Surface Topography on the Evolution of Turbidite Architecture: The Sierra Contreras, Tres Pasos
455 Formation (Cretaceous), Southern Chile. *Journal of Sedimentary Research*, **79**, 287–301.

456 **Betzler, C., Lüdmann, T., Hübscher, C. and Fürstenau, J.** (2013) Current and sea-level signals in periplatform
457 ooze (Neogene, Maldives, Indian Ocean). *Sedimentary Geology*, **290**, 126–137.

458 **Bryn, P., Berg, K., Stoker, M.S., Haflidason, H. and Solheim, A.** (2005) Contourites and their relevance for mass
459 wasting along the Mid-Norwegian Margin. *Marine and Petroleum Geology*, **22**, 85–96.

460 **Cacchione, D.A., Pratson, L.F. and Ogston, A.S.** (2002) The Shaping of Continental Slopes by Internal Tides.
461 *Science*, **296**, 724–727.

462 **Cattaneo, A., Miramontes, E., Samalens, K., Garreau, P., Caillaud, M., Marsset, B., Corradi, N. and Migeon,**
463 **S.** (2017) Contourite identification along Italian margins: The case of the Portofino drift (Ligurian Sea). *Marine
464 and Petroleum Geology*, **87**, 137–147.

465 **Chen, C.-T.A.** (2005) Tracing tropical and intermediate waters from the South China Sea to the Okinawa Trough
466 and beyond. *J. Geophys. Res.*, **110**, C05012.

467 **Chen, H., Xie, X., Van Rooij, D., Vandorpe, T., Su, M. and Wang, D.** (2014) Depositional characteristics
468 and processes of alongslope currents related to a seamount on the northwestern margin of the Northwest
469 Sub-Basin, South China Sea. *Marine Geology*, **355**, 36–53.

470 **Chen, H., Xie, X., Zhang, W., Shu, Y., Wang, D., Vandorpe, T. and Van Rooij, D.** (2016) Deep-water
471 sedimentary systems and their relationship with bottom currents at the intersection of Xisha Trough and
472 Northwest Sub-Basin, South China Sea. *Marine Geology*, **378**, 101–113.

473 **Chen, H., Zhang, W., Xie, X., Gao, Y., Liu, S., Ren, J., Wang, D. and Su, M.** (2022) Linking oceanographic
474 processes to contourite features: Numerical modelling of currents influencing a contourite depositional system
475 on the northern South China Sea margin. *Marine Geology*, **444**, 106714.

476 **Ercilla, G., Juan, C., Hernández-Molina, F.J., Bruno, M., Estrada, F., Alonso, B., Casas, D., Farran, Marcel.
477 lí, Llave, E., García, M., Vázquez, J.T., D'Acremont, E., Gorini, C., Palomino, D., Valencia, J., El
478 Moumni, B. and Ammar, A.** (2016) Significance of bottom currents in deep-sea morphodynamics: An
479 example from the Alboran Sea. *Marine Geology*, **378**, 157–170.

480 **Faugères, J.-C., Stow, D.A.V., Imbert, P. and Viana, A.** (1999) Seismic features diagnostic of contourite drifts.
481 *Marine Geology*, **162**, 1–38.

482 **Gao, Y.** (2020) Seismic stratigraphy and deep-water sedimentary evolution of the southern Mozambique
483 margin_Central Terrace and Mozambique Fracture Zone. *Marine Geology*, **18**.

484 **García, M., Hernández-Molina, F.J., Alonso, B., Vázquez, J.T., Ercilla, G., Llave, E. and Casas, D.** (2016)
485 Erosive sub-circular depressions on the Guadalquivir Bank (Gulf of Cadiz): Interaction between bottom
486 current, mass-wasting and tectonic processes. *Marine Geology*, **378**, 5–19.

487 García, M., Hernández-Molina, F.J., Llave, E., Stow, D.A.V., León, R., Fernández-Puga, M.C., Diaz Del Río,
488 V. and Somoza, L. (2009) Contourite erosive features caused by the Mediterranean Outflow Water in the Gulf
489 of Cadiz: Quaternary tectonic and oceanographic implications. *Marine Geology*, **257**, 24–40.

490 Gatter, R., Clare, M.A., Kuhlmann, J. and Huhn, K. (2021) Characterisation of weak layers, physical controls
491 on their global distribution and their role in submarine landslide formation. *Earth-Science Reviews*, **223**,
492 103845.

493 Gong, C., Wang, Y., Peng, X., Li, W., Qiu, Y. and Xu, S. (2012) Sediment waves on the South China Sea Slope
494 off southwestern Taiwan: Implications for the intrusion of the Northern Pacific Deep Water into the South
495 China Sea. *Marine and Petroleum Geology*, **32**, 95–109.

496 Gong, C., Wang, Y., Zhu, W., Li, W. and Xu, Q. (2013) Upper Miocene to Quaternary unidirectionally migrating
497 deep-water channels in the Pearl River Mouth Basin, northern South China Sea. *Bulletin*, **97**, 285–308.

498 Heerema, C.J., Talling, P.J., Cartigny, M.J., Paull, C.K., Bailey, L., Simmons, S.M., Parsons, D.R., Clare,
499 M.A., Gwiazda, R., Lundsten, E., Anderson, K., Maier, K.L., Xu, J.P., Sumner, E.J., Rosenberger, K.,
500 Gales, J., McGann, M., Carter, L. and Pope, E. (2020) What determines the downstream evolution of
501 turbidity currents? *Earth and Planetary Science Letters*, **532**, 116023.

502 Hernández-Molina, F.J., Llave, E., Stow, D.A.V., García, M., Somoza, L., Vázquez, J.T., Lobo, F.J., Maestro,
503 A., Díaz Del Río, V., León, R., Medialdea, T. and Gardner, J. (2006) The contourite depositional system of
504 the Gulf of Cádiz: A sedimentary model related to the bottom current activity of the Mediterranean outflow
505 water and its interaction with the continental margin. *Deep Sea Research Part II: Topical Studies in
506 Oceanography*, **53**, 1420–1463.

507 Hernández-Molina, F.J., Serra, N., Stow, D.A.V., Llave, E., Ercilla, G. and Van Rooij, D. (2011) Along-slope
508 oceanographic processes and sedimentary products around the Iberian margin. *Geo-Mar Lett*, **31**, 315–341.

509 Hernández-Molina, J., Llave, E., Somoza, L., Fernández-Puga, M.C., Maestro, A., León, R., Medialdea, T.,
510 Barnolas, A., García, M., Del Río, V.D., Fernández-Salas, L.M., Vázquez, J.T., Lobo, F., Dias, J.M.A.,
511 Rodero, J. and Gardner, J. (2003) Looking for clues to paleoceanographic imprints: A diagnosis of the Gulf
512 of Cadiz contourite depositional systems. *Geol*, **31**, 19.

513 Howe, J.A., Stoker, M.S., Masson, D.G., Pudsey, C.J., Morris, P., Larter, R.D. and Bulat, J. (2006) Seabed
514 morphology and the bottom-current pathways around Rosemary Bank seamount, northern Rockall Trough,
515 North Atlantic. *Marine and Petroleum Geology*, **23**, 165–181.

516 **Hutton, E.W.H. and Syvitski, J.P.M.** (2004) Advances in the numerical modeling of sediment failure during the
517 development of a continental margin. *Marine Geology*, **203**, 367–380.

518 **Jiang, J., Shi, H., Lin, C., Zhang, Z., Wei, A., Zhang, B., Shu, L., Tian, H., Tao, Z. and Liu, H.** (2017) Sequence
519 architecture and depositional evolution of the Late Miocene to quaternary northeastern shelf margin of the
520 South China Sea. *Marine and Petroleum Geology*, **81**, 79–97.

521 **Juan, C., Van Rooij, D. and De Bruycker, W.** (2018) An assessment of bottom current controlled sedimentation
522 in Pacific Ocean abyssal environments. *Marine Geology*, **403**, 20–33.

523 **Kneller, B., Dykstra, M., Fairweather, L. and Milana, J.P.** (2016) Mass-transport and slope accommodation:
524 Implications for turbidite sandstone reservoirs. *Bulletin*, **100**, 213–235.

525 **Kremer, C.H., McHargue, T., Scheucher, L. and Graham, S.A.** (2018) Transversely-sourced mass-transport
526 deposits and stratigraphic evolution of a foreland submarine channel system: Deep-water tertiary strata of the
527 Austrian Molasse Basin. *Marine and Petroleum Geology*, **92**, 1–19.

528 **Laberg, J.S., Stoker, M.S., Dahlgren, K.I.T., Haas, H. de, Haflidason, H., Hjelstuen, B.O., Nielsen, T.,**
529 **Shannon, P.M., Vorren, T.O., van Weering, T.C.E. and Ceramicola, S.** (2005) Cenozoic alongslope
530 processes and sedimentation on the NW European Atlantic margin. *Marine and Petroleum Geology*, **22**, 1069–
531 1088.

532 **Li, H., Wang, Y., Zhu, W., Xu, Q., He, Y., Tang, W., Zhuo, H., Wang, D., Wu, J. and Li, D.** (2013) Seismic
533 characteristics and processes of the Plio-Quaternary unidirectionally migrating channels and contourites in the
534 northern slope of the South China Sea. *Marine and Petroleum Geology*, **43**, 370–380.

535 **Li, W., Alves, T.M., Rebesco, M., Sun, J., Li, J., Li, S. and Wu, S.** (2020) The Baiyun Slide Complex, South
536 China Sea: A modern example of slope instability controlling submarine-channel incision on continental
537 slopes. *Marine and Petroleum Geology*, **114**, 104231.

538 **Li, W., Wu, S., Völker, D., Zhao, F., Mi, L. and Kopf, A.** (2014) Morphology, seismic characterization and
539 sediment dynamics of the Baiyun Slide Complex on the northern South China Sea margin. *JGS*, **171**,
540 865–877.

541 **Lin, C., Jiang, J., Shi, H., Zhang, Z., Liu, J., Qin, C., Li, H., Ran, H., Wei, A., Tian, H., Xing, Z. and Yao, Q.**
542 (2018) Sequence architecture and depositional evolution of the northern continental slope of the South China
543 Sea: responses to tectonic processes and changes in sea level. *Basin Res*, **30**, 568–595.

544 **Lintern, D.G., Hill, P.R. and Stacey, C.** (2016) Powerful unconfined turbidity current captured by cabled
545 observatory on the Fraser River delta slope, British Columbia, Canada. *Sedimentology*, **63**, 1041–1064.

546 **Liu, G., Wang, D., Chen, W., Wang, W., Betzler, C. and Han, X.** (2023) Submarine landslides on a carbonate
547 platform slope changing transport pathways of deepwater gravity flows: Insights from the Xisha Islands, South
548 China Sea. *Geomorphology*, **437**, 108813.

549 **Liu, J., Xiang, R., Chen, M., Chen, Z., Yan, W. and Liu, F.** (2011) Influence of the Kuroshio current intrusion
550 on depositional environment in the Northern South China Sea: Evidence from surface sediment records.
551 *Marine Geology*, **285**, 59–68.

552 **Liu, S., Hernández-Molina, F.J., Ercilla, G. and Van Rooij, D.** (2020) Sedimentary evolution of the Le
553 Danois contourite drift systems (southern Bay of Biscay, NE Atlantic): A reconstruction of the Atlantic
554 Mediterranean Water circulation since the Pliocene. *Marine Geology*, **427**, 106217.

555 **Liu, S., Van Rooij, D., Vandorpe, T., González-Pola, C., Ercilla, G. and Hernández-Molina, F.J.** (2019)
556 Morphological features and associated bottom-current dynamics in the Le Danois Bank region (southern Bay
557 of Biscay, NE Atlantic): A model in a topographically constrained small basin. *Deep Sea Research Part I:*
558 *Oceanographic Research Papers*, **149**, 103054.

559 **Lu, Y., Luan, X., Lyu, F., Wang, B., Yang, Z., Yang, T. and Yao, G.** (2017) Seismic evidence and formation
560 mechanism of gas hydrates in the Zhongjiannan Basin, Western margin of the South China Sea. *Marine and*
561 *Petroleum Geology*, **84**, 274–288.

562 **Lüdmann, T., Kin Wong, H. and Wang, P.** (2001) Plio–Quaternary sedimentation processes and neotectonics of
563 the northern continental margin of the South China Sea. *Marine Geology*, **172**, 331–358.

564 **Lüdmann, T. and Wong, H.K.** (1999) Neotectonic regime on the passive continental margin of the northern South
565 China Sea. *Tectonophysics*, **311**, 113–138.

566 **Martorelli, E., Bosman, A., Casalbore, D. and Falcini, F.** (2016) Interaction of down-slope and along-slope
567 processes off Capo Vaticano (southern Tyrrhenian Sea, Italy), with particular reference to contourite-related
568 landslides. *Marine Geology*, **378**, 43–55.

569 **Masson, D.G., Harbitz, C.B., Wynn, R.B., Pedersen, G. and Løvholt, F.** (2006) Submarine landslides: processes,
570 triggers and hazard prediction. *Phil. Trans. R. Soc. A.*, **364**, 2009–2039.

571 **McAdoo, B.G., Pratson, L.F. and Orange, D.L.** (2000) Submarine landslide geomorphology, US continental
572 slope. *Marine Geology*, **169**, 103–136.

573 **McCave, I.N. and Carter, L.** (1997) Recent sedimentation beneath the Deep Western Boundary Current off northern
574 New Zealand. *Deep Sea Research Part I: Oceanographic Research Papers*, **44**, 1203–1237.

575 **Micallef, A., Masson, D.G., Berndt, C. and Stow, D.A.V.** (2009) Development and mass movement processes of
576 the north-eastern Storegga Slide. *Quaternary Science Reviews*, **28**, 433–448.

577 **Minisini, D., Trincardi, F. and Asioli, A.** (2006) Evidence of slope instability in the Southwestern Adriatic Margin.
578 *Nat. Hazards Earth Syst. Sci.*, **6**, 1–20.

579 **Miramontes, E., Cattaneo, A., Jouet, G., Théreau, E., Thomas, Y., Rovere, M., Cauquil, E. and**
580 **Trincardi, F.** (2016) The Pianosa Contourite Depositional System (Northern Tyrrhenian Sea): Drift
581 morphology and Plio-Quaternary stratigraphic evolution. *Marine Geology*, **378**, 20–42.

582 **Miramontes, E., Garreau, P., Caillaud, M., Jouet, G., Pellen, R., Hernández-Molina, F.J., Clare, M.A. and**
583 **Cattaneo, A.** (2019) Contourite distribution and bottom currents in the NW Mediterranean Sea: Coupling
584 seafloor geomorphology and hydrodynamic modelling. *Geomorphology*, **333**, 43–60.

585 **Miramontes, E., Thiéblemont, A., Babonneau, N., Penven, P., Raisson, F., Droz, L., Jorry, S.J., Fierens, R.,**
586 **Counts, J.W., Wilckens, H., Cattaneo, A. and Jouet, G.** (2021) Contourite and mixed turbidite-contourite
587 systems in the Mozambique Channel (SW Indian Ocean): Link between geometry, sediment characteristics
588 and modelled bottom currents. *Marine Geology*, **437**, 106502.

589 **Mosher, D.C. and Boggild, K.** (2021) Impact of bottom currents on deep water sedimentary processes of Canada
590 Basin, Arctic Ocean. *Earth and Planetary Science Letters*, **569**, 117067.

591 **Mulder, T., Gonthier, E., Lecroart, P., Hanquiez, V., Marches, E. and Voisset, M.** (2009) Sediment failures and
592 flows in the Gulf of Cadiz (eastern Atlantic). *Marine and Petroleum Geology*, **13**.

593 **Mulder, T., Lecroart, P., Hanquiez, V., Marches, E., Gonthier, E., Guedes, J.-C., Thiébot, E., Jaaidi,**
594 **B., Kenyon, N., Voisset, M., Perez, C., Sayago, M., Fuchey, Y. and Bujan, S.** (2006) The western
595 part of the Gulf of Cadiz: contour currents and turbidity currents interactions. *Geo-Mar Lett*, **26**, 31–41.

596 **Normandeau, A., Campbell, D.C., Piper, D.J.W. and Jenner, K.A.** (2019) Are submarine landslides an
597 underestimated hazard on the western North Atlantic passive margin? *Geology*, **47**, 848–852.

598 **Ogata, K., Mountjoy, J.J., Pini, G.A., Festa, A. and Tinterri, R.** (2014) Shear zone liquefaction in mass
599 transport deposit emplacement: A multi-scale integration of seismic reflection and outcrop data. *Marine*
600 *Geology*, **356**, 50–64.

601 Ogata, K., Mutti, E., Pini, G.A. and Tinterri, R. (2012) Mass transport-related stratal disruption within
602 sedimentary mélanges: Examples from the northern Apennines (Italy) and south-central Pyrenees
603 (Spain). *Tectonophysics*, **568–569**, 185–199.

604 Palomino, D., Vázquez, J.-T., Ercilla, G., Alonso, B., López-González, N. and Díaz-del-Río, V. (2011)
605 Interaction between seabed morphology and water masses around the seamounts on the Motril Marginal
606 Plateau (Alboran Sea, Western Mediterranean). *Geo-Mar Lett*, **31**, 465–479.

607 Pomar, L., Morsilli, M., Hallock, P. and Bádenas, B. (2012) Internal waves, an under-explored source of
608 turbulence events in the sedimentary record. *Earth-Science Reviews*, **111**, 56–81.

609 Qin, Y., Alves, T.M., Constantine, J. and Gamboa, D. (2017) The Role of Mass Wasting In the Progressive
610 Development Of Submarine Channels (Espírito Santo Basin, Se Brazil). *Journal of Sedimentary Research*, **87**,
611 500–516.

612 Rebesco, M. and Camerlenghi, A. (2008) Late Pliocene margin development and mega debris flow deposits on
613 the Antarctic continental margins: Evidence of the onset of the modern Antarctic Ice Sheet? *Palaeogeography,*
614 *Palaeoclimatology, Palaeoecology*, **260**, 149–167.

615 Rebesco, M., Hernández-Molina, F.J., Van Rooij, D. and Wåhlin, A. (2014) Contourites and associated
616 sediments controlled by deep-water circulation processes: State-of-the-art and future considerations. *Marine
617 Geology*, **352**, 111–154.

618 Rebesco, M., Özmaral, A., Urgeles, R., Accettella, D., Lucchi, R.G., Rüther, D., Winsborrow, M., Llopis, J.,
619 Caburlotto, A., Lantzsch, H. and Hanebuth, T.J.J. (2016) Evolution of a high-latitude sediment drift inside
620 a glacially-carved trough based on high-resolution seismic stratigraphy (Kveithola, NW Barents Sea).
621 *Quaternary Science Reviews*, **147**, 178–193.

622 Rodrigues, S., Hernández-Molina, F.J., Fonnesu, M., Miramontes, E., Rebesco, M. and Campbell, D.C. (2022)
623 A new classification system for mixed (turbidite-contourite) depositional systems: Examples, conceptual
624 models and diagnostic criteria for modern and ancient records. *Earth-Science Reviews*, **230**, 104030.

625 Sayago-Gil, M., Long, D., Hitchen, K., Díaz-del-Río, V., Fernández-Salas, L.M. and Durán-Muñoz, P. (2010)
626 Evidence for current-controlled morphology along the western slope of Hatton Bank (Rockall Plateau, NE
627 Atlantic Ocean). *Geo-Mar Lett*, **30**, 99–111.

628 Shanmugam, G. (2021) Deep-Water Processes and Deposits. In: *Encyclopedia of Geology*, Elsevier, 965–1009.

629 Smoot, N.C. and King, R.E. (1993) Three-dimensional secondary surface geomorphology of submarine landslides
630 on northwest Pacific plate guyots. *Geomorphology*, **6**, 151–173.

631 Stagna, M.D., Maselli, V. and Van Vliet, A. (2023) Large-scale submarine landslide drives long-lasting regime
632 shift in slope sediment deposition. *Geology*, **51**, 167–173.

633 Stow, D.A.V., Faugères, J.-C., Howe, J.A., Pudsey, C.J. and Viana, A.R. (2002) Bottom currents, contourites
634 and deep-sea sediment drifts: current state-of-the-art. *Memoirs*, **22**, 7–20.

635 Sun, Q., Cartwright, J., Wu, S., Zhong, G., Wang, S. and Zhang, H. (2016) Submarine erosional troughs in the
636 northern South China Sea: Evidence for Early Miocene deepwater circulation and paleoceanographic change.
637 *Marine and Petroleum Geology*, **77**, 75–91.

638 Sun, Q., Cartwright, J., Xie, X., Lu, X., Yuan, S. and Chen, C. (2018) Reconstruction of repeated Quaternary
639 slope failures in the northern South China Sea. *Marine Geology*, **401**, 17–35.

640 ten Brink, U.S., Barkan, R., Andrews, B.D. and Chaytor, J.D. (2009) Size distributions and failure initiation of
641 submarine and subaerial landslides. *Earth and Planetary Science Letters*, **287**, 31–42.

642 Thiéblemont, A., Hernández-Molina, F.J., Miramontes, E., Raisson, F. and Penven, P. (2019) Contourite
643 depositional systems along the Mozambique channel: The interplay between bottom currents and sedimentary
644 processes. *Deep Sea Research Part I: Oceanographic Research Papers*, **147**, 79–99.

645 Tian, J., Yang, Q., Liang, X., Xie, L., Hu, D., Wang, F. and Qu, T. (2006) Observation of Luzon Strait transport.
646 *Geophys. Res. Lett.*, **33**, L19607.

647 Uenzelmann-Neben, G., Weber, T., Grützner, J. and Thomas, M. (2017) Transition from the Cretaceous ocean
648 to Cenozoic circulation in the western South Atlantic — A twofold reconstruction. *Tectonophysics*, **716**, 225–
649 240.

650 Van Rooij, D., Iglesias, J., Hernández-Molina, F.J., Ercilla, G., Gomez-Ballesteros, M., Casas, D., Llave, E.,
651 De Hauwere, A., Garcia-Gil, S., Acosta, J. and Henriet, J.-P. (2010) The Le Danois Contourite Depositional
652 System: Interactions between the Mediterranean Outflow Water and the upper Cantabrian slope (North Iberian
653 margin). *Marine Geology*, **274**, 1–20.

654 Vandorpe, T., Martins, I., Vitorino, J., Hebbeln, D., García, M. and Van Rooij, D. (2016) Bottom currents and
655 their influence on the sedimentation pattern in the El Arraiche mud volcano province, southern Gulf of Cadiz.
656 *Marine Geology*, **378**, 114–126.

657 **Vandorpe, T., Van Rooij, D. and De Haas, H.** (2014) Stratigraphy and paleoceanography of a topography-
658 controlled contourite drift in the Pen Duick area, southern Gulf of Cádiz. *Marine Geology*, **349**, 136–
659 151.

660 **Verdicchio, G. and Trincardi, F.** (2008) Mediterranean shelf-edge muddy contourites: examples from the
661 Gela and South Adriatic basins. *Geo-Mar Lett*, **28**, 137–151.

662 **Viana, A.R., Hercos, C.M., De Almeida, W., Magalhães, J.L. and De Andrade, S.B.** (2002) Evidence of bottom
663 current influence on the Neogene to Quaternary sedimentation along the northern Campos Slope, SW Atlantic
664 Margin. *Memoirs*, **22**, 249–259.

665 **Wang, X., Wang, Y., He, M., Chen, W., Zhuo, H., Gao, S., Wang, M. and Zhou, J.** (2017) Genesis and evolution
666 of the mass transport deposits in the middle segment of the Pearl River canyon, South China Sea: Insights from
667 3D seismic data. *Marine and Petroleum Geology*, **88**, 555–574.

668 **Wang, X., Wang, Y., Tan, M. and Cai, F.** (2020) Deep-water deposition in response to sea-level fluctuations in
669 the past 30 kyr on the northern margin of the South China Sea. *Deep Sea Research Part I: Oceanographic
670 Research Papers*, **163**, 103317.

671 **Wang, X., Zhuo, H., Wang, Y., Mao, P., He, M., Chen, W., Zhou, J., Gao, S. and Wang, M.** (2018) Controls of
672 contour currents on intra-canyon mixed sedimentary processes: Insights from the Pearl River Canyon, northern
673 South China Sea. *Marine Geology*, **406**, 193–213.

674 **Wilckens, H., Schwenk, T., Lüdmann, T., Betzler, C., Zhang, W., Chen, J., Hernández-Molina, F.J., Lefebvre,
675 A., Cattaneo, A., Spieß, V. and Miramontes, E.** (2023) Factors controlling the morphology and internal
676 sediment architecture of moats and their associated contourite drifts. *Sedimentology*, **70**, 1472–1495.

677 **Yang, Q., Tian, J. and Zhao, W.** (2010) Observation of Luzon Strait transport in summer 2007. *Deep Sea Research
678 Part I: Oceanographic Research Papers*, **57**, 670–676.

679 **Yang, Y., Yang, J., Li, W. and Jing, S.** (2024) Slope instability and submarine-moat initiation: Insights from the
680 northern South China sea margin. *Marine and Petroleum Geology*, **160**, 106610.

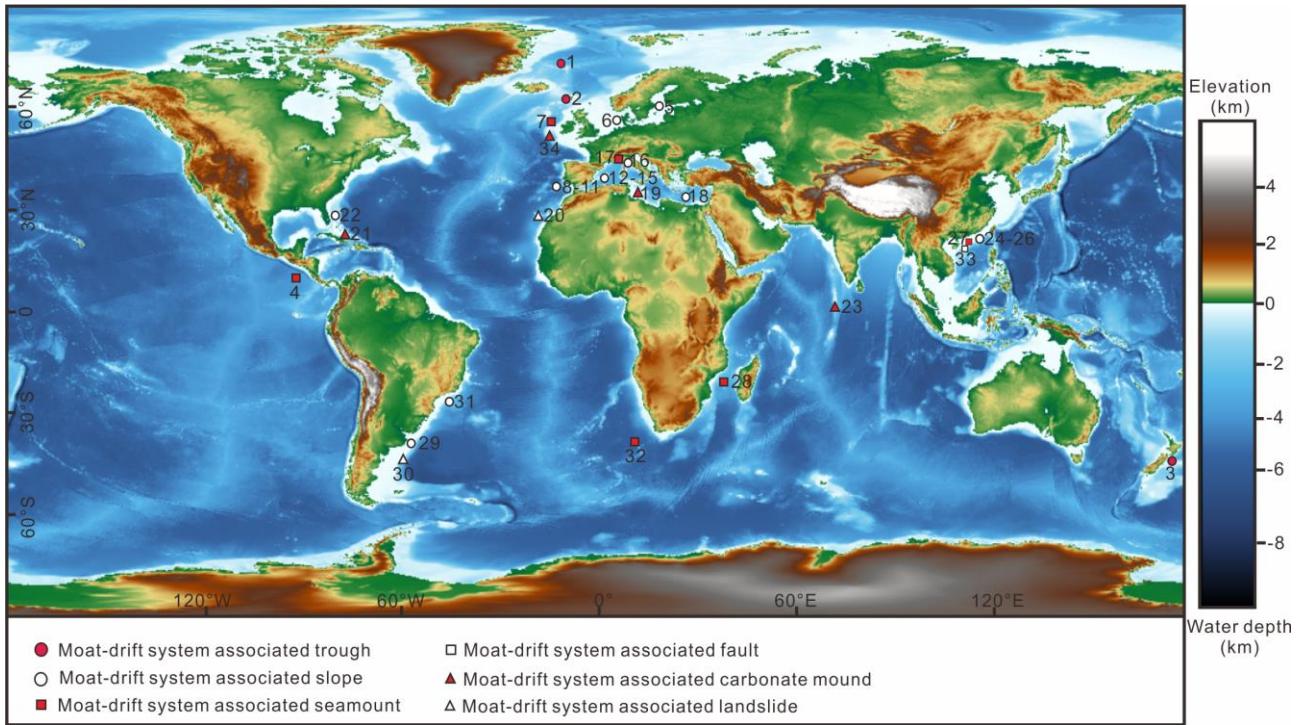
681 **Yin, S., Hernández-Molina, F.J., Zhang, W., Li, J., Wang, L., Ding, W. and Ding, W.** (2019) The influence of
682 oceanographic processes on contourite features: A multidisciplinary study of the northern South China Sea.
683 *Marine Geology*, **415**, 105967.

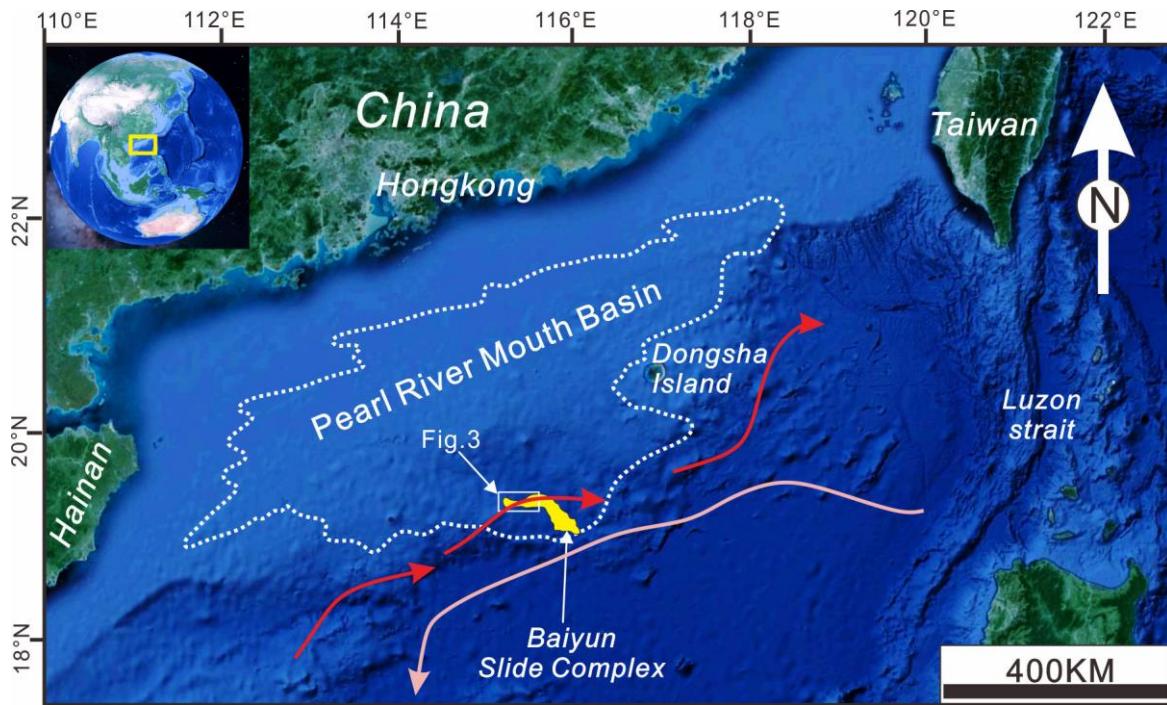
684 **Yu, X., Wang, J., Liang, J., Li, S., Zeng, X. and Li, W.** (2014) Depositional characteristics and
685 accumulation model of gas hydrates in northern South China Sea. *Marine and Petroleum Geology*, **56**,
686 74–86.

687 **Zhang, W., Hanebuth, T.J.J. and Stöber, U.** (2016) Short-term sediment dynamics on a meso-scale contourite
688 drift (off NW Iberia): Impacts of multi-scale oceanographic processes deduced from the analysis of mooring
689 data and numerical modelling. *Marine Geology*, **378**, 81–100.

690 **Zhao, Y., Liu, Z., Zhang, Y., Zhang, X., Ma, P., Yu, X., Ling, C., Lin, B. and Zhang, J.** (2024) Formation
691 mechanism of drift-moat contourite systems revealed by in-situ observations in the South China Sea. *Earth*
692 and *Planetary Science Letters*, **628**, 118585.

693 **Zhou, W., Wang, Y., Gao, X., Zhu, W., Xu, Q., Xu, S., Cao, J. and Wu, J.** (2015) Architecture, evolution history
694 and controlling factors of the Baiyun submarine canyon system from the middle Miocene to Quaternary in the
695 Pearl River Mouth Basin, northern South China Sea. *Marine and Petroleum Geology*, **67**, 389–407.

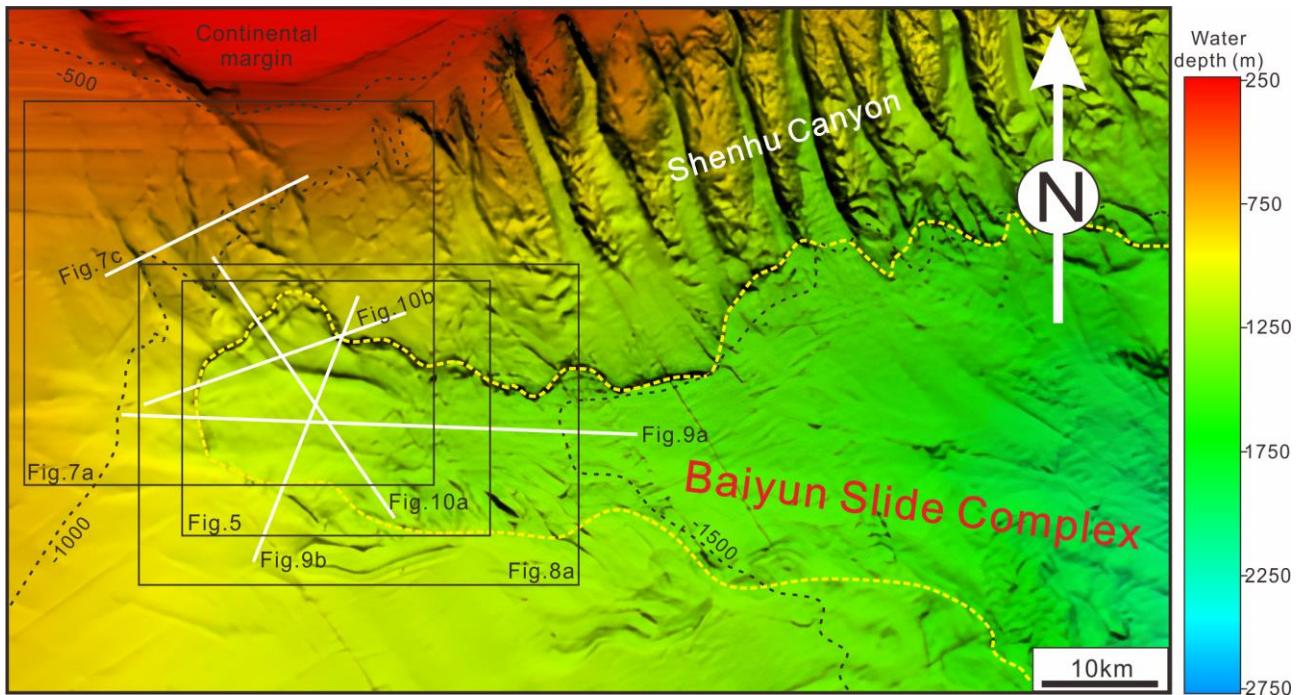

696 **Zhu, C., Cheng, S., Li, Q., Shan, H., Lu, J., Shen, Z., Liu, X. and Jia, Y.** (2019) Giant Submarine Landslide in
697 the South China Sea: Evidence, Causes, and Implications. *JMSE*, **7**, 152.


698 **Zhu, M., Graham, S., Pang, X. and McHargue, T.** (2010) Characteristics of migrating submarine canyons from
699 the middle Miocene to present: Implications for paleoceanographic circulation, northern South China Sea.
700 *Marine and Petroleum Geology*, **27**, 307–319.

701

702

703 **FIGURE CAPTIONS**

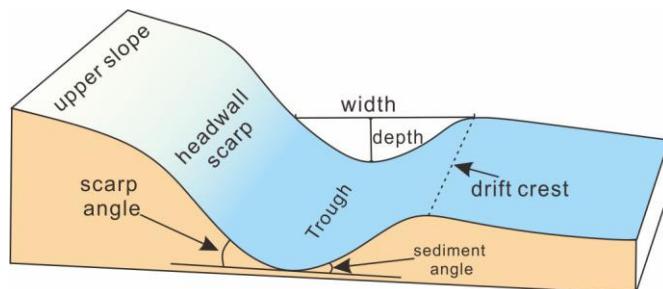

709 Fig. 2 Geographic and oceanographic contexts of the northern continental margin of the South China
 710 Sea. The white dotted line denotes the position of the Pearl River Mouth Basin. The paths of
 711 intermediate-deep-water masses flowing along the northern South China Sea are respectively
 712 indicated by red and orange arrows. The Baiyun Slide is marked in yellow. The white box represents
 713 the specific location of the study area, as also shown in Fig. 3.

715

716

717

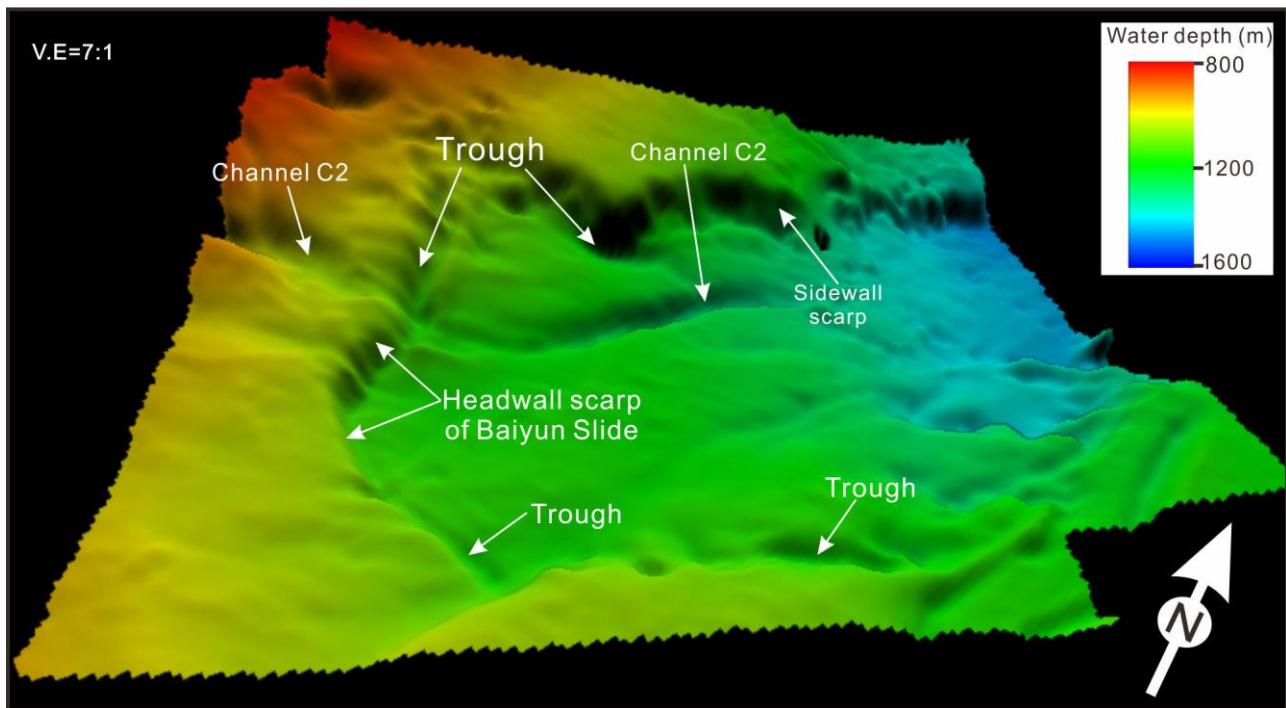
718



720 Fig. 3 Multibeam bathymetric map highlighting main bathymetric features in the study area.
 721 Bathymetric contours are shown as black dashed lines with a spacing of 500 m. The white solid lines
 722 reveal the location of the seismic profiles interpreted in this work. In addition, the yellow dashed line
 723 follows the boundary of the Baiyun Slide.

724

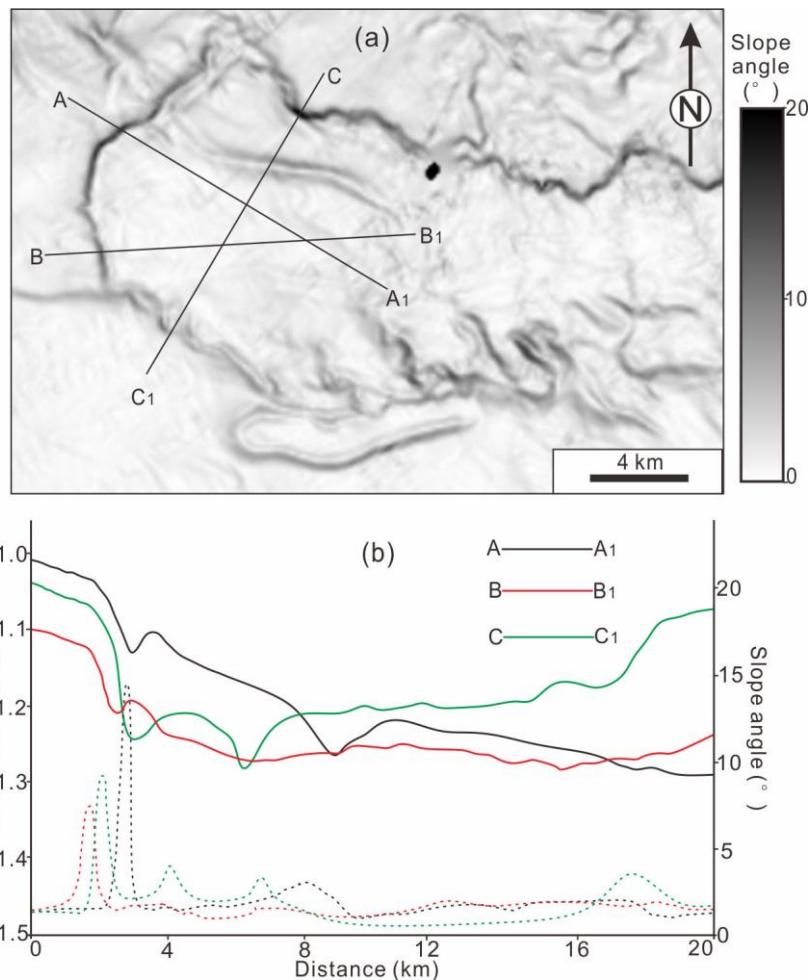
725


726

728 Fig. 4 Sketch illustrating the geomorphic parameters measured near the trough. Figure is modified
 729 from Wilckens et al. (2023).

730

731

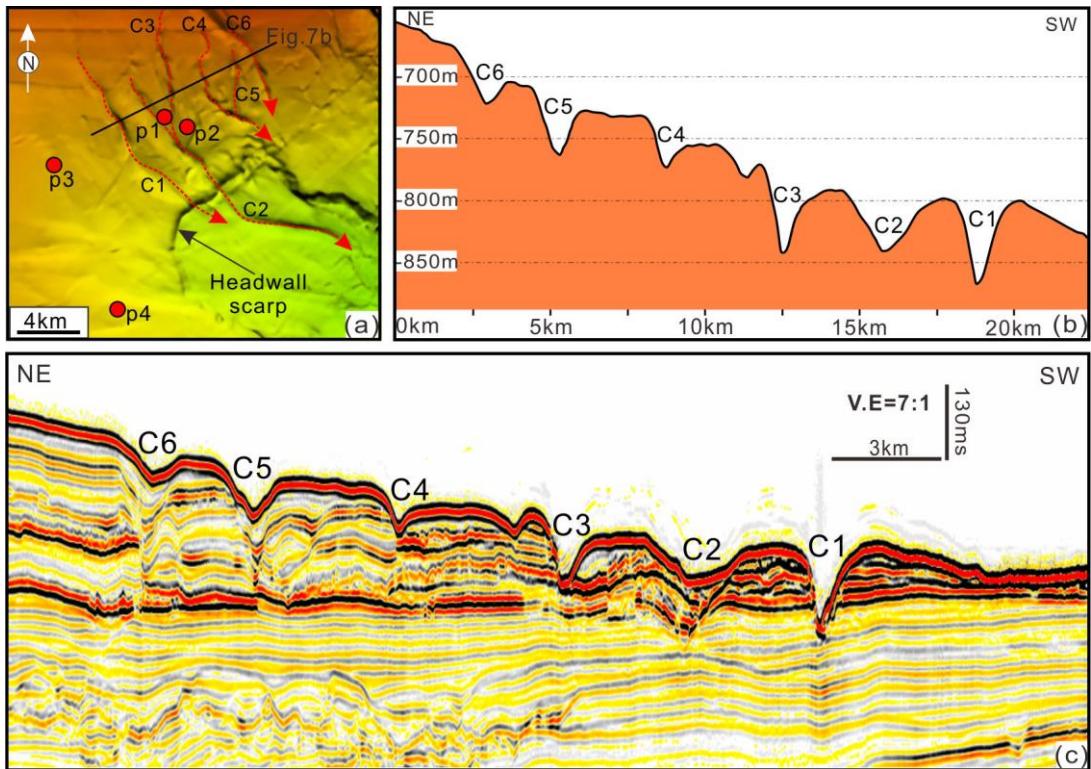

732

733 Fig. 5 Three-dimensional view of the high-resolution bathymetric data interpreted in this work. The
734 figure shows the detailed seafloor morphology near the trough and the Baiyun Slide's headwall and
735 lateral scarps (refer to Fig. 3 for location).

736

737

738

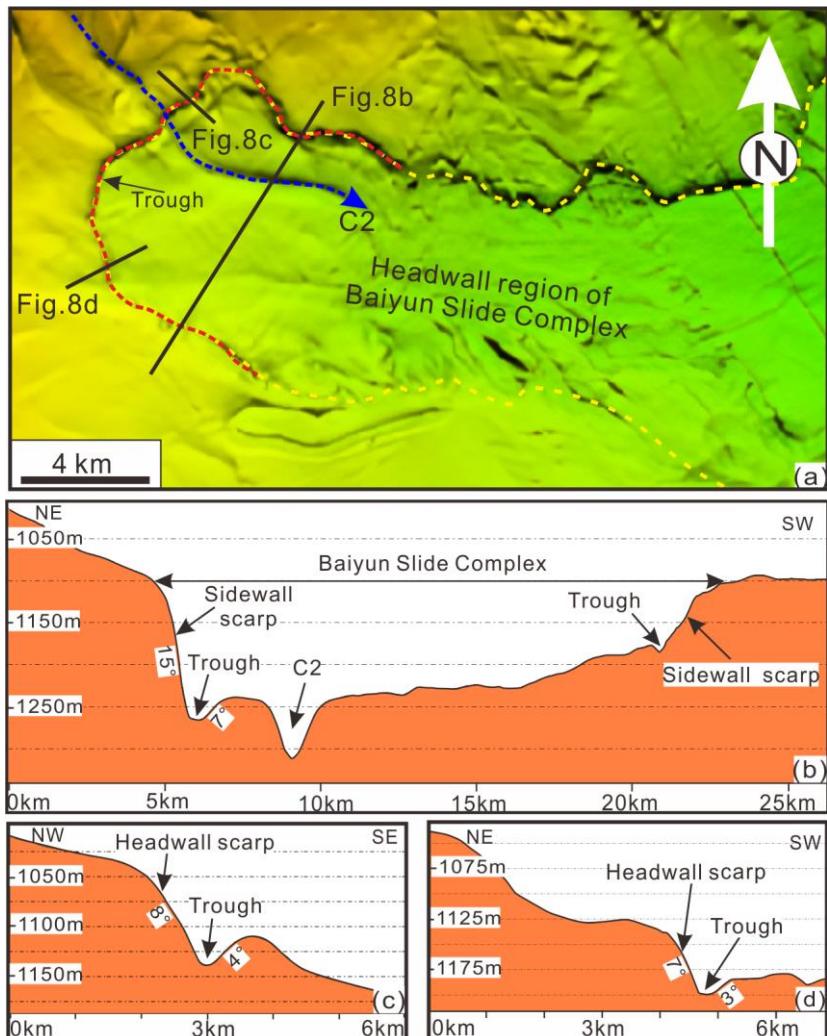


739

740 Fig.6 (a) Slope map highlighting the variations in the angle of the headwall region of the Baiyun Slide.
 741 The black solid lines refer to the cross-sections shown in Fig. 6b. (b) Solid lines represent bathymetric
 742 profiles characterizing the morphology of the study area at three distinct locations. Dashed lines
 743 indicate the variations in slope angles within the study area. The locations of the profiles are shown
 744 in Fig. 6a.

745

746

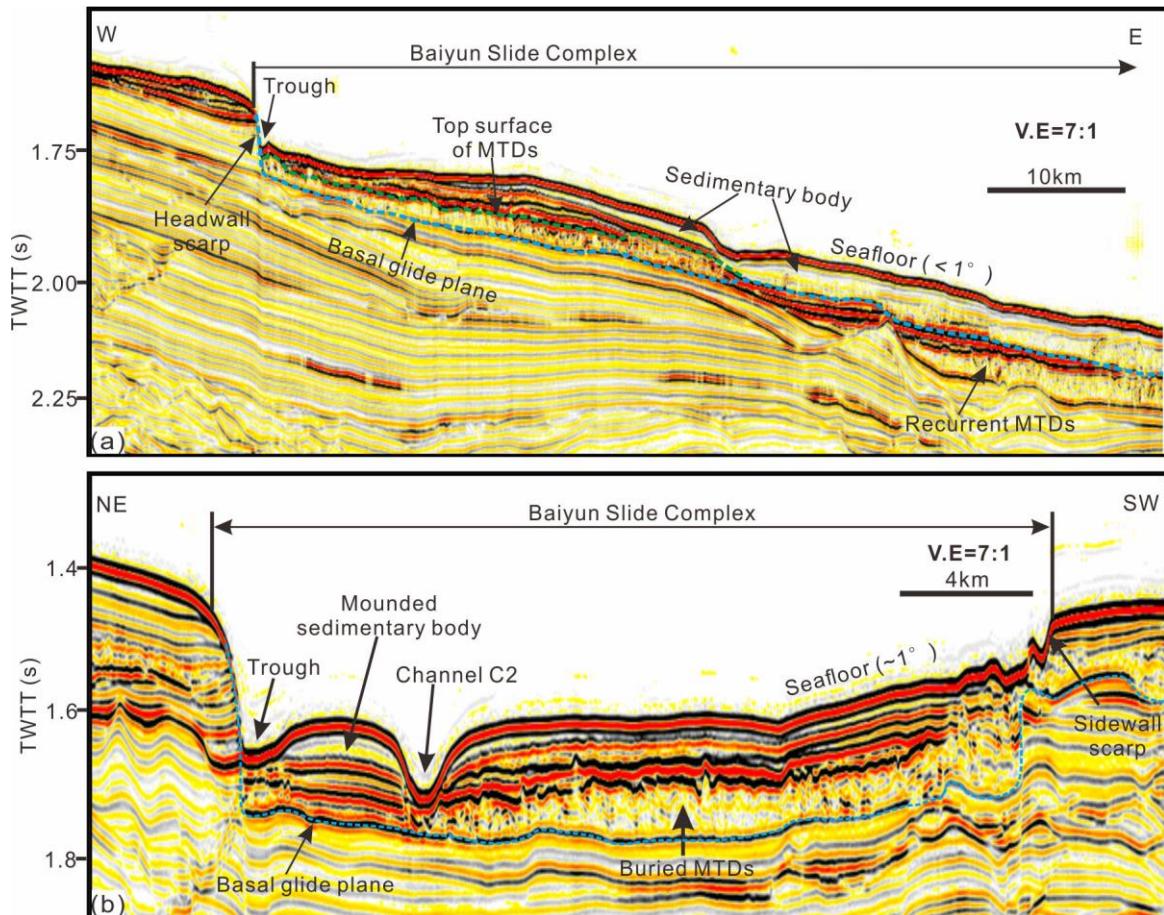

747

748 Fig. 7 (a) Multibeam bathymetric map showing the downslope-oriented channels C1 to C6 in the
 749 headwall region of the Baiyun Slide Complex. Please see the location in Fig. 3. (b) Bathymetric
 750 profile illustrating the detailed seafloor morphology of the downslope-oriented channels C1 to C6.
 751 See location in Fig. 7a. (c) Seismic profile revealing the internal architecture of these channels within
 752 the headwall region. See location of the seismic profile in Fig. 3.

753

754

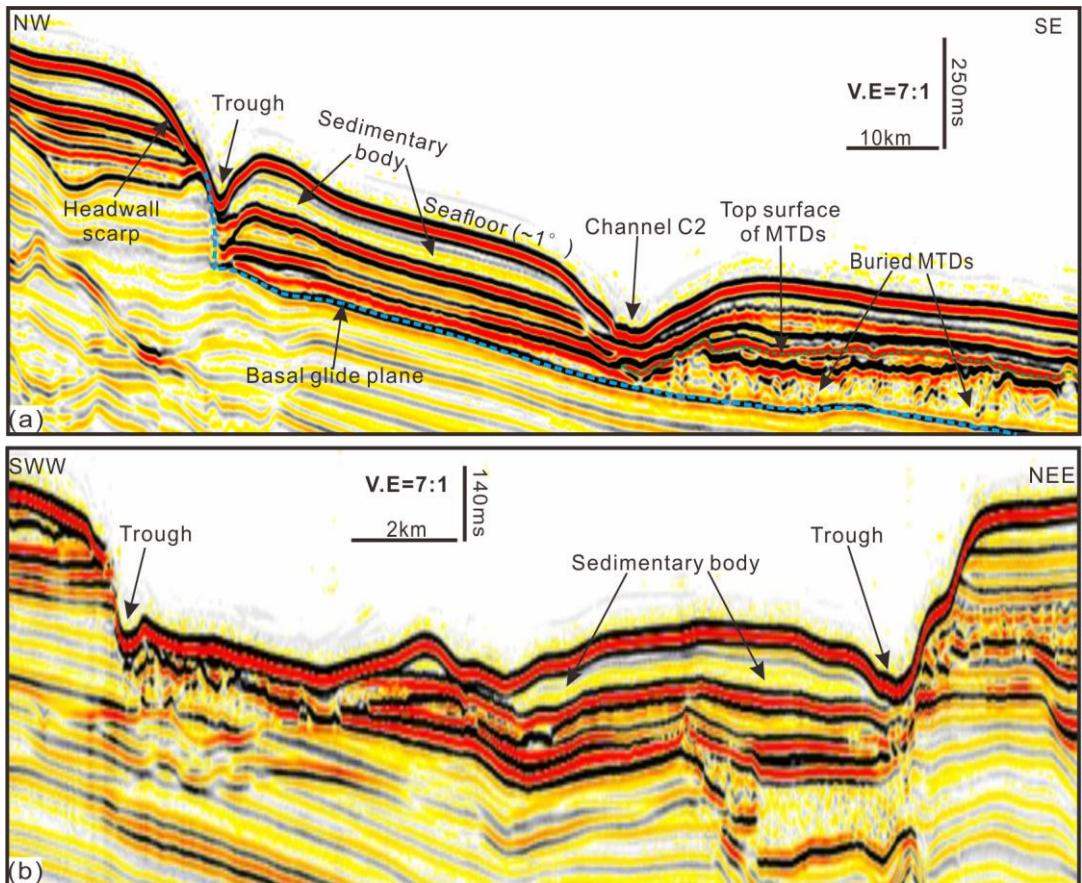
755



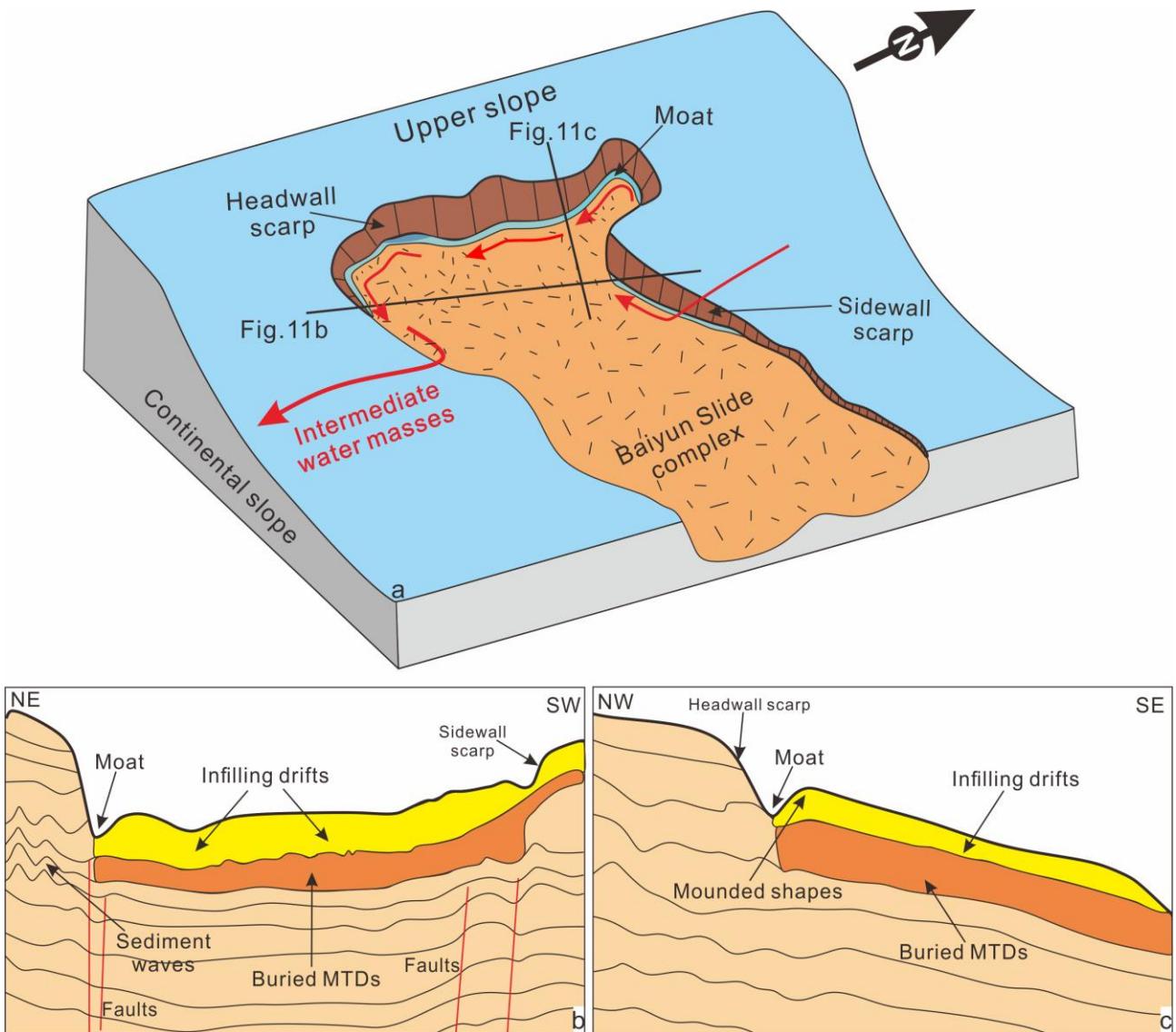
756

757 Fig. 8 (a) Enlarged multibeam bathymetric map providing seafloor morphometric data for the
 758 headwall region of the Baiyun Slide. The red dashed line highlights the development of a trough along
 759 the landslide scarps, while the solid black lines show the position of bathymetric profiles in (b), (c)
 760 and (d). (b)-(d) Bathymetric profiles across the scarps of the Baiyun Slide further confirm the
 761 presence of a trough in the study area.

762


763

764


765 Fig. 9 (a) Seismic profiles imaging the headwall and interior region of the Baiyun Slide. The profiles
 766 highlight the morphology of landslide scarps and the associated MTDs. (b) Seismic profile across the
 767 sidewall of the Baiyun Slide revealing the presence of the trough, mounded sedimentary body, and
 768 buried MTDs.

769

770

771 Fig. 10 (a) 3D seismic profile across the northern section of the Baiyun Slide's headwall region
 772 revealing variations in the thickness of sedimentary body. The profile reveals the presence of a trough
 773 along the headwall scarp, as well as buried MTDs in the slide. (b) 3D seismic profile imaging the
 774 trough close to the headwall and sidewall scarps of the Baiyun Slide.

776 Fig. 11 Conceptual model summarizing the evolution of the study area. (a) The Baiyun Slide
 777 mobilized a substantial volume of sediment resulting in the formation of steep landslide scarps. As a
 778 result, the flow of bottom currents branched and followed the contours as they entered the headwall
 779 region. (b)-(c) The presence of landslide scarps enhanced bottom flow velocities in its vicinity,
 780 leading to sediment erosion and the initiation of a moat. Simultaneously, the intensified bottom flow
 781 processes resuspend and redistribute sediments, causing them to settle and build mounded features at
 782 one side of this same moat. In areas with unchanged bottom-current velocities, suspended particles
 783 gradually settle out over time resulting in the formation of infilling drifts.

786 **Table S1** Summary of modern moat-drift contourite systems documented worldwide.

Number	Reference	Study area	Moat-drift system location
1	Rebesco et al. 2016	NW Barents Sea	Trough
2	Masson et al. 2002	North Rockall Trough	Trough
3	Lewis and Pantin. 2002	Hikurangi Trough	Trough
4	Clarke et al. 2018	Southwest Costa Rica	Seamount
5	Sivkov et al. 2002	Baltic Sea	Slope
6	Liu et al. 2020	Gulf of Biscay	Slope
7	Howe et al. 2006	Rosemary Bank seamount	Seamount
8	Hernández-Molina et al. 2016	Gulf of Cadiz	Slope
9	García et al. 2009	Gulf of Cadiz	Slope
10	Vandorpe et al. 2014	Gulf of Cadiz	Slope
11	Van Rooij et al. 2010	Gulf of Cadiz	Slope
12	Verdicchio and Trincardi 2006	Adriatic Sea	Slope
13	Martorelli et al. 2010	Adriatic Sea	Slope
14	Miramontes et al. 2019	Balearic Sea	Slope
15	Miramontes et al. 2016	Tyrrhenian Sea	Slope
16	Ercilla et al. 2016	Alboran Sea	Slope
17	Palomino et al. 2011	Alboran Sea	Seamount
18	Tripsanas et al. 2016	Aegean Sea	Slope
19	Micallef et al. 2016	Mediterranean Sea	Carbonate mound
20	Acosta et al. 2005	Canary Islands	Submarine landslide
21	Lüdemann et al. 2016	Santaren Channel	Carbonate mound
22	Mulder et al. 2019	Santaren Channel	Slope
23	Betzler et al. 2013	North Indian Ocean	Carbonate mound
24	Yin et al. 2019	South China Sea	Slope
25	Zhao et al. 2015	South China Sea	Slope
26	Palamenghi et al. 2015	South China Sea	Slope
27	Chen et al. 2014	Northwest South China Sea	Seamount
28	Miramontes et al. 2021	Mozambique Channel	Seamount
29	Wilckens et al. 2021	South Atlantic	Slope

30	Uenzelmann-neben et al. 2017	South Atlantic	Submarine landslide
31	Alves et al., 2011	Offshore Brazil	Slope
32	Gruetzner et al. 2016	Agulhas Ridge	Seamount
33	Liu et al., 2021	Southern South China Sea	Fault
34	Hovland et al., 1994	Western Ireland	Carbonate mound