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Abstract 6 

Memories reactivate during sleep, however the properties of such reactivation and its relationship to 7 

subsequent memory performance are not well understood. Here, we set out to examine memory 8 

reactivations associated with a serial reaction time task (SRTT). 48 human participants performed the 9 

SRTT and then slept in the lab while we deliberately induced reactivation in Slow Wave Sleep (SWS) 10 

using a Targeted Memory Reactivation (TMR) design. We detected reactivation after TMR cues using 11 

multiclass classification that adapted to sleep data by using sleep activity for training and wake activity 12 

for testing. We then examined the temporal properties of reactivation in relation to behavioural 13 

performance and sleep spindles. The observed reactivation was 3 to 20 times faster than waking 14 

activity. Finally, reactivation was more frequently observed in trials with high sigma power, supporting 15 

the idea that sleep spindles are associated with memory reactivation during sleep. These findings bring 16 

us closer to understanding the characteristics of human memory reactivation after TMR and provide 17 

evidence for the positive relationship between the detectability of reactivation and memory 18 

consolidation. 19 
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Introduction  24 

We spend around one third of our lives asleep. During sleep, the brain is busy processing memories 25 

through replay or reactivation which is essential for memory consolidation (Diekelmann & Born, 2010; 26 

Rasch & Born, 2013; Squire et al., 2015).  27 

The active system consolidation (ASC) hypothesis (Diekelmann & Born, 2010) suggests that sleep is 28 

not merely a passive shelter for memories against interference. Instead, newly encoded memories 29 

repeatedly reactivate during slow wave sleep (SWS) and this strengthens those memories in an 30 

ongoing process of memory consolidation. The ASC model (Rasch & Born, 2013) proposes a dialogue 31 

between neocortex and hippocampus in which slow oscillations (SOs) drive reactivation of 32 

hippocampal memories, with accompanying sharp wave ripples that are carrying reactivations nested 33 

into thalamo-cortical spindles. The model also suggests that spindles prime the cortex for reactivation-34 

related plasticity by stimulating calcium influx into the dendrites of cortical pyramidal cells. 35 

A technique called targeted memory reactivation (TMR) can be used to manipulate reactivation in 36 

sleep. In TMR, cues such as odours, sounds, or electrical shocks are associated with the learned 37 

material as a result of being presented during memory encoding or retrieval. Cues are then re-38 

delivered during subsequent sleep and thereby thought to reactivate the cued memory (Hennevin & 39 

Hars, 1987). In humans, several studies have shown the benefits of TMR during sleep on memory 40 

consolidation for both declarative (Cairney et al., 2014; Fuentemilla et al., 2013; Rasch et al., 2007; 41 

Rudoy et al., 2009) and non-declarative memories (Antony et al., 2012; Schönauer et al., 2014). 42 

Memory reactivation elicited via TMR can be detected using multivariate pattern classifiers and 43 

similarity analyses (Abdellahi et al., 2023b; Belal et al., 2018; Cairney et al., 2018; Schreiner et al., 44 

2018; Wang et al., 2019). However, despite extensive research in the area, there are still a lot of gaps 45 

in our understanding of the characteristics of cued reactivation. Are such reactivations exact clones of 46 

wake activations, or do they differ in shape or duration? How do sleep spindles relate to memory 47 

reactivation? And how does reactivation detection relate to consolidation? Here, we set out to answer 48 

these questions and thereby gain a better understanding of memory reactivation and TMR.  49 

In rats, memory replay during NREM sleep has been shown to have different temporal characteristics 50 

compared to wake, as it occurs from 10 to 20 times faster (Ji & Wilson, 2007; Lee & Wilson, 2002; 51 

Nádasdy et al., 1999). In wake, offline replay is thought to occur from 6 to 7 times faster than the 52 

actual task (Euston et al., 2007). The firing activity of individual neurons measured in non-human 53 

studies gives clear evidence of compression, while EEG in humans offers high temporal resolution but 54 

lacks the spatial resolution necessary for direct analysis of temporal compression. To address this 55 



challenge, we developed an approach that systematically rescales variable-duration sleep windows to 56 

match wake trial length, testing whether optimal pattern similarity occurs at specific compression 57 

ratios. This method allowed us to identify temporal compression by detecting when temporally 58 

rescaled sleep neural patterns exhibited enhanced feature correspondence with their wake 59 

counterparts, thereby providing evidence for compressed memory reactivation at the EEG level. 60 

The reactivation-spindle connection is supported by Cairney and colleagues who showed that spindles 61 

mediate reactivation in human NREM sleep (Cairney et al., 2018). Additionally, a significant post-cue 62 

reactivation was observed in trials with high post-cue power in the spindle band (Wang et al., 2019), 63 

while enhancing spindles led to more consolidation (Lustenberger et al., 2016; Ngo et al., 2013). It has 64 

also been shown that hippocampal sharp-wave ripples are nested in the troughs of spindles (Staresina 65 

et al., 2015). Our current study investigated how sleep spindles relate to reactivation. 66 

We used a serial reaction time task (SRTT), which is known to be sleep sensitive (Born & Wilhelm, 67 

2012; Spencer et al., 2006) and also sensitive to TMR in non-REM sleep (Cousins et al., 2014, 2016), 68 

(see figure 1 for experimental design and supplementary figure 1) to investigate the characteristics of 69 

cued reactivation. In the SRTT, participants saw an image on one of four quadrants of the screen and 70 

simultaneously heard a distinct sound that was associated with that image during encoding. We then 71 

distinguished between reactivation of four distinct memories after TMR cues by directly relating wake 72 

and sleep EEG in 48 participants. We introduce a classification pipeline in SWS that uses sleep activity 73 

for the training of classifiers and wake activity for testing, which allows classifiers to adapt to sleep 74 

features that are related to reactivation when adjusting their weights.  75 

 76 



 77 

Figure 1: Study design. a) We analysed sleep and wake data from 48 participants. Participants first 78 

performed a serial reaction time task (SRTT), followed by a motor imagery task, both with the EEG 79 

headcaps on. Subsequently, they went to sleep and TMR was carried out in NREM sleep, as shown in 80 

panel c. After that, the participants were tested on the SRTT in three follow up sessions. b) In the SRTT, 81 

four images are presented in two different sequences. Each image is accompanied by a specific tone 82 

(different for each sequence) and requires a specific button to be pressed. In the imagery task, 83 

participants view the same sequences of images but only imagine they are pressing the buttons 84 

without any actual movements. This motor imagery task served as a clean template for characterising 85 

wake pattern and was later used in classification. c) TMR took place in NREM sleep with jittered 86 

intertrial intervals between 2500ms and 3500ms. Each sequence was followed by a 20-second pause.  87 

Methods 88 

Participants 89 

We collected EEG and behavioural data from human participants (n = 48) (25 females, age mean ±SD: 90 

19.9 ±1.4; 23 males, age: 20.8 ±2.1). The number of participants was reduced from 56 as some of them 91 

were excluded for technical problems during recording of sleep. Participants completed the SRTT 92 

before sleep and during three follow up sessions, the first one was after the night of stimulation (24 93 

hours), the second after 10 days later, and eventually the final session after 6 to 8 weeks. All 94 

participants were right-handed with no prior knowledge of the SRTT. All participants had normal or 95 

corrected-to-normal vision, normal hearing, and no history of physical, psychological, neurological, or 96 

sleep disorders. Responses in a pre-screening questionnaire reported no stressful events and no travel 97 
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before commencing the study. Participants did not consume alcohol or caffeine in the 24 hours prior 98 

to the study or perform any extreme physical exercise or nap. This study was approved by the School 99 

of Psychology, Cardiff University Research Ethics Committee, and all participants gave written 100 

informed consents.  101 

 102 

Experimental design 103 

Participants completed the SRTT adapted from (Cousins et al., 2014). Participants learned two 12-item 104 

sequences, A and B (A: 1 2 1 4 2 3 4 1 3 2 4 3 and B: 2 4 3 2 3 1 4 2 3 1 4 1). Sequences had been 105 

matched for learning difficulty; both contained each item three times. Sequences were presented in 106 

blocks and each block contained three repetitions of a sequence. The blocks were interleaved so that 107 

a block of the same sequence was presented no more than twice in a row. There were 24 blocks of 108 

each sequence (48 blocks in total), and each block was followed by a pause of 15 seconds during which 109 

feedback on reaction time (RT) and error-rate were presented. After the 48 blocks of sequences A and 110 

B, participants performed four blocks of random sequences. They contained the same visual stimuli, 111 

two of these blocks were paired with the tone group of one sequence (reactivated in sleep), and the 112 

other two with the tone group of the other sequence (not reactivated). Participants were aware that 113 

there were two twelve-item sequences, and each sequence was indicated with ‘A’ or ‘B’ appearing 114 

centrally on the screen, but participants were not asked to learn the sequences explicitly. 115 

Counterbalancing across participants determined whether sequence A or B was the first block, and 116 

which of the sequences was reactivated during sleep. Each sequence was paired with a group of pure 117 

musical tones, either low tones within the 4th octave (C/D/E/F) or high tones within the 5th octave 118 

(A/B/C#/D). These tone groups were counterbalanced across sequences. For each trial, a 200ms tone 119 

was played, and at the same time a visual cue appeared in one of the corners of the screen. The 120 

location indicated which key on the keyboard needed to be pressed as quickly and accurately as 121 

possible: 1 – top left corner = left shift; 2 – bottom left corner = left Ctrl; 3 – top right corner = up 122 

arrow; 4 – bottom right corner = down arrow. Participants were instructed to keep individual fingers 123 

of their left and right hand on the left and right response keys, respectively. Visual cues were neutral 124 

objects or faces, used in previous studies (Cousins et al., 2014), which appeared in the same position 125 

for each sequence (1 = male face, 2 = lamp, 3 = female face, 4 = water tap). After responding to the 126 

visual cues with the correct key press an 880ms inter-trial interval followed. 127 

After completion of the SRTT, participants were asked to do the same task again, but were instructed 128 

to only imagine pressing the buttons. Motor imagery (IMG) consisted of 30 interleaved blocks (15 of 129 



each sequence), presented in the same order as during the SRTT. Each trial consisted of a 200ms tone 130 

and a visual stimulus which was presented for an 880ms followed by a 270ms inter-trial interval. There 131 

were no random blocks during the imagery task and no performance feedback was presented during 132 

the pause between blocks. We collected the SRTT data during three sessions after the stimulation 133 

night, with one the next day (24 hours) after performing the task and spending the night in the lab, 134 

the second one after 10 days and the third after 6 to 8 weeks. During the night of stimulation cues 135 

were presented in during NREM sleep with the continuous supervision of experiments and data scored 136 

as N3 was the one included in the analysis. Inter-trial intervals were jittered between 2500ms and 137 

3500ms, as demonstrated in figure 1. Stimulation was paused with any signs of arousals until the 138 

experimenters observe approximately three 30-second epochs with stable NREM sleep. In the follow 139 

up sessions (24 hours, 10 days, and 6 to 8 weeks) after the task, participants were asked to perform 140 

the SRTT again. Eventually, in the last session, they were asked if they remember the locations of 141 

images of the two sequences in order to see if one sequence is recalled better than the other one. 142 

Motor imagery data set of each participant was used to classify the brain activity without movement 143 

artifacts.  144 

Behavioural improvement 145 

We measured the behavioural improvement after sleep in three different sessions, the first was after 146 

sleep and the second after 10 days and the third after 6-8 weeks. Some participants were excluded 147 

from the analysis because they dropped out and did not come to the follow ups, thus, the number of 148 

participants in this analysis was 41 participants. We were interested in the aggregated effect of TMR 149 

across these sessions. For every session, all 24 blocks containing the reaction times for a sequence 150 

were aggregated and the blocks with the best performance among them were kept based on the 95 151 

percentiles of performance values. Thus, the fastest 5 percentiles of data are used from every session 152 

and the median of post-sleep sessions was calculated. The same procedure was conducted for pre-153 

sleep session where the fastest 5 percentiles of blocks were used as the pre-sleep performance 154 

measure. Afterwards, we determined the improvement as (pre-sleep – post-sleep), thus a high value 155 

would reflect big improvement. We then tested for the difference between the improvement for the 156 

reactivated and the non-reactivated sequence using a Wilcoxon signed-rank test. This approach of 157 

focusing on the best blocks parallels the methodological approach proposed by Ribeiro (Pereira et al., 158 

2015), who argued that selecting peak performance (‘best trials’) provides a more valid estimate of 159 

motor skill consolidation. Here we extend the same principle to different sessions to ensure 160 

comparability of peak performance across conditions.  161 

The relationship between reactivation strength and memory consolidation 162 



We performed a correlation analysis between the classification performance of reactivation and 163 

memory improvement after sleep. Memory improvement for each participant was measured as the 164 

difference between the reaction time of the un-cued and the cued sequence, which reflects the cueing 165 

benefit. To measure the relationship between reactivation and the direct cueing benefit we used the 166 

follow up session that came after sleep. The strength of memory reactivation was determined by the 167 

maximum classification CCR value for each participant. In this partial correlation, we controlled for the 168 

effects of the encoding session reaction times. Blocks of behavioural reaction times were aggregated 169 

into one value for each participant in the same way we calculated the behavioural improvement by 170 

keeping the fastest 5 percentiles of performance values and then taking their median. 171 

EEG recording  172 

The current study uses EEG from human participants. EEG was collected using 64 actiCap active 173 

electrodes with 62 channels on the scalp including the reference electrode at CPz and ground 174 

electrode at AFz. Two electrodes were used on the left and right sides above and below the eyes for 175 

collecting electrooculography (EOG) signals and two electrodes on the right and left sides of chin for 176 

collecting the electromyography (EMG). Data were collected either at 500Hz or 250Hz and 177 

subsequently resampled to 200Hz for all EEG analyses. Sound cues were delivered during NREM sleep. 178 

The data was re-referenced to the average of the mastoid channels (TP9, TP10) and the 58 EEG 179 

channels were then used in different analyses. 180 

EEG cleaning 181 

EEG cleaning consisted of filtering and outliers’ rejection based on statistical measures. EEG data were 182 

band-pass filtered (0.1 to 30Hz) and centred. For sleep data, sleep was scored manually and only the 183 

trials in the epochs scored as N3 were used in this work. Afterwards, we removed trials representing 184 

outliers based on statistical measures (variance, max, min) extracted for every trial and every channel. 185 

A trial is compared to all trials and considered as an outlier if it was higher than the third quartile + 186 

(the interquartile range *1.5) or less than the first quartile - (the interquartile range*1.5) in more than 187 

25% of channels. If a trial was bad for <25% of channels it was interpolated using neighbouring 188 

channels with triangulation method in Fieldtrip. Furthermore, because the task is motor-related we 189 

defined a number of channels around the motor area (C6, C4, C2, C1, C3, C5, CP5, CP3, CP1, CP2, CP4, 190 

and CP6) and a trial was rejected if it is bad on >25% of these channels otherwise bad channels are 191 

interpolated and the trial was kept. 192 

Detecting memory reactivation with multivariate pattern classifiers  193 



We used time-domain features in a multi-class classification pipeline with the EEG pattern from each 194 

of the four finger presses representing a class. Signals from the 58 EEG channels were smoothed using 195 

a moving averaging window of 100ms, wherein each time point is replaced by the mean of the 100ms 196 

around that point. This process was done for both sleep and wake data for each participant. 197 

Afterwards, channels were reduced to principal components using sleep data (channels x time) from 198 

each participant through principal component analysis (PCA). PCA can be used to reduce 199 

dimensionality and reduce overfitting and has been adopted in several studies (Griffiths et al., 2021; 200 

Higgins et al., 2021; Peyrache et al., 2010; Schreiner et al., 2021; Tingley & Peyrache, 2020). Following 201 

this, we calculated the explained variance for each principal component (eigen value of a component 202 

/ sum of all eigen values), we then sorted the principal components (PCs) based on the explained 203 

variances and kept the ones that contained 95% of the explained variance. Those PCs should be 204 

representing the dimensions in which the highest variance in the data exists and putative useful 205 

information. We then used the PCs and transformed both sleep and wake data which gave two 206 

transformed data sets containing PCs x time. Given the uncertainty of the timing of reactivation after 207 

our jittered cues and the possibility of temporal shifts in reactivation between participants, time points 208 

were concatenated and treated as observations to build one classification model. In this manner we 209 

used all timepoints of sleep data to train one linear discriminant analysis (LDA) model (Blankertz et al., 210 

2011). The trained LDA model was then applied to each time point after the cue in wake which yielded 211 

a classification accuracy at each wake time point.  A classification output was then obtained from each 212 

participant and the final output was compared to chance level of 0.25. The result was then corrected 213 

for multiple comparisons using cluster-based permutation in Fieldtrip (Oostenveld et al., 2011) and 214 

lively vectors (lv)(Abdellahi, 2022) which gave the same results. For cluster-based permutation, Monte 215 

Carlo was used with a sample-specific test statistic threshold = 0.05, permutation test threshold for 216 

clusters = 0.05, and 100,000 permutations. The correction window was the whole length of wake trial 217 

(1.15 second). 218 

Compression and dilation of reactivation 219 

A popular method for detecting the temporal compression of replay and used in the rodent literature 220 

is the template matching method. Generally, in template matching, a template is used from sleep 221 

episodes and this template is then slid on wake activity during maze navigation and a correlation 222 

coefficient is calculated which indicates the similarity of firing activity between the template and the 223 

window. This process is repeated for different scaling factors such that the windows are resized to 224 

smaller or longer sizes the process was repeated to measure compression and dilation of replay. The 225 

spatial resolution of EEG signals is low, however, signals measured at different channels in sleep can 226 



be compared to the same channels in wake to infer their degree of similarity at different 227 

compression/dilation ratios. In our data, we adopted a classification-based method to detect 228 

compression/dilation of reactivation given the differences between EEG of multiple classes with TMR 229 

and continuous firing pattern and that our classifiers can adapt to sleep and detect their subtle 230 

features. We used different temporal ratios that represent the ratio between sleep trial duration and 231 

wake trial duration and for each ratio we evaluated the classification performance. For a given sleep 232 

trial duration, a temporal sliding window (shifted 10ms each time) is used on sleep data and each 233 

window is resized to match the length of wake trial (illustration is provided in supplementary figure 234 

2). We adopted a similar approach of calculating the PCA and transform the channels into PCs and we 235 

did not smooth the signals to keep the temporal information intact as smoothing could impact short 236 

effects. Both sleep and wake were transformed with the same PCs that were fitted on sleep data, so 237 

the features are projected to the same feature space. This implies that if there was an activity on 238 

specific PCs in sleep the model will look at the same PCs in wake which will guarantee spatial 239 

alignment. Afterwards, a classifier model was built using the concatenated features (PCs x timepoints) 240 

using sleep data and applied to wake data, this gave a classification performance for each 241 

compression/dilation ratio for each participant. Classification performance was then compared to 242 

chance level of 0.25 for each compression ratio using a Wilcoxon signed-rank test. We tested different 243 

temporal ratios that ranged from 20 faster to 2.2 slower reactivation compared to wake. Theoretically, 244 

we could check for faster compressions given that classification was significant for the 20 times faster 245 

reactivation. However, we did not go beyond 20 times because the sliding window in sleep will be 246 

shorter than 10samples (50ms) and such very short window will not be reliable to resize and relate to 247 

wake to classify reactivation. In the meantime, we stopped at 2.2 slower reactivation because this 248 

matches the length of minimum sleep trial of 2.5seconds divided by the length of wake trial of 249 

1.15seconds, thus, we stopped at this number to prevent any missing data points.  250 

Spindle analysis and spindle-based reactivation predictors 251 

We analysed post-cue spindle activity to check if it relates to detected reactivation. We band-pass 252 

filtered our sleep data in the range [11 16]Hz using channel Cz and used the time duration [0 253 

2.5]seconds then we used Hilbert transform. Afterwards, we used the instantaneous magnitude and 254 

phase that resulted from the Hilbert transformation to get the power by taking the absolute value of 255 

the complex vector to get the magnitude and then squaring that magnitude to get the power. We then 256 

divided our trials into two groups for each participant one with higher than median post-cue sigma 257 

power and the other with lower than median. A separate model was trained for each group and 258 

applied to all wake data from that participant. 259 



EEG cleaning and other analyses (classification, compression/dilation, spindle analyses) were 260 

conducted with lively vectors (lv) (Abdellahi, 2022) toolbox developed by Mahmoud E. A. Abdellahi 261 

and it uses some functions from Fieldtrip (Oostenveld et al., 2011), MVPA-light (Treder, 2020), EEGLAB 262 

(Delorme & Makeig, 2004), and built-in Matlab functions. 263 

Results 264 

Elicited response after TMR cues 265 

TMR has been shown to elicit a distinguishable oscillatory pattern that is apparent in the time-266 

frequency representation as well as ERP analysis. We looked at the TMR-elicited response in both 267 

time-frequency and ERP analyses using a similar approach to (Cairney et al., 2018). As presented in 268 

figure 2a, EEG response showed an increase in theta band followed by an increase in sigma band, with 269 

the latter starting about one second after TMR onset. Furthermore, ERP analysis showed a small 270 

increase in ERP amplitude immediately after TMR onset, followed by a decrease in amplitude 500ms 271 

after the cue. These findings demonstrate that TMR was effectively eliciting a response, thus 272 

confirming that our TMR cues were being processed by the brain. 273 

Memory encoding activity during wake re-emerges in sleep after TMR cues 274 

Several different methods for detecting memory reactivation have been adopted in the literature, 275 

some of which discriminated categories within sleep without the inclusion of wake (Cairney et al., 276 

2018; Schönauer et al., 2017), while others selected features that showed high discrimination in wake 277 

(Wang et al., 2019). Our previous method directly relates wake and sleep activity using machine 278 

learning classifiers, but those classifiers were trained on wake and tested on sleep (Abdellahi et al., 279 

2023b). We have now improved our method so that the classifiers pay attention to features present 280 

in sleep that are related to reactivation. We did this by building a machine learning model that was 281 

trained with the sleep data occurring after each TMR cue and tested during wakeful imagination of 282 

the trained task. This pipeline allows classifiers to weigh the features according to those present in 283 

sleep rather than weighing features according to those present in wake which could be dominated by 284 

effects that are absent from sleep. This also allows our linear classifiers to see the noise of sleep data 285 

represented in the within-class covariance.  286 

Sleep data was used to train a linear discriminant analysis (LDA) classifier, and this classifier was 287 

applied to EEG data from wakefulness at every time point after the sound cues, giving a classification 288 

performance (correct classification rate, CCR) at every time point in wake. We trained LDA classifiers 289 

on our multi-class SRTT with each finger representing a class (4 classes in total, 2 fingers per hand). 290 



Classification performance was significantly above chance level (figure 2b, significant effect is 291 

explained by the cluster with the green shaded area, p = 0.026), this shows that memory reactivation 292 

can be identified by our classification models. 293 

Given that the task involved a sequence of trials in a fixed order, we were concerned that the brain 294 

might prepare responses in advance of the TMR cue. We therefore jittered the intertrial intervals 295 

between the TMR cues to eliminate this possibility. Trials therefore varied in durations by a maximum 296 

variation of one second between the shortest trial (2500ms) and the longest trial (3500ms). Given the 297 

uncertainty of the timing of reactivation, and the fact that it could sometimes happen after 2500ms, 298 

we included all of the temporal information of the sleep data into our classification model by using 299 

time points as observations (see methods).  300 

TMR benefits cued sequence 301 

Studies on the SRTT have shown a positive effect of TMR on consolidation (Cousins et al., 2014, 2016; 302 

Koopman et al., 2020). Here, we tested TMR-dependent consolidation by comparing SRTT 303 

performance between cued and un-cued sequences across the aggregated follow up sessions (see the 304 

methods section for details). We found a benefit for the cued sequence as compared to the un-cued 305 

sequence across follow-up sessions (Wilcoxon signed rank test, n = 41, p = 0.016, z = 2.42, figure 2c). 306 

This shows the positive effect that TMR has on memory improvement. We also checked in individual 307 

sessions and found that the benefit is more prominent in the later follow-up sessions compared to the 308 

immediate follow-up, 24 hours follow-up: (Wilcoxon signed rank test, n = 41, p = 0.141, z = 1.47), 10 309 

days follow-up: (Wilcoxon signed rank test, n = 41, p = 0.025, z = 2.235), and (Wilcoxon signed rank 310 

test, n = 41, p = 0.0387, z = 2.067). 311 



 312 

Figure 2: a) Time-frequency and ERP analyses using sleep data from all participants (n = 48). Power 313 

percentage changes from the baseline period [-0.3 -0.1] sec. are shown with colours. The solid black 314 

line represents the average results of all ERP analyses from all participants (n = 48). b) TMR elicited 315 

detectable reactivation. A linear classification shows a significant correct classification rate (CCR) 316 

compared to chance level of 0.25, this effect is explained by a cluster (green shaded area, n = 48, p = 317 

0.026) after correcting using cluster-based permutation. c) Behavioural improvement is significantly 318 

higher for the cued sequence compared to the un-cued one (Wilcoxon signed rank test, n = 41, p = 319 

0.016, z = 2.42) indicating that TMR benefited the cued sequence. d) Classification performance (CCR) 320 

correlated positively with memory improvement immediately after sleep (Spearman r = 0.45, p = 321 

0.001, n = 48), the maximum classification CCR value for each participant was used, a partial 322 

correlation controlling for pre-sleep behavioural performance also showed a significant correlation 323 

(Spearman r = 0.38, p = 0.009, n = 48). 324 
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The strength of reactivation predicts memory consolidation 327 

We wanted to test whether the elicited reactivation in sleep predicts the extent of TMR-dependent 328 

benefit right after sleep (24 hours). To this end, we conducted a Spearman correlation between the 329 

classification performance (CCR) and cueing benefit to reaction time right after sleep (reaction time 330 

for non-reactivated sequence – reaction time for reactivated sequence). This showed as strong 331 

positive relationship (Spearman r = 0.45, p = 0.001, n = 48), figure 2d, supporting the idea that the 332 

reactivations detected by our classifiers underpin cueing benefit to reaction time. To examine the 333 

effects of pre-sleep performance during encoding, we also conducted a partial correlation between 334 

classification performance and improvement right after sleep (Spearman r = 0.38, p = 0.009, n = 48), 335 

see methods. This revealed that the strength of reactivation positively predicts consolidation, 336 

supporting a functional role for our detected reactivation. 337 

Memory reactivation in SWS is temporally compressed compared to wake 338 

We next tested whether sleep reactivation mimics the shape and duration of wake activation by 339 

performing an analysis of compression and dilation. In this analysis, we fixed the length of wake trials 340 

and progressively changed the length of sleep trials. We used a ratio (length of sleep trial / length of 341 

wake trial) to indicate the temporal ratio between sleep and wake duration. Thus, a ratio of less than 342 

one indicates compression, a ratio of exactly one indicates no compression or dilation, and a ratio of 343 

greater than one indicates dilation. For every ratio, we applied a sliding window approach where we 344 

took sleep windows according to the ratio and then resized them to match the length of wake trials. 345 

Afterwards, we trained a classifier on sleep and tested it on wake to see if the sleep reactivation 346 

pattern was similar to wake at the given ratio (see methods). Our results indicate that sleep 347 

reactivation is compressed compared to wake, and this compression is 3 to 20 times faster than in 348 

wake.  349 

 350 



 351 

Figure 3: Analysis of temporal compression shows that reactivation is faster than wake pattern. The 352 

x-axis represents how much (x) faster or slower sleep reactivation was compared to wake, the y-axis 353 

represents correct classification rate (CCR). Significant results (p < 0.05) are marked by asterisks. 354 

Spindles hallmark reactivation 355 

We performed a median split on sigma power for the trials within each participant and we found that 356 

only trials with high post-cue sigma power showed evidence of reactivation (significant effect 357 

explained by a cluster p = 0.001, figure 4a) compared to chance level. This is in line with findings from 358 

Wang and colleagues, who examined TMR cued NREM reactivation during a similar task showed that 359 

trials with high post-cue sigma power [11 16] Hz, were more likely to involve detectable reactivation 360 

(Wang et al., 2019). Both findings support the idea that high post-cue sigma power acts as a marker 361 

for reactivation. Interestingly, in our data, classification of these high-sigma trials was also significant 362 

when compared to classification using low sigma power trials (significant effect explained by a cluster 363 

p = 0.022, figure 4b).  364 

 365 

x faster x slower



 366 

Figure 4: a) Classification using sleep trials with high post-cue sigma power [11 16]Hz shows significant 367 

classification performance explained by a cluster (green shaded area, p = 0.001). CCR, correct 368 

classification rate. b) Classification performance for trials with high post-cue sigma power compared 369 

to trials with low post-cue sigma power. This shows a significant difference explained by the cluster 370 

shaded in green (n=48, p = 0.022).  371 

Discussion 372 

We examined the temporal characteristics of the reactivation of individual finger representations 373 

associated with a SRTT and provide an evidence that reactivation happens faster than the original 374 

experience during wake. Our results also support earlier work suggesting that sleep spindles provide 375 

a marker of reactivation.  376 

Some studies used only sleep data in their classification pipelines to show evidence for the 377 

reprocessing of memories during sleep (Cairney et al., 2018; Schönauer et al., 2017). Others performed 378 

within sleep classification with features selected from wake data (Wang et al., 2019) or by relating 379 

wake to optimal sleep lags (Belal et al., 2018). Here, we directly related neural responses in sleep to 380 

those during the imagery task in wake by training classification models on sleep observations and 381 

applying them on wake. This direct sleep-wake relationship means that our models will not mistakenly 382 

classify sleep EEG noise as reactivations. Thus, our linear classifiers can adapt to sleep and adjust their 383 

feature weights according to sleep patterns. This also enables our LDA models to see sleep noise 384 

represented by within-class covariance matrices and adapt to it. We successfully used this approach 385 

in classifying memory reactivation after TMR in human REM sleep (Abdellahi et al., 2023a), here, we 386 

use it for the first time in SWS along with PCA. To further elucidate the wake-sleep relationship, we 387 

used jittered inter-trial delays, thus preventing periodic oscillations from affecting the training of our 388 

models. Given that the finger-tapping task is a sequence, if we were to use fixed inter-trial delays the 389 
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brain could have predicted and reactivated the cozntents of the upcoming TMR before it has actually 390 

been presented. Our jittered cues avoided this possible predictability. Trials from both cued and un-391 

cued sequences were used when testing on wake which ensured that the classification was not 392 

derived from mere sound related patterns arising after cued items. We did not include a separate 393 

control night in this study, however, the correlation between classification strength and TMR -related 394 

behavioural improvement (Figure 2d, Spearman r = 0.38, p = 0.009, n = 48) provides evidence that the 395 

classifier is detecting memory reactivation, as we would not expect such a correlation between ERP 396 

responses to the sounds delivered and TMR related behavioural improvement. Also, our prior studies 397 

demonstrated that the time-domain features we used here are sufficient to successfully classify of 398 

memory reactivation in this task (Abdellahi et al., 2023a, 2023b). 399 

Several rodent studies have tackled the question of temporal compression of reactivation. Findings 400 

show that cell firing happens at a faster rate during replay compared to the original experience 401 

(Davidson et al., 2009; Euston et al., 2007; Ji & Wilson, 2007; Lee & Wilson, 2002; Nádasdy et al., 1999). 402 

Collectively, replay has been observed at different rates, ranging from 6 to 20 times faster than the 403 

waking experience. While previous studies of temporal compression have relied on neuronal 404 

recordings in non-human animals, here, we detect compression in large-scale neural coordination 405 

patterns measurable with EEG. This method allowed us to examine whether the temporal dynamics 406 

of memory reactivation, as reflected in cross-channel coordination and timing relationships, exhibited 407 

similar compression properties at the population level captured by scalp recordings. Our results are 408 

in-line with the literature, suggesting that reactivation happens at a rate that is around 3 to 20 times 409 

faster than wake. Importantly, reactivation is unlikely compressed 3-fold and 20-fold in the same trial. 410 

Compression factors could vary from one participant to another, however, we can say that our data 411 

generally support the idea of compressed reactivation on the EEG level. 412 

It has been proposed that memories are transferred into a long-term store via repetitive reactivation 413 

(Diekelmann & Born, 2010). According to this view, there is a dialogue between the hippocampus and 414 

the neocortex wherein cortical SOs drive thalamo-cortical spindles. Ripples and their associated 415 

reactivations are nested in the troughs of these spindles, which emphasises the importance of sleep 416 

spindles and ripples in the reprocessing of memories. Several papers have shown a direct relationship 417 

between memory reactivation and spindles in which spindles marked reactivation (Cairney et al., 418 

2018; Wang et al., 2019). Moreover, Zhang and colleagues provided direct evidence that human 419 

memory replay happens during ripple events using intracranial EEG and similarity analysis (Zhang et 420 

al., 2018). We provide direct evidence of reactivation being marked by spindles, thus supporting the 421 

hypothesis that reactivation occurs during ripple events. This could explain why it is compressed in 422 



time. Indeed, the compression of 3 to 20 times observed in our data means that reactivations happen 423 

for a duration of 57ms to 383ms which could support the speculation that ripples can carry 424 

reactivations, since they are characterised by 50 to 100ms of high frequency activity (Ylinen et al., 425 

1995). Despite the technical limitations of directly estimating ripple events in human cortical EEG, our 426 

temporal compression analysis helps to unravel the footprint of ripples and the impact they have on 427 

the temporal characteristics of the detected reactivation. Along with spindle analysis, this evidence 428 

fits well with the idea of spindle-ripple events as a hallmark for reactivation. 429 

Conclusion 430 

Our findings show that slow wave sleep reactivations of multiple memories are detectable in humans 431 

and occur faster than activation during the task. Furthermore, reactivation detectability positively 432 

correlated with memory improvement which reflects their functional significance. We also support 433 

prior work showing that spindles are hallmarks for reactivation. Overall, we describe new 434 

characteristics of reactivations and how they relate to wake. We also introduce a new method for 435 

detecting SWS reactivation by training classification models with sleep EEG and testing them on wake 436 

data.  437 

Data availability 438 

Data and scripts are available on OSF and GitHub along with detailed instructions on running 439 

different analyses and system requirements: 440 

https://osf.io/byvcg/?view_only=9b149e0387814bf1a6fca692f90e9167 and 441 

https://github.com/MahmoudAbdellahi/Targeted-memory-reactivation-elicits-temporally-442 

compressed-reactivation-linked-to-spindles. Participants private identifications are all anonymised. 443 
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