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6  Abstract

7 Memories reactivate during sleep, however the properties of such reactivation and its relationship to

8 subsequent memory performance are not well understood. Here, we set out to examine memory

9  reactivations associated with a serial reaction time task (SRTT). 48 human participants performed the
10  SRTT and then slept in the lab while we deliberately induced reactivation in Slow Wave Sleep (SWS)
11 using a Targeted Memory Reactivation (TMR) design. We detected reactivation after TMR cues using
12 multiclass classification that adapted to sleep data by using sleep activity for training and wake activity
13 for testing. We then examined the temporal properties of reactivation in relation to behavioural
14 performance and sleep spindles. The observed reactivation was 3 to 20 times faster than waking
15 activity. Finally, reactivation was more frequently observed in trials with high sigma power, supporting
16  theideathatsleep spindles are associated with memory reactivation during sleep. These findings bring
17  us closer to understanding the characteristics of human memory reactivation after TMR and provide
18  evidence for the positive relationship between the detectability of reactivation and memory

19  consolidation.
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Introduction

We spend around one third of our lives asleep. During sleep, the brain is busy processing memories
through replay or reactivation which is essential for memory consolidation (Diekelmann & Born, 2010;

Rasch & Born, 2013; Squire et al., 2015).

The active system consolidation (ASC) hypothesis (Diekelmann & Born, 2010) suggests that sleep is
not merely a passive shelter for memories against interference. Instead, newly encoded memories
repeatedly reactivate during slow wave sleep (SWS) and this strengthens those memories in an
ongoing process of memory consolidation. The ASC model (Rasch & Born, 2013) proposes a dialogue
between neocortex and hippocampus in which slow oscillations (SOs) drive reactivation of
hippocampal memories, with accompanying sharp wave ripples that are carrying reactivations nested
into thalamo-cortical spindles. The model also suggests that spindles prime the cortex for reactivation-

related plasticity by stimulating calcium influx into the dendrites of cortical pyramidal cells.

A technique called targeted memory reactivation (TMR) can be used to manipulate reactivation in
sleep. In TMR, cues such as odours, sounds, or electrical shocks are associated with the learned
material as a result of being presented during memory encoding or retrieval. Cues are then re-
delivered during subsequent sleep and thereby thought to reactivate the cued memory (Hennevin &
Hars, 1987). In humans, several studies have shown the benefits of TMR during sleep on memory
consolidation for both declarative (Cairney et al., 2014; Fuentemilla et al., 2013; Rasch et al., 2007;
Rudoy et al., 2009) and non-declarative memories (Antony et al., 2012; Schénauer et al., 2014).
Memory reactivation elicited via TMR can be detected using multivariate pattern classifiers and
similarity analyses (Abdellahi et al., 2023b; Belal et al., 2018; Cairney et al., 2018; Schreiner et al.,
2018; Wang et al., 2019). However, despite extensive research in the area, there are still a lot of gaps
in our understanding of the characteristics of cued reactivation. Are such reactivations exact clones of
wake activations, or do they differ in shape or duration? How do sleep spindles relate to memory
reactivation? And how does reactivation detection relate to consolidation? Here, we set out to answer

these questions and thereby gain a better understanding of memory reactivation and TMR.

In rats, memory replay during NREM sleep has been shown to have different temporal characteristics
compared to wake, as it occurs from 10 to 20 times faster (Ji & Wilson, 2007; Lee & Wilson, 2002;
Nadasdy et al., 1999). In wake, offline replay is thought to occur from 6 to 7 times faster than the
actual task (Euston et al., 2007). The firing activity of individual neurons measured in non-human
studies gives clear evidence of compression, while EEG in humans offers high temporal resolution but

lacks the spatial resolution necessary for direct analysis of temporal compression. To address this
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challenge, we developed an approach that systematically rescales variable-duration sleep windows to
match wake trial length, testing whether optimal pattern similarity occurs at specific compression
ratios. This method allowed us to identify temporal compression by detecting when temporally
rescaled sleep neural patterns exhibited enhanced feature correspondence with their wake

counterparts, thereby providing evidence for compressed memory reactivation at the EEG level.

The reactivation-spindle connection is supported by Cairney and colleagues who showed that spindles
mediate reactivation in human NREM sleep (Cairney et al., 2018). Additionally, a significant post-cue
reactivation was observed in trials with high post-cue power in the spindle band (Wang et al., 2019),
while enhancing spindles led to more consolidation (Lustenberger et al., 2016; Ngo et al., 2013). It has
also been shown that hippocampal sharp-wave ripples are nested in the troughs of spindles (Staresina

et al., 2015). Our current study investigated how sleep spindles relate to reactivation.

We used a serial reaction time task (SRTT), which is known to be sleep sensitive (Born & Wilhelm,
2012; Spencer et al., 2006) and also sensitive to TMR in non-REM sleep (Cousins et al., 2014, 2016),
(see figure 1 for experimental design and supplementary figure 1) to investigate the characteristics of
cued reactivation. In the SRTT, participants saw an image on one of four quadrants of the screen and
simultaneously heard a distinct sound that was associated with that image during encoding. We then
distinguished between reactivation of four distinct memories after TMR cues by directly relating wake
and sleep EEG in 48 participants. We introduce a classification pipeline in SWS that uses sleep activity
for the training of classifiers and wake activity for testing, which allows classifiers to adapt to sleep

features that are related to reactivation when adjusting their weights.
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Figure 1: Study design. a) We analysed sleep and wake data from 48 participants. Participants first
performed a serial reaction time task (SRTT), followed by a motor imagery task, both with the EEG
headcaps on. Subsequently, they went to sleep and TMR was carried out in NREM sleep, as shown in
panel c. After that, the participants were tested on the SRTT in three follow up sessions. b) In the SRTT,
four images are presented in two different sequences. Each image is accompanied by a specific tone
(different for each sequence) and requires a specific button to be pressed. In the imagery task,
participants view the same sequences of images but only imagine they are pressing the buttons
without any actual movements. This motor imagery task served as a clean template for characterising
wake pattern and was later used in classification. ¢) TMR took place in NREM sleep with jittered

intertrial intervals between 2500ms and 3500ms. Each sequence was followed by a 20-second pause.

Methods

Participants

We collected EEG and behavioural data from human participants (n = 48) (25 females, age mean +SD:
19.9 +1.4; 23 males, age: 20.8 £2.1). The number of participants was reduced from 56 as some of them
were excluded for technical problems during recording of sleep. Participants completed the SRTT
before sleep and during three follow up sessions, the first one was after the night of stimulation (24
hours), the second after 10 days later, and eventually the final session after 6 to 8 weeks. All
participants were right-handed with no prior knowledge of the SRTT. All participants had normal or
corrected-to-normal vision, normal hearing, and no history of physical, psychological, neurological, or

sleep disorders. Responses in a pre-screening questionnaire reported no stressful events and no travel
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before commencing the study. Participants did not consume alcohol or caffeine in the 24 hours prior
to the study or perform any extreme physical exercise or nap. This study was approved by the School
of Psychology, Cardiff University Research Ethics Committee, and all participants gave written

informed consents.

Experimental design

Participants completed the SRTT adapted from (Cousins et al., 2014). Participants learned two 12-item
sequences, Aand B (A:121423413243andB:243231423141).Sequences had been
matched for learning difficulty; both contained each item three times. Sequences were presented in
blocks and each block contained three repetitions of a sequence. The blocks were interleaved so that
a block of the same sequence was presented no more than twice in a row. There were 24 blocks of
each sequence (48 blocks in total), and each block was followed by a pause of 15 seconds during which
feedback on reaction time (RT) and error-rate were presented. After the 48 blocks of sequences A and
B, participants performed four blocks of random sequences. They contained the same visual stimuli,
two of these blocks were paired with the tone group of one sequence (reactivated in sleep), and the
other two with the tone group of the other sequence (not reactivated). Participants were aware that
there were two twelve-item sequences, and each sequence was indicated with ‘A’ or ‘B’ appearing
centrally on the screen, but participants were not asked to learn the sequences explicitly.
Counterbalancing across participants determined whether sequence A or B was the first block, and
which of the sequences was reactivated during sleep. Each sequence was paired with a group of pure
musical tones, either low tones within the 4th octave (C/D/E/F) or high tones within the 5th octave
(A/B/C#/D). These tone groups were counterbalanced across sequences. For each trial, a 200ms tone
was played, and at the same time a visual cue appeared in one of the corners of the screen. The
location indicated which key on the keyboard needed to be pressed as quickly and accurately as
possible: 1 — top left corner = left shift; 2 — bottom left corner = left Ctrl; 3 — top right corner = up
arrow; 4 — bottom right corner = down arrow. Participants were instructed to keep individual fingers
of their left and right hand on the left and right response keys, respectively. Visual cues were neutral
objects or faces, used in previous studies (Cousins et al., 2014), which appeared in the same position
for each sequence (1 = male face, 2 = lamp, 3 = female face, 4 = water tap). After responding to the

visual cues with the correct key press an 880ms inter-trial interval followed.

After completion of the SRTT, participants were asked to do the same task again, but were instructed

to only imagine pressing the buttons. Motor imagery (IMG) consisted of 30 interleaved blocks (15 of
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each sequence), presented in the same order as during the SRTT. Each trial consisted of a 200ms tone
and a visual stimulus which was presented for an 880ms followed by a 270ms inter-trial interval. There
were no random blocks during the imagery task and no performance feedback was presented during
the pause between blocks. We collected the SRTT data during three sessions after the stimulation
night, with one the next day (24 hours) after performing the task and spending the night in the lab,
the second one after 10 days and the third after 6 to 8 weeks. During the night of stimulation cues
were presented in during NREM sleep with the continuous supervision of experiments and data scored
as N3 was the one included in the analysis. Inter-trial intervals were jittered between 2500ms and
3500ms, as demonstrated in figure 1. Stimulation was paused with any signs of arousals until the
experimenters observe approximately three 30-second epochs with stable NREM sleep. In the follow
up sessions (24 hours, 10 days, and 6 to 8 weeks) after the task, participants were asked to perform
the SRTT again. Eventually, in the last session, they were asked if they remember the locations of
images of the two sequences in order to see if one sequence is recalled better than the other one.
Motor imagery data set of each participant was used to classify the brain activity without movement

artifacts.

Behavioural improvement

We measured the behavioural improvement after sleep in three different sessions, the first was after
sleep and the second after 10 days and the third after 6-8 weeks. Some participants were excluded
from the analysis because they dropped out and did not come to the follow ups, thus, the number of
participants in this analysis was 41 participants. We were interested in the aggregated effect of TMR
across these sessions. For every session, all 24 blocks containing the reaction times for a sequence
were aggregated and the blocks with the best performance among them were kept based on the 95
percentiles of performance values. Thus, the fastest 5 percentiles of data are used from every session
and the median of post-sleep sessions was calculated. The same procedure was conducted for pre-
sleep session where the fastest 5 percentiles of blocks were used as the pre-sleep performance
measure. Afterwards, we determined the improvement as (pre-sleep — post-sleep), thus a high value
would reflect big improvement. We then tested for the difference between the improvement for the
reactivated and the non-reactivated sequence using a Wilcoxon signed-rank test. This approach of
focusing on the best blocks parallels the methodological approach proposed by Ribeiro (Pereira et al.,
2015), who argued that selecting peak performance (‘best trials’) provides a more valid estimate of
motor skill consolidation. Here we extend the same principle to different sessions to ensure

comparability of peak performance across conditions.

The relationship between reactivation strength and memory consolidation
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We performed a correlation analysis between the classification performance of reactivation and
memory improvement after sleep. Memory improvement for each participant was measured as the
difference between the reaction time of the un-cued and the cued sequence, which reflects the cueing
benefit. To measure the relationship between reactivation and the direct cueing benefit we used the
follow up session that came after sleep. The strength of memory reactivation was determined by the
maximum classification CCR value for each participant. In this partial correlation, we controlled for the
effects of the encoding session reaction times. Blocks of behavioural reaction times were aggregated
into one value for each participant in the same way we calculated the behavioural improvement by

keeping the fastest 5 percentiles of performance values and then taking their median.

EEG recording

The current study uses EEG from human participants. EEG was collected using 64 actiCap active
electrodes with 62 channels on the scalp including the reference electrode at CPz and ground
electrode at AFz. Two electrodes were used on the left and right sides above and below the eyes for
collecting electrooculography (EOG) signals and two electrodes on the right and left sides of chin for
collecting the electromyography (EMG). Data were collected either at 500Hz or 250Hz and
subsequently resampled to 200Hz for all EEG analyses. Sound cues were delivered during NREM sleep.
The data was re-referenced to the average of the mastoid channels (TP9, TP10) and the 58 EEG

channels were then used in different analyses.

EEG cleaning

EEG cleaning consisted of filtering and outliers’ rejection based on statistical measures. EEG data were
band-pass filtered (0.1 to 30Hz) and centred. For sleep data, sleep was scored manually and only the
trials in the epochs scored as N3 were used in this work. Afterwards, we removed trials representing
outliers based on statistical measures (variance, max, min) extracted for every trial and every channel.
A trial is compared to all trials and considered as an outlier if it was higher than the third quartile +
(the interquartile range *1.5) or less than the first quartile - (the interquartile range*1.5) in more than
25% of channels. If a trial was bad for <25% of channels it was interpolated using neighbouring
channels with triangulation method in Fieldtrip. Furthermore, because the task is motor-related we
defined a number of channels around the motor area (C6, C4, C2, C1, C3, C5, CP5, CP3, CP1, CP2, CP4,
and CP6) and a trial was rejected if it is bad on >25% of these channels otherwise bad channels are

interpolated and the trial was kept.

Detecting memory reactivation with multivariate pattern classifiers
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We used time-domain features in a multi-class classification pipeline with the EEG pattern from each
of the four finger presses representing a class. Signals from the 58 EEG channels were smoothed using
a moving averaging window of 100ms, wherein each time point is replaced by the mean of the 100ms
around that point. This process was done for both sleep and wake data for each participant.
Afterwards, channels were reduced to principal components using sleep data (channels x time) from
each participant through principal component analysis (PCA). PCA can be used to reduce
dimensionality and reduce overfitting and has been adopted in several studies (Griffiths et al., 2021;
Higgins et al., 2021; Peyrache et al., 2010; Schreiner et al., 2021; Tingley & Peyrache, 2020). Following
this, we calculated the explained variance for each principal component (eigen value of a component
/ sum of all eigen values), we then sorted the principal components (PCs) based on the explained
variances and kept the ones that contained 95% of the explained variance. Those PCs should be
representing the dimensions in which the highest variance in the data exists and putative useful
information. We then used the PCs and transformed both sleep and wake data which gave two
transformed data sets containing PCs x time. Given the uncertainty of the timing of reactivation after
our jittered cues and the possibility of temporal shifts in reactivation between participants, time points
were concatenated and treated as observations to build one classification model. In this manner we
used all timepoints of sleep data to train one linear discriminant analysis (LDA) model (Blankertz et al.,
2011). The trained LDA model was then applied to each time point after the cue in wake which yielded
a classification accuracy at each wake time point. A classification output was then obtained from each
participant and the final output was compared to chance level of 0.25. The result was then corrected
for multiple comparisons using cluster-based permutation in Fieldtrip (Oostenveld et al., 2011) and
lively vectors (lv)(Abdellahi, 2022) which gave the same results. For cluster-based permutation, Monte
Carlo was used with a sample-specific test statistic threshold = 0.05, permutation test threshold for
clusters = 0.05, and 100,000 permutations. The correction window was the whole length of wake trial

(1.15 second).

Compression and dilation of reactivation

A popular method for detecting the temporal compression of replay and used in the rodent literature
is the template matching method. Generally, in template matching, a template is used from sleep
episodes and this template is then slid on wake activity during maze navigation and a correlation
coefficient is calculated which indicates the similarity of firing activity between the template and the
window. This process is repeated for different scaling factors such that the windows are resized to
smaller or longer sizes the process was repeated to measure compression and dilation of replay. The

spatial resolution of EEG signals is low, however, sighals measured at different channels in sleep can
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be compared to the same channels in wake to infer their degree of similarity at different
compression/dilation ratios. In our data, we adopted a classification-based method to detect
compression/dilation of reactivation given the differences between EEG of multiple classes with TMR
and continuous firing pattern and that our classifiers can adapt to sleep and detect their subtle
features. We used different temporal ratios that represent the ratio between sleep trial duration and
wake trial duration and for each ratio we evaluated the classification performance. For a given sleep
trial duration, a temporal sliding window (shifted 10ms each time) is used on sleep data and each
window is resized to match the length of wake trial (illustration is provided in supplementary figure
2). We adopted a similar approach of calculating the PCA and transform the channels into PCs and we
did not smooth the signals to keep the temporal information intact as smoothing could impact short
effects. Both sleep and wake were transformed with the same PCs that were fitted on sleep data, so
the features are projected to the same feature space. This implies that if there was an activity on
specific PCs in sleep the model will look at the same PCs in wake which will guarantee spatial
alignment. Afterwards, a classifier model was built using the concatenated features (PCs x timepoints)
using sleep data and applied to wake data, this gave a classification performance for each
compression/dilation ratio for each participant. Classification performance was then compared to
chance level of 0.25 for each compression ratio using a Wilcoxon signed-rank test. We tested different
temporal ratios that ranged from 20 faster to 2.2 slower reactivation compared to wake. Theoretically,
we could check for faster compressions given that classification was significant for the 20 times faster
reactivation. However, we did not go beyond 20 times because the sliding window in sleep will be
shorter than 10samples (50ms) and such very short window will not be reliable to resize and relate to
wake to classify reactivation. In the meantime, we stopped at 2.2 slower reactivation because this
matches the length of minimum sleep trial of 2.5seconds divided by the length of wake trial of

1.15seconds, thus, we stopped at this number to prevent any missing data points.

Spindle analysis and spindle-based reactivation predictors

We analysed post-cue spindle activity to check if it relates to detected reactivation. We band-pass
filtered our sleep data in the range [11 16]Hz using channel Cz and used the time duration [0
2.5]seconds then we used Hilbert transform. Afterwards, we used the instantaneous magnitude and
phase that resulted from the Hilbert transformation to get the power by taking the absolute value of
the complex vector to get the magnitude and then squaring that magnitude to get the power. We then
divided our trials into two groups for each participant one with higher than median post-cue sigma
power and the other with lower than median. A separate model was trained for each group and

applied to all wake data from that participant.
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EEG cleaning and other analyses (classification, compression/dilation, spindle analyses) were
conducted with lively vectors (lv) (Abdellahi, 2022) toolbox developed by Mahmoud E. A. Abdellahi
and it uses some functions from Fieldtrip (Oostenveld et al., 2011), MVPA-light (Treder, 2020), EEGLAB
(Delorme & Makeig, 2004), and built-in Matlab functions.

Results

Elicited response after TMR cues

TMR has been shown to elicit a distinguishable oscillatory pattern that is apparent in the time-
frequency representation as well as ERP analysis. We looked at the TMR-elicited response in both
time-frequency and ERP analyses using a similar approach to (Cairney et al., 2018). As presented in
figure 2a, EEG response showed an increase in theta band followed by an increase in sigma band, with
the latter starting about one second after TMR onset. Furthermore, ERP analysis showed a small
increase in ERP amplitude immediately after TMR onset, followed by a decrease in amplitude 500ms
after the cue. These findings demonstrate that TMR was effectively eliciting a response, thus

confirming that our TMR cues were being processed by the brain.

Memory encoding activity during wake re-emerges in sleep after TMR cues

Several different methods for detecting memory reactivation have been adopted in the literature,
some of which discriminated categories within sleep without the inclusion of wake (Cairney et al.,
2018; Schonauer et al., 2017), while others selected features that showed high discrimination in wake
(Wang et al., 2019). Our previous method directly relates wake and sleep activity using machine
learning classifiers, but those classifiers were trained on wake and tested on sleep (Abdellahi et al.,
2023b). We have now improved our method so that the classifiers pay attention to features present
in sleep that are related to reactivation. We did this by building a machine learning model that was
trained with the sleep data occurring after each TMR cue and tested during wakeful imagination of
the trained task. This pipeline allows classifiers to weigh the features according to those present in
sleep rather than weighing features according to those present in wake which could be dominated by
effects that are absent from sleep. This also allows our linear classifiers to see the noise of sleep data

represented in the within-class covariance.

Sleep data was used to train a linear discriminant analysis (LDA) classifier, and this classifier was
applied to EEG data from wakefulness at every time point after the sound cues, giving a classification
performance (correct classification rate, CCR) at every time point in wake. We trained LDA classifiers

on our multi-class SRTT with each finger representing a class (4 classes in total, 2 fingers per hand).
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Classification performance was significantly above chance level (figure 2b, significant effect is
explained by the cluster with the green shaded area, p = 0.026), this shows that memory reactivation

can be identified by our classification models.

Given that the task involved a sequence of trials in a fixed order, we were concerned that the brain
might prepare responses in advance of the TMR cue. We therefore jittered the intertrial intervals
between the TMR cues to eliminate this possibility. Trials therefore varied in durations by a maximum
variation of one second between the shortest trial (2500ms) and the longest trial (3500ms). Given the
uncertainty of the timing of reactivation, and the fact that it could sometimes happen after 2500ms,
we included all of the temporal information of the sleep data into our classification model by using

time points as observations (see methods).

TMR benefits cued sequence

Studies on the SRTT have shown a positive effect of TMR on consolidation (Cousins et al., 2014, 2016;
Koopman et al.,, 2020). Here, we tested TMR-dependent consolidation by comparing SRTT
performance between cued and un-cued sequences across the aggregated follow up sessions (see the
methods section for details). We found a benefit for the cued sequence as compared to the un-cued
sequence across follow-up sessions (Wilcoxon signed rank test, n =41, p = 0.016, z = 2.42, figure 2c).
This shows the positive effect that TMR has on memory improvement. We also checked in individual
sessions and found that the benefit is more prominent in the later follow-up sessions compared to the
immediate follow-up, 24 hours follow-up: (Wilcoxon signed rank test, n =41, p = 0.141, z = 1.47), 10
days follow-up: (Wilcoxon signed rank test, n = 41, p = 0.025, z = 2.235), and (Wilcoxon signed rank
test, n =41, p =0.0387, z=2.067).
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Figure 2: a) Time-frequency and ERP analyses using sleep data from all participants (n = 48). Power
percentage changes from the baseline period [-0.3 -0.1] sec. are shown with colours. The solid black
line represents the average results of all ERP analyses from all participants (n = 48). b) TMR elicited
detectable reactivation. A linear classification shows a significant correct classification rate (CCR)
compared to chance level of 0.25, this effect is explained by a cluster (green shaded area, n =48, p =
0.026) after correcting using cluster-based permutation. c) Behavioural improvement is significantly
higher for the cued sequence compared to the un-cued one (Wilcoxon signed rank test, n =41, p =
0.016, z = 2.42) indicating that TMR benefited the cued sequence. d) Classification performance (CCR)
correlated positively with memory improvement immediately after sleep (Spearman r = 0.45, p =
0.001, n = 48), the maximum classification CCR value for each participant was used, a partial
correlation controlling for pre-sleep behavioural performance also showed a significant correlation

(Spearman r=0.38, p = 0.009, n = 48).
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The strength of reactivation predicts memory consolidation

We wanted to test whether the elicited reactivation in sleep predicts the extent of TMR-dependent
benefit right after sleep (24 hours). To this end, we conducted a Spearman correlation between the
classification performance (CCR) and cueing benefit to reaction time right after sleep (reaction time
for non-reactivated sequence — reaction time for reactivated sequence). This showed as strong
positive relationship (Spearman r = 0.45, p = 0.001, n = 48), figure 2d, supporting the idea that the
reactivations detected by our classifiers underpin cueing benefit to reaction time. To examine the
effects of pre-sleep performance during encoding, we also conducted a partial correlation between
classification performance and improvement right after sleep (Spearman r = 0.38, p = 0.009, n = 48),
see methods. This revealed that the strength of reactivation positively predicts consolidation,

supporting a functional role for our detected reactivation.

Memory reactivation in SWS is temporally compressed compared to wake

We next tested whether sleep reactivation mimics the shape and duration of wake activation by
performing an analysis of compression and dilation. In this analysis, we fixed the length of wake trials
and progressively changed the length of sleep trials. We used a ratio (length of sleep trial / length of
wake trial) to indicate the temporal ratio between sleep and wake duration. Thus, a ratio of less than
one indicates compression, a ratio of exactly one indicates no compression or dilation, and a ratio of
greater than one indicates dilation. For every ratio, we applied a sliding window approach where we
took sleep windows according to the ratio and then resized them to match the length of wake trials.
Afterwards, we trained a classifier on sleep and tested it on wake to see if the sleep reactivation
pattern was similar to wake at the given ratio (see methods). Our results indicate that sleep
reactivation is compressed compared to wake, and this compression is 3 to 20 times faster than in

wake.
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Figure 3: Analysis of temporal compression shows that reactivation is faster than wake pattern. The
x-axis represents how much (x) faster or slower sleep reactivation was compared to wake, the y-axis

represents correct classification rate (CCR). Significant results (p < 0.05) are marked by asterisks.

Spindles hallmark reactivation

We performed a median split on sigma power for the trials within each participant and we found that
only trials with high post-cue sigma power showed evidence of reactivation (significant effect
explained by a cluster p = 0.001, figure 4a) compared to chance level. This is in line with findings from
Wang and colleagues, who examined TMR cued NREM reactivation during a similar task showed that
trials with high post-cue sigma power [11 16] Hz, were more likely to involve detectable reactivation
(Wang et al., 2019). Both findings support the idea that high post-cue sigma power acts as a marker
for reactivation. Interestingly, in our data, classification of these high-sigma trials was also significant
when compared to classification using low sigma power trials (significant effect explained by a cluster

p = 0.022, figure 4b).
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Figure 4: a) Classification using sleep trials with high post-cue sigma power [11 16]Hz shows significant
classification performance explained by a cluster (green shaded area, p = 0.001). CCR, correct
classification rate. b) Classification performance for trials with high post-cue sigma power compared
to trials with low post-cue sigma power. This shows a significant difference explained by the cluster

shaded in green (n=48, p = 0.022).

Discussion

We examined the temporal characteristics of the reactivation of individual finger representations
associated with a SRTT and provide an evidence that reactivation happens faster than the original
experience during wake. Our results also support earlier work suggesting that sleep spindles provide

a marker of reactivation.

Some studies used only sleep data in their classification pipelines to show evidence for the
reprocessing of memories during sleep (Cairney et al., 2018; Schénauer et al., 2017). Others performed
within sleep classification with features selected from wake data (Wang et al., 2019) or by relating
wake to optimal sleep lags (Belal et al., 2018). Here, we directly related neural responses in sleep to
those during the imagery task in wake by training classification models on sleep observations and
applying them on wake. This direct sleep-wake relationship means that our models will not mistakenly
classify sleep EEG noise as reactivations. Thus, our linear classifiers can adapt to sleep and adjust their
feature weights according to sleep patterns. This also enables our LDA models to see sleep noise
represented by within-class covariance matrices and adapt to it. We successfully used this approach
in classifying memory reactivation after TMR in human REM sleep (Abdellahi et al., 2023a), here, we
use it for the first time in SWS along with PCA. To further elucidate the wake-sleep relationship, we
used jittered inter-trial delays, thus preventing periodic oscillations from affecting the training of our

models. Given that the finger-tapping task is a sequence, if we were to use fixed inter-trial delays the
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brain could have predicted and reactivated the cozntents of the upcoming TMR before it has actually
been presented. Our jittered cues avoided this possible predictability. Trials from both cued and un-
cued sequences were used when testing on wake which ensured that the classification was not
derived from mere sound related patterns arising after cued items. We did not include a separate
control night in this study, however, the correlation between classification strength and TMR -related
behavioural improvement (Figure 2d, Spearman r =0.38, p = 0.009, n = 48) provides evidence that the
classifier is detecting memory reactivation, as we would not expect such a correlation between ERP
responses to the sounds delivered and TMR related behavioural improvement. Also, our prior studies
demonstrated that the time-domain features we used here are sufficient to successfully classify of

memory reactivation in this task (Abdellahi et al., 2023a, 2023b).

Several rodent studies have tackled the question of temporal compression of reactivation. Findings
show that cell firing happens at a faster rate during replay compared to the original experience
(Davidson et al., 2009; Euston et al., 2007; Ji & Wilson, 2007; Lee & Wilson, 2002; Nadasdy et al., 1999).
Collectively, replay has been observed at different rates, ranging from 6 to 20 times faster than the
waking experience. While previous studies of temporal compression have relied on neuronal
recordings in non-human animals, here, we detect compression in large-scale neural coordination
patterns measurable with EEG. This method allowed us to examine whether the temporal dynamics
of memory reactivation, as reflected in cross-channel coordination and timing relationships, exhibited
similar compression properties at the population level captured by scalp recordings. Our results are
in-line with the literature, suggesting that reactivation happens at a rate that is around 3 to 20 times
faster than wake. Importantly, reactivation is unlikely compressed 3-fold and 20-fold in the same trial.
Compression factors could vary from one participant to another, however, we can say that our data

generally support the idea of compressed reactivation on the EEG level.

It has been proposed that memories are transferred into a long-term store via repetitive reactivation
(Diekelmann & Born, 2010). According to this view, there is a dialogue between the hippocampus and
the neocortex wherein cortical SOs drive thalamo-cortical spindles. Ripples and their associated
reactivations are nested in the troughs of these spindles, which emphasises the importance of sleep
spindles and ripples in the reprocessing of memories. Several papers have shown a direct relationship
between memory reactivation and spindles in which spindles marked reactivation (Cairney et al.,
2018; Wang et al., 2019). Moreover, Zhang and colleagues provided direct evidence that human
memory replay happens during ripple events using intracranial EEG and similarity analysis (Zhang et
al., 2018). We provide direct evidence of reactivation being marked by spindles, thus supporting the

hypothesis that reactivation occurs during ripple events. This could explain why it is compressed in
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time. Indeed, the compression of 3 to 20 times observed in our data means that reactivations happen
for a duration of 57ms to 383ms which could support the speculation that ripples can carry
reactivations, since they are characterised by 50 to 100ms of high frequency activity (Ylinen et al.,
1995). Despite the technical limitations of directly estimating ripple events in human cortical EEG, our
temporal compression analysis helps to unravel the footprint of ripples and the impact they have on
the temporal characteristics of the detected reactivation. Along with spindle analysis, this evidence

fits well with the idea of spindle-ripple events as a hallmark for reactivation.

Conclusion

Our findings show that slow wave sleep reactivations of multiple memories are detectable in humans
and occur faster than activation during the task. Furthermore, reactivation detectability positively
correlated with memory improvement which reflects their functional significance. We also support
prior work showing that spindles are hallmarks for reactivation. Overall, we describe new
characteristics of reactivations and how they relate to wake. We also introduce a new method for
detecting SWS reactivation by training classification models with sleep EEG and testing them on wake

data.

Data availability

Data and scripts are available on OSF and GitHub along with detailed instructions on running
different analyses and system requirements:

https://osf.io/byvcg/?view only=9b149e0387814bfla6fca692f90e9167 and

https://github.com/MahmoudAbdellahi/Targeted-memory-reactivation-elicits-temporally-

compressed-reactivation-linked-to-spindles. Participants private identifications are all anonymised.
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