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Cancer therapies often fail when intolerable toxicity or drug-resistant cancer cells undermine
otherwise effective treatment strategies. Over the past decade, adaptive therapy has emerged as a
promising approach to postpone emergence of resistance by altering dose timing based on tumor
burden thresholds. Despite encouraging results, these protocols often overlook the crucial role of
toxicity-induced treatment breaks, which may permit tumor regrowth. Herein, we explore the following
question: would incorporating toxicity feedback improve or hinder the efficacy of adaptive therapy? To
address this question, we propose a mathematical framework for incorporating toxic feedback into
treatment design. We find that the degree of competition between sensitive and resistant populations,
along with the growth rate of resistant cells, critically modulates the impact of toxicity feedback on time
to progression. Further, our conceptual model identifies circumstances where strategic treatment
breaks, which may be based on either tumor size or toxicity, can mitigate overtreatment and extend
time to progression, both at the baseline parameterization and across a heterogeneous virtual
population. Taken together, these findings highlight the importance of integrating toxicity

considerations into the design of adaptive therapy.

Systemic anti-cancer therapies, including chemotherapy, targeted therapies,
immunotherapies, and hormone treatments, are essential components of
modern oncology. In patients with metastatic disease, where cure is often
elusive, the primary goals are to control tumor growth, extend survival,
minimize treatment-related toxicities, and alleviate cancer-associated
symptoms'. Typically, a maximum tolerated dose (MTD) protocol is used
to achieve these goals. The goal of MTD is to eliminate as many cancer cells
as possible by administering the drug at the highest dose deemed safe until
toxicity limitations are reached.

Despite significant advances in the precision and effectiveness of
systemic anti-cancer therapies, two persistent challenges remain. The first
is the management of treatment-induced toxicity’™. Toxicities associated
with MTD treatment include fatigue, gastrointestinal side effects, and
hematological complications™. These toxicities adversely affect patient

quality of life and often necessitate dose reductions, treatment interrup-
tions, or even discontinuation, all of which ultimately undermine ther-
apeutic effectiveness.

The second persistent challenge of MTD therapy is the emergence of
therapeutic resistance. In clinical practice, a tumor is considered sensitive if
it shrinks or remains stable with treatment, and resistant if it continues to
grow. However, because tumors are inherently heterogeneous, they typically
contain subpopulations of cells with varying treatment sensitivities'’. Under
the sustained treatment typical of MTD therapy, the elimination of sensitive
cells can create an environment in which resistant clones proliferate freely.
This phenomenon, known as competitive release, accelerates resistance-
driven progression and diminishes treatment efficacy over time'""".

Adaptive therapy (AT) has emerged as a promising alternative to
traditional MTD approaches. Rather than aiming for complete tumor
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eradication, AT strategically modulates dosing schedules to preserve a
population of sensitive cells that can suppress resistant clones through intra-
tumor competition'*'. Its implementation is governed by clinical decision
rules based on measurable indicators, such as tumor size or circulating
biomarkers. For example, a dose-skipping regimen administers a high dose
until a predetermined tumor response (e.g., a 50% reduction in size) is
achieved and then pauses treatment until the tumor regrows to a defined
threshold, often its initial size. Alternatively, a dose-modulation strategy
adjusts treatment doses incrementally, increasing or decreasing them on the
basis of the tumor’s response over time'.

The effectiveness of AT can be enhanced if resistance comes with a
fitness cost. This occurs when the mechanisms conferring resistance, such
as the upregulation of energy-intensive drug efflux pumps, reduce a cell’s
overall fitness in the absence of therapy'*"". Indeed, adaptive therapies
have already been tested experimentally’””' and are currently being
applied across multiple clinical trials (NCT02415621; NCT03511196;
NCT03543969; NCT03630120).

A crucial, yet underexplored, aspect of AT is the impact of treatment-
induced toxicity on dosing decisions. Toxicity constraints can limit
treatment frequency or intensity, potentially allowing both sensitive and
resistant cell populations to proliferate during treatment interruptions.
This could disrupt the competitive dynamics that are essential to AT’s
success. Equally, integrating toxicity feedback into dosing strategies could
improve patient tolerability and enable prolonged treatment, ultimately
enhancing outcomes.

Attempts to model toxicity in the literature mainly focus on white
blood cell counts and neutropenia induced by chemotherapy”* ™. In ref. 27,
the authors model chemo-induced toxicity effects as a loss of muscle mass,
and in ref. 28, the authors model toxicity effects via both weight loss and a
comprehensive index that takes into account 57 side effects. Toxicity has
also been included as an additional constraint in the design of optimal
control dosing strategies™".

Approaches to model toxicity include an assumption that the effect is
present and constant during the whole treatment phase™?”, that it is pro-
portional to drug concentration®***, or that it is proportional to drug and
tumor burden®®. In ref. 24, the toxic effect of the drug directly reduces the
neutrophil proliferation rate via an inverse polynomial form of the drug
concentration. In ref. 22, a stochastic model is introduced wherein toxicity is
modeled as an increase in the death rate of white blood cells. Through a
virtual clinical trial, the authors demonstrate that managing toxicity
throughout treatment by modulating or pausing doses does not compro-
mise overall treatment outcomes. In ref. 31, the authors use a modified
logistic competition model with sensitive and resistant cells to show that in
numerical simulations, continuously-dosed AT outperforms discretely-
dosed AT in terms of both time to disease progression and controlling
toxicity. Their results assume toxicity is a nonlinear function of drug dose
satisfying specific conditions (such as being strictly increasing and
concave up).

Previously considered control problems™ introduce toxicity as a con-
straint, but do not monitor the emergence of drug resistance or the strategy
of AT. Dose interruptions in a model of resistance is presented in ref. 22, but
in that paper, toxicity is considered as a constant effect that reduces white
blood cell growth, and is not dependent on drug concentration or accu-
mulated exposure. In ref. 31, where the authors consider continuous or
intermittent adaptive therapies to manage emergence of resistance, toxicity
is modeled as a side effect that can be used to determine when too much drug
has been administered but is not included in dosing decision making.

In this work, we explore the following critical question: would incor-
porating toxicity feedback improve or hinder the efficacy of AT? To address
this question, we propose a novel mathematical framework for including
toxicity both in the decision-making process of daily therapy, and in the
formulation of adaptive regimes based on maintaining the tumor size within
a pre-specified range. Our simulations, designed to mimic a theoretical
murine study with an unspecified chemotherapeutic agent, compare the
impact of toxicity constraints on time to progression (TTP) for daily

treatment versus AT schedules. Our results demonstrate that the degree of
competition between sensitive and resistant populations, along with the
growth rate of resistant cells, critically modulates how TTP is impacted by
the incorporation of toxicity feedback. Notably, our conceptual model
identifies circumstances where strategic treatment breaks, which may be
based on either tumor size or toxicity, can mitigate overtreatment and
extend TTP, both at the baseline parameterization and across a virtual
population. We conclude with a discussion of the model’s limitations and
propose future directions aimed at optimizing cancer treatment strategies to
simultaneously address resistance and toxicity, thereby improving patient
quality of life.

Results
To investigate the relationship between AT and toxicity, we analyze the
dynamics captured by a mathematical model that integrates drug phar-
macokinetics and toxicity dynamics into an existing framework'® of com-
petitive interactions between treatment-sensitive (S(#)) and treatment-
resistant (R(#)) cancer cells. This conceptual model, described in detail in the
Methods, assumes that both subpopulations grow logistically to a shared
carrying capacity and that only sensitive cells are killed by the drug. It further
assumes that drug pharmacokinetics are described by a one-compartment
model and that toxicity increases at a rate proportional to drug con-
centration and resolves at a linear rate.

In this section, we evaluate the impact of the four proposed protocols
(Fig. 1) on treatment dynamics and time-to-progression (TTP): (i) daily
protocol, (ii) adaptive protocol, (iii) daily protocol with toxicity feedback,
and (iv) adaptive protocol with toxicity feedback. More details on the
implementation of these protocols are provided in the Methods section.

In all simulations, parameters are fixed at their baseline values defined
in Table 1 of the Methods, except for those being explicitly varied in a
parameter sweep, with the same normalized dose administered across all
treatment protocols. We monitor tumor composition (fractions of sensitive
and resistant cells), drug concentration, and accumulated toxicity. Protocol
effectiveness is assessed based on TTP—the longer a tumor takes to fail
treatment, the more effective the protocol is deemed to be.

Addition of Toxicity Constraints Can Extend TTP

In Fig. 2, we show representative model dynamics from a simulated
experiment comparing the four treatment protocols using parameter values
from Table 1. Each row corresponds to a protocol, with tumor cell time-
courses plotted in the left panels, and drug concentration and toxicity time-
courses in the right panels. Periods of drug administration are shaded in
gray, and simulations run until the disease progresses. For each protocol,
representative examples of model dynamics at alternative parameterizations
are shown in Supplementary Fig. 1.

In the daily protocol (Fig. 2, top row), the drug rapidly depletes sen-
sitive cells (blue curve), resulting in a large initial reduction in total tumor
burden. However, this depletion removes intra-tumor competition, allow-
ing resistant cells (red curve) to proliferate unchecked, leading to swift
treatment failure. High and sustained drug exposure results in persistently
elevated toxicity throughout treatment. This protocol yields the shortest
TTP (19.2 days), creating a “lose-lose” scenario where resistance emerges
quickly, and toxicity remains critically high.

In the adaptive protocol, tumor size-based feedback modulates treat-
ment cycles, alternating between drug administration and off-treatment
periods (Fig. 2, second row). This strategy allows sensitive cells to recover
during treatment pauses, enabling them to compete with and temporarily
suppress resistant cells, thereby delaying treatment failure. Periodic drug
holidays also reduce toxicity compared to the daily protocol, though overall
toxicity continues to increase with time. AT extends TTP to 44 days, more
than doubling the duration achieved under the daily protocol. However, as
resistant cells gradually escape suppression by the sensitive cells, the adap-
tive protocol ultimately loses effectiveness.

An additional observation in the adaptive protocol (Fig. 2C) is that the
tumor volume sometimes overshoots the Rx,,, threshold by a large margin

npj Systems Biology and Applications| (2026)12:11


https://clinicaltrials.gov/ct2/show/NCT02415621
https://clinicaltrials.gov/ct2/show/NCT03511196
https://clinicaltrials.gov/ct2/show/NCT03543969
https://clinicaltrials.gov/ct2/show/NCT03630120
www.nature.com/npjsba

https://doi.org/10.1038/s41540-025-00635-6

Article

A Daily Protocol B Adaptive Protocol
‘predict growth for 1 day‘ r}‘predict growth for 1 day
©
e \ x A
== e -
I TEST: fFaLsel  end £ TEST: end
- S+R < Rx-fail simulation 'H S+R < Rx-fail simulation
z 2
S TRUE | = TRUE Y
T administer % set size flag:
() dose - if S+R > Rx-on
o © then TREAT1 = ./
v Q if S+R<Rx-off
LJ 8 then TREATL = X
) |
TEST:
TREAT1=/
TRUE
Y
administer
dose
C Daily+Toxicity Protocol D Adaptive+Toxicity Protocol
ry‘predict growth for 1 day‘ predict growth for 1 day‘
X x )
g TEST: FaLsEl  end g TEST: ~end
£ \S*R < Rxfail simulation = Ot = Al simulation
Il Il
- TRUEL -
-g set toxicity flag: g - —
S if T > Tox-off S | setsize flag: set toxicity flag:
= then TREAT2 = X — | ifS+R>Rx-on if T > Tox-off
8 T g then TREAT1 = ./ then TREAT2 = X
= if S+R<Rx-off if T<Tox-
% then TREAT2 - // @' tlhe: TI:E:\(T;.) =X thlen TR:);\:; =/
—
TREAT1= /& TREAT2=/,
TRUE
administer administer
dose dose

Fig. 1 | Summary of the four proposed treatment protocols. A daily protocol, B adaptive protocol with tumor size-driven treatment cycles, C daily protocol with toxicity-
driven treatment cycles, and D adaptive protocol with both tumor size- and toxicity-driven treatment cycles.

before therapy resumes, while in other cycles the overshoot is much smaller.
This irregularity is not seen in the protocols that include toxicity feedback.
The explanation lies in the interaction between continuous tumor growth
and the discrete, once-daily treatment decision schedule. In the adaptive
protocol, the tumor may cross the Rx,,, threshold at any time between daily
checks; if this occurs early in the off-treatment interval, the tumor has nearly
a full day to continue growing before therapy resumes, leading to a larger
overshoot. If the threshold is crossed later in the interval, the overshoot is
smaller. In contrast, when toxicity feedback is incorporated, therapy cannot
restart immediately after tumor regrowth, and one must wait for toxicity to
decline below Tox,,,. This constraint effectively prolongs and regularizes the

off-treatment intervals. Similar effects of overshooting thresholds have been
observed in recent work by Gallagher et al.”’, where AT protocols with
discrete monitoring intervals often allow the tumor to exceed the upper size
threshold before treatment is resumed, due to the inherent delay between
checks.

Incorporating toxicity-based dose adjustments into the daily protocol
introduces periodic drug holidays (Fig. 2, third row). These treatment
interruptions, designed to allow recovery from drug toxicity, also enable
partial regrowth of sensitive cells, creating an unintended adaptative therapy
protocol. Interestingly, for our baseline parameter values, this approach
achieves a longer TTP (59.8 days) than even the adaptive protocol. This is
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Table 1 | Baseline parameter values used in Eqgs. (1)-(4)

Parameter Description Value Dimensions
ag Growth rate of sensitive cancer cells 1 per day

ap Growth rate of resistant cancer cells eag per day

€ Dimensionless constant between 0 and 1 0.4 dimensionless
K Shared carrying capacity 100 dimensionless
8 Rate of drug-induced cancer cell death 1 per day

B Competition parameter between sensitive and resistant cancer 2.4 dimensionless
A Drug clearance rate 0.693 per day

u Rate of toxicity accumulation 1 per day

y Toxicity recovery rate 0.4 per day

RXoft Efficacy threshold triggers therapy pause if total tumor size falls below this value 40% of initial tumor size dimensionless
RXon Efficacy threshold triggers therapy restart if total tumor size surpasses this value Initial tumor size dimensionless
ToXoft Toxicity threshold triggers therapy pause if toxicity surpasses this value 2 dimensionless
ToXon Toxicity threshold triggers therapy restart if toxicity falls below this value 1 dimensionless
Treatment Failure Tumor size defining treatment failure and disease progression 75 dimensionless

because the toxicity feedback effectively mimics an adaptive strategy with
higher Rx,,, thresholds; that is, treatment resumes only after the tumor has
grown beyond a threshold that would have triggered re-administration in
the adaptive protocol.

The adaptive protocol with toxicity modulation integrates both tumor
size-based and toxicity-based treatment decisions (Fig. 2, bottom row). This
doubly adaptive approach results in sustained on/off treatment cycles. Like
the daily protocol with toxicity feedback, tumor sizes overshoot the Rx,,
threshold because treatment cannot resume until toxicity has declined
sufficiently. This has the dual effect of reducing drug exposure, and con-
sequently, toxicity, while preserving the sensitive cell population during
early cycles. As a result, this protocol achieves the longest TTP (79.1 days).

Sensitivity analysis

Next, we perform a global sensitivity analysis using eFAST to quantify the
impact of parameter variations on TTP across the four treatment protocols.
The results are summarized in Fig. 3. It should be noted that eFAST assigns a
minimal sensitivity value to all parameters, including dummy parameters,
making the p-values (indicated by asterisks in each plot) crucial for inter-
preting the significance of each sensitivity index.

The sensitivity indices plotted in Fig. 3 indicate that no single para-
meter strongly influences TTP in all four protocols. In the adaptive protocols
(Fig. 3C, D), the competition parameter $ most significantly influences TTP,
as indicated by having the largest first order (blue bars), and higher order
(orange bars), sensitivity indices. In the daily protocols (Fig. 3A, B), the
parameter with the most influence TTP is the relative growth rate of
resistant cells relative to sensitive cells (e, ¢y = eag). Counterintuitively, the
rate of toxicity recovery, y, is either the least or second least sensitive
parameter in any of the protocols. We explore this further in ‘Effect of
Parameters on TTP” subsection.

Effect of Parameters on TTP

Parameters 3 and € (or a as ay = eag) were identified as significant for
most protocols in Fig. 3, so we start our analysis with them. We first
investigate the effect on TTP of varying 8 and a, over the ranges defined in
the global sensitivity analysis, with all other parameters fixed at their baseline
values from Table 1. For each pair of values (3, az) we compute the TTP for
each protocol (Supplementary Fig. 2). The results of these four parameter
sweeps are summarized in Fig. 4. In particular, Fig. 4A indicates which
protocol(s) result in the longest TTP, and Fig. 4B indicates the actual time to
progression for the protocol(s) that maximized TTP. Recall that the simu-
lation is run for 100 days. We assign a value of 150 to any simulation that
does not reach treatment failure within this simulation time.

As shown in Fig. 4A, one of the two adaptive protocols is over-
whelmingly likely to maximize TTP when the resistant cells have a com-
petitive advantage over the sensitive cells (8 < 1). The only exception to this
is when resistant cells grow at nearly the same rate as the sensitive cells
(org near 1). In this scenario, the competitive advantage of the resistant cells
is so extreme that none of the protocols can contain the tumor, and any
stopping of treatment decreases TTP. Figure 4B shows that as the compe-
titive advantage of the resistant cells increases (smaller f3, larger «y), the
optimal protocol becomes less effective. As resistant cells lose their direct
competitive advantage over sensitive cells (in particular for 1< <2), the
incorporation of toxicity feedback into the adaptive protocol yields the
optimal result, though treatment still fails within the simulation period.
Finally, when sensitive cells have a very strong competitive advantage over
resistant cells (8>2.75) or a sufficiently strong competitive advantage
(2.25 < <2.5) coupled with significantly weaker growth of resistant cells
relative to sensitive cells (small €), TTP extends beyond the simulation
window. As we move towards the parameter regime where the tumor does
not progress (higher ) from our baseline parameterization (red star), the
adaptive protocol with toxicity modulation is the only protocol that appears
as optimal (protocol 4 in Fig. 4A). As we move further to the right, we
interestingly find that it is the daily protocol with toxicity modulation that
can also extend TTP beyond the simulation period (protocol 3 in Fig. 4A).
Finally, increasing 5 further, moving to the extreme end of parameter space
for which sensitive cells have a competitive advantage over resistant cells, the
adaptive protocol joins the two toxicity protocols as all three prevent pro-
gression within the simulation period.

Rates of drug-induced death and of toxicity recovery affect the
nature of treatment failure

Next, we want to assess whether the cause of treatment failure is due to
resistant or sensitive cells. Surprisingly, simulations revealed that while oy
(varied by changing €) strongly influences time to failure, it does not play an
important role in determining the cause of failure (data not shown). This is
because treatment failure by resistant cells or sensitive cells depends pri-
marily on whether toxicity constrains the ability to control sensitive cells
which is relatively independent of the intrinsic growth rate of the resis-
tance cells.

To explore the underlying cause of progression, we performed a
parameter sweep in (f3, 8)-space, where 8 is the drug-induced death rate and
B is the competitive effect of sensitive cells on resistant cells. For each
protocol and each (8, §) pair, keeping all other parameters fixed at their
baseline values, we assess tumor composition (fraction of resistant cells) at
the time of treatment failure. In the protocols without toxicity (Fig. 5A, B)
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Fig. 2 | The four treatment protocols and resulting model outputs using para- are daily (A,B), adaptive (C,D), daily with toxicity feedback (E,F), and adaptive with
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the dynamics of drug concentration and accumulated toxicity. Compared protocols
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the predicted tumor did not progress within the simulation time of 100 days and

B

thus, that the treatment protocol did not (yet) fail. The baseline parameterization is
indicated with a red star. Parameters that are not varied are fixed at their baseline
value in Table 1 with ay varied from 0.2 to 1 by varying e.

treatment failure results from the eventual dominance of resistant cells, with
sensitive cells nearly eradicated.

With toxicity, drug doses may be constrained to the point where
sensitive cells drive progression regardless of treatment strategy (daily versus
adaptive in Fig. 5C, D, respectively). When drug efficacy is low (small
¢ values), toxicity prevents sufficient drug dosing to control the sensitive
cells and they drive progression. The switch from resistant to sensitive cells

causing progression is relatively abrupt, occurring close to § = 1. Despite
the importance of 8 in determining TTP (larger values prolong TTP), the
role of 8 in the cause of treatment failure is minimal. However, the transition
from resistant to sensitive cells causing progression as § declines becomes
less abrupt at small values of f5.

The global sensitivity analysis in Fig. 3 identified the toxicity recovery
rate y as either the least sensitive, or second least sensitive, parameter in all
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values reported in Table 1. Black regions indicate that treatment did not fail within
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the simulation time of 100 days. As expected, progression when it occurs is always
from resistant cells when there are no toxicity constraints. With toxicity constraints,
as the rate of drug-induced cell mortality (8) declines, the cause of progression
switches from resistant to sensitive cells.

four protocols. This is surprising, as one would think that the rate of toxicity
recovery would affect the outcomes of protocols with toxicity feedback. If
the rate of toxicity recovery does not significantly influence TTP, perhaps it
affects the cause of treatment failure? We explore this question next.

Figure 6 assesses the effect of y in two different parameter regimes
identified from Fig. 5C, D: when sensitive cells drive progression (6 = 2/3)
and when resistant cells drive progression (6 = 4/3). In both parameter
regimes, we observe a bifurcation in the reason for treatment failure. When y
is small toxicity accumulates, forcing treatment breaks that allow sensitive
cells to regrow and outcompete resistant cells, ultimately driving treatment
failure. Conversely, when y is large, toxicity resolves quickly, permitting
more frequent treatment cycles that, in turn, eliminate sensitive cells leaving
the resistant cells to drive treatment failure. The bifurcation in behavior
occurs at the same value of y for each value of § considered (compare
Fig. 6A, B with § = 2/3, then compare Fig. 6C, D with § = 4/3).

Interestingly, there is a range of intermediate y values in the § = 2/3
case, where treatment does not fail within the simulation time frame. These
cases result in prolonged on-off cycling of therapy. With this moderate drug
efficacy, toxicity can be controlled and the resulting feedback-modified
treatments work well. However, at higher values of treatment efficacy (6),
this ‘Goldilocks’ window vanishes, and treatment invariably fails during the
simulation period. Prolonged cycling of treatment is no longer a possibility
as resistant cells will lead to treatment failure. These results demonstrate that
even though y has a minimal effect on TTP (sensitivity analysis in Fig. 3), it
can play a crucial role in determining the cause of treatment failure.

Assessing therapy outcome robustness to protocol thresholds
Next, we assess whether treatment outcomes can be improved by adjusting
the therapy on/off thresholds in adaptive and toxicity-tracking protocols.
We previously showed that at baseline tumor size and toxicity thresholds for
starting or stopping therapy, TTP varies significantly with 8 and ay. Here,
we fix all model parameters to the baseline values from Table 1 and instead
vary the tumor size thresholds Rx,,, and Rx,g in the adaptive protocols, or
the toxicity ToxX,, and Tox.s in the protocols with toxicity feedback. We
report predicted TTP for each of the following cases: the effect of varying
ToX,n and Tox,in daily and adaptive protocols with toxicity feedback (Fig.
7A, B, respectively) and the effect of varying Rx,, and Rx.¢ in adaptive
protocols without or with toxicity feedback (Fig. 7C, D, respectively).
Figure 7A, B show TTP as a function of Tox,, (the toxicity level at
which treatment may resume, horizontal axis) and Tox (the toxicity
level at which therapy is paused, vertical axis). The constraint ToX,,, <
Tox,¢ must be satisfied; protocols violating this condition are blacked out
in the bottom right corners. When Tox, is too high, that is, when we are
allowing a high level of toxicity in the simulation, toxicity-induced
treatment pauses are infrequent. As a result, TTP in toxicity-feedback
protocols is similar to that of protocols without toxicity feedback in both
daily (TTP of 19.2 days) and adaptive (TTP of 44 days) dosing. Low values
of Tox,,, meaning treatment can only resume after toxicity has mostly
resolved, resultin sharp declines in TTP. In these cases, if toxicity triggers a
treatment pause (as seen with moderate Tox, ¢ values in the daily protocol,
and all values in the adaptive protocol), the toxicity level never falls low

npj Systems Biology and Applications| (2026)12:11


www.nature.com/npjsba

https://doi.org/10.1038/s41540-025-00635-6

Article

A
Daily: With Tox Feedback: § = 2/3

o
-
-
T o8
E Progressed due Did  Progressed
# 0.6 tosensitivecells  not due to
g pro- resistant
@ 0.4 gress cells
12
§02
-
[&]
o
Lo
0.2 0.3 0.4 0.5 0.6 0.7 0.8
g

(¢}

) Daily: With Tox Feedback: § = 4/3
0.8 Progressed due to
resistant cells

Fraction Resistant Cells at TTP

0.2 0.3 0.4 0.5 0.6 0.7 0.8
"
Fig. 6 | Effect of recovery from toxicity, y, on the nature of treatment failure. As y

increases, the reason for treatment failure switches from sensitive to resistant cells.
A Daily with toxicity and B adaptive with toxicity protocols when drug effectiveness,

Adaptive: With Tox Feedback: § = 2/3

0.8
Progressed due Did  Progressed
0.6 to sensitive cells  not dueto
pro- resistant
0.4 gress cells

0.2

Fraction Resistant Cells at TTP

0
0.2 0.3 0.4 0.5 0.6 0.7 0.8

i

O

Adaptive: With Tox Feedback: § = 4/3

o

-

[

o 08 Progressed due to
S resistant cells
©o06

c

y

@ 0.4

[0)

4

5 0.2

=

(&)

S GOOOGOJ

TRE)

0.2 0.3 0.4 0.5 0.6 0.7 0.8
g
&, is small (8 = 2/3). C Daily with toxicity and D adaptive with toxicity protocols

when § is large (8 = 4/3). The remaining parameters are fixed at their baseline value
in Table 1.

enough for the treatment to restart. The result is that cancer cells grow
unchecked and TTP is very short. Conversely, high values of Tox,, allow
for treatment to be resumed sooner, minimizing the effect of toxic feed-
back on the protocols, and resulting in similar TTPs to that of protocols
without toxicity feedback.

Notably, the longest TTP for daily and adaptive protocols with toxicity
feedback occurs at intermediate toxicity thresholds that are fairly close
together, forcing toxicity to remain relatively constant and moderate.
Within this sweet spot in protocol space, the model predicts that the tumor
will not progress during the 100-day simulation window. These protocols
with an optimal TTP occur at the boundary of the blacked-out region
(Fig. 7A, B). Interestingly, this tumor control behavior occurs over a larger
range of protocol thresholds for the adaptive with toxicity protocol, as
compared to the daily with toxicity protocol.

Figure 7C, D show TTP as a function of Rx,,, (the tumor size at which
treatment resumes, horizontal axis) and Rx.g (the tumor size at which
treatment pauses, vertical axis). The constraint Rx,, > Rx, must be satis-
fied; parameter sets violating this condition are blacked out in the top left
corners. Looking at the rightmost columns in Fig. 7C, D, when Rx,, is too
high, the tumor is allowed to grow to a sufficiently large size before a new
treatment cycle begins. Under both adaptive protocols, TTP is noticeably
lower than in the corresponding daily protocols (reported in the title of each
subfigure), regardless of Rx,¢. When Rx,,, is small, both adaptive protocols
(with or without toxicity feedback) are comparable to, or modestly out-
perform, the corresponding daily protocol.

As we saw when varying the toxicity thresholds, there is a sweet
spot in the adaptive protocol space for which the tumor is controlled
over the 100-day window. This optimal window is found at high Rx,¢
and intermediate Rx,,, values (indicated by the boxes labeled ‘150’ in
Fig. 7C). This region suggests that the best outcome is obtained by
pausing treatment before the tumor shrinks too much, thereby

allowing the sensitive cell population to recover and suppress resistant
cells through competition, and by restarting treatment before the
tumor becomes too large.

Interestingly, we do not observe the same sweet spot in protocol
space for the AT with toxicity feedback (Fig. 7D). At high Rx.g and
intermediate Rx,, values, TTP is smaller than what we observe with the
baseline threshold values (59.8 days). Instead, an optimal treatment
window emerges at intermediate Rx,¢ values, where tumor burden is
maintained between 36.6% and 56.6% of its initial size. Although
adjusting size-based thresholds can improve TTP, none of the tested
protocols produce a durable response — defined here as TTP exceeding
the 100-day simulation period - once toxicity feedback is included in the
adaptive protocol. While we did not identify tumor size thresholds for
which the adaptive protocol with toxicity can control the tumor in
Fig. 7D, Fig. 7B shows that toxicity feedback can produce the desired
outcome. Both Fig. 7B, D are looking at two-dimensional slices of a four-
dimensional protocol space, so it is important not to interpret this as
concluding that the adaptive protocol with toxicity feedback is inferior to
the others, as these are snapshots of a larger space.

The threshold sweeps in Fig. 7 also highlight the personalization level
required to optimize the toxicity feedback protocol. We see that, depending
on the chosen toxicity thresholds, the efficacy of a toxicity feedback protocol
can improve or worsen relative to the daily protocol’s TTP of 19.2 days. As
an example, consider Fig. 7A and fix the maximum tolerated toxicity at
Tox,fr=1.67. Moving the treatment restart threshold Tox,, from 0.92 to
1.08 results in a jump in TTP from 12.7 days (worse than the daily protocol)
to over 100 days (much better than the daily protocol). However, a further
increase of Tox,, reduces the predicted TTP, revealing the existence of a
toxicity threshold “sweet spot” for this fixed parametrization. Such “sweet
spots” exist for all the treatment cycling protocols, and the landscapes will
depend on the model parameters.
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Rxon > Rx,fris not satisfied are blacked out. The results of the same protocol sweep for
smaller and larger values of 8 than the baseline value of § = 2.4 used here are shown
in Supplementary Fig. 3.

Optimizing threshold “Sweet Spots” across a virtual population
Finally, to systematically determine whether adaptive and toxicity-based
thresholds can be optimized for maximal TTP across various parameter
values, we conduct a virtual patient analysis. In this approach, each “virtual
patient” is assigned a unique set of values for five parameters, ag, €, 8, §, and
y, drawn from independent lognormal distributions (Supplementary Fig. 4).
The means of these distributions match the corresponding baseline values in
Table 1, and the standard deviations are chosen to approximate the para-
meter ranges used in the sensitivity analysis of Fig. 3. We then repeat the
protocol threshold analysis from Fig. 7 for each virtual patient and calculate
the mean TTP across the entire virtual population, for every pair of
threshold values. As before, VPs that do not reach treatment failure in
100 days are assigned a TTP of 150. The results for 100 simulated VPs are
reported in Fig. 8.

Figure 8A, B show mean TTP as a function of Tox,,, (the toxicity level
at which treatment resumes, horizontal axis) and Tox, (the toxicity level at
which treatment pauses, vertical axis), with the tested protocol specified in

the panel title, along with the corresponding mean TTP for the protocol
without toxicity feedback. Again, the blacked out bottom right corners
correspond to pairs of values that violate the constraint that Tox,, < ToX,g
Figure 8C, D show mean TTP as a function of Rx,, (the tumor size at which
treatment resumes, horizontal axis) and Rx.g (the tumor size at which
treatment pauses, vertical axis), with the tested protocol specified in the
panel title, along with the corresponding mean TTP for the protocol without
tumor size-based feedback. The upper left corner is blacked out as this
region violates the constraint that Rx,, > RX.

It is instructive to compare the heatmaps in Fig. 7 for the baseline
parameterization to the heatmaps in Fig. 8, where we are looking at average
behavior across a virtual population. When the toxicity thresholds are
varied, we generally see that the sweet spot in protocol space is comparable
between the baseline parameterization (Fig. 7A, B) and the virtual popu-
lation (Fig. 8A, B). The same is true when the tumor size thresholds are
varied in the adaptive protocol (Fig. 7C versus Fig. 8C). Interestingly, the
analogous consistency is not observed in the adaptive protocol with toxic
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Fig. 8 | Mean TTP for 100 VPs. Top row: toxicity thresholds varied in the daily with toxicity (A) and adaptive with toxicity (B) protocols. Bottom row: tumor size thresholds

varied in the adaptive (C) and adaptive with toxicity (D) protocols.

feedback (Fig. 7D versus Fig. 8D). At the baseline parameter values, inter-
mediate Rx,, values coupled with large Rx.¢ values corresponded to a
suboptimal treatment protocol. However, this same region of protocol space
is optimal for the average of the virtual population. This demonstrates that
the effect of tumor size thresholds in the adaptive with toxicity protocol
depends, to a large extent, on the model parameters.

To demonstrate the variability across VPs, as opposed to the average
behavior as in Fig. 8, we examine the distribution of patient outcomes by
plotting Kaplan-Meier curves (Fig. 9). These curves illustrate the proportion
of virtual patients who have not progressed over time. The Kaplan-Meier
curve for each protocol uses the thresholds that were identified to optimize
the mean TTP for the virtual population in Fig. 8. For instance, the adaptive
protocol in Fig. 8Chas the longest TTP when Rx,,,, = 58.33 and Rx,¢ = 45, s0
these are the thresholds set for the adaptive protocol in Fig. 9. For reference,
we also include the Kaplan-Meier curve for the daily protocol with no
treatment pausing (blue curve). The adaptive with toxicity protocol (purple
curve) in Fig. 9 uses the optimal thresholds found by searching over the four-
dimensional space defined by the two toxicity thresholds and the two tumor
size thresholds.

By adding toxicity considerations to the daily protocol (yellow curve in
Fig. 9) 40% of VPs experience a TTP greater than 100 days, but 16%

experience a TTP shorter than the daily protocol. The adaptive protocol (red
curve) significantly improves TTP for the majority of VPs compared to the
daily protocol and leaves almost 50% of VPs with no disease progression by
100 days. Finally, the adaptive with toxicity protocol (purple curve),
demonstrates the potential advantage of dual feedback: 91% experience no
progression by 100 days.

Discussion

Cancer treatments can fail for many reasons, including the emergence of
resistance or unacceptable toxicity. In practice, toxicity often necessi-
tates dose reductions, delays, or discontinuations, undermining the
durability of systemic therapy. AT has been proposed as an alternative to
conventional MTD approaches, with the aim of prolonging tumor
control by maintaining a population of drug-sensitive cells that suppress
resistant clones. In settings where cure is not possible due to the presence
of resistant subpopulations, previous mathematical models and several
clinical trials suggest that AT (e.g., pausing and restarting treatment
based on tumor burden) can improve outcomes by delaying progression.
However, most mathematical models of AT have focused on tumor
burden alone and have not explicitly incorporated toxicity into treat-
ment decisions. Our study addresses this gap by introducing a
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Fig. 9 | Variability across a virtual population for
each protocol with optimized treatment thresh-

olds. Mean TTP of 100 VPs was used to determine
the optimal thresholds for each protocol (except the
daily protocol which does not have any thresholds).
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conceptual framework in which toxicity constraints, alongside efficacy
thresholds, could govern treatment administration.

We demonstrate that toxicity constraints can enhance or diminish
outcomes depending on parameter values and protocol thresholds. In our
analysis, we compared TTP of four protocols: daily; adaptive, where treat-
ment is controlled based on tumor size criteria; daily with toxicity feedback,
where treatment is controlled based on accumulated toxicity criteria; and
adaptive with toxicity feedback, where treatment is controlled by both
tumor size and toxicity criteria. We were able to identify scenarios in which
each of the four protocols could optimize TTP. The optimal protocol
depended on the growth rates of, and competition between, the sensitive and
resistant cells, and on the defined protocol thresholds. Protocols leading to
the longest TTPs typically incorporate either or both efficacy and toxicity
feedback rules.

Additionally, by assessing tumor composition at TTP, we found that
there are two paths to treatment failure. The tumor may progress due to
significant growth of either sensitive or resistant cells, with progression due
to sensitive cells occurring only in protocols with toxicity feedback. As such,
drug dose timing becomes critically important: waiting too long to resume
treatment (for example, because of slow toxicity recovery), may result in
sensitive cell growth causing treatment failure.

Our results demonstrate that varying toxicity and efficacy thresholds
can significantly affect treatment response, with relatively small changes in
threshold values potentially having significant effects on TTP. We also
observed that TTP is sensitive to several model parameters. For these
reasons, we conducted a virtual population analysis to better understand
the relationship between protocol thresholds and TTP across a hetero-
geneous population. In particular, we varied the protocol thresholds for
both tumor size and/or toxicity (as relevant to the protocol), to determine
the optimal thresholds leading to the longest average TTP for the virtual
population. We found that while no protocol can prevent progression
across the entire virtual population, there do exist protocols (threshold
values) that can significantly extend TTP, on average, for all protocols with
feedback. The longest average TTP, with the most non-progressing VPs,
was predicted for the dual-feedback protocol incorporating both adaptive
and toxicity constraints, as demonstrated by the simulated Kaplan-Meier
survival curves in Fig. 9.

Although the proposed model is conceptual, employing a simplified
representation of tumor heterogeneity (two subpopulations), drug phar-
macokinetics, resistance (pre-existing only) and treatment-induced toxicity,
the results are consistent with key principles of AT. Specifically, treatment
pauses based on tumor size (though not toxicity) can actually maintain or
even improve efficacy”, potentially through mitigating competition

between sensitive and resistant cancer cells. By pausing or reducing treat-
ment upon reaching specific toxicity thresholds and resuming once
resolved, patients may experience fewer adverse effects without compro-
mising treatment outcomes. The importance of such an approach is further
supported by the FDA’s Project Optimus™, where drug developers are
encouraged to move away from a “no regrets” MTD-like strategy towards a
more nuanced, albeit harder to develop, protocol that balances efficacy and
toxicity.

It should be emphasized that AT is primarily considered in the context
of incurable disease where resistant subclones are present. If no resistant
cells are present in the initial tumor, then an adaptive approach could
theoretically reduce the possibility of cure by maintaining a residual
population of sensitive cells rather than pursuing complete eradication.
However, even in a setting where control and not cure is the goal, imple-
mentation of response or toxicity-guided treatment breaks may present
communication challenges for both patients and clinicians™. Treatment
interruptions may be interpreted as suboptimal treatment, which can make
it difficult to convey that a pause is an intentional part of the therapeutic
strategy. Misperceptions may also stem from a belief that more intensive or
continuous therapy always yields better outcomes. For this reason, it is
important that discussions with patients emphasize that pauses triggered by
decreases in tumor size or by toxicity thresholds are intentional, designed to
balance tolerability with maximizing long-term disease control, and should
not be interpreted as therapeutic abandonment. To our knowledge, no
studies have yet specifically explored patient perceptions of AT; under-
standing these views will be critical for clinical translation.

While beyond the scope of our present investigation, our model can be
applied to a broader range of AT protocols. Like the first AT trial on
castration resistant metastatic prostate cancer’', here we simulated therapy
cycling based on fixed upper and lower thresholds of tumor burden,
respectively. Mouse model experiments™™ and a current clinical trial on
ovarian cancer” have used dose de-escalation as tumor burden drops and
dose escalation as burden rises. Range-bounded AT lets the upper and lower
bounds of on/off cycles drift upwards, taking advantage of stronger inter-cell
type competition with increasing tumor burden®'.

Future work could extend this model in several directions. First,
threshold optimization is critical: the interplay between tumor size thresh-
olds and toxicity thresholds is complex, and our results suggest the existence
of “sweet spots” that maximize tumor control. Second, our analysis has
focused on dose skipping but dose modulation is another strategy to manage
toxicity. Extending our framework to incorporate both dose skipping and
dose-modulation strategies will be an important next step. Third, the fre-
quency of treatment decisions is likely to be critical: while we assumed daily
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monitoring, less frequent assessments (weekly or monthly) may amplify
overshoot and alter outcomes, as highlighted by Gallagher et al.”. Finally,
integrating more realistic toxicity measures (e.g., neutropenia-based PK/PD
models or composite toxicity indices) and incorporating patient-reported
outcomes will be essential for translational relevance.

In conclusion, our modeling study demonstrates how incorporating
toxicity constraints into AT can reduce treatment-associated toxicity
without sacrificing efficacy. By balancing patient tolerability with treatment
efficacy, such toxicity-informed adaptive protocols hold the promise of
turning at least some types of incurable cancers into manageable chronic
conditions. This approach may extend survival rates, improve patient
quality of life, and potentially bring us closer to truly personalized cancer
treatment.

Methods
Mathematical Model
The model analyzed in this study integrates drug pharmacokinetics and
toxicity dynamics into an existing framework'® of competitive interactions
between treatment-sensitive (S(¢)) and treatment-resistant (R(t)) cancer
cells. The conceptual model assumes that the two subpopulations compete
for, and grow logistically up to, a shared carrying capacity K. Sensitive cells
can be killed by the drug, while resistant cells cannot. Drug concentration
C(t) is described by a simple one compartment pharmacokinetic model
with linear clearance. Toxicity T(t) increases with drug concentration C(%),
and resolves at a fixed linear rate.

The resulting system of equations is as follows:

St = ocSS(l - HTR) — 8CS, (1)
R(t) = ocRR(l - ﬂs; R), ()
C'(t) = source — \C, 3)

T'(t) = uC—yT. @)

Here ag and ay are the growth rates of the sensitive and resistant cells,
respectively, and f is the competition suppression factor that sensitive cells
impose on resistant cells. The drug is assumed to be instantaneously injected
into the model through the source term, has a clearance rate of A, and a
killing efficacy of § on the sensitive cells. Toxicity accumulates pro-
portionally to the drug concentration with parameter y, and decays expo-
nentially with parameter y. Baseline values of parameters, together with
their meanings, are summarized in Table 1. We remark that in our for-
mulation, resistance to the drug incurs a cost so that resistant cells cannot
proliferate faster than sensitive cells. Mathematically, we express the growth
rate of resistant cells as: ay = eag, where 0<e<1.

In the interest of generality and wide applicability, and because here we
are not modeling any specific cancer type, drug, or experimental dataset, we
rescale our model variables as follows. The tumor cell subpopulations S(t)
and R(t) are expressed as fractions of an assumed carrying capacity of 100,
making them interpretable as percentages of sensitive and resistant tumor
cells. The drug concentration C(t) is dimensionless, reflecting its role as a
generic chemotherapeutic agent. Likewise, toxicity T(¢) is measured in
arbitrary units to encompass a broad range of potential side effects. These
rescalings provide a flexible framework within which we can explore
treatment dynamics across various scenarios. The baseline parameters were
selected to demonstrate the dynamical differences between the four pro-
tocols detailed in ‘Defining Treatment Protocols’ subsection.

Equations (1)—(4) are solved in MATLAB® using ode23s, a stiff solver
that implements a modified Rosenbrock formula of order two. Unless
otherwise indicated, the scripts used to solve and analyze the toxicity model
are available at https://github.com/jgevertz/toxicity.

Defining treatment failure

Following the RECIST (Response Evaluation Criteria in Solid Tumors)
criteria used in clinical practice, which typically defines disease progression
as at least a 20% increase in tumor size from some baseline”, we define
therapy failure as the total tumor burden rising 50% above its value at
treatment initiation. In our model, the tumor burden starts at 50% of the
carrying capacity, and treatment failure is thus defined as a tumor burden of
75% of the carrying capacity (that is, the initial tumor burden is 50, and
treatment failure occurs when S + R >75). TTP is defined as the time from
treatment initiation until the tumor burden reaches this treatment failure
size. We emphasize that in a clinical setting, an oncologist would not know
the tumor’s carrying capacity and, instead, would make decisions based on
measurable tumor burden obtained via imaging or other methodologies. To
reflect this, efficacy-based decisions in our model are related to the tumor
size at therapy initiation rather than to its (unknown) carrying capacity. In
our numerical simulations, the tumor’s initial composition is set at 99%
sensitive cells and 1% resistant cells at 50% carrying capacity, or S(0) = 49.5
and R(0) = 0.5. Treatment starts on day 1, so both the drug concentration
and toxicity are assumed to be zero initially, that is, C(0) = T(0) = 0.

Defining treatment protocols

Next, we present our approach to integrating both efficacy-based (tumor
size) and toxicity-based (drug-induced toxicity level) feedback into the
decision rules for starting, pausing, and resuming treatment. The resulting
four protocols are summarized in Fig. 1.

Daily protocol. A fixed dose of 1 unit is administered at daily intervals
(time ¢t = 1 day) until either treatment failure or the total elapsed time
hits 100 days, whichever occurs first. Tumor burden is monitored daily,
just before treatment administration, to check for disease progression.
This protocol is summarized in Fig. 1A.

Adaptive protocol. Treatment is administered in daily 1-unit doses until
the total tumor size, S(t) + R(t), falls below the Rx,¢ threshold. At this
point, therapy is paused until the tumor size regrows and again exceeds
the upper Rx,,, threshold, prompting treatment to resume. As with the
daily protocol, tumor burden is monitored daily, just before potential
treatment administration, to determine if disease progression has
occurred. This protocol is summarized in Fig. 1B.

Toxicity feedback. This protocol can be incorporated into either of the
previous two protocols described above, thus acting as an override switch
for pausing therapy. Specifically, if toxicity levels are above a designated
threshold Tox,¢ when the next treatment decision is to be made, then
treatment is halted regardless of the tumor size. Therapy can only resume
when the toxicity level at the time of the next treatment decision drops
below the Tox,, threshold. In the daily protocol with toxicity feedback,
dosing (re)starts when toxicity is below Tox,,, and will continue until
toxicity rises above Tox,g. In the adaptive protocol with toxicity feedback,
however, treatment (re)starts when both toxicity is below Tox,, and the
tumor size is above Rx,,. Treatment will pause when either toxicity is
above Tox,¢ or the total tumor size is below Rx,¢. These conditions are
tested daily, prior to dose administration. The cycles will continue until
treatment failure or total simulation time hits 100 days. Figure 1C and D
summarize adding toxicity feedback to the daily and adaptive protocols,
respectively.

Each administered dose is assumed to be 1 unit of drug, and the
potential treatment period is simulated over 100 days. During this time,
the simulation may or may not predict disease progression by day 100.
Time to progression (TTP) and tumor composition at TTP are recorded at
the end of each simulation. If the tumor did not progress in the 100-day
simulation, then TTP is recorded to be 150 (a randomly selected value
greater than 100 to indicate treatment did not fail during the simulation
time). Simulations will follow one of the four treatment protocols
described above.

npj Systems Biology and Applications| (2026)12:11

12


https://github.com/jgevertz/toxicity
www.nature.com/npjsba

https://doi.org/10.1038/s41540-025-00635-6

Article

Global sensitivity analysis framework

To assess the robustness of model predictions to variability in parameter
values, we conduct a global sensitivity analysis using the extended Fourier
Amplitude Sensitivity Test (eFAST). eFAST is a variance-based decom-
position technique capable of efficiently handling nonlinear models**.
The method quantifies the sensitivity of a model’s output to variations in
input parameters, by computing both a first-order and a total-order
sensitivity index. The sensitivity of a particular input, the ratio of the total
variability in the output attributed to changes in that input, is found by
averaging over all other inputs. Parameters with high sensitivity indices
are identified as influential to the model output, while those with low
sensitivity indices may be regarded as negligible. The template used for
eFAST implementation can be found here: http://malthus.micro.med.
umich.edu/lab/usadata/

Herein, we assess the global sensitivity of TTP across the four treatment
protocols for the following model parameters over the following ranges: the
sensitive cell growth rate (0.5<ag<1.5), the resistant cell growth rate
relative to the sensitive cell growth rate (0.2<e<1, ay = €qay), the rate of
drug-induced cancer cell death (0.5 < <1.5), the competition parameter
(0.5<8<3.5), and the toxicity recovery rate (0.2 <y < 0.8). The output of
this sensitivity analysis then informs a set of parameter sweeps, wherein we
quantify the impact that simultaneously varying two model parameters has
on TTP in each of the four treatment protocols.

We remark that the rate of toxicity accumulation ¢ is omitted from the
global sensitivity analysis in this proof-of-concept study. This is because we
are not mapping toxicity to a specific biomarker or drug, so the scale of T(t)
is arbitrary, and decisions to initiate or suspend therapy depend only on T'(¢)
crossing the thresholds Tox,g and Tox,, (see Table 1). Moreover, the dif-
ferential equation governing T'(¢) in Egs. (1)—(4) can be integrated to yield
the following analytical solution:

t
T(t) =p / e I C(s)ds.
0

From this, it follows that T(¢) and the toxicity thresholds Tox¢ and
Tox,, can be all rescaled by y without affecting model dynamics or decision-
making criteria. Instead, we systematically vary the toxicity thresholds to
elucidate their effect on treatment outcomes (see ‘Assessing Therapy
Outcome Robustness to Protocol Thresholds’ subsection).

Defining virtual patient framework

To extend our numerical simulations and two-dimensional parameter
sweeps to better understand variability across parameter space, we utilize a
virtual population approach®. In our computational framework, each vir-
tual patient (VP) in the virtual population is represented by a set of para-
meter values related to characteristics of tumor growth and response to
treatment. That is:

Virtual Patient = (ocs, ag, 8, B, )’)-

The baseline parameter values listed in Table 1 can be thought of as
corresponding to an ‘average’ patient. To construct a VP, a value for each
parameter in the set (atg, ag, 8, f, y) is drawn as a simple random sample
from a corresponding lognormal distribution. The distribution’s shape
parameters are chosen such that the peak approximately occurs at the
baseline VP parameter value reported in Table 1, and the width approxi-
mately matches the range used in the global sensitivity analysis. This process
is repeated 100 times to form a heterogeneous virtual population, or 100 sets
of the five VP parameters.

The carrying capacity K, rate of drug clearance A, and rate of toxicity
build up p are fixed across all VPs. This decision was made to preserve the
consistency of key modeling assumptions and to prevent confounding of
sensitivity results due to parameter interdependencies. Since tumor size at
treatment initiation was set at 0.5K and treatment failure at 0.75K, varying
K would not affect time to progression. We fixed y because of its relation

with y - higher toxicity build-up rates y can be offset by correspondingly
higher toxicity clearance rates y. Likewise, the drug’s cell-killing effect can be
preserved even with a high clearance rate A if the rate of treatment-induced
cell death § is also high.

Data availability
Data sharing is not applicable to this article as no datasets were generated
directly during the current study.

Code availability
Programming scripts in MATLAB are freely available at https://github.com/
jgevertz/toxicity.
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