
Nature Medicine

nature medicine

https://doi.org/10.1038/s41591-025-04126-3Article

Interpretable inflammation landscape of  
circulating immune cells

 

Inflammation is a biological phenomenon beneficial for homeostasis, 
but it is unfavorable if dysregulated. Although major progress has been 
made in characterizing inflammation in specific diseases, a global, holistic 
understanding is still elusive. This is particularly intriguing, considering 
its function for human health and the potential for modern medicine 
if fully deciphered. In this study, we leveraged advances in single-cell 
transcriptomics to delineate inflammatory processes of circulating immune 
cells during infection, immune-mediated inflammatory diseases and cancer. 
Our single-cell atlas of more than 6.5 million peripheral blood mononuclear 
cells from 1,047 patients (56% female, 43% male) and 19 diseases allowed 
us to learn a comprehensive model of inflammation in circulating immune 
cells. The atlas expands current knowledge of the biology of inflammation 
of immune-mediated diseases, acute and chronic inflammatory diseases, 
infections and solid tumors and lays the foundation to develop a disease 
classification framework using unsupervised as well as explainable machine 
learning. Beyond a disease-centered analysis, we charted altered activity of 
inflammatory molecules in peripheral blood cells, depicting discriminative 
inflammation-related genes to further understand mechanisms of 
inflammation. We present a rich resource for the community and lay the 
groundwork for learning a classifier for inflammatory diseases, presenting 
cells in circulation as living biomarkers.

Inflammation is a state of the immune system that serves to protect 
the human body from environmental challenges, thereby preserving 
homeostasis1. Inflammatory processes are activated in response to 
various triggers, such as infection or injury, and involve a multistep 
defensive mechanism to eliminate the source of perturbation2. Inflam-
mation represents an altered state within the immune system, which 
can manifest as either a protective or a pathological response3. The 
cellular and molecular mediators of inflammation play pivotal roles 
in nearly every human disease4.

The initiation of inflammatory processes is driven by cellular stim-
ulation, triggered by the release of proinflammatory cytokines5. These 
cytokines exert autocrine and paracrine effects, activating endothelial 
cells and subsequently increasing vascular permeability. Chemokines 
are essential for recruiting additional immune cells for pathogen 
eradication6. Inflammation is a central driver in cardiovascular7, 

autoimmune8 and infectious diseases9 and even cancer10. The success 
of therapies targeting inflammation underscores the importance of 
understanding the underlying pathways11,12.

Single-cell RNA sequencing (scRNA-seq) is becoming a conven-
tional method for detecting altered cell states, enabling the com-
parison of transcriptional profiles during inflammation13. A differential 
analysis of cell states and gene expression programs at the cellular level 
can guide a more holistic understanding of inflammation in acute and 
chronic diseases to form the basis for future precision medicine tools. 
In the present study, we annotated the common immune cell types 
present in the peripheral blood and identified disease-specific cell 
states that exhibit functional specialization within the inflammatory 
landscape. Beyond a disease-centered classification, we modeled the 
expression profiles of inflammatory molecules to uncover discrimi-
native genes related to immune cell activation, migration, cytotoxic 
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Diving deeper into genes and gene programs to characterize 
inflammatory diseases, our subsequent analysis followed three com-
plementary strategies: (1) to identify disease-driving mechanisms 
(gene signature and gene regulatory network (GRN) activity); (2) to 
capture discriminative inflammation-related genes (feature extrac-
tion); and (3) to classify patients based on their disease-specific sig-
natures (projection). Therefore, we looked at gene expression profiles 
holistically but also delineated the inflammatory process by focusing 
on immune-modulating molecules (Supplementary Table 4).

Inflammation-related signatures across diseases and cell types
We first grouped inflammatory molecules into 21 gene signatures that 
delineate multiple processes, including immune cell adhesion and 
activation, cellular migration (chemokines), antigen presentation and 
cytokine-related signaling (Supplementary Table 4). To tailor these 
signatures to reflect the inflammation landscape of circulating immune 
cells, we refined these using Spectra22, yielding a comprehensive set of 
119 cell-type-specific factors (Supplementary Table 4). We then ran a 
univariate linear model (ULM) analysis on the scANVI-corrected gene 
expression data, providing an inflammation signature activity score 
for each group. Finally, we ran a linear mixed-effect model (LMEM) 
between diseased and healthy samples to highlight disease-specific 
alterations (Supplementary Table 5).

We observed a general trend of increased activity in immune- 
relevant signatures as compared to healthy donors (>50% increased 
average signature scores; Fig. 2a). For IMIDs, we found the characteris-
tic upregulation of adhesion molecule signatures, TNF via NFκB signal-
ing, antigen cross-presentation and antigen-presenting signatures23. 
Interferon (IFN) type 1 and type 2 signatures were significantly down-
regulated in most IMIDs and cell types, except for non-naive CD8 T cells 
that showed an upregulation, pointing to a common cell-type-specific 
mechanism24. Notably, IMIDs showed a strong upregulation of the 
IFN-induced signature in almost all immune cell types, where SLE was 
also accompanied by an upregulation of chemokines and chemokine 
receptors. MS showed a decreased IFN-induced signature and increased 
chemokine receptor activity, in line with the migratory capacity of 
blood cells to infiltrate the brain during the course of the disease25. As 
previously reported, we captured the upregulation of the TNF receptor/
ligand signature mainly in non-naive CD8 T cells for sepsis (together 
with an increase in IFNγ response in monocytes), with a decrease in the 
other inflammatory signals (adhesion molecules and cytokines)26. By 
contrast, all chronic inflammatory diseases upregulated the activity 
of antigen-presenting molecules and increased IFN-induced signal-
ing. This IFN-induced signature was also increased in viral infections, 
such as Flu and COVID, whereas we found a decreased activity in HIV 
and HBV. Finally, within solid tumors, CRC and NPC presented a strong 
upregulation of TNF via NFκB signaling. Intriguingly, only RA, PS, UC 
and CD showed an enrichment in the T follicular helper (Tfh) signature 
in non-naive CD4 T cells, highlighting the role of circulating Tfh cells in 
these diseases. In IMIDs more generally, both naive and non-naive CD4 
T cell populations were enriched in T helper signatures, pointing to an 
early priming of naive T toward helper T cell-driven inflammation27. 
Finally, to assess the similarity of the inflammatory profiles among 
diseases, we performed hierarchical clustering of the inflammation 
signature activity score across all cell types (Level 1; Fig. 2a,b).

responses and antigen presentation activities. Ultimately, we propose 
a classifier framework based on peripheral blood mononuclear cells 
(PBMCs), demonstrating the potential of circulating immune cells to 
contribute to precision medicine strategies for patients suffering from 
acute or chronic inflammation.

Results
An inflammation landscape of circulating immune cells
To chart a comprehensive landscape of immune cells in circulation 
of healthy individuals and patients suffering from inflammatory dis-
eases, we analyzed the transcriptomic profiles of more than 6.5 million 
PBMCs (6,340,934 after filtering), representing 1,047 patients and 
19 diseases, split into a main Inflammation Atlas and two validation 
datasets (Fig. 1a,b). Diseases were broadly classified into five distinct 
groups: (1) immune-mediated inflammatory diseases (IMIDs, n = 7) 
(systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), pso-
riatic arthritis (PsA), psoriasis (PS), ulcerative colitis (UC), Crohnʼs 
disease (CD) and multiple sclerosis (MS)); (2) acute (n = 1) (sepsis); (3) 
chronic inflammation (n = 3) (chronic obstructive pulmonary disease 
(COPD), asthma and cirrhosis); (4) infection (n = 4) (influenza virus 
(Flu), SARS-CoV-2 (COVID), hepatitis B virus (HBV) and human immu-
nodeficiency virus (HIV)); and (5) solid tumors (n = 4) (breast cancer 
(BRCA), colorectal cancer (CRC), nasopharyngeal carcinoma (NPC) and 
head and neck squamous cell carcinoma (HNSCC)), which were profiled 
along with healthy donor samples (Fig. 1a and Extended Data Fig. 1a). 
Our cohort included various scRNA-seq chemistries (10x Genomics 
3′ and 5′ mRNA) and experimental designs (CellPlex and genotype 
multiplexing), as well as individuals of both sexes (56% female, 43% 
male) and across age groups, to comprehensively capture technical 
and biological variability (Methods and Supplementary Table 1). To 
learn a generative model of circulating immune cells of inflammatory 
diseases, we applied probabilistic modeling of the single-cell data using 
scVI14 and scANVI15, considering clinical diagnosis, sex and age. Genera-
tive probabilistic models proved superior performances in integrat-
ing complex datasets compared to other approaches16, particularly if 
cell annotations are available (Extended Data Fig. 1b,c). Applied here, 
the resulting cell embedding space was batch effect corrected while 
preserving biological heterogeneity (that is, previously annotated 
cell types and states; Supplementary Table 2). From the joint embed-
ding space, we initially assigned cells to major immune cell lineages 
(Level 1; Fig. 1c and Extended Data Fig. 1d). Then, following a recursive, 
top-down clustering approach, we obtained a total of 64 immune popu-
lations (Level 2), comprehensively resembling immune cell states of 
the innate and adaptive compartments (Fig. 1d, Supplementary Fig. 1 
and Supplementary Table 3). High-level compositional analysis (Level 
1) across diseases revealed significant changes of cell type distributions 
(Extended Data Fig. 1d) and validated previously described alterations 
in blood cells from patients. For example, we confirmed low levels of 
unconventional T cells (UTCs), innate lymphoid cells (ILCs) and naive 
CD4 T cells, together with high proportions of B cells and monocytes, 
in SLE17. Patients with inflammatory bowel disease (IBD) showed lower 
levels of UTCs and ILCs18, and we observed lower proportions of UTCs 
accompanied by a larger fraction of monocytes and B cells in RA19. 
Lymphopenia, a common event during the development of sepsis20, 
and lymphocytosis, typical of HIV infection21, were also confirmed.

Fig. 1 | Inflammation landscape of circulating immune cells. a, Left, schematic 
overview illustrating the number of cells, samples and conditions (diseases 
and disease groups) analyzed. Right, pie charts displaying metadata related 
to the scRNA-seq chemistry (10x Genomics assay and version) and patient 
demographics (age and sex). b, Schematic overview of the analysis workflow 
followed, detailing the division of the overall dataset into Main, unseen patients 
and unseen studies. The figure illustrates the specific tasks and analyses 
performed with each dataset. c, Uniform manifold approximation and projection 
(UMAP) embedding for the scANVI-corrected latent space considering the Main 

dataset (4,435,922 cells) across patients and diseases colored by the major cell 
lineages (top, Level 1) and diseases (bottom). d, Sankey diagram showing the 
Inflammation Atlas cell annotation, considering major cell lineages (Level 1, 
left) and cell type populations (Level 2, right), along with their correlation to 
Level 1 cell groups. a,b, Icons were created in BioRender: Aguilar Fernandez, S. 
(2025): https://biorender.com/h7jfeqm or with Inkscape. CM, central memory; 
D, disease; DC, dendritic cell; DEG, differentially expressed genes; EM, effector 
memory; HC, healthy control; HVG, highly variable genes; Mono, monocytes; NK, 
natural killer; pDC, plasmacytoid dendritic cell; QC, quality control.
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Considering distinct cell types as unique contributors to the 
inflammatory immune landscape, IFN signatures have been used 
as a biomarker to define disease activity in autoimmune diseases28. 
However, it remains elusive which immune subpopulations contribute 

to these signatures to guide the selection of specific therapeutic 
interventions. Observing an enriched IFN type 1 and type 2 activity 
in non-naive CD8 T cells in IMIDs (Fig. 2a), we next sought to dis-
cover subpopulations as the signature driver. Here, we observed 
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Fig. 2 | Inflammation-related signatures across cell types and diseases.  
a, Heatmap displaying the corrected signature activity score of the 119 cell-
type-specific Spectra factors across diseases and cell types (Level 1). Here, 
the corrected signature activity score represents the coefficient value after 
running an LMEM comparing diseases versus healthy control (HC) on the ULM 
estimates computed using the cell type (Level1) and patient pseudobulk on 
the corrected count matrix. The xaxis represents the Spectra cell-type-specific 
factor associated with a given function (top annotation). The yaxis represents 
the diseases grouped by disease group. b, Agglomerative hierarchical clustering 
with complete linkage, performed considering the Euclidean distance among 
columns, based on the corrected immune-related signature activity score 
computed by disease and cell type (Level 1). c, Heatmap displaying the corrected 
IFN type 1 and type 2 signature activity score across non-naive CD8 T cells 
(Level 2) and IMIDs. Here, the corrected signature activity score represents the 
coefficient value after running an LMEM comparing diseases versus HC on the 
ULM estimates computed using the cell type (Level2) and patient pseudobulk on 
the corrected count matrix. For a and c, significant signature activity differences 

between disease and HC are marked with a dot (·) (LMEM, FDR-adjusted 
P < 0.05). d, Dot plot showing the uncorrected average expression of the FGFBP2 
and GZMB genes from IFN type 1 and type 2 signature (xaxis) across different 
subpopulations of non-naive CD8 T cells (Level 2) on IMIDs and health (SCGT00 
study). The dot size reflects the percentage of cells of each disease expressing 
each gene, and the color represents the average expression level. e, Scaled 
relative activity of STAT1 and SP1 across cell types (Level 1) and enriched diseases 
for their transcription factor target genes. Hatched boxes indicate cell types not 
enriched in the corresponding disease. f, Heatmap representing the average 
scaled transcription factor activity of STAT1 and SP1 across cell populations 
(Level 2) for flare and non-flare patients from Perez et al.17. Asterisk (*) indicates 
statistically significant changes using the two-sided Wilcoxon signed-rank test, 
FDR-adjusted P < 0.05. CD, Crohnʼs disease; CM, central memory; DC, dendritic 
cell; MLM, multilevel modeling; MS, multiple sclerosis; EM, effector memory; 
pDC, plasmacytoid dendritic cell; PS, psoriasis; PSA, psoriatic arthritis; RA, 
rheumatoid arthritis; TF, transcription factor; UC, ulcerative colitis.
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a significant upregulation across almost all non-naive CD8 T cell 
populations—however, with a differential pattern across diseases 
(Fig. 2c). We then decomposed the signal to gene level to identify 
the most relevant contributors (Supplementary Fig. 2a,b). Intrigu-
ingly, FGFBP2 and GZMB showed increased expression levels, with 
restriction to specific effector memory (EM) CD8 T cell subtypes 
(EM CX3CR1 high, EM CX3CR1 int, Eff HOBIT and Activated), with a 
marked increase observed in UC (Fig. 2d). Of note, FGFBP2 and GZMB 
were recently described as markers of CD8 T cells localized to areas 
of epithelial damage24. Notably, our blood-based analysis points to 
their activation in circulating effector CD8 T cell populations even 
before tissue infiltration.

Expanding on previous observations of increased IFN-induced 
response across several immune cells and diseases, especially in the 
myeloid compartment for patients with SLE17 (Fig. 2a), we conducted 
a GRN analysis to explore the regulatory mechanisms and transcrip-
tion factors driving the IFN-related activity (Level1; Methods). STAT1 
and SP1 were identified as the primary regulators of the IFN-induced 
signature, with each transcription factor exhibiting cell-type-specific 
activities (Fig. 2e and Supplementary Table 6). STAT1 primarily regu-
lated canonical IFN signaling genes across multiple lineages, whereas 
SP1 activated a heterogeneous set of target genes (Extended Data Fig. 2a 
and Supplementary Table 6)29.

Observing a broad IFN-induced activity across immune cell 
types, we next investigated whether STAT1 and SP1 regulatory 
programs were conserved across cell subpopulations (Level 2; 
Extended Data Fig. 2b,c and Supplementary Table 6). Here, patients 
with SLE exhibited opposing STAT1 and SP1 activities in mono-
cytes and non-naive CD8 T cells. STAT1 activity was increased in 
non-classical monocytes, whereas SP1 activity was decreased30. 
STAT1 was also upregulated in conventional dendritic cells type 2 
(cDC2s), whereas SP1 activity was increased across multiple cell 
types implicated in the pathogenesis of SLE31, including inflamma-
tory and regulatory monocytes, EM CX3CR1 high, CM and activated 
CD8 T cells as well as adaptive and CD56dimCD16 natural killer cells. 
Patients with Flu showed a significant increase in STAT1 activity 
in IFN-response CD8 T cells (Extended Data Fig. 2b). By contrast, 
patients with cirrhosis presented higher SP1 activity specifically 
in IFN-response monocytes. In HNSCC, an increased SP1 activity 
was observed in non-classical monocytes (Extended Data Fig. 2c), a 
protumoral population related to the suppressive systemic state of 
monocytes in this cancer type32. Given the cell-type-specific regula-
tory patterns observed across diseases, we next investigated the 
contribution of STAT1 and SP1 activity to dynamic changes associ-
ated with disease progression. To this end, we assessed their activity 
in patients with SLE17 experiencing disease exacerbations (flares; 
Supplementary Table 6). STAT1 activity was elevated during flares, 
particularly within CD8 T cells, whereas SP1 activity was more promi-
nent in myeloid populations in the absence of flares (Fig. 2f).

Functional gene selection through interpretable modeling
Gene discovery using linear models or standard differential expression 
analysis suffers from the limitation that genes are considered indepen-
dently. Thus, we considered the possibility of categorizing cells to their 
respective disease origin through an interpretable machine learning 
pipeline, to guide the selection of functional disease discriminatory 
genes (Methods and Supplementary Table 4). Therefore, we applied a 
supervised classification approach, together with a post hoc interpret-
ability method, to allow the inference of the gene-wise importance, 
stratified by disease and cell type (Level 1).

We based our strategy on gradient boosted decision trees (GBDTs), 
a state-of-the-art machine learning technique proven to be effective in 
complex tasks with noisy data and nonlinear feature dependencies33 
(Methods and Supplementary Table 7). To account for cell-type-specific 
expression patterns and the differential impact of diseases across 
immune populations, we trained separate models for each cell type 
(Level 1). We applied the classification pipeline to the scANVI-corrected 
gene expression profiles, achieving a balanced accuracy score (BAS) of 
0.87 and a weighted F1 (WF1) score of 0.90 on held-out samples (Fig. 3a 
and Supplementary Table 8). Instead, uncorrected log-normalized 
counts led to a reduced performance, underscoring the benefits of 
batch correction (BAS: 0.65 and WF1: 0.78; Fig. 3a). Performances 
were consistent among cell types, with less abundant cell populations 
obtaining generally lower scores (for example, plasma cells, BAS: 0.78 
and WF1: 0.80; Extended Data Fig. 3 and Supplementary Table 8). We 
observed that certain diseases exhibited poorer classification perfor-
mance—for example, the misclassification of patients with severe Flu 
as COVID (Extended Data Fig. 3). Retraining the GBDT classifier on the 
Flu and COVID dataset (COMBAT dataset34) and stratifying patients 
with COVID by their clinical behavior (mild, severe and critical) iden-
tified patients with severe Flu to closely resemble severe COVID cases 
(Extended Data Fig. 4a,b). Similar results were obtained by clustering 
pseudobulks at the sample level (Extended Data Fig. 4c,d), supporting 
common inflammatory signatures of patients suffering from these 
severe respiratory infections. Finally, separating cells from female 
and male patients yielded similar performances, with no differences 
between sexes (Extended Data Fig. 5a).

As GBDTs require post hoc interpretability tools, we computed 
SHapley Additive exPlanation (SHAP)35 values. By combining the two 
approaches, we obtained a rich resource of gene rankings based on 
their ability to discriminate inflammatory conditions across different 
cell types (Methods and Supplementary Table 9). To evaluate the effec-
tiveness of disease-discriminative SHAP (d-SHAP) values, we assessed 
the classification performance compared to an equal number of ran-
domly selected genes. On unseen studies, d-SHAP genes consistently 
yielded more accurate predictions (Fig. 3b). Due to the possible collin-
earity of diseases and studies, d-SHAP values might be affected by batch 
effects. To disentangle disease-specific from study-specific signals, we 
trained separate classifiers to predict the study identity (BAS: 0.97 and 

Fig. 3 | Functional gene discovery using interpretable machine learning.  
a, Normalized confusion matrices displaying proportion of predictions 
belonging to each true condition. Diagonal values correspond to the Recall 
metric. XGBoost was trained on the scANVI batch-corrected (left) or batch-
uncorrected (right) log-scaled cell expression profiles. b, Validation of d-SHAP-
based gene selection using XGBoost trained with a nested cross-validation 
on unseen studies’ cells. Each point corresponds to the average left-out fold 
performance, for each best configuration of each fold combination. The box 
plots report the WF1 (top) and the BAS (bottom) computed considering top 5, 
10 and 20 genes (among the ones expressed in at least 5% of the total cells), for 
each inflammatory condition present within the unseen studies dataset (that is, 
healthy, sepsis, CD, SLE, HIV, cirrhosis, RA and COVID) according to the d-SHAP 
values, across cell types (Level 1). For the same number of genes, we report the 
performance scores of n = 20 random selected gene sets. The performance of the 
classifier when trained on the whole gene set, consisting of the genes expressed 

in at least 5% of the total cells, is also reported. Boxes indicate the interquartile 
range (IQR) with the median as a center line; whiskers extend to 1.5× IQR; and 
outliers are shown as individual points. c, Scatter plot of max-normalized 
gene expression against d-SHAP values computed for CYBA gene on monocyte 
population (Level 1) and considering the output of disease-XGBoost for a given 
disease (UC, CD, PS and PSA, from left to right). d, Scatter plot of max-normalized 
gene expression against d-SHAP values computed for IFITM1 gene on T non-naive 
CD4 and ILC populations (annotation Level 1) considering the output of the 
disease-XGBoost for a given disease (asthma and COPD, left and right). In c and d, 
we limited the visualization to up to 60,000 cells, sampling an equal percentage 
from each patient corresponding to 5% and 7.5% of monocytes and T non-naive 
CD4 cells, respectively. Cells belonging to samples with or without the given 
condition (disease) are marked in orange or blue, respectively. CD, Crohnʼs 
disease; MS, multiple sclerosis; PS, psoriasis; PSA, psoriatic arthritis;  
RA, rheumatoid arthritis; UC, ulcerative colitis.
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WF1: 0.99; Supplementary Fig. 4a) and to identify study-associated 
genes via SHAP values (s-SHAP; Methods). The correlation and overlap 
between the d-SHAP and s-SHAP values (Supplementary Fig. 4b,c) 
allowed us to prioritize bona fide disease-discriminative genes for 
further analysis (Supplementary Table 9).

Ordering genes based on d-SHAP values identified previously 
described biomarkers, such as STAT3 in CD4 T cells for RA samples36 
and IFN genes for SLE samples37 (Extended Data Fig. 6a). The d-SHAP 
values of CYBA stood out as a strong candidate marker to classify 
diseases affecting barrier tissue: PSA, PS, UC and CD (Fig. 3c and 
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Extended Data Fig. 6b,c). CYBA encodes the primary component of the 
microbicidal oxidase system of phagocytes. In line, the importance was 
seen mainly in monocytes (Extended Data Fig. 6b). Interestingly, high 
expression of CYBA drove the model to classify intestinal inflammatory 
diseases (UC and CD), whereas reduced levels were relevant to classify 
skin-related diseases (PS and PSA) (Fig. 3c). Mutations in CYBA cause 
chronic granulomatous disease, with patients showing an impaired 
phagocyte activation and failing to generate superoxide. Consequently, 
patients show recurrent bacterial and fungal infections in barrier tis-
sues, including the skin38. Thus, we hypothesize that reduction of CYBA 
in skin-related IMIDs leads to an impaired immune barrier function, 
causing localized, symptomatic flares of PS and PSA. On the other 
hand, reactive oxidative species (ROS) produced by mucosa-resident 
cells or by newly recruited innate immune cells are essential for antimi-
crobial mucosal immune responses39. In IBDs, an upregulation of CYBA 
may result in the accumulation of superperoxide and ROS through its 
oxidase function, a hallmark of these diseases40.

Further exploring d-SHAP value ranks highlighted the impor-
tance of IFITM1 across chronic diseases, including COPD and asthma 
(Extended Data Fig. 6d,e). IFITM1 encodes a protein that inhibits 
viral entry into host cells by preventing the fusion of the virus with 
the host cell membrane41. The importance of IFITM1 was mainly 
observed in lymphoid cells, specifically CD4 non-naive T cells and 
ILCs (Extended Data Fig. 6d and Supplementary Fig. 3). In both cell 
types, higher IFITM1 expression drives the model toward classify-
ing COPD, whereas lower expression shifts the classification toward 
asthma (Fig. 3d). In line, T cell and ILC accumulation is associated with 
the decline of lung function and severity in patients with COPD42. We 
hypothesize that chronic inflammation triggers higher expression of 
IFITM1 in lymphoid cells, thereby facilitating their accumulation43, with 
further mechanistic validation being needed.

Classifying patients by reference mapping
The ability to accurately classify cells according to their respective dis-
eases prompted us to classify patients based on their disease of origin, 
creating the basis for a universal classifier as a precision medicine tool 
for inflammatory diseases. By considering each patient as an ensemble 
of expression profiles across all circulating immune cells, we learned a 
generative model while integrating the single-cell reference as a basis 
to project new patients from a query dataset into the same embedding 
space. Such strategy allowed us to map unseen and unlabeled query 
patient data into our reference embedding space, providing a common 
ground for classification.

Projecting expression data into a lower-dimensional space is a com-
mon strategy to reduce noise44 and to map query data into a reference 
atlas45. Here we introduce a novel computational framework to exploit 
the cell embeddings for classification, thus turning the single-cell 
reference into a diagnostic tool (Fig. 4a and Extended Data Fig. 7). 
Therefore, we first generated the embeddings with scANVI (30 latent 
embeddings) of both the reference and the unseen query datasets while 
also transferring the cell labels to the latter (Supplementary Table 7). 
Then, we defined a cell type pseudobulk profile per patient by averaging 

the embedded features of the corresponding cells (Level 1; Methods). 
Next, we trained an independent classifier to assign correct disease 
labels, considering one cell type at a time. We handled uncertainty at 
cell type level via a majority voting system to determine most frequent 
conditions. To assess the performance of our framework, we proposed 
three scenarios: (1) a five-fold cross-validation splitting the full refer-
ence atlas into five balanced sets, (2) a dataset with unseen patients and 
(3) a dataset with unseen studies (Fig. 4b). We consider these scenarios 
a representation of the data integration challenges with an increasing 
degree of complexity.

Our classification strategy achieved high performance in the 
cross-validation scenario (Scenario 1; Supplementary Table 8), resulting 
in 0.90 ± 0.03 WF1 and 0.85 ± 0.07 BAS (Fig. 4c). Consistent with results 
obtained from the cell-wise classifier pipeline, Flu was the only disease 
that failed to be classified (Recall: 0.18) (Extended Data Fig. 8a,b). 
Training a classifier for each cell type separately allowed us to assess 
their relevance in distinguishing inflammatory diseases (Fig. 4d,e). 
Here, plasma and UTC showed the lowest BAS (0.53 and 0.67) and 
WF1 (0.64 and 0.78), highlighting the strength of our majority voting 
approach as a robust ensemble (Extended Data Fig. 8b). Although 
certain diseases (COVID, COPD and asthma) were particularly well 
classified by lymphoid and myeloid cell types, HIV was best classified 
by naive lymphoid cells (that is, naive CD4 and CD8 T cells and B cells 
with F1 of 0.83) in line with the tropism of the virus infecting mainly CD4 
T cells46,47 (Fig. 4d and Extended Data Fig. 8c). Increasing the complexity 
by classifying unseen patient samples (Scenario 2), the performance 
remained very high, with a BAS of 0.95 and a WF1 of 0.98 (Fig. 4f−h and 
Supplementary Table 8). However, the classification of samples from 
unseen studies (Scenario 3) resulted in a strongly decreased BAS of 0.12 
and a WF1 of 0.23 (Fig. 4i−k and Supplementary Table 8).

The largest performance drop was observed between Scenario 
2 and Scenario 3, the latter classifying patients from unseen stud-
ies. We hypothesized that confounding factors, such as variations 
in assay chemistry or research centers, hindered the classifier’s 
ability to generalize. To validate our hypothesis and to provide a 
path toward a generalizable patient classifier, we next considered 
a Centralized Dataset that includes only data from diseases gen-
erated in the same center with a single assay chemistry (SCGT00 
data; Supplementary Table 1 and Extended Data Fig. 7). In contrast to  
Scenario 2, we stratified the samples by sequencing pool and disease, 
ensuring that reference and query patients belong to distinct cohorts. 
This new centralized approach included an independent annotation 
of the reference patients’ cells (Methods and Supplementary Table 3) 
and new scANVI integration of the reference data, before project-
ing cells of the query patients. Notably, in this context, WF1 and 
BAS increased to 0.56 and 0.53, respectively, pointing to a highly 
improved generalization performance when classifying query 
patients as compared to Scenario 3 (Fig. 5a−c, Extended Data Fig. 9a,b 
and Supplementary Table 8). Finally, we evaluated the classifier 
performance considering male and female patients separately. In 
Scenario 1, no statistically significant differences were observed 
between WF1 distributions (Extended Data Fig. 5b), and the majority 

Fig. 4 | Schematic representation of the patient classifier pipeline and 
performance evaluation. a, Schematic representation of the patient classifier 
pipeline. Icons were created with Inkscape. b, Description of the three 
performance evaluation scenarios. In our datasets, we always have only one 
sample for each patient. c−e, Performance evaluation in Scenario 1 (five-fold 
cross-validation, from 817 samples), showing: c, distribution of WF1 scores for 
each left-out split (boxes indicate the interquartile range (IQR) with the median 
as a center line, whiskers extend to 1.5× IQR and outliers are shown as individual 
points (each box includes n = 5 points)); d, F1 score for each combination of cell 
type and disease, after aggregating all the predictions of the left-out folds; and e, 
normalized confusion matrices displaying proportion of predictions belonging 
to each true condition after aggregating all the predictions of the left-out 

folds. Main diagonal values correspond to the Recall metric. f,g, Performance 
evaluation in Scenario 2, showing WF1 scores for unseen patients’ observation 
(f) and F1 score for each combination of cell type and disease (g). h, Normalized 
confusion matrices displaying proportion of predictions belonging to  
each true condition. Main diagonal values correspond to the Recall metric.  
i−k, Performance evaluation in Scenario 3, showing: i, WF1 scores for unseen 
studies’ observation; j, F1 score for each combination of cell type and disease; 
and k, normalized confusion matrices displaying proportion of predictions 
belonging to each true condition. Main diagonal values correspond to the Recall 
metric. CD, Crohn’s disease; DC, dendritic cell; MS, multiple sclerosis; P, patient; 
pDC, plasmacytoid dendritic cell; PS, psoriasis; PSA, psoriatic arthritis; QC, 
quality control; RA, rheumatoid arthritis; UC, ulcerative colitis.
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vote approach also yielded consistent results in the other scenarios 
(Extended Data Fig. 5c–e).

Consequently, we hypothesize immune cells in circulation to 
serve as a source for building a universal classifier for inflammatory 
diseases. Although the here-used subset of the Inflammation Atlas was 
limited in cell and patient numbers, future efforts for commercializa-
tion are required to develop large single-chemistry training datasets 
and respective models to further increase the classification accuracy.

We selected scANVI as our Inflammation Atlas integration method 
for its top-ranked performance in data integration benchmarks. To 
further assess classification performance for the task at hand, we 
next compared scANVI against other approaches (that is, Harmony/
Symphony, scGen and scPoli) and hyperparameter configurations in 
Scenario 2 and Scenario 3 (Supplementary Table 7). In concordance 
with our previous results for scANVI, all newly introduced methods 
achieve high performance in the dataset with unseen patients (Sce-
nario 2; Fig. 5d, Supplementary Table 8 and Extended Data Figs. 9c 
and 10a,c,e,g). Although all the approaches lost predictive power 
on the unseen studies datasets (Scenario 3; Supplementary Table 8), 
Harmony performed best with a BAS of 0.24 and a WF1 of 0.47 (Fig. 5e 
and Extended Data Figs. 9d and 10b,d,f,h). Although linear approaches 
(for example, Harmony) have less representation power than vari-
ational autoencoders (VAEs), they are also less prone to overfitting 
and more robust to the hyperparameter choice. Hence, in settings 

where hyperparameter tuning and validation are not possible due to 
the lack of condition labels, tools such as Harmony/Symphony might 
be preferable to more complex VAEs.

Discussion
Comprehensive mapping of the plasticity of the immune cells 
in circulation is achieved by single-cell sequencing-based 
immuno-phenotyping48. Recent technologies enable the sampling of 
thousands of cells per sample and hundreds of thousands per patient 
cohort, pushing the resolution toward fine-grained cellular maps and 
increasing the power to identify disease-specific states49. To date, 
single-cell sequencing has been applied to a multitude of inflamma-
tory diseases to pinpoint disease-driving mechanisms as potential 
therapeutic targets13. However, a complete map of immune cell states 
across diseases, holistically charting immune plasticity in inflammatory 
diseases, has been elusive.

The concept of using immune cells as a sensor for diseases is highly 
intriguing and opens the door for the development of future universal 
diagnostic tools50. For diseases such as rheumatic diseases and IBD, 
many patients are undiagnosed or diagnosed as false positive, and 
more accurate universal tools are needed51,52. Our approach using 
GBDT, together with SHAP-based interpretability and a tailored list of 
functional immune cell molecules, provided explainable outcomes 
and serves as a rich resource for identifying disease-discriminative 
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Fig. 5 | Evaluating patient classifier performance on a Centralized Dataset and 
comparison with the state-of-the-art data integration approaches.  
a−c, Performance evaluation in a Centralized Dataset, showing: a, WF1 scores 
for left-out pool observation (mean and standard deviation of WF1 score of 100 
random condition assignments is reported); b, F1 score for each combination of 
cell type (Level 1) and disease; and c, normalized confusion matrices displaying 
proportion of predictions belonging to each true condition (main diagonal 
values correspond to the Recall metric). d,e, Performance evaluation in Scenario 

2 (d) and Scenario 3 (e), showing the distribution of WF1 and BAS for all the 
configurations of each data integration approach (left) and the mean and 
standard deviation of each data integration method (right), including random 
assignment (n = 5 for Harmony&Symphony, scANVI and scGen; n = 10 for scPoli 
cell, sample and cell&sample embedding; n = 100 for random assignment). 
Arrows highlight scANVI configuration applied in Scenario 1. CD, Crohn’s disease; 
DC, dendritic cell; pDC, plasmacytoid dendritic cell; PS, psoriasis; PSA, psoriatic 
arthritis; RA, rheumatoid arthritis; UC, ulcerative colitis.
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genes33. We further tested the utility of an Inflammation Atlas as a liquid 
biopsy classification tool by developing a patient classifier based on 
the latent embeddings after integration. To our knowledge, existing 
patient classifiers have evaluated settings similar to Scenario 1 and Sce-
nario 2 (scPoli and MultiMIL53). In Scenario 3, we then queried patients 
belonging to studies excluded from our reference atlas, simulating the 
application of the Inflammation Atlas as a diagnostic tool. Here, our 
approach initially failed to generalize to unseen patients, indicating 
that further optimization was needed to build a generalizable model for 
more accurate disease diagnostics. To explore the reasons for limited 
generalization, we performed additional analyses on a Centralized 
Dataset. Here, the improved performance compared to Scenario 3 
highlighted the impact of batch effects introduced through differing 
assay chemistries and centers.

Although our study provides a comprehensive framework for 
immune profiling across inflammatory diseases, several aspects war-
rant further exploration. Most samples in our compendium derive from 
individuals of European ancestry, and expanding to ancestrally diverse 
populations will be essential to capture global immune variability and 
improve model generalizability. Our classifier also requires prospec-
tive validation in independent, multicenter cohorts to assess robust-
ness and clinical applicability. Finally, understanding the relationship 
between circulating and tissue-resident immune cells remains key 
for diagnostic translation. Circulating cells offer a minimally invasive 
means to monitor disease activity, yet future studies should validate 
to what extent their molecular programs reflect tissue-resident inflam-
matory states across organs and disease contexts.

Bringing reference atlases into clinics remains a complex task, 
particularly without clear implementation strategies. We contributed 
to this roadmap by generating a comprehensive landscape of circulat-
ing immune cells across inflammatory diseases. Toward leveraging 
single-cell technologies in diagnostics, we call for the definition of 
best practices and quality control standards to reduce batch effects, 
alongside generating large, controlled training datasets. To allow 
data integration methods to fully generalize, we need to reduce the 
confounding factors, as demonstrated by our centralized approach, 
or largely increase training data size and variability. Alternatively, a 
reference training dataset is generated by multiple centers and diverse 
chemistries to define a large, heterogeneous atlas, enabling the defi-
nition of a foundation model54 to pave the way to a universal disease 
classifier, robust to batch effects.
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Methods
Ethics declaration
Human blood processed in-house for this project was preselected 
and included within other ongoing studies. All the studies included 
were conducted in accordance with ethical guidelines, and all patients 
provided written informed consent. Ethical committees and research 
project approvals for the different studies included in this paper are 
detailed in the following text.

SCGT00 and SCGT00val were approved by the Hospital Univer-
sitari Vall d’Hebron Research Ethics Committee (PR(AG)144/201). 
SCGT01 received institutional review board (IRB) approval by the 
Parc de Salut Mar Ethics Committee (2016/7075/I). SCGT02 received 
ethics approval by the Medisch-Etische Toetsingscommissie (METc) 
committee—for patients with asthma (ARMS and ORIENT projects: 
NL53173.042.15 and NL69765.042.19, respectively), for patients with 
COPD (SHERLOck project, NL57656.042.16) and for healthy controls 
(NORM project, NL26187.042.09). SCGT03 was approved by the Comité 
Ético de Investigación con Medicamentos del Hospital Universitario 
Vall d’Hebron (654/C/2019). SCGT04 and SCGT06 were approved by 
the Comitè d’Ètica d’Investigació amb medicaments (CEim) del Hos-
pital de la Santa Creu i Sant Pau (EC/21/373/6616 and EC/23/258/7364). 
SCGT05 was approved by the IRBs of the Commissie Medische Ethiek 
UZ KU Leuven/Onderzoek (S66460 and S62294).

Atlas of circulating immune cells
The Inflammation Landscape of Circulating Immune Cells atlas was 
conceived as a comprehensive resource to expand the current knowl-
edge of physiological and pathological inflammation through the 
study of circulating immune cells. With this aim, we included data 
representing both acute and chronic inflammatory processes as well 
as healthy donors. Further details about the included datasets are 
available (Supplementary Table 1).

The project includes in-house scRNA-seq data generation from 
samples shared by our collaborators from several research institutions. 
Samples were collected with written informed consent obtained from 
all participants and comply with the ethical guidelines for human sam-
ples. Specifically, we generated data from patients suffering from rheu-
matoid arthritis, psoriatic arthritis, Crohnʼs disease, ulcerative colitis, 
psoriasis and SLE and from healthy controls in collaboration with the 
Vall d’Hebron Research Institute within the DoCTIS consortia (https://
doctis.eu/) (SCGT00 and SCGT00val). Additionally, we processed and 
obtained data from healthy controls in collaboration with the Institut 
Hospital del Mar d’Investigacions Mèdiques (SCGT01); asthma, COPD 
and healthy control samples in collaboration with the University Medi-
cal Center Groningen (SCGT02); BRCA samples in collaboration with 
the Vall d’Hebron Institute of Oncology (SCGT03); cirrhosis samples in 
collaboration with the Biomedical Research Institut Sant Pau (SCGT04); 
CRC samples in collaboration with the Katholieke Universiteit Leuven 
(SCGT05); and COVID and healthy control samples also in collaboration 
with the Biomedical Research Institut Sant Pau (SCGT06).

Moreover, we also included publicly available datasets to complete 
our cohort. Specifically, we considered data from patients suffering 
from sepsis26,55, HNSCC56, HBV57, multiple sclerosis58, NPC59, HIV60,61, 
SLE17,62,63, cirrhosis64, Crohnʼs disease65, COVID-Flu-sepsis34 and COVID66 
and from healthy controls from Terekhova et al.67 and 10x Genomics, 
together with the available healthy samples from all the cited studies. 
The data information and access identifiers for each project can be 
found in Supplementary Table 1 (Sheet 1). When raw data were avail-
able, we downloaded FASTQ files; otherwise, we retrieved the raw count 
matrices from the National Center for Biotechnology Information 
(NCBI) Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.
gov/geo/) or Sequence Read Archieve (SRA) (https://submit.ncbi.nlm.
nih.gov/about/sra/), BioStudies Array Express (https://www.ebi.ac.uk/
biostudies/arrayexpress), Broad Institute DUOS (https://duos.broadin-
stitute.org/), Synapse (https://www.synapse.org), Genome Sequence 

Archive (GSA) (https://ngdc.cncb.ac.cn/gsa-human/), CELLxGENE Data 
Portal (https://cellxgene.cziscience.com/datasets) and 10x Genomics 
(https://www.10xgenomics.com/datasets) resources. For all studies, 
we also collected clinical metadata.

Sample collection
Human blood samples were collected in EDTA tubes (BD Biosciences). 
PBMCs from the SCGT00, SCGT00val, SCGT02, SCGT04, SCGT05 
and SCGT06 datasets were isolated using Ficoll density gradient cen-
trifugation (STEMCELL Technologies, Lymphoprep; GE Healthcare 
Biosciences AB, Ficoll-Plus). PBMCs belonging to the SCGT01 and 
SCGT03 datasets were isolated using Vacutainer CPT tubes (BD Bio-
sciences). Subsequently, all aliquots were centrifuged following the 
manufacturer’s protocol. After centrifugation, PBMCs were washed 
and resuspended in freezing media. Aliquots were gradually frozen 
using a commercial freezing box (Thermo Fisher Scientific; Mr. Frosty, 
Nalgene) at −80 °C for 24 hours before being transferred to liquid 
nitrogen for long-term storage.

Cell thawing and preprocessing
Cryopreserved PBMCs were thawed in a water bath at 37 °C and trans-
ferred to a 15-ml Falcon tube containing 10 ml of prewarmed RPMI 
media supplemented with 10% FBS (Thermo Fisher Scientific). Samples 
were centrifuged at 350g for 8 minutes at room temperature, super-
natant was removed and pellets were resuspended with 1 ml of cold  
1× PBS (Thermo Fisher Scientific) supplemented with 0.05% BSA (Milte-
nyi Biotec, PN 130-091-376). Samples were incubated during 10 minutes 
at room temperature with 0.1 mg ml−1 DNAse I (Worthington Biochemi-
cal, PN LS002007) to eliminate ambient DNA and favor the resuspen-
sion of the pellet. Cells were filtered with a 40-µm strainer (Cell Strainer, 
PN 43-10040-70) to remove eventual clumps and washed by adding 
10 ml of cold PBS + 0.05% BSA. Samples were centrifuged at 350g for 
8 minutes at 4 °C and resuspended in an adequate volume of PBS + 
0.05% BSA to reach the desired concentration. Cell concentration and 
viability were verified with a TC20 Automated Cell Counter (Bio-Rad) 
upon staining of the cells with trypan blue.

Sample multiplexing by genotyping
PBMC samples were evenly mixed in pools of eight donors per library 
following a multiplexing approach based on the donor’s genotype for 
a more cost-efficient and time-efficient strategy. Notably, in the case 
of SCGT00, libraries were designed to pool samples together from 
the same disease with different response to treatment (not relevant in 
this study), whereas, in the case of the SCGT02 Asthma+HC cohort, six 
samples belonging to patients were pooled with two samples derived 
from non-smoking healthy control individuals. With this approach, 
we aimed to avoid technical artifacts that could mask subtle biologi-
cal differences.

3′ CellPlex
PBMC samples belonging to the SCGT01, SCGT02 COPD+HC, SCGT04 
and SCGT06 cohorts were multiplexed with 10x Genomics CellPlex 
Kit following the Cell Multiplexing Oligo Labeling for Single Cell RNA 
Sequencing Protocol (10x Genomics). Whereas, for SCGT02 COPD+HC 
and SCGT06 projects, we pooled eight samples from patients with 
healthy controls together, for SCGT01 and SCGT04 we only included 
samples from the condition of interest. In brief, 0.2−1 million cells were 
centrifuged at 350g at room temperature with a swinging bucket rotor, 
resuspended in 100 µl of Cell Multiplexing Oligo (10x Genomics, 3′ 
CellPlex Kit Set A, PN-1000261) and incubated at room temperature 
for 5 minutes. Cells were washed three times with cold 1× PBS (Thermo 
Fisher Scientific) supplemented with 1% BSA (MACS, Miltenyi Biotec), 
all centrifugations being performed at 350g at 4 °C. Cells were finally 
resuspended in an appropriate volume of 1× PBS + 1% BSA to obtain a 
final cell concentration of approximately 1,600 cells per microliter 
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and counted using a TC20 Automated Cell Counter (Bio-Rad). An equal 
number of cells of each sample was pooled and filtered with a 40-µm 
strainer to remove eventual clumps; final cell concentration and viabil-
ity of the pools were verified before loading onto the Chromium for 
cell partitioning.

Cell encapsulation and scRNA-seq library preparation
Multiplexed samples were loaded for a target cell recovery between 
20,000 and 60,000 cells (corresponding to 5,000−7,500 cells per 
sample within each plex). More specifically, samples belonging to 
SCGT00, SCGT00val and SCGT01 cohorts were encapsulated using 
standard-throughput Chromium Next GEM Single Cell 3′ Reagent 
Kit version 3.1, whereas multiplex samples belonging to SCGT02 
Asthma+HC and COPD+HC, SCGT04 and SCGT06 were encapsulated 
using the high-throughput Chromium Next GEM Single Cell 3′ HT 
Reagent Kit version 3.1 in combination with the Chromium X instru-
ment. On the other hand, SCGT03 and SCGT05 cohorts were loaded 
in a standard assay with a target recovery of 6,000−8,000 cells per 
sample using Chromium Next GEM Single Cell 5′ Reagent Kit version 2 
(10x Genomics, PN-1000263).

Libraries were prepared following the manufacturer’s instruc-
tions of protocols CG000315 or CG000390, for the standard assay 
without and with sample multiplexing, and protocols CG000416 and 
CG000419, for the high-throughput assay without and with sample 
multiplexing. Protocol CG000331 was instead followed for the SCGT03 
and SCGT05 cohorts. Between 20 ng and 200 ng of cDNA was used for 
preparing libraries, and final library size distribution and concentration 
were determined using a Bioanalyzer High Sensitivity chip (Agilent 
Technologies). Sequencing was carried out on a NovaSeq 6000 sys-
tem (Illumina) and a NextSeq 500 system (Illumina) using the follow-
ing sequencing conditions: 28 bp (Read 1) + 10 bp (i7 index) + 10 bp  
(i5 index) + 90 bp (Read 2), to obtain approximately 40,000 read pairs 
per cell for the gene expression library and 2,000−4,000 read pairs per 
cell for the CellPlex library.

Data processing
To profile the cellular transcriptome, we processed the sequencing 
reads with the 10x Genomics software package Cell Ranger (version 6.1) 
(https://support.10xgenomics.com/single-cell-gene-expression/soft-
ware/overview/welcome) and mapped them against the human GRCh38 
reference genome (GENCODE version 32/Ensembl 98). This step was 
applied to the sequencing reads obtained from in-house-processed 
samples and from published projects, when available.

Genotype processing
Genome-wide genotyping data for patients from the SCGT00, SCGT-
00val and SCGT02 Asthma+HC studies were generated from PBMC 
samples. For SCGT00, 184 patients were distributed in four genotyping 
cohorts (N1 = 64, N2 = 32, N3 = 40 and N4 = 48 samples), and, for SCGT-
00val, 32 patients were processed with the Illumina Omni2.5-8 and 
Illumina GSA MG v3-24 arrays, respectively. For SCGT02 Asthma+HC, 
16 patients were distributed in two genotyping cohorts (N1 = 8 and 
N2 = 8 samples) using Infinium Global Screening Array-24 version 3.0 
(GSAMD-24v3.0) with the A1 array. Genotyping was done using GRCh37 
human genome reference. Data preprocessing and quality control 
analysis were separately performed for each genotyping batch of 
samples at IMIDomics, Inc. (Barcelona, Spain) and at Erasmus MC (Rot-
terdam, Netherlands). Quality control analysis was performed using 
PLINK software (versions 1.9 and 2). In the SCGT00 and SCGT00val 
quality control analysis, we identified autosomal single-nucleotide 
polymorphisms (SNPs), and, using those SNPs from chromosome X, 
we confirmed the consistency between SNP-estimated and clinically 
reported genders. Then, we quantified the percentage of SNPs with a 
minor allele frequency (MAF) higher than 5%. Next, we computed the 
percentage of missingness both at the SNP-wise and sample-wise levels. 

Finally, we assessed the heterozygosity rate (F) of each sample in order 
to evaluate if any of the genotyped samples could be contaminated. In 
the SCGT02 Asthma+HC quality control analysis, we excluded samples 
with a SNP calling rate lower than 98%.

Patient genotypes (VCF format) were simplified by removing 
single-nucleotide variants (SNVs) that were unannotated (chr 0), 
located in the sexual Y (chr 24), pseudo-autosomal XY (chr 25) or mito-
chondrial (chr 26) chromosomes. As genotypes were obtained using 
the human hg19 reference genome, we converted their coordinates 
to the same reference genome used to mapped the sequencing reads 
(GRCh38) using the UCSC LiftOver tool (https://genome.ucsc.edu/
cgi-bin/hgLiftOver). LiftOver requires an input file in BED format. 
Thus, we used a Python script (https://github.com/single-cell-genetics/
cellsnp-lite/blob/master/scripts/liftOver/liftOver_vcf.py) to convert 
our VCF file accordingly.

Library demultiplexing
Multiplexed libraries from SCGT00, SCGT00val and SCGT02 
Asthma+HC cohorts were demultiplexed with Cellsnp-lite (version 
1.2.2) in Mode 1a68, which allows us to genotype single-cell gene expres-
sion libraries by piling up the expressed alleles based on a list of given 
SNPs. To do so, we used a list of 7.4 million common SNPs in the human 
population (MAF > 5%) published by the 1000 Genomes Project consor-
tium and compiled by the authors (https://sourceforge.net/projects/
cellsnp/files/SNPlist/). Then, we performed the donor deconvolution 
with vireo (version 0.5.6)69, which assigns the deconvoluted samples 
to its donor identity using known genotypes while detecting doublets 
and unassigned cells. Finally, we discarded detected doublets and 
unassigned cells before moving on to the downstream processing 
steps. For CellPlex libraries, we followed a joint deconvolution strategy 
combining cell multiplexing oligo (CMO) hashing and genotype-based 
deconvolution; we generated pools of cells belonging to different 
samples based on the individual SNPs and traced back to their donor 
of origin based on the CMO hashing. When no genotype is available, 
the use of this dual approach minimizes the discarded cells.

Data analysis
All analyses presented in this paper were carried out using mainly 
Python, unless specified otherwise. In particular, we structured our 
data in anndata objects70 compatible with SCANPY suite71, which 
allowed us to apply single-cell data processing and visualization best 
practices. All experiments and panels are reproducible with the code 
released in the project’s GitHub repository.

Data standardization
Considering the diversity of the datasets included in the reference of 
circulating immune cells, a standardization step was needed.

Cell barcodes. The ‘cellID’ barcodes assigned were inspired by 
The Cancer Genome Atlas (TCGA) project (https://docs.gdc.can-
cer.gov/Encyclopedia/pages/TCGA_Barcode/). Each barcode 
unequivocally identifies a cell, and it is composed of the studyID 
(project), libraryID (10x GEM channel), patientID, chemistry (only 
when 3′ and 5′ gene expression were available for the same sample), 
timepoint (if multiple observations were available for a patient) 
and the 10x Genomics cell barcode, respectively (for example, 
SCGT00_L046_P006.3P_T0_AAACCCAAGGTGAGAA).

Gene name harmonization. All datasets were mapped using human 
GRCh38 genome reference, but the annotation file version might 
differ, resulting in gene names with multiple aliases or deprecated 
symbols. To avoid gene redundancy or mismatching, we used Ensembl 
symbols instead of gene names. Then, for datasets without the Ensembl 
symbols, we compared all gene names with the HUGO Gene Nomen-
clature Committee (HGNC) database (latest version, February 2024; 
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https://www.genenames.org/), in order to convert them to the latest 
official HUGO name, merging possible duplicates and retrieving the 
corresponding Ensembl symbol. For non-official genes, we used the 
MyGene Python interface (https://mygene.info/) to query the Ensembl 
symbol. Finally, we removed 16 genes categorized as ‘artifact’ or ‘TEC 
(To be Experimentally Confirmed)’.

Metadata harmonization. Patient metadata were unified across data-
sets, using common variable names and values for those present in mul-
tiple sources; specifically, we homogenized these variables of interest 
such as sex, age, disease, diseaseStatus, smokingStatus, ethnicity or 
institute. For instance, ‘M’, ‘Male’ and ‘Hombre’ entries were replaced 
with ‘male’. Additionally, we created a new variable, ‘binned_age’, to 
group patients within a range of 10 years, considering that, for the 
SCGT01, SCGT04 and SCGT11 datasets, the specific age information 
was not available. As detailed below, the datasets missing sex and age 
information were considered as data from unseen studies and used to 
evaluate the patient classifier.

Data splitting
Some studies in our cohort included patients with samples collected in 
multiple replicates, different timepoints or using different chemistry 
protocols. In studies with multiple replicates—that is, Zhang2022 and 
Terekhova2023—we selected samples with the largest number of cells. 
When multiple timepoints or disease statuses for the same patient are 
available—that is, Perez2022, COMBAT2022 and Ren2021—we kept only 
the samples associated with higher disease severity.

The filtered Inflammation Atlas cohort was then split in two data-
sets: CORE and unseen studies. Data from unseen studies include 86 
samples and are used as an independent validation of our patient 
classifier pipeline. For this dataset, we selected studies that either 
involve diseases with a large support in our full cohort or lack meta-
data on sex and age. These chosen studies are as follows: SCGT00val, 
SCGT06, Palshikar2022, Ramachandran2019, Martin2019, Savage2021, 
Jiang2020, Mistry2019 and 10XGenomics.

After performing data quality control (removing low-quality librar-
ies and cells; see section below), the CORE dataset includes 961 samples 
and was further split into Main and data from unseen patients, with 817 
and 144 samples each, respectively. We first stratified samples based 
on the following metadata: studyID, chemistry and disease. From each 
of those groups, we randomly selected 20% of samples to be part of the 
unseen patients, provided that they amounted to at least five samples. 
In the patient classifier pipeline, the Main dataset is used as a reference, 
whereas data from unseen patients and unseen studies are used as a 
query dataset in two independent scenarios.

The Centralized Dataset included samples from SCGT00 and 
SCGT00val. Because all healthy patients were sequenced in the same 
pool, we did not take them into account. Then, because multiple sam-
ples were multiplexed and sequenced together, we split them, stratify-
ing by sequencing patientPool to generate both the reference and the 
query datasets that include at least one pool for all the IMID diseases 
(that is, rheumatoid arthritis, psoriasis, psoriatic arthritis, Crohnʼs 
disease, ulcerative colitis and SLE). Further information about the 
samples classified in each group is detailed in Supplementary Table 1.

Data quality control
We performed data quality control on the CORE dataset by computing 
the main metrics (that is, library size, library complexity and percent-
age of mitochondrial, ribosomal, hemoglobin and platelet-related gene 
expression) on the count matrix. Metric distributions were visualized 
grouping cells by library (10x Genomics) and by considering their chem-
istry (3′ or 5′ and their version). Consequently, we removed low-quality 
observations using permissive thresholds, whereas the robust cleaning 
process was performed during cell annotation tasks. In particular, we 
initially excluded the low-quality libraries across datasets (<500 cells 

or <500 median genes recovered). Next, we removed low-quality cells 
with a very low number of unique molecular identifiers (UMIs) (<500) 
and genes (<250) or with a high percentage of mitochondrial expres-
sion (>25% for 3′ V3 and 20% for 3′ V2 and 5′), as it is indicative of lysed 
cells. Then, we removed barcodes with a high library size (>50,000 
UMIs for 3′ V3 and 5′ V1, >40,000 UMIs for 5′ V2 or >25,000 UMIs for 3′ 
V2 chemistry) or with a high complexity (>6,000 genes for 3′ V3 and 
5′ or >4,000 genes for 3′ V2 chemistry). After cell quality control, we 
also removed low-quality libraries (<250 cells), low-quality samples 
(<500 cells or <500 median genes recovered) as well as cells from a 
library if this patient recovered a low total number of cells (<50 cells). 
In addition, we eliminated genes that were detected in fewer than 20 
cells in fewer than five patients, keeping a total of 22,838 genes. Lastly, 
we computed the cell cycle score using the gene list provided by the 
function cc.genes.updated.2019() from the Seurat library72 (version 
4.3.0.1) and defined the different cell cycle ‘phases’ (G1, G2M and S). 
Before the dataset cleanup, we predicted doublets using the func-
tion scanpy.external.pp.scrublet() from the SCANPY library (version 
1.9.8), which provides a score to flag putative doublets but without 
filtering them out at this stage. Consequently, during the clustering 
and annotation step, the clusters co-expressing gene markers from 
different lineage/population and high doublet score were assessed to 
determine whether a specific cluster could be classified as a group of 
doublets and subsequently excluded. After this step, the CORE dataset 
was split into Main and data from unseen patients, as explained above.

Quality control on the data from unseen studies was performed 
independently. We applied the same approach described above, but 
we filtered only poor-quality libraries and cells.

Data processing for annotation
Annotation strategy. To identify all the immune cell types and states 
present in the human blood, we employed a recursive top-down 
approach inspired by previous work done by Massoni-Badosa et al.73. 
Starting with 4,918,140 cells and 817 patients from the Main dataset, we 
divided the annotation into several stages. In brief, we first grouped all 
cells into the primary compartments within our study. Subsequently, 
each compartment was processed aiming to detect potential dou-
blets, low-quality cells and cells resembling platelets or erythrocytes 
(cells with high expression of hemoglobin genes). Additionally, we 
also placed back some clusters of cells into their corresponding cell 
lineages, when wrongly clustered due to similar profiles (for example, 
T cells found in the natural killer cell group or vice versa). Then, we 
identified the clusters resembling specific biological cell profiles (cell 
subtypes), obtaining a final number of 64 different subpopulations, 
excluding Doublets and LowQuality_cells, that we defined as annota-
tion Level 2. Those cell subtypes were grouped into 15 cell populations 
that we defined as annotation Level 1. At the end, our Inflammation Atlas 
contains 4,435,922 cells. For each group identified in the initial stage 
(cell lineages), we applied the following tasks: normalization, feature 
selection, integration, clustering and annotation. In the following, we 
will always refer to the parameters of the initial stage, and the specifics 
of the subsequent steps (from lineages to cell types), along with the 
annotation labels and the marker genes used to define them, can be 
found in Supplementary Table 3.

Data normalization. Following standard practices, filtered cells were 
normalized by total counts over all genes and multiplied by a scaling 
factor of 104 (scanpy.pp.normalize_total(target_sum = 104)). Then, the 
normalized count matrix X was log transformed as loge(X + 1) (scanpy.
pp.log1p()).

Feature selection. Gene selection was performed by identifying the 
highly variable genes (HVGs). Before doing so, we excluded genes 
related to mitochondrial and ribosomal organules. Also, we skipped 
T cell and B cell receptor (TCR/BCR) genes, including joining and 
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variable regions, because they are not useful to describe cell identi-
ties but, rather, to capture patient-specific clonally expanded cell 
populations within an inflammatory-related condition. Lastly, we 
excluded major histocompatibility complex (MHC) genes. To reduce 
the influence of a study’s specific composition and prevent biases 
in the gene selection task, we preferred genes that are highly vari-
able in as many studies as possible. Therefore, similar to Sikkema 
et al.74, we first considered each study independently and computed 
the HVGs using the Seurat implementation75 (scanpy.pp.highly_vari-
able_genes(min_disp = 0.3, min_mean = 0.01, max_mean = 4)). Then, 
we ranked genes based on the number of studies in which they are 
among the highly variable. Finally, for the initial stage, we determined 
the minimum number of studies required to compose an HVG list of 
more than 3,000 genes. Applying this strategy, we selected a total of 
3,236 genes being highly variable in at least six studies. In the following 
steps, we requested more than 2,000 HVGs; the minimum number of 
studies required and the total of selected genes depend on the step 
and the cells under study. To identify red blood cell (RBCs) and plate-
lets, we kept genes associated with erythrocytes, such as hemoglobin 
subunits, and pro-platelet basic protein (PPBP) (platelet related) in the 
HVG list. Because such genes are known to be related to ambient RNA 
when found in other cell types, we subsequently removed them after 
having annotated the above cell types.

Data integration. Our dataset includes single-cell data obtained from 
multiple studies including different chemistry protocols, inflammatory 
status samples and a broad range of other clinical features (for example, 
age and sex). Although this is a strength point of our atlas, such high 
levels of heterogeneity induced by technical confounding factors and 
unwanted biological variability resulted in challenging integration 
tasks before clustering and annotating cell populations. Therefore, 
we employed scVI14, a VAE approach that proves to be one of the most 
effective integration methods in complex scenarios, particularly when 
the annotation information is missing16. scVI takes as input the raw 
count matrix to generate an integrated, low-dimensional embedding 
space, where the cell states are preserved and the batch effects are 
reduced. Moreover, scVI’s embedding space can be exploited to cluster 
and annotate cells based on either known or cluster-specific marker 
genes. Details on the scVI parameters used in each annotation step can 
be found in Supplementary Table 7.

Cell clustering. To cluster cells into cell types with the Leiden algo-
rithm, we first built the k-nearest neighbors (KNN) graph using scVI’s 
latent embeddings and k = 20 as the number of neighbors (scanpy.
pp.neighbors(n_neighbors = k)). We then applied the Leiden algo-
rithm using a resolution of r = 0.1 (scanpy.tl.leiden(resolution = r)). 
The k and r used in every other step for every lineage can be found in 
Supplementary Table 3.

Cell annotation. Cell clusters were manually annotated by immunology 
experts by comparing the expression levels of canonical gene markers. 
Moreover, the final step of annotation was performed using the cluster 
markers obtained performing a differential expression analysis among 
clusters (Supplementary Table 3). First, we ranked genes to characterize 
each cluster (scanpy.tl.rank_genes_groups()), by considering normal-
ized RNA counts with the Wilcoxon rank-sum test. Then, we selected 
those genes with log2 fold change (log2FC) > 0.25 and false discovery 
rate (FDR) adjusted P < 0.05 and if they were present in at least 25% of 
cells. Notably, cells belonging to RBC and platelet populations were 
excluded from all the downstream analyses, except for label transfer 
performed as a step during patient classifier tasks (as explained below).

External annotation validation. We compared our independent anno-
tations with the ones available in the largest public datasets. To quantify 
the overlap of cells among groups, we computed the adjusted Rand 

index (ARI) to measure the similarity between our label assignments 
and the ones performed by the original authors. Further details are 
available in Supplementary Table 2.

Centralized Dataset annotation. All previously described steps were 
applied to process and annotate the Centralized Dataset (SCGT00), 
with the following adjustments: (1) standard HVG selection was per-
formed as the dataset included only a single study; (2) the dataset was 
integrated using ‘patientPool’ as the batch key; and (3) cell annotation 
was conducted up to Level 1, recovering the same cell types as in the 
main Inflammation Atlas, as this was necessary for the patient classi-
fier. Here, starting with 855,417 cells and 152 patients included in the 
reference dataset, we recovered 15 cell populations (Level 1), exclud-
ing Doublets and LowQuality_cells. Details on the scVI parameters 
used in each annotation step can be found in Supplementary Table 7, 
whereas details on the clustering and annotation steps are provided 
in Supplementary Table 3.

Feature selection after annotation
Gene selection. To improve the quality of downstream analysis to 
characterize the inflammation landscape, it is necessary to perform a 
gene selection in order to remove dataset-specific genes and reduce 
the batch effect. First, we performed data normalization (as described 
above), kept only the genes that are expressed (raw count > 0) in at least 
one cell in each study and removed genes associated with mitochon-
drial, ribosomal, TCR/BCR, MHC, hemoglobin and platelet cell types. 
This step retained a total of 14,127 genes. Then, we identified three sets 
of genes: (1) the HVGs, (2) the differentially expressed genes (DEGs) 
between healthy and each inflammatory status and (3) Cytopus76, a 
manually curated immune-specific gene list.

HVGs. Similar to the feature selection approach described in the anno-
tation section, we selected a total of 3,283 HVGs, by using a threshold 
of at least 3,000 genes. In practice, we first ranked the genes based on 
the number of studies in which they are concurrently highly variable 
(scanpy.pp.highly_variable_genes(min_disp = 0.3, min_mean = 0.01, 
max_mean = 4, batch_key=’libraryID’)) and then chose a minimum 
number of studies of five.

DEGs between healthy and each disease. We obtained a list of 
DEGs after grouping single-cell gene expression profiles into pseu-
dobulks. Therefore, we first combined the expression profiles of 
individual cells to produce pseudobulks for every patient and cell 
type (Level 1), removing groups with no more than 20 cells, using the 
Python implementation of decoupleR77 (version 1.6.0) (decoupler.
get_pseudobulk(min_cells = 20, sample_col=’sampleID’, groups_
col = ‘Level1’, layer = ‘counts’, mode = ‘sum’)). Then, we applied the 
edgeR (version 4.0.16) quasi-likelihood functions to search for DEGs 
between healthy patients and each other’s inflammatory conditions, 
by considering one cell type at a time. Because not all the cell types 
were detected in each patient, we did not perform the pairwise com-
parison if one disease had fewer than three pseudobulks. More in 
detail, for each pairwise comparison, we first removed genes with a low 
expression value (filterByExpr(y, group=disease)). Second, we normal-
ized by library size the aggregated raw counts (calcNormFactors(y, 
logratioTrim = 0.3)). Third, we corrected for the main confounding 
factors—that is, chemistry protocol, sex and binned age—considering 
an additive model. One patient was excluded from the analysis due to 
missing age information. We defined the design of our comparison 
using the following patsy-style (https://patsy.readthedocs.io/en/latest/
formulas.html) formula: ‘~0 + C(disease) + C(chemistry) + C(sex) + C(
binned_age)’. Fourth, we estimated a negative binomial dispersion for 
each gene using estimateDisp(), which we fed into a gene-wise nega-
tive binomial generalized linear model (glmQLFit(robust = TRUE)) to 
test for DEGs with a quasi-likelihood F-test (glmQLFTest()). Lastly, 
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results obtained from each comparison were merged together, and 
the F-test P values were corrected using the Benjamini−Hochberg FDR 
procedure implemented in R (p.adjust(method = ‘BH’)). Given the cor-
rected P values and the log2FC, we selected 6,868 DEGs with P < 0.01 
and absolute log2FC > 1.5.

Curated immune-specific genes. To be able to track the full spec-
trum of inflammatory processes, including immune activation 
and progression, we curated nine inflammation-related functions 
defined in the literature78–84 (1,364 genes present in our dataset; 
Supplementary Table 4) and complemented them with a published 
list of cell-type-specific signatures derived from immunological 
knowledge based on single-cell studies (Cytopus76). Specifically, we 
retrieved all global gene sets for the leukocyte category and the fol-
lowing inflammatory-related cell-type-specific factors: naive and 
non-naive CD4 T cells (CD4T_TFH_UP, CD4T_TH1_UP, CD4T_TH2_UP, 
CD4T_TH17_UP, Tregs_FOXP3_stabilization); naive and non-naive CD8 
T cells (CD8T_exhaustion, CD8T_tcr_activation); B cells (B_effector); 
monocytes (IFNG response, IL4-IL13 response); and dendritic cells 
(dendritic cell antigen crosspresentation).

Aggregation of gene sets. We generate the relevant gene set by doing 
the union of HVGs, DEGs and the manually curated list. The final num-
ber of unique genes is 8,253.

Dataset integration and gene expression correction via scANVI
Atlas-level analysis requires a careful preprocessing of the gene 
expression profiles to deal with the heterogeneity of the studies, the 
batch effect and the missing or noisy observations. scANVI15 is one 
of the existing methods capable of addressing these challenges and 
has been proven effective on atlas-level benchmarks compared to 
other integration methods. We validated its performance on our data 
by using the metrics from the scib-metrics package16 (version 0.5) 
(Extended Data Fig. 1).

scANVI integration. scANVI is an extension of the scVI model, employed 
previously for data integration, that also leverages the information of 
the cell type annotation. We first trained an scVI VAE (scvi.model.
SCVI) and then trained scANVI (scvi.model.SCANVI) starting from 
the pretrained scVI model (see parameters in Supplementary Table 7). 
Both models corrected for the chemistry batch while also considering 
libraryID, studyID, sex and binned age as covariates. After training, we 
generated the normalized corrected counts by sampling from scANVI’s 
negative binomial posterior (SCANVI.get_normalized_expression). 
The batch effect was mitigated by sampling and averaging each cell’s 
expression as if it originated from each chemistry protocol by setting 
the transform_batch parameter to the list of chemistry protocols pre-
sent in our atlas.

Comparison of cell type composition
To estimate the changes in the proportions of cell populations across 
conditions, we applied the scCODA package85 (version 0.1.9), a Bayes-
ian modeling tool that takes into account the compositional nature 
of the data to reduce the risk of false discoveries. scCODA allows us to 
infer changes between conditions while considering other covariates, 
corresponding to the disease status in our setting. scCODA searches 
for changes between a reference cell type, assumed to be constant 
among different conditions, and the other cell types. We selected as 
the reference population the one that showed the lower variance across 
conditions, excluding rare cell populations (that is, progenitors, plas-
macytoid dendritic cells and cycling cells). This resulted in the selection 
of dendritic cell as the reference cell type for all diseases. scCODA takes 
as input the count of cells belonging to each cell type in each patient and 
returns the list of cell type proportion changes with the corresponding 
corrected P values (through the FDR procedure). A patsy-style formula 

was used to build the covariate matrix, specified with ‘healthy’ as base-
line and sex and binned age as covariates (C(disease, Treatment(‘healt
hy’)) + C(sex) + C(binned_age)), because we are interested in detecting 
changes between a normal and a diseased status. We reported only 
changes with a corrected P < 0.05 and a log2FC > 0.2.

Comparison of gene expression profiles
Gene factor inference. To expand the list of curated immune-related 
genes following a data-driven approach, we employed Spectra22 (ver-
sion 0.2.0), a matrix factorization algorithm that enables us to identify 
a minimal set of genes related to specific functions in the data—that 
is, factors. Spectra takes as input cell type labels to infer global and 
cell-type-specific factors that decompose the overall gene expression 
matrix and each cell type submatrices, respectively. Given our list of 
curated gene sets, we considered the Cytopus ones as global factors, 
whereas we regarded all the remaining as cell-type-specific factors. The 
Spectra model was fitted with default parameters with the exception 
of λ, which was set equal to 0.001. Considering the prohibitive com-
putational resources required for applying Spectra on our single-cell 
data, we fed the algorithm with the metacell aggregated expression 
matrix, as described in the paragraph below. Spectra returned a list of 
135 factors that are a linear combination of the gene expression from 
the original matrix. The coefficients included in the matrix can be then 
used as a proxy of the gene relevance in a given factor.

Metacell generation. We generated metacells using SEACells86 (ver-
sion 0.3.3), which aggregates cells by exploiting their distances in a 
low-dimensional embedding space. Starting from the normalizing 
data, we selected the top 3,000 HVGs using the highly_variable_genes 
function in SCANPY, with the Seurat flavor. To define SEACells’ input 
embedding space, we calculated the first 50 principal components 
and selected those principal components that explain 90% of the total 
variance observed. To avoid biases due to batch effect and other con-
founding factors, we executed SEACells for each sample independently. 
In particular, we generated a number of metacells equal to the number 
of cells of each patient divided by 50. We further filtered the obtained 
metacells by computing the proportion of the most abundant annota-
tion label (Level 1) in each SEACells group and then removed the ones 
with a purity lower than 0.75. Overall, we defined 71,108 metacells. 
Given the assignment of cells to each metacell, we generated each 
metacell’s gene expression profile by averaging the corresponding 
cells’ scANVI normalized and corrected expression profiles. Because 
scANVI returns counts sampled from a negative binomial distribution, 
we also log scaled the obtained metacell profiles.

Inflammation-related signature definition. Spectra provided a total 
of 135 factors that include a refined gene list for each gene set we used 
as input. Thus, we need to assign those factors to our original gene sets 
for retrieving the corresponding biological function. For doing so, 
we performed enrichment analysis with ULMs available in the Python 
implementation of decoupleR77, to estimate the factors associated with 
each gene set. The gene coefficients returned by Spectra were con-
sidered as the response variable and a vector of weights (1 if the genes 
were included in the gene set, 0 otherwise) serving as explanatory 
variables. ULM returns an estimate and a P value for each enrichment. 
We corrected those P values for multiple comparison by computing 
the FDR with the Benjamini−Hochberg procedure, implemented in 
the scipy (version 1.12.0) library. We kept 125 factors with a positive 
estimate and an adjusted P value < 0.05. Finally, we assign to each factor 
the biological function that corresponds to the gene set that provided 
the highest estimated score.

Inflammation-related signature scores. To compare immune-relevant 
activation profiles across diseases and cell types, we applied an enrich-
ment signature scoring procedure, considering the factors obtained 
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with Spectra22. First, we generated pseudobulks stratified by cell type 
(Level 1 or Level 2) and patients, discarding groups with fewer than 10 
cells. We averaged the scANVI-corrected gene expression matrix of each 
cell belonging to a given pseudobulk and then log transformed and 
scaled the expression values to zero mean and unit variance, to reduce 
the impact of highly expressed genes. We fitted decoupleR’s ULM77 by 
considering pseudobulk expression profiles as the response variable 
and the gene coefficient returned by Spectra as the explanatory one. 
We assessed the scores for the 119 cell-type-specific factors only in 
their corresponding cell type. The output of the model is a Studentʼs 
t-statistic for each combination of pseudobulk and factor, which is used 
as a proxy for the corresponding biological function activity: positive 
values are associated with more active functions in a given sample and 
vice versa. To identify the upregulated or downregulated biological 
functions across inflammatory conditions, we compared the activation 
score between healthy and each disease, considering only comparisons 
that include at least three observations in both conditions. To take into 
account the batch effect induced by studies and chemistry protocols 
that still affects the data (Extended Data Fig. 1b,c; scbi metrics and 
principal component analysis (PCA)), we applied a LMEM. In particu-
lar, we fitted the function mixedlm() from the statsmodels Python 
library (version 0.14.1) with the following formula:‘Q(‘{factor}’) ~ C(dis
ease, Treatment(reference = ‘healthy’)) + ‘f’C(chemistry)’, grouping by 
‘studyID’. We corrected the P value obtained for multiple testing using 
FDR considering all the comparisons when tested at Level 1 and within 
each Level 1 population when tested at Level 2.

GRN analysis. Pseudobulk matrices were calculated by averaging the 
corrected and standardized count matrices by cell type and sample. 
We compute differential expression analysis for each cell type in each 
disease using healthy individuals as reference. LMEMs were used to 
model the expression levels of each gene independently, consider-
ing the disease as a fixed effect while modeling the ID of the study as 
a random effect. We used the mixedlm() function of the statsmodels 
(version 0.14.0) Python package to run the analysis. To associate each 
cell-type-specific ‘IFN-induced’ factor with a given transcription fac-
tor regulator, we integrated these signatures with the CollecTRI Gene 
Regulatory Network87 by matching target genes to identify common 
genes between transcription factor regulons and Spectra signatures. 
Therefore, each ‘IFN-induced’ signature was thus linked to a subset of 
transcription factor regulons. The activity of each transcription factor 
was calculated using only the common genes between each transcrip-
tion factor and each signature, employing the UML from decoupleR77 
and the z-values obtained from the differential expression analysis. 
To ensure robustness, only regulons with at least 10 gene targets were 
considered. This pipeline was applied across ‘IFN-induced’ factors and 
diseases, focusing on the activity in the cell type where the Spectra sig-
nature was identified. Negative activities (t-stat < 0) and non-significant 
results (P > 0.05) were filtered out. This analysis identified STAT1 and 
SP1 as the sole transcription factor regulators of the defined cell types. 
We performed one-versus-all Wilcoxon rank-sum tests to compare 
transcription factor activity across Level 2 subpopulations within each 
Level 1 lineage for SLE and Flu. For each transcription factor (SP1 and 
STAT1), activity within a given Level 2 state was compared to all other 
states within the same Level 1 compartment. Tests were two-sided and 
restricted to comparisons with at least three observations per group. 
P values were adjusted using the Benjamini−Hochberg method. The 
same approach was applied to monocytes, comparing transcription 
factor activity across diseases within each Level 2 monocyte subset.

For the comparison of flare and non-flare patients from SLE, 
non-corrected log1p-normalized single-cell expression matrix from 
Perez et al.17 was used to further investigate SP1 and STAT1 regulon 
activities across both categories. Pseudobulk profiles were calculated 
by averaging by cell type, considering only cell types (Level 2) with a 
minimum of 10 cells and groups that include at least three patients in 

both conditions (flare versus non-flare). Prior to calculating transcrip-
tion factor activities across samples, we standardized the gene expres-
sion data on patients with SLE based on healthy individuals. Specifically, 
for each gene, the mean and standard deviation were calculated from 
the healthy group, and these statistics were then used to scale the gene 
expression values across patients with SLE. Only gene targets identified 
in the previous step were used to calculate enrichment using the ULM 
method. Finally, the activity of STAT1 and SP1 was calculated at Level 
2 using CollecTRI87.

Immune gene importance evaluation
In this section, we introduce our pipeline used to obtain a gene impor-
tance metric by interpreting cell-type-specific classifiers for disease 
prediction. All the steps described below were carried out separately 
for each cell type (excluding RBCs, platelets, progenitors and cycling 
cells). Specifically, the classification task was performed with GBDTs 
implemented in the XGBoost library88 (py-xgboost-gpu: version 2.0.3). 
Furthermore, interpretability was performed using SHAP values35 (ver-
sion 0.45.1), a powerful approach assigning an importance to each gene 
by also taking into account their interactions.

Feature selection. To focus our analysis on cell-type-specific 
inflammatory-related signatures, we considered only genes relevant 
in annotated Spectra factors, and we further reduced the list by 
removing cell identity genes (for example, CD3E and MS4A1) as well 
as non-protein-coding genes. This filtering gave a final number of 935 
genes.

Data processing. We split our data into three parts: the training set 
and the validation and testing set, used for hyperparameter tuning 
and performance evaluation, respectively. We balanced the splits by 
disease, ensuring that each sample’s cells were included in the same 
set. Initially, we partitioned the data into five splits using the function 
sklearn.model_selection.StratifiedGroupKFold. Three of these splits 
were assigned to the training set, and one was designated for valida-
tion and one for testing. Accounting for both stratification by disease 
and patient partitioning might lead to an uneven distribution of cells 
among diseases. To address this, we assigned splits with a well-balanced 
distribution of cells to the training and testing sets first.

XGBoost fitting. XGBoost (xgboost.XGBClassifier) hyperparameters 
were tuned using the Optuna library89 (version 3.6.0). The performance 
of each model configuration was estimated using the WF1 score on 
the validation set. To reduce the computational cost, we both pruned 
unpromising hyperparameters and early stopped the training when 
no improvement was achieved more than 20 steps before the upper 
bound of 1,500. We considered 50 configurations of XGBoost, taking 
into account the hyperparameters detailed in Supplementary Table 7. 
Using the best configuration and its corresponding number of training 
steps (equivalent to the number of estimators), we retrained the best 
model on the union of the training and validation sets. This time, we did 
not apply early stopping and increased the number of training steps by 
20%, to account for the larger number of training samples.

d-SHAP interpretability. To interpret the decision of the selected 
XGBoost classifier, we employed the widely adopted Shapley values 
through the SHAP library. SHAP values were computed with shap.
TreeExplainer using the observational ‘three_path_dependant’ 
approach. Given the potential resource-intensive nature of handling 
all SHAP values for every cell and disease, especially in terms of storage, 
we computed their mean and variance across all samples in batches 
using the Weldford online algorithm90. Given a specific cell type ct, we 
have a SHAP value for every gene in every cell and for each disease: a 
matrix of real values SHAPct(c, g,d), where c, g and d identify the cell, 
gene and disease, respectively. The average contribution of a gene g 
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for a disease d can be computed as d-SHAPct(g,d) = meanc∈C|SHAP
ct(c, g,d)|, 

where C is the set of cells. To aggregate the d-SHAP values across mul-
tiple diseases—for example, the ones included in the same study—we 
summed their values across genes.

Gene selection. To validate our ensemble of important genes through 
d-SHAP values, we tested if our selection generalizes to unseen stud-
ies. First, we defined a gene set GS that included genes expressed in at 
least 5% of the cells. Then, for each of the eight conditions included in 
unseen studies, we selected from GS the top k ranked genes by d-SHAP 
importance. We then trained XGBoost in a nested cross-validation 
setting on data from unseen studies, where we performed both hyper-
parameter tuning and performance evaluation, using only one of the 
gene sets as input features. Next, we computed WF1 and BAS to test the 
performance considering k = 5, k = 10 and k = 20. Given our selection 
S of genes, with size |S|, we also tested 20 sets of |S| randomly selected 
genes from GS, excluding the ones in S (that is, not top ranked accord-
ing to d-SHAP). Lastly, we compared the performances of the models 
trained on each gene set against XGBoost trained on the whole set of 
genes GS. The analysis was repeated for each cell type independently.

Study classifier and s-SHAP values. To identify whether the gene 
importance is driven by the study batch effects, we trained a separate 
classifier to predict study instead of the disease. Feature selection, data 
processing and model fitting were done in the same way as explained 
above for disease classification, apart from the data split  
where cells were stratified by study instead of disease. SHAP values 
were computed for each of the cell-type-specific study classifiers, 
resulting in an average contribution of a gene g for a study s 
s-SHAPct(g, s) = meanc∈C|SHAP

ct(c, g, s)|. Because diseases can be associ-
ated with multiple studies, we aggregated the s-SHAP values for study 
prediction by summing them across all studies that include the selected 
disease. This allowed us to compare the batch-related signal (s-SHAP) 
with the disease-related signal (d-SHAP).

Patient classifier pipeline
In this section, we describe the pipeline used to validate the Inflam-
mation Atlas as a diagnostic tool. In the following analysis, the terms 
‘patient’ and ‘sample’ are equivalent, because, after data splitting, 
we kept only one sample for each patient. The pipeline consists of (1) 
integrating an annotated reference dataset with data integration tools 
that provide batch-corrected embeddings, (2) mapping a query dataset 
into the reference to obtain its corrected embeddings, (3) transfering 
the cell annotation labels from the reference, (4) defining a patient 
embedding space and (5) training a classifier to predict the patient 
conditions from the embeddings.

Starting from a large annotated reference dataset, we applied 
four state-of-the-art integration methods, described below, to obtain 
a batch-corrected embedding. We considered different chemistry 
protocols as the main source of batch effect; thus, we corrected for 
the chemistry covariate. Then, an independent query dataset was 
mapped into the corrected embeddings. This step provides both batch 
correction and allows us to transfer cell annotation labels from the 
reference to the query dataset. To define patient-wise embeddings, 
we averaged each patient’s cell embeddings by cell type, resulting 
in an embedding for each cell type and each patient (30 embedded 
dimensions for scANVI main configuration; see Supplementary Table 7 
for all the methods and configurations). To predict the inflammatory 
conditions of the patients in the independent query dataset, we fit 
one classifier for each cell type on the reference patient embeddings. 
Then, we predicted the inflammatory condition of the query patients 
by returning the most frequent condition among the predictions of 
every cell-type-specific classifier.

We validated our pipeline considering three different settings. 
In the first one, we performed a cross-validation on the Main dataset, 

where each left-out split is considered as a query dataset and the 
remaining as the reference. Moreover, we tested our diagnostic tool 
on data from unseen patients and unseen studies, this time using the 
whole Main as a reference.

Integration methods. In this section, we explain each data integra-
tion method, and the tested configurations of hyperparameters can 
be found in Extended Data Fig. 8 and Supplementary Table 7. Note 
that the scGen and Harmony/Symphony approaches generate one 
integrated dataset that is independent from the query data, whereas 
scANVI and scPoli require a fine-tuning of the reference model for a 
given query dataset.

scGEN. scGen is defined by two main components: a VAE and a latent 
space arithmetic method. The VAE estimates a posterior distribution 
of latent variables through the encoder, from which we can reconstruct 
the expression matrices via the decoder (scGen_model.batch_
removal()). Similar to commonly employed VAEs, scGen approximates 
the posterior through a variational distribution, modeled by the 
encoder and defined as a multivariate Gaussian. When the scGen’s VAE 
has been fitted on the reference dataset, latent space arithmetic is 
employed to correct for the batch effect induced by the chemistry 
protocol used. Within each cell type, scGen first selects the mean μmax 
of the most populated batch and then corrects each batch with mean 
μ0 by adding δ = μmax − μ0 to each cell’s embedding. Importantly, the 
cell type has to be inferred when not known. The final corrected count 
matrix will correspond to the generated count matrix from the 
arithmetic-corrected embeddings. Following scGen’s tutorials, we will 
refer as corrected embeddings to the ones obtained given the corrected 
expression matrix as input. To apply scGen batch correction on the 
query dataset, we need to also infer the cell types of those cells. This 
step was performed through label transfer by nearest neighbors, fol-
lowing a similar approach employed in Human Lung Cell Atlas74 and 
introduced in ref. 45. The idea is to employ (approximate) nearest 
neighbors through PyNNDescent91 (version 0.5.11) (pynndescent.
NNDescent().prepare()) and infer the most probable cell type in the 10 
nearest neighbors (pynndescent.NNDescent().query()) from the 
already annotated cells in the reference dataset. To account for the 
shape of the distribution of the neighbors, a Gaussian kernel was 
applied instead of using the Euclidean distance. The most probable 
nearest neighbor cell type is then assigned to annotate new cells.

scANVI. We first trained scVI and scANVI on the reference dataset, like 
the dataset integration described before, and then we fine-tuned it 
to the query dataset. Regarding the label transfer, we employed the 
scANVI predict() function with default parameters.

Harmony and Symphony. Harmony92 and Symphony93 are two related 
methods that integrate a reference and map a query dataset to it, 
respectively. Harmony takes a PCA embedding of cells as input, along 
with their batch covariates (chemistry). Next, the model represents cell 
states as soft clusters, where each cell identity is defined as a probabil-
istic assignment across clusters, with the aim of maximizing diversity 
among batches within those clusters. Cells are iteratively assigned 
soft-cluster memberships; those assignments are used as weights in 
a linear mixture model to remove confounding factors. The result is 
a new batch-corrected embedded space. The Symphony algorithm 
starts from the linear model parameters inferred by Harmony to map 
query cells onto the corresponding embedding space. First, it pro-
jects the query gene expression profiles into the same uncorrected 
low-dimensional space as the reference cells. Next, Symphony com-
putes soft-cluster assignments for the query cells based on their prox-
imity to the reference cluster centroids. Finally, Symphony employs the 
Harmony mixture model components to estimate and regress out batch 
effects from the query data. Importantly, the reference cell embedding 
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remains stable during this mapping process. We transferred annota-
tion labels from the reference to the query dataset by exploiting cell 
proximity in the embedding space using nearest neighbors through 
sklearn.classifier.KNeighborsClassifier, Symphony default choice 
(https://github.com/potulabe/symphonypy).

scPoli. In contrast to other integration methods such as scANVI, scPoli94 
encodes the condition (chemistry and sampleID) as a learnable con-
ditional embedding and characterizes each cell type as a prototype in 
the latent embedding to facilitate the label transfer. In the reference 
building phase, we first pretrained the model given the reference data-
set and its conditions and then fine-tuned to optimize the prototypes. 
In the reference mapping phase, we froze the model and learned the 
new conditional embeddings belonging to the query dataset. The label 
transfer is performed by simply assigning the cell type belonging to 
the closest prototype in the latent embedding space. All the methods 
belong to the scArches45 class scarches.models.scPoli.

Disease classifiers. Patient embeddings definition. After obtaining 
the corrected embedding from one of the data integration approaches 
described previously, we need to aggregate the cell-wise embeddings 
into patient-wise embeddings. We decided to group at the level of the 
cell types by computing the mean embedding across cells belonging 
to the same cell type and sampleID. Only for scPoli, we generated three 
different types of patient embeddings: the learned patient embed-
dings (sample), the averaged cell-wise latent embeddings (cell) and 
the concatenation of the two (cell&sample).

Classifiers definition and hyperparameter tuning. In this phase, 
the aim is to train a classifier for each cell type on the patient-wise 
embeddings belonging to the reference dataset. We tested the fol-
lowing classifier types: sklearn.svm.LinearSVC, sklearn.svm.SVC and 
sklearn.neighbors.KNeighborsClassifier (sklearn version 1.4.1.post1). 
For each classifier type, we trained different configurations defined 
in Supplementary Table 7 and evaluated their performance using a 
five-fold cross-validation on the reference patient embeddings. Simi-
lar to what we did to optimize the XGBoost classifier when estimat-
ing the immune gene importance, we employed the Optuna library 
to perform the hyperparameter tuning for each classifier. The best 
hyperparameter combination was selected according to the WF1 score 
independently of the cell type.

Majority voting and evaluation. The best classifier type according to 
the average performance over all cell types is then used to train from 
scratch the corresponding classifier on the whole reference patient 
embedding. The predicted condition (disease) for a patient is simply 
the majority voting among the classifiers. In case of a tie of different 
conditions, we conservatively rejected the prediction of the classifiers. 
Then, the overall metrics WF1 score, BAS and Matthews correlation 
coefficient (MCC) and the disease-wise metrics Precision, Recall, BAS 
and F1 score were computed by comparing the predicted inflammatory 
conditions by each classifier type in the query dataset with the avail-
able ground truth. All those metrics were computed with the sklearn 
Python library. When we refer to the weighted version of a given metric, 
we are using average = ’weighted’ parameter to take into account the 
unbalance of the inflammatory condition observations.

Note, if a given query patient does not have any cells annotated for 
a given cell type, the corresponding prediction was set as ‘Not Avail-
able’. This label was not taken into account during the majority voting 
procedure and was considered as a wrong prediction when evaluating 
the performances of that cell type.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
scRNA-seq in-house-generated raw data and associated processed 
count matrices are publicly accessible without restrictions at the 
NCBI GEO database under the GSE248688 SuperSeries, including 
the following SubSeries accession numbers: GSE248689 (SCGT01), 
GSE248695 (SCGT02), GSE248685 (SCGT03), GSE248693 (SCGT04) 
and GSE270165 (SCGT06). To ensure data safety and patient privacy, 
raw scRNA-seq data from SCGT00, SCGT00val and SCGT05 stud-
ies can be downloaded upon reasonable request through the Euro-
pean Genome-phenome Archive (EGA) database using the following 
access codes: EGAC50000000566 (SCGT00 and SCGT00val) and 
EGAS50000000590 (SCGT05).
Previously published scRNA-seq data included in this project, either 
FASTQ files or processed count matrices, were obtained from GEO, 
BioStudies Array Express, Broad Institute DUOS, Synapse, Genome 
Sequence Archive, CELLxGENE Data Portal and 10x Genomics. Further 
details are specified in Supplementary Table 1 (Sheet 1).
The processed scRNA-seq datasets (quality controlled gene expres-
sion count matrices) and metadata analyzed in the present study have 
been deposited at Zenodo: https://doi.org/10.5281/zenodo.14851901.

Code availability
The code to reproduce the full analysis presented in this article is 
hosted in the GitHub repository: https://github.com/Single-Cell- 
Genomics-Group-CNAG-CRG/Inflammation-PBMCs-Atlas.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Composition of the inflammation atlas datasets 
from the Main Core. (a) Barplot showing patient count distribution across 
different diseases, including Healthy condition, stratified by technical variables 
(studyID and chemistry) and clinical metadata (age and sex). The donor 
without age information is shown in white. (b) Results from the scib-metrics 
package computed on five different embedding spaces, ranked by their overall 
performances. (c) Heatmaps showing the coefficient of determination R2 
from a linear regression between each principal component and one of four 

confounding factors. The Principal Component Analysis was performed on (left) 
original data (normalized and log-scaled) and (right) from scANVI normalized 
expression (log-scaled). (d) Cellular proportions (Level 1) across diseases and 
Healthy donors (Top). Compositional analysis of Level 1 populations (excluding 
Platelets and RBC) between each disease and Healthy donors (Bottom). The dot 
size reflects the significance of the result (‘Final parameter’!= 0), and the color 
represents the log2FC (Disease vs Healthy).
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Inflammation-related signatures across diseases and 
cell types. (a) Heatmap displaying the transcription factor (TF) specificity of 
STAT1 and SP1 across different cell types and diseases. The t-statistic represents 
the relative expression of genes between diseased and Healthy samples, 
highlighting shared genes between TF target genes and IFN-induced cell type 
signatures. (b) Boxplot displaying the activity of STAT1 and SP1 across cell types 
(Level2) in SLE patients and Flu patients. (c) Boxplot displaying the activity of 
SP1 across monocyte subpopulations (Level 2) in SLE, Flu, Cirrhosis and HNSCC 
patients. In panels (b) and (c), the pseudobulk value computed for each cell type 
within each independent patient are presented as median values, with boxes 

indicating the interquartile range (IQR, 25th–75th percentile) and whiskers 
extending up to 1.5 × IQR beyond the box boundaries; points outside this range 
are shown individually as outliers. Statistical significance was assessed using 
a two-sided Wilcoxon rank-sum test, and P-values were adjusted for multiple 
comparisons using the Benjamini–Hochberg procedure (adjusted P < 0.05). 
Asterisks (*) denote significant differences relative to other cell lineages or 
diseases, with the position of the asterisk indicating the direction of change 
(above the box: upregulated; below the box: downregulated). Exact P-values, 
effect sizes, and sample sizes are provided in Supplementary Table 6 (sheets 
pval_SLE_Level2 and pval_Mono_Level2 for panels b and c, respectively).
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Extended Data Fig. 3 | Confusion matrices of predicted inflammatory 
condition by cell type. Normalized confusion matrices, one for each cell type 
(Level 1; excluding Cycling cells, Progenitors, Platelets and RBC), displaying 
proportion of predictions belonging to each True Condition. Diagonal values 

correspond to the Recall metric. XGBoost was trained on the (a) scANVI batch 
corrected and log-scaled cell expression profiles, and (b) original normalized and 
log-scaled cell expression profiles.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Exploring cell misclassification within COMBAT2022 
dataset. (a-b) Normalized confusion matrices, aggregated (left) and one for 
each cell type (Level 1; excluding Cycling cells, Progenitors, Platelets and RBC) 
(right), displaying proportion of predictions belonging to each True Condition. 
Diagonal values correspond to the Recall metric. XGBoost was trained on the 
original normalized and log-scaled cell expression profiles from (a) whole 
COMBAT dataset and (b) Healthy, Flu and COVID (stratified by disease severity) 

samples from COMBAT dataset. (c-d) Agglomerative hierarchical clustering with 
complete linkage (using the average method and cosine distance) was performed 
on pseudobulk gene expression at the patient level (c), or at cell type (Level1) and 
patient level (d), using the log-normalized uncorrected count matrix on the 8,253 
gene expression universe. Sample covariates, including sequencing pool, sex, 
and age, were also incorporated.
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Extended Data Fig. 5 | Sex-specific classification performances. (a) Normalized 
confusion matrices showing the proportion of cell-wise classifier predictions for 
each true condition. Diagonal values represent the Recall metric. The XGBoost 
classifier was trained on scANVI batch-corrected data. Values were computed 
separately for cells from female (n = 448) (left) and male (n = 369) (right) samples. 
(b–e) Patient-wise classifier performance measured by Weighted F1 scores, 
stratified by sex. (b) Scenario 1: 5-fold cross-validation distributions for each 

left-out split. Data are presented as median values, with boxes indicating the 
interquartile range (IQR, 25th–75th percentile) and whiskers extending up to  
1.5 × IQR beyond the box boundaries; points outside this range are shown 
individually as outliers (n = 5). Non-significant differences (ns, p-value > 0.05) 
were assessed using a two-sided Mann–Whitney U test for each cell type. (c–e) 
Scenario 2, Scenario 3, and centralized approach: performance on unseen 
patients (c), unseen studies (d), and left-out pool observations (e), respectively.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Functional biomarker discovery using interpretable 
machine learning analysis. (a) Gene list ranked top-to-bottom by importance 
(absolute d-SHAP value), coupled with max-normalized expression levels 
computed per cell type (Level1) and considering selected diseases. From left to 
right, reporting top ranked genes for n T CD4 Naive cells in RA disease as well 
as for monocytes and pDC in SLE patients. (b) Rank by importance (absolute 
d-SHAP value) of the CYBA gene in every combination of cell type (Level1) and 
disease. (c) Scatter plot of d-SHAP values against the aggregated s-SHAP values 
on monocyte population and specific diseases (first row: PS, PSA, CD, and second 

row: UC, Asthma, COPD, from left to right). (d) Rank by importance (absolute 
d-SHAP value) of IFITM1 gene in every combination of cell type (Level1) and 
disease. (e) Scatter plot of d-SHAP values against the aggregated s-SHAP values 
on T CD4 Non-Naive (top) and ILC (bottom) population and specific diseases 
(Asthma, COPD, and Cirrhosis, from left to right). In Panels (a), (b), and (d) we first 
dropped the genes expressed in less than 5% of the selected cell population. In 
Panels (c), and (e), the top 20 genes according to d-SHAP are marked in turquoise; 
of these, the genes that are also among the top 20 by s-SHAP are marked in purple. 
The gene of interest is annotated in red.
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Extended Data Fig. 7 | Extended patient classifier workflow schema.  
(a) Definition of reference and query datasets, for Scenarios 1, 2, 3, and 
centralized dataset (from left to right). (b) Integration of the reference dataset 
and mapping of the query dataset to define the patient-wise embeddings, 

stratified by cell type. (c) Patient classifier pipeline composed by the 
hyperparameter tuning of each classifier family, the selection of the best 
classifier family and the final evaluation of the left-out query dataset. (d) Schema 
of the three experiments performed. Icons created with Inkscape.
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Extended Data Fig. 8 | Additional performance evaluation metrics in Scenario 
1. (a-b) Boxes indicate the interquartile range with the median as a center line; 
whiskers extend to 1.5×IQR, and outliers are shown as individual points. Each box 
includes n = 5 points. (a) Boxplots showing the distribution of Balanced Accuracy 
Score (balanced by true disease support), F1, Precision and Recall computed 
during 5-fold cross-validation, considering Majority Vote prediction on the 
left-out split for each inflammatory condition. The average number of samples 

among 5 splits, with the corresponding ground truth labels, are also reported. (b) 
Boxplots showing the distribution of Balance Accuracy Score (top), and Matthew 
Correlation Coefficient (bottom) computed during 5-fold cross-validation, 
considering Majority Vote and cell type prediction, on the left-out split from 817 
samples. (c) Heatmap reporting Recall and Precision computed by aggregating 
the prediction performed by each cell type on each left-out split during 5-fold 
cross-validation.
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Extended Data Fig. 9 | Additional performance evaluation metrics in the 
Centralized dataset analysis and across state-of-the-art data integration 
approaches. (a) Pointplot showing the Balance Accuracy Score (top), and 
Matthew Correlation Coefficient (bottom) computed, considering Majority 
Vote, 100 random disease assignments, and cell type prediction, on the samples 
from left out pools in the Centralized Dataset. (b) Heatmap reporting Recall and 
Precision obtained on the samples from left out pools by each cell type for each 

disease included in the centralized dataset. (c-d) Performance evaluation from 
Scenario 2 (c) and Scenario 3 (d), respectively, showing (left) the distribution of 
Weighted Recall and Weighted Precision for all the configurations of each data 
integration approach, and (right) the mean and standard-deviation of each data 
integration method, including 100 random label assignments. Arrows highlight 
the scANVI configuration applied in Scenario 1.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Patient classifier performance in Scenarios 2 and 
3. (a, c, e, g) Result obtained with the best parameter configuration for each 
integration and mapping method, considering Weighted F1 (WF1) score 
computed on prediction of samples from unseen patients. (b,d,f,h) Result 
obtained with the best parameter configuration for each integration and 
mapping method, considering WF1 score computed on prediction of samples 
from unseen studies. In Panels (a) to (h): (top-left) Pointplot of WF1-scores for 

Majority vote and each cell type. (bottom-left) F1-score for each combination 
of cell type and disease, columns ordered for similarities. (right) Normalized 
confusion matrices displaying proportion of predictions belonging to each true 
condition. Diagonal values correspond to the Recall metric. Corresponding 
Majority Vote WF1 score and Balanced Accuracy Score (BAS) were reported. Note, 
scPoli configurations where embedding space=sample were not considered.
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