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Inflammation is a biological phenomenon beneficial for homeostasis,
butitisunfavorableif dysregulated. Although major progress has been
made in characterizing inflammation in specific diseases, a global, holistic
understanding is still elusive. This is particularly intriguing, considering

its function for human health and the potential for modern medicine
if fully deciphered. In this study, we leveraged advances in single-cell

transcriptomics to delineate inflammatory processes of circulating immune
cells during infection, immune-mediated inflammatory diseases and cancer.
Our single-cell atlas of more than 6.5 million peripheral blood mononuclear
cells from 1,047 patients (56% female, 43% male) and 19 diseases allowed

us tolearna comprehensive model of inflammation in circulatingimmune
cells. The atlas expands current knowledge of the biology of inflammation
ofimmune-mediated diseases, acute and chronic inflammatory diseases,
infections and solid tumors and lays the foundation to develop a disease
classification framework using unsupervised as well as explainable machine
learning. Beyond a disease-centered analysis, we charted altered activity of
inflammatory moleculesin peripheral blood cells, depicting discriminative

inflammation-related genes to further understand mechanisms of
inflammation. We present arich resource for the community and lay the
groundwork for learning a classifier for inflammatory diseases, presenting
cellsincirculation as living biomarkers.

Inflammation is a state of the immune system that serves to protect
the human body from environmental challenges, thereby preserving
homeostasis'. Inflammatory processes are activated in response to
various triggers, such as infection or injury, and involve a multistep
defensive mechanism to eliminate the source of perturbation”. Inflam-
mation represents an altered state within the immune system, which
can manifest as either a protective or a pathological response’. The
cellular and molecular mediators of inflammation play pivotal roles
in nearly every human disease®.

Theinitiation of inflammatory processesis driven by cellular stim-
ulation, triggered by the release of proinflammatory cytokines®. These
cytokines exert autocrine and paracrine effects, activating endothelial
cellsand subsequently increasing vascular permeability. Chemokines
are essential for recruiting additional immune cells for pathogen
eradication®. Inflammation is a central driver in cardiovascular’,

autoimmune®and infectious diseases’ and even cancer'. The success
of therapies targeting inflammation underscores the importance of
understanding the underlying pathways' .

Single-cell RNA sequencing (scRNA-seq) is becoming a conven-
tional method for detecting altered cell states, enabling the com-
parison of transcriptional profiles during inflammation®. A differential
analysis of cell states and gene expression programs at the cellular level
canguide amore holisticunderstanding of inflammationinacute and
chronicdiseases to formthe basis for future precision medicinetools.
In the present study, we annotated the common immune cell types
present in the peripheral blood and identified disease-specific cell
states that exhibit functional specialization within the inflammatory
landscape. Beyond a disease-centered classification, we modeled the
expression profiles of inflammatory molecules to uncover discrimi-
native genes related to immune cell activation, migration, cytotoxic
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responses and antigen presentation activities. Ultimately, we propose
a classifier framework based on peripheral blood mononuclear cells
(PBMCs), demonstrating the potential of circulating immune cells to
contribute to precision medicine strategies for patients suffering from
acute or chronic inflammation.

Results

Aninflammation landscape of circulating immune cells

To chart a comprehensive landscape of immune cells in circulation
of healthy individuals and patients suffering from inflammatory dis-
eases, we analyzed the transcriptomic profiles of more than 6.5 million
PBMCs (6,340,934 after filtering), representing 1,047 patients and
19 diseases, split into a main Inflammation Atlas and two validation
datasets (Fig. 1a,b). Diseases were broadly classified into five distinct
groups: (1) immune-mediated inflammatory diseases (IMIDs, n=7)
(systemiclupus erythematosus (SLE), rheumatoid arthritis (RA), pso-
riatic arthritis (PsA), psoriasis (PS), ulcerative colitis (UC), Crohn’s
disease (CD) and multiple sclerosis (MS)); (2) acute (n =1) (sepsis); (3)
chronicinflammation (n = 3) (chronic obstructive pulmonary disease
(COPD), asthma and cirrhosis); (4) infection (n =4) (influenza virus
(Flu), SARS-CoV-2 (COVID), hepatitis B virus (HBV) and human immu-
nodeficiency virus (HIV)); and (5) solid tumors (n=4) (breast cancer
(BRCA), colorectal cancer (CRC), nasopharyngeal carcinoma (NPC) and
head and neck squamous cell carcinoma (HNSCC)), which were profiled
along with healthy donor samples (Fig. 1a and Extended Data Fig. 1a).
Our cohort included various scRNA-seq chemistries (10x Genomics
3”and 5’ mRNA) and experimental designs (CellPlex and genotype
multiplexing), as well as individuals of both sexes (56% female, 43%
male) and across age groups, to comprehensively capture technical
and biological variability (Methods and Supplementary Table 1). To
learnagenerative model of circulating immune cells of inflammatory
diseases, we applied probabilistic modeling of the single-cell datausing
scVI*and scANVI¥, considering clinical diagnosis, sex and age. Genera-
tive probabilistic models proved superior performances in integrat-
ing complex datasets compared to other approaches', particularly if
cell annotations are available (Extended Data Fig.1b,c). Applied here,
the resulting cell embedding space was batch effect corrected while
preserving biological heterogeneity (that is, previously annotated
cell types and states; Supplementary Table 2). From the joint embed-
ding space, we initially assigned cells to major immune cell lineages
(Levell; Fig.1cand Extended Data Fig.1d). Then, following arecursive,
top-down clustering approach, we obtained a total of 64 immune popu-
lations (Level 2), comprehensively resembling immune cell states of
the innate and adaptive compartments (Fig. 1d, Supplementary Fig. 1
and Supplementary Table 3). High-level compositional analysis (Level
1) across diseases revealed significant changes of cell type distributions
(Extended DataFig.1d) and validated previously described alterations
in blood cells from patients. For example, we confirmed low levels of
unconventional T cells (UTCs), innate lymphoid cells (ILCs) and naive
CDA4 T cells, together with high proportions of B cells and monocytes,
in SLE”. Patients with inflammatory bowel disease (IBD) showed lower
levels of UTCs and ILCs'®, and we observed lower proportions of UTCs
accompanied by a larger fraction of monocytes and B cells in RA”.
Lymphopenia, acommon event during the development of sepsis®,
and lymphocytosis, typical of HIV infection”, were also confirmed.

Diving deeper into genes and gene programs to characterize
inflammatory diseases, our subsequent analysis followed three com-
plementary strategies: (1) to identify disease-driving mechanisms
(gene signature and gene regulatory network (GRN) activity); (2) to
capture discriminative inflammation-related genes (feature extrac-
tion); and (3) to classify patients based on their disease-specific sig-
natures (projection). Therefore, we looked at gene expression profiles
holistically but also delineated the inflammatory process by focusing
onimmune-modulating molecules (Supplementary Table 4).

Inflammation-related signatures across diseases and cell types
Wefirst grouped inflammatory moleculesinto 21 gene signatures that
delineate multiple processes, including immune cell adhesion and
activation, cellular migration (chemokines), antigen presentation and
cytokine-related signaling (Supplementary Table 4). To tailor these
signatures toreflect theinflammation landscape of circulatingimmune
cells, we refined these using Spectra®, yielding a comprehensive set of
119 cell-type-specific factors (Supplementary Table 4). We thenran a
univariate linear model (ULM) analysis on the scANVI-corrected gene
expression data, providing an inflammation signature activity score
for each group. Finally, we ran a linear mixed-effect model (LMEM)
between diseased and healthy samples to highlight disease-specific
alterations (Supplementary Table 5).

We observed a general trend of increased activity in immune-
relevant signatures as compared to healthy donors (>50% increased
average signature scores; Fig. 2a). For IMIDs, we found the characteris-
ticupregulation of adhesion molecule signatures, TNF via NFkB signal-
ing, antigen cross-presentation and antigen-presenting signatures®.
Interferon (IFN) type 1and type 2 signatures were significantly down-
regulated in most IMIDs and cell types, except for non-naive CD8 T cells
that showed an upregulation, pointing to acommon cell-type-specific
mechanism?. Notably, IMIDs showed a strong upregulation of the
IFN-induced signature inalmost allimmune cell types, where SLE was
also accompanied by an upregulation of chemokines and chemokine
receptors. MSshowed adecreased IFN-induced signature andincreased
chemokine receptor activity, in line with the migratory capacity of
blood cells to infiltrate the brain during the course of the disease®. As
previously reported, we captured the upregulation of the TNF receptor/
ligand signature mainly in non-naive CD8 T cells for sepsis (together
withanincrease in IFNy response in monocytes), withadecreasein the
other inflammatory signals (adhesion molecules and cytokines)®*. By
contrast, all chronic inflammatory diseases upregulated the activity
of antigen-presenting molecules and increased IFN-induced signal-
ing. This IFN-induced signature was also increased in viral infections,
such as Flu and COVID, whereas we found a decreased activity in HIV
and HBV. Finally, within solid tumors, CRC and NPC presented astrong
upregulation of TNF via NFkB signaling. Intriguingly, only RA, PS, UC
and CDshowed anenrichmentinthe T follicular helper (Tfh) signature
innon-naive CD4 T cells, highlighting the role of circulating Tfh cellsin
these diseases. In IMIDs more generally, both naive and non-naive CD4
Tcell populations were enriched in T helper signatures, pointingtoan
early priming of naive T toward helper T cell-driven inflammation®.
Finally, to assess the similarity of the inflammatory profiles among
diseases, we performed hierarchical clustering of the inflammation
signature activity score across all cell types (Level 1; Fig. 2a,b).

Fig. 1| Inflammation landscape of circulating immune cells. a, Left, schematic
overview illustrating the number of cells, samples and conditions (diseases

and disease groups) analyzed. Right, pie charts displaying metadatarelated

to the scRNA-seq chemistry (10x Genomics assay and version) and patient
demographics (age and sex). b, Schematic overview of the analysis workflow
followed, detailing the division of the overall dataset into Main, unseen patients
and unseen studies. The figure illustrates the specific tasks and analyses
performed with each dataset. ¢, Uniform manifold approximation and projection
(UMAP) embedding for the scANVI-corrected latent space considering the Main

dataset (4,435,922 cells) across patients and diseases colored by the major cell
lineages (top, Level 1) and diseases (bottom). d, Sankey diagram showing the
Inflammation Atlas cell annotation, considering major cell lineages (Level 1,

left) and cell type populations (Level 2, right), along with their correlation to
Level1cellgroups.a,b, Icons were created in BioRender: Aguilar Fernandez, S.
(2025): https://biorender.com/h7jfeqm or with Inkscape. CM, central memory;
D, disease; DC, dendritic cell; DEG, differentially expressed genes; EM, effector
memory; HC, healthy control; HVG, highly variable genes; Mono, monocytes; NK,
natural killer; pDC, plasmacytoid dendritic cell; QC, quality control.
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Fig. 2| Inflammation-related signatures across cell types and diseases.

a, Heatmap displaying the corrected signature activity score of the 119 cell-
type-specific Spectra factors across diseases and cell types (Level 1). Here,

the corrected signature activity score represents the coefficient value after
running an LMEM comparing diseases versus healthy control (HC) on the ULM
estimates computed using the cell type (Levell) and patient pseudobulk on

the corrected count matrix. The xaxis represents the Spectra cell-type-specific
factor associated with a given function (top annotation). The yaxis represents
the diseases grouped by disease group. b, Agglomerative hierarchical clustering
with complete linkage, performed considering the Euclidean distance among
columns, based on the corrected immune-related signature activity score
computed by disease and cell type (Level 1). ¢, Heatmap displaying the corrected
IFN type 1and type 2 signature activity score across non-naive CD8 T cells

(Level 2) and IMIDs. Here, the corrected signature activity score represents the
coefficient value after running an LMEM comparing diseases versus HC on the
ULM estimates computed using the cell type (Level2) and patient pseudobulk on
the corrected count matrix. For aand ¢, significant signature activity differences

between disease and HC are marked with a dot (-) (LMEM, FDR-adjusted
P<0.05).d, Dot plot showing the uncorrected average expression of the FGFBP2
and GZMB genes from IFN type 1and type 2 signature (xaxis) across different
subpopulations of non-naive CD8 T cells (Level 2) on IMIDs and health (SCGTOO
study). The dot size reflects the percentage of cells of each disease expressing
each gene, and the color represents the average expression level. e, Scaled
relative activity of STAT1and SP1across cell types (Level 1) and enriched diseases
for their transcription factor target genes. Hatched boxes indicate cell types not
enriched in the corresponding disease. f, Heatmap representing the average
scaled transcription factor activity of STAT1 and SP1across cell populations
(Level 2) for flare and non-flare patients from Perez et al.”. Asterisk (*) indicates
statistically significant changes using the two-sided Wilcoxon signed-rank test,
FDR-adjusted P< 0.05. CD, Crohn’s disease; CM, central memory; DC, dendritic
cell; MLM, multilevel modeling; MS, multiple sclerosis; EM, effector memory;
pDC, plasmacytoid dendritic cell; PS, psoriasis; PSA, psoriatic arthritis; RA,
rheumatoid arthritis; TF, transcription factor; UC, ulcerative colitis.

Considering distinct cell types as unique contributors to the
inflammatory immune landscape, IFN signatures have been used
as a biomarker to define disease activity in autoimmune diseases?®.
However, it remains elusive whichimmune subpopulations contribute

to these signatures to guide the selection of specific therapeutic
interventions. Observing an enriched IFN type 1 and type 2 activity
in non-naive CD8 T cells in IMIDs (Fig. 2a), we next sought to dis-
cover subpopulations as the signature driver. Here, we observed
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a significant upregulation across almost all non-naive CD8 T cell
populations—however, with a differential pattern across diseases
(Fig. 2c). We then decomposed the signal to gene level to identify
the most relevant contributors (Supplementary Fig. 2a,b). Intrigu-
ingly, FGFBP2 and GZMB showed increased expression levels, with
restriction to specific effector memory (EM) CD8 T cell subtypes
(EM CX3CR1 high, EM CX3CR1 int, Eff HOBIT and Activated), with a
markedincrease observedin UC (Fig. 2d). Of note, FGFBP2 and GZMB
were recently described as markers of CD8 T cells localized to areas
of epithelial damage?*. Notably, our blood-based analysis points to
their activation in circulating effector CD8 T cell populations even
before tissue infiltration.

Expanding on previous observations of increased IFN-induced
response across several immune cells and diseases, especially in the
myeloid compartment for patients with SLE” (Fig. 2a), we conducted
a GRN analysis to explore the regulatory mechanisms and transcrip-
tion factors driving the IFN-related activity (Levell; Methods). STAT1
and SP1were identified as the primary regulators of the IFN-induced
signature, witheach transcription factor exhibiting cell-type-specific
activities (Fig. 2e and Supplementary Table 6). STAT1 primarily regu-
lated canonical IFN signaling genes across multiple lineages, whereas
SP1activated aheterogeneous set of target genes (Extended DataFig.2a
and Supplementary Table 6)*.

Observing a broad IFN-induced activity across immune cell
types, we next investigated whether STAT1 and SP1 regulatory
programs were conserved across cell subpopulations (Level 2;
Extended Data Fig. 2b,c and Supplementary Table 6). Here, patients
with SLE exhibited opposing STAT1 and SP1 activities in mono-
cytes and non-naive CD8 T cells. STAT1 activity was increased in
non-classical monocytes, whereas SP1 activity was decreased*.
STAT1 was also upregulated in conventional dendritic cells type 2
(cDC2s), whereas SP1 activity was increased across multiple cell
types implicated in the pathogenesis of SLE*, including inflamma-
tory and regulatory monocytes, EM CX3CR1 high, CM and activated
CD8 T cells aswell as adaptive and CD56dimCD16 natural killer cells.
Patients with Flu showed a significant increase in STAT1 activity
in IFN-response CD8 T cells (Extended Data Fig. 2b). By contrast,
patients with cirrhosis presented higher SP1 activity specifically
in IFN-response monocytes. In HNSCC, an increased SP1 activity
was observed in non-classical monocytes (Extended Data Fig. 2¢), a
protumoral populationrelated to the suppressive systemic state of
monocytesin this cancer type®. Given the cell-type-specific regula-
tory patterns observed across diseases, we next investigated the
contribution of STAT1 and SP1 activity to dynamic changes associ-
ated with disease progression. To this end, we assessed their activity
in patients with SLE" experiencing disease exacerbations (flares;
Supplementary Table 6). STAT1 activity was elevated during flares,
particularly within CD8 T cells, whereas SP1activity was more promi-
nent in myeloid populations in the absence of flares (Fig. 2f).

Functional gene selection through interpretable modeling
Genediscovery using linear models or standard differential expression
analysis suffers from the limitation that genes are considered indepen-
dently. Thus, we considered the possibility of categorizing cells to their
respective disease origin through an interpretable machine learning
pipeline, to guide the selection of functional disease discriminatory
genes (Methods and Supplementary Table 4). Therefore, we applied a
supervised classification approach, together with a post hoc interpret-
ability method, to allow the inference of the gene-wise importance,
stratified by disease and cell type (Level 1).

Webased our strategy ongradient boosted decision trees (GBDTSs),
astate-of-the-art machine learning technique proven to be effective in
complex tasks with noisy data and nonlinear feature dependencies®
(Methods and Supplementary Table 7). Toaccount for cell-type-specific
expression patterns and the differential impact of diseases across
immune populations, we trained separate models for each cell type
(Level1). We applied the classification pipeline to the scANVI-corrected
gene expression profiles, achieving abalanced accuracy score (BAS) of
0.87 and aweighted F1(WF1) score of 0.90 on held-out samples (Fig. 3a
and Supplementary Table 8). Instead, uncorrected log-normalized
counts led to a reduced performance, underscoring the benefits of
batch correction (BAS: 0.65 and WF1: 0.78; Fig. 3a). Performances
were consistent among cell types, with less abundant cell populations
obtaining generally lower scores (for example, plasma cells, BAS: 0.78
and WF1: 0.80; Extended Data Fig. 3 and Supplementary Table 8). We
observed that certain diseases exhibited poorer classification perfor-
mance—for example, the misclassification of patients with severe Flu
as COVID (Extended DataFig.3). Retraining the GBDT classifier on the
Flu and COVID dataset (COMBAT dataset*) and stratifying patients
with COVID by their clinical behavior (mild, severe and critical) iden-
tified patients with severe Flu to closely resemble severe COVID cases
(Extended DataFig.4a,b). Similar results were obtained by clustering
pseudobulks at the sample level (Extended DataFig. 4c,d), supporting
common inflammatory signatures of patients suffering from these
severe respiratory infections. Finally, separating cells from female
and male patients yielded similar performances, with no differences
between sexes (Extended DataFig. 5a).

As GBDTs require post hoc interpretability tools, we computed
SHapley Additive exPlanation (SHAP)* values. By combining the two
approaches, we obtained a rich resource of gene rankings based on
their ability to discriminate inflammatory conditions across different
celltypes (Methods and Supplementary Table 9). To evaluate the effec-
tiveness of disease-discriminative SHAP (d-SHAP) values, we assessed
the classification performance compared to an equal number of ran-
domly selected genes. On unseen studies, d-SHAP genes consistently
yielded more accurate predictions (Fig. 3b). Due to the possible collin-
earity of diseases and studies, d-SHAP values might be affected by batch
effects. To disentangle disease-specific from study-specific signals, we
trained separate classifiers to predict the study identity (BAS: 0.97 and

Fig. 3| Functional gene discovery using interpretable machine learning.

a, Normalized confusion matrices displaying proportion of predictions
belonging to each true condition. Diagonal values correspond to the Recall
metric. XGBoost was trained on the scANVI batch-corrected (left) or batch-
uncorrected (right) log-scaled cell expression profiles. b, Validation of d-SHAP-
based gene selection using XGBoost trained with a nested cross-validation
onunseen studies’ cells. Each point corresponds to the average left-out fold
performance, for each best configuration of each fold combination. The box
plots report the WF1 (top) and the BAS (bottom) computed considering top 5,
10 and 20 genes (among the ones expressed in at least 5% of the total cells), for
eachinflammatory condition present within the unseen studies dataset (that is,
healthy, sepsis, CD, SLE, HIV, cirrhosis, RA and COVID) according to the d-SHAP
values, across cell types (Level 1). For the same number of genes, we report the
performance scores of n =20 random selected gene sets. The performance of the
classifier when trained on the whole gene set, consisting of the genes expressed

inatleast 5% of the total cells, is also reported. Boxes indicate the interquartile
range (IQR) with the median as a center line; whiskers extend to 1.5x IQR; and
outliers are shown as individual points. ¢, Scatter plot of max-normalized

gene expression against d-SHAP values computed for CYBA gene on monocyte
population (Level1) and considering the output of disease-XGBoost for a given
disease (UC, CD, PS and PSA, from left to right). d, Scatter plot of max-normalized
gene expression against d-SHAP values computed for /F/TM1 gene on T non-naive
CD4 and ILC populations (annotation Level 1) considering the output of the
disease-XGBoost for a given disease (asthma and COPD, left and right).Incand d,
we limited the visualization to up to 60,000 cells, sampling an equal percentage
from each patient corresponding to 5% and 7.5% of monocytes and T non-naive
CD4 cells, respectively. Cells belonging to samples with or without the given
condition (disease) are marked in orange or blue, respectively. CD, Crohn’s
disease; MS, multiple sclerosis; PS, psoriasis; PSA, psoriatic arthritis;

RA, rheumatoid arthritis; UC, ulcerative colitis.
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WF1: 0.99; Supplementary Fig. 4a) and to identify study-associated
genes viaSHAP values (s-SHAP; Methods). The correlation and overlap
between the d-SHAP and s-SHAP values (Supplementary Fig. 4b,c)
allowed us to prioritize bona fide disease-discriminative genes for
further analysis (Supplementary Table 9).

Ordering genes based on d-SHAP values identified previously
described biomarkers, such as STAT3in CD4 T cells for RA samples®
and IFN genes for SLE samples” (Extended Data Fig. 6a). The d-SHAP
values of CYBA stood out as a strong candidate marker to classify
diseases affecting barrier tissue: PSA, PS, UC and CD (Fig. 3c and
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Extended DataFig. 6b,c). CYBA encodes the primary component of the
microbicidal oxidase system of phagocytes. Inline, the importance was
seen mainly in monocytes (Extended Data Fig. 6b). Interestingly, high
expression of CYBA drove the model to classify intestinal inflammatory
diseases (UC and CD), whereasreduced levels were relevant to classify
skin-related diseases (PS and PSA) (Fig. 3c). Mutations in CYBA cause
chronic granulomatous disease, with patients showing an impaired
phagocyteactivation andfailingto generate superoxide. Consequently,
patients show recurrent bacterial and fungal infections in barrier tis-
sues, including the skin®®. Thus, we hypothesize that reduction of CYBA
in skin-related IMIDs leads to an impaired immune barrier function,
causing localized, symptomatic flares of PS and PSA. On the other
hand, reactive oxidative species (ROS) produced by mucosa-resident
cells or by newly recruited innateimmune cells are essential for antimi-
crobial mucosal immune responses™. In IBDs, an upregulation of CYBA
may resultin the accumulation of superperoxide and ROS throughiits
oxidase function, a hallmark of these diseases*.

Further exploring d-SHAP value ranks highlighted the impor-
tance of IFITM1 across chronic diseases, including COPD and asthma
(Extended Data Fig. 6d,e). IFITMI encodes a protein that inhibits
viral entry into host cells by preventing the fusion of the virus with
the host cell membrane*.. The importance of IFITMI was mainly
observed in lymphoid cells, specifically CD4 non-naive T cells and
ILCs (Extended Data Fig. 6d and Supplementary Fig. 3). In both cell
types, higher IFITMI expression drives the model toward classify-
ing COPD, whereas lower expression shifts the classification toward
asthma (Fig.3d).Inline, T celland ILC accumulationis associated with
the decline of lung function and severity in patients with COPD*’, We
hypothesize that chronic inflammation triggers higher expression of
IFITM1inlymphoid cells, thereby facilitating their accumulation®, with
further mechanistic validation being needed.

Classifying patients by reference mapping

The ability toaccurately classify cellsaccording to their respective dis-
eases prompted us to classify patients based on their disease of origin,
creating the basis for a universal classifier as a precision medicine tool
forinflammatory diseases. By considering each patient as an ensemble
of expression profilesacross all circulatingimmune cells, we learned a
generative model whileintegrating the single-cell reference as abasis
to project new patients fromaquery dataset into the same embedding
space. Such strategy allowed us to map unseen and unlabeled query
patient datainto our reference embedding space, providingacommon
ground for classification.

Projecting expression datainto alower-dimensional spaceisacom-
monstrategy to reduce noise** and to map query dataintoareference
atlas®. Here we introduce a novel computational framework to exploit
the cell embeddings for classification, thus turning the single-cell
reference into a diagnostic tool (Fig. 4a and Extended Data Fig. 7).
Therefore, we first generated the embeddings with scANVI (30 latent
embeddings) of boththereference and the unseen query datasets while
also transferring the cell labels to the latter (Supplementary Table 7).
Then, we defined acell type pseudobulk profile per patient by averaging

the embedded features of the corresponding cells (Level 1; Methods).
Next, we trained an independent classifier to assign correct disease
labels, considering one cell type at a time. We handled uncertainty at
celltypelevel viaamajority voting system to determine most frequent
conditions. To assess the performance of our framework, we proposed
three scenarios: (1) a five-fold cross-validation splitting the full refer-
ence atlasinto five balanced sets, (2) a dataset with unseen patients and
(3) adataset withunseen studies (Fig.4b). We consider these scenarios
arepresentation of the dataintegration challenges with anincreasing
degree of complexity.

Our classification strategy achieved high performance in the
cross-validationscenario (Scenario 1; Supplementary Table 8), resulting
in0.90 + 0.03 WF1and 0.85 + 0.07 BAS (Fig. 4c). Consistent with results
obtained from the cell-wise classifier pipeline, Flu was the only disease
that failed to be classified (Recall: 0.18) (Extended Data Fig. 8a,b).
Training a classifier for each cell type separately allowed us to assess
their relevance in distinguishing inflammatory diseases (Fig. 4d,e).
Here, plasma and UTC showed the lowest BAS (0.53 and 0.67) and
WF1(0.64 and 0.78), highlighting the strength of our majority voting
approach as a robust ensemble (Extended Data Fig. 8b). Although
certain diseases (COVID, COPD and asthma) were particularly well
classified by lymphoid and myeloid cell types, HIV was best classified
by naive lymphoid cells (that is, naive CD4 and CD8 T cells and B cells
with F10f 0.83) inline with the tropism of the virus infecting mainly CD4
Tcells*** (Fig.4d and Extended Data Fig. 8c). Increasing the complexity
by classifying unseen patient samples (Scenario 2), the performance
remained very high, with aBAS of 0.95and a WF10f 0.98 (Fig. 4f-h and
Supplementary Table 8). However, the classification of samples from
unseenstudies (Scenario 3) resulted ina strongly decreased BAS of 0.12
and aWF10of 0.23 (Fig. 4i-k and Supplementary Table 8).

The largest performance drop was observed between Scenario
2 and Scenario 3, the latter classifying patients from unseen stud-
ies. We hypothesized that confounding factors, such as variations
in assay chemistry or research centers, hindered the classifier’s
ability to generalize. To validate our hypothesis and to provide a
path toward a generalizable patient classifier, we next considered
a Centralized Dataset that includes only data from diseases gen-
erated in the same center with a single assay chemistry (SCGTOO
data; Supplementary Table1and Extended Data Fig. 7). In contrast to
Scenario 2, we stratified the samples by sequencing pool and disease,
ensuring thatreference and query patients belong to distinct cohorts.
This new centralized approachincluded anindependent annotation
of thereference patients’ cells (Methods and Supplementary Table 3)
and new scANVI integration of the reference data, before project-
ing cells of the query patients. Notably, in this context, WF1 and
BAS increased to 0.56 and 0.53, respectively, pointing to a highly
improved generalization performance when classifying query
patients as compared to Scenario 3 (Fig. 5a—c, Extended Data Fig. 9a,b
and Supplementary Table 8). Finally, we evaluated the classifier
performance considering male and female patients separately. In
Scenario 1, no statistically significant differences were observed
between WF1distributions (Extended Data Fig. 5b), and the majority

Fig. 4 |Schematic representation of the patient classifier pipeline and
performance evaluation. a, Schematic representation of the patient classifier
pipeline.Icons were created with Inkscape. b, Description of the three
performance evaluation scenarios. In our datasets, we always have only one
sample for each patient. c-e, Performance evaluation in Scenario 1 (five-fold
cross-validation, from 817 samples), showing: ¢, distribution of WF1scores for
eachleft-out split (boxes indicate the interquartile range (IQR) with the median
as acenter line, whiskers extend to 1.5x IQR and outliers are shown as individual
points (each box includes n =5 points)); d, F1score for each combination of cell
type and disease, after aggregating all the predictions of the left-out folds; and e,
normalized confusion matrices displaying proportion of predictions belonging
to each true condition after aggregating all the predictions of the left-out

folds. Main diagonal values correspond to the Recall metric. f,g, Performance
evaluation in Scenario 2, showing WF1scores for unseen patients’ observation
(f) and F1score for each combination of cell type and disease (g). h, Normalized
confusion matrices displaying proportion of predictions belonging to

each true condition. Main diagonal values correspond to the Recall metric.

i-k, Performance evaluation in Scenario 3, showing: i, WF1scores for unseen
studies’ observation;j, F1score for each combination of cell type and disease;
and k, normalized confusion matrices displaying proportion of predictions
belonging to each true condition. Main diagonal values correspond to the Recall
metric. CD, Crohn’s disease; DC, dendritic cell; MS, multiple sclerosis; P, patient;
pDC, plasmacytoid dendritic cell; PS, psoriasis; PSA, psoriatic arthritis; QC,
quality control; RA, rheumatoid arthritis; UC, ulcerative colitis.
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Fig. 5| Evaluating patient classifier performance on a Centralized Dataset and
comparison with the state-of-the-art data integration approaches.

a—c, Performance evaluation in a Centralized Dataset, showing: a, WF1scores

for left-out pool observation (mean and standard deviation of WF1score of 100
random condition assignments is reported); b, F1score for each combination of
celltype (Level 1) and disease; and ¢, normalized confusion matrices displaying
proportion of predictions belonging to each true condition (main diagonal
values correspond to the Recall metric). d,e, Performance evaluation in Scenario

2 (d) and Scenario 3 (e), showing the distribution of WF1and BAS for all the
configurations of each dataintegration approach (left) and the mean and
standard deviation of each data integration method (right), including random
assignment (n =5 for Harmony&Symphony, scANVIand scGen; n =10 for scPoli
cell, sample and cell&sample embedding; n =100 for random assignment).
Arrows highlight scANVI configuration applied in Scenario 1. CD, Crohn’s disease;
DC, dendritic cell; pDC, plasmacytoid dendritic cell; PS, psoriasis; PSA, psoriatic
arthritis; RA, rheumatoid arthritis; UC, ulcerative colitis.

vote approach also yielded consistent results in the other scenarios
(Extended Data Fig. 5c-e).

Consequently, we hypothesize immune cells in circulation to
serve as a source for building a universal classifier for inflammatory
diseases. Although the here-used subset of the Inflammation Atlas was
limited in cell and patient numbers, future efforts for commercializa-
tion are required to develop large single-chemistry training datasets
andrespectivemodels to further increase the classification accuracy.

We selected scANVIas our Inflammation Atlas integration method
for its top-ranked performance in data integration benchmarks. To
further assess classification performance for the task at hand, we
next compared scANVI against other approaches (that is, Harmony/
Symphony, scGen and scPoli) and hyperparameter configurations in
Scenario 2 and Scenario 3 (Supplementary Table 7). In concordance
with our previous results for scANVI, all newly introduced methods
achieve high performance in the dataset with unseen patients (Sce-
nario 2; Fig. 5d, Supplementary Table 8 and Extended Data Figs. 9c
and 10a,c,e,g). Although all the approaches lost predictive power
on the unseen studies datasets (Scenario 3; Supplementary Table 8),
Harmony performed best with a BAS of 0.24 and a WF1 of 0.47 (Fig. 5Se
and Extended DataFigs. 9d and 10b,d,f,h). Although linear approaches
(for example, Harmony) have less representation power than vari-
ational autoencoders (VAEs), they are also less prone to overfitting
and more robust to the hyperparameter choice. Hence, in settings

where hyperparameter tuning and validation are not possible due to
the lack of condition labels, tools such as Harmony/Symphony might
be preferable to more complex VAEs.

Discussion

Comprehensive mapping of the plasticity of the immune cells
in circulation is achieved by single-cell sequencing-based
immuno-phenotyping*®. Recent technologies enable the sampling of
thousands of cells per sample and hundreds of thousands per patient
cohort, pushing the resolution toward fine-grained cellular maps and
increasing the power to identify disease-specific states*. To date,
single-cell sequencing has been applied to a multitude of inflamma-
tory diseases to pinpoint disease-driving mechanisms as potential
therapeutic targets”. However, acomplete map of immune cell states
across diseases, holistically chartingimmune plasticity ininflammatory
diseases, has been elusive.

The concept of usingimmune cells as asensor for diseases is highly
intriguing and opens the door for the development of future universal
diagnostic tools*. For diseases such as rheumatic diseases and IBD,
many patients are undiagnosed or diagnosed as false positive, and
more accurate universal tools are needed™*. Our approach using
GBDT, together with SHAP-based interpretability and a tailored list of
functional immune cell molecules, provided explainable outcomes
and serves as arich resource for identifying disease-discriminative
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genes®. We further tested the utility of an Inflammation Atlas as aliquid
biopsy classification tool by developing a patient classifier based on
the latent embeddings after integration. To our knowledge, existing
patient classifiers have evaluated settings similar to Scenario1and Sce-
nario 2 (scPoliand MultiMIL®). In Scenario 3, we then queried patients
belonging to studies excluded from our reference atlas, simulating the
application of the Inflammation Atlas as a diagnostic tool. Here, our
approachinitially failed to generalize to unseen patients, indicating
that further optimization was needed to build ageneralizable model for
more accurate disease diagnostics. To explore the reasons for limited
generalization, we performed additional analyses on a Centralized
Dataset. Here, the improved performance compared to Scenario 3
highlighted the impact of batch effects introduced through differing
assay chemistries and centers.

Although our study provides a comprehensive framework for
immune profiling across inflammatory diseases, several aspects war-
rant further exploration. Most samples in our compendium derive from
individuals of European ancestry, and expanding to ancestrally diverse
populations will be essential to capture globalimmune variability and
improve model generalizability. Our classifier also requires prospec-
tive validation in independent, multicenter cohorts to assess robust-
ness and clinical applicability. Finally, understanding the relationship
between circulating and tissue-resident immune cells remains key
for diagnostic translation. Circulating cells offer aminimally invasive
means to monitor disease activity, yet future studies should validate
towhatextent their molecular programsreflect tissue-resident inflam-
matory states across organs and disease contexts.

Bringing reference atlases into clinics remains a complex task,
particularly without clearimplementation strategies. We contributed
to this roadmap by generating acomprehensive landscape of circulat-
ing immune cells across inflammatory diseases. Toward leveraging
single-cell technologies in diagnostics, we call for the definition of
best practices and quality control standards to reduce batch effects,
alongside generating large, controlled training datasets. To allow
data integration methods to fully generalize, we need to reduce the
confounding factors, as demonstrated by our centralized approach,
or largely increase training data size and variability. Alternatively, a
reference training dataset is generated by multiple centers and diverse
chemistries to define alarge, heterogeneous atlas, enabling the defi-
nition of a foundation model** to pave the way to a universal disease
classifier, robust to batch effects.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availability areavailable at https://doi.org/10.1038/541591-025-04126-3.

References

1. Medzhitov, R. The spectrum of inflammatory responses. Science
374, 1070-1075 (2021).

2. Casanova, J.-L. & Abel, L. Mechanisms of viral inflammation and
disease in humans. Science 374, 1080-1086 (2021).

3. Medzhitov, R. Origin and physiological roles of inflammation.
Nature 454, 428-435 (2008).

4. Netea, M. G. et al. A guiding map for inflammation. Nat. Immunol.
18, 826-831(2017).

5. Roe, K. Aninflammation classification system using cytokine
parameters. Scand. J. Immunol. 93, 12970 (2021).

6. Hughes, C.E. & Nibbs, R. J. B. A guide to chemokines and their
receptors. FEBS J. 285, 2944-2971(2018).

7.  Soehnlein, O. & Libby, P. Targeting inflammation in
atherosclerosis—from experimental insights to the clinic.
Nat. Rev. Drug Discov. 20, 589-610 (2021).

10.

1.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Psarras, A., Wittmann, M. & Vital, E. M. Emerging concepts of
type | interferons in SLE pathogenesis and therapy. Nat. Rev.
Rheumatol. 18, 575-590 (2022).

Manthiram, K., Zhou, Q., Aksentijevich, I. & Kastner, D. L. The
monogenic autoinflammatory diseases define new pathways

in human innate immunity and inflammation. Nat. Immunol. 18,
832-842 (2017).

Cao, L. L. &Kagan, J. C. Targeting innate immune pathways for
cancer immunotherapy. Immunity 56, 2206-2217 (2023).
Dinarello, C. A., Simon, A. & van der Meer, J. W. M. Treating
inflammation by blocking interleukin-1in a broad spectrum of
diseases. Nat. Rev. Drug Discov. 11, 633-652 (2012).

Tiburca, L. et al. The treatment with interleukin 17 inhibitors and
immune-mediated inflammatory diseases. Curr. Issues Mol. Biol.
44,1851-1866 (2022).

Dann, E. et al. Precise identification of cell states altered in
disease using healthy single-cell references. Nat. Genet. 55,
1998-2008 (2023).

Lopez, R., Regier, J., Cole, M. B., Jordan, M. |. & Yosef, N. Deep
generative modeling for single-cell transcriptomics. Nat. Methods
15, 1053-1058 (2018).

Xu, C. et al. Probabilistic harmonization and annotation of
single-cell transcriptomics data with deep generative models.
Mol. Syst. Biol. 17, €9620 (2021).

Luecken, M. D. et al. Benchmarking atlas-level data integration in
single-cell genomics. Nat. Methods 19, 41-50 (2022).

Perez, R. K. et al. Single-cell RNA-seq reveals cell type-specific
molecular and genetic associations to lupus. Science 376,
eabf1970 (2022).

Ju, J. K. et al. Activation, deficiency, and reduced IFN-y production
of mucosal-associated invariant T cells in patients with
inflammatory bowel disease. J. Innate Immun. 12, 422-434 (2020).
Adlowitz, D. G. et al. Expansion of activated peripheral blood
memory B cells in rheumatoid arthritis, impact of B cell depletion
therapy, and biomarkers of response. PLoS ONE 10, e0128269
(2015).

Drewry, A. M. et al. Persistent lymphopenia after diagnosis of
sepsis predicts mortality. Shock 42, 383 (2014).

Moir, S. & Fauci, A. S. B cells in HIV infection and disease. Nat. Rev.
Immunol. 9, 235-245 (2009).

Kunes, R. Z., Walle, T., Land, M., Nawy, T. & Pe‘er, D. Supervised
discovery of interpretable gene programs from single-cell data.
Nat. Biotechnol. 42,1084-1095 (2024).

Ishina, I. A. et al. MHC class Il presentation in autoimmunity. Cells
12, 314 (2023).

Thomas, T. et al. A longitudinal single-cell atlas of anti-tumour
necrosis factor treatment in inflammatory bowel disease.

Nat. Immunol. 25, 2152-2165 (2024).

Feng, X. et al. Interferon-f3 corrects massive gene dysregulation in
multiple sclerosis: short-term and long-term effects on immune
regulation and neuroprotection. eBioMedicine 49, 269-283
(2019).

Reyes, M. et al. An immune-cell signature of bacterial sepsis.

Nat. Med. 26, 333-340 (2020).

Raphael, I., Joern, R. R. & Forsthuber, T. G. Memory CD4" T cells in
immunity and autoimmune diseases. Cells 9, 531 (2020).
Andreou, N.-P., Legaki, E. & Gazouli, M. Inflammatory bowel
disease pathobiology: the role of the interferon signature. Ann.
Gastroenterol. 33,125-133 (2020).

Regis, G., Pensa, S., Boselli, D., Novelli, F. & Poli, V. Ups and
downs: the STAT1:STAT3 seesaw of interferon and gp130 receptor
signalling. Semin. Cell Dev. Biol. 19, 351-359 (2008).

Aug, A. et al. Elevated STAT1 expression but not phosphorylation
in lupus B cells correlates with disease activity and increased
plasmablast susceptibility. Rheumatology 59, 3435-3442 (2020).

Nature Medicine


http://www.nature.com/naturemedicine
https://doi.org/10.1038/s41591-025-04126-3

Article

https://doi.org/10.1038/s41591-025-04126-3

31. Szabd, E. et al. Identification of immune subsets with distinct
lectin binding signatures using multi-parameter flow
cytometry: correlations with disease activity in systemic lupus
erythematosus. Front. Immunol. 15, 1380481 (2024).

32. Olingy, C.E., Dinh, H. Q. & Hedrick, C. C. Monocyte heterogeneity
and functions in cancer. J. Leukoc. Biol. 106, 309-322 (2019).

33. Bentéjac, C., Csorgd, A. & Martinez-Mufoz, G. A comparative
analysis of gradient boosting algorithms. Artif. Intell. Rev. 54,
1937-1967 (2021).

34. Ahern, D. J. etal. A blood atlas of COVID-19 defines hallmarks of
disease severity and specificity. Cell 185, 916-938 (2022).

35. Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting
model predictions. In Proc. 31st International Conference on
Neural Information Processing Systems 4768-4777 (Curran
Associates, 2017).

36. Anderson, A. E. et al. Expression of STAT3-regulated genes
in circulating CD4+ T cells discriminates rheumatoid arthritis
independently of clinical parameters in early arthritis.
Rheumatology 58, 1250-1258 (2019).

37. Ronnblom, L. & Leonard, D. Interferon pathway in SLE: one key to
unlocking the mystery of the disease. Lupus Sci. Med. 6, 000270
(2019).

38. Zhang, L., Yu, L., Li, J., Li, Z. & Zhao, X. Novel compound
heterozygous CYBAmutations causing neonatal-onset
chronic granulomatous disease. J. Clin. Immunol. 43, 1131-1133
(2023).

39. Denson, L. A. et al. Clinical and genomic correlates of neutrophil
reactive oxygen species production in pediatric patients with
Crohn's disease. Gastroenterology 154, 2097-2110 (2018).

40. Jarmakiewicz-Czaja, S., Ferenc, K. & Filip, R. Antioxidants as
protection against reactive oxidative stress in inflammatory bowel
disease. Metabolites 13, 573 (2023).

41. Diamond, M. S. & Farzan, M. The broad-spectrum antiviral
functions of IFIT and IFITM proteins. Nat. Rev. Immunol. 13, 46-57
(2013).

42. Wen, L., Krauss-Etschmann, S., Petersen, F. & Yu, X. Autoantibodies
in chronic obstructive pulmonary disease. Front. Immunol. 9,

66 (2018).

43. Segui, J. et al. Superoxide dismutase ameliorates TNBS-induced
colitis by reducing oxidative stress, adhesion molecule
expression, and leukocyte recruitment into the inflamed intestine.
J. Leukoc. Biol. 76, 537-544 (2004).

44. Heumos, L. et al. Best practices for single-cell analysis across
modalities. Nat. Rev. Genet. 24, 550-572 (2023).

45. Lotfollahi, M. et al. Mapping single-cell data to reference atlases
by transfer learning. Nat. Biotechnol. 40, 121-130 (2022).

46. Clark, I. C. et al. HIV silencing and cell survival signatures in
infected T cell reservoirs. Nature 614, 318-325 (2023).

47. Zuroff, L. et al. Immune aging in multiple sclerosis is characterized
by abnormal CDA4 T cell activation and increased frequencies
of cytotoxic CD4 T cells with advancing age. EBioMedicine 82,
104179 (2022).

48. Edahiro, R. et al. Single-cell analyses and host genetics highlight
the role of innate immune cells in COVID-19 severity. Nat. Genet.
55, 753-767 (2023).

49. Dominguez Conde, C. et al. Cross-tissue immune cell analysis
reveals tissue-specific features in humans. Science 376, eabl5197
(2022).

50. Sanyal, A. J. et al. Diagnostic performance of circulating
biomarkers for non-alcoholic steatohepatitis. Nat. Med. 29,
2656-2664 (2023).

51. van Steenbergen, H. W., Cope, A. P. & van der Helm-van Mil, A.

H. M. Rheumatoid arthritis prevention in arthralgia: fantasy or
reality? Nat. Rev. Rheumatol. 19, 767-777 (2023).

52. Feld, L., Glick, L. R. & Cifu, A. S. Diagnosis and management of
Crohn disease. JAMA 321, 1822-1823 (2019).

53. Litinetskaya, A. et al. Multimodal weakly supervised learning to
identify disease-specific changes in single-cell atlases. Preprint at
bioRxiv https://doi.org/10.1101/2024.07.29.605625 (2024).

54. Szatata, A. et al. Transformers in single-cell omics: a review and
new perspectives. Nat. Methods 21, 1430-1443 (2024).

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if you modified the licensed
material. You do not have permission under this licence to share
adapted material derived from this article or parts of it. The images

or other third party material in this article are included in the article’s
Creative Commons licence, unless indicated otherwise in a credit

line to the material. If material is not included in the article’s Creative
Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2026

Laura Jiménez-Gracia ® >4, Davide Maspero'*°, Sergio Aguilar-Fernandez'3*54°, Francesco Craighero ® ¢4°,

Maria Boulougouri® ¢, Max Ruiz', Domenica Marchese', Ginevra Caratll', Jose Lifiares-Blanco’?, Miren Berasategi',
Ricardo O. Ramirez Flores®’, Angela Sanzo-Machuca®°, Ana M. Corraliza® °'°, Hoang A. Tran®**5, Rachelly Normand®*?®,
Jacquelyn Nestor®*°, Yourae Hong", Tessa Kole'', Petra van der Velde'*", Frederique Alleblas'>'*, Flaminia Pedretti',
Adria Aterido™", Martin Banchero ® >, German Soriano'"?, Eva Roman'®'®, Maarten van den Berge'>",

Azucena Salas® °'°, Jose Manuel Carrascosa®2°, Antonio Fernandez Nebro ® #?>23, Eugeni Doménech'?,

Juan D. Caiiete ® %, Jestis Tornero?, Javier P. Gisbert'®?"?3, Ernest Choy?®, Giampiero Girolomoni®?, Britta Siegmund ® '3,
Antonio Julia®'®", Violeta Serra® ", Roberto Elosua®*?4%, Sabine Tejpar®", Silvia Vidal®®, Martijn C. Nawijn ® 24,

Ivo Gut®'?, Julio Saez-Rodriguez® ¥, Sara Marsal'®", Alexandra-Chloé Villani®3*#®, Juan C. Nieto ® "% &

Holger Heyn ® 2384

'Centro Nacional de Analisis Genémico, C/Baldiri Reixac 4, Barcelona, Spain. 2Universitat de Barcelona, Barcelona, Spain. *Center for Immunology
and Inflammatory Diseases, Massachusetts General Hospital, Charlestown, MA, USA. “Broad Institute of MIT and Harvard, Charlestown, MA, USA.
®Harvard Medical School, Boston, MA, USA. ®Signal Processing Laboratory 2 (LTS2), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne,
Switzerland. "Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg,

Nature Medicine


http://www.nature.com/naturemedicine
https://doi.org/10.1101/2024.07.29.605625
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://orcid.org/0000-0002-9648-9247
http://orcid.org/0000-0001-8457-6979
http://orcid.org/0000-0001-5969-3292
http://orcid.org/0000-0003-0087-371X
http://orcid.org/0000-0002-3067-7763
http://orcid.org/0009-0003-8398-4614
http://orcid.org/0000-0003-4572-2907
http://orcid.org/0000-0003-4266-0771
http://orcid.org/0000-0002-2962-9844
http://orcid.org/0000-0003-2606-0573
http://orcid.org/0000-0002-0055-958X
http://orcid.org/0000-0001-6064-3620
http://orcid.org/0000-0001-6620-1065
http://orcid.org/0000-0003-3281-8643
http://orcid.org/0000-0003-3372-6521
http://orcid.org/0000-0001-7219-632X
http://orcid.org/0000-0002-8552-8976
http://orcid.org/0000-0001-7461-0408
http://orcid.org/0000-0002-3400-1488
http://orcid.org/0000-0002-3276-1889

Article https://doi.org/10.1038/s41591-025-04126-3

Germany. ®Department of Statistics, University of Granada, Granada, Spain. °Inflammatory Bowel Disease Group, Institut d’Investigacions Biomédiques
August Pii Sunyer (IDIBAPS), Barcelona, Spain. °Centro de Investigacion Biomédica en Red de Enfermedades Hepéticas y Digestivas (CIBEREHD),
Barcelona, Spain. "Digestive Oncology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium. >Groningen Research Institute

for Asthma and COPD (GRIAC), University Medical Center Groningen, Groningen, Netherlands. ®*Department of Pulmonary Diseases, University of
Groningen, University Medical Center Groningen, Groningen, Netherlands. “Department of Pathology and Medical Biology, University of Groningen,
University Medical Center Groningen, Groningen, Netherlands. ®Experimental Therapeutics Group, Vall d’Hebron Institute of Oncology, Barcelona,
Spain. ®Rheumatology Research Group, Vall d’Hebron Research Institute, Barcelona, Spain. "IMIDomics, Inc., San Rafael, CA, USA. ®Department of
Gastroenterology, Biomedical Research Institut Sant Pau (1B Sant Pau), Barcelona, Spain. ®Centro de Investigacién Biomédica en Red de Enfermedades
Hepaticas y Digestivas (CIBEREHD), Madrid, Spain. 2°Dermatology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain. 2UGC

de Reumatologia, Hospital Regional Universitario de Malaga, Malaga, Spain. ZInstituto de Investigacién Biomédica de Malaga y Plataforma en
Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain. 2?Departamento de Medicina, Universidad de Malaga, Malaga, Spain. 2*Gastroenterology
Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain. ?Rheumatology Department, Fundacié Clinic per a la Recerca Biomédica,
Barcelona, Spain. 2Rheumatology Department, Hospital Universitario Guadalajara, Guadalajara, Spain. ¥Gastroenterology Unit, Hospital Universitario
de La Princesa, Instituto de Investigacion Sanitaria Princesa (I1S-Princesa), Madrid, Spain. 2Universidad Auténoma de Madrid (UAM), Madrid, Spain.
25ection of Rheumatology, Cardiff University, Cardiff, UK. °Section of Dermatology and Venereology, University of Verona, Verona, Italy. *'Department
of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitatsmedizin Berlin, corporate member of Freie Universitét Berlin and
Humboldt-Universitat zu Berlin, Berlin, Germany. *2Cluster of Excellence ImmunoPreCept, Charité - Universitatsmedizin Berlin, Berlin, Germany.
3Hospital del Mar Research Institute (IMIM), Barcelona, Spain. **CIBERCYV, Instituto de Salud Carlos lIl, Madrid, Spain. *Faculty of Medicine, University
of Vic-Central University of Catalonia, Vic, Spain. *Group of Immunology-Inflammatory Diseases, Biomedical Research Institut Sant Pau (IIB Sant Pau),
Barcelona, Spain. *’European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK. ®ICREA, Barcelona, Spain.
*present address: Omniscope, Barcelona, Spain. “°These authors contributed equally: Laura Jiménez-Gracia, Davide Maspero, Sergio Aguilar-Fernandez,
Francesco Craighero. “These authors jointly supervised this work: Juan C. Nieto, Holger Heyn. < e-mail: juan.nieto@cnag.eu; holger.heyn@cnag.eu

Nature Medicine


http://www.nature.com/naturemedicine
mailto:juan.nieto@cnag.eu
mailto:holger.heyn@cnag.eu

Article

https://doi.org/10.1038/s41591-025-04126-3

Methods

Ethics declaration

Human blood processed in-house for this project was preselected
and included within other ongoing studies. All the studies included
were conductedinaccordance with ethical guidelines, and all patients
provided writteninformed consent. Ethical committees and research
project approvals for the different studies included in this paper are
detailed in the following text.

SCGTO0O0 and SCGTOOval were approved by the Hospital Univer-
sitari Vall d’Hebron Research Ethics Committee (PR(AG)144/201).
SCGTO1 received institutional review board (IRB) approval by the
Parc de Salut Mar Ethics Committee (2016/7075/1). SCGTO2 received
ethics approval by the Medisch-Etische Toetsingscommissie (METc)
committee—for patients with asthma (ARMS and ORIENT projects:
NL53173.042.15 and NL69765.042.19, respectively), for patients with
COPD (SHERLOck project, NL57656.042.16) and for healthy controls
(NORM project, NL26187.042.09). SCGT03 was approved by the Comité
Etico de Investigacion con Medicamentos del Hospital Universitario
Vall d’'Hebron (654/C/2019). SCGT04 and SCGTO6 were approved by
the Comite d’Etica d’Investigacié amb medicaments (CEim) del Hos-
pitaldelaSantaCreuiSant Pau (EC/21/373/6616 and EC/23/258/7364).
SCGTOS5 was approved by the IRBs of the Commissie Medische Ethiek
UZKU Leuven/Onderzoek (S66460 and S62294).

Atlas of circulating immune cells

The Inflammation Landscape of Circulating Immune Cells atlas was
conceived asacomprehensive resource to expand the current knowl-
edge of physiological and pathological inflammation through the
study of circulating immune cells. With this aim, we included data
representing both acute and chronic inflammatory processes as well
as healthy donors. Further details about the included datasets are
available (Supplementary Table 1).

The project includes in-house scRNA-seq data generation from
samples shared by our collaborators from several researchinstitutions.
Samples were collected with writteninformed consent obtained from
all participants and comply with the ethical guidelines for human sam-
ples. Specifically, we generated data from patients suffering fromrheu-
matoid arthritis, psoriatic arthritis, Crohn’s disease, ulcerative colitis,
psoriasis and SLE and from healthy controls in collaboration with the
Valld’Hebron Research Institute within the DoCTIS consortia (https://
doctis.eu/) (SCGTO0 and SCGTOOval). Additionally, we processed and
obtained data from healthy controlsin collaboration with the Institut
Hospital del Mar d’Investigacions Médiques (SCGTO01); asthma, COPD
and healthy control samplesin collaboration with the University Medi-
cal Center Groningen (SCGT02); BRCA samples in collaboration with
the Valld’Hebron Institute of Oncology (SCGT03); cirrhosis samplesin
collaborationwiththe Biomedical Research Institut Sant Pau (SCGT04);
CRCsamplesincollaboration with the Katholieke Universiteit Leuven
(SCGTO05); and COVID and healthy controlsamples alsoin collaboration
with the Biomedical Research Institut Sant Pau (SCGTO06).

Moreover, wealsoincluded publicly available datasetsto complete
our cohort. Specifically, we considered data from patients suffering
from sepsis?*>>, HNSCC?*®, HBV¥, multiple sclerosis®®, NPC*’, HIV®*¢!,
SLE"%2%3 cirrhosis®*, Crohn’s disease®, COVID-Flu-sepsis®** and COVID®®
and from healthy controls from Terekhova et al.*” and 10x Genomics,
together with the available healthy samples from all the cited studies.
The data information and access identifiers for each project can be
found in Supplementary Table 1 (Sheet 1). When raw data were avail-
able, we downloaded FASTQ files; otherwise, we retrieved the raw count
matrices from the National Center for Biotechnology Information
(NCBI) Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.
gov/geo/) or Sequence Read Archieve (SRA) (https://submit.ncbi.nlm.
nih.gov/about/sra/), BioStudies Array Express (https://www.ebi.ac.uk/
biostudies/arrayexpress), Broad Institute DUOS (https://duos.broadin-
stitute.org/), Synapse (https://www.synapse.org), Genome Sequence

Archive (GSA) (https://ngdc.cncb.ac.cn/gsa-human/), CELLXGENE Data
Portal (https://cellxgene.cziscience.com/datasets) and 10x Genomics
(https://www.10xgenomics.com/datasets) resources. For all studies,
we also collected clinical metadata.

Sample collection

Human blood samples were collected in EDTA tubes (BD Biosciences).
PBMCs from the SCGT00, SCGTOOval, SCGT02, SCGT04, SCGTOS5
and SCGTO06 datasets were isolated using Ficoll density gradient cen-
trifugation (STEMCELL Technologies, Lymphoprep; GE Healthcare
Biosciences AB, Ficoll-Plus). PBMCs belonging to the SCGTO1 and
SCGTO03 datasets were isolated using Vacutainer CPT tubes (BD Bio-
sciences). Subsequently, all aliquots were centrifuged following the
manufacturer’s protocol. After centrifugation, PBMCs were washed
and resuspended in freezing media. Aliquots were gradually frozen
using acommercial freezing box (Thermo Fisher Scientific; Mr. Frosty,
Nalgene) at —80 °C for 24 hours before being transferred to liquid
nitrogen for long-term storage.

Cellthawing and preprocessing

Cryopreserved PBMCs were thawed inawater bath at37 °C and trans-
ferred to a 15-ml Falcon tube containing 10 ml of prewarmed RPMI
mediasupplemented with 10% FBS (Thermo Fisher Scientific). Samples
were centrifuged at 350g for 8 minutes at room temperature, super-
natant was removed and pellets were resuspended with 1 ml of cold
1xPBS (Thermo Fisher Scientific) supplemented with 0.05% BSA (Milte-
nyiBiotec, PN130-091-376). Samples were incubated during 10 minutes
atroom temperature with 0.1 mg ml™ DNAse I (Worthington Biochemi-
cal, PNLS002007) to eliminate ambient DNA and favor the resuspen-
sion ofthe pellet. Cells were filtered with a40-pm strainer (Cell Strainer,
PN 43-10040-70) to remove eventual clumps and washed by adding
10 ml of cold PBS + 0.05% BSA. Samples were centrifuged at 350g for
8 minutes at 4 °C and resuspended in an adequate volume of PBS +
0.05% BSAtoreachthedesired concentration. Cell concentration and
viability were verified with a TC20 Automated Cell Counter (Bio-Rad)
upon staining of the cells with trypan blue.

Sample multiplexing by genotyping

PBMC samples were evenly mixed in pools of eight donors per library
following a multiplexing approach based on the donor’s genotype for
amore cost-efficient and time-efficient strategy. Notably, in the case
of SCGTOO, libraries were designed to pool samples together from
the same disease with different response to treatment (not relevantin
thisstudy), whereas, in the case of the SCGT02 Asthma+HC cohort, six
samples belonging to patients were pooled with two samples derived
from non-smoking healthy control individuals. With this approach,
we aimed to avoid technical artifacts that could mask subtle biologi-
cal differences.

3’ CellPlex

PBMC samples belonging to the SCGT01,SCGT02 COPD+HC,SCGT04
and SCGTO6 cohorts were multiplexed with 10x Genomics CellPlex
Kit following the Cell Multiplexing Oligo Labeling for Single Cell RNA
Sequencing Protocol (10x Genomics). Whereas, for SCGT02 COPD+HC
and SCGTO6 projects, we pooled eight samples from patients with
healthy controls together, for SCGT01 and SCGT04 we only included
samples fromthe condition of interest. In brief, 0.2-1 million cells were
centrifuged at 350g at room temperature with aswinging bucket rotor,
resuspended in 100 pl of Cell Multiplexing Oligo (10x Genomics, 3’
CellPlex Kit Set A, PN-1000261) and incubated at room temperature
for 5 minutes. Cells were washed three times with cold 1x PBS (Thermo
Fisher Scientific) supplemented with 1% BSA (MACS, Miltenyi Biotec),
all centrifugations being performed at 350g at 4 °C. Cells were finally
resuspended in an appropriate volume of 1x PBS +1% BSA to obtain a
final cell concentration of approximately 1,600 cells per microliter
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and counted using aTC20 Automated Cell Counter (Bio-Rad). Anequal
number of cells of each sample was pooled and filtered with a 40-pm
strainer toremove eventual clumps; final cell concentration and viabil-
ity of the pools were verified before loading onto the Chromium for
cell partitioning.

Cell encapsulation and scRNA-seq library preparation
Multiplexed samples were loaded for a target cell recovery between
20,000 and 60,000 cells (corresponding to 5,000-7,500 cells per
sample within each plex). More specifically, samples belonging to
SCGTO00, SCGTOOval and SCGTO1 cohorts were encapsulated using
standard-throughput Chromium Next GEM Single Cell 3’ Reagent
Kit version 3.1, whereas multiplex samples belonging to SCGT02
Asthma+HCand COPD+HC, SCGT04 and SCGTO6 were encapsulated
using the high-throughput Chromium Next GEM Single Cell 3’ HT
Reagent Kit version 3.1in combination with the Chromium X instru-
ment. On the other hand, SCGT03 and SCGTOS5 cohorts were loaded
in a standard assay with a target recovery of 6,000-8,000 cells per
sample using Chromium Next GEM Single Cell 5" Reagent Kit version 2
(10x Genomics, PN-1000263).

Libraries were prepared following the manufacturer’s instruc-
tions of protocols CGO00315 or CGO00390, for the standard assay
without and with sample multiplexing, and protocols CGO00416 and
CG000419, for the high-throughput assay without and with sample
multiplexing. Protocol CGO00331wasinstead followed for the SCGTO03
and SCGTOS5 cohorts. Between 20 ngand 200 ng of cDNA was used for
preparinglibraries, and final library size distribution and concentration
were determined using a Bioanalyzer High Sensitivity chip (Agilent
Technologies). Sequencing was carried out on a NovaSeq 6000 sys-
tem (Illumina) and a NextSeq 500 system (Illumina) using the follow-
ing sequencing conditions: 28 bp (Read 1) +10 bp (i7 index) + 10 bp
(i5index) + 90 bp (Read 2), to obtain approximately 40,000 read pairs
per cell for the gene expression library and 2,000-4,000 read pairs per
cell for the CellPlex library.

Data processing

To profile the cellular transcriptome, we processed the sequencing
reads with the 10x Genomics software package Cell Ranger (version 6.1)
(https://support.10xgenomics.com/single-cell-gene-expression/soft-
ware/overview/welcome) and mapped them against the human GRCh38
reference genome (GENCODE version 32/Ensembl 98). This step was
applied to the sequencing reads obtained from in-house-processed
samples and from published projects, when available.

Genotype processing

Genome-wide genotyping data for patients from the SCGT00, SCGT-
0O0val and SCGT02 Asthma+HC studies were generated from PBMC
samples. For SCGTO00, 184 patients were distributed in four genotyping
cohorts (N1=64,N2=32,N3=40and N4 = 48samples), and, for SCGT-
0O0val, 32 patients were processed with the lllumina Omni2.5-8 and
lllumina GSA MG v3-24 arrays, respectively. For SCGT02 Asthma+HC,
16 patients were distributed in two genotyping cohorts (N1=8 and
N2 = 8 samples) using Infinium Global Screening Array-24 version 3.0
(GSAMD-24v3.0) with the Al array. Genotyping was done using GRCh37
human genome reference. Data preprocessing and quality control
analysis were separately performed for each genotyping batch of
samples at IMIDomics, Inc. (Barcelona, Spain) and at Erasmus MC (Rot-
terdam, Netherlands). Quality control analysis was performed using
PLINK software (versions 1.9 and 2). In the SCGT00 and SCGTOOval
quality control analysis, we identified autosomal single-nucleotide
polymorphisms (SNPs), and, using those SNPs from chromosome X,
we confirmed the consistency between SNP-estimated and clinically
reported genders. Then, we quantified the percentage of SNPs with a
minor allele frequency (MAF) higher than 5%. Next, we computed the
percentage of missingness both at the SNP-wise and sample-wise levels.

Finally, we assessed the heterozygosity rate (F) of each samplein order
toevaluateifany of the genotyped samples could be contaminated. In
the SCGT02 Asthma+HC quality control analysis, we excluded samples
with a SNP calling rate lower than 98%.

Patient genotypes (VCF format) were simplified by removing
single-nucleotide variants (SNVs) that were unannotated (chr 0),
locatedinthe sexual Y (chr24), pseudo-autosomal XY (chr 25) or mito-
chondrial (chr 26) chromosomes. As genotypes were obtained using
the human hgl9 reference genome, we converted their coordinates
to the same reference genome used to mapped the sequencing reads
(GRCh38) using the UCSC LiftOver tool (https://genome.ucsc.edu/
cgi-bin/hgLiftOver). LiftOver requires an input file in BED format.
Thus, we used aPythonscript (https://github.com/single-cell-genetics/
cellsnp-lite/blob/master/scripts/liftOver/liftOver_vcf.py) to convert
our VCF fileaccordingly.

Library demultiplexing

Multiplexed libraries from SCGT00, SCGTOOval and SCGTO02
Asthma+HC cohorts were demultiplexed with Cellsnp-lite (version
1.2.2) inMode 1a%, which allows us to genotype single-cell gene expres-
sion libraries by piling up the expressed alleles based on alist of given
SNPs. Todo so, we used alist of 7.4 million common SNPs in the human
population (MAF > 5%) published by the 1000 Genomes Project consor-
tiumand compiled by the authors (https://sourceforge.net/projects/
cellsnp/files/SNPlist/). Then, we performed the donor deconvolution
with vireo (version 0.5.6)*°, which assigns the deconvoluted samples
toitsdonoridentity using known genotypes while detecting doublets
and unassigned cells. Finally, we discarded detected doublets and
unassigned cells before moving on to the downstream processing
steps. For CellPlexlibraries, we followed ajoint deconvolution strategy
combining cell multiplexing oligo (CMO) hashing and genotype-based
deconvolution; we generated pools of cells belonging to different
samples based on the individual SNPs and traced back to their donor
of origin based on the CMO hashing. When no genotype is available,
the use of this dual approach minimizes the discarded cells.

Data analysis

All analyses presented in this paper were carried out using mainly
Python, unless specified otherwise. In particular, we structured our
data in anndata objects’® compatible with SCANPY suite”, which
allowed us to apply single-cell data processing and visualization best
practices. All experiments and panels are reproducible with the code
released in the project’s GitHub repository.

Data standardization
Considering the diversity of the datasets included in the reference of
circulatingimmune cells, a standardization step was needed.

Cell barcodes. The ‘celllD’ barcodes assigned were inspired by
The Cancer Genome Atlas (TCGA) project (https://docs.gdc.can-
cer.gov/Encyclopedia/pages/TCGA_Barcode/). Each barcode
unequivocally identifies a cell, and it is composed of the studyID
(project), libraryID (10x GEM channel), patientID, chemistry (only
when 3’ and 5’ gene expression were available for the same sample),
timepoint (if multiple observations were available for a patient)
and the 10x Genomics cell barcode, respectively (for example,
SCGTO0_L046_P006.3P_TO_AAACCCAAGGTGAGAA).

Gene name harmonization. All datasets were mapped using human
GRCh38 genome reference, but the annotation file version might
differ, resulting in gene names with multiple aliases or deprecated
symbols. To avoid gene redundancy or mismatching, we used Ensembl
symbolsinstead of gene names. Then, for datasets without the Ensembl
symbols, we compared all gene names with the HUGO Gene Nomen-
clature Committee (HGNC) database (latest version, February 2024;
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https://www.genenames.org/), in order to convert them to the latest
official HUGO name, merging possible duplicates and retrieving the
corresponding Ensembl symbol. For non-official genes, we used the
MyGene Pythoninterface (https://mygene.info/) to query the Ensembl
symbol. Finally, we removed 16 genes categorized as ‘artifact’ or ‘TEC
(Tobe Experimentally Confirmed).

Metadata harmonization. Patient metadata were unified across data-
sets, using common variable names and values for those presentin mul-
tiple sources; specifically, we homogenized these variables of interest
such as sex, age, disease, diseaseStatus, smokingStatus, ethnicity or
institute. For instance, ‘M’, ‘Male’ and ‘Hombre’ entries were replaced
with ‘male’. Additionally, we created a new variable, ‘binned_age’, to
group patients within a range of 10 years, considering that, for the
SCGTO01, SCGTO04 and SCGT11 datasets, the specific age information
was not available. As detailed below, the datasets missing sex and age
information were considered as data from unseen studies and used to
evaluate the patient classifier.

Data splitting

Some sstudiesinour cohortincluded patients withsamples collected in
multiple replicates, different timepoints or using different chemistry
protocols. Instudies with multiple replicates—thatis, Zhang2022 and
Terekhova2023—we selected samples with the largest number of cells.
When multiple timepoints or disease statuses for the same patient are
available—thatis, Perez2022, COMBAT2022 and Ren2021—-we kept only
the samples associated with higher disease severity.

Thefiltered Inflammation Atlas cohort was then splitin two data-
sets: CORE and unseen studies. Data from unseen studies include 86
samples and are used as an independent validation of our patient
classifier pipeline. For this dataset, we selected studies that either
involve diseases with a large support in our full cohort or lack meta-
dataonsex and age. These chosen studies are as follows: SCGTOOval,
SCGTO06, Palshikar2022, Ramachandran2019, Martin2019, Savage2021,
Jiang2020, Mistry2019 and 10XGenomics.

After performing data quality control (removing low-quality librar-
iesand cells; see sectionbelow), the CORE dataset includes 961 samples
and was further splitinto Main and data from unseen patients, with 817
and 144 samples each, respectively. We first stratified samples based
onthe following metadata: studyID, chemistry and disease. From each
ofthose groups, werandomly selected 20% of samples to be part of the
unseen patients, provided that they amounted to at least five samples.
Inthe patient classifier pipeline, the Main dataset is used as areference,
whereas data from unseen patients and unseen studies are used as a
query dataset intwo independent scenarios.

The Centralized Dataset included samples from SCGTOO and
SCGTOOval. Because all healthy patients were sequenced in the same
pool, wedid not take theminto account. Then, because multiple sam-
ples were multiplexed and sequenced together, we split them, stratify-
ing by sequencing patientPool to generate both the reference and the
query datasets that include at least one pool for all the IMID diseases
(that is, rheumatoid arthritis, psoriasis, psoriatic arthritis, Crohn’s
disease, ulcerative colitis and SLE). Further information about the
samples classified ineachgroup is detailed in Supplementary Table 1.

Data quality control

We performed data quality control on the CORE dataset by computing
the main metrics (thatis, library size, library complexity and percent-
age of mitochondrial, ribosomal, hemoglobinand platelet-related gene
expression) onthe count matrix. Metric distributions were visualized
groupingcellsbylibrary (10x Genomics) and by considering their chem-
istry (3’ or 5’ and their version). Consequently, we removed low-quality
observations using permissive thresholds, whereas the robust cleaning
process was performed during cell annotation tasks. In particular, we
initially excluded the low-quality libraries across datasets (<500 cells

or <500 median genes recovered). Next, we removed low-quality cells
withavery low number of unique molecular identifiers (UMIs) (<500)
and genes (<250) or with a high percentage of mitochondrial expres-
sion (>25% for 3’ V3 and 20% for 3’ V2 and 5’), as it is indicative of lysed
cells. Then, we removed barcodes with a high library size (>50,000
UMIs for3’V3and 5’ V1,>40,000 UMIs for 5 V2 or >25,000 UMIs for 3’
V2 chemistry) or with a high complexity (6,000 genes for 3’ V3 and
5’ or >4,000 genes for 3’ V2 chemistry). After cell quality control, we
also removed low-quality libraries (<250 cells), low-quality samples
(<500 cells or <500 median genes recovered) as well as cells from a
library if this patient recovered a low total number of cells (<50 cells).
In addition, we eliminated genes that were detected in fewer than 20
cellsin fewer than five patients, keeping a total of 22,838 genes. Lastly,
we computed the cell cycle score using the gene list provided by the
function cc.genes.updated.2019() from the Seurat library’* (version
4.3.0.1) and defined the different cell cycle ‘phases’ (G1, G2M and S).
Before the dataset cleanup, we predicted doublets using the func-
tion scanpy.external.pp.scrublet() from the SCANPY library (version
1.9.8), which provides a score to flag putative doublets but without
filtering them out at this stage. Consequently, during the clustering
and annotation step, the clusters co-expressing gene markers from
different lineage/population and high doublet score were assessed to
determine whether a specific cluster could be classified as a group of
doublets and subsequently excluded. After this step, the CORE dataset
was splitinto Main and datafrom unseen patients, as explained above.

Quality control on the data from unseen studies was performed
independently. We applied the same approach described above, but
we filtered only poor-quality libraries and cells.

Data processing for annotation

Annotation strategy. To identify all the immune cell types and states
present in the human blood, we employed a recursive top-down
approach inspired by previous work done by Massoni-Badosa et al.”.
Starting with 4,918,140 cells and 817 patients from the Main dataset, we
divided the annotationinto several stages. In brief, we first grouped all
cellsinto the primary compartments within our study. Subsequently,
each compartment was processed aiming to detect potential dou-
blets, low-quality cells and cells resembling platelets or erythrocytes
(cells with high expression of hemoglobin genes). Additionally, we
also placed back some clusters of cells into their corresponding cell
lineages, when wrongly clustered due to similar profiles (for example,
T cells found in the natural killer cell group or vice versa). Then, we
identified the clusters resembling specific biological cell profiles (cell
subtypes), obtaining a final number of 64 different subpopulations,
excluding Doublets and LowQuality_cells, that we defined as annota-
tion Level 2. Those cell subtypes were grouped into 15 cell populations
thatwe defined asannotation Level1. At the end, our Inflammation Atlas
contains 4,435,922 cells. For each group identified in the initial stage
(cell lineages), we applied the following tasks: normalization, feature
selection, integration, clustering and annotation. Inthe following, we
will always refer to the parameters of the initial stage, and the specifics
of the subsequent steps (from lineages to cell types), along with the
annotation labels and the marker genes used to define them, can be
found in Supplementary Table 3.

Data normalization. Following standard practices, filtered cells were
normalized by total counts over all genes and multiplied by a scaling
factor of 10* (scanpy.pp.normalize_total(target_sum =10*)). Then, the
normalized count matrix X was log transformed as log.(X + 1) (scanpy.

pp.loglp()).

Feature selection. Gene selection was performed by identifying the
highly variable genes (HVGs). Before doing so, we excluded genes
related to mitochondrial and ribosomal organules. Also, we skipped
T cell and B cell receptor (TCR/BCR) genes, including joining and
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variable regions, because they are not useful to describe cell identi-
ties but, rather, to capture patient-specific clonally expanded cell
populations within an inflammatory-related condition. Lastly, we
excluded major histocompatibility complex (MHC) genes. To reduce
the influence of a study’s specific composition and prevent biases
in the gene selection task, we preferred genes that are highly vari-
able in as many studies as possible. Therefore, similar to Sikkema
et al.”, we first considered each study independently and computed
the HVGs using the Seurat implementation” (scanpy.pp.highly_vari-
able_genes(min_disp = 0.3, min_mean = 0.01, max_mean =4)). Then,
we ranked genes based on the number of studies in which they are
among the highly variable. Finally, for the initial stage, we determined
the minimum number of studies required to compose an HVG list of
more than 3,000 genes. Applying this strategy, we selected a total of
3,236 genes being highly variable in at least six studies. In the following
steps, we requested more than 2,000 HVGs; the minimum number of
studies required and the total of selected genes depend on the step
and the cells under study. To identify red blood cell (RBCs) and plate-
lets, we kept genes associated with erythrocytes, such as hemoglobin
subunits, and pro-platelet basic protein (PPBP) (platelet related) in the
HVG list. Because such genes are known to be related to ambient RNA
when found in other cell types, we subsequently removed them after
having annotated the above cell types.

Data integration. Our datasetincludes single-cell data obtained from
multiplestudiesincluding different chemistry protocols, inflammatory
status samples and abroad range of other clinical features (for example,
age and sex). Although this is a strength point of our atlas, such high
levels of heterogeneity induced by technical confounding factors and
unwanted biological variability resulted in challenging integration
tasks before clustering and annotating cell populations. Therefore,
we employed scVI*, a VAE approach that proves to be one of the most
effective integration methods in complex scenarios, particularly when
the annotation information is missing'®. scVI takes as input the raw
count matrix to generate anintegrated, low-dimensional embedding
space, where the cell states are preserved and the batch effects are
reduced. Moreover, scVI'sembedding space can be exploited to cluster
and annotate cells based on either known or cluster-specific marker
genes. Details on the scVI parameters used in each annotation step can
be foundinSupplementary Table 7.

Cell clustering. To cluster cells into cell types with the Leiden algo-
rithm, we first built the k-nearest neighbors (KNN) graph using scVI's
latent embeddings and k =20 as the number of neighbors (scanpy.
pp.neighbors(n_neighbors = k)). We then applied the Leiden algo-
rithm using a resolution of r= 0.1 (scanpy.tl.leiden(resolution =r)).
The kand rused in every other step for every lineage can be found in
Supplementary Table 3.

Cell annotation. Cell clusters were manually annotated by immunology
experts by comparing the expression levels of canonical gene markers.
Moreover, the final step of annotation was performed using the cluster
markers obtained performing a differential expression analysis among
clusters (Supplementary Table 3). First, we ranked genes to characterize
each cluster (scanpy.tl.rank_genes_groups()), by considering normal-
ized RNA counts with the Wilcoxon rank-sum test. Then, we selected
those genes with log, fold change (log,FC) > 0.25 and false discovery
rate (FDR) adjusted P< 0.05 and if they were present in at least 25% of
cells. Notably, cells belonging to RBC and platelet populations were
excluded from all the downstream analyses, except for label transfer
performed as astep during patient classifier tasks (as explained below).

External annotation validation. We compared our independent anno-
tations with the ones available in the largest public datasets. To quantify
the overlap of cells among groups, we computed the adjusted Rand

index (ARI) to measure the similarity between our label assignments
and the ones performed by the original authors. Further details are
available in Supplementary Table 2.

Centralized Dataset annotation. All previously described steps were
applied to process and annotate the Centralized Dataset (SCGT0O0),
with the following adjustments: (1) standard HVG selection was per-
formed as the datasetincluded only asingle study; (2) the dataset was
integrated using ‘patientPool’ as the batch key; and (3) cell annotation
was conducted up to Level 1, recovering the same cell types as in the
main Inflammation Atlas, as this was necessary for the patient classi-
fier. Here, starting with 855,417 cells and 152 patients included in the
reference dataset, we recovered 15 cell populations (Level 1), exclud-
ing Doublets and LowQuality_cells. Details on the scVI parameters
used in each annotation step can be found in Supplementary Table 7,
whereas details on the clustering and annotation steps are provided
inSupplementary Table 3.

Feature selection after annotation

Gene selection. To improve the quality of downstream analysis to
characterize the inflammation landscape, it is necessary to performa
gene selection in order to remove dataset-specific genes and reduce
the batch effect. First, we performed data normalization (as described
above), keptonly the genes that are expressed (raw count > 0) in at least
one cellin each study and removed genes associated with mitochon-
drial, ribosomal, TCR/BCR, MHC, hemoglobin and platelet cell types.
Thisstep retained atotal of 14,127 genes. Then, weidentified three sets
of genes: (1) the HVGs, (2) the differentially expressed genes (DEGs)
between healthy and each inflammatory status and (3) Cytopus™, a
manually curated immune-specific gene list.

HVGs. Similar to the feature selection approach described inthe anno-
tation section, we selected a total of 3,283 HVGs, by using a threshold
of atleast3,000 genes. In practice, we first ranked the genes based on
the number of studies in which they are concurrently highly variable
(scanpy.pp.highly_variable_genes(min_disp = 0.3, min_mean = 0.01,
max_mean =4, batch_key="libraryID’)) and then chose a minimum
number of studies of five.

DEGs between healthy and each disease. We obtained a list of
DEGs after grouping single-cell gene expression profiles into pseu-
dobulks. Therefore, we first combined the expression profiles of
individual cells to produce pseudobulks for every patient and cell
type (Level 1), removing groups with no more than 20 cells, using the
Python implementation of decoupleR”” (version 1.6.0) (decoupler.
get_pseudobulk(min_cells =20, sample_col="samplelD’, groups_
col =‘Levell’, layer = ‘counts’, mode = ‘sum’)). Then, we applied the
edgeR (version 4.0.16) quasi-likelihood functions to search for DEGs
between healthy patients and each other’s inflammatory conditions,
by considering one cell type at a time. Because not all the cell types
were detected in each patient, we did not perform the pairwise com-
parison if one disease had fewer than three pseudobulks. More in
detail, for each pairwise comparison, we first removed genes withalow
expression value (filterByExpr(y, group=disease)). Second, we normal-
ized by library size the aggregated raw counts (calcNormFactors(y,
logratioTrim = 0.3)). Third, we corrected for the main confounding
factors—thatis, chemistry protocol, sex and binned age—considering
an additive model. One patient was excluded from the analysis due to
missing age information. We defined the design of our comparison
using the following patsy-style (https://patsy.readthedocs.io/en/latest/
formulas.html) formula:‘~0 + C(disease) + C(chemistry) + C(sex) + C(
binned_age)’. Fourth, we estimated a negative binomial dispersion for
each gene using estimateDisp(), which we fed into a gene-wise nega-
tive binomial generalized linear model (gImQLFit(robust = TRUE)) to
test for DEGs with a quasi-likelihood F-test (gImQLFTest()). Lastly,
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results obtained from each comparison were merged together, and
the F-test Pvalues were corrected using the Benjamini-Hochberg FDR
procedureimplementedinR (p.adjust(method = ‘BH’)). Given the cor-
rected Pvalues and the log,FC, we selected 6,868 DEGs with P < 0.01
and absolute log,FC > 1.5.

Curated immune-specific genes. To be able to track the full spec-
trum of inflammatory processes, including immune activation
and progression, we curated nine inflammation-related functions
defined in the literature”®* (1,364 genes present in our dataset;
Supplementary Table 4) and complemented them with a published
list of cell-type-specific signatures derived from immunological
knowledge based on single-cell studies (Cytopus’™). Specifically, we
retrieved all global gene sets for the leukocyte category and the fol-
lowing inflammatory-related cell-type-specific factors: naive and
non-naive CD4 T cells (CD4T_TFH_UP, CD4T_TH1_UP, CD4T_TH2_UP,
CD4T _TH17_UP, Tregs_FOXP3_stabilization); naive and non-naive CD8
T cells (CD8T _exhaustion, CDS8T _tcr_activation); B cells (B_effector);
monocytes (IFNG response, IL4-1L13 response); and dendritic cells
(dendritic cell antigen crosspresentation).

Aggregation of gene sets. We generate the relevant gene set by doing
the union of HVGs, DEGs and the manually curated list. The final num-
ber of unique genesis 8,253.

Dataset integration and gene expression correction via scANVI
Atlas-level analysis requires a careful preprocessing of the gene
expression profiles to deal with the heterogeneity of the studies, the
batch effect and the missing or noisy observations. scANVI” is one
of the existing methods capable of addressing these challenges and
has been proven effective on atlas-level benchmarks compared to
otherintegration methods. We validated its performance on our data
by using the metrics from the scib-metrics package'® (version 0.5)
(Extended DataFig.1).

scANVlintegration.scANVlisan extension of the scVImodel, employed
previously for dataintegration, that also leverages the information of
the cell type annotation. We first trained an scVI VAE (scvi.model.
SCVI) and then trained scANVI (scvi.model.SCANVI) starting from
the pretrained scVImodel (see parametersin Supplementary Table 7).
Bothmodels corrected for the chemistry batch while also considering
libraryID, studyID, sex and binned age as covariates. After training, we
generated the normalized corrected counts by sampling from scANVI’s
negative binomial posterior (SCANVI.get_normalized_expression).
The batch effect was mitigated by sampling and averaging each cell’s
expression asifit originated from each chemistry protocol by setting
the transform_batch parameter to the list of chemistry protocols pre-
sentin our atlas.

Comparison of cell type composition

To estimate the changes in the proportions of cell populations across
conditions, we applied the scCODA package® (version 0.1.9), a Bayes-
ian modeling tool that takes into account the compositional nature
of the data to reduce therisk of false discoveries. scCODA allows us to
infer changes between conditions while considering other covariates,
corresponding to the disease status in our setting. scCODA searches
for changes between a reference cell type, assumed to be constant
among different conditions, and the other cell types. We selected as
thereference population the one that showed the lower variance across
conditions, excludingrare cell populations (thatis, progenitors, plas-
macytoid dendritic cells and cycling cells). This resulted inthe selection
of dendriticcell as thereference cell type for all diseases. scCODA takes
asinputthe countof'cellsbelonging to each cell typeineach patientand
returns thelist of cell type proportion changes with the corresponding
corrected Pvalues (through the FDR procedure). A patsy-style formula

was used to build the covariate matrix, specified with ‘healthy’ as base-
line and sex and binned age as covariates (C(disease, Treatment(‘healt
hy’)) + C(sex) + C(binned_age)), because we are interested in detecting
changes between a normal and a diseased status. We reported only
changeswithacorrected P<0.05and alog,FC>0.2.

Comparison of gene expression profiles

Gene factor inference. To expand the list of curated immune-related
genes following a data-driven approach, we employed Spectra® (ver-
sion 0.2.0), amatrix factorization algorithm that enables us to identify
aminimal set of genes related to specific functions in the data—that
is, factors. Spectra takes as input cell type labels to infer global and
cell-type-specific factors that decompose the overall gene expression
matrix and each cell type submatrices, respectively. Given our list of
curated gene sets, we considered the Cytopus ones as global factors,
whereas weregarded all the remaining as cell-type-specific factors. The
Spectra model was fitted with default parameters with the exception
of A, which was set equal to 0.001. Considering the prohibitive com-
putational resources required for applying Spectra on our single-cell
data, we fed the algorithm with the metacell aggregated expression
matrix, as described in the paragraph below. Spectrareturned alist of
135 factors that are a linear combination of the gene expression from
the original matrix. The coefficientsincluded in the matrix can be then
used as a proxy of the gene relevance inagiven factor.

Metacell generation. We generated metacells using SEACells* (ver-
sion 0.3.3), which aggregates cells by exploiting their distances in a
low-dimensional embedding space. Starting from the normalizing
data, we selected the top 3,000 HVGs using the highly_variable_genes
function in SCANPY, with the Seurat flavor. To define SEACells’ input
embedding space, we calculated the first 50 principal components
and selected those principal components that explain 90% of the total
variance observed. To avoid biases due to batch effect and other con-
founding factors, we executed SEACells for each sample independently.
In particular, we generated anumber of metacells equal to the number
of cells of each patient divided by 50. We further filtered the obtained
metacells by computing the proportion of the most abundant annota-
tion label (Level 1) in each SEACells group and then removed the ones
with a purity lower than 0.75. Overall, we defined 71,108 metacells.
Given the assignment of cells to each metacell, we generated each
metacell’s gene expression profile by averaging the corresponding
cells’ scANVI normalized and corrected expression profiles. Because
scANVIreturns counts sampled from anegative binomial distribution,
we also log scaled the obtained metacell profiles.

Inflammation-related signature definition. Spectra provided atotal
of135factors thatinclude arefined genelist for each gene set we used
asinput. Thus, we need to assign those factors to our original gene sets
for retrieving the corresponding biological function. For doing so,
we performed enrichment analysis with ULMs available in the Python
implementation of decoupleR”’, to estimate the factors associated with
each gene set. The gene coefficients returned by Spectra were con-
sidered as theresponse variable and a vector of weights (1if the genes
were included in the gene set, O otherwise) serving as explanatory
variables. ULMreturns an estimate and a Pvalue for each enrichment.
We corrected those P values for multiple comparison by computing
the FDR with the Benjamini-Hochberg procedure, implemented in
the scipy (version 1.12.0) library. We kept 125 factors with a positive
estimate and an adjusted Pvalue < 0.05. Finally, we assign to each factor
thebiological function that correspondsto the gene set that provided
the highest estimated score.

Inflammation-related signature scores. Tocompareimmune-relevant
activation profiles across diseases and cell types, we applied an enrich-
ment signature scoring procedure, considering the factors obtained
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with Spectra®. First, we generated pseudobulks stratified by cell type
(Level1orLevel 2) and patients, discarding groups with fewer than 10
cells. We averaged the scANVI-corrected gene expression matrix of each
cell belonging to a given pseudobulk and then log transformed and
scaled the expression values to zero mean and unit variance, to reduce
theimpact of highly expressed genes. We fitted decoupleR’s ULM”” by
considering pseudobulk expression profiles as the response variable
and the gene coefficient returned by Spectra as the explanatory one.
We assessed the scores for the 119 cell-type-specific factors only in
their corresponding cell type. The output of the model is a Student’s
t-statistic for each combination of pseudobulk and factor, whichis used
asaproxy for the corresponding biological function activity: positive
values are associated withmore active functionsinagivensample and
vice versa. To identify the upregulated or downregulated biological
functionsacrossinflammatory conditions, we compared the activation
score between healthy and each disease, considering only comparisons
thatinclude atleast three observationsinboth conditions. To takeinto
account the batch effect induced by studies and chemistry protocols
that still affects the data (Extended Data Fig. 1b,c; scbi metrics and
principal component analysis (PCA)), we applied a LMEM. In particu-
lar, we fitted the function mixedlm() from the statsmodels Python
library (version 0.14.1) with the following formula-Q(‘{factor}’) ~ C(dis
ease, Treatment(reference = ‘healthy’)) + ‘f’C(chemistry)’, grouping by
‘studyID’. We corrected the Pvalue obtained for multiple testing using
FDR considering all the comparisons when tested at Level 1and within
each Level 1 populationwhen tested at Level 2.

GRN analysis. Pseudobulk matrices were calculated by averaging the
corrected and standardized count matrices by cell type and sample.
We compute differential expression analysis for each cell typein each
disease using healthy individuals as reference. LMEMs were used to
model the expression levels of each gene independently, consider-
ing the disease as a fixed effect while modeling the ID of the study as
arandom effect. We used the mixedim() function of the statsmodels
(version 0.14.0) Python package to run the analysis. To associate each
cell-type-specific ‘IFN-induced’ factor with a given transcription fac-
torregulator, we integrated these signatures with the CollecTRI Gene
Regulatory Network® by matching target genes to identify common
genes between transcription factor regulons and Spectra signatures.
Therefore, each ‘IFN-induced’ signature was thus linked to a subset of
transcription factor regulons. The activity of each transcription factor
was calculated using only the common genes between each transcrip-
tion factor and each signature, employing the UML from decoupleR”
and the z-values obtained from the differential expression analysis.
Toensure robustness, only regulons with atleast 10 gene targets were
considered. This pipeline was applied across ‘IFN-induced’ factors and
diseases, focusing onthe activity in the cell type where the Spectra sig-
nature wasidentified. Negative activities (¢-stat < 0) and non-significant
results (P> 0.05) were filtered out. This analysis identified STAT1 and
SPlasthesoletranscription factor regulators of the defined cell types.
We performed one-versus-all Wilcoxon rank-sum tests to compare
transcription factor activity across Level 2 subpopulations withineach
Level 1lineage for SLE and Flu. For each transcription factor (SP1and
STAT1), activity within a given Level 2 state was compared to all other
states within the same Level 1 compartment. Tests were two-sided and
restricted to comparisons with at least three observations per group.
Pvalues were adjusted using the Benjamini—-Hochberg method. The
same approach was applied to monocytes, comparing transcription
factor activity across diseases within each Level 2 monocyte subset.
For the comparison of flare and non-flare patients from SLE,
non-corrected loglp-normalized single-cell expression matrix from
Perez et al.”” was used to further investigate SP1and STAT1 regulon
activities across both categories. Pseudobulk profiles were calculated
by averaging by cell type, considering only cell types (Level 2) with a
minimum of 10 cells and groups that include at least three patientsin

both conditions (flare versus non-flare). Prior to calculating transcrip-
tion factor activities across samples, we standardized the gene expres-
siondataon patients with SLE based on healthy individuals. Specifically,
for each gene, the mean and standard deviation were calculated from
the healthy group, and these statistics were then used to scale the gene
expression values across patients with SLE. Only gene targets identified
inthe previous step were used to calculate enrichment using the ULM
method. Finally, the activity of STAT1 and SP1 was calculated at Level
2using CollecTRI¥.

Immune gene importance evaluation

Inthis section, weintroduce our pipeline used to obtain agene impor-
tance metric by interpreting cell-type-specific classifiers for disease
prediction. All the steps described below were carried out separately
for each cell type (excluding RBCs, platelets, progenitors and cycling
cells). Specifically, the classification task was performed with GBDTs
implemented in the XGBoost library® (py-xgboost-gpu: version 2.0.3).
Furthermore, interpretability was performed using SHAP values™ (ver-
sion 0.45.1), apowerful approach assigning animportance to each gene
by also takinginto account their interactions.

Feature selection. To focus our analysis on cell-type-specific
inflammatory-related signatures, we considered only genes relevant
in annotated Spectra factors, and we further reduced the list by
removing cell identity genes (for example, CD3E and MS4A1) as well
as non-protein-coding genes. This filtering gave a final number of 935
genes.

Data processing. We split our data into three parts: the training set
and the validation and testing set, used for hyperparameter tuning
and performance evaluation, respectively. We balanced the splits by
disease, ensuring that each sample’s cells were included in the same
set. Initially, we partitioned the datainto five splits using the function
sklearn.model_selection.StratifiedGroupKFold. Three of these splits
were assigned to the training set, and one was designated for valida-
tion and one for testing. Accounting for both stratification by disease
and patient partitioning might lead to an uneven distribution of cells
among diseases. To address this, we assigned splits withawell-balanced
distribution of cells to the training and testing sets first.

XGBoost fitting. XGBoost (xgboost. XGBClassifier) hyperparameters
were tuned using the Optunallibrary® (version 3.6.0). The performance
of each model configuration was estimated using the WF1 score on
the validation set. To reduce the computational cost, we both pruned
unpromising hyperparameters and early stopped the training when
no improvement was achieved more than 20 steps before the upper
bound of 1,500. We considered 50 configurations of XGBoost, taking
intoaccountthe hyperparameters detailed in Supplementary Table 7.
Using the best configuration and its corresponding number of training
steps (equivalent to the number of estimators), we retrained the best
model onthe union ofthe training and validation sets. This time, we did
notapply early stopping and increased the number of training steps by
20%, to account for the larger number of training samples.

d-SHAP interpretability. To interpret the decision of the selected
XGBoost classifier, we employed the widely adopted Shapley values
through the SHAP library. SHAP values were computed with shap.
TreeExplainer using the observational ‘three_path_dependant’
approach. Given the potential resource-intensive nature of handling
allSHAP valuesfor every celland disease, especially in terms of storage,
we computed their mean and variance across all samples in batches
using the Weldford online algorithm®. Given a specific cell type ct, we
have a SHAP value for every gene in every cell and for each disease: a
matrix of real values SHAP®(c, g, d), where ¢, g and d identify the cell,
gene and disease, respectively. The average contribution of a gene g
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foradiseasedcanbecomputedas d-SHAP' (g, d) = mean,|SHAP®(c, g, d)|
where Cis the set of cells. To aggregate the d-SHAP values across mul-
tiple diseases—for example, the ones included in the same study—we
summed their values across genes.

Gene selection. To validate our ensemble of important genes through
d-SHAP values, we tested if our selection generalizes to unseen stud-
ies. First, we defined a gene set GS that included genes expressed inat
least 5% of the cells. Then, for each of the eight conditions included in
unseen studies, we selected from GS the top kranked genes by d-SHAP
importance. We then trained XGBoost in a nested cross-validation
setting on datafrom unseenstudies, where we performed both hyper-
parameter tuning and performance evaluation, using only one of the
genesetsasinput features. Next, we computed WF1and BAS to test the
performance considering k=5, k=10 and k=20. Given our selection
Sofgenes, withsize S|, we also tested 20 sets of S| randomly selected
genes from GS, excluding the onesin S (thatis, not top ranked accord-
ing to d-SHAP). Lastly, we compared the performances of the models
trained on each gene set against XGBoost trained on the whole set of
genes GS. The analysis was repeated for each cell type independently.

Study classifier and s-SHAP values. To identify whether the gene
importanceis driven by the study batch effects, we trained a separate
classifier to predict study instead of the disease. Feature selection, data
processing and model fitting were done in the same way as explained
above for disease classification, apart from the data split
where cells were stratified by study instead of disease. SHAP values
were computed for each of the cell-type-specific study classifiers,
resulting in an average contribution of a gene g for a study s
s-SHAP® (g, s) = mean.c|SHAP(c, g, 5)|. Because diseases can be associ-
ated with multiple studies, we aggregated the s-SHAP values for study
prediction by summing themacross all studies thatinclude the selected
disease. This allowed us to compare the batch-related signal (s-SHAP)
with the disease-related signal (d-SHAP).

Patient classifier pipeline

In this section, we describe the pipeline used to validate the Inflam-
mation Atlas as a diagnostic tool. In the following analysis, the terms
‘patient’ and ‘sample’ are equivalent, because, after data splitting,
we kept only one sample for each patient. The pipeline consists of (1)
integrating an annotated reference dataset with dataintegration tools
that provide batch-corrected embeddings, (2) mapping a query dataset
into thereference to obtainits corrected embeddings, (3) transfering
the cell annotation labels from the reference, (4) defining a patient
embedding space and (5) training a classifier to predict the patient
conditions from the embeddings.

Starting from a large annotated reference dataset, we applied
four state-of-the-artintegration methods, described below, to obtain
a batch-corrected embedding. We considered different chemistry
protocols as the main source of batch effect; thus, we corrected for
the chemistry covariate. Then, an independent query dataset was
mapped into the corrected embeddings. This step provides bothbatch
correction and allows us to transfer cell annotation labels from the
reference to the query dataset. To define patient-wise embeddings,
we averaged each patient’s cell embeddings by cell type, resulting
in an embedding for each cell type and each patient (30 embedded
dimensions for scANVImain configuration; see Supplementary Table 7
for all the methods and configurations). To predict the inflammatory
conditions of the patients in the independent query dataset, we fit
one classifier for each cell type on the reference patient embeddings.
Then, we predicted the inflammatory condition of the query patients
by returning the most frequent condition among the predictions of
every cell-type-specific classifier.

We validated our pipeline considering three different settings.
Inthe first one, we performed a cross-validation on the Main dataset,

where each left-out split is considered as a query dataset and the
remaining as the reference. Moreover, we tested our diagnostic tool
on data from unseen patients and unseen studies, this time using the
whole Main as areference.

Integration methods. In this section, we explain each data integra-
tion method, and the tested configurations of hyperparameters can
be found in Extended Data Fig. 8 and Supplementary Table 7. Note
that the scGen and Harmony/Symphony approaches generate one
integrated dataset that is independent from the query data, whereas
scANVI and scPoli require a fine-tuning of the reference model for a
given query dataset.

SCGEN. scGen is defined by two main components: a VAE and a latent
space arithmetic method. The VAE estimates a posterior distribution
of latent variables through the encoder, from which we can reconstruct
the expression matrices via the decoder (scGen_model.batch_
removal()). Similar tocommonly employed VAEs, scGen approximates
the posterior through a variational distribution, modeled by the
encoder and defined as a multivariate Gaussian. When the scGen’s VAE
has been fitted on the reference dataset, latent space arithmetic is
employed to correct for the batch effect induced by the chemistry
protocolused. Within each cell type, scGen first selects the mean i«
of the most populated batch and then corrects each batch with mean
Hoby adding 6 = u,,,,, — po to each cell’s embedding. Importantly, the
celltype hastobeinferred when not known. The final corrected count
matrix will correspond to the generated count matrix from the
arithmetic-corrected embeddings. Following scGen'’s tutorials, we will
refer as corrected embeddings to the ones obtained given the corrected
expression matrix as input. To apply scGen batch correction on the
query dataset, we need to also infer the cell types of those cells. This
step was performed through label transfer by nearest neighbors, fol-
lowing a similar approach employed in Human Lung Cell Atlas™ and
introduced in ref. 45. The idea is to employ (approximate) nearest
neighbors through PyNNDescent” (version 0.5.11) (pynndescent.
NNDescent().prepare()) and infer the most probable celltypeinthe 10
nearest neighbors (pynndescent.NNDescent().query()) from the
already annotated cells in the reference dataset. To account for the
shape of the distribution of the neighbors, a Gaussian kernel was
applied instead of using the Euclidean distance. The most probable
nearest neighbor cell type is then assigned to annotate new cells.

SCANVI. We first trained scVland scANVI on the reference dataset, like
the dataset integration described before, and then we fine-tuned it
to the query dataset. Regarding the label transfer, we employed the
scANVI predict() function with default parameters.

Harmony and Symphony. Harmony®? and Symphony®* are two related
methods that integrate a reference and map a query dataset to it,
respectively. Harmony takes a PCA embedding of cells as input, along
withtheir batch covariates (chemistry). Next, the model represents cell
states as soft clusters, where each cell identity is defined as a probabil-
istic assignment across clusters, with the aim of maximizing diversity
among batches within those clusters. Cells are iteratively assigned
soft-cluster memberships; those assignments are used as weights in
alinear mixture model to remove confounding factors. The result is
anew batch-corrected embedded space. The Symphony algorithm
starts from the linear model parameters inferred by Harmony to map
query cells onto the corresponding embedding space. First, it pro-
jects the query gene expression profiles into the same uncorrected
low-dimensional space as the reference cells. Next, Symphony com-
putessoft-cluster assignments for the query cells based on their prox-
imity to thereference cluster centroids. Finally, Symphony employs the
Harmony mixture model components to estimate and regress out batch
effects fromthe query data. Importantly, the reference cellembedding
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remains stable during this mapping process. We transferred annota-
tion labels from the reference to the query dataset by exploiting cell
proximity in the embedding space using nearest neighbors through
sklearn.classifier.KNeighborsClassifier, Symphony default choice
(https://github.com/potulabe/symphonypy).

scPoli.In contrast to other integration methods such as scANVI, scPoli**
encodes the condition (chemistry and samplelD) as a learnable con-
ditionalembedding and characterizes each cell type as a prototypein
the latent embedding to facilitate the label transfer. In the reference
building phase, we first pretrained the model given the reference data-
setand its conditions and then fine-tuned to optimize the prototypes.
In the reference mapping phase, we froze the model and learned the
new conditional embeddings belonging to the query dataset. Thelabel
transfer is performed by simply assigning the cell type belonging to
the closest prototypein the latent embedding space. All the methods
belong to the scArches® class scarches.models.scPoli.

Disease classifiers. Patient embeddings definition. After obtaining
the corrected embedding from one of the dataintegration approaches
described previously, we need to aggregate the cell-wise embeddings
into patient-wise embeddings. We decided to group at the level of the
cell types by computing the mean embedding across cells belonging
tothe same cell type and samplelD. Only for scPoli, we generated three
different types of patient embeddings: the learned patient embed-
dings (sample), the averaged cell-wise latent embeddings (cell) and
the concatenation of the two (cell&sample).

Classifiers definition and hyperparameter tuning. In this phase,
the aim is to train a classifier for each cell type on the patient-wise
embeddings belonging to the reference dataset. We tested the fol-
lowing classifier types: sklearn.svm.LinearSVC, sklearn.svm.SVC and
sklearn.neighbors.KNeighborsClassifier (sklearn version 1.4.1.post1).
For each classifier type, we trained different configurations defined
in Supplementary Table 7 and evaluated their performance using a
five-fold cross-validation on the reference patient embeddings. Simi-
lar to what we did to optimize the XGBoost classifier when estimat-
ing the immune gene importance, we employed the Optuna library
to perform the hyperparameter tuning for each classifier. The best
hyperparameter combinationwas selected according to the WF1score
independently of the cell type.

Majority voting and evaluation. The best classifier type according to
the average performance over all cell types is then used to train from
scratch the corresponding classifier on the whole reference patient
embedding. The predicted condition (disease) for a patient is simply
the majority voting among the classifiers. In case of a tie of different
conditions, we conservatively rejected the prediction of the classifiers.
Then, the overall metrics WF1 score, BAS and Matthews correlation
coefficient (MCC) and the disease-wise metrics Precision, Recall, BAS
and F1score were computed by comparing the predicted inflammatory
conditions by each classifier type in the query dataset with the avail-
able ground truth. All those metrics were computed with the sklearn
Python library. When we refer to the weighted version of agiven metric,
we are using average ='weighted’ parameter to take into account the
unbalance of the inflammatory condition observations.

Note, ifagiven query patient does not have any cells annotated for
agiven cell type, the corresponding prediction was set as ‘Not Avail-
able’. This label was not takeninto account during the majority voting
procedure and was considered as awrong prediction when evaluating
the performances of that cell type.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

scRNA-seq in-house-generated raw data and associated processed
count matrices are publicly accessible without restrictions at the
NCBI GEO database under the GSE248688 SuperSeries, including
the following SubSeries accession numbers: GSE248689 (SCGTO01),
GSE248695 (SCGT02), GSE248685 (SCGTO03), GSE248693 (SCGT04)
and GSE270165 (SCGTO06). To ensure data safety and patient privacy,
raw scRNA-seq data from SCGT00, SCGTOOval and SCGTOS5 stud-
ies can be downloaded upon reasonable request through the Euro-
pean Genome-phenome Archive (EGA) database using the following
access codes: EGAC50000000566 (SCGT00 and SCGTOOval) and
EGAS50000000590 (SCGTO5).

Previously published scRNA-seq data included in this project, either
FASTQ files or processed count matrices, were obtained from GEO,
BioStudies Array Express, Broad Institute DUOS, Synapse, Genome
Sequence Archive, CELLXGENE Data Portal and 10x Genomics. Further
details are specified in Supplementary Table1(Sheet1).

The processed scRNA-seq datasets (quality controlled gene expres-
sion count matrices) and metadataanalyzed in the present study have
beendeposited at Zenodo: https://doi.org/10.5281/zenodo0.14851901.

Code availability

The code to reproduce the full analysis presented in this article is
hosted in the GitHub repository: https://github.com/Single-Cell-
Genomics-Group-CNAG-CRG/Inflammation-PBMCs-Atlas.
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Extended Data Fig. 1| See next page for caption.
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Extended Data Fig. 1| Composition of the inflammation atlas datasets

from the Main Core. (a) Barplot showing patient count distribution across
different diseases, including Healthy condition, stratified by technical variables
(studyID and chemistry) and clinical metadata (age and sex). The donor

without age information is shown in white. (b) Results from the scib-metrics
package computed on five different embedding spaces, ranked by their overall
performances. (c) Heatmaps showing the coefficient of determination R?
fromalinear regression between each principal component and one of four

confounding factors. The Principal Component Analysis was performed on (left)
original data (normalized and log-scaled) and (right) from scANVInormalized
expression (log-scaled). (d) Cellular proportions (Level I) across diseases and
Healthy donors (Top). Compositional analysis of Level 1 populations (excluding
Platelets and RBC) between each disease and Healthy donors (Bottom). The dot
size reflects the significance of the result (‘Final parameter’!= 0), and the color
represents thelog,FC (Disease vs Healthy).
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2| Inflammation-related signatures across diseases and
cell types. (a) Heatmap displaying the transcription factor (TF) specificity of
STAT1and SP1across different cell types and diseases. The t-statistic represents
the relative expression of genes between diseased and Healthy samples,
highlighting shared genes between TF target genes and IFN-induced cell type
signatures. (b) Boxplot displaying the activity of STAT1and SP1across cell types
(Level2) in SLE patients and Flu patients. (c) Boxplot displaying the activity of
SP1across monocyte subpopulations (Level 2)in SLE, Flu, Cirrhosis and HNSCC
patients. In panels (b) and (c), the pseudobulk value computed for each cell type
within eachindependent patient are presented as median values, with boxes

indicating the interquartile range (IQR, 25th-75th percentile) and whiskers
extending up to 1.5 x IQR beyond the box boundaries; points outside this range
areshownindividually as outliers. Statistical significance was assessed using
atwo-sided Wilcoxon rank-sum test, and P-values were adjusted for multiple
comparisons using the Benjamini-Hochberg procedure (adjusted P < 0.05).
Asterisks (*) denote significant differences relative to other cell lineages or
diseases, with the position of the asterisk indicating the direction of change
(above the box: upregulated; below the box: downregulated). Exact P-values,
effect sizes, and sample sizes are provided in Supplementary Table 6 (sheets
puval SLE Level2 and pval Mono_Level2for panels b and ¢, respectively).
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(Level 1; excluding Cycling cells, Progenitors, Platelets and RBC), displaying log-scaled cell expression profiles.
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Extended Data Fig. 4 | Exploring cell misclassification within COMBAT2022
dataset. (a-b) Normalized confusion matrices, aggregated (left) and one for
each celltype (Level 1; excluding Cycling cells, Progenitors, Platelets and RBC)

(right), displaying proportion of predictions belonging to each True Condition.

Diagonal values correspond to the Recall metric. XGBoost was trained on the
original normalized and log-scaled cell expression profiles from (a) whole
COMBAT dataset and (b) Healthy, Flu and COVID (stratified by disease severity)

samples from COMBAT dataset. (c-d) Agglomerative hierarchical clustering with
complete linkage (using the average method and cosine distance) was performed
on pseudobulk gene expression at the patient level (c), or at cell type (Levell) and
patient level (d), using the log-normalized uncorrected count matrix on the 8,253
gene expression universe. Sample covariates, including sequencing pool, sex,
and age, were also incorporated.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Functional biomarker discovery using interpretable
machine learning analysis. (a) Gene list ranked top-to-bottom by importance
(absolute d-SHAP value), coupled with max-normalized expression levels
computed per cell type (Levell) and considering selected diseases. From left to
right, reporting top ranked genes for n T CD4 Naive cells in RA disease as well

as for monocytes and pDC in SLE patients. (b) Rank by importance (absolute
d-SHAP value) of the CYBA gene in every combination of cell type (Levell) and
disease. (c) Scatter plot of d-SHAP values against the aggregated s-SHAP values
on monocyte population and specific diseases (first row: PS, PSA, CD, and second

row: UC, Asthma, COPD, from left to right). (d) Rank by importance (absolute
d-SHAP value) of IFITMI gene in every combination of cell type (Levell) and
disease. (e) Scatter plot of d-SHAP values against the aggregated s-SHAP values
on T CD4 Non-Naive (top) and ILC (bottom) population and specific diseases
(Asthma, COPD, and Cirrhosis, from left to right). In Panels (a), (b), and (d) we first
dropped the genes expressed in less than 5% of the selected cell population. In
Panels (c), and (e), the top 20 genes according to d-SHAP are marked in turquoise;
ofthese, the genes that are also among the top 20 by s-SHAP are marked in purple.
The gene of interest is annotated in red.
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Extended Data Fig. 7| Extended patient classifier workflow schema.

(a) Definition of reference and query datasets, for Scenarios1, 2,3, and
centralized dataset (from left to right). (b) Integration of the reference dataset
and mapping of the query dataset to define the patient-wise embeddings,

stratified by cell type. (c) Patient classifier pipeline composed by the

hyperparameter tuning of each classifier family, the selection of the best
classifier family and the final evaluation of the left-out query dataset. (d) Schema
of the three experiments performed. Icons created with Inkscape.
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whiskers extend to 1.5xIQR, and outliers are shown as individual points. Each box
includes n =5 points. (a) Boxplots showing the distribution of Balanced Accuracy
Score (balanced by true disease support), F1, Precision and Recall computed
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among 5 splits, with the corresponding ground truth labels, are also reported. (b)
Boxplots showing the distribution of Balance Accuracy Score (top), and Matthew
Correlation Coefficient (bottom) computed during 5-fold cross-validation,
considering Majority Vote and cell type prediction, on the left-out split from 817
samples. (c) Heatmap reporting Recall and Precision computed by aggregating
the prediction performed by each cell type on each left-out split during 5-fold
cross-validation.
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Extended DataFig. 9| Additional performance evaluation metricsinthe
Centralized dataset analysis and across state-of-the-art dataintegration
approaches. (a) Pointplot showing the Balance Accuracy Score (top), and
Matthew Correlation Coefficient (bottom) computed, considering Majority
Vote, 100 random disease assignments, and cell type prediction, on the samples
from left out pools in the Centralized Dataset. (b) Heatmap reporting Recall and
Precision obtained on the samples from left out pools by each cell type for each
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Patient classifier performance in Scenarios 2 and
3.(a, ¢, e,g) Result obtained with the best parameter configuration for each
integration and mapping method, considering Weighted F1 (WF1) score
computed on prediction of samples from unseen patients. (b,d,f,h) Result
obtained with the best parameter configuration for each integration and
mapping method, considering WF1score computed on prediction of samples
from unseen studies. In Panels (a) to (h): (top-left) Pointplot of WF1-scores for

Majority vote and each cell type. (bottom-left) F1-score for each combination

of cell type and disease, columns ordered for similarities. (right) Normalized
confusion matrices displaying proportion of predictions belonging to each true
condition. Diagonal values correspond to the Recall metric. Corresponding
Majority Vote WF1score and Balanced Accuracy Score (BAS) were reported. Note,
scPoli configurations where embedding space=sample were not considered.
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Data collection  The following instruments were used for in-house generation of scRNA-seq data TC20™ Automated Cell Counter (Bio Rad) to assess cell
concentration and viability after trypan blue staining. Bioanalyzer High Sensitivity Chip (Agilent Technologies) to determine final library size
distributions and concentration. Chromium Next GEM and Chromium X instrument (10X Genomics) for cell encapsulation. NovaSeq6000
system (lllumina) and NextSeq500 for library sequencing.

Data analysis The analyses reported in the manuscript were mainly performed in Python and R using published software and custom code.

The code to reproduce the main analysis presented in this article is hosted in the Github repository: https://github.com/Single-Cell-Genomics-
Group-CNAG-CRG/Inflammation-PBMCs-Atlas.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

>
Q
—
(e
(D
©
(@)
=
S
<
-
(D
©
O
=
>
(@)
w
[
3
=
Q
<




Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Single-cell RNA-sequencing (scRNA-seq) in-house generated raw data and associated processed count matrices are publicly accessible without restrictions at NCBI
Gene Expression Omnibus (GEO) database under the GSE248688 SuperSeries, including following SubSeries accession numbers: GSE248689 (SCGT01), GSE248695
(SCGT02), GSE248685 (SCGTO3), GSE248693 (SCGT04), and GSE270165 (SCGTO6). To ensure data safety and patient privacy, raw scRNA-seq data from SCGTOO,
SCGTOOval, and SCGTOS studies can be downloaded upon reasonable request through the European Genome-Phenome Archive (EGA) database using the following
access codes: EGAC50000000566 (SCGTOO and SCGTOOval) and EGAS50000000590 (SCGTO5).

Previously published scRNA-seq data included in this project, either FASTQ files or processed count matrices, were obtained from GEO, BioStudies Array Expresse,
Broad Institute DUOS, Synapse, Genome Sequence Analysis (GSA), CellXGene Data Portal, and 10X Genomics.

Codes for FASTQ files or processed count matrix, when no raw sequencing data was available, can be retrieved with the following codes: SCP548, GSE139324,
HRA001730, GSE138266, SRP293799, GSE198339, syn49637038, SRP319208, GSE136103, GSE134809,SRP282057, GSE156989, SRP264928, GSE142016, https://
cellxgene.cziscience.com/collections/8f126edf-5405-4731-8374-b5ce11f53e82, https://cellxgene.cziscience.com/
collections/0a839c4b-10d0-4d64-9272-684c49a2c8ba, https://www.10xgenomics.com/datasets/peripheral-blood-mononuclear-cells-pbm-cs-from-a-healthy-
donor-chromium-connect-channel-1-3-1-standard-3-1-0;https://www.10xgenomics.com/datasets/peripheral-blood-mononuclear-cells-pbm-cs-from-a-healthy-
donor-manual-channel-1-3-1-standard-3-1-0
https://www.10xgenomics.com/datasets/peripheral-blood-mononuclear-cells-pbm-cs-from-a-healthy-donor-chromium-connect-channel-5-3-1-
standard-3-1-0;https://www.10xgenomics.com/datasets/peripheral-blood-mononuclear-cells-pbm-cs-from-a-healthy-donor-manual-channel-5-3-1-standard-3-1-0
https://www.10xgenomics.com/datasets/5k-human-pbmcs-3-v3-1-chromium-controller-3-1-standard
https://www.10xgenomics.com/datasets/10k-human-pbmcs-3-v3-1-chromium-x-without-introns-3-1-high
https://www.10xgenomics.com/datasets/10k-human-pbmcs-3-v3-1-chromium-controller-3-1-high
https://www.10xgenomics.com/datasets/20-k-human-pbm-cs-3-ht-v-3-1-chromium-x-3-1-high-6-1-0
https://www.10xgenomics.com/datasets/5-hashing-example-with-tabs-2-standard
https://www.10xgenomics.com/datasets/5-hashing-example-with-tabs-2-standard

[Further details specified on the Supplementary Table 1 - Sheet 1]

The processed scRNA-seq datasets (quality controlled gene expression count matrices) and metadata analyzed in the current study have been deposited at Zenodo:
https://doi.org/10.5281/zenodo.14851901.

All materials are readily available from indicated standard commercial sources, or within the paper and its supplementary information files.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Patient cohort description including sex and age can be found in the Supplementary Table 1, and a summary across diseases
can be found both in Supplementary Table 1 and Extended data Figure 1.
PBMCs processed to generate in-house data for this project were pre-selected and included in other ongoing studies for
several diseases. Disease representation was linked to data availability, which is linked to disease prevalence. Given the large
number of diseases included, we did not draw any conclusions based on sex or age, but we did ensure that those two
biological variables are well represented in our cohort. Moreover, sex (and age) were considered as covariate in the statistical
analysis when possible. We also computed performances of cell-wise and patient-wise classifiers stratified by sex, to ensure
similar prediction power.

Reporting on race, ethnicity, or  PBMCs processed to generate in-house data for this project were pre-selected and included in other ongoing studies. No

other socially relevant information on race, ethnicity or social grouping was used for patient recruitment in this study or were considered in our
groupings analyses.
Population characteristics All data are derived from blood donated by patients for research purposes. For this reason, and given the diseases being

studied, blood samples collected in different hospitals may be from patients with different sex ratios or average ages. Further
details on sample collection can be found in the Methods section, and information on sex and age across diseases can be
found in the Extended Data Figure 1 and in the Suplementary Table 1.

Recruitment Each study had its own requirements. In terms of public data included, we considered scRNAseq studies to improve the
representation of different inflammatory profiles. We only included projects that provided the processed count matrix. Given
the wide range of sex and age across patients and diseases, and the impact this may have on the immune system, we
assessed for potential bias at all stages and corrected for these variables where necessary.

Ethics oversight All included studies were conducted in accordance with ethical guidelines and all patients provided written informed
consent; ethics committees and research project approvals are detailed:
Data from SCGTOO and SCGTOOval study was approved by Hospital Universitari Vall d'Hebron Research Ethics Committee
(approval num. PR(AG)144/201).
Data from the SCGTO1 study were approved by the Parc de Salut Mar Ethics Committee (approval no. 2016/7075/1).
Data from the SCGT02 study received ethical approval from the Medisch-Etische Toetsingscommissie (METc) committee; for
asthma patients (ARMS and ORIENT projects - approval no. NL53173.042.15 and NL69765.042.19 respectively), COPD
patients (SHERLOck project, approval number NL57656.042.16) and finally healthy controls (NORM project, approval number
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NL26187.042.09).

Data from SCGT03 were approved by the Comité Etico de Investigacion con Medicamentos del Hospital Universitario Vall
d'Hebron (agreement no. 654/C/2019).

Data from SCGT04 and SCGTO6 were approved by the Comite d'Etica d'Investigacié amb Medicamentos (CEim) del Hospital
de la Santa Creu i Sant Pau (approval nos. EC/21/373/6616 and EC/23/258/7364).

Data from the SCGTOS study were approved by the institutional review boards of the Commissie Medische Ethiek UZ KU
Leuven/Onderzoek (approval nos. S66460 and $62294).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size We included patients suffering 19 different diseases, representative for the full inflammation spectrum from a pathological immune response,
and that can be broadly classified into five distinct groups: 1) Immune-mediated inflammatory diseases (IMIDs, n=7) [Systemic Lupus
Erythematosus (SLE), Rheumatoid Arthritis (RA), Psoriatic Arthritis (PsA), Psoriasis (PS), Ulcerative Colitis (UC), Chron’s Disease (CD), Multiple
Sclerosis (MS)], 2) acute (n=1) [Sepsis] and 3) chronic (n=3) [Chronic Obstructive Pulmonary disease (COPD), Asthma, and Cirrhosis]
inflammation, 4) infection (n=4) [Influenza virus (Flu), SARS-CoV-2 (COVID), hepatitis B virus (HBV), and human immunodeficiency virus (HIV)]
and 5) solid tumors (n=4) [breast cancer (BRCA), colorectal cancer (CRC), nasopharyngeal carcinoma (NPC), heat&neck squamous cell
carcinoma (HNSCC)] which were profiled along with healthy donor samples (n=52). Overall, the final cohort includes 6.5 milion cells among
1047 patients.

Data exclusions  We excluded scRNAseq libraries and cells from public and in-house data if they did not meet the minimum quality thresholds during the
quality control step. During Quality Control, we excluded low quality libraries and samples, as well as low quality cells and doublets (see

specific parameter details in the Data Quality Control section, in Methods).

Replication Both cell-level and patient-level analyses include many biological replicates for each condition tested.

Randomization  N/A on the experimental design part. Regarding the machine learning analysis, randomization step was applied to generate (multiple) training
and test splitting.

Blinding N/A

Behavioural & social sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study type including whether data are quantitative, qualitative, or mixed-methods (e.g. qualitative cross-sectional,
quantitative experimental, mixed-methods case study).

Research sample State the research sample (e.g. Harvard university undergraduates, villagers in rural India) and provide relevant demographic
information (e.g. age, sex) and indicate whether the sample is representative. Provide a rationale for the study sample chosen. For
studies involving existing datasets, please describe the dataset and source.

Sampling strategy Describe the sampling procedure (e.qg. random, snowball, stratified, convenience). Describe the statistical methods that were used to
predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a
rationale for why these sample sizes are sufficient. For qualitative data, please indicate whether data saturation was considered, and
what criteria were used to decide that no further sampling was needed.

Data collection Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper,
computer, eye tracker, video or audio equipment) whether anyone was present besides the participant(s) and the researcher, and
whether the researcher was blind to experimental condition and/or the study hypothesis during data collection.

Timing Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample
cohort.
Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the

rationale behind them, indicating whether exclusion criteria were pre-established.

Non-participation State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no
participants dropped out/declined participation.




Randomization If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if
allocation was not random, describe how covariates were controlled.

Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study. For quantitative data include treatment factors and interactions, design structure (e.g. factorial, nested,
hierarchical), nature and number of experimental units and replicates.
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Research sample Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National
Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and
any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets,
describe the data and its source.

=
>

(@]
%)
c
3
=
Q
=

=

Sampling strategy Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size
calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Data collection Describe the data collection procedure, including who recorded the data and how.
Timing and spatial scale | /ndicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for
these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which

the data are taken

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them,
indicating whether exclusion criteria were pre-established.

Reproducibility Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to
repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

Randomization Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were
controlled. If this is not relevant to your study, explain why.

Blinding Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why
blinding was not relevant to your study.

Did the study involve field work? [] Yes [no

Field work, collection and transport

Field conditions Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).

Location State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water depth).

Access & import/export Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in
compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority,
the date of issue, and any identifying information).

Disturbance Describe any disturbance caused by the study and how it was minimized.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.




Materials & experimental systems Methods

Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChiIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
Clinical data

Dual use research of concern
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Antibodies used Describe all antibodies used in the study, as applicable, provide supplier name, catalog number, clone name, and lot number.

Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the
manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) State the source of each cell line used and the sex of all primary cell lines and cells derived from human participants or
vertebrate models.

Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for
mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines  pngme any commonly misidentified cell lines used in the study and provide a rationale for their use.
(See ICLAC register)

Palaeontology and Archaeology

Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the
issuing authority, the date of issue, and any identifying information). Permits should encompass collection and, where applicable,

export.

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where
they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are
provided.

|:| Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals For laboratory animals, report species, strain and age OR state that the study did not involve laboratory animals.

Wild animals Provide details on animals observed in or captured in the field, report species and age where possible. Describe how animals were
caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if released,
say where and when) OR state that the study did not involve wild animals.

Reporting on sex Indicate if findings apply to only one sex; describe whether sex was considered in study design, methods used for assigning sex.
Provide data disaggregated for sex where this information has been collected in the source data as appropriate; provide overall




numbers in this Reporting Summary. Please state if this information has not been collected. Report sex-based analyses where
performed, justify reasons for lack of sex-based analysis.

Field-collected samples | For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature,
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies

All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration = PBMCs processed to generate in-house data for this project were pre-selected and included within other on going studies. Therefore,
each respective project / clinical trial has obtained its own approval.
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Study protocol In house-generated scRNA-seq data was obtained following 10X Genomics protocol guidelines. Further details on how PBMC samples

were collected, preserved and processed as well as the protocol regarding scRNAseq libraries generation and sequencing can be
found in the Methods section.

Data collection PBMCs processed to generate in-house data for this project, were pre-selected and included within other on going studies.
Therefore, each respective project / clinical trial has followed the procedure that better suits its own purpose.

Outcomes N/A

Dual use research of concern

Policy information about dual use research of concern

Hazards

Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented
in the manuscript, pose a threat to:
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Yes

[] Public health

|:| National security

|:| Crops and/or livestock

|:| Ecosystems
|:| Any other significant area

X X X
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Experiments of concern

Does the work involve any of these experiments of concern:
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Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents
Enhance the virulence of a pathogen or render a nonpathogen virulent
Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin
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Any other potentially harmful combination of experiments and agents




Plants

Seed stocks N/A

Novel plant genotypes  N/A

Authentication N/A
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ChlP-seq

Data deposition
|:| Confirm that both raw and final processed data have been deposited in a public database such as GEO.

|:| Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links For "Initial submission" or "Revised version" documents, provide reviewer access links. For your "Final submission" document,
May remain private before publication. | provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.
Genome browser session Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to
(e.g. UCSC)

enable peer review. Write "no longer applicable" for "Final submission" documents.

Methodology
Replicates Describe the experimental replicates, specifying number, type and replicate agreement.
Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and
whether they were paired- or single-end.
Antibodies Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and

lot number.

Peak calling parameters | Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files

used.
Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.
Software Describe the software used to collect and analyze the ChlP-seq data. For custom code that has been deposited into a community

repository, provide accession details.

Flow Cytometry

Plots

Confirm that:
|:| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|:| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
|:| All plots are contour plots with outliers or pseudocolor plots.

|:| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology
Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.
Instrument Identify the instrument used for data collection, specifying make and model number.
Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a

community repository, provide accession details.




Cell population abundance

Gating strategy

Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the
samples and how it was determined.

Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell
population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

|:| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design
Design type

Design specifications

Indicate task or resting state; event-related or block design.

Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial
or block (if trials are blocked) and interval between trials.

Behavioral performance measures  State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used

Acquisition
Imaging type(s)

Field strength

Sequence & imaging parameters

Area of acquisition

Diffusion MRI [ ] used

Preprocessing

Preprocessing software
Normalization
Normalization template
Noise and artifact removal

Volume censoring

to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across
subjects).

Specify: functional, structural, diffusion, perfusion.
Specify in Tesla

Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size,
slice thickness, orientation and TE/TR/flip angle.

State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

D Not used

Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction,
segmentation, smoothing kernel size, etc.).

If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g.
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and
physiological signals (heart rate, respiration).

Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings

Effect(s) tested

Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and
second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether

ANOVA or factorial designs were used.

Specify type of analysis: [ | whole brain || ROI-based [ ] Both

Statistic type for inference

(See Eklund et al. 2016)

Correction

Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).
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Models & analysis

n/a | Involved in the study
|:| |:| Functional and/or effective connectivity

|:| |:| Graph analysis

|:| |:| Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation,
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph,
subject- or group-level, and the global and/or node summaries used (e.qg. clustering coefficient, efficiency,
etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation
metrics.
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