

Interpretable inflammation landscape of circulating immune cells

Received: 2 February 2025

A list of authors and their affiliations appears at the end of the paper

Accepted: 7 November 2025

Published online: 12 January 2026

Check for updates

Inflammation is a biological phenomenon beneficial for homeostasis, but it is unfavorable if dysregulated. Although major progress has been made in characterizing inflammation in specific diseases, a global, holistic understanding is still elusive. This is particularly intriguing, considering its function for human health and the potential for modern medicine if fully deciphered. In this study, we leveraged advances in single-cell transcriptomics to delineate inflammatory processes of circulating immune cells during infection, immune-mediated inflammatory diseases and cancer. Our single-cell atlas of more than 6.5 million peripheral blood mononuclear cells from 1,047 patients (56% female, 43% male) and 19 diseases allowed us to learn a comprehensive model of inflammation in circulating immune cells. The atlas expands current knowledge of the biology of inflammation of immune-mediated diseases, acute and chronic inflammatory diseases, infections and solid tumors and lays the foundation to develop a disease classification framework using unsupervised as well as explainable machine learning. Beyond a disease-centered analysis, we charted altered activity of inflammatory molecules in peripheral blood cells, depicting discriminative inflammation-related genes to further understand mechanisms of inflammation. We present a rich resource for the community and lay the groundwork for learning a classifier for inflammatory diseases, presenting cells in circulation as living biomarkers.

Inflammation is a state of the immune system that serves to protect the human body from environmental challenges, thereby preserving homeostasis¹. Inflammatory processes are activated in response to various triggers, such as infection or injury, and involve a multistep defensive mechanism to eliminate the source of perturbation². Inflammation represents an altered state within the immune system, which can manifest as either a protective or a pathological response³. The cellular and molecular mediators of inflammation play pivotal roles in nearly every human disease⁴.

The initiation of inflammatory processes is driven by cellular stimulation, triggered by the release of proinflammatory cytokines⁵. These cytokines exert autocrine and paracrine effects, activating endothelial cells and subsequently increasing vascular permeability. Chemokines are essential for recruiting additional immune cells for pathogen eradication⁶. Inflammation is a central driver in cardiovascular⁷,

autoimmune⁸ and infectious diseases⁹ and even cancer¹⁰. The success of therapies targeting inflammation underscores the importance of understanding the underlying pathways^{11,12}.

Single-cell RNA sequencing (scRNA-seq) is becoming a conventional method for detecting altered cell states, enabling the comparison of transcriptional profiles during inflammation¹³. A differential analysis of cell states and gene expression programs at the cellular level can guide a more holistic understanding of inflammation in acute and chronic diseases to form the basis for future precision medicine tools. In the present study, we annotated the common immune cell types present in the peripheral blood and identified disease-specific cell states that exhibit functional specialization within the inflammatory landscape. Beyond a disease-centered classification, we modeled the expression profiles of inflammatory molecules to uncover discriminative genes related to immune cell activation, migration, cytotoxic

responses and antigen presentation activities. Ultimately, we propose a classifier framework based on peripheral blood mononuclear cells (PBMCs), demonstrating the potential of circulating immune cells to contribute to precision medicine strategies for patients suffering from acute or chronic inflammation.

Results

An inflammation landscape of circulating immune cells

To chart a comprehensive landscape of immune cells in circulation of healthy individuals and patients suffering from inflammatory diseases, we analyzed the transcriptomic profiles of more than 6.5 million PBMCs (6,340,934 after filtering), representing 1,047 patients and 19 diseases, split into a main Inflammation Atlas and two validation datasets (Fig. 1a,b). Diseases were broadly classified into five distinct groups: (1) immune-mediated inflammatory diseases (IMIDs, $n = 7$) (systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), psoriatic arthritis (PsA), psoriasis (PS), ulcerative colitis (UC), Crohn's disease (CD) and multiple sclerosis (MS)); (2) acute ($n = 1$) (sepsis); (3) chronic inflammation ($n = 3$) (chronic obstructive pulmonary disease (COPD), asthma and cirrhosis); (4) infection ($n = 4$) (influenza virus (Flu), SARS-CoV-2 (COVID), hepatitis B virus (HBV) and human immunodeficiency virus (HIV)); and (5) solid tumors ($n = 4$) (breast cancer (BRCA), colorectal cancer (CRC), nasopharyngeal carcinoma (NPC) and head and neck squamous cell carcinoma (HNSCC)), which were profiled along with healthy donor samples (Fig. 1a and Extended Data Fig. 1a). Our cohort included various scRNA-seq chemistries (10x Genomics 3' and 5' mRNA) and experimental designs (CellPlex and genotype multiplexing), as well as individuals of both sexes (56% female, 43% male) and across age groups, to comprehensively capture technical and biological variability (Methods and Supplementary Table 1). To learn a generative model of circulating immune cells of inflammatory diseases, we applied probabilistic modeling of the single-cell data using scVI¹⁴ and scANVI¹⁵, considering clinical diagnosis, sex and age. Generative probabilistic models proved superior performances in integrating complex datasets compared to other approaches¹⁶, particularly if cell annotations are available (Extended Data Fig. 1b,c). Applied here, the resulting cell embedding space was batch effect corrected while preserving biological heterogeneity (that is, previously annotated cell types and states; Supplementary Table 2). From the joint embedding space, we initially assigned cells to major immune cell lineages (Level 1; Fig. 1c and Extended Data Fig. 1d). Then, following a recursive, top-down clustering approach, we obtained a total of 64 immune populations (Level 2), comprehensively resembling immune cell states of the innate and adaptive compartments (Fig. 1d, Supplementary Fig. 1 and Supplementary Table 3). High-level compositional analysis (Level 1) across diseases revealed significant changes of cell type distributions (Extended Data Fig. 1d) and validated previously described alterations in blood cells from patients. For example, we confirmed low levels of unconventional T cells (UTCs), innate lymphoid cells (ILCs) and naive CD4 T cells, together with high proportions of B cells and monocytes, in SLE¹⁷. Patients with inflammatory bowel disease (IBD) showed lower levels of UTCs and ILCs¹⁸, and we observed lower proportions of UTCs accompanied by a larger fraction of monocytes and B cells in RA¹⁹. Lymphopenia, a common event during the development of sepsis²⁰, and lymphocytosis, typical of HIV infection²¹, were also confirmed.

Fig. 1 | Inflammation landscape of circulating immune cells. **a**, Left, schematic overview illustrating the number of cells, samples and conditions (diseases and disease groups) analyzed. Right, pie charts displaying metadata related to the scRNA-seq chemistry (10x Genomics assay and version) and patient demographics (age and sex). **b**, Schematic overview of the analysis workflow followed, detailing the division of the overall dataset into Main, unseen patients and unseen studies. The figure illustrates the specific tasks and analyses performed with each dataset. **c**, Uniform manifold approximation and projection (UMAP) embedding for the scANVI-corrected latent space considering the Main

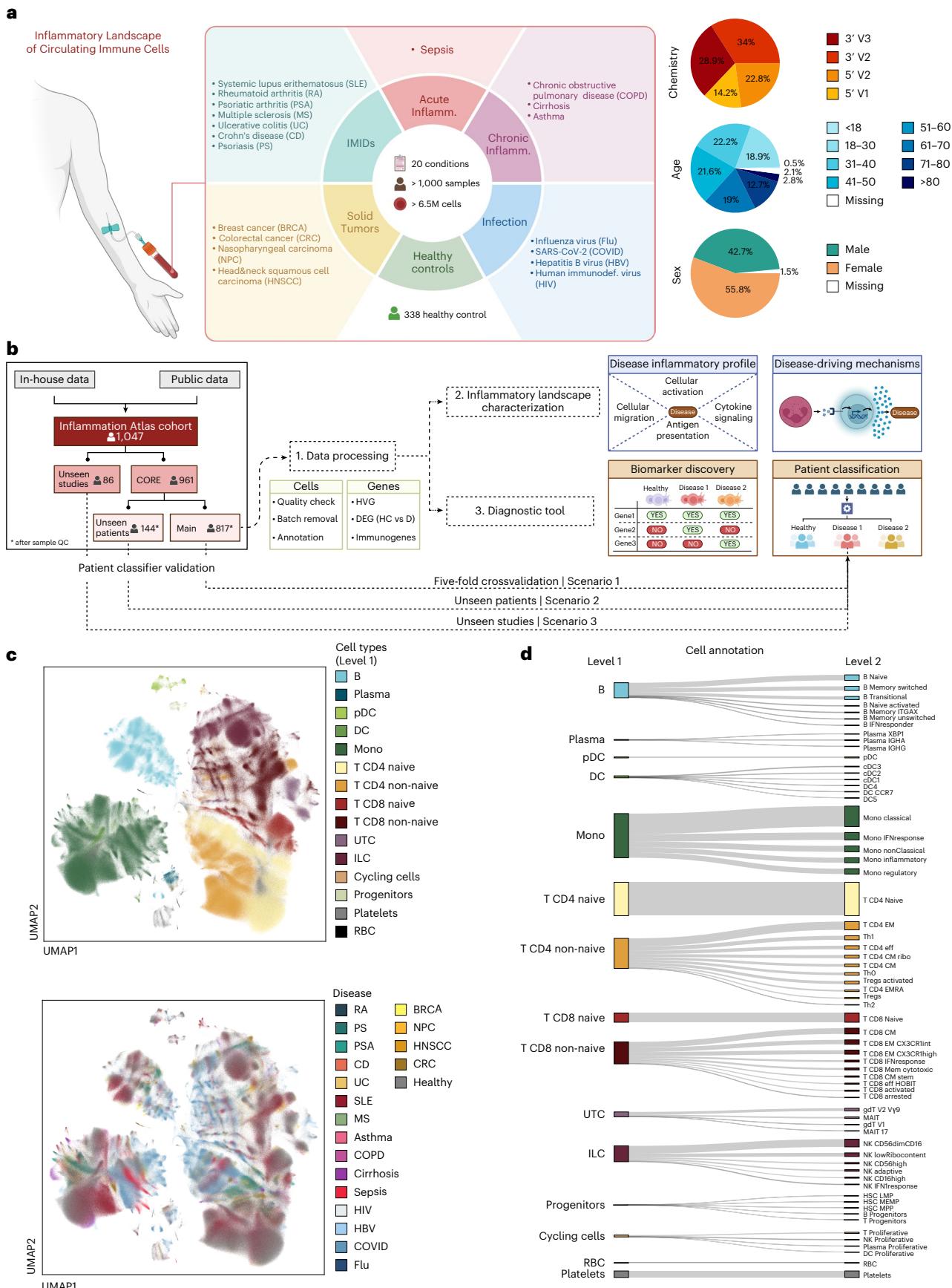
Diving deeper into genes and gene programs to characterize inflammatory diseases, our subsequent analysis followed three complementary strategies: (1) to identify disease-driving mechanisms (gene signature and gene regulatory network (GRN) activity); (2) to capture discriminative inflammation-related genes (feature extraction); and (3) to classify patients based on their disease-specific signatures (projection). Therefore, we looked at gene expression profiles holistically but also delineated the inflammatory process by focusing on immune-modulating molecules (Supplementary Table 4).

Inflammation-related signatures across diseases and cell types

We first grouped inflammatory molecules into 21 gene signatures that delineate multiple processes, including immune cell adhesion and activation, cellular migration (chemokines), antigen presentation and cytokine-related signaling (Supplementary Table 4). To tailor these signatures to reflect the inflammation landscape of circulating immune cells, we refined these using Spectra²², yielding a comprehensive set of 119 cell-type-specific factors (Supplementary Table 4). We then ran a univariate linear model (ULM) analysis on the scANVI-corrected gene expression data, providing an inflammation signature activity score for each group. Finally, we ran a linear mixed-effect model (LMM) between diseased and healthy samples to highlight disease-specific alterations (Supplementary Table 5).

We observed a general trend of increased activity in immune-relevant signatures as compared to healthy donors (>50% increased average signature scores; Fig. 2a). For IMIDs, we found the characteristic upregulation of adhesion molecule signatures, TNF via NF κ B signaling, antigen cross-presentation and antigen-presenting signatures²³. Interferon (IFN) type 1 and type 2 signatures were significantly down-regulated in most IMIDs and cell types, except for non-naive CD8 T cells that showed an upregulation, pointing to a common cell-type-specific mechanism²⁴. Notably, IMIDs showed a strong upregulation of the IFN-induced signature in almost all immune cell types, where SLE was also accompanied by an upregulation of chemokines and chemokine receptors. MS showed a decreased IFN-induced signature and increased chemokine receptor activity, in line with the migratory capacity of blood cells to infiltrate the brain during the course of the disease²⁵. As previously reported, we captured the upregulation of the TNF receptor/ligand signature mainly in non-naive CD8 T cells for sepsis (together with an increase in IFN γ response in monocytes), with a decrease in the other inflammatory signals (adhesion molecules and cytokines)²⁶. By contrast, all chronic inflammatory diseases upregulated the activity of antigen-presenting molecules and increased IFN-induced signaling. This IFN-induced signature was also increased in viral infections, such as Flu and COVID, whereas we found a decreased activity in HIV and HBV. Finally, within solid tumors, CRC and NPC presented a strong upregulation of TNF via NF κ B signaling. Intriguingly, only RA, PS, UC and CD showed an enrichment in the T follicular helper (Tfh) signature in non-naive CD4 T cells, highlighting the role of circulating Tfh cells in these diseases. In IMIDs more generally, both naive and non-naive CD4 T cell populations were enriched in T helper signatures, pointing to an early priming of naive T toward helper T cell-driven inflammation²⁷. Finally, to assess the similarity of the inflammatory profiles among diseases, we performed hierarchical clustering of the inflammation signature activity score across all cell types (Level 1; Fig. 2a,b).

dataset (4,435,922 cells) across patients and diseases colored by the major cell lineages (top, Level 1) and diseases (bottom). **d**, Sankey diagram showing the Inflammation Atlas cell annotation, considering major cell lineages (Level 1, left) and cell type populations (Level 2, right), along with their correlation to Level 1 cell groups. **a,b**, Icons were created in BioRender: Aguilar Fernandez, S. (2025): <https://biorender.com/h7jfeqm> or with Inkscape. CM, central memory; D, disease; DC, dendritic cell; DEG, differentially expressed genes; EM, effector memory; HC, healthy control; HVG, highly variable genes; Mono, monocytes; NK, natural killer; pDC, plasmacytoid dendritic cell; QC, quality control.



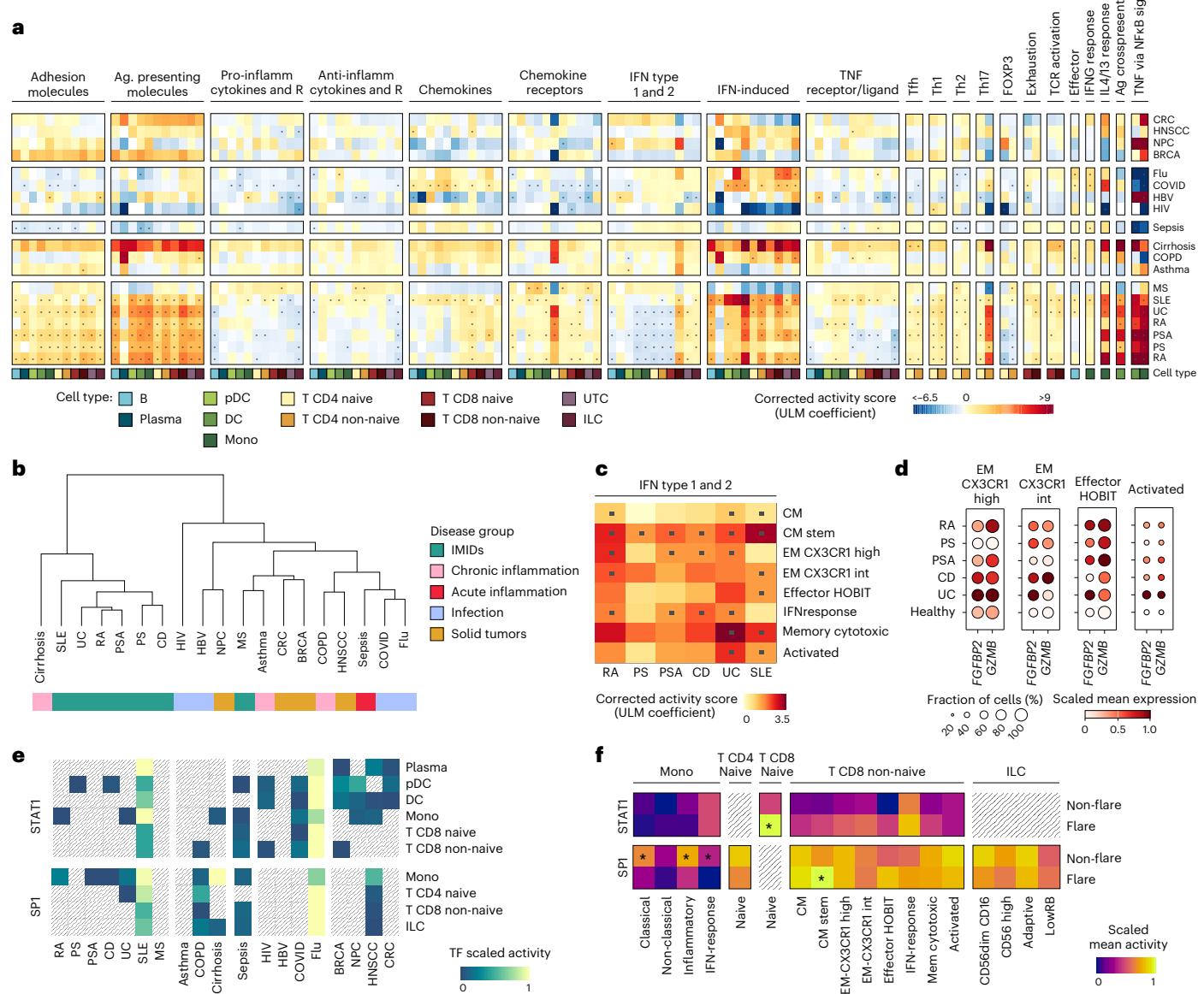


Fig. 2 | Inflammation-related signatures across cell types and diseases. **a**, Heatmap displaying the corrected signature activity score of the 119 cell-type-specific Spectra factors across diseases and cell types (Level 1). Here, the corrected signature activity score represents the coefficient value after running an LMEM comparing diseases versus healthy control (HC) on the ULM estimates computed using the cell type (Level 1) and patient pseudobulk on the corrected count matrix. The xaxis represents the Spectra cell-type-specific factor associated with a given function (top annotation). The yaxis represents the diseases grouped by disease group. **b**, Agglomerative hierarchical clustering with complete linkage, performed considering the Euclidean distance among columns, based on the corrected immune-related signature activity score computed by disease and cell type (Level 1). **c**, Heatmap displaying the corrected IFN type 1 and type 2 signature activity score across non-naive CD8 T cells (Level 2) and IMIDs. Here, the corrected signature activity score represents the coefficient value after running an LMEM comparing diseases versus HC on the ULM estimates computed using the cell type (Level 2) and patient pseudobulk on the corrected count matrix. For **a** and **c**, significant signature activity differences

between disease and HC are marked with a dot (•) (LMEM, FDR-adjusted $P < 0.05$). **d**, Dot plot showing the uncorrected average expression of the *FGFBP2* and *GZMB* genes from IFN type 1 and type 2 signature (xaxis) across different subpopulations of non-naive CD8 T cells (Level 2) on IMIDs and health (SCGT00 study). The dot size reflects the percentage of cells of each disease expressing each gene, and the color represents the average expression level. **e**, Scaled relative activity of STAT1 and SPI1 across cell types (Level 1) and enriched diseases for their transcription factor target genes. Hatched boxes indicate cell types not enriched in the corresponding disease. **f**, Heatmap representing the average scaled transcription factor activity of STAT1 and SPI1 across cell populations (Level 2) for flare and non-flare patients from Perez et al.¹⁷. Asterisk (*) indicates statistically significant changes using the two-sided Wilcoxon signed-rank test, FDR-adjusted $P < 0.05$. CD, Crohn's disease; CM, central memory; DC, dendritic cell; MLM, multilevel modeling; MS, multiple sclerosis; EM, effector memory; pDC, plasmacytoid dendritic cell; PS, psoriasis; PSA, psoriatic arthritis; RA, rheumatoid arthritis; TF, transcription factor; UC, ulcerative colitis.

Considering distinct cell types as unique contributors to the inflammatory immune landscape, IFN signatures have been used as a biomarker to define disease activity in autoimmune diseases²⁸. However, it remains elusive which immune subpopulations contribute

to these signatures to guide the selection of specific therapeutic interventions. Observing an enriched IFN type 1 and type 2 activity in non-naive CD8 T cells in IMIDs (Fig. 2a), we next sought to discover subpopulations as the signature driver. Here, we observed

a significant upregulation across almost all non-naïve CD8 T cell populations—however, with a differential pattern across diseases (Fig. 2c). We then decomposed the signal to gene level to identify the most relevant contributors (Supplementary Fig. 2a,b). Intriguingly, *FGFBP2* and *GZMB* showed increased expression levels, with restriction to specific effector memory (EM) CD8 T cell subtypes (EM CX3CR1 high, EM CX3CR1 int, Eff HOBIT and Activated), with a marked increase observed in UC (Fig. 2d). Of note, *FGFBP2* and *GZMB* were recently described as markers of CD8 T cells localized to areas of epithelial damage²⁴. Notably, our blood-based analysis points to their activation in circulating effector CD8 T cell populations even before tissue infiltration.

Expanding on previous observations of increased IFN-induced response across several immune cells and diseases, especially in the myeloid compartment for patients with SLE¹⁷ (Fig. 2a), we conducted a GRN analysis to explore the regulatory mechanisms and transcription factors driving the IFN-related activity (Level 1; Methods). STAT1 and SP1 were identified as the primary regulators of the IFN-induced signature, with each transcription factor exhibiting cell-type-specific activities (Fig. 2e and Supplementary Table 6). STAT1 primarily regulated canonical IFN signaling genes across multiple lineages, whereas SP1 activated a heterogeneous set of target genes (Extended Data Fig. 2a and Supplementary Table 6)²⁹.

Observing a broad IFN-induced activity across immune cell types, we next investigated whether STAT1 and SP1 regulatory programs were conserved across cell subpopulations (Level 2; Extended Data Fig. 2b,c and Supplementary Table 6). Here, patients with SLE exhibited opposing STAT1 and SP1 activities in monocytes and non-naïve CD8 T cells. STAT1 activity was increased in non-classical monocytes, whereas SP1 activity was decreased³⁰. STAT1 was also upregulated in conventional dendritic cells type 2 (cDC2s), whereas SP1 activity was increased across multiple cell types implicated in the pathogenesis of SLE³¹, including inflammatory and regulatory monocytes, EM CX3CR1 high, CM and activated CD8 T cells as well as adaptive and CD56dimCD16 natural killer cells. Patients with Flu showed a significant increase in STAT1 activity in IFN-response CD8 T cells (Extended Data Fig. 2b). By contrast, patients with cirrhosis presented higher SP1 activity specifically in IFN-response monocytes. In HNSCC, an increased SP1 activity was observed in non-classical monocytes (Extended Data Fig. 2c), a protumoral population related to the suppressive systemic state of monocytes in this cancer type³². Given the cell-type-specific regulatory patterns observed across diseases, we next investigated the contribution of STAT1 and SP1 activity to dynamic changes associated with disease progression. To this end, we assessed their activity in patients with SLE¹⁷ experiencing disease exacerbations (flares; Supplementary Table 6). STAT1 activity was elevated during flares, particularly within CD8 T cells, whereas SP1 activity was more prominent in myeloid populations in the absence of flares (Fig. 2f).

Functional gene selection through interpretable modeling

Gene discovery using linear models or standard differential expression analysis suffers from the limitation that genes are considered independently. Thus, we considered the possibility of categorizing cells to their respective disease origin through an interpretable machine learning pipeline, to guide the selection of functional disease discriminatory genes (Methods and Supplementary Table 4). Therefore, we applied a supervised classification approach, together with a post hoc interpretability method, to allow the inference of the gene-wise importance, stratified by disease and cell type (Level 1).

We based our strategy on gradient boosted decision trees (GBDTs), a state-of-the-art machine learning technique proven to be effective in complex tasks with noisy data and nonlinear feature dependencies³³ (Methods and Supplementary Table 7). To account for cell-type-specific expression patterns and the differential impact of diseases across immune populations, we trained separate models for each cell type (Level 1). We applied the classification pipeline to the scANVI-corrected gene expression profiles, achieving a balanced accuracy score (BAS) of 0.87 and a weighted F1 (WF1) score of 0.90 on held-out samples (Fig. 3a and Supplementary Table 8). Instead, uncorrected log-normalized counts led to a reduced performance, underscoring the benefits of batch correction (BAS: 0.65 and WF1: 0.78; Fig. 3a). Performances were consistent among cell types, with less abundant cell populations obtaining generally lower scores (for example, plasma cells, BAS: 0.78 and WF1: 0.80; Extended Data Fig. 3 and Supplementary Table 8). We observed that certain diseases exhibited poorer classification performance—for example, the misclassification of patients with severe Flu as COVID (Extended Data Fig. 3). Retraining the GBDT classifier on the Flu and COVID dataset (COMBAT dataset³⁴) and stratifying patients with COVID by their clinical behavior (mild, severe and critical) identified patients with severe Flu to closely resemble severe COVID cases (Extended Data Fig. 4a,b). Similar results were obtained by clustering pseudobulks at the sample level (Extended Data Fig. 4c,d), supporting common inflammatory signatures of patients suffering from these severe respiratory infections. Finally, separating cells from female and male patients yielded similar performances, with no differences between sexes (Extended Data Fig. 5a).

As GBDTs require post hoc interpretability tools, we computed SHapley Additive exPlanation (SHAP)³⁵ values. By combining the two approaches, we obtained a rich resource of gene rankings based on their ability to discriminate inflammatory conditions across different cell types (Methods and Supplementary Table 9). To evaluate the effectiveness of disease-discriminative SHAP (d-SHAP) values, we assessed the classification performance compared to an equal number of randomly selected genes. On unseen studies, d-SHAP genes consistently yielded more accurate predictions (Fig. 3b). Due to the possible collinearity of diseases and studies, d-SHAP values might be affected by batch effects. To disentangle disease-specific from study-specific signals, we trained separate classifiers to predict the study identity (BAS: 0.97 and

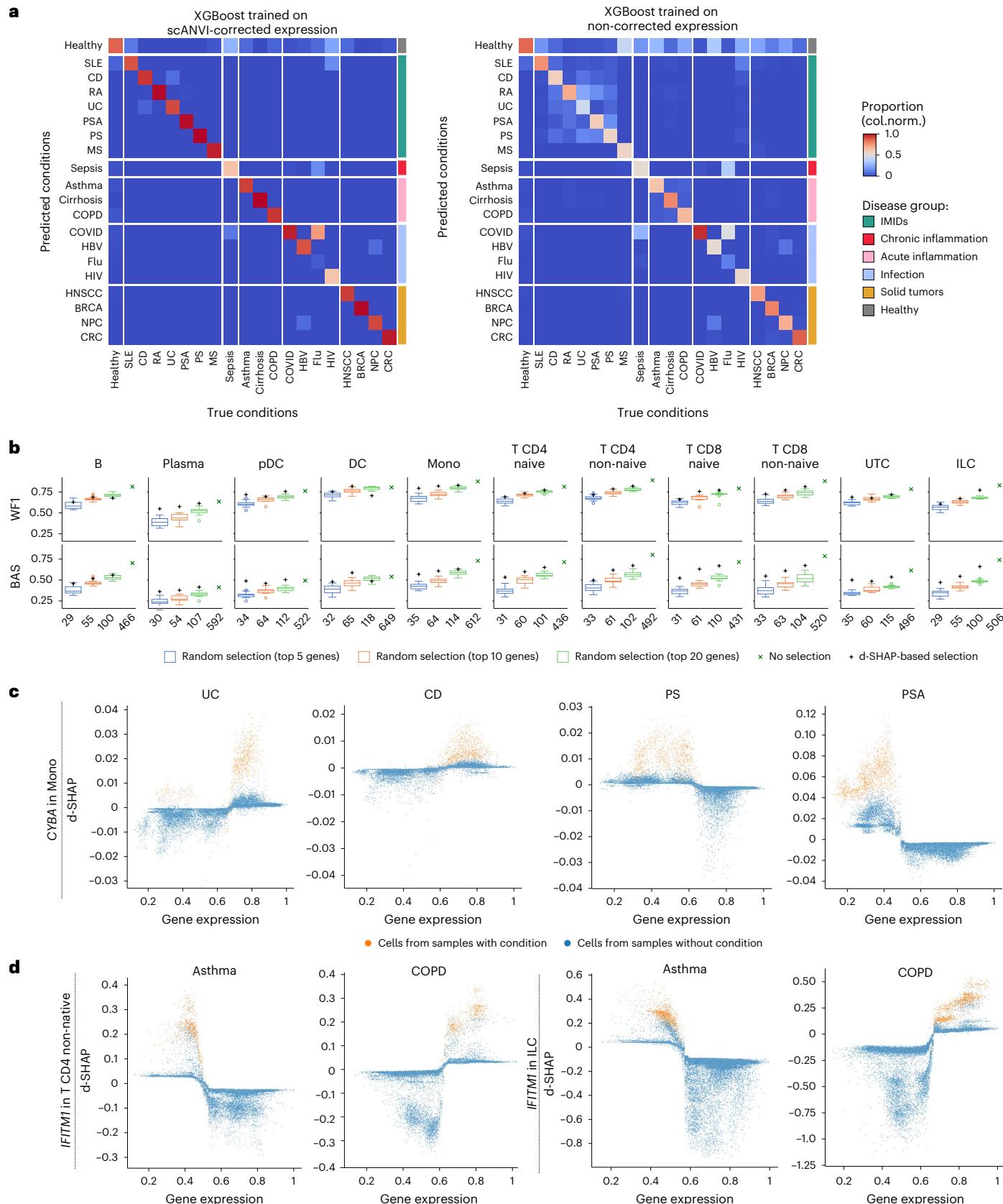
Fig. 3 | Functional gene discovery using interpretable machine learning.

a, Normalized confusion matrices displaying proportion of predictions belonging to each true condition. Diagonal values correspond to the Recall metric. XGBoost was trained on the scANVI batch-corrected (left) or batch-uncorrected (right) log-scaled cell expression profiles. **b**, Validation of d-SHAP-based gene selection using XGBoost trained with a nested cross-validation on unseen studies' cells. Each point corresponds to the average left-out fold performance, for each best configuration of each fold combination. The box plots report the WF1 (top) and the BAS (bottom) computed considering top 5, 10 and 20 genes (among the ones expressed in at least 5% of the total cells), for each inflammatory condition present within the unseen studies dataset (that is, healthy, sepsis, CD, SLE, HIV, cirrhosis, RA and COVID) according to the d-SHAP values, across cell types (Level 1). For the same number of genes, we report the performance scores of $n = 20$ random selected gene sets. The performance of the classifier when trained on the whole gene set, consisting of the genes expressed

in at least 5% of the total cells, is also reported. Boxes indicate the interquartile range (IQR) with the median as a center line; whiskers extend to $1.5 \times$ IQR; and outliers are shown as individual points. **c**, Scatter plot of max-normalized gene expression against d-SHAP values computed for *CYBA* gene on monocyte population (Level 1) and considering the output of disease-XGBoost for a given disease (UC, CD, PS and PSA, from left to right). **d**, Scatter plot of max-normalized gene expression against d-SHAP values computed for *IFITM1* gene on T non-naïve CD4 and ILC populations (annotation Level 1) considering the output of the disease-XGBoost for a given disease (asthma and COPD, left and right). In **c** and **d**, we limited the visualization to up to 60,000 cells, sampling an equal percentage from each patient corresponding to 5% and 7.5% of monocytes and T non-naïve CD4 cells, respectively. Cells belonging to samples with or without the given condition (disease) are marked in orange or blue, respectively. CD, Crohn's disease; MS, multiple sclerosis; PS, psoriasis; PSA, psoriatic arthritis; RA, rheumatoid arthritis; UC, ulcerative colitis.

WF1: 0.99; Supplementary Fig. 4a) and to identify study-associated genes via SHAP values (s-SHAP; Methods). The correlation and overlap between the d-SHAP and s-SHAP values (Supplementary Fig. 4b,c) allowed us to prioritize bona fide disease-discriminative genes for further analysis (Supplementary Table 9).

Ordering genes based on d-SHAP values identified previously described biomarkers, such as *STAT3* in CD4 T cells for RA samples³⁶ and IFN genes for SLE samples³⁷ (Extended Data Fig. 6a). The d-SHAP values of *CYBA* stood out as a strong candidate marker to classify diseases affecting barrier tissue: PSA, PS, UC and CD (Fig. 3c and



Extended Data Fig. 6b,c). *CYBA* encodes the primary component of the microbicidal oxidase system of phagocytes. In line, the importance was seen mainly in monocytes (Extended Data Fig. 6b). Interestingly, high expression of *CYBA* drove the model to classify intestinal inflammatory diseases (UC and CD), whereas reduced levels were relevant to classify skin-related diseases (PS and PSA) (Fig. 3c). Mutations in *CYBA* cause chronic granulomatous disease, with patients showing an impaired phagocyte activation and failing to generate superoxide. Consequently, patients show recurrent bacterial and fungal infections in barrier tissues, including the skin³⁸. Thus, we hypothesize that reduction of *CYBA* in skin-related IMIDs leads to an impaired immune barrier function, causing localized, symptomatic flares of PS and PSA. On the other hand, reactive oxidative species (ROS) produced by mucosa-resident cells or by newly recruited innate immune cells are essential for antimicrobial mucosal immune responses³⁹. In IBDs, an upregulation of *CYBA* may result in the accumulation of superperoxide and ROS through its oxidase function, a hallmark of these diseases⁴⁰.

Further exploring d-SHAP value ranks highlighted the importance of *IFITM1* across chronic diseases, including COPD and asthma (Extended Data Fig. 6d,e). *IFITM1* encodes a protein that inhibits viral entry into host cells by preventing the fusion of the virus with the host cell membrane⁴¹. The importance of *IFITM1* was mainly observed in lymphoid cells, specifically CD4 non-naive T cells and ILCs (Extended Data Fig. 6d and Supplementary Fig. 3). In both cell types, higher *IFITM1* expression drives the model toward classifying COPD, whereas lower expression shifts the classification toward asthma (Fig. 3d). In line, T cell and ILC accumulation is associated with the decline of lung function and severity in patients with COPD⁴². We hypothesize that chronic inflammation triggers higher expression of *IFITM1* in lymphoid cells, thereby facilitating their accumulation⁴³, with further mechanistic validation being needed.

Classifying patients by reference mapping

The ability to accurately classify cells according to their respective diseases prompted us to classify patients based on their disease of origin, creating the basis for a universal classifier as a precision medicine tool for inflammatory diseases. By considering each patient as an ensemble of expression profiles across all circulating immune cells, we learned a generative model while integrating the single-cell reference as a basis to project new patients from a query dataset into the same embedding space. Such strategy allowed us to map unseen and unlabeled query patient data into our reference embedding space, providing a common ground for classification.

Projecting expression data into a lower-dimensional space is a common strategy to reduce noise⁴⁴ and to map query data into a reference atlas⁴⁵. Here we introduce a novel computational framework to exploit the cell embeddings for classification, thus turning the single-cell reference into a diagnostic tool (Fig. 4a and Extended Data Fig. 7). Therefore, we first generated the embeddings with scANVI (30 latent embeddings) of both the reference and the unseen query datasets while also transferring the cell labels to the latter (Supplementary Table 7). Then, we defined a cell type pseudobulk profile per patient by averaging

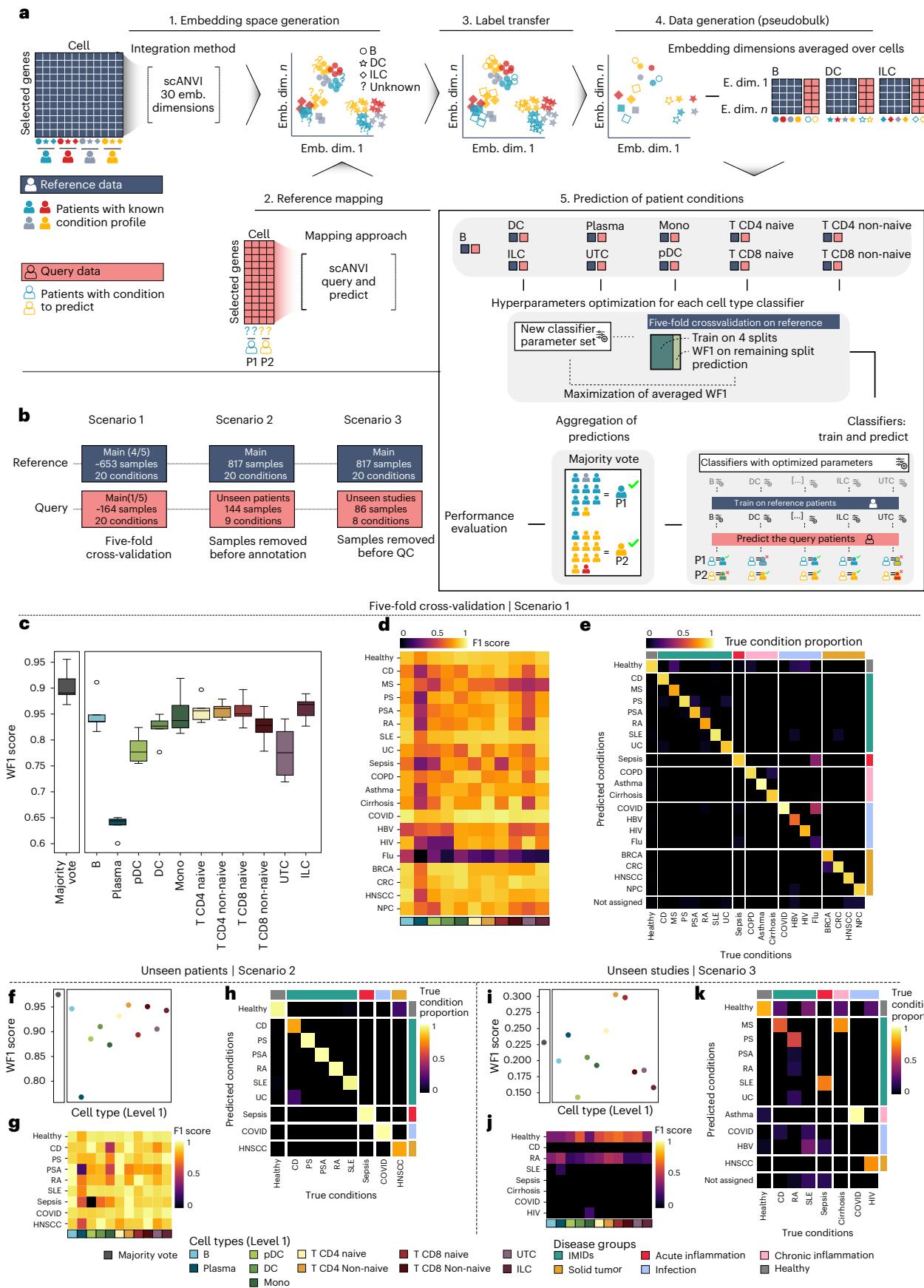
the embedded features of the corresponding cells (Level 1; Methods). Next, we trained an independent classifier to assign correct disease labels, considering one cell type at a time. We handled uncertainty at cell type level via a majority voting system to determine most frequent conditions. To assess the performance of our framework, we proposed three scenarios: (1) a five-fold cross-validation splitting the full reference atlas into five balanced sets, (2) a dataset with unseen patients and (3) a dataset with unseen studies (Fig. 4b). We consider these scenarios a representation of the data integration challenges with an increasing degree of complexity.

Our classification strategy achieved high performance in the cross-validation scenario (Scenario 1; Supplementary Table 8), resulting in 0.90 ± 0.03 WF1 and 0.85 ± 0.07 BAS (Fig. 4c). Consistent with results obtained from the cell-wise classifier pipeline, Flu was the only disease that failed to be classified (Recall: 0.18) (Extended Data Fig. 8a,b). Training a classifier for each cell type separately allowed us to assess their relevance in distinguishing inflammatory diseases (Fig. 4d,e). Here, plasma and UTC showed the lowest BAS (0.53 and 0.67) and WF1 (0.64 and 0.78), highlighting the strength of our majority voting approach as a robust ensemble (Extended Data Fig. 8b). Although certain diseases (COVID, COPD and asthma) were particularly well classified by lymphoid and myeloid cell types, HIV was best classified by naive lymphoid cells (that is, naive CD4 and CD8 T cells and B cells with F1 of 0.83) in line with the tropism of the virus infecting mainly CD4 T cells^{46,47} (Fig. 4d and Extended Data Fig. 8c). Increasing the complexity by classifying unseen patient samples (Scenario 2), the performance remained very high, with a BAS of 0.95 and a WF1 of 0.98 (Fig. 4f–h and Supplementary Table 8). However, the classification of samples from unseen studies (Scenario 3) resulted in a strongly decreased BAS of 0.12 and a WF1 of 0.23 (Fig. 4i–k and Supplementary Table 8).

The largest performance drop was observed between Scenario 2 and Scenario 3, the latter classifying patients from unseen studies. We hypothesized that confounding factors, such as variations in assay chemistry or research centers, hindered the classifier's ability to generalize. To validate our hypothesis and to provide a path toward a generalizable patient classifier, we next considered a Centralized Dataset that includes only data from diseases generated in the same center with a single assay chemistry (SCGT00 data; Supplementary Table 1 and Extended Data Fig. 7). In contrast to Scenario 2, we stratified the samples by sequencing pool and disease, ensuring that reference and query patients belong to distinct cohorts. This new centralized approach included an independent annotation of the reference patients' cells (Methods and Supplementary Table 3) and new scANVI integration of the reference data, before projecting cells of the query patients. Notably, in this context, WF1 and BAS increased to 0.56 and 0.53, respectively, pointing to a highly improved generalization performance when classifying query patients as compared to Scenario 3 (Fig. 5a–c, Extended Data Fig. 9a,b and Supplementary Table 8). Finally, we evaluated the classifier performance considering male and female patients separately. In Scenario 1, no statistically significant differences were observed between WF1 distributions (Extended Data Fig. 5b), and the majority

Fig. 4 | Schematic representation of the patient classifier pipeline and performance evaluation. **a**, Schematic representation of the patient classifier pipeline. Icons were created with Inkscape. **b**, Description of the three performance evaluation scenarios. In our datasets, we always have only one sample for each patient. **c–e**, Performance evaluation in Scenario 1 (five-fold cross-validation, from 817 samples), showing: **c**, distribution of WF1 scores for each left-out split (boxes indicate the interquartile range (IQR) with the median as a center line, whiskers extend to $1.5 \times$ IQR and outliers are shown as individual points (each box includes $n = 5$ points)); **d**, F1 score for each combination of cell type and disease, after aggregating all the predictions of the left-out folds; and **e**, normalized confusion matrices displaying proportion of predictions belonging to each true condition after aggregating all the predictions of the left-out

folds. Main diagonal values correspond to the Recall metric. **f–g**, Performance evaluation in Scenario 2, showing WF1 scores for unseen patients' observation (**f**) and F1 score for each combination of cell type and disease (**g**). **h**, Normalized confusion matrices displaying proportion of predictions belonging to each true condition. Main diagonal values correspond to the Recall metric. **i–k**, Performance evaluation in Scenario 3, showing: **i**, WF1 scores for unseen studies' observation; **j**, F1 score for each combination of cell type and disease; and **k**, normalized confusion matrices displaying proportion of predictions belonging to each true condition. Main diagonal values correspond to the Recall metric. CD, Crohn's disease; DC, dendritic cell; MS, multiple sclerosis; P, patient; pDC, plasmacytoid dendritic cell; PS, psoriasis; PSA, psoriatic arthritis; QC, quality control; RA, rheumatoid arthritis; UC, ulcerative colitis.



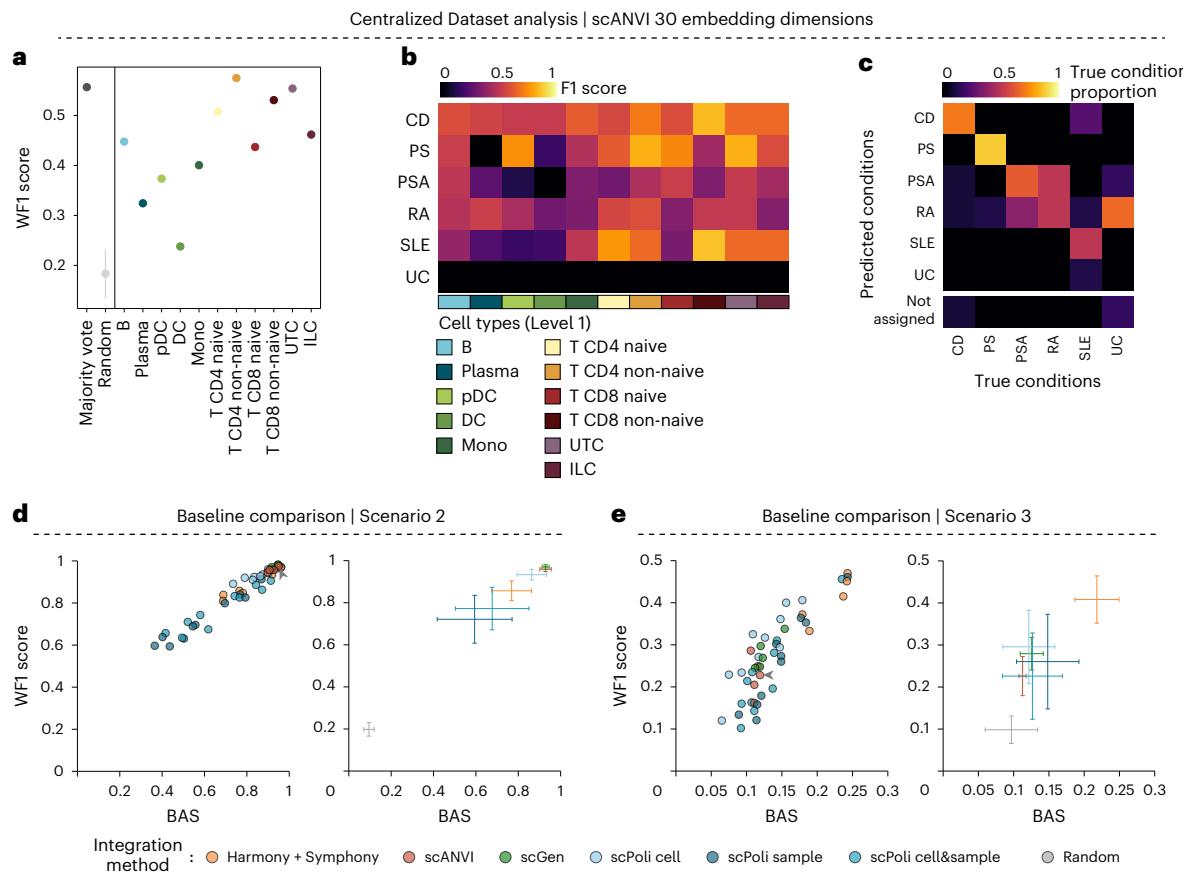


Fig. 5 | Evaluating patient classifier performance on a Centralized Dataset and comparison with the state-of-the-art data integration approaches.

a–c, Performance evaluation in a Centralized Dataset, showing: **a**, WF1 scores for left-out pool observation (mean and standard deviation of WF1 score of 100 random condition assignments is reported); **b**, F1 score for each combination of cell type (Level 1) and disease; and **c**, normalized confusion matrices displaying proportion of predictions belonging to each true condition (main diagonal values correspond to the Recall metric). **d,e**, Performance evaluation in Scenario

d and **e**, showing the distribution of WF1 and BAS for all the configurations of each data integration approach (left) and the mean and standard deviation of each data integration method (right), including random assignment ($n = 5$ for Harmony&Symphony, scANVI and scGen; $n = 10$ for scPoli cell, sample and cell&sample embedding; $n = 100$ for random assignment). Arrows highlight scANVI configuration applied in Scenario 1. CD, Crohn's disease; DC, dendritic cell; pDC, plasmacytoid dendritic cell; PS, psoriasis; PSA, psoriatic arthritis; RA, rheumatoid arthritis; UC, ulcerative colitis.

vote approach also yielded consistent results in the other scenarios (Extended Data Fig. 5c–e).

Consequently, we hypothesize immune cells in circulation to serve as a source for building a universal classifier for inflammatory diseases. Although the here-used subset of the Inflammation Atlas was limited in cell and patient numbers, future efforts for commercialization are required to develop large single-chemistry training datasets and respective models to further increase the classification accuracy.

We selected scANVI as our Inflammation Atlas integration method for its top-ranked performance in data integration benchmarks. To further assess classification performance for the task at hand, we next compared scANVI against other approaches (that is, Harmony/Symphony, scGen and scPoli) and hyperparameter configurations in Scenario 2 and Scenario 3 (Supplementary Table 7). In concordance with our previous results for scANVI, all newly introduced methods achieve high performance in the dataset with unseen patients (Scenario 2; Fig. 5d, Supplementary Table 8 and Extended Data Figs. 9c and 10a,c,e,g). Although all the approaches lost predictive power on the unseen studies datasets (Scenario 3; Supplementary Table 8), Harmony performed best with a BAS of 0.24 and a WF1 of 0.47 (Fig. 5e and Extended Data Figs. 9d and 10b,d,f,h). Although linear approaches (for example, Harmony) have less representation power than variational autoencoders (VAEs), they are also less prone to overfitting and more robust to the hyperparameter choice. Hence, in settings

where hyperparameter tuning and validation are not possible due to the lack of condition labels, tools such as Harmony/Symphony might be preferable to more complex VAEs.

Discussion

Comprehensive mapping of the plasticity of the immune cells in circulation is achieved by single-cell sequencing-based immuno-phenotyping⁴⁸. Recent technologies enable the sampling of thousands of cells per sample and hundreds of thousands per patient cohort, pushing the resolution toward fine-grained cellular maps and increasing the power to identify disease-specific states⁴⁹. To date, single-cell sequencing has been applied to a multitude of inflammatory diseases to pinpoint disease-driving mechanisms as potential therapeutic targets¹³. However, a complete map of immune cell states across diseases, holistically charting immune plasticity in inflammatory diseases, has been elusive.

The concept of using immune cells as a sensor for diseases is highly intriguing and opens the door for the development of future universal diagnostic tools⁵⁰. For diseases such as rheumatic diseases and IBD, many patients are undiagnosed or diagnosed as false positive, and more accurate universal tools are needed^{51,52}. Our approach using GBDT, together with SHAP-based interpretability and a tailored list of functional immune cell molecules, provided explainable outcomes and serves as a rich resource for identifying disease-discriminative

genes³³. We further tested the utility of an Inflammation Atlas as a liquid biopsy classification tool by developing a patient classifier based on the latent embeddings after integration. To our knowledge, existing patient classifiers have evaluated settings similar to Scenario 1 and Scenario 2 (scPoli and MultiMIL⁵³). In Scenario 3, we then queried patients belonging to studies excluded from our reference atlas, simulating the application of the Inflammation Atlas as a diagnostic tool. Here, our approach initially failed to generalize to unseen patients, indicating that further optimization was needed to build a generalizable model for more accurate disease diagnostics. To explore the reasons for limited generalization, we performed additional analyses on a Centralized Dataset. Here, the improved performance compared to Scenario 3 highlighted the impact of batch effects introduced through differing assay chemistries and centers.

Although our study provides a comprehensive framework for immune profiling across inflammatory diseases, several aspects warrant further exploration. Most samples in our compendium derive from individuals of European ancestry, and expanding to ancestrally diverse populations will be essential to capture global immune variability and improve model generalizability. Our classifier also requires prospective validation in independent, multicenter cohorts to assess robustness and clinical applicability. Finally, understanding the relationship between circulating and tissue-resident immune cells remains key for diagnostic translation. Circulating cells offer a minimally invasive means to monitor disease activity, yet future studies should validate to what extent their molecular programs reflect tissue-resident inflammatory states across organs and disease contexts.

Bringing reference atlases into clinics remains a complex task, particularly without clear implementation strategies. We contributed to this roadmap by generating a comprehensive landscape of circulating immune cells across inflammatory diseases. Toward leveraging single-cell technologies in diagnostics, we call for the definition of best practices and quality control standards to reduce batch effects, alongside generating large, controlled training datasets. To allow data integration methods to fully generalize, we need to reduce the confounding factors, as demonstrated by our centralized approach, or largely increase training data size and variability. Alternatively, a reference training dataset is generated by multiple centers and diverse chemistries to define a large, heterogeneous atlas, enabling the definition of a foundation model⁵⁴ to pave the way to a universal disease classifier, robust to batch effects.

Online content

Any methods, additional references, Nature Portfolio reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at <https://doi.org/10.1038/s41591-025-04126-3>.

References

1. Medzhitov, R. The spectrum of inflammatory responses. *Science* **374**, 1070–1075 (2021).
2. Casanova, J.-L. & Abel, L. Mechanisms of viral inflammation and disease in humans. *Science* **374**, 1080–1086 (2021).
3. Medzhitov, R. Origin and physiological roles of inflammation. *Nature* **454**, 428–435 (2008).
4. Netea, M. G. et al. A guiding map for inflammation. *Nat. Immunol.* **18**, 826–831 (2017).
5. Roe, K. An inflammation classification system using cytokine parameters. *Scand. J. Immunol.* **93**, e12970 (2021).
6. Hughes, C. E. & Nibbs, R. J. B. A guide to chemokines and their receptors. *FEBS J.* **285**, 2944–2971 (2018).
7. Soehnlein, O. & Libby, P. Targeting inflammation in atherosclerosis—from experimental insights to the clinic. *Nat. Rev. Drug Discov.* **20**, 589–610 (2021).
8. Psarras, A., Wittmann, M. & Vital, E. M. Emerging concepts of type I interferons in SLE pathogenesis and therapy. *Nat. Rev. Rheumatol.* **18**, 575–590 (2022).
9. Manthiram, K., Zhou, Q., Aksentijevich, I. & Kastner, D. L. The monogenic autoinflammatory diseases define new pathways in human innate immunity and inflammation. *Nat. Immunol.* **18**, 832–842 (2017).
10. Cao, L. L. & Kagan, J. C. Targeting innate immune pathways for cancer immunotherapy. *Immunity* **56**, 2206–2217 (2023).
11. Dinarello, C. A., Simon, A. & van der Meer, J. W. M. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. *Nat. Rev. Drug Discov.* **11**, 633–652 (2012).
12. Tiburca, L. et al. The treatment with interleukin 17 inhibitors and immune-mediated inflammatory diseases. *Curr. Issues Mol. Biol.* **44**, 1851–1866 (2022).
13. Dann, E. et al. Precise identification of cell states altered in disease using healthy single-cell references. *Nat. Genet.* **55**, 1998–2008 (2023).
14. Lopez, R., Regier, J., Cole, M. B., Jordan, M. I. & Yosef, N. Deep generative modeling for single-cell transcriptomics. *Nat. Methods* **15**, 1053–1058 (2018).
15. Xu, C. et al. Probabilistic harmonization and annotation of single-cell transcriptomics data with deep generative models. *Mol. Syst. Biol.* **17**, e9620 (2021).
16. Luecken, M. D. et al. Benchmarking atlas-level data integration in single-cell genomics. *Nat. Methods* **19**, 41–50 (2022).
17. Perez, R. K. et al. Single-cell RNA-seq reveals cell type–specific molecular and genetic associations to lupus. *Science* **376**, eabf1970 (2022).
18. Ju, J. K. et al. Activation, deficiency, and reduced IFN- γ production of mucosal-associated invariant T cells in patients with inflammatory bowel disease. *J. Innate Immun.* **12**, 422–434 (2020).
19. Adlowitz, D. G. et al. Expansion of activated peripheral blood memory B cells in rheumatoid arthritis, impact of B cell depletion therapy, and biomarkers of response. *PLoS ONE* **10**, e0128269 (2015).
20. Drewry, A. M. et al. Persistent lymphopenia after diagnosis of sepsis predicts mortality. *Shock* **42**, 383 (2014).
21. Moir, S. & Fauci, A. S. B cells in HIV infection and disease. *Nat. Rev. Immunol.* **9**, 235–245 (2009).
22. Kunes, R. Z., Walle, T., Land, M., Nawy, T. & Pe'er, D. Supervised discovery of interpretable gene programs from single-cell data. *Nat. Biotechnol.* **42**, 1084–1095 (2024).
23. Ishina, I. A. et al. MHC class II presentation in autoimmunity. *Cells* **12**, 314 (2023).
24. Thomas, T. et al. A longitudinal single-cell atlas of anti-tumour necrosis factor treatment in inflammatory bowel disease. *Nat. Immunol.* **25**, 2152–2165 (2024).
25. Feng, X. et al. Interferon- β corrects massive gene dysregulation in multiple sclerosis: short-term and long-term effects on immune regulation and neuroprotection. *eBioMedicine* **49**, 269–283 (2019).
26. Reyes, M. et al. An immune-cell signature of bacterial sepsis. *Nat. Med.* **26**, 333–340 (2020).
27. Raphael, I., Joern, R. R. & Forsthuber, T. G. Memory CD4 $^{+}$ T cells in immunity and autoimmune diseases. *Cells* **9**, 531 (2020).
28. Andreou, N.-P., Legaki, E. & Gazouli, M. Inflammatory bowel disease pathobiology: the role of the interferon signature. *Ann. Gastroenterol.* **33**, 125–133 (2020).
29. Regis, G., Pensa, S., Boselli, D., Novelli, F. & Poli, V. Ups and downs: the STAT1:STAT3 seesaw of interferon and gp130 receptor signalling. *Semin. Cell Dev. Biol.* **19**, 351–359 (2008).
30. Aue, A. et al. Elevated STAT1 expression but not phosphorylation in lupus B cells correlates with disease activity and increased plasmablast susceptibility. *Rheumatology* **59**, 3435–3442 (2020).

31. Szabó, E. et al. Identification of immune subsets with distinct lectin binding signatures using multi-parameter flow cytometry: correlations with disease activity in systemic lupus erythematosus. *Front. Immunol.* **15**, 1380481 (2024).

32. Olingy, C. E., Dinh, H. Q. & Hedrick, C. C. Monocyte heterogeneity and functions in cancer. *J. Leukoc. Biol.* **106**, 309–322 (2019).

33. Bentéjac, C., Csörgő, A. & Martínez-Muñoz, G. A comparative analysis of gradient boosting algorithms. *Artif. Intell. Rev.* **54**, 1937–1967 (2021).

34. Ahern, D. J. et al. A blood atlas of COVID-19 defines hallmarks of disease severity and specificity. *Cell* **185**, 916–938 (2022).

35. Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting model predictions. In *Proc. 31st International Conference on Neural Information Processing Systems* 4768–4777 (Curran Associates, 2017).

36. Anderson, A. E. et al. Expression of STAT3-regulated genes in circulating CD4+ T cells discriminates rheumatoid arthritis independently of clinical parameters in early arthritis. *Rheumatology* **58**, 1250–1258 (2019).

37. Rönnblom, L. & Leonard, D. Interferon pathway in SLE: one key to unlocking the mystery of the disease. *Lupus Sci. Med.* **6**, e000270 (2019).

38. Zhang, L., Yu, L., Li, J., Li, Z. & Zhao, X. Novel compound heterozygous CYBA mutations causing neonatal-onset chronic granulomatous disease. *J. Clin. Immunol.* **43**, 1131–1133 (2023).

39. Denson, L. A. et al. Clinical and genomic correlates of neutrophil reactive oxygen species production in pediatric patients with Crohn's disease. *Gastroenterology* **154**, 2097–2110 (2018).

40. Jarmakiewicz-Czaja, S., Ferenc, K. & Filip, R. Antioxidants as protection against reactive oxidative stress in inflammatory bowel disease. *Metabolites* **13**, 573 (2023).

41. Diamond, M. S. & Farzan, M. The broad-spectrum antiviral functions of IFIT and IFITM proteins. *Nat. Rev. Immunol.* **13**, 46–57 (2013).

42. Wen, L., Krauss-Etschmann, S., Petersen, F. & Yu, X. Autoantibodies in chronic obstructive pulmonary disease. *Front. Immunol.* **9**, 66 (2018).

43. Seguí, J. et al. Superoxide dismutase ameliorates TNBS-induced colitis by reducing oxidative stress, adhesion molecule expression, and leukocyte recruitment into the inflamed intestine. *J. Leukoc. Biol.* **76**, 537–544 (2004).

44. Heumos, L. et al. Best practices for single-cell analysis across modalities. *Nat. Rev. Genet.* **24**, 550–572 (2023).

45. Lotfollahi, M. et al. Mapping single-cell data to reference atlases by transfer learning. *Nat. Biotechnol.* **40**, 121–130 (2022).

46. Clark, I. C. et al. HIV silencing and cell survival signatures in infected T cell reservoirs. *Nature* **614**, 318–325 (2023).

47. Zuroff, L. et al. Immune aging in multiple sclerosis is characterized by abnormal CD4 T cell activation and increased frequencies of cytotoxic CD4 T cells with advancing age. *EBioMedicine* **82**, 104179 (2022).

48. Edahiro, R. et al. Single-cell analyses and host genetics highlight the role of innate immune cells in COVID-19 severity. *Nat. Genet.* **55**, 753–767 (2023).

49. Domínguez Conde, C. et al. Cross-tissue immune cell analysis reveals tissue-specific features in humans. *Science* **376**, eabl5197 (2022).

50. Sanyal, A. J. et al. Diagnostic performance of circulating biomarkers for non-alcoholic steatohepatitis. *Nat. Med.* **29**, 2656–2664 (2023).

51. van Steenbergen, H. W., Cope, A. P. & van der Helm-van Mil, A. H. M. Rheumatoid arthritis prevention in arthralgia: fantasy or reality? *Nat. Rev. Rheumatol.* **19**, 767–777 (2023).

52. Feld, L., Glick, L. R. & Cifu, A. S. Diagnosis and management of Crohn disease. *JAMA* **321**, 1822–1823 (2019).

53. Litinetskaya, A. et al. Multimodal weakly supervised learning to identify disease-specific changes in single-cell atlases. Preprint at *bioRxiv* <https://doi.org/10.1101/2024.07.29.605625> (2024).

54. Szalata, A. et al. Transformers in single-cell omics: a review and new perspectives. *Nat. Methods* **21**, 1430–1443 (2024).

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by-nc-nd/4.0/>.

© The Author(s) 2026

Laura Jiménez-Gracia ^{1,2,39,40}, **Davide Maspero** ^{1,40}, **Sergio Aguilar-Fernández** ^{1,3,4,5,40}, **Francesco Craighero** ^{6,40}, **Maria Boulougouri** ⁶, **Max Ruiz** ¹, **Domenica Marchese** ¹, **Ginevra Caratù** ¹, **Jose Liñares-Blanco** ^{7,8}, **Miren Berasategi** ¹, **Ricardo O. Ramirez Flores** ⁷, **Angela Sanzo-Machuca** ^{9,10}, **Ana M. Corraliza** ^{9,10}, **Hoang A. Tran** ^{3,4,5}, **Rachelly Normand** ^{3,4,5}, **Jacquelyn Nestor** ^{3,4,5}, **Yourae Hong** ¹¹, **Tessa Kole** ^{12,13}, **Petra van der Velde** ^{12,14}, **Frederique Alleblas** ^{12,14}, **Flaminia Pedretti** ¹⁵, **Adrià Aterido** ^{16,17}, **Martin Banchero** ^{12,14}, **German Soriano** ^{18,19}, **Eva Román** ^{18,19}, **Maarten van den Berge** ^{12,13}, **Azucena Salas** ^{9,10}, **Jose Manuel Carrascosa** ²⁰, **Antonio Fernández Nebro** ^{21,22,23}, **Eugení Domènech** ^{19,24}, **Juan D. Cañete** ²⁵, **Jesús Tornero** ²⁶, **Javier P. Gisbert** ^{19,27,28}, **Ernest Choy** ²⁹, **Giampiero Girolomoni** ³⁰, **Britta Siegmund** ^{31,32}, **Antonio Julià** ^{16,17}, **Violeta Serra** ¹⁵, **Roberto Elosua** ^{33,34,35}, **Sabine Tejpar** ¹¹, **Silvia Vidal** ³⁶, **Martijn C. Nawijn** ^{12,14}, **Ivo Gut** ¹², **Julio Saez-Rodríguez** ^{7,37}, **Sara Marsal** ^{16,17}, **Alexandra-Chloé Villani** ^{3,4,5}, **Juan C. Nieto** ^{1,2,41} & **Holger Heyn** ^{1,2,38,41}

¹Centro Nacional de Análisis Genómico, C/Baldíri Reixac 4, Barcelona, Spain. ²Universitat de Barcelona, Barcelona, Spain. ³Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Charlestown, MA, USA. ⁴Broad Institute of MIT and Harvard, Charlestown, MA, USA.

⁵Harvard Medical School, Boston, MA, USA. ⁶Signal Processing Laboratory 2 (LTS2), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. ⁷Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg, Germany.

Germany. ⁸Department of Statistics, University of Granada, Granada, Spain. ⁹Inflammatory Bowel Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. ¹⁰Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain. ¹¹Digestive Oncology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium. ¹²Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, Groningen, Netherlands. ¹³Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, Netherlands. ¹⁴Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands. ¹⁵Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain. ¹⁶Rheumatology Research Group, Vall d'Hebron Research Institute, Barcelona, Spain. ¹⁷IMIDomics, Inc., San Rafael, CA, USA. ¹⁸Department of Gastroenterology, Biomedical Research Institut Sant Pau (IIB Sant Pau), Barcelona, Spain. ¹⁹Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain. ²⁰Dermatology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain. ²¹UGC de Reumatología, Hospital Regional Universitario de Málaga, Málaga, Spain. ²²Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain. ²³Departamento de Medicina, Universidad de Málaga, Málaga, Spain. ²⁴Gastroenterology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain. ²⁵Rheumatology Department, Fundació Clínic per a la Recerca Biomèdica, Barcelona, Spain. ²⁶Rheumatology Department, Hospital Universitario Guadalajara, Guadalajara, Spain. ²⁷Gastroenterology Unit, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-Princesa), Madrid, Spain. ²⁸Universidad Autónoma de Madrid (UAM), Madrid, Spain. ²⁹Section of Rheumatology, Cardiff University, Cardiff, UK. ³⁰Section of Dermatology and Venereology, University of Verona, Verona, Italy. ³¹Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany. ³²Cluster of Excellence ImmunoPreCept, Charité – Universitätsmedizin Berlin, Berlin, Germany. ³³Hospital del Mar Research Institute (IMIM), Barcelona, Spain. ³⁴CIBERCV, Instituto de Salud Carlos III, Madrid, Spain. ³⁵Faculty of Medicine, University of Vic-Central University of Catalonia, Vic, Spain. ³⁶Group of Immunology-Inflammatory Diseases, Biomedical Research Institut Sant Pau (IIB Sant Pau), Barcelona, Spain. ³⁷European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK. ³⁸ICREA, Barcelona, Spain. ³⁹Present address: Omniscope, Barcelona, Spain. ⁴⁰These authors contributed equally: Laura Jiménez-Gracia, Davide Maspero, Sergio Aguilar-Fernández, Francesco Craighero. ⁴¹These authors jointly supervised this work: Juan C. Nieto, Holger Heyn. e-mail: juan.nieto@cnag.eu; holger.heyn@cnag.eu

Methods

Ethics declaration

Human blood processed in-house for this project was preselected and included within other ongoing studies. All the studies included were conducted in accordance with ethical guidelines, and all patients provided written informed consent. Ethical committees and research project approvals for the different studies included in this paper are detailed in the following text.

SCGT00 and SCGT00val were approved by the Hospital Universitari Vall d'Hebron Research Ethics Committee (PR(AG)144/201). SCGT01 received institutional review board (IRB) approval by the Parc de Salut Mar Ethics Committee (2016/7075/I). SCGT02 received ethics approval by the Medisch-Etische Toetsingscommissie (METc) committee—for patients with asthma (ARMS and ORIENT projects: NL53173.042.15 and NL69765.042.19, respectively), for patients with COPD (SHERLOck project, NL57656.042.16) and for healthy controls (NORM project, NL26187.042.09). SCGT03 was approved by the Comité Ético de Investigación con Medicamentos del Hospital Universitario Vall d'Hebron (654/C/2019). SCGT04 and SCGT06 were approved by the Comité d'Ética d'Investigació amb medicaments (CEim) del Hospital de la Santa Creu i Sant Pau (EC/21/373/6616 and EC/23/258/7364). SCGT05 was approved by the IRBs of the Commissie Medische Ethische UZ KU Leuven/Onderzoek (S66460 and S62294).

Atlas of circulating immune cells

The Inflammation Landscape of Circulating Immune Cells atlas was conceived as a comprehensive resource to expand the current knowledge of physiological and pathological inflammation through the study of circulating immune cells. With this aim, we included data representing both acute and chronic inflammatory processes as well as healthy donors. Further details about the included datasets are available (Supplementary Table 1).

The project includes in-house scRNA-seq data generation from samples shared by our collaborators from several research institutions. Samples were collected with written informed consent obtained from all participants and comply with the ethical guidelines for human samples. Specifically, we generated data from patients suffering from rheumatoid arthritis, psoriatic arthritis, Crohn's disease, ulcerative colitis, psoriasis and SLE and from healthy controls in collaboration with the Vall d'Hebron Research Institute within the DoCTIS consortia (<https://doctis.eu/>) (SCGT00 and SCGT00val). Additionally, we processed and obtained data from healthy controls in collaboration with the Institut Hospital del Mar d'Investigacions Mèdiques (SCGT01); asthma, COPD and healthy control samples in collaboration with the University Medical Center Groningen (SCGT02); BRCA samples in collaboration with the Vall d'Hebron Institute of Oncology (SCGT03); cirrhosis samples in collaboration with the Biomedical Research Institut Sant Pau (SCGT04); CRC samples in collaboration with the Katholieke Universiteit Leuven (SCGT05); and COVID and healthy control samples also in collaboration with the Biomedical Research Institut Sant Pau (SCGT06).

Moreover, we also included publicly available datasets to complete our cohort. Specifically, we considered data from patients suffering from sepsis^{26,55}, HNSCC⁵⁶, HBV⁵⁷, multiple sclerosis⁵⁸, NPC⁵⁹, HIV^{60,61}, SLE^{17,62,63}, cirrhosis⁶⁴, Crohn's disease⁶⁵, COVID-Flu-sepsis³⁴ and COVID⁶⁶ and from healthy controls from Terekhova et al.⁶⁷ and 10x Genomics, together with the available healthy samples from all the cited studies. The data information and access identifiers for each project can be found in Supplementary Table 1 (Sheet 1). When raw data were available, we downloaded FASTQ files; otherwise, we retrieved the raw count matrices from the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) (<https://www.ncbi.nlm.nih.gov/geo/>) or Sequence Read Archive (SRA) (<https://submit.ncbi.nlm.nih.gov/about/sra/>), BioStudies Array Express (<https://www.ebi.ac.uk/biostudies/arrayexpress>), Broad Institute DUOS (<https://duos.broadinstitute.org>), Synapse (<https://www.synapse.org>), Genome Sequence

Archive (GSA) (<https://ngdc.cncb.ac.cn/gsa-human/>), CELLxGENE Data Portal (<https://cellxgene.cziscience.com/datasets>) and 10x Genomics (<https://www.10xgenomics.com/datasets>) resources. For all studies, we also collected clinical metadata.

Sample collection

Human blood samples were collected in EDTA tubes (BD Biosciences). PBMCs from the SCGT00, SCGT00val, SCGT02, SCGT04, SCGT05 and SCGT06 datasets were isolated using Ficoll density gradient centrifugation (STEMCELL Technologies, Lymphoprep; GE Healthcare Biosciences AB, Ficoll-Plus). PBMCs belonging to the SCGT01 and SCGT03 datasets were isolated using Vacutainer CPT tubes (BD Biosciences). Subsequently, all aliquots were centrifuged following the manufacturer's protocol. After centrifugation, PBMCs were washed and resuspended in freezing media. Aliquots were gradually frozen using a commercial freezing box (Thermo Fisher Scientific; Mr. Frosty, Nalgene) at -80°C for 24 hours before being transferred to liquid nitrogen for long-term storage.

Cell thawing and preprocessing

Cryopreserved PBMCs were thawed in a water bath at 37°C and transferred to a 15-ml Falcon tube containing 10 ml of prewarmed RPMI media supplemented with 10% FBS (Thermo Fisher Scientific). Samples were centrifuged at 350g for 8 minutes at room temperature, supernatant was removed and pellets were resuspended with 1 ml of cold 1x PBS (Thermo Fisher Scientific) supplemented with 0.05% BSA (Miltenyi Biotec, PN 130-091-376). Samples were incubated during 10 minutes at room temperature with 0.1 mg ml^{-1} DNase I (Worthington Biochemical, PN L5002007) to eliminate ambient DNA and favor the resuspension of the pellet. Cells were filtered with a 40- μm strainer (Cell Strainer, PN 43-10040-70) to remove eventual clumps and washed by adding 10 ml of cold PBS + 0.05% BSA. Samples were centrifuged at 350g for 8 minutes at 4°C and resuspended in an adequate volume of PBS + 0.05% BSA to reach the desired concentration. Cell concentration and viability were verified with a TC20 Automated Cell Counter (Bio-Rad) upon staining of the cells with trypan blue.

Sample multiplexing by genotyping

PBMC samples were evenly mixed in pools of eight donors per library following a multiplexing approach based on the donor's genotype for a more cost-efficient and time-efficient strategy. Notably, in the case of SCGT00, libraries were designed to pool samples together from the same disease with different response to treatment (not relevant in this study), whereas, in the case of the SCGT02 Asthma+HC cohort, six samples belonging to patients were pooled with two samples derived from non-smoking healthy control individuals. With this approach, we aimed to avoid technical artifacts that could mask subtle biological differences.

3' CellPlex

PBMC samples belonging to the SCGT01, SCGT02 COPD+HC, SCGT04 and SCGT06 cohorts were multiplexed with 10x Genomics CellPlex Kit following the Cell Multiplexing Oligo Labeling for Single Cell RNA Sequencing Protocol (10x Genomics). Whereas, for SCGT02 COPD+HC and SCGT06 projects, we pooled eight samples from patients with healthy controls together, for SCGT01 and SCGT04 we only included samples from the condition of interest. In brief, 0.2–1 million cells were centrifuged at 350g at room temperature with a swinging bucket rotor, resuspended in 100 μl of Cell Multiplexing Oligo (10x Genomics, 3' CellPlex Kit Set A, PN-1000261) and incubated at room temperature for 5 minutes. Cells were washed three times with cold 1x PBS (Thermo Fisher Scientific) supplemented with 1% BSA (MACS, Miltenyi Biotec), all centrifugations being performed at 350g at 4°C . Cells were finally resuspended in an appropriate volume of 1x PBS + 1% BSA to obtain a final cell concentration of approximately 1,600 cells per microliter.

and counted using a TC20 Automated Cell Counter (Bio-Rad). An equal number of cells of each sample was pooled and filtered with a 40- μ m strainer to remove eventual clumps; final cell concentration and viability of the pools were verified before loading onto the Chromium for cell partitioning.

Cell encapsulation and scRNA-seq library preparation

Multiplexed samples were loaded for a target cell recovery between 20,000 and 60,000 cells (corresponding to 5,000–7,500 cells per sample within each plex). More specifically, samples belonging to SCGT00, SCGT00val and SCGT01 cohorts were encapsulated using standard-throughput Chromium Next GEM Single Cell 3' Reagent Kit version 3.1, whereas multiplex samples belonging to SCGT02 Asthma+HC and COPD+HC, SCGT04 and SCGT06 were encapsulated using the high-throughput Chromium Next GEM Single Cell 3' HT Reagent Kit version 3.1 in combination with the Chromium X instrument. On the other hand, SCGT03 and SCGT05 cohorts were loaded in a standard assay with a target recovery of 6,000–8,000 cells per sample using Chromium Next GEM Single Cell 5' Reagent Kit version 2 (10x Genomics, PN-1000263).

Libraries were prepared following the manufacturer's instructions of protocols CG000315 or CG000390, for the standard assay without and with sample multiplexing, and protocols CG000416 and CG000419, for the high-throughput assay without and with sample multiplexing. Protocol CG000331 was instead followed for the SCGT03 and SCGT05 cohorts. Between 20 ng and 200 ng of cDNA was used for preparing libraries, and final library size distribution and concentration were determined using a Bioanalyzer High Sensitivity chip (Agilent Technologies). Sequencing was carried out on a NovaSeq 6000 system (Illumina) and a NextSeq 500 system (Illumina) using the following sequencing conditions: 28 bp (Read 1) + 10 bp (i7 index) + 10 bp (i5 index) + 90 bp (Read 2), to obtain approximately 40,000 read pairs per cell for the gene expression library and 2,000–4,000 read pairs per cell for the CellPlex library.

Data processing

To profile the cellular transcriptome, we processed the sequencing reads with the 10x Genomics software package Cell Ranger (version 6.1) (<https://support.10xgenomics.com/single-cell-gene-expression/software/overview/welcome>) and mapped them against the human GRCh38 reference genome (GENCODE version 32/Ensembl 98). This step was applied to the sequencing reads obtained from in-house-processed samples and from published projects, when available.

Genotype processing

Genome-wide genotyping data for patients from the SCGT00, SCGT00val and SCGT02 Asthma+HC studies were generated from PBMC samples. For SCGT00, 184 patients were distributed in four genotyping cohorts (N1 = 64, N2 = 32, N3 = 40 and N4 = 48 samples), and, for SCGT00val, 32 patients were processed with the Illumina Omni2.5-8 and Illumina GSA MG v3-24 arrays, respectively. For SCGT02 Asthma+HC, 16 patients were distributed in two genotyping cohorts (N1 = 8 and N2 = 8 samples) using Infinium Global Screening Array-24 version 3.0 (GSAMD-24v3.0) with the A1 array. Genotyping was done using GRCh37 human genome reference. Data preprocessing and quality control analysis were separately performed for each genotyping batch of samples at IMIDomics, Inc. (Barcelona, Spain) and at Erasmus MC (Rotterdam, Netherlands). Quality control analysis was performed using PLINK software (versions 1.9 and 2). In the SCGT00 and SCGT00val quality control analysis, we identified autosomal single-nucleotide polymorphisms (SNPs), and, using those SNPs from chromosome X, we confirmed the consistency between SNP-estimated and clinically reported genders. Then, we quantified the percentage of SNPs with a minor allele frequency (MAF) higher than 5%. Next, we computed the percentage of missingness both at the SNP-wise and sample-wise levels.

Finally, we assessed the heterozygosity rate (F) of each sample in order to evaluate if any of the genotyped samples could be contaminated. In the SCGT02 Asthma+HC quality control analysis, we excluded samples with a SNP calling rate lower than 98%.

Patient genotypes (VCF format) were simplified by removing single-nucleotide variants (SNVs) that were unannotated (chr 0), located in the sexual Y (chr 24), pseudo-autosomal XY (chr 25) or mitochondrial (chr 26) chromosomes. As genotypes were obtained using the human hg19 reference genome, we converted their coordinates to the same reference genome used to mapped the sequencing reads (GRCh38) using the UCSC LiftOver tool (<https://genome.ucsc.edu/cgi-bin/hgLiftOver>). LiftOver requires an input file in BED format. Thus, we used a Python script (https://github.com/single-cell-genetics/cellsnp-lite/blob/master/scripts/liftOver/liftOver_vcf.py) to convert our VCF file accordingly.

Library demultiplexing

Multiplexed libraries from SCGT00, SCGT00val and SCGT02 Asthma+HC cohorts were demultiplexed with Cellsnp-lite (version 1.2.2) in Mode 1a⁶⁸, which allows us to genotype single-cell gene expression libraries by piling up the expressed alleles based on a list of given SNPs. To do so, we used a list of 7.4 million common SNPs in the human population (MAF > 5%) published by the 1000 Genomes Project consortium and compiled by the authors (<https://sourceforge.net/projects/cellsnp/files/SNPlist/>). Then, we performed the donor deconvolution with vireo (version 0.5.6)⁶⁹, which assigns the deconvoluted samples to its donor identity using known genotypes while detecting doublets and unassigned cells. Finally, we discarded detected doublets and unassigned cells before moving on to the downstream processing steps. For CellPlex libraries, we followed a joint deconvolution strategy combining cell multiplexing oligo (CMO) hashing and genotype-based deconvolution; we generated pools of cells belonging to different samples based on the individual SNPs and traced back to their donor of origin based on the CMO hashing. When no genotype is available, the use of this dual approach minimizes the discarded cells.

Data analysis

All analyses presented in this paper were carried out using mainly Python, unless specified otherwise. In particular, we structured our data in anndata objects⁷⁰ compatible with SCANPY suite⁷¹, which allowed us to apply single-cell data processing and visualization best practices. All experiments and panels are reproducible with the code released in the project's GitHub repository.

Data standardization

Considering the diversity of the datasets included in the reference of circulating immune cells, a standardization step was needed.

Cell barcodes. The 'cellID' barcodes assigned were inspired by The Cancer Genome Atlas (TCGA) project (https://docs.gdc.cancer.gov/Encyclopedia/pages/TCGA_Barcodes/). Each barcode unequivocally identifies a cell, and it is composed of the studyID (project), libraryID (10x GEM channel), patientID, chemistry (only when 3' and 5' gene expression were available for the same sample), timepoint (if multiple observations were available for a patient) and the 10x Genomics cell barcode, respectively (for example, SCGT00_L046_P006.3P_T0_AAACCCAAGGTGAGAA).

Gene name harmonization. All datasets were mapped using human GRCh38 genome reference, but the annotation file version might differ, resulting in gene names with multiple aliases or deprecated symbols. To avoid gene redundancy or mismatching, we used Ensembl symbols instead of gene names. Then, for datasets without the Ensembl symbols, we compared all gene names with the HUGO Gene Nomenclature Committee (HGNC) database (latest version, February 2024;

<https://www.genenames.org/>), in order to convert them to the latest official HUGO name, merging possible duplicates and retrieving the corresponding Ensembl symbol. For non-official genes, we used the MyGene Python interface (<https://mygene.info/>) to query the Ensembl symbol. Finally, we removed 16 genes categorized as 'artifact' or 'TEC (To be Experimentally Confirmed)'.

Metadata harmonization. Patient metadata were unified across datasets, using common variable names and values for those present in multiple sources; specifically, we homogenized these variables of interest such as sex, age, disease, diseaseStatus, smokingStatus, ethnicity or institute. For instance, 'M', 'Male' and 'Hombre' entries were replaced with 'male'. Additionally, we created a new variable, 'binned_age', to group patients within a range of 10 years, considering that, for the SCGT01, SCGT04 and SCGT11 datasets, the specific age information was not available. As detailed below, the datasets missing sex and age information were considered as data from unseen studies and used to evaluate the patient classifier.

Data splitting

Some studies in our cohort included patients with samples collected in multiple replicates, different timepoints or using different chemistry protocols. In studies with multiple replicates—that is, Zhang2022 and Terekhova2023—we selected samples with the largest number of cells. When multiple timepoints or disease statuses for the same patient are available—that is, Perez2022, COMBAT2022 and Ren2021—we kept only the samples associated with higher disease severity.

The filtered Inflammation Atlas cohort was then split in two datasets: CORE and unseen studies. Data from unseen studies include 86 samples and are used as an independent validation of our patient classifier pipeline. For this dataset, we selected studies that either involve diseases with a large support in our full cohort or lack metadata on sex and age. These chosen studies are as follows: SCGT00val, SCGT06, Palshikar2022, Ramachandran2019, Martin2019, Savage2021, Jiang2020, Mistry2019 and 10XGenomics.

After performing data quality control (removing low-quality libraries and cells; see section below), the CORE dataset includes 961 samples and was further split into Main and data from unseen patients, with 817 and 144 samples each, respectively. We first stratified samples based on the following metadata: studyID, chemistry and disease. From each of those groups, we randomly selected 20% of samples to be part of the unseen patients, provided that they amounted to at least five samples. In the patient classifier pipeline, the Main dataset is used as a reference, whereas data from unseen patients and unseen studies are used as a query dataset in two independent scenarios.

The Centralized Dataset included samples from SCGT00 and SCGT00val. Because all healthy patients were sequenced in the same pool, we did not take them into account. Then, because multiple samples were multiplexed and sequenced together, we split them, stratifying by sequencing patientPool to generate both the reference and the query datasets that include at least one pool for all the IMID diseases (that is, rheumatoid arthritis, psoriasis, psoriatic arthritis, Crohn's disease, ulcerative colitis and SLE). Further information about the samples classified in each group is detailed in Supplementary Table 1.

Data quality control

We performed data quality control on the CORE dataset by computing the main metrics (that is, library size, library complexity and percentage of mitochondrial, ribosomal, hemoglobin and platelet-related gene expression) on the count matrix. Metric distributions were visualized grouping cells by library (10x Genomics) and by considering their chemistry (3' or 5' and their version). Consequently, we removed low-quality observations using permissive thresholds, whereas the robust cleaning process was performed during cell annotation tasks. In particular, we initially excluded the low-quality libraries across datasets (<500 cells

or <500 median genes recovered). Next, we removed low-quality cells with a very low number of unique molecular identifiers (UMIs) (<500) and genes (<250) or with a high percentage of mitochondrial expression (>25% for 3' V3 and 20% for 3' V2 and 5'), as it is indicative of lysed cells. Then, we removed barcodes with a high library size (>50,000 UMIs for 3' V3 and 5' V1, >40,000 UMIs for 5' V2 or >25,000 UMIs for 3' V2 chemistry) or with a high complexity (>6,000 genes for 3' V3 and 5' or >4,000 genes for 3' V2 chemistry). After cell quality control, we also removed low-quality libraries (<250 cells), low-quality samples (<500 cells or <500 median genes recovered) as well as cells from a library if this patient recovered a low total number of cells (<50 cells). In addition, we eliminated genes that were detected in fewer than 20 cells in fewer than five patients, keeping a total of 22,838 genes. Lastly, we computed the cell cycle score using the gene list provided by the function `cc.genes.updated.2019()` from the Seurat library⁷² (version 4.3.0.1) and defined the different cell cycle 'phases' (G1, G2M and S). Before the dataset cleanup, we predicted doublets using the function `scipy.external.pp.scrublet()` from the SCANPY library (version 1.9.8), which provides a score to flag putative doublets but without filtering them out at this stage. Consequently, during the clustering and annotation step, the clusters co-expressing gene markers from different lineage/population and high doublet score were assessed to determine whether a specific cluster could be classified as a group of doublets and subsequently excluded. After this step, the CORE dataset was split into Main and data from unseen patients, as explained above.

Quality control on the data from unseen studies was performed independently. We applied the same approach described above, but we filtered only poor-quality libraries and cells.

Data processing for annotation

Annotation strategy. To identify all the immune cell types and states present in the human blood, we employed a recursive top-down approach inspired by previous work done by Massoni-Badosa et al.⁷³. Starting with 4,918,140 cells and 817 patients from the Main dataset, we divided the annotation into several stages. In brief, we first grouped all cells into the primary compartments within our study. Subsequently, each compartment was processed aiming to detect potential doublets, low-quality cells and cells resembling platelets or erythrocytes (cells with high expression of hemoglobin genes). Additionally, we also placed back some clusters of cells into their corresponding cell lineages, when wrongly clustered due to similar profiles (for example, T cells found in the natural killer cell group or vice versa). Then, we identified the clusters resembling specific biological cell profiles (cell subtypes), obtaining a final number of 64 different subpopulations, excluding Doublets and LowQuality_cells, that we defined as annotation Level 2. Those cell subtypes were grouped into 15 cell populations that we defined as annotation Level 1. At the end, our Inflammation Atlas contains 4,435,922 cells. For each group identified in the initial stage (cell lineages), we applied the following tasks: normalization, feature selection, integration, clustering and annotation. In the following, we will always refer to the parameters of the initial stage, and the specifics of the subsequent steps (from lineages to cell types), along with the annotation labels and the marker genes used to define them, can be found in Supplementary Table 3.

Data normalization. Following standard practices, filtered cells were normalized by total counts over all genes and multiplied by a scaling factor of 10^4 (`scipy.pp.normalize_total(target_sum = 104)`). Then, the normalized count matrix X was log transformed as $\log_e(X + 1)$ (`scipy.pp.log1p()`).

Feature selection. Gene selection was performed by identifying the highly variable genes (HVGs). Before doing so, we excluded genes related to mitochondrial and ribosomal organelles. Also, we skipped T cell and B cell receptor (TCR/BCR) genes, including joining and

variable regions, because they are not useful to describe cell identities but, rather, to capture patient-specific clonally expanded cell populations within an inflammatory-related condition. Lastly, we excluded major histocompatibility complex (MHC) genes. To reduce the influence of a study's specific composition and prevent biases in the gene selection task, we preferred genes that are highly variable in as many studies as possible. Therefore, similar to Sikkema et al.⁷⁴, we first considered each study independently and computed the HVGs using the Seurat implementation⁷⁵ (`scipy.pp.highly_variable_genes(min_disp = 0.3, min_mean = 0.01, max_mean = 4)`). Then, we ranked genes based on the number of studies in which they are among the highly variable. Finally, for the initial stage, we determined the minimum number of studies required to compose an HVG list of more than 3,000 genes. Applying this strategy, we selected a total of 3,236 genes being highly variable in at least six studies. In the following steps, we requested more than 2,000 HVGs; the minimum number of studies required and the total of selected genes depend on the step and the cells under study. To identify red blood cell (RBCs) and platelets, we kept genes associated with erythrocytes, such as hemoglobin subunits, and pro-platelet basic protein (PPBP) (platelet related) in the HVG list. Because such genes are known to be related to ambient RNA when found in other cell types, we subsequently removed them after having annotated the above cell types.

Data integration. Our dataset includes single-cell data obtained from multiple studies including different chemistry protocols, inflammatory status samples and a broad range of other clinical features (for example, age and sex). Although this is a strength point of our atlas, such high levels of heterogeneity induced by technical confounding factors and unwanted biological variability resulted in challenging integration tasks before clustering and annotating cell populations. Therefore, we employed scVI¹⁴, a VAE approach that proves to be one of the most effective integration methods in complex scenarios, particularly when the annotation information is missing¹⁶. scVI takes as input the raw count matrix to generate an integrated, low-dimensional embedding space, where the cell states are preserved and the batch effects are reduced. Moreover, scVI's embedding space can be exploited to cluster and annotate cells based on either known or cluster-specific marker genes. Details on the scVI parameters used in each annotation step can be found in Supplementary Table 7.

Cell clustering. To cluster cells into cell types with the Leiden algorithm, we first built the k -nearest neighbors (KNN) graph using scVI's latent embeddings and $k = 20$ as the number of neighbors (`scipy.pp.neighbors(n_neighbors = k)`). We then applied the Leiden algorithm using a resolution of $r = 0.1$ (`scipy.tl.leiden(resolution = r)`). The k and r used in every other step for every lineage can be found in Supplementary Table 3.

Cell annotation. Cell clusters were manually annotated by immunology experts by comparing the expression levels of canonical gene markers. Moreover, the final step of annotation was performed using the cluster markers obtained performing a differential expression analysis among clusters (Supplementary Table 3). First, we ranked genes to characterize each cluster (`scipy.tl.rank_genes_groups()`), by considering normalized RNA counts with the Wilcoxon rank-sum test. Then, we selected those genes with \log_2 fold change ($\log_2 FC$) > 0.25 and false discovery rate (FDR) adjusted $P < 0.05$ and if they were present in at least 25% of cells. Notably, cells belonging to RBC and platelet populations were excluded from all the downstream analyses, except for label transfer performed as a step during patient classifier tasks (as explained below).

External annotation validation. We compared our independent annotations with the ones available in the largest public datasets. To quantify the overlap of cells among groups, we computed the adjusted Rand

index (ARI) to measure the similarity between our label assignments and the ones performed by the original authors. Further details are available in Supplementary Table 2.

Centralized Dataset annotation. All previously described steps were applied to process and annotate the Centralized Dataset (SCGTOO), with the following adjustments: (1) standard HVG selection was performed as the dataset included only a single study; (2) the dataset was integrated using 'patientPool' as the batch key; and (3) cell annotation was conducted up to Level 1, recovering the same cell types as in the main Inflammation Atlas, as this was necessary for the patient classifier. Here, starting with 855,417 cells and 152 patients included in the reference dataset, we recovered 15 cell populations (Level 1), excluding Doublets and LowQuality_cells. Details on the scVI parameters used in each annotation step can be found in Supplementary Table 7, whereas details on the clustering and annotation steps are provided in Supplementary Table 3.

Feature selection after annotation

Gene selection. To improve the quality of downstream analysis to characterize the inflammation landscape, it is necessary to perform a gene selection in order to remove dataset-specific genes and reduce the batch effect. First, we performed data normalization (as described above), kept only the genes that are expressed (raw count > 0) in at least one cell in each study and removed genes associated with mitochondrial, ribosomal, TCR/BCR, MHC, hemoglobin and platelet cell types. This step retained a total of 14,127 genes. Then, we identified three sets of genes: (1) the HVGs, (2) the differentially expressed genes (DEGs) between healthy and each inflammatory status and (3) Cytopus⁷⁶, a manually curated immune-specific gene list.

HVGs. Similar to the feature selection approach described in the annotation section, we selected a total of 3,283 HVGs, by using a threshold of at least 3,000 genes. In practice, we first ranked the genes based on the number of studies in which they are concurrently highly variable (`scipy.pp.highly_variable_genes(min_disp = 0.3, min_mean = 0.01, max_mean = 4, batch_key='libraryID')`) and then chose a minimum number of studies of five.

DEGs between healthy and each disease. We obtained a list of DEGs after grouping single-cell gene expression profiles into pseudobulks. Therefore, we first combined the expression profiles of individual cells to produce pseudobulks for every patient and cell type (Level 1), removing groups with no more than 20 cells, using the Python implementation of decoupleR⁷⁷ (version 1.6.0) (`decoupler.get_pseudobulk(min_cells = 20, sample_col='sampleID', groups_col = 'Level1', layer = 'counts', mode = 'sum')`). Then, we applied the edgeR (version 4.0.16) quasi-likelihood functions to search for DEGs between healthy patients and each other's inflammatory conditions, by considering one cell type at a time. Because not all the cell types were detected in each patient, we did not perform the pairwise comparison if one disease had fewer than three pseudobulks. More in detail, for each pairwise comparison, we first removed genes with a low expression value (`filterByExpr(y, group=disease)`). Second, we normalized by library size the aggregated raw counts (`calcNormFactors(y, logratioTrim = 0.3)`). Third, we corrected for the main confounding factors—that is, chemistry protocol, sex and binned age—considering an additive model. One patient was excluded from the analysis due to missing age information. We defined the design of our comparison using the following patsy-style (<https://patsy.readthedocs.io/en/latest/formulas.html>) formula: ' $\sim 0 + C(\text{disease}) + C(\text{chemistry}) + C(\text{sex}) + C(\text{binned_age})$ '. Fourth, we estimated a negative binomial dispersion for each gene using `estimateDisp()`, which we fed into a gene-wise negative binomial generalized linear model (`glmQLFit(robust = TRUE)`) to test for DEGs with a quasi-likelihood F -test (`glmQLFTest()`). Lastly,

results obtained from each comparison were merged together, and the *F*-test *P* values were corrected using the Benjamini–Hochberg FDR procedure implemented in R (*p.adjust(method = 'BH')*). Given the corrected *P* values and the $\log_2 FC$, we selected 6,868 DEGs with $P < 0.01$ and absolute $\log_2 FC > 1.5$.

Curated immune-specific genes. To be able to track the full spectrum of inflammatory processes, including immune activation and progression, we curated nine inflammation-related functions defined in the literature^{78–84} (1,364 genes present in our dataset; Supplementary Table 4) and complemented them with a published list of cell-type-specific signatures derived from immunological knowledge based on single-cell studies (Cytopus⁷⁶). Specifically, we retrieved all global gene sets for the leukocyte category and the following inflammatory-related cell-type-specific factors: naive and non-naive CD4 T cells (CD4T_TFH_UP, CD4T_TH1_UP, CD4T_TH2_UP, CD4T_TH17_UP, Tregs_FOXP3_stabilization); naive and non-naive CD8 T cells (CD8T_exhaustion, CD8T_tcr_activation); B cells (B_effector); monocytes (IFNG response, IL4-IL13 response); and dendritic cells (dendritic cell antigen crosspresentation).

Aggregation of gene sets. We generate the relevant gene set by doing the union of HVGs, DEGs and the manually curated list. The final number of unique genes is 8,253.

Dataset integration and gene expression correction via scANVI Atlas-level analysis requires a careful preprocessing of the gene expression profiles to deal with the heterogeneity of the studies, the batch effect and the missing or noisy observations. scANVI¹⁵ is one of the existing methods capable of addressing these challenges and has been proven effective on atlas-level benchmarks compared to other integration methods. We validated its performance on our data by using the metrics from the scib-metrics package¹⁶ (version 0.5) (Extended Data Fig. 1).

scANVI integration. scANVI is an extension of the scVI model, employed previously for data integration, that also leverages the information of the cell type annotation. We first trained an scVI VAE (*scvi.model.ScVI*) and then trained scANVI (*scvi.model.SCANVI*) starting from the pretrained scVI model (see parameters in Supplementary Table 7). Both models corrected for the chemistry batch while also considering libraryID, studyID, sex and binned age as covariates. After training, we generated the normalized corrected counts by sampling from scANVI's negative binomial posterior (*SCANVI.get_normalized_expression*). The batch effect was mitigated by sampling and averaging each cell's expression as if it originated from each chemistry protocol by setting the *transform_batch* parameter to the list of chemistry protocols present in our atlas.

Comparison of cell type composition

To estimate the changes in the proportions of cell populations across conditions, we applied the scCODA package⁸⁵ (version 0.1.9), a Bayesian modeling tool that takes into account the compositional nature of the data to reduce the risk of false discoveries. scCODA allows us to infer changes between conditions while considering other covariates, corresponding to the disease status in our setting. scCODA searches for changes between a reference cell type, assumed to be constant among different conditions, and the other cell types. We selected as the reference population the one that showed the lower variance across conditions, excluding rare cell populations (that is, progenitors, plasmacytoid dendritic cells and cycling cells). This resulted in the selection of dendritic cell as the reference cell type for all diseases. scCODA takes as input the count of cells belonging to each cell type in each patient and returns the list of cell type proportion changes with the corresponding corrected *P* values (through the FDR procedure). A patsy-style formula

was used to build the covariate matrix, specified with 'healthy' as baseline and sex and binned age as covariates (*C(disease, Treatment('healthy')) + C(sex) + C(binned_age)*), because we are interested in detecting changes between a normal and a diseased status. We reported only changes with a corrected $P < 0.05$ and a $\log_2 FC > 0.2$.

Comparison of gene expression profiles

Gene factor inference. To expand the list of curated immune-related genes following a data-driven approach, we employed Spectra²² (version 0.2.0), a matrix factorization algorithm that enables us to identify a minimal set of genes related to specific functions in the data—that is, factors. Spectra takes as input cell type labels to infer global and cell-type-specific factors that decompose the overall gene expression matrix and each cell type submatrices, respectively. Given our list of curated gene sets, we considered the Cytopus ones as global factors, whereas we regarded all the remaining as cell-type-specific factors. The Spectra model was fitted with default parameters with the exception of λ , which was set equal to 0.001. Considering the prohibitive computational resources required for applying Spectra on our single-cell data, we fed the algorithm with the metacell aggregated expression matrix, as described in the paragraph below. Spectra returned a list of 135 factors that are a linear combination of the gene expression from the original matrix. The coefficients included in the matrix can be then used as a proxy of the gene relevance in a given factor.

Metacell generation. We generated metacells using SEACells⁸⁶ (version 0.3.3), which aggregates cells by exploiting their distances in a low-dimensional embedding space. Starting from the normalizing data, we selected the top 3,000 HVGs using the *highly_variable_genes* function in SCANPY, with the Seurat flavor. To define SEACells' input embedding space, we calculated the first 50 principal components and selected those principal components that explain 90% of the total variance observed. To avoid biases due to batch effect and other confounding factors, we executed SEACells for each sample independently. In particular, we generated a number of metacells equal to the number of cells of each patient divided by 50. We further filtered the obtained metacells by computing the proportion of the most abundant annotation label (Level 1) in each SEACells group and then removed the ones with a purity lower than 0.75. Overall, we defined 71,108 metacells. Given the assignment of cells to each metacell, we generated each metacell's gene expression profile by averaging the corresponding cells' scANVI normalized and corrected expression profiles. Because scANVI returns counts sampled from a negative binomial distribution, we also log scaled the obtained metacell profiles.

Inflammation-related signature definition. Spectra provided a total of 135 factors that include a refined gene list for each gene set we used as input. Thus, we need to assign those factors to our original gene sets for retrieving the corresponding biological function. For doing so, we performed enrichment analysis with ULMs available in the Python implementation of decoupler⁷⁷, to estimate the factors associated with each gene set. The gene coefficients returned by Spectra were considered as the response variable and a vector of weights (1 if the genes were included in the gene set, 0 otherwise) serving as explanatory variables. ULM returns an estimate and a *P* value for each enrichment. We corrected those *P* values for multiple comparison by computing the FDR with the Benjamini–Hochberg procedure, implemented in the *scipy* (version 1.12.0) library. We kept 125 factors with a positive estimate and an adjusted *P* value < 0.05 . Finally, we assign to each factor the biological function that corresponds to the gene set that provided the highest estimated score.

Inflammation-related signature scores. To compare immune-relevant activation profiles across diseases and cell types, we applied an enrichment signature scoring procedure, considering the factors obtained

with Spectra²². First, we generated pseudobulks stratified by cell type (Level 1 or Level 2) and patients, discarding groups with fewer than 10 cells. We averaged the scANVI-corrected gene expression matrix of each cell belonging to a given pseudobulk and then log transformed and scaled the expression values to zero mean and unit variance, to reduce the impact of highly expressed genes. We fitted decouplerR's ULM⁷⁷ by considering pseudobulk expression profiles as the response variable and the gene coefficient returned by Spectra as the explanatory one. We assessed the scores for the 119 cell-type-specific factors only in their corresponding cell type. The output of the model is a Student's *t*-statistic for each combination of pseudobulk and factor, which is used as a proxy for the corresponding biological function activity: positive values are associated with more active functions in a given sample and vice versa. To identify the upregulated or downregulated biological functions across inflammatory conditions, we compared the activation score between healthy and each disease, considering only comparisons that include at least three observations in both conditions. To take into account the batch effect induced by studies and chemistry protocols that still affects the data (Extended Data Fig. 1b,c; scbi metrics and principal component analysis (PCA)), we applied a LMEM. In particular, we fitted the function mixedlm() from the statsmodels Python library (version 0.14.1) with the following formula: 'Q(~{factor}) ~ C(disease, Treatment(reference = 'healthy')) + f'C(chemistry)', grouping by 'studyID'. We corrected the *P* value obtained for multiple testing using FDR considering all the comparisons when tested at Level 1 and within each Level 1 population when tested at Level 2.

GRN analysis. Pseudobulk matrices were calculated by averaging the corrected and standardized count matrices by cell type and sample. We compute differential expression analysis for each cell type in each disease using healthy individuals as reference. LMEMs were used to model the expression levels of each gene independently, considering the disease as a fixed effect while modeling the ID of the study as a random effect. We used the mixedlm() function of the statsmodels (version 0.14.0) Python package to run the analysis. To associate each cell-type-specific 'IFN-induced' factor with a given transcription factor regulator, we integrated these signatures with the CollecTRI Gene Regulatory Network⁸⁷ by matching target genes to identify common genes between transcription factor regulons and Spectra signatures. Therefore, each 'IFN-induced' signature was thus linked to a subset of transcription factor regulons. The activity of each transcription factor was calculated using only the common genes between each transcription factor and each signature, employing the UML from decouplerR⁷⁷ and the *z*-values obtained from the differential expression analysis. To ensure robustness, only regulons with at least 10 gene targets were considered. This pipeline was applied across 'IFN-induced' factors and diseases, focusing on the activity in the cell type where the Spectra signature was identified. Negative activities (*t*-stat < 0) and non-significant results (*P* > 0.05) were filtered out. This analysis identified STAT1 and SP1 as the sole transcription factor regulators of the defined cell types. We performed one-versus-all Wilcoxon rank-sum tests to compare transcription factor activity across Level 2 subpopulations within each Level 1 lineage for SLE and Flu. For each transcription factor (SP1 and STAT1), activity within a given Level 2 state was compared to all other states within the same Level 1 compartment. Tests were two-sided and restricted to comparisons with at least three observations per group. *P* values were adjusted using the Benjamini–Hochberg method. The same approach was applied to monocytes, comparing transcription factor activity across diseases within each Level 2 monocyte subset.

For the comparison of flare and non-flare patients from SLE, non-corrected log1p-normalized single-cell expression matrix from Perez et al.¹⁷ was used to further investigate SP1 and STAT1 regulon activities across both categories. Pseudobulk profiles were calculated by averaging by cell type, considering only cell types (Level 2) with a minimum of 10 cells and groups that include at least three patients in

both conditions (flare versus non-flare). Prior to calculating transcription factor activities across samples, we standardized the gene expression data on patients with SLE based on healthy individuals. Specifically, for each gene, the mean and standard deviation were calculated from the healthy group, and these statistics were then used to scale the gene expression values across patients with SLE. Only gene targets identified in the previous step were used to calculate enrichment using the ULM method. Finally, the activity of STAT1 and SP1 was calculated at Level 2 using CollecTRI⁸⁷.

Immune gene importance evaluation

In this section, we introduce our pipeline used to obtain a gene importance metric by interpreting cell-type-specific classifiers for disease prediction. All the steps described below were carried out separately for each cell type (excluding RBCs, platelets, progenitors and cycling cells). Specifically, the classification task was performed with GBDTs implemented in the XGBoost library⁸⁸ (py-xgboost-gpu; version 2.0.3). Furthermore, interpretability was performed using SHAP values³⁵ (version 0.45.1), a powerful approach assigning an importance to each gene by also taking into account their interactions.

Feature selection. To focus our analysis on cell-type-specific inflammatory-related signatures, we considered only genes relevant in annotated Spectra factors, and we further reduced the list by removing cell identity genes (for example, *CD3E* and *MS4A1*) as well as non-protein-coding genes. This filtering gave a final number of 935 genes.

Data processing. We split our data into three parts: the training set and the validation and testing set, used for hyperparameter tuning and performance evaluation, respectively. We balanced the splits by disease, ensuring that each sample's cells were included in the same set. Initially, we partitioned the data into five splits using the function sklearn.model_selection.StratifiedGroupKFold. Three of these splits were assigned to the training set, and one was designated for validation and one for testing. Accounting for both stratification by disease and patient partitioning might lead to an uneven distribution of cells among diseases. To address this, we assigned splits with a well-balanced distribution of cells to the training and testing sets first.

XGBoost fitting. XGBoost (xgboost.XGBClassifier) hyperparameters were tuned using the Optuna library⁸⁹ (version 3.6.0). The performance of each model configuration was estimated using the WF1 score on the validation set. To reduce the computational cost, we both pruned unpromising hyperparameters and early stopped the training when no improvement was achieved more than 20 steps before the upper bound of 1,500. We considered 50 configurations of XGBoost, taking into account the hyperparameters detailed in Supplementary Table 7. Using the best configuration and its corresponding number of training steps (equivalent to the number of estimators), we retrained the best model on the union of the training and validation sets. This time, we did not apply early stopping and increased the number of training steps by 20%, to account for the larger number of training samples.

d-SHAP interpretability. To interpret the decision of the selected XGBoost classifier, we employed the widely adopted Shapley values through the SHAP library. SHAP values were computed with shap. TreeExplainer using the observational 'three_path_dependant' approach. Given the potential resource-intensive nature of handling all SHAP values for every cell and disease, especially in terms of storage, we computed their mean and variance across all samples in batches using the Weldford online algorithm⁹⁰. Given a specific cell type *ct*, we have a SHAP value for every gene in every cell and for each disease: a matrix of real values SHAP^{ct}(*c, g, d*), where *c*, *g* and *d* identify the cell, gene and disease, respectively. The average contribution of a gene *g*

for a disease d can be computed as $d\text{-SHAP}^{\text{ct}}(g, d) = \text{mean}_{c \in C} |\text{SHAP}^{\text{ct}}(c, g, d)|$, where C is the set of cells. To aggregate the d -SHAP values across multiple diseases—for example, the ones included in the same study—we summed their values across genes.

Gene selection. To validate our ensemble of important genes through d -SHAP values, we tested if our selection generalizes to unseen studies. First, we defined a gene set **GS** that included genes expressed in at least 5% of the cells. Then, for each of the eight conditions included in unseen studies, we selected from **GS** the top k ranked genes by d -SHAP importance. We then trained XGBoost in a nested cross-validation setting on data from unseen studies, where we performed both hyperparameter tuning and performance evaluation, using only one of the gene sets as input features. Next, we computed WF1 and BAS to test the performance considering $k = 5$, $k = 10$ and $k = 20$. Given our selection S of genes, with size $|S|$, we also tested 20 sets of $|S|$ randomly selected genes from **GS**, excluding the ones in S (that is, not top ranked according to d -SHAP). Lastly, we compared the performances of the models trained on each gene set against XGBoost trained on the whole set of genes **GS**. The analysis was repeated for each cell type independently.

Study classifier and s-SHAP values. To identify whether the gene importance is driven by the study batch effects, we trained a separate classifier to predict study instead of the disease. Feature selection, data processing and model fitting were done in the same way as explained above for disease classification, apart from the data split where cells were stratified by study instead of disease. SHAP values were computed for each of the cell-type-specific study classifiers, resulting in an average contribution of a gene g for a study s $s\text{-SHAP}^{\text{ct}}(g, s) = \text{mean}_{c \in C} |\text{SHAP}^{\text{ct}}(c, g, s)|$. Because diseases can be associated with multiple studies, we aggregated the s-SHAP values for study prediction by summing them across all studies that include the selected disease. This allowed us to compare the batch-related signal (s-SHAP) with the disease-related signal (d -SHAP).

Patient classifier pipeline

In this section, we describe the pipeline used to validate the Inflammation Atlas as a diagnostic tool. In the following analysis, the terms 'patient' and 'sample' are equivalent, because, after data splitting, we kept only one sample for each patient. The pipeline consists of (1) integrating an annotated reference dataset with data integration tools that provide batch-corrected embeddings, (2) mapping a query dataset into the reference to obtain its corrected embeddings, (3) transferring the cell annotation labels from the reference, (4) defining a patient embedding space and (5) training a classifier to predict the patient conditions from the embeddings.

Starting from a large annotated reference dataset, we applied four state-of-the-art integration methods, described below, to obtain a batch-corrected embedding. We considered different chemistry protocols as the main source of batch effect; thus, we corrected for the chemistry covariate. Then, an independent query dataset was mapped into the corrected embeddings. This step provides both batch correction and allows us to transfer cell annotation labels from the reference to the query dataset. To define patient-wise embeddings, we averaged each patient's cell embeddings by cell type, resulting in an embedding for each cell type and each patient (30 embedded dimensions for scANVI main configuration; see Supplementary Table 7 for all the methods and configurations). To predict the inflammatory conditions of the patients in the independent query dataset, we fit one classifier for each cell type on the reference patient embeddings. Then, we predicted the inflammatory condition of the query patients by returning the most frequent condition among the predictions of every cell-type-specific classifier.

We validated our pipeline considering three different settings. In the first one, we performed a cross-validation on the Main dataset,

where each left-out split is considered as a query dataset and the remaining as the reference. Moreover, we tested our diagnostic tool on data from unseen patients and unseen studies, this time using the whole Main as a reference.

Integration methods. In this section, we explain each data integration method, and the tested configurations of hyperparameters can be found in Extended Data Fig. 8 and Supplementary Table 7. Note that the scGen and Harmony/Symphony approaches generate one integrated dataset that is independent from the query data, whereas scANVI and scPoli require a fine-tuning of the reference model for a given query dataset.

scGEN. scGen is defined by two main components: a VAE and a latent space arithmetic method. The VAE estimates a posterior distribution of latent variables through the encoder, from which we can reconstruct the expression matrices via the decoder (scGen_model.batch_removal()). Similar to commonly employed VAEs, scGen approximates the posterior through a variational distribution, modeled by the encoder and defined as a multivariate Gaussian. When the scGen's VAE has been fitted on the reference dataset, latent space arithmetic is employed to correct for the batch effect induced by the chemistry protocol used. Within each cell type, scGen first selects the mean μ_{\max} of the most populated batch and then corrects each batch with mean μ_0 by adding $\delta = \mu_{\max} - \mu_0$ to each cell's embedding. Importantly, the cell type has to be inferred when not known. The final corrected count matrix will correspond to the generated count matrix from the arithmetic-corrected embeddings. Following scGen's tutorials, we will refer as corrected embeddings to the ones obtained given the corrected expression matrix as input. To apply scGen batch correction on the query dataset, we need to also infer the cell types of those cells. This step was performed through label transfer by nearest neighbors, following a similar approach employed in Human Lung Cell Atlas⁷⁴ and introduced in ref. 45. The idea is to employ (approximate) nearest neighbors through PyNNDescent⁹¹ (version 0.5.11) (pynndescent.NNDescent().prepare()) and infer the most probable cell type in the 10 nearest neighbors (pynndescent.NNDescent().query()) from the already annotated cells in the reference dataset. To account for the shape of the distribution of the neighbors, a Gaussian kernel was applied instead of using the Euclidean distance. The most probable nearest neighbor cell type is then assigned to annotate new cells.

scANVI. We first trained scVI and scANVI on the reference dataset, like the dataset integration described before, and then we fine-tuned it to the query dataset. Regarding the label transfer, we employed the scANVI predict() function with default parameters.

Harmony and Symphony. Harmony⁹² and Symphony⁹³ are two related methods that integrate a reference and map a query dataset to it, respectively. Harmony takes a PCA embedding of cells as input, along with their batch covariates (chemistry). Next, the model represents cell states as soft clusters, where each cell identity is defined as a probabilistic assignment across clusters, with the aim of maximizing diversity among batches within those clusters. Cells are iteratively assigned soft-cluster memberships; those assignments are used as weights in a linear mixture model to remove confounding factors. The result is a new batch-corrected embedded space. The Symphony algorithm starts from the linear model parameters inferred by Harmony to map query cells onto the corresponding embedding space. First, it projects the query gene expression profiles into the same uncorrected low-dimensional space as the reference cells. Next, Symphony computes soft-cluster assignments for the query cells based on their proximity to the reference cluster centroids. Finally, Symphony employs the Harmony mixture model components to estimate and regress out batch effects from the query data. Importantly, the reference cell embedding

remains stable during this mapping process. We transferred annotation labels from the reference to the query dataset by exploiting cell proximity in the embedding space using nearest neighbors through `sklearn.classifier.KNeighborsClassifier`, Symphony default choice (<https://github.com/potulabe/symphonypy>).

scPoli. In contrast to other integration methods such as scANVI, scPoli⁹⁴ encodes the condition (chemistry and sampleID) as a learnable conditional embedding and characterizes each cell type as a prototype in the latent embedding to facilitate the label transfer. In the reference building phase, we first pretrained the model given the reference dataset and its conditions and then fine-tuned to optimize the prototypes. In the reference mapping phase, we froze the model and learned the new conditional embeddings belonging to the query dataset. The label transfer is performed by simply assigning the cell type belonging to the closest prototype in the latent embedding space. All the methods belong to the scArches⁴⁵ class `scArches.models.scPoli`.

Disease classifiers. Patient embeddings definition. After obtaining the corrected embedding from one of the data integration approaches described previously, we need to aggregate the cell-wise embeddings into patient-wise embeddings. We decided to group at the level of the cell types by computing the mean embedding across cells belonging to the same cell type and sampleID. Only for scPoli, we generated three different types of patient embeddings: the learned patient embeddings (sample), the averaged cell-wise latent embeddings (cell) and the concatenation of the two (cell&sample).

Classifiers definition and hyperparameter tuning. In this phase, the aim is to train a classifier for each cell type on the patient-wise embeddings belonging to the reference dataset. We tested the following classifier types: `sklearn.svm.LinearSVC`, `sklearn.svm.SVC` and `sklearn.neighbors.KNeighborsClassifier` (`sklearn` version 1.4.1.post1). For each classifier type, we trained different configurations defined in Supplementary Table 7 and evaluated their performance using a five-fold cross-validation on the reference patient embeddings. Similar to what we did to optimize the XGBoost classifier when estimating the immune gene importance, we employed the Optuna library to perform the hyperparameter tuning for each classifier. The best hyperparameter combination was selected according to the WF1 score independently of the cell type.

Majority voting and evaluation. The best classifier type according to the average performance over all cell types is then used to train from scratch the corresponding classifier on the whole reference patient embedding. The predicted condition (disease) for a patient is simply the majority voting among the classifiers. In case of a tie of different conditions, we conservatively rejected the prediction of the classifiers. Then, the overall metrics WF1 score, BAS and Matthews correlation coefficient (MCC) and the disease-wise metrics Precision, Recall, BAS and F1 score were computed by comparing the predicted inflammatory conditions by each classifier type in the query dataset with the available ground truth. All those metrics were computed with the `sklearn` Python library. When we refer to the weighted version of a given metric, we are using `average = 'weighted'` parameter to take into account the unbalance of the inflammatory condition observations.

Note, if a given query patient does not have any cells annotated for a given cell type, the corresponding prediction was set as 'Not Available'. This label was not taken into account during the majority voting procedure and was considered as a wrong prediction when evaluating the performances of that cell type.

Reporting summary

Further information on research design is available in the Nature Portfolio Reporting Summary linked to this article.

Data availability

scRNA-seq in-house-generated raw data and associated processed count matrices are publicly accessible without restrictions at the NCBI GEO database under the [GSE248688](https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE248688) SuperSeries, including the following SubSeries accession numbers: [GSE248689](https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE248689) (SCGT01), [GSE248695](https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE248695) (SCGT02), [GSE248685](https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE248685) (SCGT03), [GSE248693](https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE248693) (SCGT04) and [GSE270165](https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE270165) (SCGT06). To ensure data safety and patient privacy, raw scRNA-seq data from SCGT00, SCGT00val and SCGT05 studies can be downloaded upon reasonable request through the European Genome-phenome Archive (EGA) database using the following access codes: [EGAC50000000566](https://www.ebi.ac.uk/ega/studies/EGAC50000000566) (SCGT00 and SCGT00val) and [EGAS50000000590](https://www.ebi.ac.uk/ega/studies/EGAS50000000590) (SCGT05).

Previously published scRNA-seq data included in this project, either FASTQ files or processed count matrices, were obtained from GEO, BioStudies Array Express, Broad Institute DUOS, Synapse, Genome Sequence Archive, CELLxGENE Data Portal and 10x Genomics. Further details are specified in Supplementary Table 1 (Sheet 1).

The processed scRNA-seq datasets (quality controlled gene expression count matrices) and metadata analyzed in the present study have been deposited at Zenodo: <https://doi.org/10.5281/zenodo.1485190>.

Code availability

The code to reproduce the full analysis presented in this article is hosted in the GitHub repository: <https://github.com/Single-Cell-Genomics-Group-CNAG-CRG/Inflammation-PBMCs-Atlas>.

References

55. Jiang, Y. et al. Single cell RNA sequencing identifies an early monocyte gene signature in acute respiratory distress syndrome. *JCI Insight* **5**, e135678 (2020).
56. Cillo, A. R. et al. Immune landscape of viral- and carcinogen-driven head and neck cancer. *Immunity* **52**, 183–199 (2020).
57. Zhang, C. et al. Single-cell RNA sequencing reveals intrahepatic and peripheral immune characteristics related to disease phases in HBV-infected patients. *Gut* **72**, 153–167 (2023).
58. Schafflick, D. et al. Integrated single cell analysis of blood and cerebrospinal fluid leukocytes in multiple sclerosis. *Nat. Commun.* **11**, 247 (2020).
59. Liu, Y. et al. Tumour heterogeneity and intercellular networks of nasopharyngeal carcinoma at single cell resolution. *Nat. Commun.* **12**, 741 (2021).
60. Palshikar, M. G. et al. Executable models of immune signaling pathways in HIV-associated atherosclerosis. *NPJ Syst. Biol. Appl.* **8**, 35 (2022).
61. Wang, S. et al. An atlas of immune cell exhaustion in HIV-infected individuals revealed by single-cell transcriptomics. *Emerg. Microbes Infect.* **9**, 2333–2347 (2020).
62. Savage, A. K. et al. Multimodal analysis for human ex vivo studies shows extensive molecular changes from delays in blood processing. *iScience* **24**, 102404 (2021).
63. Mistry, P. et al. Transcriptomic, epigenetic, and functional analyses implicate neutrophil diversity in the pathogenesis of systemic lupus erythematosus. *Proc. Natl Acad. Sci. USA* **116**, 25222–25228 (2019).
64. Ramachandran, P. et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. *Nature* **575**, 512–518 (2019).
65. Martin, J. C. et al. Single-cell analysis of Crohn's disease lesions identifies a pathogenic cellular module associated with resistance to anti-TNF therapy. *Cell* **178**, 1493–1508 (2019).
66. Ren, X. et al. COVID-19 immune features revealed by a large-scale single-cell transcriptome atlas. *Cell* **184**, 1895–1913 (2021).
67. Terekhova, M. et al. Single-cell atlas of healthy human blood unveils age-related loss of NKG2C⁺GZMB⁺CD8⁺ memory T cells and accumulation of type 2 memory T cells. *Immunity* **56**, 2836–2854 (2023).

68. Huang, X. & Huang, Y. Cellsnp-lite: an efficient tool for genotyping single cells. *Bioinformatics* **37**, 4569–4571 (2021).

69. Huang, Y., McCarthy, D. J. & Stegle, O. Vireo: Bayesian demultiplexing of pooled single-cell RNA-seq data without genotype reference. *Genome Biol.* **20**, 273 (2019).

70. Virshup, I., Rybakov, S., Theis, F. J., Angerer, P. & Wolf, F. A. anndata: annotated data. Preprint at bioRxiv <https://doi.org/10.1101/2021.12.16.473007> (2021).

71. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. *Genome Biol.* **19**, 15 (2018).

72. Hao, Y. et al. Integrated analysis of multimodal single-cell data. *Cell* **184**, 3573–3587 (2021).

73. Massoni-Badosa, R. et al. An atlas of cells in the human tonsil. *Immunity* **57**, 379–399.e18 (2024).

74. Sikkema, L. et al. An integrated cell atlas of the lung in health and disease. *Nat. Med.* **29**, 1563–1577 (2023).

75. Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. *Nat. Biotechnol.* **33**, 495–502 (2015).

76. Walle, T. wallet-maker/cytopus: Cytopus v1.30. Zenodo <https://doi.org/10.5281/zenodo.8366975> (2023).

77. Badia-i-Mompel, P. et al. decoupleR: ensemble of computational methods to infer biological activities from omics data. *Bioinform. Adv.* **2**, vbac016 (2022).

78. Turner, M. D., Nedjai, B., Hurst, T. & Pennington, D. J. Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. *Biochim. Biophys. Acta* **1843**, 2563–2582 (2014).

79. Pishesha, N., Harmand, T. J. & Ploegh, H. L. A guide to antigen processing and presentation. *Nat. Rev. Immunol.* **22**, 751–764 (2022).

80. Blum, J. S., Wearsch, P. A. & Cresswell, P. Pathways of antigen processing. *Annu. Rev. Immunol.* **31**, 443–473 (2013).

81. Bhat, M. Y. et al. Comprehensive network map of interferon gamma signaling. *J. Cell Commun. Signal.* **12**, 745–751 (2018).

82. Murayama, M. A., Shimizu, J., Miyabe, C., Yudo, K. & Miyabe, Y. Chemokines and chemokine receptors as promising targets in rheumatoid arthritis. *Front. Immunol.* **14**, 1100869 (2023).

83. Lee, B.-W. & Moon, S.-J. Inflammatory cytokines in psoriatic arthritis: understanding pathogenesis and implications for treatment. *Int. J. Mol. Sci.* **24**, 11662 (2023).

84. Kany, S., Vollrath, J. T. & Relja, B. Cytokines in inflammatory disease. *Int. J. Mol. Sci.* **20**, 6008 (2019).

85. Büttner, M., Ostner, J., Müller, C. L., Theis, F. J. & Schubert, B. scCODA is a Bayesian model for compositional single-cell data analysis. *Nat. Commun.* **12**, 6876 (2021).

86. Persad, S. et al. SEACells infers transcriptional and epigenomic cellular states from single-cell genomics data. *Nat. Biotechnol.* **41**, 1746–1757 (2023).

87. Müller-Dott, S. et al. Expanding the coverage of regulons from high-confidence prior knowledge for accurate estimation of transcription factor activities. *Nucleic Acids Res.* **51**, 10934–10949 (2023).

88. XGBoost: a scalable tree boosting system. in *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*. <https://doi.org/10.1145/2939672.2939785> (Association for Computing Machinery, 2016).

89. Akiba, T., Sano, S., Yanase, T., Ohta, T. & Koyama, M. Optuna: a next-generation hyperparameter optimization framework. Preprint at arXiv <https://doi.org/10.48550/arXiv.1907.10902> (2019).

90. Welford, B. P. Note on a method for calculating corrected sums of squares and products. *Technometrics* **4**, 419–420 (1962).

91. Dong, W., Moses, C. & Li, K. Efficient k-nearest neighbor graph construction for generic similarity measures. in *Proceedings of the 20th International Conference on World Wide Web* 577–586 <https://doi.org/10.1145/1963405.1963487> (Association for Computing Machinery, 2011).

92. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. *Nat. Methods* **16**, 1289–1296 (2019).

93. Kang, J. B. et al. Efficient and precise single-cell reference atlas mapping with Symphony. *Nat. Commun.* **12**, 5890 (2021).

94. De Donno, C. et al. Population-level integration of single-cell datasets enables multi-scale analysis across samples. *Nat. Methods* **20**, 1683–1692 (2023).

Acknowledgements

The authors would like to thank the helpful support received from publicly available data used in the present study by providing processed data in the optimal format. Additionally, we appreciate the great effort put in creating the DISCO database with multiple-tissue atlases using single-cell datasets. The authors would like to thank the Centro Nacional de Análisis Genómico (CNAG) Scientific IT Unit and the maintainers of the CNAG compute cluster for providing assistance with essential computing resources. Also, the authors would like to thank all the team members, in particular P. Nieto, H. L. Crowell, M. Elosua-Bayes, M. Abdalfatah and R. Massoni-Badosa, for their contributions during brainstorming and discussion sessions. This project has received funding from the European Union's H2020 Research and Innovation Program under grant agreement number 848028 (DoCTIS; 'Decision on optimal combinatorial therapies in IMIDs using systems approaches'). L.J.-G. has held an FPU PhD fellowship (FPU19/04886) from the Spanish Ministry of Universities. D. Maspero is supported by the Juan de la Cierva Fellowship (JDC2022-049637-I) from the Spanish Ministry of Science and Innovation and the European Union 'NextGenerationEU'/PRTR. F.C. is funded by a Swiss National Science Foundation Sinergia grant (CRSII5-205884). M. Boulougouri is funded by the Graph Neural Networks for Explainable Artificial Intelligence ERA-NET+EJP (20CH21_195579) grant. J.L.-B. is supported by the Spanish Ministry of Universities through Margarita Salas fellow (RSUC.UDC.MS06). R.O.R.F. is supported by the Deutsche Forschungsgemeinschaft through CRC/SFB 1550 'Molecular circuits of heart disease'. Y.H. is supported by a Junior Postdoctoral fellowship from Research Foundation Flanders (FWO 12D5823N). S.T. is supported by a BOF-Fundamental Clinical Research mandate (FKO) from KU Leuven and by the Belgian Foundation Against Cancer (FAF-C/2018/1301). V.S. is funded by Asociación Española Contra el Cáncer (AECC). M.C.N. acknowledges funding from GlaxoSmithKline, the Netherlands Lung Foundation (project no. 4.1.18.226) and the European Union's H2020 Research and Innovation Program under grant agreement number 874656 (discovAIR). This collaboration project is co-financed by the Ministry of Economic Affairs and Climate Policy by means of the PPP allowance made available by the Top Sector Life Sciences & Health to stimulate public-private partnerships. A.S. is funded by PID2021-123918OB-I00 from MCIN/AEI/511013039/501100011033 and co-funded by 'FEDER: a way to make Europe'. Part of the computational analyses was supported by the Google Cloud Research Credits program with award GCP19980904.

Author contributions

L.J.-G., J.C.N. and H.H. conceived the project. J.C.N. and H.H. supervised the project. L.J.-G., D. Maspero, S.A.-F., F.C., M. Boulougouri and J.L.B. performed the computational and statistical analysis. R.O.R.F., H.A.T., R.N. and J.C.N. provided strategic advice on computational tasks and data interpretation. A.A. and M. Banchero generated VCF files for data demultiplexing. A.S.-M. and A.M.C. provided processed objects for validation analysis. M.R., D. Marchese, G.C., M. Berasategui and Y.H. generated datasets. T.K., P.v.d.V., F.A., F.P., G.S., E.R., M.v.d.B., A.S., J.M.C., A.F.N., E.D., J.D.C., J.T., J.P.G., E.C.,

G.G., B.S., A.J., V.S., R.E., S.T., S.V., M.C.N. and S.M. provided patient samples. L.J.-G., D. Maspero, S.A.-F., F.C., J.S.-R., A.-C.V., J.C.N. and H.H. interpreted the results. L.J.-G., D. Maspero, S.A.-F., F.C., J.C.N. and H.H. wrote the manuscript, with input from all authors. All authors read and approved the current version of the manuscript.

Competing interests

H.H. is co-founder and Chief Scientific Officer of Omniscope; a scientific advisory board member of Nanostring, Bruker and MiRXES; and a consultant to Moderna and Singularity. H.H. also received an honorarium from Genentech. J.C.N. is a scientific consultant to Omniscope. V.S. has received research grants from AstraZeneca and honoraria from GlaxoSmithKline unrelated to this study. M.v.d.B. has received research grants (unrestricted) from AstraZeneca, Novartis, GlaxoSmithKline, Roche, Genentech, Chiesi and Sanofi. M.N. has been awarded research grants (unrestricted) from AstraZeneca and GlaxoSmithKline. A.S. is the recipient of research grants from Roche-Genentech, AbbVie, GlaxoSmithKline, Scipher Medicine, Pfizer, Alimentiv, Boehringer Ingelheim and Agomab; receives consulting fees from Genentech, GlaxoSmithKline, Pfizer, HotSpot Therapeutics, Alimentiv, Origo Biopharma, Deep Track Capital, Great Point Partners and Boxer Capital; and is on the advisory boards of BioMAdvanced Diagnostics, Goodgut and Orikine. A.A. is a computational biologist at IMIDomics, Inc. A.J. is the chief data scientist at IMIDomics, Inc.

S.M. is the co-founder and chief medical officer at IMIDomics, Inc. J.S.-R. reports funding from GlaxoSmithKline, Pfizer and Sanofi and fees/honoraria from Traveze Therapeutics, Stadapharm, Astex, Pfizer, Grunenthal and Owkin. The remaining authors declare no competing interests.

Additional information

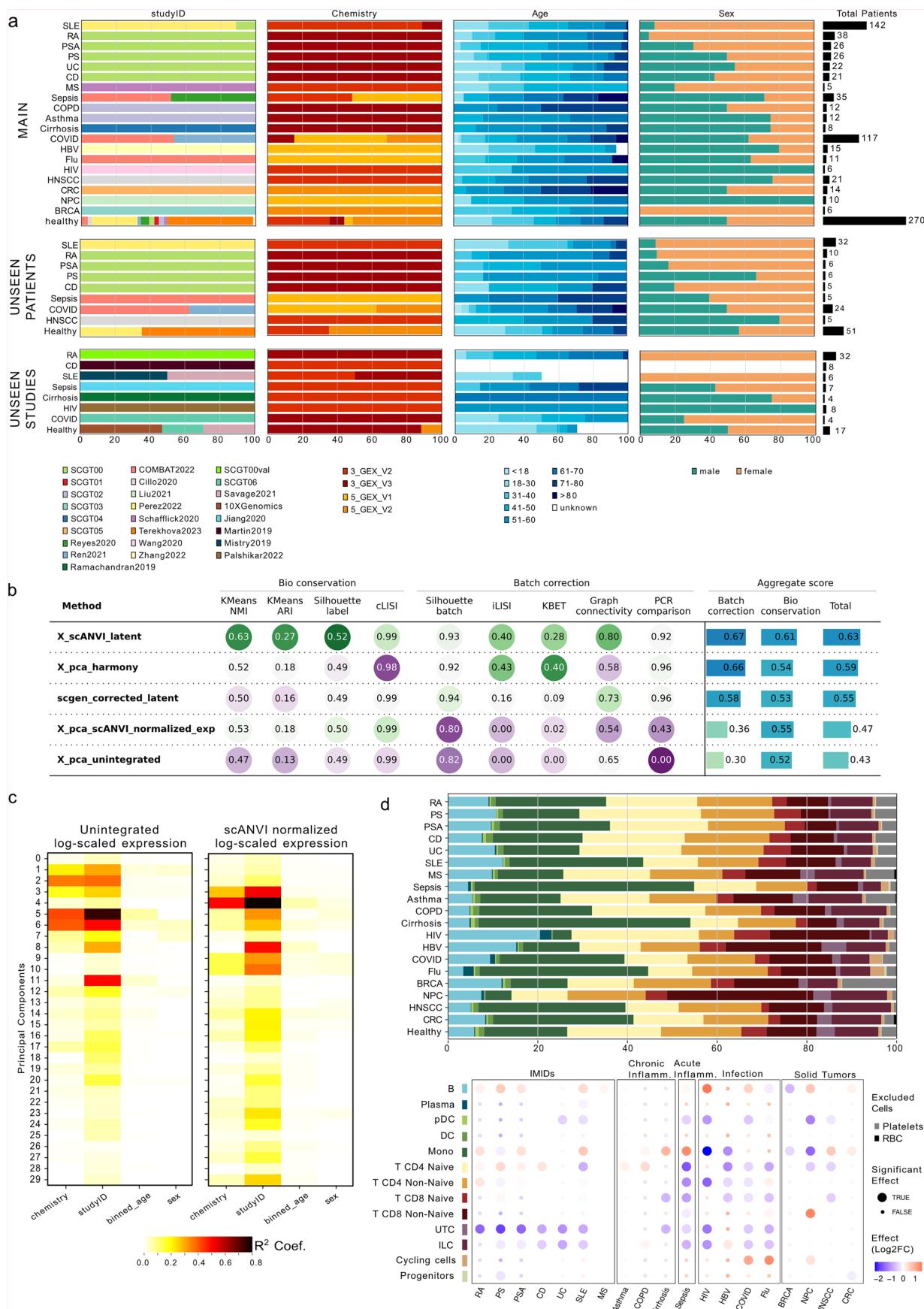
Extended data is available for this paper at <https://doi.org/10.1038/s41591-025-04126-3>.

Supplementary information The online version contains supplementary material available at <https://doi.org/10.1038/s41591-025-04126-3>.

Correspondence and requests for materials should be addressed to Juan C. Nieto or Holger Heyn.

Peer review information *Nature Medicine* thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Anna Maria Ranzoni, in collaboration with the *Nature Medicine* team.

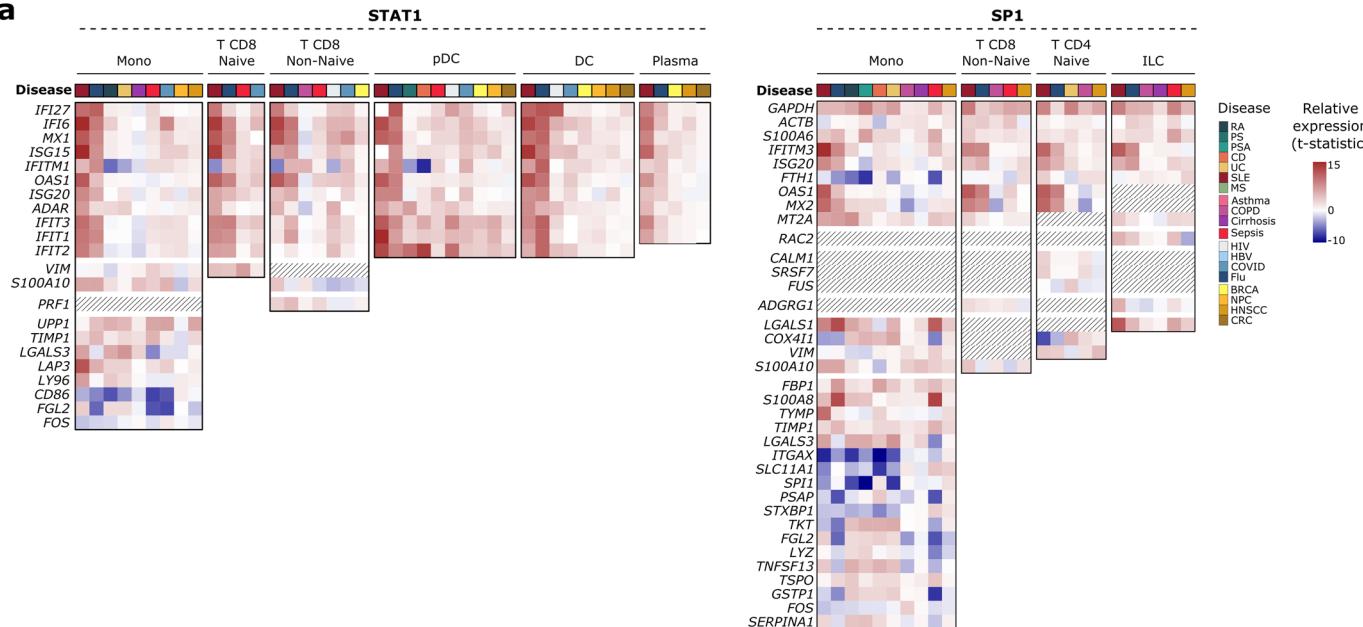
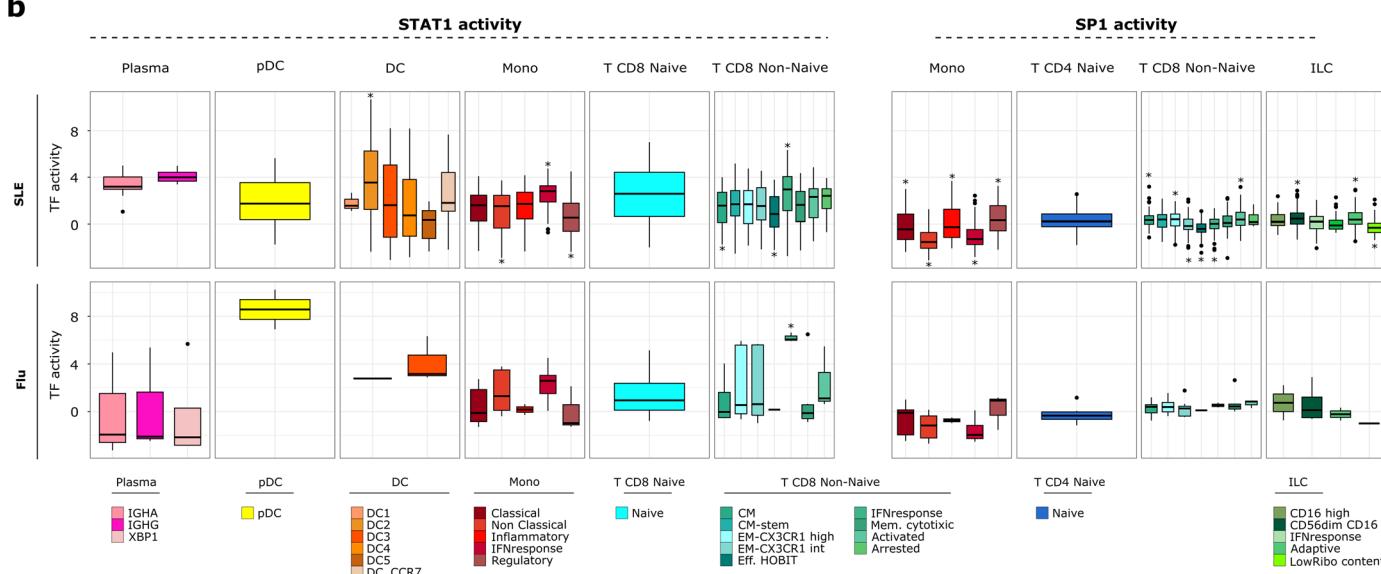
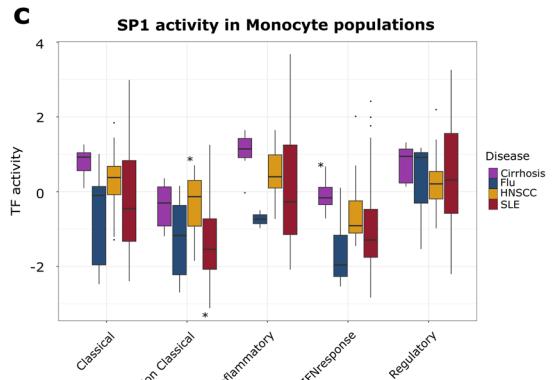
Reprints and permissions information is available at www.nature.com/reprints.



Extended Data Fig. 1 | See next page for caption.

Extended Data Fig. 1 | Composition of the inflammation atlas datasets from the Main Core. (a) Barplot showing patient count distribution across different diseases, including Healthy condition, stratified by technical variables (*studyID* and *chemistry*) and clinical metadata (*age* and *sex*). The donor without age information is shown in white. (b) Results from the *scib-metrics* package computed on five different embedding spaces, ranked by their overall performances. (c) Heatmaps showing the coefficient of determination R^2 from a linear regression between each principal component and one of four

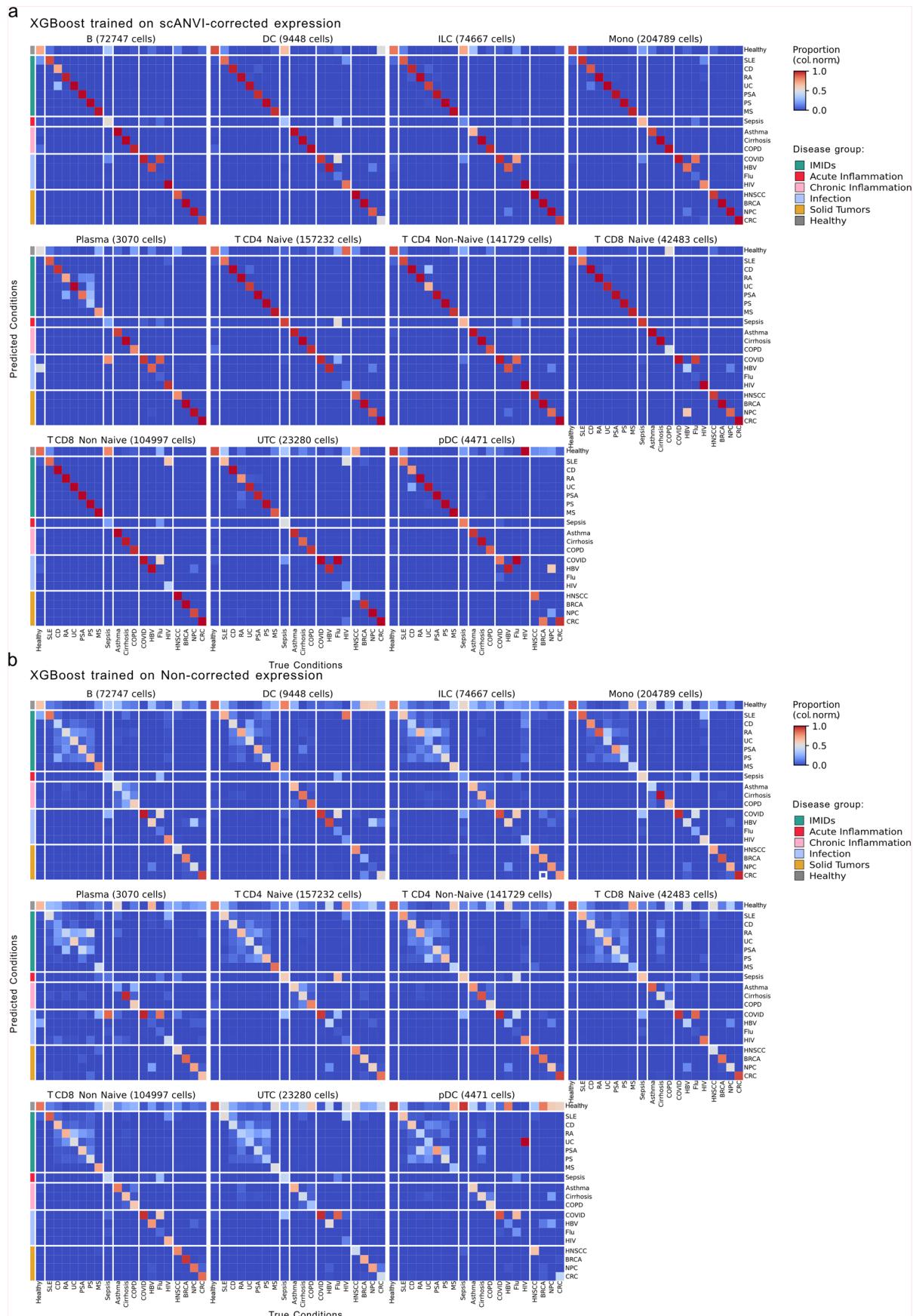
confounding factors. The Principal Component Analysis was performed on (left) original data (normalized and log-scaled) and (right) from scANVI normalized expression (log-scaled). (d) Cellular proportions (*Level 1*) across diseases and Healthy donors (Top). Compositional analysis of *Level 1* populations (excluding Platelets and RBC) between each disease and Healthy donors (Bottom). The dot size reflects the significance of the result ('Final parameter'!= 0), and the color represents the $\log_2 FC$ (Disease vs Healthy).

a**b****c**

Extended Data Fig. 2 | See next page for caption.

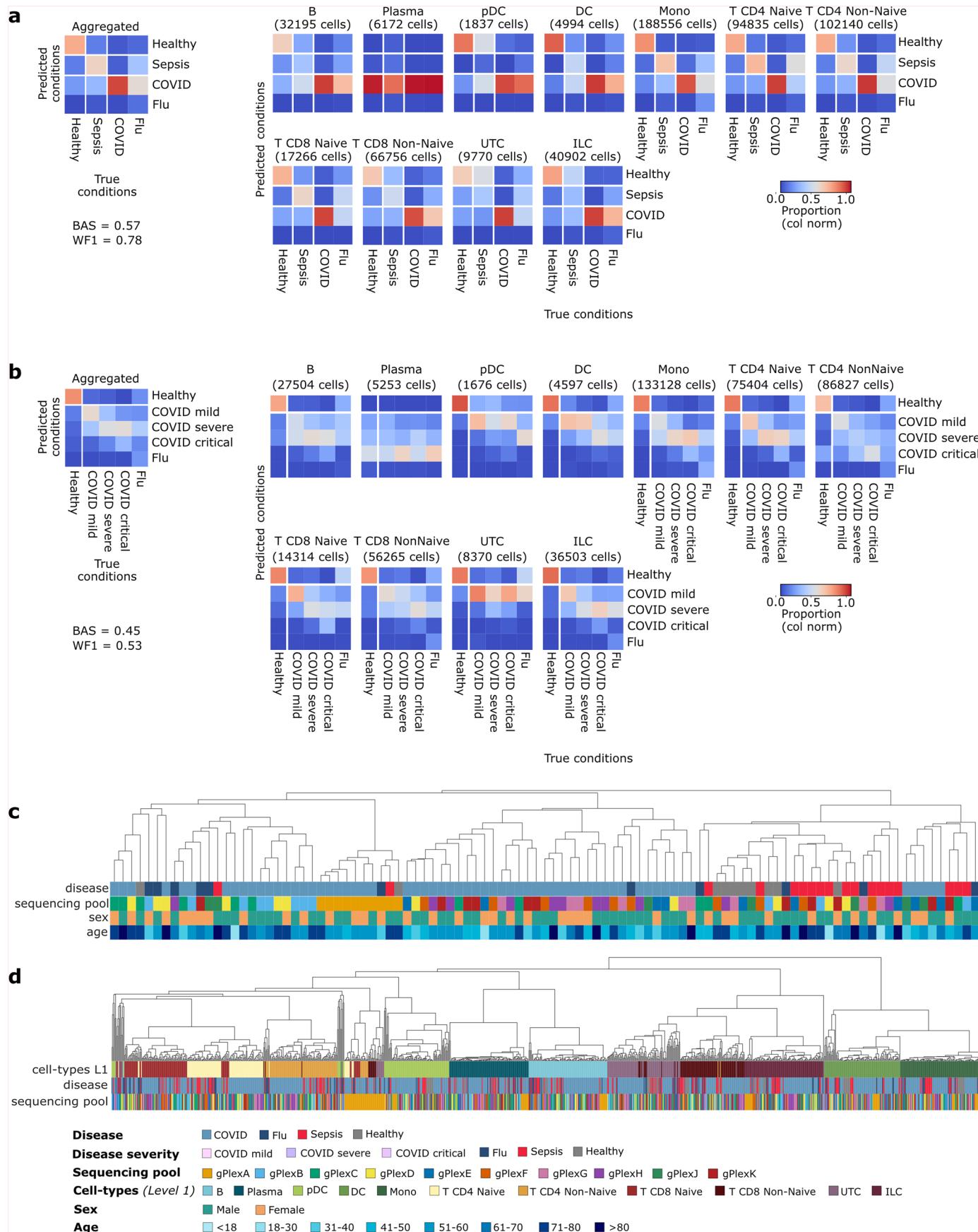
Extended Data Fig. 2 | Inflammation-related signatures across diseases and cell types. (a) Heatmap displaying the transcription factor (TF) specificity of STAT1 and SPI1 across different cell types and diseases. The t-statistic represents the relative expression of genes between diseased and Healthy samples, highlighting shared genes between TF target genes and IFN-induced cell type signatures. (b) Boxplot displaying the activity of STAT1 and SPI1 across cell types (*Level2*) in SLE patients and Flu patients. (c) Boxplot displaying the activity of SPI1 across monocyte subpopulations (*Level2*) in SLE, Flu, Cirrhosis and HNSCC patients. In panels (b) and (c), the pseudobulk value computed for each cell type within each independent patient are presented as median values, with boxes

indicating the interquartile range (IQR, 25th–75th percentile) and whiskers extending up to $1.5 \times \text{IQR}$ beyond the box boundaries; points outside this range are shown individually as outliers. Statistical significance was assessed using a two-sided Wilcoxon rank-sum test, and P-values were adjusted for multiple comparisons using the Benjamini–Hochberg procedure (adjusted $P < 0.05$). Asterisks (*) denote significant differences relative to other cell lineages or diseases, with the position of the asterisk indicating the direction of change (above the box: upregulated; below the box: downregulated). Exact P-values, effect sizes, and sample sizes are provided in Supplementary Table 6 (sheets *pval_SLE_Level2* and *pval_Mono_Level2* for panels b and c, respectively).



Extended Data Fig. 3 | Confusion matrices of predicted inflammatory condition by cell type. Normalized confusion matrices, one for each cell type (Level 1; excluding Cycling cells, Progenitors, Platelets and RBC), displaying proportion of predictions belonging to each True Condition. Diagonal values

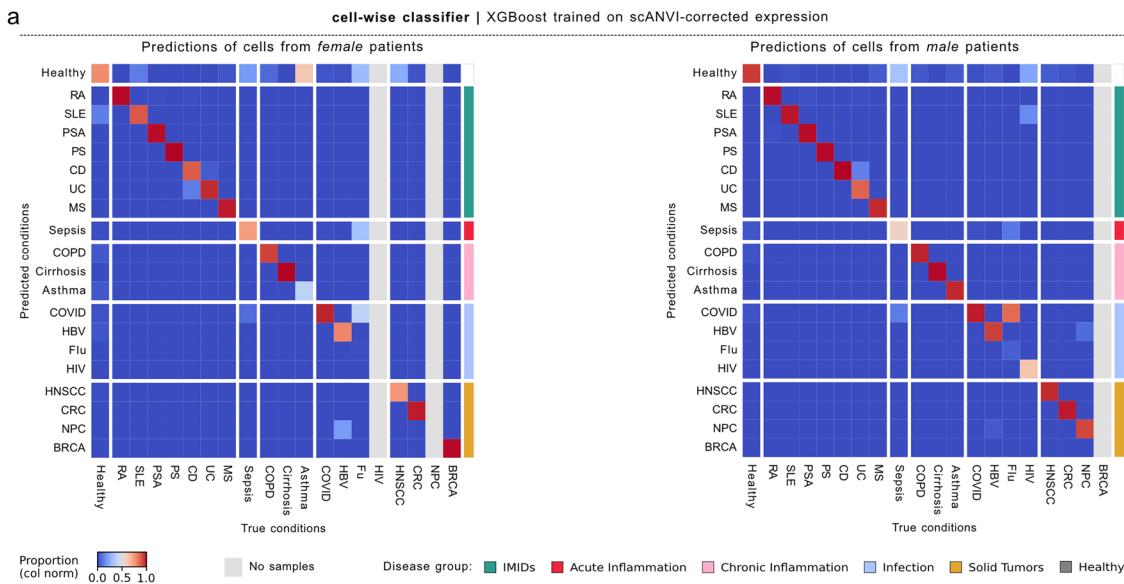
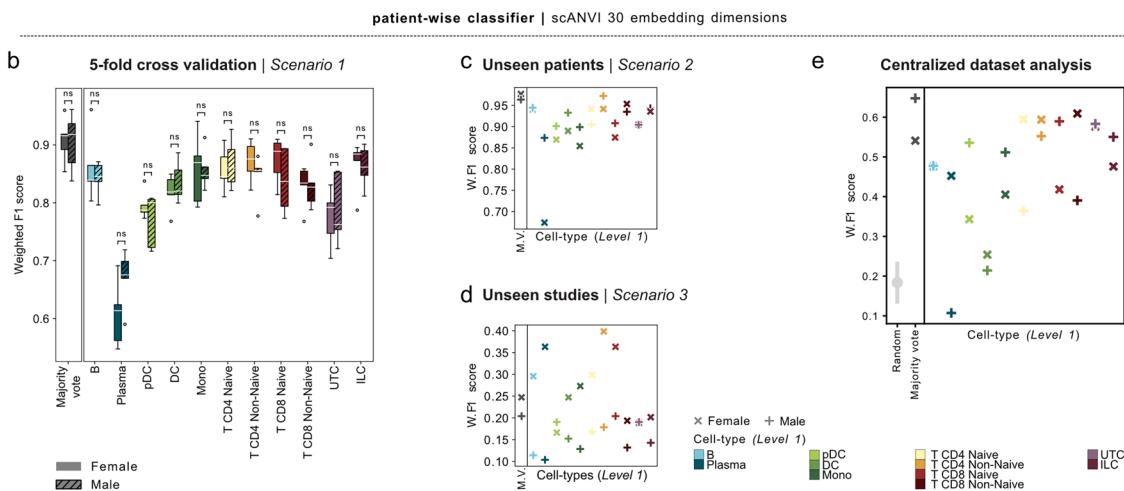
correspond to the Recall metric. XGBoost was trained on the (a) scANVI batch corrected and log-scaled cell expression profiles, and (b) original normalized and log-scaled cell expression profiles.



Extended Data Fig. 4 | See next page for caption.

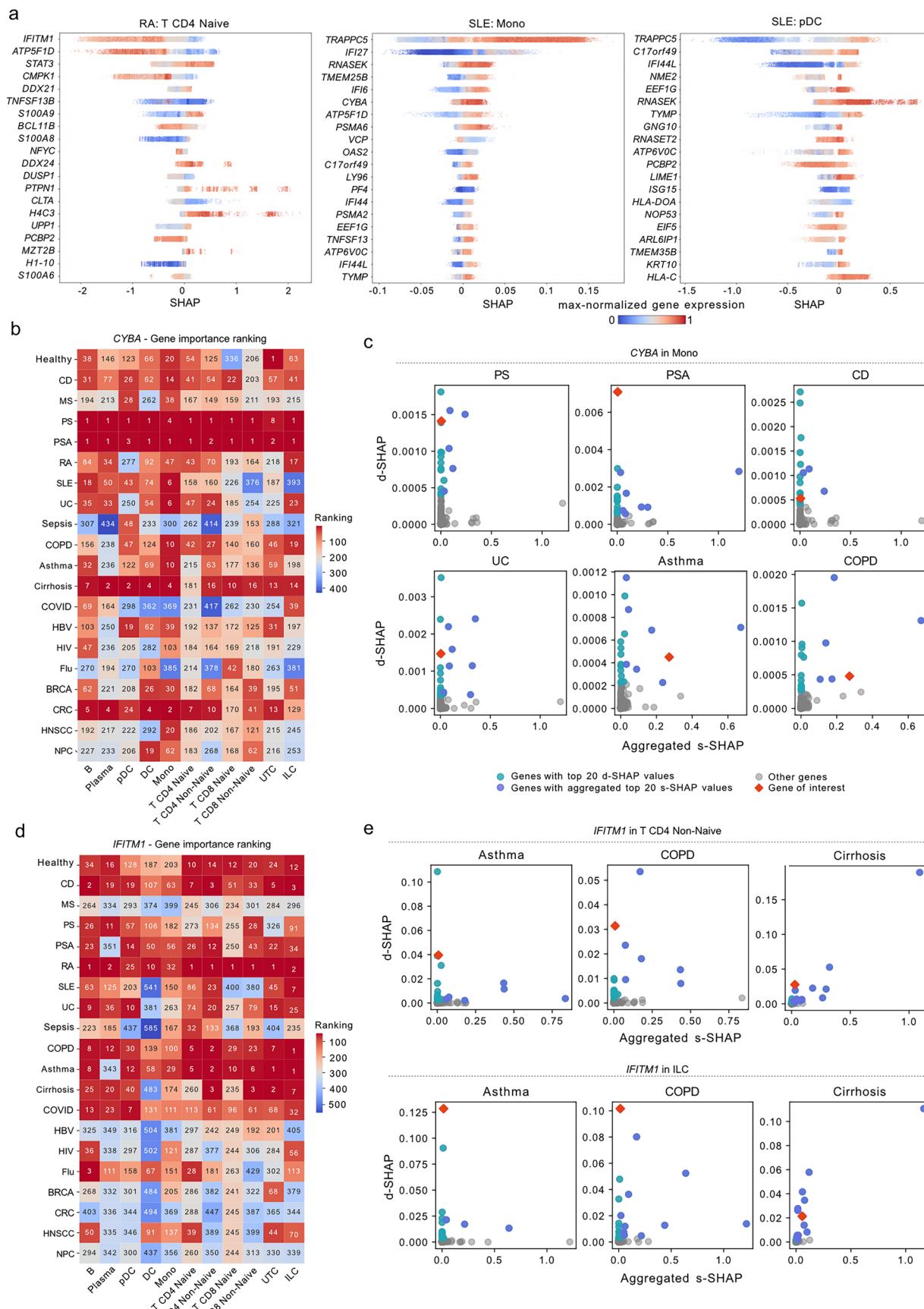
Extended Data Fig. 4 | Exploring cell misclassification within COMBAT2022 dataset. (a-b) Normalized confusion matrices, aggregated (**left**) and one for each cell type (Level 1; excluding Cycling cells, Progenitors, Platelets and RBC) (**right**), displaying proportion of predictions belonging to each True Condition. Diagonal values correspond to the Recall metric. XGBoost was trained on the original normalized and log-scaled cell expression profiles from (a) whole COMBAT dataset and (b) Healthy, Flu and COVID (stratified by disease severity)

samples from COMBAT dataset. (c-d) Agglomerative hierarchical clustering with complete linkage (using the average method and cosine distance) was performed on pseudobulk gene expression at the patient level (c), or at cell type (*Level 1*) and patient level (d), using the log-normalized uncorrected count matrix on the 8,253 gene expression universe. Sample covariates, including sequencing pool, sex, and age, were also incorporated.



Extended Data Fig. 5 | Sex-specific classification performances. (a) Normalized confusion matrices showing the proportion of cell-wise classifier predictions for each true condition. Diagonal values represent the Recall metric. The XGBoost classifier was trained on scANVI batch-corrected data. Values were computed separately for cells from female (n = 448) (left) and male (n = 369) (right) samples. (b–e) Patient-wise classifier performance measured by Weighted F1 scores, stratified by sex. (b) Scenario 1: 5-fold cross-validation distributions for each

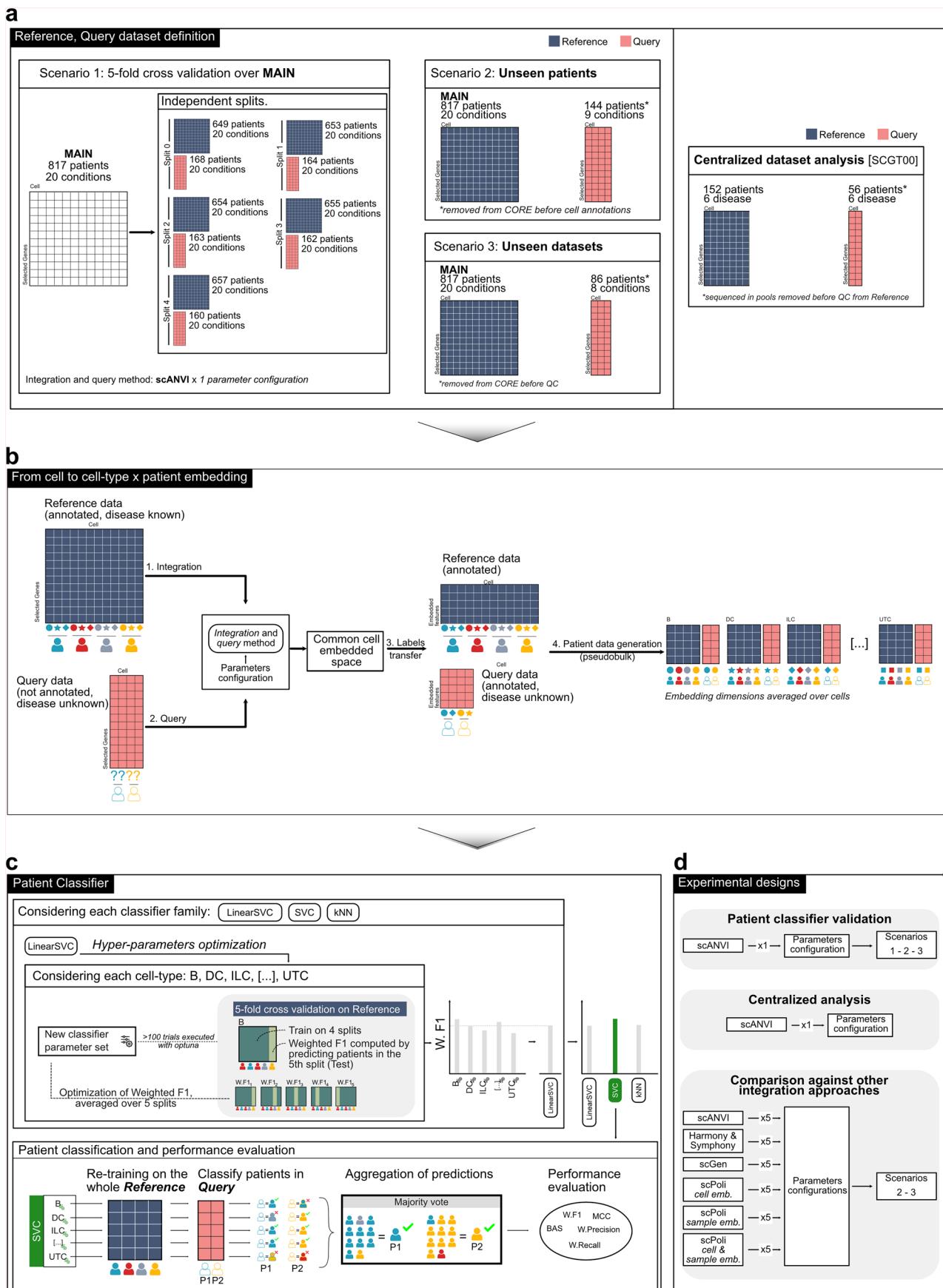
left-out split. Data are presented as median values, with boxes indicating the interquartile range (IQR, 25th–75th percentile) and whiskers extending up to 1.5 × IQR beyond the box boundaries; points outside this range are shown individually as outliers (n = 5). Non-significant differences (ns, p-value > 0.05) were assessed using a two-sided Mann–Whitney U test for each cell type. (c–e) Scenario 2, Scenario 3, and centralized approach: performance on unseen patients (c), unseen studies (d), and left-out pool observations (e), respectively.



Extended Data Fig. 6 | See next page for caption.

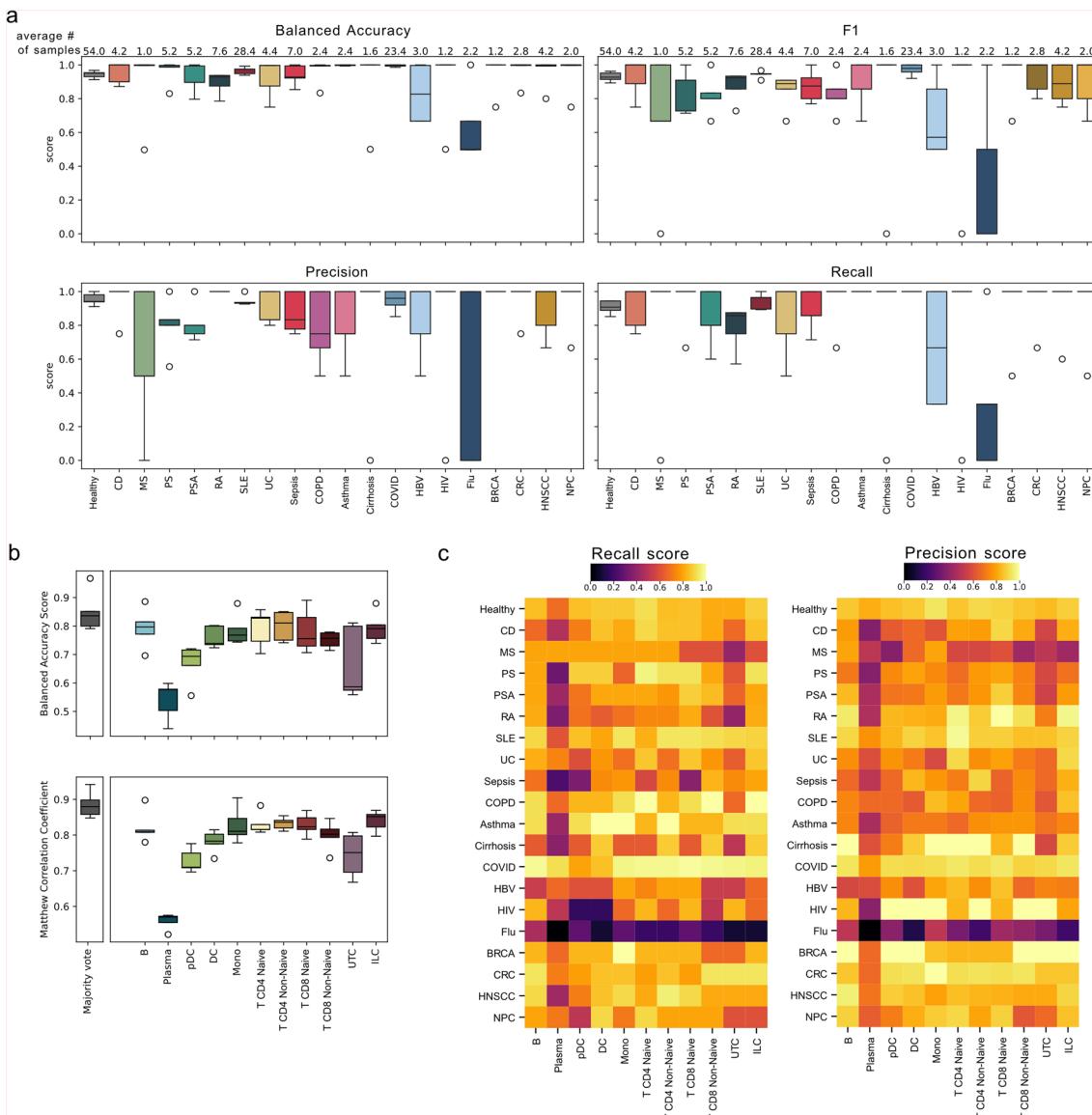
Extended Data Fig. 6 | Functional biomarker discovery using interpretable machine learning analysis. (a) Gene list ranked top-to-bottom by importance (absolute d-SHAP value), coupled with max-normalized expression levels computed per cell type (*LevelI*) and considering selected diseases. From **left to right**, reporting top ranked genes for n T CD4 Naive cells in RA disease as well as for monocytes and pDC in SLE patients. (b) Rank by importance (absolute d-SHAP value) of the *CYBA* gene in every combination of cell type (*LevelI*) and disease. (c) Scatter plot of d-SHAP values against the aggregated s-SHAP values on monocyte population and specific diseases (first row: PS, PSA, CD, and second

row: UC, Asthma, COPD, from left to right). (d) Rank by importance (absolute d-SHAP value) of *IFITM1* gene in every combination of cell type (*LevelI*) and disease. (e) Scatter plot of d-SHAP values against the aggregated s-SHAP values on T CD4 Non-Naive (**top**) and ILC (**bottom**) population and specific diseases (Asthma, COPD, and Cirrhosis, from left to right). In Panels (a), (b), and (d) we first dropped the genes expressed in less than 5% of the selected cell population. In Panels (c), and (e), the top 20 genes according to d-SHAP are marked in *turquoise*; of these, the genes that are also among the top 20 by s-SHAP are marked in *purple*. The gene of interest is annotated in *red*.



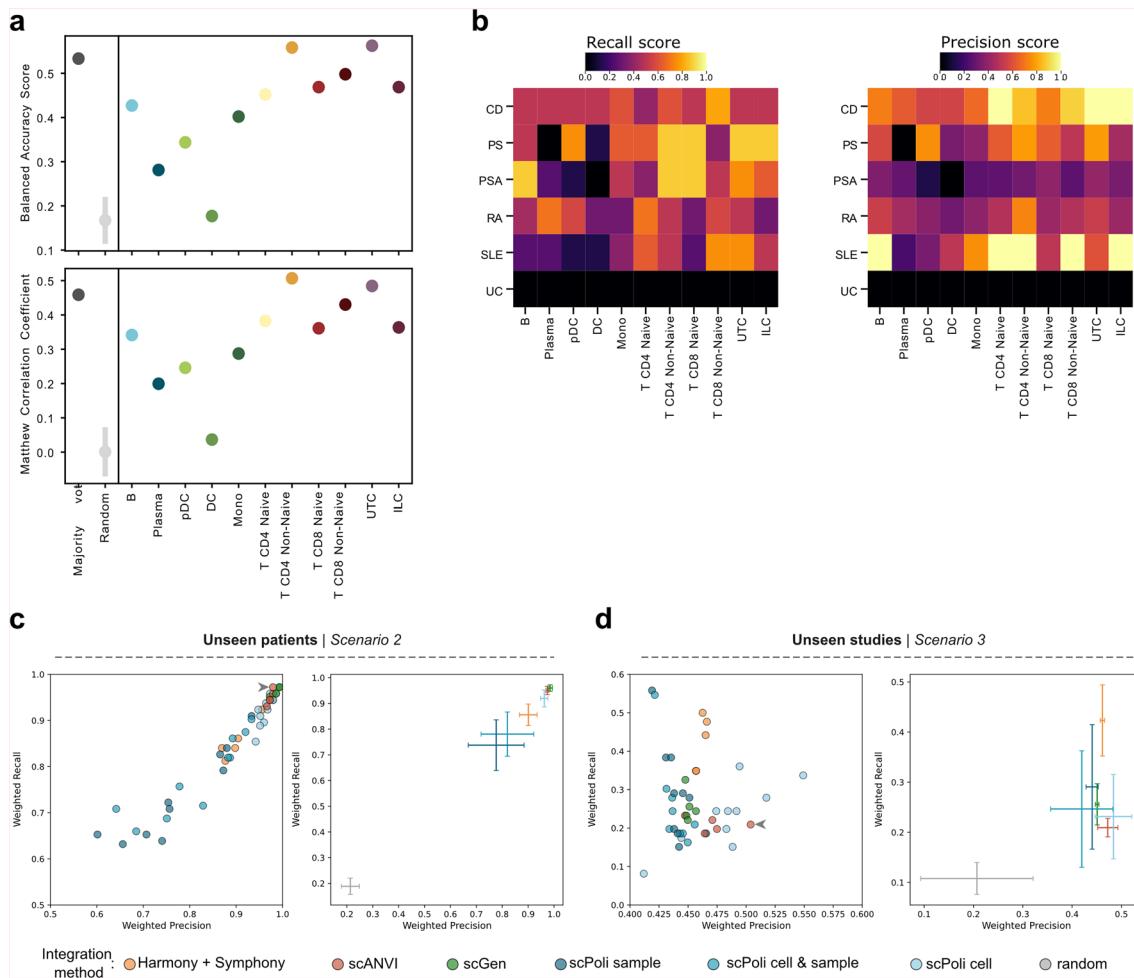
Extended Data Fig. 7 | Extended patient classifier workflow schema. (a) Definition of reference and query datasets, for Scenarios 1, 2, 3, and centralized dataset (from left to right). (b) Integration of the reference dataset and mapping of the query dataset to define the patient-wise embeddings,

stratified by cell type. (c) Patient classifier pipeline composed by the hyperparameter tuning of each classifier family, the selection of the best classifier family and the final evaluation of the left-out query dataset. (d) Schema of the three experiments performed. Icons created with Inkscape.


Extended Data Fig. 8 | Additional performance evaluation metrics in Scenario 1.

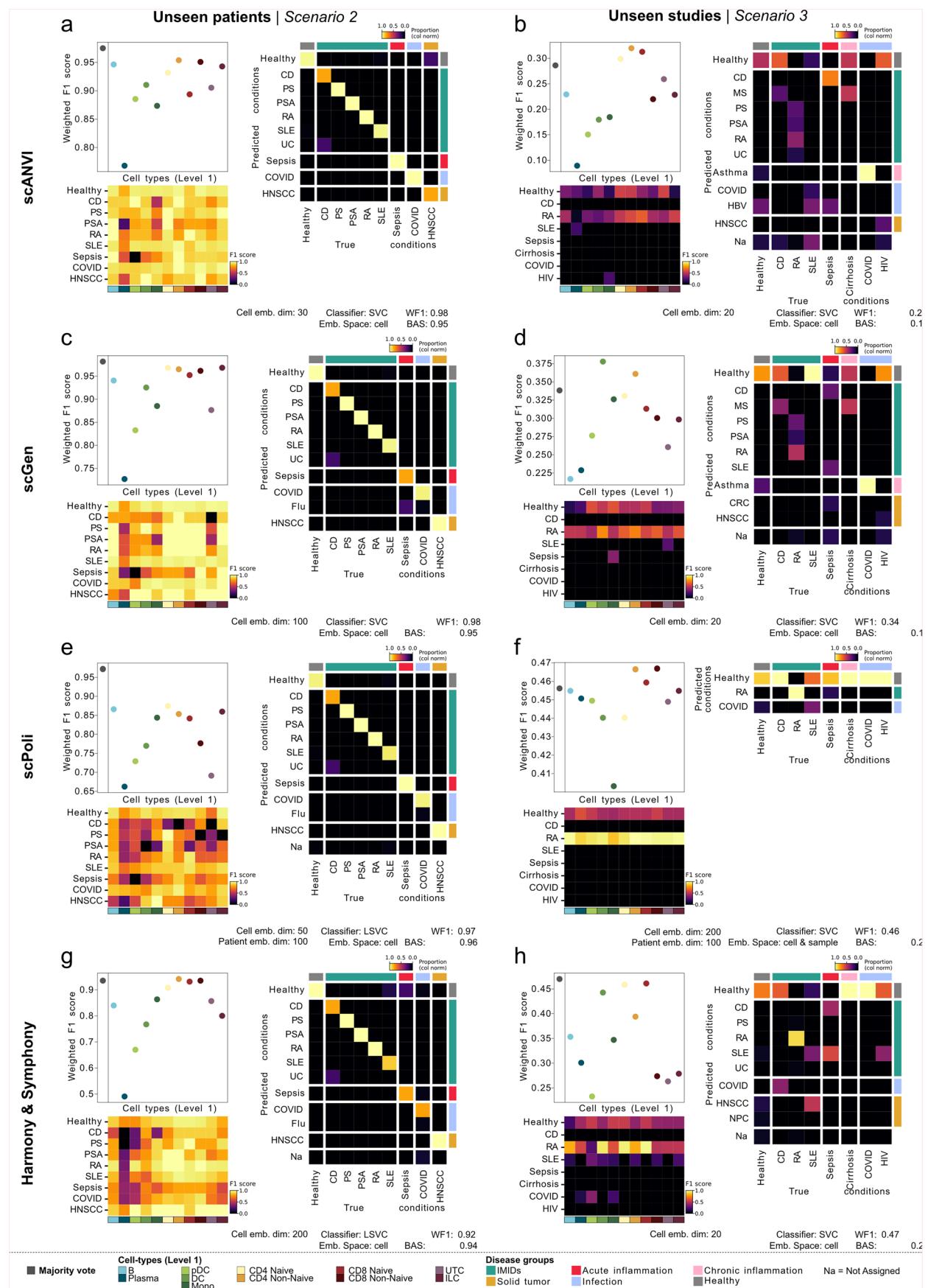
1. (a-b) Boxes indicate the interquartile range with the median as a center line; whiskers extend to 1.5×IQR, and outliers are shown as individual points. Each box includes $n = 5$ points. **(a)** Boxplots showing the distribution of Balanced Accuracy Score (balanced by true disease support), F1, Precision and Recall computed during 5-fold cross-validation, considering Majority Vote prediction on the left-out split for each inflammatory condition. The average number of samples

among 5 splits, with the corresponding ground truth labels, are also reported. **(b)** Boxplots showing the distribution of Balance Accuracy Score (**top**), and Matthew Correlation Coefficient (**bottom**) computed during 5-fold cross-validation, considering Majority Vote and cell type prediction, on the left-out split from 817 samples. **(c)** Heatmap reporting Recall and Precision computed by aggregating the prediction performed by each cell type on each left-out split during 5-fold cross-validation.



Extended Data Fig. 9 | Additional performance evaluation metrics in the Centralized dataset analysis and across state-of-the-art data integration approaches. (a) Pointplot showing the Balance Accuracy Score (**top**), and Matthew Correlation Coefficient (**bottom**) computed, considering Majority Vote, 100 random disease assignments, and cell type prediction, on the samples from left out pools in the Centralized Dataset. (b) Heatmap reporting Recall and Precision obtained on the samples from left out pools by each cell type for each

disease included in the centralized dataset. (c-d) Performance evaluation from Scenario 2 (c) and Scenario 3 (d), respectively, showing (**left**) the distribution of Weighted Recall and Weighted Precision for all the configurations of each data integration approach, and (**right**) the mean and standard-deviation of each data integration method, including 100 random label assignments. Arrows highlight the scANVI configuration applied in Scenario 1.



Extended Data Fig. 10 | See next page for caption.

Extended Data Fig. 10 | Patient classifier performance in Scenarios 2 and 3. (a, c, e, g) Result obtained with the best parameter configuration for each integration and mapping method, considering Weighted F1 (WF1) score computed on prediction of samples from unseen patients. (b, d, f, h) Result obtained with the best parameter configuration for each integration and mapping method, considering WF1 score computed on prediction of samples from unseen studies. In Panels (a) to (h): (top-left) Pointplot of WF1-scores for

Majority vote and each cell type. (bottom-left) F1-score for each combination of cell type and disease, columns ordered for similarities. (right) Normalized confusion matrices displaying proportion of predictions belonging to each true condition. Diagonal values correspond to the Recall metric. Corresponding Majority Vote WF1 score and Balanced Accuracy Score (BAS) were reported. Note, scPoli configurations where embedding space=*sample* were not considered.

Reporting Summary

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Portfolio policies, see our [Editorial Policies](#) and the [Editorial Policy Checklist](#).

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

- The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
- A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.
- A description of all covariates tested
- A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
- For null hypothesis testing, the test statistic (e.g. F , t , r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.
- For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- Estimates of effect sizes (e.g. Cohen's d , Pearson's r), indicating how they were calculated

Our web collection on [statistics for biologists](#) contains articles on many of the points above.

Software and code

Policy information about [availability of computer code](#)

Data collection

The following instruments were used for in-house generation of scRNA-seq data TC20™ Automated Cell Counter (Bio Rad) to assess cell concentration and viability after trypan blue staining. Bioanalyzer High Sensitivity Chip (Agilent Technologies) to determine final library size distributions and concentration. Chromium Next GEM and Chromium X instrument (10X Genomics) for cell encapsulation. NovaSeq6000 system (Illumina) and NextSeq500 for library sequencing.

Data analysis

The analyses reported in the manuscript were mainly performed in Python and R using published software and custom code.

The code to reproduce the main analysis presented in this article is hosted in the Github repository: <https://github.com/Single-Cell-Genomics-Group-CNAG-CRG/Inflammation-PBMCs-Atlas>.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio [guidelines for submitting code & software](#) for further information.

Data

Policy information about [availability of data](#)

All manuscripts must include a [data availability statement](#). This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
- For clinical datasets or third party data, please ensure that the statement adheres to our [policy](#)

Single-cell RNA-sequencing (scRNA-seq) in-house generated raw data and associated processed count matrices are publicly accessible without restrictions at NCBI Gene Expression Omnibus (GEO) database under the GSE248688 SuperSeries, including following SubSeries accession numbers: GSE248689 (SCGT01), GSE248695 (SCGT02), GSE248685 (SCGT03), GSE248693 (SCGT04), and GSE270165 (SCGT06). To ensure data safety and patient privacy, raw scRNA-seq data from SCGT00, SCGT00val, and SCGT05 studies can be downloaded upon reasonable request through the European Genome-Phenome Archive (EGA) database using the following access codes: EGAC50000000566 (SCGT00 and SCGT00val) and EGAS50000000590 (SCGT05).

Previously published scRNA-seq data included in this project, either FASTQ files or processed count matrices, were obtained from GEO, BioStudies Array Express, Broad Institute DUOS, Synapse, Genome Sequence Analysis (GSA), CellXGene Data Portal, and 10X Genomics.

Codes for FASTQ files or processed count matrix, when no raw sequencing data was available, can be retrieved with the following codes: SCP548, GSE139324, HRA001730, GSE138266, SRP293799, GSE198339, syn49637038, SRP319208, GSE136103, GSE134809, SRP282057, GSE156989, SRP264928, GSE142016, <https://cellxgene.cziscience.com/collections/8f126edf-5405-4731-8374-b5ce11f53e82>, <https://www.10xgenomics.com/collections/0a839c4b-10d0-4d64-9272-684c49a2c8ba>, <https://www.10xgenomics.com/datasets/peripheral-blood-mononuclear-cells-pbm-cs-from-a-healthy-donor-chromium-connect-channel-1-3-1-standard-3-1-0>, <https://www.10xgenomics.com/datasets/peripheral-blood-mononuclear-cells-pbm-cs-from-a-healthy-donor-chromium-connect-channel-5-3-1-standard-3-1-0>, <https://www.10xgenomics.com/datasets/5k-human-pbmc3-v3-1-chromium-controller-3-1-standard>, <https://www.10xgenomics.com/datasets/10k-human-pbmc3-v3-1-chromium-x-without-introns-3-1-high>, <https://www.10xgenomics.com/datasets/10k-human-pbmc3-v3-1-chromium-controller-3-1-high>, <https://www.10xgenomics.com/datasets/20k-human-pbm-cs-3-ht-v-3-1-chromium-x-3-1-high-6-1-0>, <https://www.10xgenomics.com/datasets/5-hashing-example-with-tabs-2-standard>, <https://www.10xgenomics.com/datasets/5-hashing-example-with-tabs-2-standard>

[Further details specified on the Supplementary Table 1 - Sheet 1]

The processed scRNA-seq datasets (quality controlled gene expression count matrices) and metadata analyzed in the current study have been deposited at Zenodo: <https://doi.org/10.5281/zenodo.14851901>.

All materials are readily available from indicated standard commercial sources, or within the paper and its supplementary information files.

Research involving human participants, their data, or biological material

Policy information about studies with [human participants or human data](#). See also policy information about [sex, gender \(identity/presentation\), and sexual orientation](#) and [race, ethnicity and racism](#).

Reporting on sex and gender

Patient cohort description including sex and age can be found in the Supplementary Table 1, and a summary across diseases can be found both in Supplementary Table 1 and Extended data Figure 1.

PBMCs processed to generate in-house data for this project were pre-selected and included in other ongoing studies for several diseases. Disease representation was linked to data availability, which is linked to disease prevalence. Given the large number of diseases included, we did not draw any conclusions based on sex or age, but we did ensure that those two biological variables are well represented in our cohort. Moreover, sex (and age) were considered as covariate in the statistical analysis when possible. We also computed performances of cell-wise and patient-wise classifiers stratified by sex, to ensure similar prediction power.

Reporting on race, ethnicity, or other socially relevant groupings

PBMCs processed to generate in-house data for this project were pre-selected and included in other ongoing studies. No information on race, ethnicity or social grouping was used for patient recruitment in this study or were considered in our analyses.

Population characteristics

All data are derived from blood donated by patients for research purposes. For this reason, and given the diseases being studied, blood samples collected in different hospitals may be from patients with different sex ratios or average ages. Further details on sample collection can be found in the Methods section, and information on sex and age across diseases can be found in the Extended Data Figure 1 and in the Supplementary Table 1.

Recruitment

Each study had its own requirements. In terms of public data included, we considered scRNAseq studies to improve the representation of different inflammatory profiles. We only included projects that provided the processed count matrix. Given the wide range of sex and age across patients and diseases, and the impact this may have on the immune system, we assessed for potential bias at all stages and corrected for these variables where necessary.

Ethics oversight

All included studies were conducted in accordance with ethical guidelines and all patients provided written informed consent; ethics committees and research project approvals are detailed:

Data from SCGT00 and SCGT00val study was approved by Hospital Universitari Vall d'Hebron Research Ethics Committee (approval num. PR(AG)144/201).

Data from the SCGT01 study were approved by the Parc de Salut Mar Ethics Committee (approval no. 2016/7075/I).

Data from the SCGT02 study received ethical approval from the Medisch-Etische Toetsingscommissie (METc) committee; for asthma patients (ARMS and ORIENT projects - approval no. NL53173.042.15 and NL69765.042.19 respectively), COPD patients (SHERLOCK project, approval number NL57656.042.16) and finally healthy controls (NORM project, approval number

NL26187.042.09.

Data from SCGT03 were approved by the Comité Ético de Investigación con Medicamentos del Hospital Universitario Vall d'Hebron (agreement no. 654/C/2019).

Data from SCGT04 and SCGT06 were approved by the Comité d'Ética d'Investigació amb Medicaments (CEim) del Hospital de la Santa Creu i Sant Pau (approval nos. EC/21/373/6616 and EC/23/258/7364).

Data from the SCGT05 study were approved by the institutional review boards of the Commissie Medische Ethiek UZ KU Leuven/Onderzoek (approval nos. S66460 and S62294).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size	We included patients suffering 19 different diseases, representative for the full inflammation spectrum from a pathological immune response, and that can be broadly classified into five distinct groups: 1) Immune-mediated inflammatory diseases (IMIDs, n=7) [Systemic Lupus Erythematosus (SLE), Rheumatoid Arthritis (RA), Psoriatic Arthritis (PsA), Psoriasis (PS), Ulcerative Colitis (UC), Chron's Disease (CD), Multiple Sclerosis (MS)], 2) acute (n=1) [Sepsis] and 3) chronic (n=3) [Chronic Obstructive Pulmonary disease (COPD), Asthma, and Cirrhosis] inflammation, 4) infection (n=4) [Influenza virus (Flu), SARS-CoV-2 (COVID), hepatitis B virus (HBV), and human immunodeficiency virus (HIV)] and 5) solid tumors (n=4) [breast cancer (BRCA), colorectal cancer (CRC), nasopharyngeal carcinoma (NPC), head&neck squamous cell carcinoma (HNSCC)] which were profiled along with healthy donor samples (n=52). Overall, the final cohort includes 6.5 million cells among 1047 patients.
Data exclusions	We excluded scRNAseq libraries and cells from public and in-house data if they did not meet the minimum quality thresholds during the quality control step. During Quality Control, we excluded low quality libraries and samples, as well as low quality cells and doublets (see specific parameter details in the Data Quality Control section, in Methods).
Replication	Both cell-level and patient-level analyses include many biological replicates for each condition tested.
Randomization	N/A on the experimental design part. Regarding the machine learning analysis, randomization step was applied to generate (multiple) training and test splitting.
Blinding	N/A

Behavioural & social sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description	Briefly describe the study type including whether data are quantitative, qualitative, or mixed-methods (e.g. qualitative cross-sectional, quantitative experimental, mixed-methods case study).
Research sample	State the research sample (e.g. Harvard university undergraduates, villagers in rural India) and provide relevant demographic information (e.g. age, sex) and indicate whether the sample is representative. Provide a rationale for the study sample chosen. For studies involving existing datasets, please describe the dataset and source.
Sampling strategy	Describe the sampling procedure (e.g. random, snowball, stratified, convenience). Describe the statistical methods that were used to predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient. For qualitative data, please indicate whether data saturation was considered, and what criteria were used to decide that no further sampling was needed.
Data collection	Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper, computer, eye tracker, video or audio equipment) whether anyone was present besides the participant(s) and the researcher, and whether the researcher was blind to experimental condition and/or the study hypothesis during data collection.
Timing	Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample cohort.
Data exclusions	If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the rationale behind them, indicating whether exclusion criteria were pre-established.
Non-participation	State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no participants dropped out/declined participation.

Randomization

If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if allocation was not random, describe how covariates were controlled.

Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description

Briefly describe the study. For quantitative data include treatment factors and interactions, design structure (e.g. factorial, nested, hierarchical), nature and number of experimental units and replicates.

Research sample

Describe the research sample (e.g. a group of tagged *Passer domesticus*, all *Stenocereus thurberi* within Organ Pipe Cactus National Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets, describe the data and its source.

Sampling strategy

Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Data collection

Describe the data collection procedure, including who recorded the data and how.

Timing and spatial scale

Indicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which the data are taken.

Data exclusions

If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them, indicating whether exclusion criteria were pre-established.

Reproducibility

Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

Randomization

Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were controlled. If this is not relevant to your study, explain why.

Blinding

Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why blinding was not relevant to your study.

Did the study involve field work? Yes No

Field work, collection and transport

Field conditions

Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).

Location

State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water depth).

Access & import/export

Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority, the date of issue, and any identifying information).

Disturbance

Describe any disturbance caused by the study and how it was minimized.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems

n/a	Involved in the study
<input checked="" type="checkbox"/>	Antibodies
<input checked="" type="checkbox"/>	Eukaryotic cell lines
<input checked="" type="checkbox"/>	Palaeontology and archaeology
<input checked="" type="checkbox"/>	Animals and other organisms
<input type="checkbox"/>	Clinical data
<input checked="" type="checkbox"/>	Dual use research of concern
<input checked="" type="checkbox"/>	Plants

Methods

n/a	Involved in the study
<input checked="" type="checkbox"/>	ChIP-seq
<input checked="" type="checkbox"/>	Flow cytometry
<input checked="" type="checkbox"/>	MRI-based neuroimaging

Antibodies

Antibodies used

Describe all antibodies used in the study; as applicable, provide supplier name, catalog number, clone name, and lot number.

Validation

Describe the validation of each primary antibody for the species and application, noting any validation statements on the manufacturer's website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.

Eukaryotic cell lines

Policy information about [cell lines and Sex and Gender in Research](#)

Cell line source(s)

State the source of each cell line used and the sex of all primary cell lines and cells derived from human participants or vertebrate models.

Authentication

Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination

Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines (See [ICLAC](#) register)

Name any commonly misidentified cell lines used in the study and provide a rationale for their use.

Palaeontology and Archaeology

Specimen provenance

Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the issuing authority, the date of issue, and any identifying information). Permits should encompass collection and, where applicable, export.

Specimen deposition

Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods

If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are provided.

Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight

Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other research organisms

Policy information about [studies involving animals; ARRIVE guidelines](#) recommended for reporting animal research, and [Sex and Gender in Research](#)

Laboratory animals

For laboratory animals, report species, strain and age OR state that the study did not involve laboratory animals.

Wild animals

Provide details on animals observed in or captured in the field; report species and age where possible. Describe how animals were caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if released, say where and when) OR state that the study did not involve wild animals.

Reporting on sex

Indicate if findings apply to only one sex; describe whether sex was considered in study design, methods used for assigning sex.

Provide data disaggregated for sex where this information has been collected in the source data as appropriate; provide overall

numbers in this Reporting Summary. Please state if this information has not been collected. Report sex-based analyses where performed, justify reasons for lack of sex-based analysis.

Field-collected samples

For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature, photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight

Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about [clinical studies](#)

All manuscripts should comply with the ICMJE [guidelines for publication of clinical research](#) and a completed [CONSORT checklist](#) must be included with all submissions.

Clinical trial registration

PBMCs processed to generate in-house data for this project were pre-selected and included within other on going studies. Therefore, each respective project / clinical trial has obtained its own approval.

Study protocol

In house-generated scRNA-seq data was obtained following 10X Genomics protocol guidelines. Further details on how PBMC samples were collected, preserved and processed as well as the protocol regarding scRNAseq libraries generation and sequencing can be found in the Methods section.

Data collection

PBMCs processed to generate in-house data for this project, were pre-selected and included within other on going studies. Therefore, each respective project / clinical trial has followed the procedure that better suits its own purpose.

Outcomes

N/A

Dual use research of concern

Policy information about [dual use research of concern](#)

Hazards

Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented in the manuscript, pose a threat to:

No	Yes
<input checked="" type="checkbox"/>	<input type="checkbox"/> Public health
<input checked="" type="checkbox"/>	<input type="checkbox"/> National security
<input checked="" type="checkbox"/>	<input type="checkbox"/> Crops and/or livestock
<input checked="" type="checkbox"/>	<input type="checkbox"/> Ecosystems
<input checked="" type="checkbox"/>	<input type="checkbox"/> Any other significant area

Experiments of concern

Does the work involve any of these experiments of concern:

No	Yes
<input checked="" type="checkbox"/>	<input type="checkbox"/> Demonstrate how to render a vaccine ineffective
<input checked="" type="checkbox"/>	<input type="checkbox"/> Confer resistance to therapeutically useful antibiotics or antiviral agents
<input checked="" type="checkbox"/>	<input type="checkbox"/> Enhance the virulence of a pathogen or render a nonpathogen virulent
<input checked="" type="checkbox"/>	<input type="checkbox"/> Increase transmissibility of a pathogen
<input checked="" type="checkbox"/>	<input type="checkbox"/> Alter the host range of a pathogen
<input checked="" type="checkbox"/>	<input type="checkbox"/> Enable evasion of diagnostic/detection modalities
<input checked="" type="checkbox"/>	<input type="checkbox"/> Enable the weaponization of a biological agent or toxin
<input checked="" type="checkbox"/>	<input type="checkbox"/> Any other potentially harmful combination of experiments and agents

Plants

Seed stocks	N/A
Novel plant genotypes	N/A
Authentication	N/A

ChIP-seq

Data deposition

- Confirm that both raw and final processed data have been deposited in a public database such as [GEO](#).
- Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links

May remain private before publication.

For "Initial submission" or "Revised version" documents, provide reviewer access links. For your "Final submission" document, provide a link to the deposited data.

Files in database submission

Provide a list of all files available in the database submission.

Genome browser session (e.g. [UCSC](#))

Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to enable peer review. Write "no longer applicable" for "Final submission" documents.

Methodology

Replicates	Describe the experimental replicates, specifying number, type and replicate agreement.
Sequencing depth	Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and whether they were paired- or single-end.
Antibodies	Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and lot number.
Peak calling parameters	Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files used.
Data quality	Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.
Software	Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a community repository, provide accession details.

Flow Cytometry

Plots

Confirm that:

- The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).
- The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
- All plots are contour plots with outliers or pseudocolor plots.
- A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation	Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.
Instrument	Identify the instrument used for data collection, specifying make and model number.
Software	Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a community repository, provide accession details.

Cell population abundance

Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the samples and how it was determined.

Gating strategy

Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type

Indicate task or resting state; event-related or block design.

Design specifications

Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial or block (if trials are blocked) and interval between trials.

Behavioral performance measures

State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across subjects).

Acquisition

Imaging type(s)

Specify: functional, structural, diffusion, perfusion.

Field strength

Specify in Tesla

Sequence & imaging parameters

Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size, slice thickness, orientation and TE/TR/flip angle.

Area of acquisition

State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI

Used

Not used

Preprocessing

Preprocessing software

Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction, segmentation, smoothing kernel size, etc.).

Normalization

If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template

Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g. original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal

Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and physiological signals (heart rate, respiration).

Volume censoring

Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings

Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested

Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether ANOVA or factorial designs were used.

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference

Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

(See [Eklund et al. 2016](#))

Correction

Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).

Models & analysis

n/a Involved in the study

Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity

Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation, mutual information).

Graph analysis

Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph, subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency, etc.).

Multivariate modeling and predictive analysis

Specify independent variables, features extraction and dimension reduction, model, training and evaluation metrics.