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We demonstrate the general failure of the famous concept of tight binding and mode hybridization
underlying modern theories of coupled open resonators. Despite sophisticated examples in the literature
illustrating these theories, they fail to describe planar systems. This includes even the simplest case of two
dielectric slabs placed next to each other or separated by a distance, which is straightforward to verify
analytically. We present a rigorous theory capable of calculating correctly the eigenmodes of arbitrary
three-dimensional dispersive coupled resonators in terms of their individual modes, revealing proper mode
hybridization and formation of bonding and antibonding supermodes. Planar optical resonators, such as
coupled slabs and Bragg-mirror microcavities, are used for illustration since they allow reliable verification
of the theory.
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Introduction—Any resonator is characterized by its
eigenmodes, which can be found by various analytical
or numerical methods [1,2]. When two or more open
resonators are located next to each other or separated by
some distance (top panel in Fig. 1), the modes of each
individual resonator are perturbed, and mixing or hybridi-
zation of the original eigenstates is expected and in fact
observed experimentally, e.g., in photonic molecules
[3–11]. It is therefore natural to ask how can these hybrid
modes of the coupled resonators be found using the
information about the individual resonators, in particular
their modes? To address this question, several approaches
to finding the modes of coupled optical resonators have
been developed [12–16]. However, despite claims that they
are rigorous [13] or accurate enough [15], supported by
various illustrations [12–16], none of them work even
approximately for planar coupled resonators. This is
demonstrated in Fig. 1 for the simplest analytically solvable
system—a homogeneous dielectric slab made of two
identical glass slabs next to each other.
The modes of an electromagnetic system, also known as

quasinormal modes or resonant states (RSs), have a simple
analytical form in the case of a dielectric slab surrounded
by vacuum, with the mode wave numbers

kn ¼
1

2a
ffiffiffi
ϵ

p
�
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ffiffiffi
ϵ

p þ 1ffiffiffi
ϵ

p
− 1

�
; ð1Þ

where n is an integer, 2a is the slab thickness, and ϵ its
permittivity. These wave numbers are the eigenvalues of
Maxwell’s equations solved with outgoing boundary con-
ditions [17]. They are shown in Fig. 1 for single (black
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FIG. 1. (Top) Sketches of coupled resonators: Two dielectric
slabs (left) and two gold nanoparticles (right), illustrating strong
modal interaction (double-sided red arrows) and Casimir forces
(blue arrows). (Bottom) RS wave numbers of two identical slabs
of width 2a and permittivity ϵ next to each other (d ¼ 0),
calculated exactly (blue open squares), using the coupling theory
[13] with a sufficiently number of basis RSs (N ¼ 3200) to reach
visual convergence (circles), TMAs based on Refs. [13] and [15]
(full and open diamonds), and the present theory (magenta
crosses) using N ¼ 100 basis RSs (black stars) and 150 dis-
cretized continuum modes. Gray stars and light-magenta crosses
show the continuum modes of the single- and double-slab
systems. Inset: permittivity profile of the coupled resonators.
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stars) and double slab (blue squares), with the permittivity
profile in the inset. Results of the coupling theory [13],
using full sets of RSs of each resonator, are also shown
(circles), along with a two-mode approximation (TMA)
based on [13] and the TMA by Ren et al. [15] (open and
full diamonds, respectively). Apart from the central (n ¼ 0)
mode, they are all very different from the exact values
Eq. (1), about half having a positive imaginary part, which
is unphysical. One could argue that the TMAs fail due to
too low quality factor or too short distance between
resonators, but this is not the case: these theories also fail
for high-quality (high-Q) modes of coupled Bragg-mirror
microcavities (MCs). Furthermore, the famous concept of
tight binding turns out to be inapplicable to open reso-
nators, as we show in this Letter below.
The fundamental reason why the theories [12–16] fail is

that the RSs, though complete within the resonator volume,
are incomplete outside it, preventing any valid expansion
describing the coupling. Recent proposals to fill this gap by
RS regularization [18–20] were unsuccessful in developing
suitable expansions [21,22], in the best scenario ending in
highly nonlinear eigenvalue problems [20] lacking con-
vergence. Completeness outside the resonator has been
achieved [23,24] by supplementing physical modes with
large sets of unphysical numerical modes from discretiza-
tion, or with virtual gap modes [25] generated by the
resonant-state expansion (RSE) [17]. However, using this
completeness for coupled resonators requires an exces-
sively large computational domain [26] and provides no
insight into coupling or hybridization.
In this Letter, we develop a rigorous theory of coupled

resonators, allowing us to calculate their hybridized modes
numerically exactly in terms of the modes of the individual
resonators. This is achieved by generalizing the Mittag-
Leffler (ML) expansion of the dyadic Green’s function
(GF) and extending its validity beyond the resonator
boundary. The general theory is developed for arbitrary
three-dimensional (3D) dispersive resonators, including
magnetic or bianisotropic ones. For clarity and verification,
illustrations are provided for planar dielectric nondispersive
systems, such as two slabs and two MCs separated by a
distance. Increasing the distance between resonators, the
exponential growth of the RSs imposes serious limitations
on the applicability of the theory in a form of poorer or
absent convergence. This challenge has been successfully
addressed by combining the present theory with the RSE
[27] which allows us also to rigorously prove the developed
formalism. Moreover, the efficiency of this approach is
comparable to that of the RSE, which can be orders of
magnitude higher than in existing commercial solvers, as
shown in [28].
Two coupled dispersive resonators—Using the notations

of Ref. [29], we write Maxwell’s equations

∇ ×E ¼ ikB; ∇ ×H ¼ −ikD ð2Þ

for a monochromatic field with harmonic time dependence
e−iωt as

½kP̂ðr; kÞ − D̂ðrÞ�F⃗ðrÞ ¼ 0; ð3Þ

where k ¼ ω=c is the light wave number,

F⃗ðrÞ ¼
�

EðrÞ
iHðrÞ

�

is a 6-dimensional vector comprising the electric field E
and magnetic field H, and P̂ðr; kÞ and D̂ðrÞ are the
generalized dispersive permittivity tensor and curl operator,

P̂ðr;kÞ¼
�

ε̂ðr;kÞ η̂ðr;kÞ
η̂Tðr;kÞ μ̂ðr;kÞ

�
; D̂ðrÞ¼

�
0 ∇×

∇× 0

�
: ð4Þ

Here ε̂ðr; kÞ and μ̂ðr; kÞ are, respectively, the frequency-
dependent 3 × 3 permittivity and permeability tensors,
η̂ðr; kÞ is the bianisotropy tensor, and T is transposition.
While we assume reciprocity, implying ε̂T ¼ ε̂ and μ̂T ¼ μ̂,
and for illustration use achiral (η̂ ¼ 0) and nonmagnetic
systems, generalizations to nonreciprocal systems [24] are
straightforward.
Consider two resonators described by P̂1ðr; kÞ and

P̂2ðr; kÞ, occupying nonoverlapping volumes V1 and V2

[30]. The RSs of the full system, comprising both reso-
nators, are given by Eq. (3) with

P̂ðr; kÞ ¼ P̂1ðr; kÞ þ P̂2ðr; kÞ − P̂b; ð5Þ

where P̂b is the background permittivity (for vacuum,
P̂b ¼ Î, where Î is the 6 × 6 identity matrix). The RSs of
each resonator satisfy

½kðjÞn P̂jðr; kðjÞn Þ − D̂ðrÞ�F⃗ ðjÞ
n ðrÞ ¼ 0 ð6Þ

with outgoing boundary conditions, where n labels the RSs
of resonator j. Using the dyadic GF Ĝjðr; r0; kÞ of each
subsystem, satisfying

½kP̂jðr; kÞ − D̂ðrÞ�Ĝjðr; r0; kÞ ¼ Îδðr − r0Þ; ð7Þ

the formal solution of Eq. (3) becomes

F⃗ðrÞ ¼ −k
Z
V2

dr0Ĝ1ðr; r0; kÞ½P̂2ðr0; kÞ − P̂b�F⃗ðr0Þ ð8Þ

for r∈V1 and

F⃗ðrÞ ¼ −k
Z
V1

dr0Ĝ2ðr; r0; kÞ½P̂1ðr0; kÞ − P̂b�F⃗ðr0Þ ð9Þ

for r∈V2.
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To find the wave number k and field F⃗ðrÞ of a RS of the
full system, using the RSs of each resonator, one needs to
expand the GFs Ĝjðr; r0; kÞ in terms of such states. The
expansion is the ML series [17,29,31–33]

Ĝjðr; r0; kÞ ¼
X
n

F⃗ ðjÞ
n ðrÞ ⊗ F⃗ ðjÞ

n ðr0Þ
k − kðjÞn

for r; r0 ∈Vj; ð10Þ

where ⊗ denotes the dyadic product. The ML series
Eq. (10) converges to the correct GF if both coordinates
r and r0 lie inside Vj. This follows from

lim
jkj→∞

Ĝjðr; r0; kÞ ¼ 0 ð11Þ

for any complex k and r; r0 ∈Vj. In fact, the integral of
Ĝjðr; r0; k0Þ=ðk − k0Þ over an infinitely large circle in the k0

plane (contour C1 in Fig. 2) is zero, and Cauchy’s theorem
with Lorentz reciprocity [32] yield Eq. (10), which in turn
determines the RS normalization [17,24,28,29,34].
However, Eqs. (8) and (9) require the two GF coordinates
to be in different regions, one inside and one outside each
resonator. In this case, the ML series Eq. (10) fails,
reflecting the incompleteness of RSs outside their reso-
nator. Below we generalize the ML series Eq. (10) beyond
the resonator boundary.
Let one of the two coordinates of the GF Ĝj be outside

resonator j, namely, r0 ∉ Vj while r∈Vj. Then Eq. (11)
holds only in the upper half of the complex k plane, due to
outgoing boundary conditions. Integrating Ĝjðr; r0; k0Þ=
ðk − k0Þ over the contour in Fig. 2, consisting of an infinite
semicircle C [again giving zero due to Eq. (11)] and a
straight line Γ [50], we obtain a generalized ML expansion

Ĝjðr;r0;kÞ ¼
X
n

F⃗ ðjÞ
n ðrÞ⊗ F⃗ ðjÞ

n ðr0Þ
k− kðjÞn

−
1

2πi

Z
Γ
dk0

Ĝjðr;r0;k0Þ
k− k0

¼
XZ
n

F⃗ ðjÞ
n ðrÞ⊗ F⃗ ðjÞ

n ðr0Þ
k− kðjÞn

; ð12Þ

valid for r∈Vj and r0 ∉ Vj. Here we use a key property of
the GF, proven in [33]: if r and r0 lie in different regions,
then Ĝj has a factorizable form,

Ĝjðr; r0; k0Þ ¼ −2πi
X
s

A⃗ðjÞ
s ðr; k0Þ ⊗ B⃗ðjÞ

s ðr0; k0Þ; ð13Þ

where A⃗ðjÞ
s and B⃗ðjÞ

s are vector fields on Γ. These fields

complement the RSs F⃗ ðjÞ
n ðrÞ, with s labeling symmetry

channels [52]. Following [32,35], the RSs and continuum
modes on Γ are grouped into one set, producing the
compact ML form Eq. (12), where the integral accounts
for continuum modes and the sum for all the RSs above Γ.
The ML expansion Eq. (12) is exactly what is required to

solve Eqs. (8) and (9). However, in dispersive systems, a
direct use of Eq. (12) gives a nonlinear eigenvalue problem
in k. To linearize it for Drude–Lorentz dispersion [36] of
P̂jðr; kÞ, we employ alternative GF representations [29,37]
alongside Eq. (12), arriving at

F⃗ðrÞ ¼

8><
>:

PR
n
cð1Þn F⃗ ð1Þ

n ðrÞ for r∈V1;

PR
m
cð2Þm F⃗ ð2Þ

m ðrÞ for r∈V2:
ð14Þ

The coefficients cð1Þn , cð2Þm and the RS wave number k satisfy
the linear eigenvalue problem

ðk− kð1Þn Þcð1Þn ¼−k
XZ
m

Uð2Þ
nmð∞Þcð2Þm

þ kð1Þn

XZ
m

½Uð2Þ
nmð∞Þ−Uð2Þ

nmðkð1Þn Þ�cð2Þm ;

ðk− kð2Þm Þcð2Þm ¼−k
XZ
n

Uð1Þ
mnð∞Þcð1Þn

þ kð2Þm

XZ
n

½Uð1Þ
mnð∞Þ−Uð1Þ

mnðkð2Þm Þ�cð1Þn ; ð15Þ

with matrix elements

Uð1Þ
mnðqÞ ¼

Z
V1

drF⃗ ð2Þ
m ðrÞ · ½P̂1ðr; qÞ − P̂b�F⃗ ð1Þ

n ðrÞ;

Uð2Þ
nmðqÞ ¼

Z
V2

drF⃗ ð1Þ
n ðrÞ · ½P̂2ðr; qÞ − P̂b�F⃗ ð2Þ

m ðrÞ; ð16Þ

see Ref. [33] for details.
Two slabs—We verify the rigorous theory of coupled

resonators for two identical dielectric slabs of width 2a,
separated by distance d. For d ¼ 0, the eigenvalues k of
Eq. (15) (magenta crosses in Fig. 1) agree with the exact
solution (blue squares), with the relative error [Fig. 3(a)]

k'

C1

k

C

kn

FIG. 2. Full-circle contour C1, semicircle C, and straight line Γ
in the complex k0 plane, with the poles k0 ¼ kn of the GF of a
resonator and an additional pole at k0 ¼ k (red).
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reducing as 1=N3, similar to the RSE [17]. Here, N and fN
are, respectively, the number of the RSs and discretized
continuum modes of an individual resonator, included in
Eq. (15) and shown in Fig. 1 by black and gray stars. The
discretization affects accuracy similarly to truncation in
which only RSs with jknj < kmaxðNÞ are kept, so f should
ideally grow with N but is fixed here at its optimal
value f ¼ 1.5.
Increasing the distance d dramatically increases the error

[Fig. 3(b)], with large deviations and no convergence
already at d=a ¼ 5. This originates from the exponential
growth of the wave functions outside the resonator [22,38],
which fundamentally limits Eq. (15). This limitation is
universal, since any resonator has an infinite number of
Fabry-Pérot (FP) RSs [39] with large j Im knj, causing
strong exponential increase. We overcome this by combin-
ing the above approach with the RSE.
RSE-based approach—The RSE accurately and effi-

ciently finds RSs of a target system using RSs of a basis
system [17,28,29,32,38]. Here the target system is a single
resonator with average permittivity ϵ, while the basis
system has larger permittivity ϵþ Δϵ, making its FP modes
less leaky, j Im knj ∼ γ0 ≈ ðaΔϵÞ−1, where 2a is the shortest
size of the basis system. For error reduction the contour Γ
(Fig. 2) must lie not far from the real axis and not too close
to FP modes. Low-Q modes (e.g., leaky spherical-cavity
modes [39]) may remain outside Γ, as illustrated in Fig. 2.
Thus the imaginary part of continuum modes on Γ is

γ ¼ fγγ0, while their exponential growth is limited by
γðdþ 2aÞ ¼ fd, giving a distance-dependent perturbation
Δϵ ¼ ðd=aþ 2Þfγ=fd. The constants fγ and fd are the two
parameters of the theory with optimal values fγ ≈ 12 and
fγ=fd ≈ 2, see Ref. [33]. We demonstrate this approach for
planar coupled resonators separated by distances up to
d=a ¼ 40. For two glass slabs in vacuum at d=a ¼ 5, the
errors [red circles in Fig. 3(b)] for Δϵ ¼ 24 are comparable
to the d ¼ 0 case without RSE; see Ref. [33] for more
results.
The RSE further allows us to rigorously prove the

factorizable GF form Eq. (13) and determine the ML
expansion Eq. (12) of any resonator. Since the GF of a
generic resonator is not known analytically, the continua in
Eq. (12) would be otherwise inaccessible. However, trans-
forming an analytically solvable resonator into an arbitrary
resonator within the RSE preserves Eq. (12) and identifies
all contributing modes [33].
Coupled MCs—Applying the RSE-based theory to two

λ=2 MCs, the cavity mode (CM) of a single MC splits by
symmetry into three high-Q modes for d ¼ 0 [see Fig. 4(a)
and right inset], and even more high-Q modes are formed
between the MCs for d ¼ 10.2a [Fig. 4(b)]. All the modes
of the coupled system are well reproduced by the present
theory (magenta crosses) within the shown spectral range,
and the error again scales as 1=N3 [Fig. 4(c)]; see Ref. [33]
for more details and other examples of coupled resonators.
Mapping the expansion Eq. (14) back onto RSs only (no

continuum) within each MC where its RSs are complete,

F⃗ðrÞ ¼ P
n b

ðjÞ
n F⃗ ðjÞ

n ðrÞ for r∈Vj, shows mode hybridiza-
tion and the contribution of all the modes of the singe MC
(black crosses x) by red and black circles (with the circle
area proportional to jbnj2), for symmetric (S) and anti-
symmetric (A) coupled modes [right insets in Figs. 4(a) and

4(b)], for which bn ¼ bð1Þn ¼ �bð2Þn by symmetry. In par-
ticular, mode S in Fig. 4(a) and both modes A and S in
Fig. 4(b) aredominatedbythesingleCMs,consistentwith the
field profiles in the left insets, demonstrating mode hybridi-
zation. However, using only these dominant contributions,
as in tight binding, gives entirely wrong and unphysical
splittingasdemonstratedbytheTMA(greendiamonds).Note
that the TMA from Eqs. (15) and (16) with one CM per
resonator matches the standard tight-binding model.
Figure 4 thus demonstrates that the famous concept of

tight binding fails for open coupled resonators, even for
high-Q modes [53]. As emphasized in [22], exponential
growth causes RSs to increasingly perturb with distance
contradicting the intuition that distant objects weakly
couple. In the present case of the hybridized bonding
and antibonding supermodes, dominated by the CMs, the
seemingly small contribution of other RSs (with jbnj2
below 1% compared to the CMs) cannot be neglected
due to their exponential growth and consequently strong
coupling between the resonators.
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FIG. 3. Relative error for the RS wave numbers of the coupled
slab resonators, separated by distance d, calculated by the present
theory Eq. (15) with continuum-to-RS ratio f ¼ 1.5, (a) for d ¼ 0
and the number N of basis RSs as given and (b) for N ¼ 100 and
d as given, demonstrating the fundamental limitation at large d.
The error of the RSE-based approach for d ¼ 5a and N ¼ 100 is
shown by red circles in (b). Insets: permittivity profiles of the
coupled resonators and perturbation Δϵ used in the RSE-based
approach to Eq. (15).
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Conclusion—We have developed a rigorous theory of
coupled resonators, based on a generalization of the Mittag-
Leffler expansion of the dyadic Green’s function beyond
the resonator boundary, by adding a continuum of modes to
the incomplete set of resonant states. To circumvent the
fundamental limitation caused by the exponential growth of
the resonant states outside a resonator, we have combined
this theory with the resonant-state expansion. This provides
also a rigorous proof of the formalism and a reliable
calculation of the continuum, which are otherwise not
possible, since the Green’s function of an arbitrary system
is not known analytically. We have further shown that the
concept of tight binding fails for open resonators, in drastic

contrast with recent claims and illustrations [12–16]. The
present theory enables calculating, in one run, all eigenm-
odes within a given spectral range and provides access to
important physical applications, such as the Purcell
enhancement [34] and Casimir effect [33].

Data availability—The data that support the findings of
this article are not publicly available upon publication
because it is not technically feasible and/or the cost of
preparing, depositing, and hosting the data would be
prohibitive within the terms of this research project. The
data are available from the authors upon reasonable request.
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