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Abstract

Connected and Autonomous Vehicles (CAVs) have advanced modern transportation by improving the effi-
ciency, safety, and convenience of mobility through automation and connectivity, yet they remain vulnerable
to cybersecurity threats, particularly through the insecure Controller Area Network (CAN) bus. Cyberattacks
can have devastating consequences in connected vehicles, including the loss of control over critical systems,
necessitating robust security solutions. In-vehicle Intrusion Detection Systems (IDSs) offer a promising ap-
proach by detecting malicious activities in real time. This survey provides a comprehensive review of state-
of-the-art research on learning-based in-vehicle IDSs, focusing on Machine Learning (ML), Deep Learning
(DL), and Federated Learning (FL) approaches. Based on the reviewed studies, we critically examine exist-
ing IDS approaches, categorising them by the types of attacks they detect—known, unknown, and combined
known-unknown attacks—while identifying their limitations. We also review the evaluation metrics used
in research, emphasising the need to consider multiple criteria to meet the requirements of safety-critical
systems. Additionally, we analyse FL-based IDSs and highlight their limitations. By doing so, this survey
helps identify effective security measures, address existing limitations, and guide future research toward
more resilient and adaptive protection mechanisms, ensuring the safety and reliability of CAVs.

Keywords: CAN bus, In-vehicle Network, Cyberattack, Intrusion Detection System, Machine Learning,
Deep Learning, Federated Learning.

1. Introduction

Connected and Autonomous Vehicles (CAVs) are expected to play an important role in future transportation
systems [1], offering transformative benefits in safety, mobility, efficiency, and economic productivity. For
instance, the Society of Motor Manufacturers and Traders (SMMT) projects that widespread CAV adoption
could contribute £62 billion annually to the UK economy by 2030 [2]. However, the same technological
advancements that enable these benefits also introduce new vulnerabilities, expanding the attack surface and
exposing CAVs to sophisticated and evolving cyber threats [3].
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CAVs rely on Electronic Control Units (ECUs) to manage and control various functions. These ECUs com-
municate via standardised in-vehicle communication protocols, such as Controller Area Network (CAN),
Local Interconnect Network (LIN), FlexRay, and Media Oriented Systems Transport (MOST). Among these
protocols, the CAN bus is the most widely adopted due to its speed, reliability, and ease of use [4]. Although
originally designed for industrial applications, the CAN bus has become the de facto standard for in-vehicle
communication [5]. Despite its advantages, the CAN protocol lacks fundamental security features, including
sender authentication and encryption, as it was not originally developed with security considerations [6].

The increasing interconnectivity of CAVs exposes them to a range of cyberattacks. Attackers can access
modern vehicles either physically, through ports such as USB or the onboard diagnostic (OBD)-II port, or
remotely through wireless technologies such as Wi-Fi, Bluetooth, and LTE [7]. In 2023, the number of
large-scale incidents, potentially affecting thousands to millions of mobility assets, grew 2.5-fold compared
to 2022. Additionally, 95% of cyberattacks are conducted remotely, with 85% being long-range [8]. These
vulnerabilities make vehicles susceptible to attacks that could have devastating consequences, including
loss of control over critical systems like braking, steering, and acceleration [9]. A recent incident [10]
involved cybersecurity researcher Ian Tabor discovering tampering on his Toyota RAV4, particularly around
the front bumper and headlight area. Initially suspecting vandalism, Tabor soon realised the vehicle had been
targeted by a cyberattack. Investigations revealed that attackers had accessed the car’s CAN bus through
exposed wiring, allowing them to inject malicious signals. Through this manipulation, the attackers were
able to gain entry and start the engine, successfully stealing the vehicle without using a key. Moreover, a
notorious example is the Jeep hack, where attackers remotely manipulated the vehicle’s braking and steering
functions, leading to dangerous driving conditions [11]. Similarly, vulnerabilities in BMW and Toyota Lexus
models have been exploited, demonstrating the persistent threat to vehicle security [12, 13]. Such incidents
emphasise the critical need for strong security measures to defend against both data breaches and physical
threats.

Given the severity of these threats, CAN bus security has become a major research focus. According to
McKinsey’s analysis, by 2030, nearly 95% of the new vehicles will be connected to external networks,
further highlighting the need for effective security solutions [14]. One promising approach is the imple-
mentation of Intrusion Detection Systems (IDSs), which monitor network traffic for malicious activity. In
the context of in-vehicle networks, an IDS is typically installed on an ECU and analyses incoming mes-
sages to detect abnormalities. However, conventional IDS technologies designed for traditional networks
cannot be applied directly to in-vehicle systems due to resource constraints and the real-time requirements
of automotive environments.

Research on the development of in-vehicle IDSs has expanded considerably in recent years, fueled by the
discovery of various vulnerabilities and the urgent need to improve the security of in-vehicle networks and
detect cyberattacks. Researchers have explored various approaches to building these systems. IDSs can
be classified as either signature-based, for detecting known attacks, or anomaly-based, for identifying new,
unknown attacks [15]. Anomaly-based IDSs are further categorised into statistical, Machine Learning (ML),
rule-based, and physical fingerprinting methods [16].

This survey specifically examines the development of learning-based in-vehicle IDSs, with a focus on Ma-
chine Learning (ML), Deep Learning (DL), and Federated Learning (FL) approaches. It aims to identify
effective security strategies, overcome existing challenges, and guide future research toward more robust
and adaptive protection mechanisms to enhance the reliability and safety of CAVs. The emphasis on ML-
and DL-based approaches is driven by their strong generalization capabilities and ability to process large
volumes of traffic data [16]. Additionally, FL has recently gained attention among researchers due to its



potential to enhance both security and privacy.

In this survey, we review the state-of-art research on ML-based, DL-based and FL-based in-vehicle IDSs,
aiming to identify limitations and research gaps in the current literature.

Contribution To summarise, the contributions of this paper are as follows:

e We present a comprehensive literature review employing a structured search strategy to systematically
gather research papers published up to January 2025.

e We provide an overview of the CAN protocol, its vulnerabilities, entry points, and attack scenarios,
offering an understanding of the CAN bus protocol while exploring potential attack scenarios and their
impacts.

e We introduce a classification framework for IDS methodologies based on the types of attacks they
detect, including known, unknown, and combined known-unknown threats. Additionally, we present
summary tables and highlight the limitations of each approach to identify research gaps.

e We analyse the evaluation metrics used in research studies, emphasising the importance of considering
multiple factors—such as performance, time complexity, and memory overhead—when developing
in-vehicle IDSs to ensure they meet the requirements of safety-critical systems.

o We provide insights into FL-based IDSs, discussing their advantages while also identifying limitations
in addressing security and privacy challenges within connected vehicle environments.

e We outline key open challenges and propose future research directions to enhance the development of
more robust, efficient, and effective in-vehicle intrusion detection approaches.

The remainder of this paper is organised as follows. Section 2 presents the contextual and background
information. Section 3 reviews similar surveys and highlights our contributions. Section 4 outlines the search
methodology used to collect relevant papers. Section 5 reviews existing ML- and DL-based in-vehicle IDSs,
while Section 6 focuses on FL-based IDSs. Section 7 explores prospective research directions. Finally,
Section 8§ concludes the paper.

2. Background

This section provides a brief overview of in-vehicle protocols, with a particular focus on the CAN protocol,
including its description, functionality, and aspects relevant to cyberattacks. In addition, it examines the
vulnerabilities, entry points, and attack scenarios of CAN.

2.1. In-vehicle Network

The in-vehicle network serves as the internal communication system connecting various ECUs within a ve-
hicle [17]. These ECUs are interconnected embedded devices that handle key vehicle operations, such as
engine management, airbag control, and climate control. The number and type of ECUs in a vehicle vary
depending on the manufacturer and model, with modern vehicles incorporating up to 100 ECUs alongside
basic functions [18]. These ECUs, along with sensors, actuators, radars, cameras, and communication de-
vices, collaborate to enhance vehicle performance, efficiency, smart functionalities, and safety by gathering
and analysing various data [19]. ECUs communicate using standard protocols such as CAN, FlexRay, LIN,
and MOST [20]. CAN is considered the de facto protocol among in-vehicle communication protocols [4].



2.2.

Controller Area Network

The Controller Area Network (CAN) protocol, developed by Robert Bosch in 1985, was designed to reduce
the weight, complexity, and cost of wiring. Due to its high speed and efficiency, CAN has become the most
widely used in-vehicle communication protocol in connected and autonomous vehicles [4]. CAN operates as
a message-based broadcast protocol, where the ECUs transmit data in pre-defined frames. Since the system
uses a broadcast mechanism, each message is sent to all ECUs on the network.

2.3. CAN Bus Data Frame

The structure of a CAN frame is defined by a database-like file called the DataBase CAN (DBC) file, which
is confidential and proprietary to the vehicle manufacturer. This file contains essential information about the
representation of CAN bus data [21]. A CAN data frame comprises seven fields that enable communication
between ECUs. Figure 1 illustrates the standard CAN frame format, which includes the following fields:

o Start of Frame (SOF): This field serves to notify other nodes of the start of a CAN frame transmission

by transmitting a dominant ‘0’ bit.

o Arbitration Field: This field contains the Identifier (ID), which specifies the target ECU and deter-
mines the message priority; lower ID values indicate higher priority. In the standard format, the ID is
11 bits long, while the extended format uses 29 bits. The field also includes the Remote Transmission
Request (RTR) bit, which distinguishes between data frames and remote frames.

o Control Field: This field is 6 bits long and includes a 4-bit Data Length Code (DLC), which indicates
the length of the data field, an Identifier Extension (IDE) bit, which specifies whether the ID field is
standard (11 bits) or extended (29 bits), and a Reserved Bit (RB) for future use.

e Data Field: Also referred to as the payload, this field contains the actual vehicle parameter values
interpreted by the receiving ECU, with a size ranging from O to 8 bytes (0 to 64 bits).

e Check Field: This field consists of a 15-bit Cyclic Redundancy Check (CRC) followed by a 1-bit
delimiter (DEL), and is used to detect errors and maintain data integrity during message transmission
by verifying the validity of the frame.

o Acknowledge Field (ACK): This field consists of 2 bits: a 1-bit ACK and a 1-bit DEL. The ACK bit
is used to receive confirmation from the receiving node that the CAN message was received correctly.

o End of Frame (EOF):This field signals the end of the CAN message transmission.

In this survey, we focus on the coloured fields (ID, DLC, and Data) shown in Figure 1.

Bits

1 111 4 0-64 15 1 111 7
SOF ID RTR IDE RB DLC CRC DEL  ACK DEL EOF
Startof | a : DetaE<ld 1 o " Endof
Frame Arbitration Field Control Check Field ACKField  Frame

Field

Figure 1: Standard CAN data frame



2.4. CAN Vulnerabilities

The CAN bus was introduced to reduce costs, simplify installation, and improve real-time communication
efficiency within vehicles. However, it is vulnerable to cyberattacks due to several inherent vulnerabilities [7,
22, 23], including the following:

o Lack of authentication: Due to the lack of authentication on the CAN bus, any ECU can transmit
a frame using the CAN ID of another ECU [9]. Each ECU broadcasts and receives all data on the
bus, then determines whether a message is intended for it. However, the CAN protocol is inherently
unable to prevent unauthorised devices from joining the network and sending malicious messages to
all ECUs. As a result, attackers can exploit compromised ECUs to spoof and send fake CAN packets,
leading to spoofing and message injection attacks [16].

e Lack of encryption: Due to time constraints, CAN messages are not encrypted [7], allowing cyberat-
tackers to easily capture and analyse them for further attacks. Lack of encryption makes CAN traffic
vulnerable to sniffing, spoofing, modification, and replay attacks [9].

e Broadcast domain: The CAN bus functions as a broadcast domain, where all ECUs receive the trans-
mitted frames. Each ECU then checks the data and determines whether to process or disregard it [18].
If an ECU is compromised, it can intercept and monitor all messages transmitted across the CAN
network, enabling an eavesdropping attack [24].

o [D-based priority: The CAN network prioritises messages based on their IDs, with lower IDs having
higher priority [16]. Attackers can exploit this by repeatedly sending frames with low IDs, resulting
in a Denial-of-Service (DoS) attack [21].

o FExternal Interfaces: The attack surface of the CAN bus network is expanded by external interfaces
such as the OBD-II port, used for vehicle maintenance and diagnostics; the Telematics Unit, which
provides connectivity to the vehicle via Wi-Fi, Bluetooth, GPS, and mobile data interfaces; and the
Infotainment Unit, which delivers information and entertainment to the driver through a head display
unit, including features like CD/DVD players and USB ports. These interfaces create additional entry
points for potential cyberattacks [25, 16].

2.5. In-vehicle Network Entry Points

Attackers may reach the CAN bus or specific ECUs through either direct physical access or remote con-
nections [7, 26, 27, 22]. These entry points serve as gateways for initiating a range of attacks, exploiting
the inherent vulnerabilities described in Section 2.4 in in-vehicle networks. This section discusses the entry
points attackers can exploit to access the in-vehicle network, either physically or remotely.

2.5.1. Physical Access

Physical access allows an attacker—such as a mechanic, valet, car renter, or anyone with even brief access
to the vehicle—to directly interact with its internal systems. This access, even for a short time, can provide
opportunities to exploit vulnerabilities through various physical entry points, including:

e OBD-II Port: The OBD-II port, commonly located under the dashboard in most vehicles, provides
the simplest and most direct access to a vehicle’s primary CAN buses. This port offers sufficient access
to potentially compromise the full range of automotive systems [27]. Designed primarily for vehicle
maintenance and engine diagnostics, the OBD-II port allows mechanics to connect scanning tools and
capture data packets generated by malfunctioning subsystems. Despite its intended purpose, the port’s
accessibility makes it a significant security vulnerability. Attackers can easily connect to the OBD-II
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Figure 2: CAN bus attacks

port to extract information or install malware onto the vehicle’s systems, disconnecting afterward to
leave no physical evidence [28]. Alternatively, attackers may deploy a remote device to the port, or
enabling continuous data collection or exploitation over time. Since the OBD-II port is required for
maintenance and diagnostics, it will always pose a security risk [22].

o Aftermarket Components: Peripheral components such as USB ports, CD players, and third-party
add-ons also pose security risks [23, 22]. For example, malicious devices, including FM radios, USB
connectors, or CD players purchased from unverified or aftermarket sources, can introduce malware
into the vehicle’s system. While these components may be more affordable, they can compromise the
vehicle’s security [28].

2.5.2. Remote Access

An external attacker can exploit wireless interfaces commonly implemented in modern vehicles, such as
Bluetooth, Wi-Fi, cellular networks, and GPS, without requiring physical proximity to the vehicle. Once
these interfaces are accessed, the attacker can transmit malicious commands or traffic over the CAN bus net-
work [7]. Koscher et al. [29] highlight the feasibility of executing various types of remote injection attacks
on in-vehicle networks. For example, vulnerabilities in telematics systems or vehicle-to-cloud communica-
tions can enable the remote injection of messages, disrupting the network. Specific methods include using
malicious Windows Media Audio (WMA) files or sending malicious packets to the telematics unit via 3G
Internet Relay Chat (IRC) [29]. Moreover, Woo et al. [30] conducted a wireless attack, successfully taking
control of a target vehicle by utilising malware installed on a smartphone. These examples highlight the
significant security risks posed by wireless interfaces in connected vehicles.

2.6. Attack Scenarios

Since an attacker may access the in-vehicle network, either physically or remotely, through one of the entry
points outlined in Section 2.5, the following are common attack scenarios:

2.6.1. Denial-of-Service (DoS) Attack

o Attack Definition and Method: A Denial-of-Service (DoS) attack aims to prevent normal system
functioning by blocking messages from reaching their destination [28]. One common method to
achieve this is to increase the busload using high-priority IDs [16]. Since message priority on the
CAN bus is determined by the message ID, an attacker can exploit the arbitration mechanism by
flooding the network with low-ID (i.e. high-priority) frames, thereby preventing other ECUs from
transmitting [31]. Figure 2a illustrates how a dominant message with CAN ID 0x0000 delays one
with a lower priority, such as ID 0x0B4.



2.6.2.

2.6.3.

Attack Scenario: We assume the attacker has compromised the in-vehicle network, either physically
or remotely, through one of the entry points outlined in Section 2.5. Leveraging this access, the at-
tacker injects high-priority messages into the CAN bus without requiring prior knowledge of the CAN
bus traffic. The arbitration mechanism prioritises these malicious messages, taking control of the bus
and blocking critical communications, such as those from the engine control unit or braking system.
For instance, while the vehicle is in motion, an attacker carrying out this attack could disable cruise
control or activate emergency braking, preventing critical messages from reaching the appropriate
ECU in time and creating potentially hazardous driving conditions. Within seconds, the network’s
capacity becomes overwhelmed, causing delays that severely compromise vehicle safety.

Attack Impact: A successful DoS attack not only delays normal messages by occupying the bus [32],
but also prevents other ECUs from transmitting frames to the in-vehicle network, significantly impact-
ing network availability [33]. Such attacks can lead to a complete breakdown of ECU communication
and severe disruption of the entire CAN bus network system [34, 23], compromising the safety of
drivers, occupants, and other road users [35].

Spoofing Attack

Attack Definition and Method: During a spoofing attack, an unauthorised attacker targets valid CAN
IDs and injects fake messages to control specific functions. Since CAN IDs appear legitimate, dis-
tinguishing between real and spoofed messages becomes challenging, leading to system malfunctions
[31]. Figure 2b illustrates a spoofing attack where an attacker, using the spoofed CAN ID 0x0B4,
targets the legitimate CAN ID 0x0B4.

Attack Scenario: We assume the attacker has compromised the in-vehicle network, either physi-
cally or remotely, through one of the entry points outlined in Section 2.5.In this attack, we assume
that the attacker has some knowledge of CAN bus traffic, and one method to achieve this is by con-
necting a malicious device to eavesdrop on all broadcast traffic, capturing data transmitted across the
network. During this reconnaissance phase, the attacker analyses the traffic to identify patterns in
ECU behaviour, such as specific CAN IDs, payload structures, and message transmission intervals.
Armed with this knowledge, the attacker selects a target ECU, such as the speedometer. Next, the
attacker gains remote access to the internal network and crafts spoofed messages by replicating the
target ECU’s CAN ID and injecting false speed readings into the bus.

Attack Impact: Spoofing attacks can cause system malfunctions and disrupt vehicle operations [31].
They pose significant threats to personal safety, particularly when targeting critical ECUs responsible
for essential functions such as braking or steering [36].

Frame Fuzzification Attack

Attack Definition and Method: The goal of a frame fuzzification attack is to inject random messages
into the CAN bus network, making them appear as legitimate traffic. Attackers may either use prior
knowledge of CAN IDs and payloads obtained through CAN bus sniffing or carry out the attack
blindly, treating the CAN system as a black box [37]. In such an attack, the attacker might alter
the CAN ID, the CAN payload, or both simultaneously [7]. Since the range of valid CAN packets
is relatively small, even simple fuzzing of packets can cause significant damage [28]. Figure 2c
illustrates a frame fuzzification attack, where the attacker generates and injects random CAN IDs (e.g.
0x123, 0x357, and 0x222), which are illegitimate. As a result, all ECUs receive a high volume of



2.6.4.

functional messages. For example, Chockalingam et al. [29] introduced Gaussian noise to create a
frame fuzzification attack on CAN data.

Attack Scenario: We assume the attacker has compromised the in-vehicle network, either physically
or remotely, through one of the entry points outlined in Section 2.5. Without prior knowledge of CAN
frames, the attacker is able to inject random malicious CAN frames. Using techniques such as fuzzing,
the attacker transmits random or malformed messages into the CAN bus to provoke unintended system
behaviours or identify exploitable vulnerabilities that could be leveraged in future attacks. Addition-
ally, through reverse engineering, the attacker monitors legitimate traffic to deduce the structure and
purpose of CAN messages, enabling the creation of malicious packets to execute specific commands
targeting particular ECUs.

Attack Impact: Frame fuzzification attacks can compromise ECUs, triggering unexpected vehicle
behaviours such as steering wheel shaking, erratic signal lights, and unintended gear shifts [32, 34].
These behaviours can confuse the driver, potentially resulting in poor decisions or accidents. Such
attacks not only disrupt normal vehicle functions but also threaten operational integrity, compromise
data privacy, and endanger personal safety, posing significant risks to passengers and other road users.

Replay Attack

Attack Definition and Method: In replay attacks, an attacker captures a legitimate message and
resends it later without any changes [38]. For example, an attacker can store a speedometer value and
retransmit it to the network at a later time [4]. Figure 2d illustrates a replay attack, where the attacker
sniffs the legitimate CAN messages (e.g., 0X0B4 and 0XO0CS5) and later re-injects them into the CAN
bus.

Attack Scenario: We assume the attacker has gained access to the in-vehicle network, either physi-
cally or remotely, through one of the entry points outlined in Section 2.5. Without prior knowledge
of CAN traffic, the attacker connects a malicious device to sniff and store legitimate messages. These
are later re-injected into the network unmodified, inserted between original transmissions.

Attack Impact: Even though this attack is easy to carry out, as it requires no prior knowledge of
traffic operation, it can pose serious safety threats to both vehicles and passengers [16]. Koscher
et al. [28] demonstrated replay attacks to manipulate the radio and various body control module
functions in the CAN bus. Although the replayed packet is a valid subsequence, the replayed packet
disrupts the original packet sequence. Consequently, this can lead to severe issues such as continuous
CAN packet transmission requests, deadline violations, and inversion of the CAN arbitration priority
scheme. Furthermore, the altered packet sequence prevents the vehicle from functioning properly, as
the packets are no longer transmitted sequentially, violating protocol requirements [21].

3. Related Work

This section presents a review of current survey literature on IDS approaches applied to in-vehicle networks,
highlighting their contributions and how our survey differs. Several studies have contributed taxonomic
frameworks and structured classifications to better characterise the landscape of IDS development in this
domain. Most of these surveys examine the security of in-vehicle networks more broadly and include IDS
as one of several approaches, alongside ML and DL [39, 7, 24, 40, 4, 25, 41, 38, 21, 42, 9, 43, 44, 26].
Karopoulos et al.[39] compiled a meta-taxonomy that consolidates the key classification features of in-
vehicle IDSs proposed in existing surveys, offering a unified perspective on their development. Dupont



et al.[24] categorised in-vehicle IDSs based on the required message count for attack detection, the data
utilised, and the design of the detection model. Tomlinson et al.[40] categorised CAN IDS approaches into
signature detection and anomaly detection, with the latter further subdivided into statistical, knowledge-
based, and ML methods. Rajbahadur et al.[41] conducted a survey on anomaly detection for securing CAVs,
introducing a taxonomy comprising three main categories and nine subcategories. They further classified
the surveyed studies across 38 dimensions. While the study offers valuable insights, it lacks individual paper
summaries and practical implementation guidance. Lampe and Meng [44] reviewed automotive intrusion
detection methodologies, categorising IDSs into non-learning, traditional ML, and DL approaches. They
further classified IDSs along six dimensions: analysis, deployment, detection, evaluation, learning, and
monitoring.

Wu et al. [25] categorised in-vehicle IDSs into fingerprinting, parameter monitoring, information theory,
and ML-based approaches. Al-Jarrah et al.[4] reviewed intra-vehicle IDSs and categorised them into flow-
level, payload-level, and integrated approaches. Jo et al.[38] classified in-vehicle countermeasures into
four categories: preventative protection, IDSs, authentication, and post-protection, and further divided IDS
techniques into CAN packet-based and ECU hardware characteristic-based approaches. Loukas et al. [42]
proposed a detailed taxonomy emphasising IDS characteristics and architectures across different vehicle
platforms, categorising audit techniques into statistica,L ML , and rule-based methods. Lokman et al.[21]
presented a taxonomy for classifying IDS research according to four dimensions: deployment strategies,
attack techniques, technical challenges, and detection methods, and further categorised anomaly-based IDSs
into frequency-based, ML-based, statistical, and hybrid approaches. Young et al.[9] categorised CAN bus
IDSs into signature-based and anomaly-based approaches, while Quadar et al.[43] classified detection meth-
ods into fingerprint-based, time- and frequency-based, and ML-based categories. However, the number of
ML-based IDSs reviewed in [25, 4, 38, 42, 21, 9, 43] remains limited. In contrast to surveys focusing exclu-
sively on IDSs, Aliwa et al. [7] adopted a broader perspective by combining cryptographic solutions with
IDS approaches to protect vehicular data. Similarly, Limbasiya et al.[26] conducted a systematic survey that
extensively analysed various Attack Detection and Prevention System (ADPS) categories for CAVs.

Other surveys have focused exclusively on ML/DL-based IDSs [16, 45, 46, 47, 48]. Rajapaksha et al.[16]
adopted the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) methodology
and proposed a taxonomy of Al-based IDSs. Similarly, Nagarajan et al.[45] presented a comprehensive
review of ML-based IDSs for in-vehicle and inter-vehicle communications. Focusing more specifically on
DL approaches, Lampe and Meng [46] provided a comprehensive overview of DL-based IDSs in automo-
tive networks, categorising them based on their topologies and techniques, such as DNN-, CNN-, LSTM-,
attention-, transformer-, and GAN-based IDSs. Expanding the scope, Almehdhar et al. [47] categorised
IDS techniques into conventional ML, DL, and hybrid models. They also explored emerging technologies
such as FL and Transfer Learning. Similarly, Taslimasa et al.[48] conducted an extensive review of IDSs
proposed for Internet of Vehicles (IoV) networks that utilise ML and DL algorithms.

Even though existing in-vehicle surveys have made significant contributions to the field, they have certain
limitations. As shown in Table 1, few surveys follow a structured search methodology to ensure full cov-
erage and a comprehensive review. In addition, none of these surveys review FL-based IDS, except for the
work in [47], which briefly presents some studies in this area. Although Chellapandi et al. [49] provide a
survey on FL for CAVs, they do not include any in-vehicle IDSs and instead focus on FL applications such
as driver monitoring, motion control, trajectory and steering angle prediction, and object detection. Lastly,
although some surveys have reviewed the performance metrics used in the reviewed papers, we provide a
comprehensive review of all evaluation metrics, including performance, time, and memory requirements,
emphasising the need to include these metrics to develop deployable solutions. To the best of our knowl-



Table 1: Comparison with in-Vehicle IDS surveys

Reference  Year Search Strategy ML-DL Specific FL-based IDSs Evaluation metrics

[40] 2018 °

[41] 2018 . °

[4] 2019 o .

[25] 2019 °

[42] 2019 °

[21] 2019 o

[9] 2019 o

[24] 2019 °

[38] 2021 o

[7] 2021 o

[39] 2022 °

[26] 2022 . o

[48] 2023 . .

[16] 2023 . . o

[46] 2023 . o

[45] 2023 . o

[44] 2023 o o

[43] 2024 o

[47] 2024 . o
Our Survey 2025 ° ° °

e: Extensive, o: Partial

edge, this survey is the first to provide a comprehensive review of ML, DL, and FL-based IDS for
in-vehicle networks. Table 1 compares this survey with prior studies on in-vehicle IDSs, emphasising the
main contributions of the current work.

4. Methodology

In this section, we outline the search strategy used to collect the reviewed papers.

4.1. Search Strategy

We followed Kitchenham’s method [50], a well-established guide for identifying relevant literature. Al-
though originally designed for software engineering, it has been widely applied in other fields, including
cybersecurity [S1]. We conducted an automatic search using Google Scholar to minimise publisher bias [52]
and identify key sources. Based on this, we compiled a list of publishers and conferences for a subsequent
manual search. To ensure comprehensive coverage, we employed a snowballing approach to locate related
papers. Relevant results were filtered and analysed (from any time up to and including January 2025) to
construct this literature review. Figure 3 shows the adopted search strategy.

4.1.1. Data Sources and Search Strategy

To begin, we formulated several search queries on Google Scholar using keywords that combine terms
representing our area of research and those frequently found in paper keywords. Logical operators "AND"

10
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and "OR" were utilised to ensure comprehensive results. These queries generated a range of papers, some of
which were only loosely relevant. We then performed a hybrid search with advanced queries across selected
journals and databases, including IEEE Xplore, Scopus, ACM, MDPI, Springer, and ScienceDirect. Three
search strategies were employed during this process: automatic, manual, and snowballing.

1. Automatic search We carried out this stage using the advanced search function in Google Scholar,

non: "non

employing key terms such as "controller area network", "CAN bus", "in-vehicle", "intrusion detection
system", "IDS", "anomaly detection", "unknown attacks", and "federated". Initially, using the filter
"anywhere in the article," we retrieved an unwieldy number of results (53,890). To refine this, we
applied the filter "in the title of the article,” reducing the results to 95 papers. Only peer-reviewed
papers were included in our analysis.

2. Manual search In this stage, we applied more complex queries, including specific journals and li-
braries, such as IEEE Xplore, Scopus, ACM, MDPI, Springer, and ScienceDirect.

3. Snowballing The snowballing technique was applied to the papers identified through automatic and
manual searches. This approach included both forward and backward snowballing. Forward snow-
balling (or citation analysis) locates papers that are cited in the papers found in the initial stages.
Backward snowballing (or reference analysis) looks at the reference lists of the papers found in the
initial search process. References included in the selected papers were chosen based on a review of
the title, abstract, and the paper’s structure.

4.1.2. Selection Strategy
The selection strategy applied inclusion and exclusion criteria, followed by a quality assessment to ensure
high-quality studies were selected.

o Filtering Irrelevant Papers: Several papers gathered through manual, automated, and snowballing
methods were not directly relevant to our study and were therefore eliminated. Elimination was con-
ducted in two steps. First, papers were excluded based on the title, keywords, abstract, and, when
necessary, the conclusion. This step determined whether a paper progressed to the next stage. Elim-
ination was performed after each search (automated, manual, and snowballing) to reduce the number
of papers. Those that passed the initial stage were then assessed using the inclusion and exclusion
criteria.

o Inclusion and Exclusion Criteria At this stage, specific inclusion and exclusion criteria were defined,
whereby any paper fulfilling one or more exclusion criteria was removed from consideration. The
exclusion criteria for each paper were as follows: (i) not written in English; (ii) was a review or
survey paper; (iii) lacked a full version (e.g., only a poster or abstract); (iv) did not employ an ML
or DL approach; (v) required reverse engineering; (vi) used other data alongside CAN bus data; and
(vii) employed other approaches such as statistical, rule-based, or physical fingerprinting methods.
Papers that were not excluded were then evaluated according to an inclusion list of other criteria. If no
inclusion criteria were met, the paper was rejected. The inclusion criteria were as follows: (i) focused
on the CAN bus protocol rather than other in-vehicle protocols; and (ii) focused on attack detection
as the primary goal. Non-peer-reviewed papers were included only if they were strictly relevant to the
topic and had a high citation rate, or if the author was well-known in the field.

As shown in Figure 3, reading the full paper is the final step in the search and selection process, filtering
out the collected papers from the previous steps. The papers from the automatic search were reduced from
10 to 9 after filtering by reading the full text. The manual search yielded 59 papers from an initial 1,831;
snowballing reduced 57 papers to 18. Combined with 9 from the automatic search, a total of 86 papers
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were selected for analysis. Of these, 38 focused on known attack detection, 28 on unknown attack detection,
11 on IDSs capable of detecting both known and unknown attacks, and 9 on FL-based IDSs. Figure 4
illustrates the number of collected papers in each category, highlighting that known attack detection is the
most researched area, while significantly less work has been conducted on IDSs capable of detecting both
known and unknown attacks, as well as on FL-based IDSs.

m known attack detection = unknown attack detection

= known and unknown attack detection = FL-based IDSs

Figure 4: Distribution of collected papers by category

5. Intrusion Detection Systems for In-Vehicle Networks

In this section, we begin by introducing IDSs for in-vehicle networks and highlighting the differences be-
tween in-vehicle IDSs and those used for other applications. We then provide an overview of in-vehicle IDS
approaches. Additionally, we categorise the collected papers into three categories: known attack detection,
unknown attack detection, and work capable of detecting both known and unknown attacks for analysis.
Figure 5 illustrates the categories and subcategories of the reviewed literature. Lastly, we review all the
evaluation metrics employed across the reviewed studies.
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5.1. Intrusion Detection System for In-Vehicle Networks

According to NIST SP 800-94, intrusion detection involves “monitoring the events occurring in a computer
system or network and analysing them for signs of possible incidents” [53]. Therefore, an IDS is typically
recognised as a software or hardware system that automatically identify suspicious activity in a network
[9]. In vehicle networks, IDSs are crucial for identifying malicious attacks [7]. They can be implemented
as either host-based or network-based systems [9]. Host-based IDSs are installed on each vehicle’s ECU,
allowing comprehensive monitoring of internal ECU operations. In contrast, network-based IDSs are de-
ployed within the CAN network or central gateways to oversee all network traffic. However, implementing
host-based IDSs in vehicles is not feasible, as they demand ECU modifications that are not cost-effective [7].
In contrast, adding a network-based IDS as a standalone node on the CAN bus is a more feasible and prac-
tical solution, as it avoids the need for any CAN bus modifications [16]. Unlike IDSs in other applications,
in-vehicle IDSs are limited by computational power, memory constraints, and communication capabilities.
This is because modern ECUs in vehicles are primarily powered by 32-bit embedded processors, with limited
computational performance and memory resources [25].

5.2. Overview of In-Vehicle IDS Approaches

In recent years, there has been a substantial increase in research on in-vehicle IDSs, motivated by the ur-
gent need to strengthen in-vehicle network security and detect cyber attacks. Various strategies have been
examined by researchers for designing such systems. IDSs can be classified as either signature-based, for
detecting known attacks, or anomaly-based, for identifying new, unknown attacks [15]. Anomaly-based
IDSs are further categorised into statistical, rule-based, ML, and physical fingerprinting approaches [16].
However, this survey specifically focuses on reviewing research that applies ML and DL techniques to in-
vehicle IDS design. This focus arises from the widespread use of ML and DL-based IDSs to process large
volumes of CAN traffic data. These approaches efficiently extract and pre-process raw CAN data, which
is critical as vehicle manufacturers often do not provide detailed specifications for decoding these raw data
[16]. This section is divided into three categories: known attack detection, unknown attack detection, and
work capable of detecting both known and unknown attacks.

14



5.3. Known Attacks Detection

As mentioned in Section 4.1, there are 38 papers on IDSs focusing on known attack detection. In this section,
we analyse these papers and discuss the existing methodologies used to detect or classify known threats in in-
vehicle networks. Detection of known attacks typically relies on supervised learning, which requires labelled
data. This section is divided into four subsections, with three focusing on the features used to construct the
models, specifically ID based detection, payload based detection, and CAN frame based detection, and a
concluding subsection providing a comparative discussion. Each subsection examines different approaches
for identifying malicious activities, emphasizing their strengths and limitations. Figure 6 illustrates previous
work on detecting known attacks, showing that most studies utilised a DL approach and used CAN frames
as input features.

5.3.1. ID-Based Detection

Attacks such as injecting or deleting frames alter certain properties of message ID sequences compared to
normal messages. This section presents research where the authors utilised these properties and used CAN
IDs solely as an input feature to develop IDSs for detecting known attacks.

Song et al. [54] utilised the sequential behaviour of CAN data to identify message injection attacks. During
these attacks, frequent frame injections resulted in distinct ID pattern changes, which were leveraged for
detection. The authors relied solely on the bit-wise CAN ID sequence, which was processed directly as
input, without requiring any further feature engineering. They introduced a deep convolutional neural net-
work (DCNN) model by simplifying the Inception-ResNet architecture, reducing unnecessary complexity to
achieve an optimised input size of (29 X 29 X 1) and a binary classification output.

Refat et al. [55] transformed sliding windows of CAN IDs into graph representations to analyse in-vehicle
network traffic. They extracted seven structural features from each graph, which were then used as inputs
to train two traditional ML algorithms: k-nearest neighbours (KNN) and support vector machine (SVM)
models. Experimental findings revealed that graph-based features outperformed the traditional CAN bus
features.

Nandam et al. [56] employed a Long Short-Term Memory (LSTM) model that leverages the CAN ID of
incoming messages to detect potential DoS attacks. A sequence of previous messages is stored and combined
with the current message to form the input, enabling the model to predict and detect DoS attacks effectively.

Rangsikunpum et al. [57] introduced a binarised neural network (BNN)-based IDS for detecting CAN bus
attacks. Their main goal was to implement the model on a low-cost Field Programmable Gate Array (FPGA)
device, optimising for low power consumption, minimal execution time, and high accuracy. By leveraging
a 1-bit BNN model, the implementation is resource-efficient, allowing deployment on cost-effective FPGA
devices with reduced power requirements. Moreover, the IDS employs a two-stage architecture: the first
stage identifies the presence of an attack, and the second stage, triggered only upon detecting an attack,
performs detailed attack classification.

Wu and Tao [58] proposed a model based on ensemble learning using a Stacking integration approach. The
method incorporates a meta-classifier composed of DTs, Extra Trees (ET), and extreme gradient boosting
(XGBoost). Final classification predictions are made by linearly combining input features and weights
through a SoftMax meta-learner. Ensemble learning in this approach utilises the prediction results as new
features, along with the true labels, to train the meta-learner.

Although ID-based detection methods for known attacks achieve lightweight models by reducing input di-
mensionality and relying solely on the CAN ID, this simplification limits their ability to detect payload
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Figure 6: Related work on known attack detection
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manipulation attacks. Moreover, their effectiveness is typically limited to the specific attack types they were
trained on, rendering them less robust against unknown or novel attacks.

5.3.2. Payload-Based Detection

Some attacks manipulate CAN payload values according to their nature, causing changes in payload se-
quence patterns while retaining valid CAN IDs, as is the case with spoofing attacks. In this section, we
review IDSs that utilise this property and use the CAN payload as an input feature to detect known attacks.

Kang and Kang [59] introduced a deep neural network (DNN) model to defend against malicious attacks.
The authors utilised the 8-byte CAN payload to extract features, employing mode and value information to
reduce the feature dimensionality. The DNN model was initialised using weights from a separate Deep Belief
Network. A template-matching approach was subsequently used to compare training samples with incoming
CAN packets to identify malicious messages. Although the proposed model demonstrated improved detec-
tion performance, its dependence on mode and value information extracted from CAN payloads presents
significant challenges, particularly in the absence of the DBC file.

Similarly, Martinelli et al. [60] utilised the eight CAN payload features to assess whether these features can
effectively discriminate between attacks and normal messages. To address this question, they employed four
fuzzy classification algorithms to detect and categorise four CAN bus attack types. The algorithms comprise
two variants of fuzzy-rough KNN, the discernibility-based classifier, and a fuzzy unordered rule induction
method. The classification analysis was performed using the Weka3 tool. Experimental results revealed that
feature vector i is highly effective in accurately differentiating between injected and normal messages.

Fenzl et al. [61] employed DTs trained using genetic programming (GP) to identify malicious activity within
the CAN network. Their approach focuses solely on message payloads, with models trained individually for
each CAN ID within the CAN bus training data. The authors compared their method with artificial neural
networks (ANNs). The experimental findings revealed that, for most intrusions, the accuracy of the ANN
was slightly higher, and the ANN had a significantly lower training time; however, the proposed GP method
demonstrated significantly improved detection time.

Samir et al. [62] investigated two DL-based IDSs: one leveraging LSTM and the other utilising a one-
dimensional convolutional neural network (CNN). These supervised learning algorithms serve as classifiers
capable of categorising attacks into different types. The authors employed two public datasets as well as
a manually created dataset, developed using the ICSim simulation tool, to incorporate a wider range of
scenarios and attack types. Experiments demonstrate that the LSTM-based IDS performs better than the
CNN-based IDS, benefiting from its capability to capture temporal patterns for detecting a range of CAN
bus attacks.

Payload-based detection approaches for known attacks utilise the data payload to identify payload manipu-
lation. However, they often overlook manipulations in the CAN ID field, making them ineffective against
spoofing or ID-based attacks. Like ID-based methods, their effectiveness is typically restricted to the specific
attack types they were trained on, rendering them less robust against unknown or novel attacks.

5.3.3. CAN Frame-Based Detection

Rather than using only CAN IDs or CAN payload as features, IDSs in existing studies have integrated
multiple features to identify pattern variations in CAN data sequences. This approach enables the detection
of both alterations in CAN IDs and manipulations of the payload. This section reviews IDSs that use CAN
IDs and payload as input features to detect known attacks. Some studies also incorporate the DLC feature
or time intervals between successive CAN IDs, in combination with CAN ID and payload.
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Hossain et al. [37] proposed an LSTM-based IDS that uses CAN ID, DLC, and payload features to identify
both point as well as contextual anomalies. The IDS is trained on both benign and attack data, enabling it
to distinguish between normal and malicious messages, as well as identify specific types of attacks. CAN
messages were collected from a real Toyota hybrid car, and three attack scenarios were generated. The
proposed LSTM-based approach demonstrated improved performance over the survival analysis method by
achieving a higher detection rate.

Following their earlier research, Hossain et al. [34] introduced a 1D CNN model as an alternative to their
earlier LSTM-based approach. They collected normal datasets from three vehicles: Toyota, Subaru, and
Suzuki, and generated attack scenarios by injecting anomalous frames. The model demonstrated strong
detection performance across all attack types. However, they identified the fuzzy attack as the most critical,
as its similarity to legitimate CAN traffic makes it particularly difficult to detect.

Similarly, Paul and Islam [6] proposed an ANN model trained on benign and malicious samples from DoS
and fuzzy datasets to detect unauthorised messages on the CAN bus. The model demonstrated a high de-
tection accuracy in distinguishing between legitimate and anomalous messages, achieving nearly negligible
rates of false positives (FPs) and false negatives (FNs).

Le et al. [63] designed an IDS for multiclass classification that integrates autoencoder (AE) models with a
time-embedded transformer. The AE-based packet-level extraction model captures a compressed represen-
tation of each CAN frame within a sequence, while the transformer, enhanced with timestamp encoding,
serves as the sequence-level feature extractor.

Zhang et al. [64] introduced a Binarized CNN (BCNN)-based IDS, designed to leverage the temporal and
spatial characteristics of CAN messages. The proposed IDS consists of an input generator and a BCNN
model. The input generator converts CAN messages from feature vectors into image form, enabling the
BCNN model to capture their temporal and spatial features. The second component employs the BCNN
model to process the output images from the input generator. Experimental results demonstrated that the
BCNN model is four times faster and requires less memory compared to a 32-bit CNN-based IDS.

Sami et al. [65] introduced the Network Embedded System Laboratory’s IDS (NESLIDS), which employs a
supervised DL algorithm based on a DNN. NESLIDS is designed as an anomaly detection system to identify
three known attacks.

Aksu and Aydin [66] introduced a meta-heuristic algorithm, the Modified Genetic Algorithm (MGA), to
select a subset of features by removing irrelevant ones, thereby improving classification performance and
reducing dimensionality. They evaluated the effectiveness of the feature selection process using five clas-
sifiers: Support Vector Classifier (SVC), k-Nearest Neighbors Classifier (KNC), Decision Tree Classifier
(DTC), Logistic Regression Classifier (LRC), and Linear Discriminant Analysis Classifier (LDAC).

Boumiza et al. [67] developed a CAN bus IDS based on a Multi-Layer Perceptron (MLP) neural network.
It initially segments the data using the CAN packet ID field and applies the K-means clustering algorithm
to create subclusters. It then extracts mode and frequency features from each subcluster to train the neural
network. The proposed IDS processes each CAN ID separately and combines their individual results to
generate a final score, triggering an alert when an attack is detected.

Park and Choi [68] proposed a multi-labeled hierarchical classification (MLHC) IDS to detect message
injection attacks. MLHC identifies and categorises attacks based on previously labelled attack data. The au-
thors assessed the method’s performance using four ML algorithms: DT, SGD, kNN, and RF. Experimental
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findings indicated that the RF algorithm achieved high accuracy, while the DT algorithm provided efficient
detection speed.

Zhang et al. [69] proposed a Convolutional Encoder Network (CEN)-based IDS for detecting intrusions in
CAN networks. The architecture combines an encoder for dimensionality reduction, a CNN to increase
model depth, and Inception ResNet to accelerate the training process. Additionally, the authors introduced
a Feature-based Sliding Window method to extract features from both the CAN Data Field and CAN IDs.
Experimental results highlight the method’s effectiveness in improving detection performance.

Minawi et al. [70] introduced an ML-based IDS comprising three layers: the CAN Message Input Layer,
the Threat Detection Layer, and the Alert Layer. The Threat Detection Layer utilises ML algorithms such as
Random Forest (RF), Random Tree (RT), Naive Bayes (NB), and Stochastic Gradient Descent (SGD) with
hinge loss to detect different types of attacks. Additionally, this layer is designed with multiple modules,
each tailored to detect specific types of attacks.

similarly, Alfardus and Rawat [71] used the same proposed IDS in [70] but with four different ML algo-
rithms, including RF, KNN, SVM, and Multilayer Perceptron (MLP), to identify malicious activity on the
CAN bus network.

NasirEldin et al. [72] designed an IDS incorporating an attention mechanism for intrusion detection. The
model consists of an attention layer that prioritises the most significant features by computing attention
scores between inputs and the target, followed by a self-attention layer to identify relationships between
data elements. Experimental findings indicate that the proposed model delivered better performance than
baseline models, such as the LSTM.

Alalwany and Mahgoub [73] introduced an ML-based IDS using supervised ML models, including RF, DT,
Gaussian Naive Bayes (GaussianNB), Logistic Regression (LR), AdaBoost, KNN, XGBoost, and Gradient
Boosting. To further enhance attack detection accuracy, the authors employed three ensemble methods: vot-
ing, stacking, and bagging to combine all supervised models. This approach leverages the diverse strengths
of individual models, allowing them to work together effectively in the classification process. Compared
to individual models, the ensemble classifiers outperformed the supervised classifiers by enhancing their
effectiveness through the use of diverse learning mechanisms to support one another.

Ding et al. [74] developed a Bidirectional LSTM (Bi-LSTM) IDS with a sliding window strategy. A two-
dimensional input data sample set was constructed using the sliding window, and the Bi-LSTM network
was trained on these features to learn a classifier for intrusion detection. The experimental results demon-
strate that the proposed model achieves superior performance compared to other network models, except
when detecting DoS attacks. Similarly, Kishore et al. [75] proposed a Bi-LSTM that analyses input data
ibidirectionally to identify unusual behaviour within the CAN bus network.

Chougule et al. [76] proposed HybridSecNet, a hybrid two-stage LSTM-CNN IDS consisting of two clas-
sification phases: the first stage uses an LSTM to classify input as either benign or malicious. If an attack
is identified in the first stage, a second stage is activated, which uses a CNN-based multiclass classifier to
determine and classify the specific type of attack.

Moreover, Alalwany and Mahgoub [77] proposed an in-vehicle IDS that enhances the accuracy of detecting
and classifying CAN bus attacks by integrating ensemble techniques with the Kappa Architecture. While the
Kappa Architecture provides capability for real-time detection, the ensemble approach enhances detection
accuracy by combining classifiers such as RF, DT, and XGBoost. The study demonstrated that combining
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the strengths of multiple models through ensemble methods significantly improved detection accuracy and
system robustness.

Basavaraj and Tayeb [78] designed a lightweight DNN-based model for detecting and classifying CAN bus
attacks. The proposed model outperformed baseline models, including RF, DTs, and the kNN algorithm.

Gao et al. [79] proposed a CNN and Bi-LSTM model with multi-head attention for attack detection and clas-
sification. The CNN module enhances feature extraction, the Bi-LSTM module captures sequential features
and relationships, and the multi-head attention module identifies further correlations between features.

Kalkan and Sahingoz [80] applied several ML algorithms, including RF, ANN, NB, LR, bagging, and ADA
boosting. Experimental results demonstrated that tree-based and ensemble learning algorithms achieved
superior performance. However, the authors did not specify the features used for training, leading to the
assumption that all features were included.

Gou et al. [81] proposed an adaptive tree-based ensemble network (ATBEN) aimed at improving oV se-
curity. ATBEN leverages a variety of ML models, including XGBoost, LightGBM, RF, and ET, as base
estimators, stacking them into layers within the network. The cascading connections between layers facil-
itate precise and efficient multiclass classification. The authors validated the effectiveness of the proposed
IDS by assessing its performance against a range of cyberattacks targeting both in-vehicle systems and ex-
ternal networks within the IoV.

Ma et al. [82] proposed a GRU-based IDS and, to improve efficiency, applied a low-complexity feature
extraction algorithm to derive features from CAN frames. Experimental results showed that the GRU-based
IDS achieved near real-time performance and outperformed baseline models in detection accuracy.

Khan et al. [83] proposed DivaCAN, an IDS that combines DL models with conventional ML methods
through an ensemble of base classifiers, including DNN, MLP, light gradient-boosting machines, ET, RF,
Bagging, and KNN. To improve detection performance, a meta-classifier adaptively integrates the outputs
of base classifiers, assigning weights based on their performances and correlations. This work addresses the
trade-off between FPs and time complexity in CAN bus IDS.

Lin et al. [84] developed a CNN-based IDS that utilises the VGG16 classifier to capture attack behaviour
characteristics and classify threats. Feature vectors were transformed into feature images, which were then
input into the VGG16 model for accurate categorisation of cyber threats in in-vehicle networks. To ensure
high precision in predicting the stability of network intrusion detection, the approach combines the VGG16
model with the XGBoost ensemble learning algorithm, enabling effective analysis of suspicious network
traffic.

Hossain et al. [85] proposed an LSTM-based IDS for detecting attacks in in-vehicle network. The CAN
message data was collected using the Vehicle Spy 3 tool. To evaluate the IDS, the authors employed both
binary and multi-class classification approaches, utilizing vanilla LSTM and stacked LSTM models. Since
the dataset originally contained no attacks, the authors simulated various CAN bus attacks, including DoS,
Fuzzing, and Spoofing, on Toyota Hybrid car using a Python-based program.

Casillo [86] proposed an embedded IDS for automotive systems by adopting Bayesian Networks for the rapid
identification of malicious messages on the CAN bus. The CAN bus dataset was generated by simulating
vehicle driving for approximately 24 hours on a city track within the CARLA environment. During the
simulation, the vehicle was subjected to attacks to replicate potential intrusion scenarios based on specific
use cases.
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Nazeer et al. [87] introduced a hybrid approach, DeepXG, which utilised XGBoost and DNN models to
detect and classify attacks on the CAN bus. The XGBoost is trained on the dataset to extract critical fea-
tures and reduce computational complexity, while the DNN leverages these learned representations to detect
anomalies and intrusions.

Nguyen et al. [88] introduced a Transformer attention network-based IDS designed to analyse a single mes-
sage. The proposed IDS includes two models: one that processes individual messages and another leveraging
sequential CAN IDs. The initial model effectively identifies DoS, fuzzy, and spoofing attacks but cannot de-
tect replay attacks due to its reliance on single-message analysis. To address this limitation, the second
model was designed to identify replay attacks by incorporating sequential CAN ID information. Addition-
ally, transfer learning is utilised to enhance the performance of models trained on limited datasets from
different car types.

Table 2 summarises the related work on known attack detection methods, including the learning approach,
binary or multi-class classification, dataset used, detectable attacks, and the employed algorithm. In Table 2,
we assume that papers that do not explicitly state the input features used are referring to CAN frame features.
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Table 2: Summary of related work on known attack detection methods

Reference Year ML\DL Category Clas;l;l;:tlon Dataset ID Payload Attack Types Algorithm
ID-Based Attack Detection
[54] 2020 DL Supervised Binary Car Hacking [89] v Message Injection DCNN
. . o Hackine DoS, Fuzzy,
[551] 2022 ML Supervised Binary Car Hacking [89] v RPM Spoofing SVM, KNN
[56] 2022 DL Supervised Binary car-hacking [54] v DoS LSTM
. Binary \ o (Gear, RPM) Spoofing,
[571 2024 DL Supervised Multi-class Car Hacking [89] v DoS, Fuzzy BNN
- L ST (Gear, RPM) Spoofing, Ensemble model
(58] 2024 ML Supervised Binary Car Hacking [89] v DoS, Fuzzy (DT, ET, XGBoos)
Payload-Based Attack Detection
[59] 2016 DL Supervised Binary Simulation v Injection Attacks DNN
. . SR DoS, Fuzzy,
[60] 2017 ML Supervised Binary Car Hacking [89] v (Gear, RPM) Spoofing KNN
Car Hacking [89], Tesla
[61] 2021 ML Supervised Binary Model X data, Renault v (RPM, Gear) Spoofing DT, GP
Zoe electric car data
- e Car Hacking[89], DoS, Fuzzy,
[62] 2024 DL Supervised ~ Multi-class OTIDS [32], Own v Spoofing, Replay CNN, LSTM
CAN Frame -Based Attack Detection
. Binary \ DoS, Fuzzy,
[37] 2020 DL Supervised Multi-class Own v v Spoofing LST™M
. Binary \ DoS, Fuzzy,
[34] 2020 DL Supervised Multi-class Own v Spoofing CNN
[6] 2021 DL Supervised Binary OTIDS [32] DoS, Fuzzy ANN
or-hackine (Gear, RPM) Spoofing, .
[63] 2024 DL Supervised  Multi-class car-hacking [34], v v DoS, Fuzzy, Fabrication, AE, Time-embedded
ROAD [90] Transformer
Masquerade
[64] 2024 DL Supervised Binary Own v Replay, Spoofing BCNN
. s OTIDS [32], DoS, Fuzzy,
[65] 2020 DL Supervised Binary ML350 [91] v Impersonation DNN
. Binary \ . (Gear, RPM) Spoofing, SVC, LRC, DTC,
[66] 2022 ML Supervised Multi-class car-hacking [54] v v DoS, Fuzzy KNC., LDAC
. . . Frequency modification,
[67] 2019 DL Supervised Binary Dataset [92] v v Data-content modification MLP
. Binary \ . . Fuzzy, Flooding, SGD, kNN,
[68] 2020 ML Supervised Multi-class Survival Analysis Dataset [93] v v Malfunction DT, RF
. e Car Hacking [89], (Gear, RPM) Spoofing,
[69] 2020 DL Supervised Multi-class car-hacking [54] v v DoS, Fuzzy CEN
. . . (Gear, RPM) Spoofing,
[70] 2020 ML Supervised Binary Car Hacking [89] v v DoS, Fuzzy RT, RF, SGD, NB
. . . (Gear, RPM) Spoofing, KNN, RF,
[71] 2021 ML Supervised Binary Car Hacking [89] v v DoS, Fuzzy SVM, MLP
. . . (Gear, RPM) Spoofing, .
[72] 2021 DL Supervised Binary Car Hacking [89] v v DoS, Fuzzy Attention-based model
. . LR, GaussianNB,
[73] 2022 ML Supervised Binary Car Hé‘;ll:lrllegn ztt;;:;(;ffglz]e fence v v Fln}({:urf, Slfl;)zr;ﬁng, k-NN, RF, Gradient Boosting,
e play, Fuzzy AdaBoost, DT, XGBoost
. . . (Gear, RPM) Spoofing, .
[74] 2022 DL Supervised Binary Car Hacking [89] v DoS, Fuzzy Bi-LSTM
. . Car Hacking: Attack & Defence Flooding, Spoofing, .
[75] 2024 DL Supervised Binary Challenge 2020 [94] v v Replay, Fuzzy Bi-LSTM
. Binary \ . DoS, Fuzzy,
[76] 2024 DL Supervised Multi-class Car Hacking [89] v v (Gear, RPM) Spoofing LSTM-CNN
B . Car Hacking: Attack & Defence DoS, Spoofing,
771 2024 ML Supervised Multi-class Challenge 2020 [94] v v Replay, Fuzzy RF, DT, XGBoost
. . Reconnaissance,
[78] 2022 DL\ML  Supervised Multi-class CAN dataset [95] v v DoS, Fuzzy DNN
79 2023 DL Supervised  Multi-class Car Hacking [89] v v DoS, (Gear, RPM) CNN, bi, STM
Spoofing, Fuzzy
(Gear, RPM) RF, bagging,
[80] 2020 ML\DL  Supervised Binary Car Hacking [89] v v Spoofing, ADA boosting,
DoS, Fuzzy NB, LR, ANN
B . R . (Gear, RPM) Spoofing, XGBoost, LightGBM,
[81] 2023 ML Supervised Multi-class car-hacking [54] v v DoS, Fuzzy RE, ET
[82] 2022 DL Supervised Binary Car Hacking [89] v v DoS»FirZJ(Z»;hng, GRU
DNN, MLP,
. . DoS, Fuzzy, light gradient-boosting
[83] 2024 ML\DL  Supervised Multi-class OTIDS [32] v v Impersonation machine, ET, RF.
Bagging, KNN
(Gear, RPM)
[84] 2022 DL\ML  Supervised Multi-class Car Hacking [89] v v Spoofing, VGG16, XGBoost
DoS, Fuzzy
. Binary \ DoS, Fuzzy,
[85] 2020 DL Supervised Multi-class Own v v Spoofing LSTM
. . L Turn right, R
[86] 2019 ML  Supervised  Binary Simulation22 VA Turn oft. Broke Bayesian Network
[87] 2024 ML\DL Supervised  Multi-class Own v v Fl""g;‘;%ﬁiegplay ’ XGBoost, DNN
Binary \ Car Hacking [89], (Gear, RPM) Spoofing,
[88] 2023 DL Supervised Multi—c)]lais IVN [96], v v DoS, Fuzzy, Transformer

Survival Analysis Dataset [93]

Replay, Malfunction




CAN frame-based methods leverage the entire CAN frame, including ID and payload, enabling the detection
of both ID and payload manipulation attacks. While all known attack detection methods (ID-based, payload-
based, and CAN frame-based) demonstrate high accuracy and low false alarm rates (FAR), their effectiveness
relies heavily on well-labelled and balanced datasets. However, obtaining such labelled data remains a
significant challenge for researchers [53]. Moreover, the labeling process is often time-consuming, prone
to errors, and tedious [97]. Additionally, the main limitation of these studies is that none of the models are
capable of detecting new attacks or deviations from the known attacks they were trained on. As attackers
continuously develop new and previously unseen methods to evade detection, supervised learning-based
models often cannot detect attack patterns that were not included in the training data [98]. This limitation
can pose significant security risks. To address this, the next section discusses approaches designed to identify
new, unknown threats.

5.3.4. Comparative Discussion

For ID-based approaches, Song et al. [54] demonstrate that a DCNN-based IDS outperforms LSTM, ANN,
SVM, kNN, NB, and decision tree models, underscoring its effectiveness in modelling the sequential and
temporal characteristics of CAN traffic. Similarly, Rangsikunpum et al. [57] report detection rates above
99% using a BNN-based IDS, with state-of-the-art inference efficiency. In comparison, Refat et al. [55]
achieve accuracies of 97.92% and 97.99% using SVM and kNN on graph-based CAN representations, while
Wu and Tao [58] report up to 99% accuracy for several attack types but reduced performance for fuzzy
attacks. Nandam et al. [56] provide only limited evaluation metrics, with accuracy of around 80%. Regard-
ing payload-based approaches, Kang and Kang [59] report that their method achieves around 98% average
detection accuracy while maintaining real-time response with modest computational complexity. Similarly,
Martinelli et al. [60] report that Fuzzy RoughNN achieves perfect precision and recall for gear and rpm at-
tacks and high precision for DoS and fuzzy attacks, though with lower recall. Samir et al. [62] further report
strong LSTM performance, with accuracy ranging from 90.18% to 99.21% across multiple datasets, along-
side high precision and low false positive and false negative rates. Regarding CAN frame-based approaches,
many studies report detection rates above 99%, largely attributable to training on datasets that include at-
tack samples. However, not all methods maintain such performance across attack types. For example, the
BCNN-based IDS proposed by Zhang et al. [64] achieves lower accuracies of 96.82% under replay attacks
and 94.19% under spoofing attacks. Similarly, Khan et al. [83] introduce DivaCAN, which attains 94.93%
precision, 94.98% recall, and an F1-score of 94.97%. Furthermore, Alalwany and Mahgoub [73, 77] demon-
strate that stacking ensemble techniques can consistently outperform individual supervised models. In Table
3, we compare key metrics, including latency, model size, and the number of trainable parameters, which
are essential for deploying known attack detection methods in resource-constrained, real-time automotive
environments. Only a limited number of existing studies report these metrics. For example, although [54]
uses only the CAN ID as input and simplifies the Inception ResNet architecture to reduce complexity, it still
exhibits the longest detection time and the highest number of trainable parameters. Moreover, [88] presents
an IDS that employs two DL models, while still achieving the fastest detection latency.
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Table 3: Comparison of resource requirements for existing known attack detection methods

Reference Latency (ms) Model Size Trainable Parameters

ID-based [54] 5 - 1.76 Million
[57] 0.26 4.85 Mb -
Payload-based E?} 2:5 - T 1_ o

[63] 0.24 - 259,000
[64] 0.6 7.49 Mb -

CAN frame-based [68] 0.34-1.89 - -
[82] 1.37 - -
[88] 0.091 - -

5.4. Unknown Attacks Detection

As mentioned in Section 4.1 there are 28 papers on IDSs focusing on unknown attack detection or anomaly
detection. In this section, we analyse these papers and discuss the existing methodologies used to detect
new, unknown threats in in-vehicle networks. Detection of unknown attacks typically relies on unsupervised
learning, where models are trained solely on normal data and identify deviations from established patterns
of normal traffic as potential anomalies. Consequently, such models are particularly effective in detecting
previously unseen attacks [99]. The section is organised into five subsections: four based on the features
used to build the model, namely ID based detection, time based detection, payload based detection, and CAN
frame based detection, and a last subsection presenting a comparative discussion. Each subsection examines
different approaches for identifying malicious activities, emphasizing their strengths and limitations. Figure
7 illustrates previous work on detecting unknown attacks. As depicted in the figure, similar to known attack
detection, most studies on unknown attack detection utilised a DL approach and used CAN frames as input
features.

5.4.1. ID-Based Detection
This section reviews research where authors used only CAN IDs as the input feature to develop IDSs for
detecting new, unknown attacks.

Avatefipour et al. [100] developed an IDS that integrates a modified One-Class Support Vector Machine
(OCSVM) with the Modified Bat Algorithm (MBA) for anomaly detection. The model was built using
normal traffic, which exhibits recurring patterns in CAN IDs under normal conditions. Any deviation from
this normal traffic, such as increased message occurrence frequency or message flooding, is detected as
malicious activity. The authors compared the proposed model with baseline Isolation Forest and classical
OCSVM models, finding that the MBA-OCSVM achieved the highest true positive rate and the lowest FAR
compared to both alternatives.

Rajapaksha et al. [101] proposed CAN-CID, a context-aware IDS aimed at addressing the computational
inefficiency of N-gram-based models while detecting a wide range of cyberattacks on the CAN bus. CAN-
CID utilises an ensemble approach that combines a Gated Recurrent Unit (GRU) network and a time-based
model. The single-layer GRU network detects anomalous ID sequences and minimises detection latency,
while the time-based model identifies anomalies using time-based thresholds. The anomaly-to-total-ID ratio
within an observation window is then used to classify the window as either anomalous or benign. This study
highlights the effectiveness of ensemble models in identifying various types of attacks targeting the CAN
bus.
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Figure 7: Related work on unknown attack detection
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Khandelwal and Shreejith [102] presented a convolutional autoencoder (CAE) model designed to detect
zero-day attacks, using only benign CAN messages for training. Leveraging Vitis-Al tools, they quantised
the model to optimise performance on resource-constrained platforms. The proposed IDS demonstrates
superior classification accuracy on multiple unseen attacks, achieving a 1.3x improvement in processing
latency and an approximately 2x reduction in power usage compared to existing IDSs.

Guidry et al. [103] employed a One-Class Support Vector Machine (OC-SVM) to identify abnormal traffic
on the CAN bus. Instead of utilising raw CAN bus data, three distinct features were extracted for each unique
CAN ID: the average frequency of appearance of a CAN ID, the average time interval between consecutive
appearances of a CAN ID, and the standard deviation of transmission times for CAN IDs. These features
were selected because they rely on the temporal and behavioural characteristics of message transmissions
rather than the data content within the messages. The model was trained on CAN bus data collected under
normal operating conditions, making it well-suited for detecting unknown attacks in vehicular networks.

These methods can detect attacks targeting the CAN ID field, making them suitable for identifying pre-
viously unseen ID-level attacks. However, they are ineffective against intrusions that manipulate only the
payload, as they typically overlook payload-level attacks.

5.4.2. Time-Based Detection

This section reviews studies that use only the timestamp as the input feature for IDSs. Sharmin and Man-
sor [104] is the only study that utilises the timestamp as the sole feature to detect unknown attacks. They
proposed an Isolation Forest (iForest) anomaly detection algorithm, which detects message injection attacks
by analysing time intervals between consecutive messages with the same CAN ID. The model was trained
on normal CAN traffic and tested on attack datasets. Analysis of normal traffic revealed that ECUs transmit
messages at fixed intervals, with each CAN ID following a unique timing pattern. Message injection and
replay attacks disrupt these intervals, making them detectable. In contrast, studies that combine the times-
tamp with additional features are discussed in the payload-based detection or CAN frame detection sections.
Although this approach is lightweight and efficient, with linear time complexity and low resource require-
ments, it can only detect timing-based anomalies and fails to identify attacks that do not disrupt message
intervals.

5.4.3. Payload-Based Detection
This section discusses IDSs that use the 8-byte CAN payload as an input feature to identify new, unknown
attacks.

Balaji and Ghaderi [105] proposed NeuroCAN, a contextual anomaly detection model that consists of an
embedding layer and LSTM to learn the spatio-temporal correlations among CAN payload values. The em-
bedding layer linearly transforms the input from each CAN ID, applies a sigmoid activation, and aggregates
the outputs across all IDs. The output is then passed through an LSTM and a final output layer, forming a
prediction-based anomaly detection model. Incorporating payload values from other IDs as context allows
the model to learn inter-ID correlations. However, training a separate model for each CAN ID leads to
substantial memory usage and computational overhead.

Sun et al. [106] designed a CNN-LSTM-based IDS incorporating an attention mechanism. To extract ab-
stract features, the model employs one-dimensional convolution, followed by a bi-directional LSTM to cap-
ture time dependencies. The bit flip rate was employed to detect continuous fields from the 64-bit payload,
resulting in a 41-bit smaller signal, which is more efficient than directly predicting the full 64-bit. Experi-
ments demonstrated that this approach reduces data dimensionality and improves model training efficiency.
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The pre-processed data was given to the neural network model to predict the output signal and determine
whether the received signal was abnormal. The proposed model improved attack detection accuracy by 2.5%
compared to related research.

Thiruloga et al. [107] proposed TENET, an anomaly detection framework built on temporal convolutional
neural attention (TCNA) networks. TENET receives a sequence of signal values from a message and em-
ploys CNNs to predict the signal values of the subsequent message instance by learning the normal data’s
underlying probability distribution. A DT-based classifier was then employed as the attack detector. Experi-
mental results showed that TENET achieved a 3.32% improvement in detection accuracy, a 32.7% reduction
in the false negative rate, and 94.62% fewer model parameters compared to a baseline model. However,
the model processed data ID-wise, training separate models for each ID, which limits its ability to detect
anomalies, such as collective anomalies, that arise from interactions between different CAN IDs.

Wei et al. [108] introduced AMAEID, a multi-layer denoising autoencoder model. The model takes only
the 8-byte payload of the CAN message as input. It first transforms the raw hexadecimal payload into binary
format, then applies a multi-layer denoising autoencoder to extract deeper hidden features that represent the
underlying characteristics of the message. Additionally, AMAEID utilises an attention mechanism and a
fully connected layer to classify messages as normal or abnormal. Experimental results demonstrate that
AMAEID surpasses traditional ML algorithms like DT, KNN, and LinearSVC. However, the model was
trained and tested using only two CAN IDs.

Mansourian et al. [109] introduced an anomaly-based IDS that comprises three modules: an LSTM model,
a prediction error calculator, and a Gaussian Naive Bayes (GNB) classifier. The LSTM is trained on benign
CAN messages to learn the typical sequential behaviour of each ECU. After training, it predicts the next
payload based on previous data and evaluates it against the actual received value. In the event of an attack,
the trained LSTM network generates inaccurate predictions, causing a noticeable increase in prediction error.
The GNB classifier then classifies messages as either normal or an attack based on these prediction errors.

Zhao et al. [110] introduced the Same Origin Method Execution (SOME) attack, which mimics the period,
clock skew, and voltage of normal messages, making detection by existing IDSs challenging. To address this,
they developed a GAN-based IDS, named GVIDS, which employs one-hot encoding to represent data and
converts data frames into CAN images. This approach is effective as attacks either directly alter frame data
or disrupt frame sequences, indirectly modifying all the consecutive data fields. Results from experiments
on two real vehicles demonstrate that GVIDS successfully detects SOME attacks as well as other existing
attack types.

By focusing on the payload data, these methods are sensitive to content manipulation and capable of detect-
ing novel attacks that deviate from normal data patterns. Nevertheless, their effectiveness is limited when
attackers target the CAN ID field, which they typically ignore.

5.4.4. CAN Frame-Based Detection

This section reviews IDSs that use the CAN frame (CAN IDs and payload) as input features to detect
new, unknown attacks. Some studies also incorporate the DLC feature and/or time differences between
consecutive CAN IDs, in combination with CAN ID and payload.

Qin et al. [111] proposed an LSTM-based approach for detecting anomalous behaviour, using CAN data
collected from a real vehicle network that included simulated attacks such as tampering and packet injection.
CAN ID and payload were converted from hexadecimal to binary representations instead of decimal, which
increased the dimensionality of the features. Anomaly detection in the message stream of the CAN bus was
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performed for each ID separately. Experimental results showed that the proposed model achieved over 90%
accuracy in detecting anomalous data.

Khan et al. [112] used a bidirectional LSTM model with an improved feature processing method to mitigate
zero-day attacks. The proposed IDS is a multi-stage system, where the initial stage employs a state-based
Bloom filter technique to verify the states of incoming data, while the second stage uses a bidirectional
LSTM classifier to detect cyberattacks. They implemented data pre-processing techniques to enhance the
IDS’s scalability and performance, including feature conversion, dimensionality reduction, and normalisa-
tion. Principal Component Analysis was used to reduce feature dimensionality. The findings indicated a
19.31% increase in accuracy when the pre-processing steps were applied, compared to using unprocessed
data.

Kristianto et al. [113] introduced a lightweight unsupervised IDS using a simple Recurrent Neural Network
(RNN). The authors suggest deploying the IDS model at each domain gateway, leveraging the computational
resources of the gateways to handle only domain-specific messages. This approach enables the gateway to be
optimised for detecting malicious messages within its domain while maintaining a lightweight design. The
IDS achieves up to a 94% reduction in parameters compared to existing models, significantly decreasing
memory usage and energy consumption. Despite this reduction in size, the proposed models demonstrate
only a slight decrease in accuracy compared to current solutions.

Cobilean et al. [114] developed a Transformer neural network-based IDS designed to predict anomalous
behaviour within CAN protocol communication. The Transformer model is trained to predict the next mes-
sage in the communication sequence. An anomaly is flagged when the difference between the predicted and
actual messages exceeds a predefined threshold. A key advantage of this model is that it does not require
labelled attack data for learning the communication sequence.

Narasimhan et al. [115] proposed an unsupervised two-stage approach that combines DL with a probabilistic
model for anomaly detection. In the first stage, an autoencoder (AE) is used to extract optimal features that
differentiate between normal data and attacks on the CAN bus. Unlike other autoencoder-based models that
utilise the reconstructed signal for anomaly detection, this model leverages the latent space as input to a
Gaussian Mixture Model (GMM). In the second stage, the GMM clusters these features into normal and
attack categories. Experimental results showed that the proposed approach outperformed existing methods
on various datasets. For evaluation, a real dataset from a Mercedes MLL.350 was used; however, as this dataset
contained only four CAN IDs, the practical applicability of the model may be constrained.

Wang and Mo [116] developed a CAN bus anomaly detection model using FLXGBoost algorithm. To ad-
dress the challenge posed by the large volume of traffic data messages with limited features, they introduced
a newly defined feature: information entropy, which serves as an additional set of features in the CAN
message data domain.

Agrawal et al. [117] proposed NovelADS, an IDS that utilises CNNs and LSTMs to detect anomalies in
CAN network traffic. Novel ADS captures spatio-temporal features and long-term dependencies from CAN
messages. The DL models are trained on benign data, and the system classifies incoming CAN messages as
benign or malicious using a reconstruction-based thresholding approach.

Kukkala et al. [118] introduced INDRA, an IDS that employs a GRU-based recurrent autoencoder to learn
latent representations of normal CAN traffic and identify malicious behaviour on the CAN bus. At runtime,
the trained autoencoder monitors deviations from normal behaviour to identify potential intrusions. Signal-
level intrusion scores, calculated as the difference between predicted and actual signal values, are used to
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detect anomalous signals. Separate autoencoder models are trained for each CAN ID, enabling ID-specific
anomaly detection model.

Shi et al. [119] introduced an IDS called IDS-DEC, which integrates a spatiotemporal self-encoder em-
ploying LSTM and CNN (LCAE) with an entropy-based deep embedding clustering approach. The LSTM
component models the sequential nature of the data, capturing long-term dependencies in the time-series
data from the CAN bus. Additionally, as network data can be represented as a multidimensional matrix with
spatial structure, CNNs are employed to extract key features, thereby enhancing the accuracy and efficiency
of detection. Experimental results indicate that the proposed IDS outperforms traditional ML algorithms and
other deep clustering approaches.

Longari et al. [120] proposed CANnolo, an IDS that employs LSTM autoencoders for identifying anomalies
on the CAN bus. CANnolo analyses CAN message streams to construct a model of normal data sequences
and identifies anomalies by measuring the discrepancy between reconstructed sequences and their corre-
sponding real sequences. The authors partitioned the dataset into groups based on CAN IDs, with each
group processed independently and trained on separate models. While this approach simplifies the train-
ing process, it limits the system’s ability to detect signal correlations, thereby reducing its effectiveness in
identifying anomalies such as collective anomalies [16].

To enhance the architecture of CANnolo and reduce its computational demands to better meet the real-time
requirements of the automotive domain, Longari et al. [121] introduced CANdito, an unsupervised IDS that
leverages LSTM autoencoders for anomaly detection using signal reconstruction. CANdito regenerates the
time series of CAN messages for each ID and determines anomaly scores by calculating the reconstruction
error.

Hanselmann et al. [122] proposed CANet, an IDS based on an LSTM autoencoder, where a separate LSTM
model was assigned to each CAN ID, and their outputs were combined into a single latent vector. Anomalies
were detected by evaluating the difference between the original and reconstructed signals. The model showed
high detection accuracy while maintaining low rates of false positives and false negatives across different
attack types.

Similarly, Kishore et al. [123] introduced an anomaly detection technique using LSTM networks. The
model surpasses traditional tree-based ML algorithms, including AdaBoost, GBoost, Bagging, XGBoost,
and LGBM.

Rajapaksha et al. [124] introduced an ensemble IDS that combines a GRU network and a novel AE model
called Latent AE to identify cyberattacks on the CAN bus. The GRU network analyses the CAN ID field,
while Latent AE focuses on the CAN payload field to identify anomalies. To improve efficiency, Latent
AE incorporates Cramér’s statistic-based feature selection and a transformed CAN payload structure. By
utilising a compact latent space, it overcomes the issue of high FNs in traditional AEs caused by overgen-
eralisation. Experimental findings reveal that the ensemble IDS enhances attack detection and addresses the
limitations of the individual models.

Kim et al. [125] introduced an IDS employing multiple LSTM-Autoencoders, designed to capture distinct
patterns of normal network behaviour by utilising features such as transmission intervals and changes in pay-
load values. The IDS comprises a feature sequence extractor, LSTM-Autoencoder models, and an anomaly
detection module. The time interval sequence extractor is responsible for calculating the time gaps between
consecutive frames with the same ID, thereby generating a temporal sequence for each ID. Similarly, the
Hamming distance sequence extractor computes the Hamming distances between the payloads of consecu-
tive frames within ID-based streams. These feature sequences are processed by the LSTM-Autoencoders to
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produce reconstructed sequences. The anomaly detector evaluates the differences between the original time
interval and Hamming distance sequences and their reconstructed counterparts, using these differences to
determine whether the frame sequences are normal or anomalous.

Jo and Kim [126] proposed an IDS based on the Transformer architecture, which predicts the next data point
based on the flow of previously input data. The IDS can detect attacks affecting both the temporal and spatial
aspects of the data, as CAN data comprise temporal information recorded over time and spatial information
recorded across devices. This two-dimensional data is used to train the model, achieving higher performance
compared to using one-dimensional data.

Xiao et al. [127] proposed an anomaly detection IDS that employs a Convolutional LSTM Network (Con-
vLSTM), which accounts for both temporal and spatial correlations. The ConvLSTM model is first trained
on benign CAN data, and its predictions are used to calculate the correlation coefficient with actual data.
Abnormal behaviour is detected by comparing the correlation coefficients between the predicted and real
data. Experimental results indicate that the ConvLSTM model maintains a stable correlation coefficient
for normal data, while the coefficient for attack data declines rapidly over time. Compared to the LSTM
model, the ConvLSTM model more effectively captures the underlying features of benign data, producing a
more consistent correlation coefficient for attack-free states. Furthermore, the sharp drop in the correlation
coefficient for attack data can facilitate the detection of unknown attacks.

Table 4 summarises the related work on unknown attack detection methods, including the learning approach,
dataset used, detectable attacks, and employed algorithm. In Table 4, we assume that papers that do not
explicitly state the input features used are referring to CAN frame features.
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Table 4: Summary of related work on unknown attack detection methods

Reference Year ML \DL Category Dataset ID Payload Attack Types Algorithm
ID-Based Attack Detection
Own,
[100] 2019 ML Unsupervised Dodge [128], v Injection MBA-OCSVM
OTIDS [32]
ROAD [90], Fabrication,
[101] 2022 DL Unsupervised car-hacking [54], v Suspension, GRU
Survival Analysis Dataset [93] Masquerade
. . T DosS, Fuzzy,
[102] 2023 DL Unsupervised car-hacking [54] v (Gear, RPM) Spoofing AE
. Random ID,
[103] 2023 ML Unsupervised Own ' Zero ID, Replay OC-SVM
Time-Based Attack Detection
[104] 2021 ML Unsupervised Car Hacking [89] Injection attacks iForest
Payload-Based Attack Detection
Flood, Replay,
[105] 2021 DL Unsupervised Two Public Datasets from [89] v Drop, Spoofing, LSTM
Fuzzy
CAN Signal Flood, Replay,
[106] 2021 DL Unsupervised Extraction and v Drop, Spoofing, CNN-LSTM
Translation [129] Fuzzy
Plateau, Continuous
[107] 2022 DL Unsupervised Simulation v Change,Playback, CNN
Suppress
[108] 2022 DL Unsupervised OTIDS [32] v Payload value AE
Manipulation
. (Gear, RPM) Spoofing,
[109] 2023 ML\DL  Unsupervised  Car Hacking [89], v DoS, Fuzzy, LSTM, GNB
Survival Analysis Dataset [93] . .
Flooding, Malfunction
Spoofing, Bus-off,
[110] 2022 DL Unsupervised Own v Masquerade, GAN
SOME attacks
CAN Frame-Based Attack Detection
[1t1] 2021 DL Unsupervised Own v v Random CAN LSTM
payload Values
DoS, Fuzzy,
[112] 2021 DL Unsupervised Car Hacking [89] v v RPM, Gear LSTM
Spoofing
[113] 2024 DL Unsupervised Car Hacking [89] v v (Gear, RPM) Spoofing, RNNs and AEs
DoS, Fuzzy
[114] 2023 DL Self-supervised Sug:t/::e??;;)]/ms v Malfunction Transformer
[115] 2021 DL Unsupervised ML350 [91] v v DoS , Fuzzy AE, GMM
[116] 2021 ML Supervised 8??3;‘{3’3] v (Gear, RPM) Spoofing FLXGBoost
[117] 2022 DL Unsupervised Car Hacking[89] v v (Gear, RPM) Spoofing, CNNs, LSTMs
DoS, Fuzzy
. SynCAN Flooding, Plateau, Continuous,
[118] 2020 DL Unsupervised [122] v v Suppress, Playback GRU AE
Car Hacking [89],
[119] 2024 DL Unsupervised — Car Hacking: Attack & Defence v v ((ir)ea;, l]iPN{) Sl?:‘;ﬁ;lg’ LSTM, CNN, AE
Challenge 2020 [94] 0>, Kepiay, Fuzzy
. Interleave, Discontinuity,
[120] 2020 DL Unsupervised Recan [130] v v Data field anomalies LSTM -AE
(Gear, RPM) Spoofing,
. Recan [130], DoS, Fuzzy, Masquerade,
[121] 2023 DL Unsupervised car-hacking [54] v v Scamless change, LSTM AE
Replay
. Flooding, Plateau, Continuous,
[122] 2020 DL Unsupervised SynCAN [122] v v Suppress, Playback LSTM AE
. . Car Hacking: Attack & Flooding, Spoofing,
1231 2022 DL Unsupervised Defence Challenge 2020 [94] v v Replay, Fuzzy LST™
[124] 2023 DL U‘S‘i‘;‘:\rl‘i’:zzd/ Sy;‘g:g [[91312]’ v v 13 different attacks GRU, Latent AE
Survival Analysis Dataset [93], Spoofing. Repla
[125] 2023 DL Unsupervised ~ Car Hacking: Attack & Defence v’ v poc Fg’ pay, LSTM-AEs
Challenge 2020 [94] ueey
[126] 2024 DL Unsupervised Survival Analysis Dataset [93] v v Flooding, F}IZZY’ Transformer
21 Malfunction
[127] 2019 DL Unsupervised OTIDS [32] v v DoS, Fuzzy, ConvLSTM
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CAN frame-based methods integrate both ID and payload features, allowing for a more comprehensive
anomaly detection strategy that captures a wider range of unknown attack types. Most existing anomaly-
based IDSs (including ID-based, time-based, payload-based, and CAN frame-based methods) are trained
exclusively on normal traffic and use binary classification to flag deviations. While it is crucial to detect
new, previously unknown attacks, as attackers may introduce novel zero-day attacks that do not fit existing
patterns, it is equally important to assign fine-grained labels to known attacks. Identifying the specific attack
type can be highly beneficial for selecting appropriate countermeasures and conducting post-attack analysis
[131]. Thus, there is a need for a comprehensive in-vehicle IDS that addresses both known attacks and new,
unknown attacks while meeting deployment requirements. To address this, the next section discusses work
proposed with the ability to identify and classify known attacks while also identifying new, unknown attacks.

5.4.5. Comparative Discussion

CAN ID sequence-based detection has demonstrated high effectiveness. Rajapaksha et al. [101] report
F1-scores above 99% for 13 attack types, although performance declines on other datasets, likely due to dif-
ferences in the number of available CAN ID sequences. Similarly, Khandelwal and Shreejith [102] achieve
classification accuracy exceeding 99.5% on unseen DoS, fuzzing, and spoofing attacks, outperforming state-
of-the-art unsupervised learning based IDSs. Sharmin and Mansor [104] uniquely rely on timestamps for
unknown attack detection, showing promise but limited to CAN IDs with fixed transmission intervals rather
than event-triggered IDs. Regarding payload-based approaches, Sun et al. [106] report that their CNN
LSTM-based IDS achieves an average F1-score of 0.951. In a similar vein, NeuroCAN, proposed by Balaji
and Ghaderi [105], attains over 95% detection accuracy across multiple datasets, with F1-scores ranging
from 0.95 to 1. Notably, the highest performance is reported by Mansourian et al. [109], whose method
outperforms baseline approaches and achieves near perfect detection accuracy and F1-score. Regarding
CAN frame-based approaches, several studies report consistently high detection performance. Khan et al.
[112] show that their framework achieves accuracy between 98% and 99% across multiple datasets. Simi-
larly, Kristianto et al. [113] report strong results, with an average F1-score of 0.96, accuracy of 0.98, and
recall of 0.99, although performance is slightly lower for gear spoofing attacks. High and stable detection
performance is also demonstrated by Shi et al. [119], whose model achieves approximately 99% accuracy,
an Fl-score close to 99%, and a low false alarm rate of 0.5% across various attack types. In contrast, the
unsupervised LSTM-based approach proposed by Kishore et al. [123] exhibits lower performance, with an
accuracy of 93.06%, precision of 0.9298, and recall of 0.9234. Overall, these results indicate that unsuper-
vised learning approaches generally achieve lower performance than supervised methods. More recently,
Transformer-based models have been explored for CAN frame level anomaly detection. For instance, Co-
bilean et al. [114] report a recall of 1.0 and an F1-score of 0.9873, indicating the potential of attention-based
architectures in this context. Table 5 summarises latency, model size, and trainable parameters relevant to
IDS deployment in resource-constrained, real-time automotive environments. It should be noted that the
longest reported latencies in [117] and [120] do not specify the batch or packet size, limiting direct compar-
ison. Otherwise, all proposed approaches exhibit low detection latency. In addition, most methods have low
model sizes and a limited number of trainable parameters, except [124], which shows a substantial increase
in model size compared to the others. This generally low latency and compactness can be attributed to the
fact that most anomaly detection approaches are trained using only a single class, namely normal data.
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Table 5: Comparison of resource requirements for existing unknown attack detection methods

Reference Latency (ms) Model Size Trainable Parameters

[100] 1 - -
ID-based [101] 107100 ms window - .
[102] 0.0043 - N
[105] 1.7 - N
[106] 5.7 682 KB -

Payload-based [107] 0.25 59.62 KB 6,064
[110] 0.18 - -
[112] 0.023 3655 KB -

[113] 0.14-0.20 119 -272 KB 3,921

for each gateway
[117] 128.73 - -
[118] 0.073 to 0.08 443 kB -
[119] 0.989 - -
CAN frame-based — > 650 Less than 10 MB -
[121] 0.07 - -
[124] 0.5 94 MB 191,434

[125] 1.6 3.88 -3.98 MB -
[126] 0.26 - -

5.5. Known and Unknown Attacks Detection

To address the limitations of previous approaches and further improve the robustness and detection capability
of in-vehicle IDSs, 10 papers found from the search strategy in Section 4.1 developed IDSs capable of
identifying both known and unknown attacks [132, 31, 89, 133, 134, 135, 136, 137, 138, 139], demonstrating
significant advancements in this critical area of cybersecurity. This section reviews state-of-the-art studies
and their limitations. This section comprises four subsections: three examine the features used in model
construction, namely ID based detection, payload based detection, and CAN frame based detection, while
the last subsection presents a comparative discussion. Figure 8 illustrates exciting work on detecting both
known and unknown attacks.

5.5.1. ID-Based Detection

This section reviews research where authors used only CAN IDs as the input feature to develop IDSs for
detecting both known and new, unknown attacks.

Hoang et al. [31] and Seo et al. [89] showed that their proposed IDSs can effectively detect both previously
known and new types of attacks. However, as their approaches rely primarily on the CAN ID as the sole
feature, their effectiveness in detecting payload-based attacks is limited [16].

Hoang et al. [31] introduced a lightweight, semi-supervised learning-based IDS to detect attacks targeting
in-vehicle networks. The IDS utilises a combination of autoencoders and generative adversarial networks
(GANS). It was initially trained on unlabelled data to learn the patterns of both normal and malicious traffic,
with a small number of labelled samples used later for supervised refinement. Even though they use only
the CAN ID as the input feature, the number of trainable parameters is 2.15 million for the two models.
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Figure 8: Related work on known and unknown attack detection

Seo et al. [89] introduced a GAN-based IDS (GIDS) aimed at enhancing security in in-vehicle networks.
GIDS was trained exclusively on patterns of CAN IDs extracted from CAN data, which were then trans-
formed into simple image representations. It employs two discriminative models to identify both seen and
unseen attack data. The first discriminator is specifically trained to identify known attacks, while the second
is trained adversarially alongside the generator. As the generator produces modified images, the second
discriminator is responsible for distinguishing these generated images from genuine CAN images.

Rangsikunpum et al. [135] developed a Binarized Neural Network (BNN)-based IDS, called BIDS, aimed at
classifying known attacks and detecting unknown ones. The model adopts a hierarchical two-stage structure,
with the first stage dedicated to detecting attacks and the second to classifying known attack types. To
capture the sequential characteristics of CAN IDs, successive IDs are one-hot encoded and organised into a
48 x 48 two-dimensional grid. The proposed IDS has low computational overhead, making it suitable for
deployment on cost-effective FPGA platforms.

Han et al. [136] developed an IDS for detecting and identifying abnormalities based on the periodic event-
triggered intervals of CAN messages. Statistical features of the event-triggered intervals for each CAN ID
were calculated. These features were then used to train ML models, including DT, RF, and XGBoost to
classify attack types. This framework emphasises the event-triggered characteristics of CAN IDs and the
statistical moments associated with intervals within a defined time window.

Although using the CAN ID as the only feature reduces the input features and results in a lightweight model,
it limits the detection capability of payload manipulation attacks.

5.5.2. Payload-Based Detection
This section discusses IDSs that use the 8-byte CAN payload as an input feature to identify both known and
new, unknown attacks.

Zhang et al. [132] introduced a DNN-based IDS capable of automatically extracting features from vehicle
data packets. The model uses gradient descent with momentum (GDM) and an enhanced variant incorporat-
ing adaptive gain (GDM/AG). The results show strong performance in detecting replay attacks. However, a
major limitation of the IDS is its dependence on access to the DBC file or detailed knowledge of the CAN
payload, both of which are typically confidential and proprietary to the vehicle manufacturer [21].
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Gherbi et al. [137] introduced a multivariate time series representation matrix to structure CAN data by inte-
grating flow and payload information. They utilised autoencoder-based DL models such as Fully-Connected
Networks (FCNs), CNNs, LSTMs, and Temporal Convolutional Networks (TCNs) to extract hierarchical
representation vectors from the CAN matrix for anomaly detection. These vectors are derived either from
the bottleneck layer in unsupervised tasks or the final layer in supervised tasks. The findings indicate that
TCNs and LSTMs achieve strong performance, demonstrating their ability to effectively capture information
from the representation matrix during training.

These payload-based detection methods overlook attacks targeting the CAN ID field and rely solely on bi-
nary classification, limiting their usefulness in selecting appropriate countermeasures or identifying specific
attack types [131].

5.5.3. CAN Frame-Based Detection
This section reviews IDSs that use the CAN frame (CAN IDs and payload) as input features to detect both
known and new, unknown attacks.

Nguyen et al. [138] introduced a semi-supervised learning-based IDS that combines a variational autoen-
coder (VAE) with adversarial environment reinforcement learning (AERL) for multiclass classification. The
proposed IDS is able to detect both known and unknown attacks. The objective of this approach is to improve
training efficiency by minimising the reliance on labelled data.

Nakamura et al. [134] introduced a hybrid approach that integrates a supervised model based on LightGBM
with an unsupervised model using an autoencoder to address the challenge of transferring knowledge across
multiple car models for detecting and classifying attacks. Time differences between consecutive CAN IDs,
along with CAN ID and payload values, were used as input features. The experimental results indicated that
the hybrid model achieved superior performance compared to the pre-trained LightGBM model.

Lin et al. [139] introduced a two-stage IDS that combines incremental learning (IL) and a DNN, referred
to as IL-DNN, to address changes in driving environments and behaviours. In the offline training stage,
the DNN was applied to actual CAN data to develop a basic classification model. These predicted class
labels were then used in the second stage. In the online detection and updating stage, the DNN model
was updated using the IL approach with new, unlabeled data, while simultaneously performing intrusion
detection. However, this approach risks degrading model performance if the original model’s predictions
are incorrect. However, both proposed IDSs in [134] and [139] are limited to binary classification, do not
consider multi-class classification for known attacks, and do not account for the model size.

The majority of the previously discussed studies rely on either supervised or unsupervised learning ap-
proaches. To combine the advantages of both, Yang et al. [133] introduced MTH-IDS, a multi-tiered IDS,
aimed at securing both in-vehicle and external networks against cyberattacks. MTH-IDS uses ML algorithms
and combines supervised and unsupervised models. The proposed MTH-IDS includes two traditional ML
stages: data pre-processing and feature engineering. In the first tier, four tree-based supervised models, DT,
RF, ET, and XGBoost, are used to detect known attacks. The second tier incorporates a stacking ensemble
model alongside Bayesian optimization using the tree Parzen estimator (BO-TPE) to enhance the accuracy
of the base learners. For unknown attack detection, the third tier introduces a novel unsupervised CL-k-
means model. Lastly, the fourth tier applies Bayesian optimization with a Gaussian process (BO-GP) and
two biased classifiers to refine the performance of the unsupervised learners. Despite achieving good results
and a small model size of 2.61 MB, the proposed IDS presents some limitations. In the unsupervised model,
the authors add an additional tier with two biased classifiers to improve the results. However, training these
biased classifiers on FPs and FNs can degrade performance on unseen data. Furthermore, incorporating this

35



layer compromises the model’s unsupervised nature by introducing reliance on labelled data, which is often
impractical in real-world applications. Moreover, the authors used only four features—CAN ID, and selected
three features from the payload field which are DATA[5], DATA[3], and DATA[1] to train the model after
feature extraction. Although feature selection approaches may lead to more efficient models, they create
the risk that attackers could manipulate features not considered during the model’s training process [140].
This presents a critical limitation in CAN bus data for two reasons. First, prioritising a subset of payload
features while overlooking others may give attackers the opportunity to target the ignored features to bypass
detection [141, 142]. Second, the continuous evolution of attack methods implies that features effective for
detecting one type of attack may no longer be suitable for identifying emerging or unknown attacks [140].

Yang et al. [133] employed conventional ML models in their proposed IDS due to their lower computational
cost compared to DL algorithms. However, DL has shown superior performance in processing large vol-
umes of data efficiently and at a faster rate [143]. Considering that modern vehicle ECUs produce around
2,000 CAN frames per second [89], this capability is essential to handle the extensive data of the CAN bus.
Moreover, multiple studies have highlighted the superior performance of DL-based IDSs over traditional
ML-based IDSs in automotive applications [144]. Several factors contribute to this superiority: DL methods
are more adaptive and continuously updated with incoming data, making them particularly well-suited to
the dynamic nature of CAN bus data [132]. Moreover, traditional ML approaches often depend on man-
ual feature engineering, such as correlation-based feature selection, which can be time-consuming [45]. In
contrast, DL methods automatically learn and extract features, allowing models to identify optimal repre-
sentations directly from raw data [46]. Furthermore, DL-based IDSs are particularly effective at identifying
previously unseen attacks and are better suited to scaling with the complexity of in-vehicle network data
without compromising performance [46].

To address these limitations, Althunayyan et al. [5] developed a multi-stage IDS designed to identify seen
and previously unseen attacks, considering that some attacks may evade detection and be misclassified as
benign. In the first stage, a supervised ANN is used to identify and categorise known attacks, whereas
the subsequent stage applies an unsupervised LSTM autoencoder to identify unknown attacks that are not
captured by the initial model. If the first model fails to identify malicious traffic and classifies it as benign,
the anomaly detection model detects deviations from learned patterns and flags them as unseen attacks. Table
6 summarises the details of known and unknown attack detection studies.

A common limitation of most proposed CAN frame-based detection approaches lies in their deployment
strategy. The majority adopt a traditional centralised learning model, requiring the transmission of large
volumes of data to the cloud for both training and testing. This raises concerns related to privacy, high
communication overhead, and increased response times [49].

5.5.4. Comparative Discussion

For ID-based approaches, several studies evaluate their methods on the same benchmark dataset, including
Hoang et al. [31], Seo et al. [89], and Rangsikunpum et al. [135], enabling direct comparison. Hoang
et al. [31] report the highest performance, achieving an Fl-score of 0.9984 and a low error rate of 0.1%
using limited labelled data. Similarly, the GAN-based IDS proposed by Seo et al. [89] achieves an average
accuracy of 100% for the first discriminator and 98% for the second; however, accuracy alone may not be
a reliable metric for comprehensive evaluation. The BIDS CH model proposed by Rangsikunpum et al.
[135] achieves 99.72% accuracy and F1-scores above 99% for each class of known attacks. For unknown
attack classification, it attains an F1-score of 98.63%, with gear and rpm attacks exceeding 0.99. In contrast,
recall for DoS and fuzzy attacks decreases to 0.98 and 0.84, respectively, highlighting a trade off between
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Table 6: Summary of related work on known and unknown attack detection methods

Reference Year ML \DL Category Dataset Algorithm M-C ID Payload FL
ID-Based Attack Detection
Semi- . AE,
[31] 2022 DL supervised Car-Hacking [89] GAN v
[89] 2018 DL Unsupervised Car-Hacking [89] GAN v
. . Car Hacking [89],
[135] 2024 DL Semi-supervised Survival Analysis Dataset [93] BNN, GAN v v
[136] 2021 ML Unsupervised Own DT, RF, XGBoost v v
Payload-Based Attack Detection
[132] 2019 DL Supervised Simulation DNN v
Supervised/ FCN, CNN,
(137p 2020 DL Unsupervised SynCAN [122] TCN, LSTM, AE v
CAN Frame-Based Attack Detection
. Survival Analysis LightGBM,
[134] 2021 DL Unsupervised Dataset [93] AE v v
. . car-hacking [54],
[138] 2024 DL Semi-supervised ROAD [90] VAE and AERL v v v
[139] 2021 DL Supervised/ car-hacking [54] DNN and IL v v
Semi-supervised
DT, RE ET,
. Car-Hacking [89], o
[133] 2022 ML Hybrid CICIDS2017 [145] XGBoost, v v v
CL-k-means
051 2024 DL Hybrid Car-Hacking [89] ANN-LSTM AE vV v v

DL: Deap Learning, FL: Federated Learning, M-C: Multi-class classification.

detecting known and unknown attacks. For payload-based approaches, Zhang et al. [132] propose a DNN-
based IDS that achieves approximately 98% accuracy, with a true positive rate of around 98% and a low
false positive rate of 1-2%. In contrast, the unsupervised approach proposed by Gherbi et al. [137] shows
that, among various algorithms, TCNs perform best across most attack scenarios, achieving F1-scores in the
range of 97-99%. For CAN frame-based approaches, the IDS proposed by Nguyen et al. [138] achieves high
performance across all metrics on two datasets for known attack detection, outperforming baseline models.
The proposed system also detects unknown attacks with high Fl-scores ranging from 0.88 to 0.99 across
different attack types. The MTH-IDS proposed by Yang et al. [133] proves effective against spoofing and
DoS attacks, achieving optimal scores, but shows reduced performance for fuzzy attacks, with an F1-score
of 0.8439. Althunayyan et al. [5] report F1-scores exceeding 0.99 for known attacks and around 0.95 for
all unknown attacks, alongside a detection rate of 99.99% and a low false alarm rate of 0.016%. Latency,
model size, and the number of trainable parameters are also key evaluation metrics and are shown in Table 7.
Hoang et al. [31] report a large number of trainable parameters, which may lead to an increased model size.
Zhang et al. [132] and Nguyen et al. [138] achieve a latency of 2 to 4 ms, which is relatively high compared
to other methods. In addition, MTH IDS [133] and Althunayyan et al. [5] adopt similar strategies by using
CAN frames to detect both known and unknown attacks. While the former relies on ML and the latter on
DL, both approaches exhibit comparable model sizes, indicating that ML and DL techniques can achieve
similar levels of model sizes. Notably, despite incorporating two models, the approaches remain lightweight
and practical for deployment.
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Table 7: Comparison of resource requirements for existing known and unknown attack detection methods

Reference Latency (ms) Model Size  Trainable Parameters

[31] 0.63-0.69 - 2.15 million
ID-based [80] 0,002 - -
[135] 0.170 4.07 Mb 5
[132] 24 5 -

I EDEE [137] . 0.01 - 0.3MB 2,920 - 75,238
[138] 321 2,542 KB :
[139] 0.015 5 5
CAN frame-based [133] 06 5 61 MB -

5] 5 2.98 MB 253,582

5.6. Evaluation Metrics

In this section, we review all the evaluation metrics applied to assess the effectiveness of the IDS approaches
in previously reviewed papers. The aim is to emphasise the importance of considering these metrics when
designing models, rather than focusing on a few while ignoring others, to develop more deployable solu-
tions. Based on the reviewed papers, we categorise the evaluation metrics into performance metrics, time
complexity metrics, memory requirement metrics, and other metrics.

Performance metrics assess a model’s effectiveness, including accuracy, Fl-score, precision, recall (also
known as Detection Rate (DR)), Error Rate (ER), confusion matrix, False Negative Rate (FNR), True Pos-
itive Rate (TPR), False Positive Rate (FPR), and True Negative Rate (TNR), also known as specificity.
Additionally, False Alarm Rate (FAR), Receiver Operating Characteristic (ROC) Curve, Area Under the
ROC Curve (AUC-ROC), and Area Under the Precision-Recall Curve (AUPR) are commonly used. These
metrics are computed using True Positives (TP), False Positives (FP), False Negatives (FN), and True Neg-
atives (TN). Furthermore, the G-mean score and Matthews Correlation Coefficient (MCC) are valuable for
evaluating model performance, particularly in cases of significant class imbalance [103, 107]. Other rele-
vant metrics include kappa and loss. Table 8 presents the performance metrics used in the reviewed papers.
Accuracy, Fl-score, precision, and recall are the most commonly used metrics, while AUPR, MCC, TP, FP,
FN, TN, G-mean score, FAR, Kappa, and loss are rarely used.

For time complexity, several measures are commonly used, including training time, detection (inference)
time, and latency. Regarding memory requirement metrics for evaluating model size, key metrics include the
number of trainable parameters (which reflects memory usage), the model size in megabytes or kilobytes,
and the number of Floating Point Operations (FLOPs). Other metrics, which are less commonly used in
the reviewed papers, include resource allocation, power consumption, and Multiply-Accumulate (MAC)
operations, which measure the speed of DL models [63]. Table 9 shows the time, memory, and other metrics
used in the reviewed papers. Most papers evaluate detection latency or inference time as measures of time
complexity, while only a few have measured memory footprint and parameter count.

Most studies have focused on some performance metrics while giving less consideration to time and memory
requirements. Considering all these metrics (performance, time, and memory) makes the proposed models
more deployable and easier to compare with other works.
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Table 8: Performance metrics used in existing works

Performance Metrics

Article

Accuracy

Precision

Recall

Conf. Matrix

TPR

FPR

FNR

TNR

ER

ROC

AUC-ROC

AUPR

MCC

TP, FP

FN, TN

G-mean Score

FAR

Kappa

Loss

[55]
[65]
[113]
[11]
[6]
[112]
[133]
[138]
[134]
[135]
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[109]
[123]
[121]
[88]
[80]
[125]
[77]
[85]
[56]
[57]
[73]
[58]
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[37]
[34]
[6]
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[115]
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Table 9: Time complexity, memory requirements, and other metrics

Time Complexity Metrics Memory Requirements Metrics Other Metrics
. . . . . Memory . .
Article | Training | Detection Latency / | Execution . Training Cost | Resource | Power/Energy
Time Inference Time Time Fo((éti[;gnt Parameters (FLOPS) Utilization | Consumption MAC

[54] v v v

[68] v v

[78] v
[112] v v v

[84] v

[88] v v V3
[100] v v
[113] v v v v v v
[132] v v v
[137] v v v

[59] v v
[133] v v v

[57] v v v v
[63] v v v
[124] v v v

[64] v v

[76] v
[121] v
[101] v
[102] v v v
[105] v
[106] v v
[107] v v v
[110] v
[117] v
[118] v v v
[119] v v
[125] v v
[126] v

[31] v v

[89] v
[135] v v
[138] v v

[82] v
[139] v

[61] v v

[66] v

[70] v

[71] v

[81] v

[83] v
[136] v
[120] v v

[5] v v
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6. Federated Learning for In-Vehicle Networks

This section starts with an overview of the FL approach, followed by a review of existing FL-based in-vehicle
IDSs, and concludes with their limitations.

6.1. Overview of Federated Learning

FL is a privacy-preserving decentralised learning technique that trains models locally without transferring
row data to a centralised server [146]. Instead, it transfers model parameters to a centralised server, which
aggregates the clients’ models to build a shared global model [147]. The incorporation of FL into IDSs
enhances security and privacy, addressing the growing challenges of protecting data in an increasingly inter-
connected world. While ML and DL have made notable progress in in-vehicle IDSs, it is crucial to recognise
their limitations, particularly regarding data privacy and communication efficiency. FL mitigates these chal-
lenges by enabling local model training while preserving the privacy of raw data [148]. FL is well-suited for
in-vehicle IDSs for the following reasons:

e FL approach maintains data privacy by periodically transmitting learned model parameters to the cloud
server instead of sharing raw data. This aligns with various data protection regulations, such as GDPR
(Europe), CCPA (California), PIPEDA (Canada), and LGPD (Brazil), which are designed to prevent
the unauthorised transfer of sensitive information.

e FL facilitates the efficient creation of a robust global model by multiple participants while ensuring
the privacy of individual user data. It enables real-time model updates and data access without the
need to communicate with a central server.

o FL minimises latency by eliminating the need to transmit raw data to a central server [147].

o Referring to the 2020 guidelines of the International Telecommunication Union [149] for IDS in ve-
hicular networks, an in-vehicle IDS should be capable of updating its rule set regularly.

o FL improves the adaptability of IDS to new, previously unseen attacks by incorporating local models
updated with those trained on newly detected attacks. This enables the continuous updating of models
as new data becomes available, ensuring effective response to evolving threats in real-time.

o FL enables the development of a universal model that covers diverse driving scenarios, vehicle states,
and driving behaviors [150].

As depicted in Figure 9, the standard cloud-based FL architecture consists of a cloud server and multiple
N clients (vehicles). Selected clients download the global model from the server, perform several rounds of
local training using their own private data, and subsequently return the updated model weights to the server
for aggregation. This iterative process continues until the model reaches the desired level of accuracy.

6.2. Federated Learning for Intrusion Detection Systems for In-Vehicle Networks

Driss et al. [151] proposed an FL-based framework to safeguard vehicular sensor networks against cyber
attacks. The authors highlighted the importance of lightweight security solutions due to the limited resources
of smart sensing devices in such networks. To tackle this challenge, they employed a combination of Gated
Recurrent Units (GRU) and an ensemble method using RF to aggregate the global ML models. The dataset
was evenly distributed among the clients.

Shibly et al. [152] designed a personalised FL-based IDS without requiring any data sharing. The authors
explored both supervised and unsupervised methods within the FL framework, including CNN, XGBoost,
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Figure 9: Federated Learning Architecture

MLP, and AE. Although their results were promising for both binary and multiclass classification, they
overlooked the presence of non-IID data distributions.

Yu et al. [153] proposed an FL-based IDS employing LSTM, which takes advantage of the periodic nature
of CAN communications to predict the arbitration IDs of incoming messages. Each 11-bit arbitration ID
is converted into a one-hot encoded vector and input to the LSTM for next-ID prediction. The dataset is
evenly partitioned among clients, with each assigned 1,000 training instances and 200 testing instances. A
comparison with the centralised IDS showed a 0.071 accuracy reduction for the FL-based IDS. However,
the authors proposed that this reduction could be addressed with a cumulative error scheme.

Zhang et al. [154] designed an IDS using a graph neural network to detect anomalies on the CAN bus in
just 3 milliseconds. The IDS utilises a two-stage cascade of classifiers: one focuses on detecting anomalies
within a single class, while the other categorises detected attacks into multiple classes. The multi-class
classifier is enhanced with an OpenMax layer to enable the detection of novel anomalies from classes not
encountered during training.

Yang et al. [155] proposed an IDS using a federated DL framework that leverages recurring patterns in
network messages and employs the ConvLSTM architecture. Clients were assigned differing amounts of
data, between 50 and 3500 samples, to simulate a non-IID setting; however, the precise details of data
allocation across clients and classes were not specified.

Taslimasa et al. [156] introduced ImageFed, a privacy-preserving IDS that employs federated CNNs. To
create a non-IID environment, data were allocated among clients according to Dirichlet(u) distribution, with
() values ranging between 0.1 and 0.7. The authors investigated two scenarios that could negatively impact
FL performance: non-1ID clients and restricted access to training data.
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Longari et al. [121] deployed their proposed IDS, CANdito, presented in Section 5.4, in an FL setting
to assess the detection effectiveness and communication cost in comparison with a centralised IDS. The
experimental results indicate that FL offers a viable solution in practical scenarios where data privacy and
security are critical. Although the federated model exhibits a slight reduction in detection performance
compared to the centralised version, it still delivers robust results.

To overcome the challenge of DL models requiring large amounts of data to reach optimal performance,
particularly in the case of CAN bus IDS, Hoang et al. [157] introduced CANPerFL, an IDS that employs
a personalised FL approach to combine data from various vehicle models. Their approach builds a global
model using limited training data from each automaker, providing shared knowledge that enhances the per-
formance of individual participants. Experimental findings reveal that the proposed model achieves a 4%
overall improvement in Fl-score compared to baseline models. Its effectiveness is particularly evident in
scenarios where participants have access to limited local datasets.

Althunayyan et al. [150] deployed their proposed IDS from [5] within a Hierarchical FL. (H-FL) frame-
work. This framework aims to address the limitations of standard FL-based IDSs, which rely on a single
central aggregator, leading to system slowdowns and a single point of failure that compromises robustness
and scalability. By incorporating several edge aggregators along with the main aggregator, the proposed
H-FL mitigates the risk of single-point failures, enhances scalability, and optimises the distribution of com-
putational load. The experiments indicate that incorporating the IDS into the H-FL framework results in
an Fl-score improvement of up to 10.63%, effectively mitigating the issues of dataset diversity and attack
coverage encountered in edge-FL.

Table 10 summarises previous work. If the authors do not explicitly state the aggregation function, as in
[151, 152], it is assumed that FedAvg was employed.

Table 10: FL-based IDSs for in-vehicle network

Reference FL Non-IID Aggrega}tlon Dataset FL Implementation
Function
[156] Standard v FedAvg car-hacking [54] PyTorch
[153] Standard X FedAvg HCRL CAN Intrusion Detection [32] N\A
car-hacking [54],
[152] Standard X FedAvg NAIST CAN attack dataset[37] Keras, TensorFlow
[154] Standard N\A FedAvg, FedProx READ [158] N\A
Car Hacking: Attack & Defence
[151] Standard X FedAvg Challenge 2020 [94] Keras, TensorFlow
[155] Standard v FedAvg HCRL CAN Intrusion Detection [32] N\A
[121] Standard N\A FedAvg, FedProx Recan [130] N\A
[157] Standard - FedAvg Own Pytorch, Flower
[150]  Hierarchical v FedAvg car-hacking [54], Flower

Car Hacking [89]

6.3. Limitations of Existing FL-Based IDSs

Although previous works have contributed to the field of FL-based in-vehicle IDSs, they exhibit certain
limitations. A major challenge in FL is managing non-independent and identically distributed (non-IID)
data, where significant differences in client training data lead to varied data distributions across clients [159].
In real-world use cases, data tends to be non-IID due to differences in user behaviour, preferences, and
environments [160]. However, most existing studies overlook Non-IID data, often assuming that clients are
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assigned either an equal number of samples or a balanced representation of all classes (i.e., attack types).
This assumption contradicts real-world FL scenarios, which inherently involve Non-IID data distributions
[53], resulting in an unrealistic evaluation of FL-based IDS performance [161]. Only a few studies [155, 156,
150] have explicitly considered Non-IID data distributions. In [155], nine candidate clients are considered,
each holding a different number of data samples (ranging from 50 to 3500), although the distribution of
samples across classes and between clients remains unclear. In contrast, [156] and [150] implement a Non-
IID setting by distributing data to vehicles using a Dirichlet(u) distribution, where the (1) parameter is
adjusted between 0.1 and 0.7 to control the level of Non-IIDness. Another key limitation in FL-based in-
vehicle IDS research is the lack of client selection strategies. Real-world FL scenarios involve clients with
varying resources, network stability, and data quality. However, existing studies assume equal participation
in every training round, ignoring the dynamic nature of vehicular environments and the need for adaptive
selection.

7. Future Research Directions

This section identifies the limitations of existing approaches and explores potential future research directions
to improve the security of in-vehicle networks.

e Limited Access to Real-World Datasets: It is a fact that the best ML/DL-based models are de-
rived from high-quality data. Therefore, a key challenge in in-vehicle security research is the limited
access to real-world datasets that reflect diverse driving behaviours and environments, such as ur-
ban, mountainous, and rural terrains. Existing datasets do not fully represent real driving conditions
primarily due to privacy and legal constraints [97]. Consequently, most proposed IDSs have been
trained and evaluated under restricted conditions, limiting their ability to generalise normal vehicle
behaviour across varied scenarios. Moreover, the literature review highlights that publicly available
datasets are often less challenging, allowing even simple ML models to achieve high accuracy. How-
ever, the effectiveness of these ML/DL-based IDSs in real-world applications may not be guaranteed.
Since in-vehicle networks demand high reliability, this could hinder their practical implementation.
A promising research direction is the exploration of streaming learning, which enables models to dy-
namically adapt in real-time as vehicles encounter different driving conditions. This approach could
enhance detection accuracy and improve system adaptability across diverse environments.

e Protecting the in-vehicle IDSs: In-vehicle IDSs are vulnerable to adversarial attacks, as recent stud-
ies [1, 162] have highlighted the vulnerabilities of these systems. Adversarial attacks manipulate input
data to deceive models into producing incorrect or misclassified outputs [162], thereby threatening the
safety and security of CAVs. The literature clearly shows that almost no proposed IDS has considered
protecting the system from adversarial attacks, except for the work in [162], where Li et al. [162]
developed a defence strategy to protect LSTM-based IDSs from adversarial attacks. Consequently,
deploying IDSs without properly evaluating their adversarial robustness not only compromises vehi-
cle security but also increases the risk of malicious manipulation. Thus, training IDSs on adversarial
samples to detect these attacks is a possible solution. Moreover, adapting defence strategies from other
fields could significantly enhance the resilience of in-vehicle IDSs, ensuring robustness against both
known and emerging threats, including adversarial examples. This remains a crucial area for future
research.

o False Positives in Unsupervised Learning: As with all unsupervised learning methods [16], anomaly
detection models usually suffer from FPs. In critical systems, minimising false alarms is essential for
maintaining system reliability. Some existing approaches train biased classifiers to reduce FPs and
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FNs, but this shifts the model away from being purely unsupervised. Future research should focus
on finding practical solutions that reduce FPs without compromising the model’s unsupervised na-
ture. One potential direction is to leverage eXplainable Al (XAI) techniques to make the behaviour
of in-vehicle IDSs more interpretable and transparent. While Al methods have shown great potential
in combating cyberattacks, they often generate false alarms and produce decisions that are difficult to
interpret, leading to uncertainty and distrust [163]. XAI methods, such as SHapley Additive exPlana-
tions (SHAP) and Local Interpretable Model-agnostic Explanations (LIME), enhance the interpretabil-
ity of IDSs by providing clearer insights into model decisions, enabling more effective responses to
alarms, and fostering greater trust in Al-driven security systems [164]. Further exploration of XAI
could significantly improve both the transparency and reliability of Al-based in-vehicle IDSs.

Vehicle-Specific Models and Generalisation Challenges: Another limitation is the assumption that
all vehicles in the FL environment share the same make, model, CAN IDs, and payload interpretations.
This assumption could necessitate developing separate models for each vehicle make and model, lead-
ing to increased complexity. Generalising the IDS to learn across different vehicle types, rather than
relying on distinct models for each, remains a significant challenge due to variations in CAN bus data
and the lack of access to DBC files, which define signal meanings. While FL has shown promise in
enhancing IDS performance by integrating models from diverse driving scenarios and vehicle states,
achieving robust model generalisation across all vehicle types is complex. Future research could ex-
plore techniques such as domain adaptation or transfer learning to address variations between different
vehicle models and develop a system that works across various vehicle types.

Client Selection in FL: Another future direction for improving the efficiency of the FL process is
exploring methods for selecting or excluding clients. Given the heterogeneity of in-vehicle network
traffic, it is neither practical nor efficient to include all vehicles as federated clients [155]. Investi-
gating effective client selection strategies is crucial to optimising model accuracy while minimising
computational and communication overhead. Based on the reviewed papers on FL-based in-vehicle
IDS, no work has been done on client selection using in-vehicle traffic data. Potential strategies could
involve selecting clients based on similarities in CAN bus patterns, driving behaviour, or geographic
location to ensure that the FL process remains efficient.

Evaluation Metrics: Most of the reviewed studies evaluated their proposed IDSs using performance
metrics such as accuracy, Fl-score, precision, and recall. However, many existing IDSs either fail to
consider memory constraints and real-time requirements when designing in-vehicle IDSs [16], mak-
ing many proposed IDSs impractical for real-world applications. Given the constrained memory re-
sources of ECUs and the real-time requirements in in-vehicle networks [113], an efficient IDS must be
lightweight, have a small memory footprint [64, 118], and satisfy real-time performance requirements.
Designing in-vehicle IDS solutions requires careful consideration of deployment constraints [21]. The
limited memory, processing power, and bandwidth of ECUs in in-vehicle networks directly affect the
feasibility and effectiveness of IDS development and deployment [16]. Moreover, since CAN is a
time-critical system, inference time and detection latency are essential safety-related metrics for in-
vehicle IDS to ensure real-time performance. Inference time is the time it takes for a trained model to
generate predictions on a new data batch [63]. Latency, on the other hand, is the time a packet requires
to be transmitted from its origin to its target destination [133]. According to the United States De-
partment of Transportation, critical vehicle safety functions, including collision and attack alerts, are
required to operate within a latency range of 10 to 100 ms [165]. Meanwhile, Vehicle-to-everything
(V2X)-based autonomous and cooperative driving applications require even stricter latency, typically
between 10 and 20 ms [166]. Therefore, to comply with real-time requirements, a vehicle-level IDS
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must process each network packet in under 10 ms.

8. Conclusion

CAVs improve transportation efficiency but are vulnerable to cybersecurity threats, particularly due to the
insecurity of the CAN bus protocol. These cyberattacks can have severe consequences, such as compromis-
ing control over essential systems, necessitating robust and reliable security measures. ML-based in-vehicle
IDSs offer an effective solution by detecting malicious activities in real time. The main contribution of this
paper is a detailed survey of current ML and DL approaches for building in-vehicle IDSs, focusing on de-
tecting known attacks (38 papers), unknown attacks (28 papers), and combined known and unknown attacks
(11 papers). Moreover, we reviewed the evaluation metrics used by researchers to build their IDSs and cat-
egorised them into performance metrics, time complexity metrics, memory requirement metrics, and other
metrics, emphasizing the importance of considering all these metrics to achieve more deployable solutions.
Additionally, we reviewed research on FL-based IDSs (9 papers) applied to in-vehicle networks. The total
number of reviewed papers in this survey is 86. Lastly, we present future directions that can help enhance
the security and privacy of in-vehicle IDSs.
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During the preparation of this work, the authors used ChatGPT-4 in order to improve readability and lan-
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