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A B S T R A C T   

In clinical practice, a detailed medical history and physical exam, which includes a thorough neurological ex
amination, are used to diagnose a brain tumor. The size, form, margin, and texture of the tumor, among other 
things, can influence the diagnosis of brain tumors. Even tumor types that are pathologically different could have 
a similar texture and appearance in radiology. Furthermore, carefully reviewing all test results could take a 
significant amount of time for doctors and radiologists. As a result, more advanced medical technology, such as 
an automated system to diagnose brain tumors, is required. This study aimed to use artificial neural networks to 
develop an automated approach for detecting brain tumors in magnetic resonance imaging (MRI) scans. Towards 
this, about 4314 MRI images were acquired in this study. The data contains four classes: normal healthy brain, 
brain images having glioma, meningioma, or pituitary tumor. The raw data undergoes several preprocessing 
steps, and the impact of each preprocessing stage on the model accuracy was evaluated. A Densely Connected 
Convolutional Network (DenseNet) was trained using three different datasets. Enhancing the MRI image’s 
contrast and normalizing its intensities improve the classification accuracy. It shows that preprocessing steps 
improved the learning convergence of DenseNet training. The proposed model achieved an accuracy of 96.52%, 
and the sensitivity and specificity were 98.5% and 82.1%, respectively, using ten-fold cross-validation. Hence, 
we conclude that specific preprocessing steps significantly enhance the tumor segmentation performance for 
automated systems when using advanced techniques such as deep learning.   

1. Introduction 

The brain, which operates with billions of cells, is one of the most 
complex organs in the human body. A brain tumor occurs when an 
uncontrolled cell division forms an irregular group of cells outside or 
within the brain. With 1.8% of the overall number of new cancers 
globally, it is the 22nd most common cancer. Brain tumors are not as 
widespread as many other cancers. However, the brain cancer death rate 
is higher than the number of new cases per year (Siegel, Miller, Fuchs, & 
Jemal, 2021a). The American Cancer Society estimated 24,530 new 
brain cancer cases in the United States in 2021. Although brain cancer 
contributes to only 3% of all deaths caused by different cancer types, 
75% of those diagnosed with brain or other nervous system tumors are 
expected to die. Brain cancer is also considered the deadliest among men 

below 40 and women below 20 (Siegel, Miller, Fuchs, & Jemal, 2021b; 
Siegel, Miller, & Jemal, 2018). 

The World Health Organization classify brain tumor into 120 types 
based on tumor origin and behavior of its cells. Tumors are also classi
fied into grades, which indicate tumor aggressiveness and rate of spread 
(Louis et al., 2007). Brain tumors are graded or classified as benign or 
low-grade tumors (grades I and II) and high-grade (rate III and IV) or 
malignant tumors. The low-grade brain tumors are non-progressive 
(non-cancerous) and considered less aggressive. Malignant tumors, 
though, grow faster and are cancerous. The source of the cancer cells can 
be the brain itself (primary malignant tumor) or originate from a 
different part of the body and travel through the bloodstream to the 
brain (secondary malignant tumor) (Louis et al., 2007). 

A medical history and a physical exam, including a thorough 

Peer review under responsibility of The Egyptian Society of Radiation Sciences and Applications. 
* Corresponding author. 

E-mail address: malnowaimi@kau.edu.sa (M. Alnowami).  

Contents lists available at ScienceDirect 

Journal of Radiation Research and Applied Sciences 

journal homepage: www.journals.elsevier.com/journal-of-radiation-research-and-applied-sciences 

https://doi.org/10.1016/j.jrras.2022.05.014 
Received 7 March 2022; Received in revised form 11 May 2022; Accepted 27 May 2022   

mailto:malnowaimi@kau.edu.sa
www.sciencedirect.com/science/journal/16878507
https://www.journals.elsevier.com/journal-of-radiation-research-and-applied-sciences
https://doi.org/10.1016/j.jrras.2022.05.014
https://doi.org/10.1016/j.jrras.2022.05.014
https://doi.org/10.1016/j.jrras.2022.05.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jrras.2022.05.014&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Journal of Radiation Research and Applied Sciences 15 (2022) 33–39

34

neurological examination, are used to diagnose a brain tumor. One or 
more medical tests, such as Computed Tomography (CT), Magnetic 
Resonance Imaging (MRI), Angiography, Skull X-rays, or biopsy, may be 
included in the medical examination. Total annual net treatment ex
penses are estimated at $150000 for various cancer groups. However, 
brain cancer is the most expensive per patient for any cancer category. 
Along with other types of cancers, brain cancer has the highest total net 
costs of $135–$210 K per patient (depending on age and gender) (Louis 
et al., 2007). Hence, the best diagnostic tool is MRI, which gains value 
for money by a $113,800 QALY (quality-adjusted life year) (Siegel et al., 
2018). 

Moreover, because an accurate diagnosis will lead to better treat
ment, precise brain tumor diagnosis is challenging. The size, form, 
margin, and texture of the tumor, among other things, can influence the 
diagnosis of brain tumors. Tumors may show similar texture and 
appearance in an image even if they are pathologically different. In 
addition, it is time-intensive for doctors and radiologists to review all 
test findings manually. Thus, improved medical technology in the form 
of an automated system is required to improve patient care. 

Herein, we propose an automated method for assisting doctors in 
diagnosis to avoid misdiagnosis and incorrect treatment. Based on brain 
tumor grades categorized by WHO standards, a novel deep learning- 
based system is provided for classification. Unlike traditional ap
proaches requiring prior tumor mass segmentation, our convolutional 
neural network (CNN) methodology does not require region-based 
preprocessing procedures. Most traditional approaches train their 
model using an image of the segmented tumor instead of the whole 
image for many reasons, such as lowering processing time, minimizing 
data storage, and others. However, this study used the entire image to 
train the model rather than a segmented tumor to consider other fea
tures in the image that may enhance the model’s classification accuracy. 
Several studies have shown that clinical diagnosis using an artificial 
intelligence (AI)-based system has significant potential towards aiding 
in brain tumor detection. Such a system could enable a more accurate 
and reliable diagnosis, with a better indication for prognosis, a less 
expensive strategy than other diagnostic tests, and speed up the brain 
tumor diagnosis process. 

2. Related work 

Nowadays, one of the most promising applications in the clinical 
sector is the development of AI for healthcare. One of many potential 
applications is brain cancer detection. The process of brain tumor 
detection and identification performed by radiologists is impractical, 
nonreproducible, and time-consuming (Swati et al., 2019). AI offers a 
practical alternative that overcomes these issues by utilizing traditional 
machine learning as well as deep learning approaches. Traditional ma
chine learning techniques typically include preprocessing, feature 
extraction, feature reduction, and classification. Feature extraction can 
be classified into low-level (global) features and high-level (local) fea
tures. Low-level features are effective in describing an image but limited 
in their representation power (Selvaraj, Selvi, Selvathi, & Gewali, 2007). 
The limitation is due to the similarity in texture, boundary, shape, and 
size of different brain tumors. Examples of low-level features include 
texture features, first-order statistics (e.g., mean, standard deviation and 
skewness), and second-order statistics derived from gray-level co-oc
currence matrix (GLMC) (Selvaraj et al., 2007). High-level features, such 
as scale-invariant feature transformation (SIFT) and fisher vector (FV), 
overlook spatial information (Kang, Ullah, & Gwak, 2021). Traditional 
machine learning techniques don’t incorporate high and low-level fea
tures but instead focus on one feature type. The classification accuracy 
depends on feature extraction, which is susceptible to inter-and intra-
user variability (Jiang et al., 2013). 

Deep learning techniques eliminate the need to manually extract 
features, as the algorithm itself learns the features utilized in the clas
sification process (Litjens et al., 2017; Ren, He, Girshick, Zhang, & Sun, 

2017). Numerous publications discussed brain tumor detection and 
classification using deep learning algorithms (Chang P. et al., 2018; 
Liang et al., 2018; Sachdeva, Kumar, Gupta, Khandelwal, & Ahuja, 
2013). Sumitra et al. used neural networks to classify subjects as normal 
or abnormal based on MRI brain images (Sumitra & Saxena, 2013). 
Their study employed discrete wavelet transformation for feature 
extraction and principal component analysis for dimensionality reduc
tion. The classification was performed using two neural network tech
niques: back-propagation and feed-forward artificial neural networks. 
Although none of the performance metrics for the two neural models 
were reported, it was concluded that both models could help detect 
brain tumors. 

Zulpe et al. developed a model that combined the Gray-level co- 
occurrence matrix (GLCM) with a two-layered feed-forward neural 
network with Levenberg Marquart (LM) nonlinear optimization algo
rithm to classify four classes of brain tumors. Out of 80 images (20 per 
class), 56 images were used for training, 16 for validation, and 8 for 
testing. The model scored 97.5% accuracy (Zulpe & Pawar, 2012). In 
addition, a model comprising Regularized Kernel-based Fuzzy C-Means 
Clustering (ARKFCM) segmentation technique with support vector ma
chine (SVM) for feature extraction and artificial neural network (ANN) 
back-propagation algorithm for classification was suggested by Bhat 
et al. for brain tumor detection and classification. The model out
performed other models relying on fuzzy C means for segmentation and 
SVM or ANN for feature extraction and classification, reporting 98%, 
78%, and 91.4% sensitivity, specificity, and accuracy, respectively 
(Thejaswini, Bhat, & Prakash, 2019). 

Seetha et al. proposed convolutional neural networks (CNN) instead 
of conventional classification techniques, such as SVM and deep neural 
networks, for higher accuracy and less computational time. Two classes 
of brain images were used: normal and abnormal. The proposed CNN 
achieved 97.5% training accuracy, much higher than SVM and slightly 
higher than deep neural networks. Additionally, since CNN does not 
require features to be extracted before training, it was less computa
tional time than SVM (Seetha & Raja, 2018). Several other researchers 
employed CNN for brain MRI classification (Balasooriya & Nawarathna, 
2017; Çinar & Yildirim, 2020). Deepak et al. used a pre-trained Goo
gLeNet to extract features from brain MRI images. The extracted features 
were used with several proven classification models. The proposed 
classification system achieved a mean accuracy of 98% and performed 
well with a smaller number of training data (Deepak & Ameer, 2019). 

Korfiatis et al. used Residual Deep Convolutional Neural Network on 
brain MRI images to predict the O6-methylguanine methyltransferase 
(MGMT) gene status. By employing MGMT, a brain tumor biomarker, as 
a predictor, segmentation is no longer needed. Three classifications were 
used: no tumor, methylated MGMT, and non-methylated. The study 
reported a 94.90% accuracy with a 50-layer neural network model, 
outperforming other models considered in the research and concluding 
that biomarkers can be predicted from diagnostic images by deep neural 
networks (Korfiatis et al., 2017). Another study that incorporated 
medical images with convolutional neural networks to obtain prognostic 
and predictive information was carried out by Li et al. MRI images were 
used to predict the isocitrate dehydrogenase 1 (IDH1) mutation status in 
their research. In low-grade glioma, the IDH1 gene is a molecular 
biomarker that reflects more than half the projected value. They eval
uated models based on single and multiple MRI modality images. Mul
tiple modality image-based models scored 92.4% accuracy, 94.3% 
sensitivity, and 86.6% specificity, higher than all single modality-based 
models (Li, Wang, Yu, Guo, & Cao, 2017). 

3. Materials and methods 

3.1. Dataset and preprocessing 

More than 4314 brain images were gathered from different open- 
access repositories in this study (Jun Cheng, 2017; n.dKaggle.). The 
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data was collected at Nanfang Hospital in Guangzhou and General 
Hospital at Tianjin Medical University, China, between 2005 and 2010. 
We iterated through each file, automatically extracting and storing the 
original image and related metadata. All images are two-dimensional 
and represent 341 patients with multiaxial, coronal, and sagittal views 
for each patient. The image matrices are 512 × 512 with a pixel size of 
0.49 mm. The data contains four classes: Normal healthy or images with 
glioma, meningioma, or pituitary tumor. Fig. 1 shows an example of 
each class where the highlighted area indicates the tumor location and 
size. 

The images went through two different stages (Fig. 2). In the first 
stage, an image augmentation technique was employed to increase the 
number of images by altering the existing dataset to generate an 

artificial dataset. The augmentation process was utilized by randomly 
rotating and flipping the images. The primary purpose of augmenting 
the original data is to increase the data size and improve the learning 
ability of the deep learning algorithm. Then, to prepare the images for 
the machine learning models and train the model faster, all images were 
resized to 224 × 224 pixels, the size of the neural network’s input layer. 
The non-brain tissue was then removed from the images in the second 
stage by implementing a skull extraction. The skull stripping process was 
done by implementing the procedure proposed by Roslan(Roslan, Jamil, 
& Mahmud, 2010). At this stage, the original dataset was augmented, 
resized, cleaned, and skull-free. The resulted dataset was then dupli
cated, and one set was saved separately as the first version, dataset-1, 
and the second set was passed to the next stage. 

Fig. 1. An example from each class where the highlighted area indicates the tumor location and size. The data contains four brain images classes: Normal healthy 
brain or brain images with glioma, meningioma, or pituitary tumor. 

Fig. 2. An illustration of the original (left) and processed image (right).  
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MRI images generated via different scanners, settings, or times may 
lead to significant intensity fluctuations, affecting the classification ac
curacy. Therefore, intensity normalization is an essential preprocessing 
step. In the second stage, intensity normalization was carried out using 
two approaches, WhiteStripe and Z-Score (Carré et al., 2020). The 
Z-Score technique normalizes the image’s pixels intensities by sub
tracting the image mean intensity value (μI) from each pixel intensity I 
(x) and dividing the result by the standard deviation (σI). However, in 
the White-Stripe technique, we subtract the mean intensity value of the 
normal-appearing white matter (NAWM) (μws) from each pixel intensity 
I(x) and divide the result by the standard deviation of the NAWM (σws). 
Finally, to evaluate the impact of the intensity normalization technique, 
two more versions of the data were created. Dataset-2 contains all the 
dataset-1 images after applying the Z-Score normalization technique. 
However, dataset-3 includes all the dataset-1 images after using the 

White-Stripe normalization technique. Note, all datasets have the same 
images but have undergone different processing steps. 

3.2. Data partitioning 

Supervised machine learning algorithms often involve dividing data 
into several portions for training, verifying, and testing classifiers. In this 
study, four distinct datasets were randomly generated. The dataset in
cludes four labeled datasets for the classification model (Normal healthy 
brain and brain images with glioma, meningioma, or pituitary tumor). 
Each class has 1500 images, the original dataset plus the augmented 
dataset. Then, the organized data set was randomly partitioned into 70% 
and 30% for the training and testing set, respectively. Table 1 summa
rizes the number of images used for each class and partition. 

3.3. Network architecture 

In general, any deep learning model consists of two stages, training 
and testing. The model extracts and examines the features that lead to 
the best classification accuracy in the training phase. While in the testing 
phase, the selected features in the training phase are used to examine the 
model classification accuracy in unseen images (testing data). Although 
several types of deep learning model architecture for classification exist, 
they all share the same training and testing stages. The significant dif
ference between them is the depth and the architect of the model used. 

Table 1 
The number of images used for each class and each partition.  

Class No. of images 

Original Augmented Total Training Verifying 

Normal 1250 250 1500 1050 450 
Glioma 1426 74 1500 1050 450 
Meningioma 708 792 1500 1050 450 
Pituitary 930 570 1500 1050 450 
Total 4314 1686 6000 4200 1800  

Fig. 3. A diagram of a deep DenseNet and the network architecture.  
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Recent studies investigate the advancement of using a deeper network 
(Huang, Liu, Van Der Maaten, & Weinberger, 2017). It shows that a 
deeper network could learn more complex features of the input data and 
produce superior results. However, several authors highlighted that 
using a deeper network comes with a cost degradation error of deeper 
convolutional networks (Chang K. et al., 2018). 

This study employs Densely Connected Convolutional Networks 
(DenseNets). DenseNets links each layer feature to the next layer in a 
feed-forward approach to eliminate the risk of the degradation error 
(Huang et al., 2017). Fig. 3 shows a diagram of a deep DenseNet with 
four dense blocks. The model has 58 layers and was composed of four 
dense blocks and the network architecture. Each layer incorporated a 
convolutional filter, a rectified linear unit (ReLU) activation layer, and a 
batch normalization (BN) layer, where the transition layers consist of a 
Convolution and pooling layer. 

3.4. Training 

During training, the learning rate was carefully regulated using a 
stochastic descent technique(Huang et al., 2017). An initial training rate 
of 0.0001 was chosen at the start of training and then decreased by a 
factor of 0.2 every five epochs with a total of 80 epochs, using 
mini-batches of 50 observations at each iteration. As the training 
continued, the training rate changed, allowing for a smaller and more 
precise search for the best value. 

3.5. Evaluation metrics 

All labeled images were randomly divided into two subsets: 70% 

training, 30% validation, and testing. 10-fold cross-validation was 
applied to evaluate the model performance, the data was split into ten 
sets, and each set contained the same number of images per class. 
Randomly, nine sets were used for training, and the remaining set was 
used for testing. This process loops ten times, with a different subset of 
the data being evaluated each time. The following are the performance 
metrics for the proposed work:  

• Accuracy: The proportion of true results among the total number of 
cases studied. Accuracy= (TN+TP)/(TN+FN+TP+FP)  

• Sensitivity (Se) also be referred to as the recall, hit rate, or TPR (True 
Positive Rate): The percentage of negatives that are mistakenly 
recognized as positives: Se = TP/(TP+FN)  

• Specificity (Sp) also be referred to as True Negative Rate (TNR): The 
percentage of true negatives that are appropriately identified as 
such: Sp = TN/(TN+FP) 

Where True Positive (TP), True Negative (TN), False Positive (FP) 
and False Negative (FN). 

4. Results 

As mentioned in the preprocessing data section, three different 
datasets were used to examine the effect of the preprocessing stage on 
the overall accuracy of the learning model. A 10-fold cross-validation 
was applied to evaluate the model performance. Fig. 4 shows the 
training progress for DenseNets. It presents the training accuracy of each 
individual mini-batch. The result reflected an accuracy gain in the model 
performance when the intensity normalization step is applied, dataset-2 

Fig. 4. Training progress for DenseNets, the first dataset was the original data without contrast enhancement and intensity normalization. In the second dataset, only 
the intensity of all the images was normalized. The third dataset images passed through the whole preprocessing stages. 
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and dataset-3. The result agreed with the initial assumption about the 
importance of the MRI image’s intensity normalization in the classifi
cation accuracy. Also, the white-strip technique converges faster than 
the Z-Score normalization technique to the highest solution. It shows 

that using dataset-3 to train the model improved the learning 
convergence. 

After the training stage, the trained model was used to classify the 
test data. Table 2 presents the ten-fold cross-validation and the average 
accuracy for each dataset. The results show that dataset-3 enhanced the 
model performance and significantly improved classification accuracy. 
The model showed the highest accuracy, with an average accuracy of 
96.52%. 

Table 3 presents sensitivities and specificities for each class in 
dataset-3 on ten-fold cross-validation. The table demonstrates the result 
for each fold and the average across all tests. The proposed model per
formance was compared against the latest publications. However, this 
comparison may not be genuinely valid as different datasets were used. 
The primary purpose is to highlight the overall view of the results ob
tained in this study and other studies in this area. Table (4) shows a list 
of DL models used to classify brain tumors based on the MRI images. The 
table stated the author, the year of publication, the model used, the data 
size used to train the model, and the evaluation metric result. Some of 
the publications include the Accuracy, Sensitivity, and Specificity of the 
classification model. Sensitivity describes the model’s ability to predict 
true positives in each given category is sensitivity. It presents a perfor
mance comparison of proposed and current classifiers, demonstrating 
that the proposed work outperforms all current classifiers. The proposed 
model achieved the highest accuracy, with an approximate accuracy of 
96.52% and the sensitivity and specificity are 98.5% and 82.1%, 
respectively (Table 4). 

5. Discussion and conclusions 

This study aimed to build an automated method for classifying MRI 
images of brain tumors using artificial neural networks and examine the 
effect of the preprocessing stages on the overall accuracy of the learning 
model. An algorithm was successfully developed and tested using pub
licly available brain tumor MRI images. About 4314 MRI images were 
gathered for this investigation. The data included images of several 
forms of brain tumors, four classes: normal healthy or images with gli
oma, meningioma, or pituitary tumor, and three orthogonal planes 
(sagittal, axial, and coronal). The images were prepared in the pre
processing stage to train the convolutional neural network. The pre
processing stages included augmentation, resizing, skull stripping, and 
normalization. Two different approaches were implemented to 
normalize the MRI image’s intensities, the Z-Score normalization tech
nique and the white-strip technique. In addition, three different datasets 

Table 2 
Sensitivities and specificities for each class in the dataset-3 on ten-fold cross-validation. The table shows the result for each fold and the average across all tests.  

cross-validation Classification accuracy Average 

cv 1 cv 2 cv 3 cv 4 cv 5 cv 6 cv 7 cv 8 cv 9 cv 10 

Dataset (1) 66.79 73.05 65.93 71.07 81.93 75.88 59.19 74.94 84.13 68.09 72.10 
Dataset (2) 87.01 91.39 78.84 88.48 94.02 82.03 79.51 93.21 91.79 83.91 87.02 
Dataset (3) 95.29 96.64 97.63 94.06 98.72 95.96 96.62 97.75 97.93 94.57 96.52  

Table 3 
Sensitivity and specificity for each class in the dataset-3 on ten-fold cross-validation. The table shows the result for each fold and the average across all tests.  

Evaluation Metrics Class cross-validation result Average 

cv 1 cv 2 cv 3 cv 4 cv 5 cv 6 cv 7 cv 8 cv 9 cv 10 

Sensitivity Normal 97.65 94.57 96.13 94.26 94.26 97.53 98.23 98.05 98.59 97.71 96.70 
Glioma 96.66 94.34 93.26 94.21 93.19 96.16 97.67 95.45 96.66 97.84 95.54 
Meningioma 92.76 91.19 94.02 89.05 91.69 95.28 95.90 88.78 96.26 94.03 92.90 
Pituitary 96.48 95.82 89.89 92.51 86.48 90.68 90.10 83.32 88.27 88.68 90.22 

Specificity Normal 92.57 88.52 94.84 95.82 95.78 90.64 93.59 95.67 94.25 95.80 93.75 
Glioma 96.53 94.01 95.41 89.59 89.62 97.14 94.81 91.36 95.05 99.95 94.35 
Meningioma 98.81 97.88 87.30 93.15 91.92 91.58 96.78 85.73 95.20 88.76 92.71 
Pituitary 94.46 87.21 94.91 94.85 92.66 96.97 95.37 90.64 90.37 93.15 93.06  

Table 4 
Comparison of our proposed work and existing Classifiers in terms of perfor
mance metrics.  

Author Year Type of DL Data 
size 

Evaluation 
metrics 

Our Proposed 2021 Neural Network (NN) 720 Sensitivity 
(98.5%) 
Specificity 
(82.1%) 
Accuracy 
(96.52%) 

P Thejaswini et al. ( 
Thejaswini, Bhat, & 
Prakash, 2019) 

2020 Artificial Neural 
Network (ANN) 

94 Sensitivity 
(98%) 
Specificity 
(78%) 
Accuracy 
(91.4%) 

Ken Chang et al. ( 
Chang et al., 
2018a) 

2019 Residual CNN 
(ResNet34) 

406 Accuracy 
85.7% 

Peter Chang et al. ( 
Chang et al., 
2018b) 

2019 CNN 256 Accuracy 
83% 

Sen Liang et al. (Liang 
et al., 2018) 

2018 Multimodal 3D Dense 
Net 

167 Accuracy 
84.60% 

Multimodal 3D Dense 
Net with Transfer 
learning 

Accuracy 
91.40% 

L. Han et al. (Han & 
Kamdar, 2018) 

2018 Convolutional 
Recurrent Neural 
Network (CRNN) 

5235 Accuracy 
0.62 

Chenjie Ge et al. (Ge, 
Gu, Jakola, & Yang, 
2018) 

2018 2D-CNN 285 Accuracy 
90.87% 

159 Accuracy 
89.39% 

Zeju Li et al. (Li et al., 
2017) 

2017 CNN 151 Accuracy 
92% 

P. Korfiatis et al. ( 
Korfiatis et al., 
2017) 

2017 ResNet50 155 Accuracy 
94.90% 

ResNet36 Accuracy 
80.72% 

ResNet18 Accuracy 
76.75%  
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were generated to examine the effect of the normalization step and 
technique. 

The first step was to investigate whether normalizing the image’s 
intensity would affect the learning model. Then the paper examines the 
influence on the accuracy of the learning model when a different type of 
normalization is utilized. Ten-fold cross-validation was applied in all 
tests. This study used Densely Connected Convolutional Networks 
(DenseNets). The model has 58 layers and is composed of four dense 
blocks. The study has shown that: 1) classification model performance is 
substantially improved when performing an intensity normalization 
preprocessing step; 2) classification accuracy is affected by the 
normalization method used. There was a significant difference in the 
classification model accuracy when the white-strip technique was used. 
Since each normalization method uses a diffident approach to normalize 
the image pixel’s intensity, these normalization approaches enable a 
different set of activation features in the deep learning model and 
eventually affect the training accuracy. The white-strip normalization 
method enhanced the white matter contrast, and that improved the 
classification model performance. 

Although utilizing the white-strip normalization method positively 
impacted the model accuracy, it requires more processing time and is 
more challenging to perform. Moreover, the normalization quality relies 
on the white matter segmentation as the white-strip technique normal
izes images based on the intensity values of the normal-appearing white 
matter (NAWM). 
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