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A B S T R A C T   

Breast cancer (BC) biomarkers can radically improve the early detection in patients and, as a result, reduce 
mortality rate, whether for detecting individuals at increased risk of developing cancer or in the screening 
process. Finding a successful biomarker for breast cancer would be a fast and low-cost first solution to predicting 
BC, and it could potentially lead to a decline in the global BC mortality rate. However, biomarker exploration 
translates into the role of feature ranking and selection in machine learning terminology. This study explores the 
influence of using a particular biomarker or combinations of different biomarkers as predictors for breast cancer. 
Three different classification algorithms were integrated with a sequential backward selection model: support 
vector machine (SVM), random forests (RF), and Decision Trees (DTs). The result shows that the optimal set of 
biomarkers comprises Glucose, Resistin, homo, BMI, and Age using the SVM model. The sensitivity and speci
ficity were 0.94 and 0.90, respectively and the 95% confidence interval for the AUC was [0.89, 0.98]. The result 
indicates that Glucose, Resistin, homo, BMI, and Age combined can serve as a crucial BC biomarker in BC 
screening and detection.   

1. Introduction 

Despite recent technological developments in diagnostic radiology, 
breast cancer detection remains a persistent challenge. According to 
recent statistical data, breast cancer is the most common cancer among 
females and the second-highest contributor to cancer mortality among 
humans after lung cancer (Siegel et al., 2018; Stewart and Wild
Organization, 2014). The reduction of mortality rate is associated with 
early detection, which can be achieved through screening programs 
(Lauby-Secretan et al., 2015; Rue et al., 2009). Early detection of breast 
cancer relies heavily on screening programs. Mammography is by far the 
most effective way to detect breast cancer at an early stage. However, 
socioeconomic limitations, and the geographical distribution and qual
ity of mammography machines, can restrict access to mammographic 
screening in any given area. These factors are not directly under control, 
and sometimes they are tough to overcome. These practical challenges 
motivate researchers and health care providers to start searching for an 
alternative solution. That search leads to the exploration of Breast 
cancer biomarkers. Breast cancer biomarkers have been studied to 
improve early detection and reduce mortality. Biomarkers not only can 

be indicative of cancer presence (Kuppusamy et al., 2017; Levenson, 
2007; Singh, 2019), but also of patient responsiveness to proposed 
treatment (Nicolini et al., 2018; Al-Khater et al., 2021). Biomarkers have 
been used to develop predictive models (Assiri & Kamel, 2016; Patrício 
et al., 2018; Santillán-Benítez et al., 2013). These models are developed 
by evaluating different biomarkers to find which single or combination 
of biomarkers is more indicative of breast cancer. 

Researchers evaluated various biomarkers, and several predictive 
models were developed. Hwa et al. used logistic regression models to 
evaluate serum biomarkers’ effectiveness in the early detection of breast 
cancer (Carneiro et al., 2020). Samples obtained showed Tissue poly
peptide specific antigen (TPS) to provide the highest predictive value 
with 80% sensitivity. In comparison, insulin-like growth factor binding 
protein-3 (IGFBP-3) and breast cancer-specific cancer antigen 15.3 
(CA15-3) sensitivity were reported to be 65% and 56%, respectively. 
Incorporating CA15-3 and IGFBP-3 with TPS showed the best multi
variate logistic regression model with a sensitivity of 85%. Several 
studies evaluated adipokines for breast cancer, with many reporting 
higher leptin, resistin, and visfatin among confirmed cancer cases than 
patients with benign lesions and healthy subjects (Cust et al., 2009; Wu 
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et al., 2009). Pham et al. evaluated nine biomarker predictors and 
proposed a novel generalized logistic dependent model (Pham & Pham, 
2020). The novel model outperformed other models considered in his 
study, such as random forest and multiple logistic regression. It showed 
an accuracy ranging from 88.7% (trained with 100% of the dataset) to 
100% (trained with 70% of the dataset) when used with Glucose, Age, 
Resistin, BMI, and MCP-1 as predictors. 

Some researchers used imaging Biomarkers such as thermal imaging 
combined with various feature selection and classification methods for 
breast cancer detection. Zarei et al. evaluated a hybrid of Gaussian Mean 
Shift (GMS) and roulette wheel selection approach-based segmentation 
method for breast cancer detection using infrared thermal images. The 
suggested method showed to improve the performance of the Computer- 
Aided-Detection (CAD) system in comparison with other CAD systems 
using Mean Shift (MS), and Fuzzy C-Means (FCM) segmentation algo
rithms (Zarei et al., 2021). Darabi et al. presented a thermogram-based 
CAD system to detect breast cancer. Their CAD system used SVM and 
kNN algorithms for classification and the Random Subset Feature Se
lection (RSFS), the hybrid of minimum Redundancy Maximum Rele
vance (mRMR), and Genetic (GA) with RSFS algorithms for feature 
selection. Results showed RSFS with kNN and have accuracy and 
sensitivity of 85.36% and 94.11%, respectively (Darabi et al., 2021). 
However, this study focus on selecting Non-Imaging Biomarker. 

Screening programs and biomarkers’ effectiveness and accuracy in 
early cancer detection were sought to be improved by incorporating 
artificial intelligence techniques (McKinney et al., 2020; Shen et al., 
2019). The successful application of artificial intelligence techniques on 
predictive modeling, object detection, and classification (Krizhevsky 
et al., 2017; Zhang et al., 2015) drew attention to the possibility of 
implementing such methods in medical diagnostic applications to 
improve diagnosis accuracy and reduce recall rate. The introduction of 
deep learning methods into mammography showed promising results in 
detecting and classifying breast lesions (Carneiro et al., 2015; Dhungel 
et al., 2015; Peng et al., 2016). Furthermore, breast cancer biomarkers 
have been used to develop predictive models(Assiri & Kamel, 2016; 
Patrício et al., 2018; Santillán-Benítez et al., 2013). 

Features identified in the literature for breast cancer varied from one 
work to another, even when the same data is used(Aslan et al., 2018; 
Ghani et al., 2019; Li & Chen, 2018; Patrício et al., 2018; Rahman et al., 
2020; Santillán-Benítez et al., 2013; Silva Araújo et al., 2019). This 
variation motivates us to investigate the factors that affect biomarkers 
ranking and selection techniques. This study focuses on age, BMI, 
Glucose, Insulin, HOMA, Leptin, Adiponectin, L/A ratio, resistin, and 

MCP-1. These biomarkers have been used in several studies (Aslan et al., 
2018; Ghani et al., 2019; Li & Chen, 2018; Patrício et al., 2018; Rahman 
et al., 2020; Santillán-Benítez et al., 2013; Silva Araújo et al., 2019). As 
mentioned above, these studies reflect some level of disagreement on 
which single or combination of biomarkers is the best indicator for 
breast cancer. 

2. Feature ranking 

Biomarker exploration translates into the role of feature ranking and 
selection in machine learning terminology. The objective of using 
feature ranking and selection is to analyze the impact of using a specific 
feature or combinations of a different feature as predictors in the clas
sification model’s accuracy. In some cases, all features may not be 
helpful for some classification problems. Some features may be irrele
vant, redundant, and noisy. Moreover, even when all features are rele
vant and contain information about the response variable, using a high 
number of features may negatively impact prediction accuracy(Iguyon 
& Elisseeff, 2003). Thus, the feature used to construct a specific classifier 
considerably impacts the classifier’s accuracy, sensitivity, and compu
tational cost. Therefore, feature ranking and selection aim to eliminate 
redundant or irrelevant features and reduce the feature dimension. 
Although both analysis processes, feature ranking and feature selection, 
are related, they target different outcomes. Feature ranking techniques 
rank each feature individually according to some decisive factors such as 
feature variance and feature relevance to the response. There are several 
types of feature ranking techniques, such as ranking the feature using 
the p-values of either the chi-square test statistics or the F-test statistic. 
The Mann–Whitney U test, a non-parametric test for equality of popu
lation medians of two separate samples, is another ranking technique. It 
is a dependence test such as a t-test, F-test. However, unlike the t-test and 
F-test, the Mann-Whitney U test is non-parametric. Considerable dis
agreements were highlighted in the rank of the features using different 
ranking methods(Wang et al., 2001; Yang & Mao, 2010). Feature in top 
positions in some ranks may appear at the bottom positions in the other 
ranks. 

Feature ranking can be considered as a subset of the feature selection 
process. The feature selection method aims to eliminate irrelevant or 
redundant features. In other words, the aim is to find a subset of the 
feature set that can be used to train the classifier and improve accuracy 
and reduce execution time. However, all possible subset is computa
tionally impracticable. Our study tested all possible subsets required to 
generate (210) − 1 = 1024 different sets of features and models. Current 
feature selection approaches fall into two general categories filter-based 
and wrapper-based algorithms. The filter-based assess the significance 
of features by their scores in various statistical tests for their correlation 
with the outcome variable. The feature subset selection is based on a 
user-specified threshold, which requires the user to choose an arbitrary 
cutoff on the number of features chosen. Moreover, Filter-based algo
rithms stand on the assumption that features with a higher variance may 
contain more useful information without considering the relationship 
between features (Iguyon & Elisseeff, 2003; Petković, Kocev, & 
Džeroski, 2019). Wrapper-based algorithms assess the significance of all 
possible feature subsets based on the performance of the classifying 
model. Based on each feature’s impact on the classification model ac
curacy, the feature is added or removed from the feature subset. 
Wrapper-based approaches regularly reach better classification accu
racy than the filters-based approach because the feature selection pro
cess is optimized for a particular classification model. However, 
wrappers are computationally expensive because they use a classifying 
algorithm to evaluate every subset of features. Turning the feature se
lection into a sequential decision process can significantly reduce the 
computational time and overcome the wrapper-based algorithm’s 
drawback. Sequential feature selection is one of the most broadly used 
feature selection methods. It selects a feature subset by sequentially 
adding (forward search) or removing (backward search) until certain 

Table 1 
The quantitative features of patients and healthy controls in terms of their (mean 
± standard deviation) and medians(interquartile) ranges.  

Biomarkers Median (interquartile range) Mean (Standard deviation) 

Controls Patients Controls Patients 

Age (years) 65 (34.5) 53 (23) 58.08 ±
18.96 

56.67 ±
13.49 

BMI (kg/m2) 27.69 (9.32) 27.41 (8.07) 28.32 ± 5.43 26.98 ±
4.62 

Glucose (mg/dL) 87 (11) 98.5 (18) 88.23 ±
10.19 

105.56 ±
26.56 

Insulin (μU/mL) 5.48 (2.92) 7.58 (11.84) 6.93 ± 4.86 12.51 ±
12.32 

HOMA 1.14 (0.93) 2.05 (3.44) 1.55 ± 1.22 3.62 ± 4.59 
Leptin (ng/mL) 21.49 

(26.19) 
18.88 
(25.18) 

26.64 ±
19.33 

26.6 ±
19.21 

Adiponectin (μg/ 
mL) 

8.13 (5.63) 8.45 (6.93) 10.33 ± 7.63 10.06 ±
6.19 

L/A 2.36 (4.75) 2.33 (3.18) 4.05 ± 4.06 3.91 ± 4.77 
Resistin (ng/mL) 8.93 (6.36) 14.37 

(14.97) 
11.61 ±
11.45 

17.25 ±
12.64 

MCP-1(pg/dL) 471.32 
(393.29) 

465.37 
(440.69) 

499.73 ±
292.24 

563.02 ±
384  
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stopping conditions are reached. The objective of this study is to explore 
the influence of using a specific feature or combinations of different 
features as predictors for breast cancer, using the sequential feature 
selection method in the classification model’s accuracy (Aggrawal & Pal, 
2020). 

3. Materials and methods 

3.1. Data 

The data was collected by the Gynecology Department of the Uni
versity Hospital Centre of Coimbra (CHUC) between 2009 and 2013 
(Crisostomo et al., 2016; Patrício et al., 2018). Patient data were for 
women diagnosed with breast cancer (BC) and before surgery and 
treatment. Healthy volunteers were nominated and participate in the 
study as controls. A total of 64 women with breast cancer (BC) and 52 
healthy volunteers was included in the study. Collected data included 
age, weight, height, and Blood samples. Blood were taken to determine 
biochemical parameters in all participants. For each participant, mul
tiple clinical features were examined or evaluated, including age, BMI, 
Glucose, Insulin, HOMA, Leptin, Adiponectin, L/A ratio, Resistin, and 
MCP-1. More details about the data collection process are available 
(Crisostomo et al., 2016; Patrício et al., 2018). Table 1 presents collected 
data for patients and controls in terms of their (mean± standard devi
ation) and medians(interquartile) ranges. 

3.2. Feature selection and machine learning classifiers 

In this study, we used the Sequential backward selection (SBS) 
method (Theodoridis & Koutroumbas, 2009; Wang et al., 2001; 
Aggrawal & Pal, 2020). As illustrated in Fig. 1, First, all features com
bined were used to train the classifier. Then, the classifier will be trained 
on each subset of n-1 features. The subset with the lowest predictive 
accuracy, i.e., higher misclassification rate, is removed. In another way 
the feature nonexistent in the feature subset that shows the highest 

performance is removed. The process will be repeated for the remaining 
subset of feature (n-1), the classifier will be trained on each subset of n-2 
and then one feature will be eliminated based on the predictive accu
racy. This process is repeated until the first local minimum of the 
cross-validation MCE is found or the model trained on all the possible 
candidate feature subset based on the criteria mentioned above. 10-fold 
cross-validation was applied to the training set to evaluate and compare 
the performance of each classifier along with the anticipated feature 
subset. 

Three different classification algorithms were integrated with the 
Sequential backward selection model: support vector machine (SVM) 
(Ma & Guo, 2014), random forests (RF) (Cutler et al., 2012), and Deci
sion Trees (DTs) (Rokach & Maimon, 2008; Safavian & Landgrebe, 
1991). The development of this method employs 10-fold Monte Carlo 
Cross-Validation (MCCV) to ensure stability. Moreover, to avoid the 
resubstitution error, the data was randomly partitioned into two groups: 
70% training set and 30% testing set. The training and test dataset is 
created with equal distribution. 

3.3. Performance metrics 

Several widely used statistical measures to evaluate classifiers’ per
formances were computed. The list below provides insights into a few 
basic concepts and measurement procedures that summarize these 
metrics.  

● Confusion matrix (CM) confusion matrix (CM) is such that CMj
i is 

equal to the number of observations in group I and classified to be in 
group j. 
– True Positive (TP): CM1

1, True Positive (TP): when the model pre
dicted as Positive, and they were Positive.  

– True Negative (TN): CM2
2, True Negative (TN): when the model 

predicted as Negative, and they were Negative. 
– False Positive (FP):CM1

2, False Positive (FP): when the model pre
dicted as Positive, but they were Negative. 

Fig. 1. Sequential backward selection (SBS) method: First, all features combined were used to train the classifier. Then, the classifier will be trained on each subset of 
n-1 features. The subset with the lowest predictive accuracy is removed. This process is repeated until the first local minimum of the cross-validation MCE is found or 
the model trained on all the possible candidate feature subset. 
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– False Negative: CM2
1, False Negative: when the model predicted as 

Negative, but they were Positive. 
● Misclassification rate (%) (MCE): The number of misclassified ob

servations divided by the number of observations; MCE =
FP+FN

TP+TN+FP+FN  
● Sensitivity (Se) also be referred to as the recall, hit rate, or TPR (True 

Positive Rate): The proportion of actual negatives that are correctly 
identified as positives; Se = TP

TP+FN  
● Specificity (Sp) also be referred to asTrue Negative Rate (TNR): The 

proportion of actual negatives that are correctly identified as nega
tives; Sp = TN

TN+FP  
● Receiver Operating Characteristic (ROC) curve and Area Under the 

ROC Curve (AUC): ROC is a probability curve and AUC represents 
degree or measure of separability. The ROC curve is plotted with TPR 
(True Positive Rate) against the FPR (False Positive Rate) where FPR 
= 1-Sp. TPR is on y-axis and FPR is on the x-axis.  

● Precision (Pr) or Positive predictive value (PPV): The ratio of true 
positives to all predicted positives; Pr = TP

TP+FP  
● F-score or F measure: The harmonic mean of the precision and recall; 

Pr = 2⋅ Pr⋅Se
Pr+Se 

4. Results 

As mentioned earlier, the data was randomly partitioned into two 
groups: 70% training set and 30% testing set. The training set and the 
Sequential backward selection (SBS) method were used to select the 
features and train the classifier. The test set was used to evaluate the 
selected feature subset and classifiers’ performances. 10-fold cross- 
validation was applied to the training set to evaluate and compare 
each classifier’s performance along with the anticipated feature subset. 
Table 2 presents the selected feature based on performance in each 
iteration for each classification model (SVM, RF, DTs). The x sign rep
resents the features selected at that specific iteration, where the X rep
resents the selected features that achieved minimum cross-validation 
(MCE). 

To present the number of optimal features to train the classifier, we 
plotted the MCE on the test set as a function of the number of features 
illustrated in Fig. 2. The figure shows the cross-validation MCE as a 
function of the number of features in each iteration. The X-axis repre
sents the number of features removed from the feature set. The Y-axis 
represents the best cross-validation MCE in each model’s iteration. Fig. 2 
illustrates that the SVM model reached the minimum cross-validation 
MCE value when five features were eliminated. The curve stays 
slightly flat for the RF model over the range from 4 features to 5 features. 
However, the DTs model reached the minimum cross-validation MCE 
value when six features were eliminated. The figure illustrated that the 
SVM classification model using five features achieved the minimum 
cross-validation MCE compared to other models and other feature sub
sets. In general, four features confirmed necessary: Glucose, Resistin, 
BMI, and Age, three features confirmed unimportant: Insulin, MCP-1, 
and Adiponectin, and three exploratory features: HOMA L/A and Lep
tin. The table shows that Glucose, Resistin, BMI, and Age were common 
optimal features across the three classifiers with an additional HOMA for 
SVM and L/A and Leptin for Dts. 

To further investigate the impact of each feature subset on the overall 
performance of the classifier (SVM, RF, DTs) using the test set, a 95% 
confidence interval for the AUC was plotted as illustrated in Fig. 3. The 
figure shows that SVM produces a 95% confidence interval for the AUC 
[0.89, 0.98] when five features were eliminated. The best 95% confi
dence interval for the AUC for RF and Dts were [0.81, 0.94] and [0.88, 
0.72] respectively. 

Finally, to evaluate the performance of the finally selected optimal 
feature subset for each classifier, test data was used to train each model, 
and the ROC curve was plotted as illustrated in Fig. 4. The ROC curves 
show that using the selected optimal features, Glucose, Resistin, homo, Ta
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Fig. 2. The cross-validation MCE as a function of the number of features in each iteration. The X-axis represents the number of features removed from the feature set. 
The Y- axis represents best achieved the cross-validation MCE in each iteration for each models. 

Fig. 3. The values of AUC and the respective 95% confidence intervals (CI) as a function of the number of features in each iteration. The X-axis represents the number 
of features removed from the feature set. The Y- axis AUC value. 

Fig. 4. The ROC curve of the finally selected optimal feature subset for each classifier.  
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BMI, and Age, the SVM model performance for classifying the data is 
superior. The true positive rate is higher, and the false positive rate is 
lower than for RF and Dts models at all cut-offs. The area under the curve 
for SVM is larger than the area under the curve for RF and DTs. Fig. 5 
shows the confusion matrix for all classifiers using Leave-One-Out Cross- 
Validation. Regarding the confusion matrix, four patients were classified 
incorrectly as control, whereas five control were classified as a patient 
using the SVM classifier. 

Table 3 summarizes the performance metric for all classifiers (SVM, 
RF, DTs) using Leave-One-Out Cross-Validation and the optimal selected 
features associated with the classifier. SVM with Glucose, Resistin, 
homo, BMI, and Age achieved sensitivity and specificity of 0.94% and 
0.90% respectively and overall accuracy of 0.92%. 

5. Discussion 

The Sequential backward selection model was combined with three 
different classification algorithms in this study: support vector machine 
(SVM), random forests (RF), and Decision Trees (DTs). This method was 
evaluated using 10-fold Monte Carlo Cross-Validation (MCCV) to ensure 
stability. Furthermore, to avoid the resubstitution mistake, the data 
were divided into two groups at random: a 70% training set and a 30% 
testing set. Fig. 2 showed the MCE on the test set as a function of the 
number of features selected in each iteration. The minimum the cross- 
validation MCE, the higher accuracy in the model performance. The 
SVM model reached the minimum cross-validation MCE value when five 
features were eliminated. However, the DTs model required six features 
to be eliminated to reach the minimum cross-validation MCE value. The 
RF model achieved almost the same minimum cross-validation MCE 
when five or four features were eliminated. As illustrated in Table 2, the 
models disagreed on the optimal subset of features choices. However, 
some biomarker/features were common across all models. 

In general, four features confirmed necessary: Glucose, Resistin, BMI, 
and Age, three features confirmed unimportant: Insulin, MCP-1, and 
Adiponectin, and three exploratory features: HOMA L/A and Leptin. The 
table shows that Glucose, Resistin, BMI, and Age were common optimal 
features across the three classifiers with an additional HOMA for SVM 

and L/A and Leptin for Dts. 
The result shows that the optimal set of biomarkers comprises 

Glucose, Resistin, homo, BMI, and Age using the SVM model. The 
sensitivity and specificity were 0.94 and 0.90, respectively and the 95% 
confidence interval for the AUC was [0.89, 0.98]. The result indicates 
that Glucose, Resistin, homo, BMI, and Age combined can serve as a 
crucial BC biomarker in BC screening and detection. 

6. Conclusions 

This study explores the influence of using a particular biomarker or 
combinations of different biomarkers as predictors in the accuracy of the 
classification model for breast cancer. It shows that the feature used to 
construct a specific classifier considerably impacts the classifier’s ac
curacy, sensitivity, and computational cost. Therefore, it is crucial to 
understand that classification approaches vary in how they handle data. 
Thus, they respond differently toward biomarkers selection approaches. 
Although the current study is based on a small sample of participants, 
the findings suggest that the biomarkers selection process relies on the 
classification model used as much as the biomarkers. 

It is essential to highlight that nowadays, the newly emerging area of 
artificial intelligence in deep learning has enabled machines to deter
mine features-of features needed for data classification automatically. 
Deep learning has seen numerous advancements and has contributed to 
significant precision improvements in many Computer-Aided Systems. 
However, deep learning requires far more data than a conventional al
gorithm for machine learning. Collecting more data would be a fruitful 
area for further work. More data on breast cancer biomarkers would 
help us establish greater accuracy on this matter. Collecting more data 
and examining the impact of modern Machine learning approaches can 
be described as this work’s natural progression. 
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