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ARTICLE INFO ABSTRACT

Keywords: Breast cancer (BC) biomarkers can radically improve the early detection in patients and, as a result, reduce
Breast cancer mortality rate, whether for detecting individuals at increased risk of developing cancer or in the screening
Biomarkers ) process. Finding a successful biomarker for breast cancer would be a fast and low-cost first solution to predicting
E;’:s‘:i‘;c;’i‘;‘)]:“g BC, and it could potentially lead to a decline in the global BC mortality rate. However, biomarker exploration

translates into the role of feature ranking and selection in machine learning terminology. This study explores the
influence of using a particular biomarker or combinations of different biomarkers as predictors for breast cancer.
Three different classification algorithms were integrated with a sequential backward selection model: support
vector machine (SVM), random forests (RF), and Decision Trees (DTs). The result shows that the optimal set of
biomarkers comprises Glucose, Resistin, homo, BMI, and Age using the SVM model. The sensitivity and speci-
ficity were 0.94 and 0.90, respectively and the 95% confidence interval for the AUC was [0.89, 0.98]. The result
indicates that Glucose, Resistin, homo, BMI, and Age combined can serve as a crucial BC biomarker in BC

screening and detection.

1. Introduction

Despite recent technological developments in diagnostic radiology,
breast cancer detection remains a persistent challenge. According to
recent statistical data, breast cancer is the most common cancer among
females and the second-highest contributor to cancer mortality among
humans after lung cancer (Siegel et al.,, 2018; Stewart and Wild-
Organization, 2014). The reduction of mortality rate is associated with
early detection, which can be achieved through screening programs
(Lauby-Secretan et al., 2015; Rue et al., 2009). Early detection of breast
cancer relies heavily on screening programs. Mammography is by far the
most effective way to detect breast cancer at an early stage. However,
socioeconomic limitations, and the geographical distribution and qual-
ity of mammography machines, can restrict access to mammographic
screening in any given area. These factors are not directly under control,
and sometimes they are tough to overcome. These practical challenges
motivate researchers and health care providers to start searching for an
alternative solution. That search leads to the exploration of Breast
cancer biomarkers. Breast cancer biomarkers have been studied to
improve early detection and reduce mortality. Biomarkers not only can

be indicative of cancer presence (Kuppusamy et al., 2017; Levenson,
2007; Singh, 2019), but also of patient responsiveness to proposed
treatment (Nicolini et al., 2018; Al-Khater et al., 2021). Biomarkers have
been used to develop predictive models (Assiri & Kamel, 2016; Patricio
et al., 2018; Santillan-Benitez et al., 2013). These models are developed
by evaluating different biomarkers to find which single or combination
of biomarkers is more indicative of breast cancer.

Researchers evaluated various biomarkers, and several predictive
models were developed. Hwa et al. used logistic regression models to
evaluate serum biomarkers’ effectiveness in the early detection of breast
cancer (Carneiro et al., 2020). Samples obtained showed Tissue poly-
peptide specific antigen (TPS) to provide the highest predictive value
with 80% sensitivity. In comparison, insulin-like growth factor binding
protein-3 (IGFBP-3) and breast cancer-specific cancer antigen 15.3
(CA15-3) sensitivity were reported to be 65% and 56%, respectively.
Incorporating CA15-3 and IGFBP-3 with TPS showed the best multi-
variate logistic regression model with a sensitivity of 85%. Several
studies evaluated adipokines for breast cancer, with many reporting
higher leptin, resistin, and visfatin among confirmed cancer cases than
patients with benign lesions and healthy subjects (Cust et al., 2009; Wu
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et al., 2009). Pham et al. evaluated nine biomarker predictors and
proposed a novel generalized logistic dependent model (Pham & Pham,
2020). The novel model outperformed other models considered in his
study, such as random forest and multiple logistic regression. It showed
an accuracy ranging from 88.7% (trained with 100% of the dataset) to
100% (trained with 70% of the dataset) when used with Glucose, Age,
Resistin, BMIL, and MCP-1 as predictors.

Some researchers used imaging Biomarkers such as thermal imaging
combined with various feature selection and classification methods for
breast cancer detection. Zarei et al. evaluated a hybrid of Gaussian Mean
Shift (GMS) and roulette wheel selection approach-based segmentation
method for breast cancer detection using infrared thermal images. The
suggested method showed to improve the performance of the Computer-
Aided-Detection (CAD) system in comparison with other CAD systems
using Mean Shift (MS), and Fuzzy C-Means (FCM) segmentation algo-
rithms (Zarei et al., 2021). Darabi et al. presented a thermogram-based
CAD system to detect breast cancer. Their CAD system used SVM and
kNN algorithms for classification and the Random Subset Feature Se-
lection (RSFS), the hybrid of minimum Redundancy Maximum Rele-
vance (mRMR), and Genetic (GA) with RSFS algorithms for feature
selection. Results showed RSFS with kNN and have accuracy and
sensitivity of 85.36% and 94.11%, respectively (Darabi et al., 2021).
However, this study focus on selecting Non-Imaging Biomarker.

Screening programs and biomarkers’ effectiveness and accuracy in
early cancer detection were sought to be improved by incorporating
artificial intelligence techniques (McKinney et al., 2020; Shen et al.,
2019). The successful application of artificial intelligence techniques on
predictive modeling, object detection, and classification (Krizhevsky
et al.,, 2017; Zhang et al., 2015) drew attention to the possibility of
implementing such methods in medical diagnostic applications to
improve diagnosis accuracy and reduce recall rate. The introduction of
deep learning methods into mammography showed promising results in
detecting and classifying breast lesions (Carneiro et al., 2015; Dhungel
et al., 2015; Peng et al., 2016). Furthermore, breast cancer biomarkers
have been used to develop predictive models(Assiri & Kamel, 2016;
Patricio et al., 2018; Santillan-Benitez et al., 2013).

Features identified in the literature for breast cancer varied from one
work to another, even when the same data is used(Aslan et al., 2018;
Ghani et al., 2019; Li & Chen, 2018; Patricio et al., 2018; Rahman et al.,
2020; Santillan-Benitez et al., 2013; Silva Aratjo et al., 2019). This
variation motivates us to investigate the factors that affect biomarkers
ranking and selection techniques. This study focuses on age, BMI,
Glucose, Insulin, HOMA, Leptin, Adiponectin, L/A ratio, resistin, and

Table 1
The quantitative features of patients and healthy controls in terms of their (mean
+ standard deviation) and medians(interquartile) ranges.

Biomarkers Median (interquartile range) Mean (Standard deviation)
Controls Patients Controls Patients
Age (years) 65 (34.5) 53 (23) 58.08 + 56.67 +
18.96 13.49
BMI (kg/m2) 27.69 (9.32) 27.41 (8.07) 28.32 +5.43  26.98 +
4.62
Glucose (mg/dL) 87 (11) 98.5 (18) 88.23 + 105.56 +
10.19 26.56
Insulin (pU/mL) 5.48 (2.92) 7.58 (11.84) 6.93 + 4.86 12.51 +
12.32
HOMA 1.14 (0.93) 2.05 (3.44) 1.55 + 1.22 3.62 + 4.59
Leptin (ng/mL) 21.49 18.88 26.64 + 26.6 +
(26.19) (25.18) 19.33 19.21
Adiponectin (pg/ 8.13 (5.63) 8.45 (6.93) 10.33 £7.63 10.06 +
mL) 6.19
L/A 2.36 (4.75) 2.33(3.18) 4.05 + 4.06 3.91 + 4.77
Resistin (ng/mL) 8.93 (6.36) 14.37 11.61 + 17.25 +
(14.97) 11.45 12.64
MCP-1(pg/dL) 471.32 465.37 499.73 + 563.02 +
(393.29) (440.69) 292.24 384
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MCP-1. These biomarkers have been used in several studies (Aslan et al.,
2018; Ghani et al., 2019; Li & Chen, 2018; Patricio et al., 2018; Rahman
et al., 2020; Santillan-Benitez et al., 2013; Silva Aratijo et al., 2019). As
mentioned above, these studies reflect some level of disagreement on
which single or combination of biomarkers is the best indicator for
breast cancer.

2. Feature ranking

Biomarker exploration translates into the role of feature ranking and
selection in machine learning terminology. The objective of using
feature ranking and selection is to analyze the impact of using a specific
feature or combinations of a different feature as predictors in the clas-
sification model’s accuracy. In some cases, all features may not be
helpful for some classification problems. Some features may be irrele-
vant, redundant, and noisy. Moreover, even when all features are rele-
vant and contain information about the response variable, using a high
number of features may negatively impact prediction accuracy(Iguyon
& Elisseeff, 2003). Thus, the feature used to construct a specific classifier
considerably impacts the classifier’s accuracy, sensitivity, and compu-
tational cost. Therefore, feature ranking and selection aim to eliminate
redundant or irrelevant features and reduce the feature dimension.
Although both analysis processes, feature ranking and feature selection,
are related, they target different outcomes. Feature ranking techniques
rank each feature individually according to some decisive factors such as
feature variance and feature relevance to the response. There are several
types of feature ranking techniques, such as ranking the feature using
the p-values of either the chi-square test statistics or the F-test statistic.
The Mann-Whitney U test, a non-parametric test for equality of popu-
lation medians of two separate samples, is another ranking technique. It
is a dependence test such as a t-test, F-test. However, unlike the t-test and
F-test, the Mann-Whitney U test is non-parametric. Considerable dis-
agreements were highlighted in the rank of the features using different
ranking methods(Wang et al., 2001; Yang & Mao, 2010). Feature in top
positions in some ranks may appear at the bottom positions in the other
ranks.

Feature ranking can be considered as a subset of the feature selection
process. The feature selection method aims to eliminate irrelevant or
redundant features. In other words, the aim is to find a subset of the
feature set that can be used to train the classifier and improve accuracy
and reduce execution time. However, all possible subset is computa-
tionally impracticable. Our study tested all possible subsets required to
generate (219 — 1 = 1024 different sets of features and models. Current
feature selection approaches fall into two general categories filter-based
and wrapper-based algorithms. The filter-based assess the significance
of features by their scores in various statistical tests for their correlation
with the outcome variable. The feature subset selection is based on a
user-specified threshold, which requires the user to choose an arbitrary
cutoff on the number of features chosen. Moreover, Filter-based algo-
rithms stand on the assumption that features with a higher variance may
contain more useful information without considering the relationship
between features (Iguyon & Elisseeff, 2003; Petkovi¢, Kocev, &
Dzeroski, 2019). Wrapper-based algorithms assess the significance of all
possible feature subsets based on the performance of the classifying
model. Based on each feature’s impact on the classification model ac-
curacy, the feature is added or removed from the feature subset.
Wrapper-based approaches regularly reach better classification accu-
racy than the filters-based approach because the feature selection pro-
cess is optimized for a particular classification model. However,
wrappers are computationally expensive because they use a classifying
algorithm to evaluate every subset of features. Turning the feature se-
lection into a sequential decision process can significantly reduce the
computational time and overcome the wrapper-based algorithm’s
drawback. Sequential feature selection is one of the most broadly used
feature selection methods. It selects a feature subset by sequentially
adding (forward search) or removing (backward search) until certain
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Fig. 1. Sequential backward selection (SBS) method: First, all features combined were used to train the classifier. Then, the classifier will be trained on each subset of
n-1 features. The subset with the lowest predictive accuracy is removed. This process is repeated until the first local minimum of the cross-validation MCE is found or

the model trained on all the possible candidate feature subset.

stopping conditions are reached. The objective of this study is to explore
the influence of using a specific feature or combinations of different
features as predictors for breast cancer, using the sequential feature
selection method in the classification model’s accuracy (Aggrawal & Pal,
2020).

3. Materials and methods
3.1. Data

The data was collected by the Gynecology Department of the Uni-
versity Hospital Centre of Coimbra (CHUC) between 2009 and 2013
(Crisostomo et al., 2016; Patricio et al., 2018). Patient data were for
women diagnosed with breast cancer (BC) and before surgery and
treatment. Healthy volunteers were nominated and participate in the
study as controls. A total of 64 women with breast cancer (BC) and 52
healthy volunteers was included in the study. Collected data included
age, weight, height, and Blood samples. Blood were taken to determine
biochemical parameters in all participants. For each participant, mul-
tiple clinical features were examined or evaluated, including age, BMI,
Glucose, Insulin, HOMA, Leptin, Adiponectin, L/A ratio, Resistin, and
MCP-1. More details about the data collection process are available
(Crisostomo et al., 2016; Patricio et al., 2018). Table 1 presents collected
data for patients and controls in terms of their (mean+ standard devi-
ation) and medians(interquartile) ranges.

3.2. Feature selection and machine learning classifiers

In this study, we used the Sequential backward selection (SBS)
method (Theodoridis & Koutroumbas, 2009; Wang et al., 2001;
Aggrawal & Pal, 2020). As illustrated in Fig. 1, First, all features com-
bined were used to train the classifier. Then, the classifier will be trained
on each subset of n-1 features. The subset with the lowest predictive
accuracy, i.e., higher misclassification rate, is removed. In another way
the feature nonexistent in the feature subset that shows the highest

performance is removed. The process will be repeated for the remaining
subset of feature (n-1), the classifier will be trained on each subset of n-2
and then one feature will be eliminated based on the predictive accu-
racy. This process is repeated until the first local minimum of the
cross-validation MCE is found or the model trained on all the possible
candidate feature subset based on the criteria mentioned above. 10-fold
cross-validation was applied to the training set to evaluate and compare
the performance of each classifier along with the anticipated feature
subset.

Three different classification algorithms were integrated with the
Sequential backward selection model: support vector machine (SVM)
(Ma & Guo, 2014), random forests (RF) (Cutler et al., 2012), and Deci-
sion Trees (DTs) (Rokach & Maimon, 2008; Safavian & Landgrebe,
1991). The development of this method employs 10-fold Monte Carlo
Cross-Validation (MCCV) to ensure stability. Moreover, to avoid the
resubstitution error, the data was randomly partitioned into two groups:
70% training set and 30% testing set. The training and test dataset is
created with equal distribution.

3.3. Performance metrics

Several widely used statistical measures to evaluate classifiers’ per-
formances were computed. The list below provides insights into a few
basic concepts and measurement procedures that summarize these
metrics.

@ Confusion matrix (CM) confusion matrix (CM) is such that CM{: is
equal to the number of observations in group I and classified to be in
group j.

— True Positive (TP): CM}, True Positive (TP): when the model pre-
dicted as Positive, and they were Positive.

— True Negative (TN): CM%, True Negative (TN): when the model
predicted as Negative, and they were Negative.

— False Positive (FP):CM;, False Positive (FP): when the model pre-
dicted as Positive, but they were Negative.
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— False Negative: CM?, False Negative: when the model predicted as

1 Negative, but they were Positive.
P @ Misclassification rate (%) (MCE): The number of misclassified ob-
servations divided by the number of observations; MCE =
@ Sensitivity (Se) also be referred to as the recall, hit rate, or TPR (True
bl Rolo NN o e NI Positive Rate): The proportion of actual negatives that are correctly
ol s e o y identified as positives; Se = 5
@ Specificity (Sp) also be referred to asTrue Negative Rate (TNR): The
VR proportion of actual negatives that are correctly identified as nega-
tives; Sp = 7l
Ll B T T N B IR S @ Receiver Operating Characteristic (ROC) curve and Area Under the
ROC Curve (AUC): ROC is a probability curve and AUC represents
Al Rallalalalallel alla degree or measure of separability. The ROC curve is plotted with TPR
(True Positive Rate) against the FPR (False Positive Rate) where FPR
il Halakalolalolialola = 1-Sp. TPR is on y-axis and FPR is on the x-axis.
E o | s m 3¢ 3 ¢ 3¢ ¢ @ Precision (Pr) or Positive predictive value (PPV): The ratio of true

positives to all predicted positives; Pr = %fw
N I T @ F-score or F measure: The harmonic mean of the precision and recall;
_ 9.Prs
Pr = 2’Prr+See
@ | =
4. Results
NS =
ol o i As mentioned earlier, the data was randomly partitioned into two
groups: 70% training set and 30% testing set. The training set and the
P VS Sequential backward selection (SBS) method were used to select the
features and train the classifier. The test set was used to evaluate the
Dl T T R = selected feature subset and classifiers’ performances. 10-fold cross-
validation was applied to the training set to evaluate and compare
S Rl BB I BT o e each classifier’s performance along with the anticipated feature subset.
Table 2 presents the selected feature based on performance in each
Q[ X e S

iteration for each classification model (SVM, RF, DTs). The x sign rep-
resents the features selected at that specific iteration, where the X rep-
resents the selected features that achieved minimum cross-validation

B lo| s mxxxx x x (MCE).

To present the number of optimal features to train the classifier, we
alx plotted the MCE on the test set as a function of the number of features
illustrated in Fig. 2. The figure shows the cross-validation MCE as a
O XX function of the number of features in each iteration. The X-axis repre-
sents the number of features removed from the feature set. The Y-axis
N XX X represents the best cross-validation MCE in each model’s iteration. Fig. 2
illustrates that the SVM model reached the minimum cross-validation

N N T

MCE value when five features were eliminated. The curve stays
slightly flat for the RF model over the range from 4 features to 5 features.
However, the DTs model reached the minimum cross-validation MCE
value when six features were eliminated. The figure illustrated that the
SVM classification model using five features achieved the minimum
cross-validation MCE compared to other models and other feature sub-
sets. In general, four features confirmed necessary: Glucose, Resistin,

Presents the selected feature based on performance in each iteration for each classification model (SVM, RF, DTs).

N EVEVEVEVEVEVEVEVENE BMI, and Age, three features confirmed unimportant: Insulin, MCP-1,
and Adiponectin, and three exploratory features: HOMA L/A and Lep-

R S IS I R I I tin. The table shows that Glucose, Resistin, BMI, and Age were common

= optimal features across the three classifiers with an additional HOMA for

ZRI A Relololalololalalola SVM and L/A and Leptin for Dts.

To further investigate the impact of each feature subset on the overall

a performance of the classifier (SVM, RF, DTs) using the test set, a 95%

g g g - ig 5 confidence interval for the AUC was plotted as illustrated in Fig. 3. The

e Eo S @ 2 &= go figure shows that SVM produces a 95% confidence interval for the AUC

‘g ‘é’ « 2 E“ é‘i 9 § \:, [0.89, 0.98] when five features were eliminated. The best 95% confi-

§ % % g ‘E’ E’; & ;éu < £ dence interval for the AUC for RF and Dts were [0.81, 0.94] and [0.88,
CxL Srd<=<ad 0.72] respectively.

- Finally, to evaluate the performance of the finally selected optimal
~ J:; gl g feature subset for each classifier, test data was used to train each model,
% é § § and the ROC curve was plotted as illustrated in Fig. 4. The ROC curves
& - show that using the selected optimal features, Glucose, Resistin, homo,
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Fig. 2. The cross-validation MCE as a function of the number of features in each iteration. The X-axis represents the number of features removed from the feature set.
The Y- axis represents best achieved the cross-validation MCE in each iteration for each models.
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Fig. 5. The confusion matrix for all classifiers (SVM, RF, DTs) using Leave-One-Out Cross-Validation and trained with the associated optimal selected feature subset.
According to the confusion matrix, 4 patients were classified incorrectly as control, whereas five control were classified as a patient using the SVM classifier.

Table 3
The performance metric for all classifiers (SVM, RF, DTs) using Leave-One-Out
Cross-Validation and the optimal selected features associated with the classifier.

Evaluation metrics Model
SVM RF Dts

AUC 95% CI [0.89, 0.98] [0.80,0.94] [0.73, 0.88]
Accuracy 0.92 0.81 0.78
Sensitivity (Se) 0.94 0.86 0.75
Specificity 0.90 0.75 0.81
Precision 0.92 0.81 0.83
F_measure 0.93 0.83 0.79

Glucose, Resistin,
BMI and Age

Selected Features Glucose, Resistin,
BMI, Age

and Leptin

Glucose, Resistin,
HOMA, BMI,
and Age

BMI, and Age, the SVM model performance for classifying the data is
superior. The true positive rate is higher, and the false positive rate is
lower than for RF and Dts models at all cut-offs. The area under the curve
for SVM is larger than the area under the curve for RF and DTs. Fig. 5
shows the confusion matrix for all classifiers using Leave-One-Out Cross-
Validation. Regarding the confusion matrix, four patients were classified
incorrectly as control, whereas five control were classified as a patient
using the SVM classifier.

Table 3 summarizes the performance metric for all classifiers (SVM,
RF, DTs) using Leave-One-Out Cross-Validation and the optimal selected
features associated with the classifier. SVM with Glucose, Resistin,
homo, BMI, and Age achieved sensitivity and specificity of 0.94% and
0.90% respectively and overall accuracy of 0.92%.

5. Discussion

The Sequential backward selection model was combined with three
different classification algorithms in this study: support vector machine
(SVM), random forests (RF), and Decision Trees (DTs). This method was
evaluated using 10-fold Monte Carlo Cross-Validation (MCCV) to ensure
stability. Furthermore, to avoid the resubstitution mistake, the data
were divided into two groups at random: a 70% training set and a 30%
testing set. Fig. 2 showed the MCE on the test set as a function of the
number of features selected in each iteration. The minimum the cross-
validation MCE, the higher accuracy in the model performance. The
SVM model reached the minimum cross-validation MCE value when five
features were eliminated. However, the DTs model required six features
to be eliminated to reach the minimum cross-validation MCE value. The
RF model achieved almost the same minimum cross-validation MCE
when five or four features were eliminated. As illustrated in Table 2, the
models disagreed on the optimal subset of features choices. However,
some biomarker/features were common across all models.

In general, four features confirmed necessary: Glucose, Resistin, BMI,
and Age, three features confirmed unimportant: Insulin, MCP-1, and
Adiponectin, and three exploratory features: HOMA L/A and Leptin. The
table shows that Glucose, Resistin, BMI, and Age were common optimal
features across the three classifiers with an additional HOMA for SVM
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and L/A and Leptin for Dts.

The result shows that the optimal set of biomarkers comprises
Glucose, Resistin, homo, BMI, and Age using the SVM model. The
sensitivity and specificity were 0.94 and 0.90, respectively and the 95%
confidence interval for the AUC was [0.89, 0.98]. The result indicates
that Glucose, Resistin, homo, BMI, and Age combined can serve as a
crucial BC biomarker in BC screening and detection.

6. Conclusions

This study explores the influence of using a particular biomarker or
combinations of different biomarkers as predictors in the accuracy of the
classification model for breast cancer. It shows that the feature used to
construct a specific classifier considerably impacts the classifier’s ac-
curacy, sensitivity, and computational cost. Therefore, it is crucial to
understand that classification approaches vary in how they handle data.
Thus, they respond differently toward biomarkers selection approaches.
Although the current study is based on a small sample of participants,
the findings suggest that the biomarkers selection process relies on the
classification model used as much as the biomarkers.

It is essential to highlight that nowadays, the newly emerging area of
artificial intelligence in deep learning has enabled machines to deter-
mine features-of features needed for data classification automatically.
Deep learning has seen numerous advancements and has contributed to
significant precision improvements in many Computer-Aided Systems.
However, deep learning requires far more data than a conventional al-
gorithm for machine learning. Collecting more data would be a fruitful
area for further work. More data on breast cancer biomarkers would
help us establish greater accuracy on this matter. Collecting more data
and examining the impact of modern Machine learning approaches can
be described as this work’s natural progression.
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