

This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository:<https://orca.cardiff.ac.uk/id/eprint/184180/>

This is the author's version of a work that was submitted to / accepted for publication.

Citation for final published version:

Weimer, Patrícia, Bordignon, Isabella Morel, Mineto, Alexandre Rolim, de Oliveira Araujo, Karen, Waszak, Júlia Cordeiro, Brazil, Nathalya Tesch, Collares, Fabrício Mezzomo, Dul, Maria , Rossi, Rochele Cassanta and Koester, Letícia Scherer 2026. Development of dissolving microneedles using a quality by design approach for transdermal delivery of the nanoemulsified volatile compound β -caryophyllene. International Journal of Pharmaceutics , 126616. 10.1016/j.ijpharm.2026.126616

Publishers page: <https://doi.org/10.1016/j.ijpharm.2026.126616>

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See <http://orca.cf.ac.uk/policies.html> for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.

Journal Pre-proofs

Development of dissolving microneedles using a quality by design approach for transdermal delivery of the nanoemulsified volatile compound β -caryophyllene

Patrícia Weimer, Isabella Morel Bordignon, Alexandre Rolim Mineto, Karen de Oliveira Araujo, Júlia Cordeiro Waszak, Nathalya Tesch Brazil, Fabrício Mezzomo Collares, Maria Dul, Rochele Cassanta Rossi, Letícia Scherer Koester

PII: S0378-5173(26)00064-5

DOI: <https://doi.org/10.1016/j.ijpharm.2026.126616>

Reference: IJP 126616

To appear in: *International Journal of Pharmaceutics*

Received Date: 11 November 2025

Revised Date: 23 December 2025

Accepted Date: 21 January 2026

Please cite this article as: P. Weimer, I.M. Bordignon, A.R. Mineto, K. de Oliveira Araujo, J.C. Waszak, N.T. Brazil, F.M. Collares, M. Dul, R.C. Rossi, L.S. Koester, Development of dissolving microneedles using a quality by design approach for transdermal delivery of the nanoemulsified volatile compound β -caryophyllene, *International Journal of Pharmaceutics* (2026), doi: <https://doi.org/10.1016/j.ijpharm.2026.126616>

This is a PDF of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability. This version will undergo additional copyediting, typesetting and review before it is published in its final form. As such, this version is no longer the Accepted Manuscript, but it is not yet the definitive Version of Record; we are providing this early version to give early visibility of the article. Please note that Elsevier's sharing policy for the Published Journal Article applies to this version, see: <https://www.elsevier.com/about/policies-and-standards/sharing#4-published-journal-article>. Please also note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Development of dissolving microneedles using a Quality by Design approach for transdermal delivery of the nanoemulsified volatile compound β -caryophyllene

Patrícia Weimer¹; Isabella Morel Bordignon¹; Alexandre Rolim Mineto¹; Karen de Oliveira Araujo¹; Júlia Cordeiro Waszak¹; Nathalya Tesch Brazil¹; Fabrício Mezzomo Collares²; Maria Dul³; Rochele Cassanta Rossi⁴; Letícia Scherer Koester^{1,*}

¹ Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga, 2752, Santa Cecília, Zip code 90610-000, Porto Alegre, Rio Grande do Sul, Brazil.

² Laboratório de Materiais Dentários, Faculdade de Odontologia, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2492, Santa Cecília, Zip code 90035-004, Porto Alegre, Rio Grande do Sul, Brazil.

³ School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Ave, Cardiff CF10 3NB, Cardiff, UK.

⁴ Programa de Pós-Graduação em Nutrição e Alimentos, Universidade do Vale do Rio dos Sinos (UNISINOS), Av. Unisinos, 950, Cristo Rei, Zip code 93022-000, São Leopoldo, Rio Grande do Sul, Brazil.

*** Correspondence:**

L. S. Koester. E-mail address: leticia.koester@ufrgs.br | Address: Av. Ipiranga 2752, Santa Cecília, Zip code 90610-000, Porto Alegre, Rio Grande do Sul, Brazil | Tel.: +55 51 33085278; Fax: +55 51 33085437.

1 **ABSTRACT**

2

3 This study examines transdermal delivery of a β -caryophyllene (a lipophilic and volatile compound)
4 loaded nanoemulsion from dissolving water-soluble polymer microneedles (microneedle array
5 patches - MAPs). Development of this system was guided by the principles of Quality by Design;
6 after defining a quality target product profile and critical quality attributes, a rational experimental
7 plan optimized a formulation to maximize the β -caryophyllene content in MAPs. The optimized
8 formulation consists of polyvinyl pyrrolidone combined with polyvinyl alcohol (combination ratio
9 of 1.54) and a β -caryophyllene-to-polymer mass ratio of 0.09. The β -caryophyllene content was
10 maintained higher than 95% in relation to the additional mass following the micromolding process
11 and after 45 days of storage. *In vitro* skin insertion, dissolution, mechanical properties, and
12 transdermal delivery have been investigated for the prototype. A key feature of this work is
13 demonstrating the feasibility of delivering a volatile compound through MAP by associating it with
14 a nanoemulsion. This combined delivery method allows for the transdermal administration of β -
15 caryophyllene, which cannot be achieved through topical nanoemulsion application alone. Overall,
16 the developed system offers a promising alternative to traditional topical and oral pharmaceutical
17 dosage forms.

18 **Keywords:** sesquiterpene; β -caryophyllene; microneedle; critical quality attributes; design space;
19 risk management

20 **1. INTRODUCTION**

21

22 β -caryophyllene ($C_{15}H_{24}$, MW 204.36 g/mol) is a bicyclic sesquiterpene found in essential
 23 oils from various plant species, including copaiba (*Copaifera* spp.), hemp (*Cannabis sativa*),
 24 oregano (*Origanum vulgare*), and cloves (*Syzygium aromaticum*). In its isolated or synthetic form,
 25 β -caryophyllene appears as a yellowish liquid at room temperature and has a woody-spicy aroma
 26 (Gertsch et al., 2008; National Center for Biotechnology Information, 2019; Sharma et al., 2016).
 27 Beyond its fragrance, this compound has gained increasing interest because of its notable
 28 therapeutic effects, including anti-inflammatory, analgesic, immunomodulatory, antibacterial,
 29 antioxidant, and antiparasitic activities (Cheng et al., 2014; Francomano et al., 2019; Meza and
 30 Lehmann, 2018; Sharma et al., 2016).

31 The therapeutic effects of β -caryophyllene arise from its multi-target mechanism of action.
 32 Its anti-inflammatory activity is linked to the inhibition of enzymes such as cyclooxygenase-2,
 33 myeloperoxidase, inducible nitric oxide synthase, and NADPH oxidase, along with the modulation
 34 of pro-inflammatory mediators such as interleukins (i.e., interleukin-1, -6, -8, and -10), tumor
 35 necrosis factor-alpha, and interferon gamma. The compound's analgesic action primarily involves
 36 type 2 endocannabinoid receptors (CB2) and μ -type opioid receptors (Klaucke et al., 2014; Sharma
 37 et al., 2016).

38 β -caryophyllene's lipophilicity ($\text{Log } P$ 4.4) and volatility limit its pharmacological
 39 applications (NCBI, 2022), however formulation strategies have been developed to overcome these
 40 limitations. For example, its association with a self-emulsifying drug delivery system has
 41 demonstrated increased plasma levels compared to free β -caryophyllene following oral
 42 administration (Mödinger et al., 2022). Topical application of β -caryophyllene in nanoemulsion or
 43 nanoemulsion-thickened hydrogel formulations has also been investigated (Peterle et al., 2020;
 44 Weimer et al., 2022), however it is challenging to achieve localized therapeutic levels due to the
 45 restrictive nature of the stratum corneum. In the respective studies, in vitro permeation tests showed
 46 the deposition of β -caryophyllene in the skin layers, with saturation in the dermis when delivered in
 47 nanoemulsion. The compound was not measured in the receptor fluid, even under damaged skin
 48 conditions. Therefore, it is necessary to explore other technologies that facilitate the transdermal
 49 delivery of this compound.

50 Microneedle array patches (MAPs) provide a potential method to enhance skin permeation
 51 (Dul et al., 2025; Moawad et al., 2025). This emerging dosage form consists of micrometer-scale
 52 projections ($<1000 \mu\text{m}$) of various geometries that temporarily disrupt the stratum corneum to
 53 facilitate drug release into the deeper skin layers while avoiding activation of nociceptors
 54 (Alimardani et al., 2021; Dul et al., 2023). They can be subcategorized based on their principal
 55 action and manufactured using a range of materials. Dissolving MAPs are typically made from
 56 water-soluble polymers such as polyvinyl alcohol, polyvinyl pyrrolidone, cellulose derivatives,
 57 chitosan, or sodium hyaluronate. Their drug load capacity is influenced by factors such as needle
 58 geometry (shape, height, inter-needle spacing, and area) and composition (Ando et al., 2024;
 59 Johnson et al., 2016). Numerous studies suggest that MAPs can enhance nanoparticle permeation
 60 into the skin following topical application (Alimardani et al., 2021; Coulman et al., 2009).

61 However, the manufacturing process for an integrated system that combines dissolving
 62 MAPs with nanoformulations, is complex. Systematic methodologies based on risk analysis, such
 63 as the Quality by Design (QbD) approach (International Council for Harmonisation, 2009; Simões
 64 et al., 2024), are therefore required to identify fundamental challenges and encourage development
 65 of quality products. This study aims to formulate a volatile API, β -caryophyllene, in a

66 nanoemulsion formulation and integrate this within a dissolving MAP to facilitate local delivery
 67 following topical application.

68

69 **2. MATERIALS AND METHODS**

70

71 **2.1 Chemicals and reagents**

72 β -caryophyllene (91.0%), Span® 80, Tween® 20, polyvinyl pyrrolidone (PVP, 40 kDa and
 73 360 kDa), polyvinyl alcohol (PVA, 9 – 10 kDa, 80% hydrolyzed) were purchased from Sigma (St.
 74 Louis, MO, USA). Polydimethylsiloxane kit (PDMS, Sylgard™ 184 silicone elastomer kit) was
 75 purchased from Dow Corning Corporation (Midland, MI, USA). All other chemicals or reagents
 76 were of analytical grade or HPLC grade. Ultrapure water was obtained from Milli-Q apparatus
 77 (Millipore).

78

79 **2.2 Chromatographic conditions**

80 High-performance liquid chromatography with ultraviolet detection (HPLC-UV) (LC-20A;
 81 Shimadzu, Nakagyo-ku, Kyoto, Japan) was used to determine the β -caryophyllene content in the
 82 arrays and to quantify it in samples from the skin permeation study. The system included an LC-
 83 20AT pump, UV-VIS SPD-20A detector, DGU-20A5 degasser, SIL-20A sampler, CBM-20A
 84 controller, and a Shim-pack CLC-ODS column (C18, 250 × 4.6 mm, 5 μ m; Shimadzu). The
 85 chromatographic conditions were validated according to guidelines for analytical and bioanalytical
 86 methods (European Medicines Agency, 2022, 2019). The mobile phase consisted of methanol and
 87 ultra-purified water (85:15), acidified with 0.1% v/v trifluoracetic acid. The flow rate was
 88 maintained in isocratic mode at 1.00 mL/min, with an injection volume of 30 μ L. The column oven
 89 temperature was set to 40 °C, and detection was performed at 210 nm.

90

91 **2.3 Preparation and characterization of β -caryophyllene nanoemulsion**

92 The nanoemulsion was prepared using high pressure homogenization (Weimer et al., 2023).
 93 The oily phase consisted of β -caryophyllene (20.0% w/w) and Span® 80 (4.0% w/w), while the
 94 aqueous phase comprised Tween® 20 (4.0% w/w) and ultra-purified water (q.s. to 100.0% w/w).
 95 The oily and aqueous phases were weighed separately, and the aqueous phase was gradually added
 96 to the oil phase under continuous stirring. To reduce the droplet size, the mixture was stirred using
 97 an Ultra-Turrax disperser (IKA®-Werke GmbH & Co. KG, Staufen, Germany) at 9500 rpm for 1
 98 minute, followed by high-pressure homogenization (EmulsiFlex-C3; Avestin, Ottawa, ON, Canada)
 99 for six cycles at 750 bar, without heating.

100 The droplet size (nm) and polydispersity index (PDI) were measured using dynamic light
 101 scattering (Zetasizer Nano ZS90; Malvern Panalytical, Malvern, Worcestershire, UK). Samples
 102 were diluted in ultrapure water at a ratio of 1:1000 prior to measurement. Zeta potential (mV) was
 103 determined by electrophoretic light scattering using the same equipment, with samples diluted in a 1
 104 mM NaCl aqueous solution (1:1000). The β -caryophyllene content was assessed using HPLC-UV,
 105 and the encapsulation efficiency (EE) was determined by ultracentrifugation at 10,000 rpm for 50
 106 min. Aliquots of 500 μ L of the nanoemulsion were placed in the upper chamber of centrifuge tubes
 107 equipped with an ultracentrifugation membrane (Ultrafree-MC, 10,000 MW; Merck Millipore,

108 USA) (Kreutz et al., 2021). The equation applied for the calculation of EE is provided below (Eq.
 109 01).

110

111 Eq. (01)

112

113
$$EE (\%) = [(W_{initial} - W_{free}) / W_{initial}] \times 100$$

114 Where: EE – encapsulation efficiency; $W_{initial}$ - Total weight of beta-caryophyllene added; W_{free} - Weight of
 115 caryophyllene quantified in the filtered fraction (free fraction).

116

117 **2.4 Fabrication of β -caryophyllene-loaded MAP**

118 Pyramidal arrays (10×10 microneedles) were created using a masked stereolithography
 119 technique (Saturn 2 – 8K; Elegoo, Shenzhen, China). Negative molds were produced from these
 120 master molds using polydimethylsiloxane (PDMS) and were subsequently utilized in a two-step
 121 cast micromolding process (Mir et al., 2020). Initially, stock dispersions of polyvinylpyrrolidone
 122 (PVP) (40 kDa) and polyvinyl alcohol (PVA) (9–10 kDa) were prepared in ultra-purified water at
 123 various concentrations (ranging from 10.0% to 50.0% w/w), as outlined during the screening and
 124 optimization phases using design of experiments (DoE). The PVP and PVA dispersions were then
 125 mixed in predetermined ratios.

126 Next, the β -caryophyllene nanoemulsion was incorporated into the PVP-PVA polymer
 127 mixture under stirring, with the amount of nanoemulsion calculated based on the β -caryophyllene
 128 content relative to the dry polymer mass (ranging from 0.03 to 0.15 of β -caryophyllene).

129 The resulting mixture was uniformly distributed over the PDMS micromolds and placed in a
 130 positive pressure chamber (20–30 psi) for 30 minutes. Excess formulation was removed, and the
 131 needles were dried for 1 hour at $22\% \pm 2\%$ relative humidity (RH). **Herein, the drying temperature**
 132 **of the needles was applied according to the specification of the full factorial design (detailed matrix**
 133 **in Table S1).**

134 Following this, the base-forming mixture for the microneedle array patch (consisting of
 135 15.0% w/w PVP 360 kDa and 1.5% w/w glycerin) was added, and the molds were subjected to a
 136 vacuum environment for 30 minutes. The final drying process was performed at 25°C with $35\% \pm$
 137 5% RH. Once dried, the arrays were carefully extracted from the molds and stored in sealed
 138 aluminum-polymeric film packages.

139

140 **2.5 Quality by Design approach for development of dissolving MAPs integrated with β -**
 141 **caryophyllene-loaded nanoemulsion**

142 Given the complexity of this system, which involves multiple manufacturing steps, the
 143 development process was guided by a systematic QbD approach, supported by quality risk
 144 management principles (International Council for Harmonisation, 2009, 2006). The following steps
 145 and tools were implemented during development to ensure the feasibility of future translation from
 146 prototype to product:

- 147 • Establishment of a quality target product profile (QTPP) and defining critical quality
- 148 attributes (CQAs).
- 149 • Identifying the critical material attributes (CMAs) and critical process parameters (CPPs).
- 150 • Conducting a risk assessment.
- 151 • Performance of a DoE to evaluate the high-risk CMAs and CPPs that could influence
- 152 product quality.
- 153 • Achievement of an optimized formulation and defining the design space to manage
- 154 variability without compromising product quality.

155

156 **2.5.1 Establishment of QTPP, selection of CQAs, and initial risk assessment**

157 The QTPP elements, including attributes, targets, and justifications, were drafted based on
 158 the specifications of a finished “product” and the pharmaceutical formulation intermediates, using
 159 theoretical and practical knowledge of the process (International Council for Harmonisation, 2006).
 160 The CQAs were identified from the QTPP. A risk estimation matrix (REM) based on theoretical
 161 analysis was then used to define the interactions between CQAs, CMAs, and CPPs; these
 162 interactions were subsequently classified as high, medium, or low risk.

163

164 **2.5.2 DoE: 2⁴ full factorial design and Box–Behnken design (BBD)**

165 After generating the REM, interactions between CMAs and CPPs with high-risk CQAs were
 166 analyzed, and the essential factors for the DoE were selected. Initially, a 2⁴ full factorial design with
 167 four factors at two levels was conducted to investigate their effects on β -caryophyllene content (Y_1)
 168 and compression force (Y_2). The factors and levels used were: (X_1) percentage of polymers in the
 169 dispersion (% w/w): 20.0% and 40.0% w/w, (X_2) β -caryophyllene ratio relative to the polymer
 170 solids content: 0.03 and 0.15, (X_3) PVP to PVA ratio: 1.0 and 2.5, and (X_4) needle drying
 171 temperature: 25.0 °C and 40.0 °C. These combinations resulted in 16 formulations, as detailed in
 172 Table S1 (Supplementary material). The effects of the factors on the dependent variables were
 173 analyzed using Pareto and main effects charts following stepwise analysis ($\alpha = 0.15$).

174 Significant factors affecting β -caryophyllene content in the 2⁴ design were included in the
 175 second stage of the DoE, with the goal of optimizing the formulation using BBD (3³) (Politis et al.,
 176 2017). The three factors were: (X_1) percentage of polymers in the dispersion (% w/w), (X_2) β -
 177 caryophyllene ratio relative to the solids content of the polymers, and (X_3) PVP to PVA ratio. Each
 178 factor was evaluated at three levels: 20.0%, 30.0%, and 40.0% w/w (X_1), 0.03, 0.09, and 0.15 (X_2),
 179 and 1.0, 1.75, and 2.5 (X_3). The dependent variable, β -caryophyllene content (Y_1), was measured by
 180 HPLC-UV. This randomized design involved 15 combinations, as shown in Table S2. Data were
 181 analyzed using linear regression followed by a second-order polynomial model (Eq. 02). Statistical
 182 analyses were performed using Minitab® 17.1 software, with least-squares regression and analysis
 183 of variance (ANOVA) to determine linear, quadratic, and interaction coefficients at a 5.0%
 184 significance level.

185

186 Eq. (02)

$$187 \quad Y = A_0 + \sum_{i=1}^k A_i X_i + \sum_{i=1}^k A_{ii} X_i^2 + \sum_{i=1}^{k-1} \sum_{j=i+1}^k A_{ij} X_i X_j$$

188

189 Where: the regression coefficients of constant, linear, quadratic, and interactions terms are represented respectively by
 190 A_0 , A_i , A_{ii} , and A_{ij} . k is the number of variables, and the independent variables are represented by X_i , X_j , and X_k .

191

192 Following data analysis and stepwise ($\alpha = 0.15$) analysis to generate the final equation,
 193 formulation optimization was simulated in the same software (Minitab® version 17.1), prioritizing
 194 the maximization of β -caryophyllene content. The X_2 factor was fixed at 0.09, with no restrictions
 195 on X_1 and X_3 . Equal weighting was applied to all independent variables, and the desirability (d)
 196 prediction coefficient was evaluated. Finally, the software predicted optimized conditions were
 197 experimentally validated and fully characterized. A design space was generated that established a β -
 198 caryophyllene content within a range of 90.0% to 105.0%.

199

200 **2.6 Characterization of optimized dissolving MAPs containing nanoemulsified β -**
 201 **caryophyllene**

202

203 **2.6.1 Determination of MAP β -caryophyllene content**

204 The β -caryophyllene content of MAPs was determined using HPLC-UV under the
 205 chromatographic conditions previously described. Standard curves of β -caryophyllene (25.0 to
 206 500.0 μ g/mL) were prepared in methanol. MAP samples were initially dissolved in 1 mL of ultra-
 207 purified water, followed by the addition of 9 mL of methanol. All samples were filtered through
 208 0.45 μ m PVDF syringe filters before HPLC analysis. The β -caryophyllene content was expressed as
 209 a relative percentage (\pm standard deviation).

210

211 **2.6.2 Mechanical strength**

212 The mechanical strength of the MAP formulations were evaluated under compression using
 213 a texture analyzer (TA-XT plus; Stable Micro Systems, Godalming, Surrey, UK) (Permana et al.,
 214 2019). The samples were secured to a P/10 probe with double-sided tape, and a perpendicular force
 215 was applied at a constant compression speed against a heavy-duty platform. The test parameters
 216 were set to compression mode, with a test speed of 2.0 mm/s, pre-test and post-test speeds of 1.0
 217 mm/s, a compression distance of 0.4 mm, and a trigger force of 32.0 N. After the test, the maximum
 218 compressive force sustained by the MAPs was recorded in the Exponent software, based on the
 219 force (Y) versus time (X) plot.

220

221 **2.6.3 Dynamic light scattering and morphology analysis**

222 Dynamic light scattering was used to compare the size and polydispersity index (PDI) of the
 223 nanodroplets before and after mixing with polymers. TEM (120 keV, JEM-1400, JEOL Inc., USA)
 224 was used to examine the morphology of the β -caryophyllene nanoemulsion before and after mixing

225 with the polymer dispersion, as well as to investigate the presence of nanodroplets following MAP
 226 dissolution. For TEM analysis, samples were diluted in water (1:20 v/v), fixed on formvar-coated
 227 copper grids (200 mesh), and contrasted with 2.0% w/v uranyl acetate.

228 The morphology of the MAPs was assessed using four techniques: digital microscopy,
 229 transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray
 230 microcomputed tomography (X μ CT).

231 Digital microscopy (ISKAM-315; Shenzhen Inskam Company Ltd., Shenzhen, China) was
 232 employed for real-time monitoring of the micromolding process to ensure proper filling of the
 233 microcavities. It also served as a quality control method for the demolding process, general
 234 appearance of the arrays, assessment of *in vitro* skin insertion, and *in vitro* dissolution time.

235 The dimensions of MAPs were assessed by SEM (EVO MA10; Zeiss, Oberkochen,
 236 Germany). Samples were mounted at a 90° angle on stubs with double-sided carbon tape and coated
 237 with gold. The microscope was operated at 10.0 kV, and images were captured at magnifications
 238 ranging from 50 to 150 \times .

239 The porosity of MAPs was assessed using X μ CT (SMX-90 CT; Shimadzu). Imaging was
 240 performed at 70 kV and 90 mA, with 4800 views and a resolution of 1024 \times 1024. The source–
 241 object distance was set to 22.0 mm. Images were reconstructed using InspeXio SMX-90CT
 242 software (Shimadzu).

243

244 **2.6.4 In vitro skin insertion**

245 MAP skin insertion capacity was evaluated using a texture analyzer (TA-XT plus; Stable
 246 Micro Systems) to apply MAPs at a controlled speed and force in two *in vitro* models: (i)
 247 Parafilm® layers and (ii) porcine ear skin (Larrañeta et al., 2014; Permana et al., 2021). The
 248 separation of the skin from the porcine ear skin followed the methodology described in a previous
 249 study (Lucca et al., 2020).

250 For both techniques, the MAPs were affixed to a P/10 probe with double-sided tape and
 251 pressed perpendicularly against either (i) eight overlapping Parafilm® layers (1.0 cm², 1.0-mm
 252 thickness) or (ii) porcine ear skin (0.9- to 1.1-mm thickness). The texture analyzer was operated in
 253 compression mode with the following parameters: test speed of 2.0 mm/s, pre-test and post-test
 254 speeds of 1.0 mm/s, trigger force of 32.0 N, and hold time of 30 seconds.

255 After testing, the Parafilm® layers were analyzed individually using digital microscopy
 256 (ISKAM-315; Shenzhen Inskam Company Ltd.) to examine penetrations that were consistent with
 257 the pattern of the 10 \times 10 microneedle array. Porcine skin was also analyzed via digital microscopy
 258 and post-stained with 0.4% trypan blue solution to visually determine insertion performance i.e. the
 259 percentage of needles that punctured the skin.

260

261 **2.6.5 In vitro and ex vivo MAP dissolution**

262 The kinetics of MAP dissolution was evaluated using two different environments (i) *in vitro*
 263 (in buffer solution) and (ii) *ex vivo* (using porcine ear skin). In the first *in vitro* method, 2 mL of
 264 phosphate-buffered saline (PBS) (pH 7.4) was added to a beaker, and the array was fixed in a Petri
 265 dish so that only the needles contacted the buffer solution, which was agitated at 20 rpm. The time

266 for complete microneedle dissolution was determined by digital microscopy (ISKAM-315;
 267 Shenzhen Inskam Company Ltd.) following their removal from the dissolution medium.

268 In the second (*ex vivo*) method, MAPs were applied to porcine skin (isolated from the ear),
 269 supported by cork, with a standardized force of 32.0 N for 5 min using a digital force gauge (FH
 270 100, Sauter GmbH, Germany). The hydration of the skin was maintained by PBS (pH 7.4). Optical
 271 coherence tomography (OCT) (Michelson Diagnostics Ltd, UK) was used to acquire scans in a real-
 272 time immediately after MN insertion and at 1, 2, 4, 6, and 12 hours post-application. The OCT
 273 system used in this study was a multi-beam swept-source frequency domain VivoSight™ with an
 274 axial resolution of <10 μ m and lateral resolution of <7.5 μ m. Each scan consisted of 500 frames
 275 with a scan width of 6 mm.

276 The scans were analyzed using the imaging software ImageJ® (National Institute of Health,
 277 USA). Transverse sections were post-processed using ImageJ® to determine the depth of
 278 microneedle insertion, the distance between the skin surface and the base of the MAP, and the
 279 extent of needle insertion into the skin.

280

281 **2.6.6 *In vitro* skin release of β -caryophyllene**

282 For the evaluation of delivered dose of β -caryophyllene after 24 h of MAPs skin insertion ,
 283 MAPs were applied perpendicularly to the central region of dermatomed (0.9 to 1.1 mm in
 284 thickness) porcine skin using a texture analyzer (32.0 N for 30 seconds), after which the skin was
 285 mounted in static Franz-type diffusion cells (OCDE 428, 2004). The receptor fluid composition was
 286 validated beforehand to ensure sink conditions (data not shown). Each Franz cell contained 10 mL
 287 of receptor phase liquid, consisting of 79.6% v/v PBS (pH 7.4), 20.0% v/v HPLC methanol, and
 288 0.4% v/v Tween® 80, maintained at 37 °C. MAP treated porcine skin (n = 6) was compared to
 289 topically treated skin (n = 6), using a simple dose matched liquid β -caryophyllene-loaded
 290 nanoemulsion (6 μ L). The remaining base of the arrays (n = 6) was removed after 24 hours using
 291 tweezers and sterile gauze moistened with PBS (pH 7.4), without damaging the stratum corneum.

292 At the end of the test (24h), 1 mL of receptor fluid was collected, filtered through 0.45 μ m
 293 PVDF membranes, and analyzed for β -caryophyllene concentration using HPLC-UV. In addition,
 294 all skin samples were removed, cleaned with purified water and dried with cotton wool to remove
 295 any excess caryophyllene not retained in the skin. Then, the whole skins were dissected into small
 296 pieces and transferred to amber vials, to which 1 mL of HPLC methanol was added before a 30 min
 297 sonication to extract the β -caryophyllene. The resulting liquid was filtered and analyzed via HPLC-
 298 UV. The results were expressed as the average mass of β -caryophyllene in the fluid and skin
 299 sample, \pm standard deviation.

300

301 **2.6.7 Water activity**

302 The water activity (aw) of optimized MAPs was measured using the dew point technique in
 303 a water activity analyzer (PRE; Aqualab, Pullman, WA, USA). For this test, arrays up to 20 days
 304 after manufacture were used.

305

306 **2.7 Preliminary stability study**

307 Optimized MAPs were stored in aluminum sachets sealed with a polymeric film. Samples
 308 were kept at room temperature ($25^{\circ}\text{C} \pm 5^{\circ}\text{C}$, $40\% \pm 10\%$ RH) and β -caryophyllene content,
 309 mechanical strength and *in vitro* skin insertion capacity (using the Parafilm® technique) was
 310 analysed at the following timepoints 1, 30, 45, and 60 days ($n = 3$ /timepoint). Additionally, the
 311 mass of the MAPs was recorded during the storage period.

312

313 2.8 Statistical analyses

314 Statistical analyses for the DoE were conducted using Minitab® version 17.1 (Minitab Inc.,
 315 State College, PA, USA). Regression models in the full factorial design and BBD were adjusted
 316 stepwise to include only the significant terms ($p < 0.05$) in the final equation. The stepwise
 317 adjustment process was monitored by evaluating the coefficient of determination (R^2) and adjusted
 318 coefficient of determination ($R^2\text{-adj}$) before and after excluding terms (data not shown). For the
 319 BBD, the lack-of-fit test was performed using ANOVA ($p \leq 0.05$).

320 For other assays, statistical analyses were performed using GraphPad Prism software
 321 (version 6.0), applying an unpaired Student's t-test and one-way ANOVA with post hoc Tukey tests
 322 ($p < 0.05$), after confirming a normal data distribution.

323

324 3. RESULTS AND DISCUSSION

325

326 3.1 Preparation and characterization of a β -caryophyllene nanoemulsion

327 The high molecular weight and lipophilic nature of β -caryophyllene (National Center for
 328 Biotechnology Information, 2019) is most suited to a nanoemulsion formulation, where in a
 329 dispersed system the droplet phase exists as nanometer-scale droplets that are stabilized by
 330 surfactants (Rai et al., 2018). Unlike other nanosystems, that usually present medium-chain
 331 triglycerides (MCT) in the oil core, β -caryophyllene can serve as the oily core in oil/water
 332 nanoemulsions, allowing for a higher drug load.

333 In this study a β -caryophyllene nanoemulsion was successfully produced by high-pressure
 334 homogenization and possessed a droplet size of 152 ± 1 nm, a PDI of 0.12 ± 0.02 , and a zeta
 335 potential of -35.2 ± 1.2 mV ($n = 3$). These values indicate that the emulsion formulation is
 336 homogeneous (droplet size < 500 nm, PDI < 0.30) with a low tendency for droplet aggregation (zeta
 337 potential $> |30|$ mV) (Danaei et al., 2018; Singh et al., 2017). Quantitative analysis indicated a β -
 338 caryophyllene content of $98.5\% \pm 1.2\%$, relative to the initial amount added, with an EE of $96.5\% \pm$
 339 1.3% .

340

341 3.2 Fabrication of nanoemulsified β -caryophyllene-loaded MAP

342 Previous studies have exemplified incorporation of a range of nano-formulations within
 343 dissolving MAPs, including polymeric, phospholipid, and inorganic systems (Mir et al., 2020;
 344 Permana et al., 2021; Srivastava and Thakkar, 2021; Volpe-Zanutto et al., 2021). In this study, the
 345 masked stereolithography technique was used to produce the master mold, followed by the creation
 346 of female PDMS micromolds.

347 PVA and PVP combinations were selected for dissolving MAP manufacture because of their
 348 biodegradability and biocompatibility, as well as the wide range of molecular weights and
 349 hydrolysis grades (Li et al., 2024; Permana et al., 2020; Sheskey et al., 2020) that are available,
 350 which enables tailoring of the formulation. Iterative development and optimization resulted in the
 351 selection of PVA 9–10 kDa (80% hydrolysis) and PVP 40 kDa for needle manufacture, while PVP
 352 360 kDa was selected for the baseplate. Polymeric dispersions of PVP and PVA ranging from
 353 10.0% to 50.0% w/w and PVP:PVA ratios from 1.0 to 2.5 were used to manufacture microneedles,
 354 and their integrity was evaluated using digital microscopy. A 10.0% w/w polymer dispersion
 355 resulted in fragile needles and incomplete mold filling, while dispersions with a concentration of
 356 more than 40%v/v had a high viscosity (Fig. S1), which hindered proper filling of the microcavities.
 357 Rheological studies indicated that increasing the PVP:PVA ratio from 1.0 to 2.5 could reduce
 358 viscosity (Fig. S1). Mathematical modeling and rheogram analysis (shear rate vs. shear stress)
 359 confirmed Newtonian fluid behavior for all dispersions (Bingham, Ostwald, and Herschel–Bulkley;
 360 $r = 1.00$), and this was unaffected by the addition of β -caryophyllene nanoemulsion.

361 Homogeneity tests were conducted on polymer dispersions after mixing with the
 362 nanoemulsified β -caryophyllene formulation. Low and high factor values were evaluated: (i)
 363 polymer dispersion concentration (20.0% and 40.0% w/w), (ii) PVP:PVA ratio (1.0 and 2.5), and
 364 (iii) nanoemulsified β -caryophyllene ratio in relation to the solids content of the polymers (0.03 and
 365 0.15). After homogenization, the macroscopic appearance of the mixtures was recorded over a
 366 period of 6 hours (Figs. S2 and S3). A higher PVP:PVA ratio (2.5) resulted in lower viscosity and
 367 increased phase separation (Fig. S3(D)) compared to a PVP:PVA ratio of 1.0 (Fig. S2(D)).
 368 Additionally, a 40.0% w/w polymer mixture maintained uniformity longer than 20.0% w/w
 369 dispersions (Figs. S2 and S3(D–F)).

370 Phase separation occurred after 2 hours, with β -caryophyllene accumulating in the upper
 371 portion due to its density, promoting content loss through evaporation. Based on these findings, the
 372 micromolding process should limit the time between the first and second casting steps to 1 hour.
 373 Furthermore, the impact of RH on drying time was evaluated (data not shown). Optimal conditions
 374 were determined to be $22\% \pm 2\%$ RH for needle drying and $35\% \pm 5\%$ RH for base drying.

375

376 3.3 Quality by Design considerations

377

378 3.3.1 Quality Target Product Profile and Risk Estimation Matrix

379 In recent decades, the pharmaceutical industry has implemented a systematic approach to
 380 product and process development based on risk analysis, known as QbD. QbD tools and elements
 381 are employed from the initial development stage to ensure product quality; define acceptable
 382 variations within the production process, including material and process attributes; and predict the
 383 product's life cycle while promoting cost minimization (International Council for Harmonisation,
 384 2009, 2006; Simões et al., 2024).

385 A QTPP was established for the QbD-driven development of dissolving MAPs integrated
 386 with β -caryophyllene nanoemulsion. According to the ICH Q8(R2) guideline, the QTPP forms the
 387 foundation of pharmaceutical product development, guiding the choice of production processes and
 388 formulation criteria and determining CQAs for risk monitoring tools (International Council for
 389 Harmonisation, 2009). Table 1 lists the elements, targets, and justifications, identifying which
 390 elements and targets are considered CQAs.

392 Table 1 - Identification of quality target product profile (QTPP) and critical quality attributes (CQAs) for the dissolving
 393 microneedle integrated with β -caryophyllene nanoemulsion and for the pharmaceutical formulation intermediates

Element	C Q A	Target	Justification
Administration route	N o	Transdermal	Absorption of β -caryophyllene at higher concentrations than oral and topical routes and possibility of controlling release. Application close to the inflammatory site.
Dosage form	N o	Dissolving microneedle integrated with β -caryophyllene nanoemulsion	β -caryophyllene is a multitarget compound which acts on type 2 endocannabinoid receptors (CB2) and modulates inflammatory mediators (Klaucke et al., 2014; Sharma et al., 2016). Thus, the release of this compound close to the inflammatory site may confer benefits in the management of chronic pain associated with inflammatory conditions such as osteoarthritis. *
Clinical indication*	N o	Reduction of chronic pain symptoms associated with inflammatory conditions	
Drug delivery matrix	N o	Hydrophilic	Delivering of the nanoemulsified bioactive compound from a hydrophilic, biocompatible, and biodegradable polymeric matrix. After skin insertion, the matrix underwent a process of hydration and dissolution, gradually releasing the nanoemulsified β -caryophyllene.

Quality attributes

P F I	Physical attributes (color, odor, and appearance)	N o	Slightly viscous, homogeneous, opaque, white to yellowish liquid with a slight odor of β -caryophyllene odor. No phase separation should be observed after 1 hour at rest.	The addition of the nanoemulsion to the polymeric dispersion changes the color to white and slightly reduces the viscosity. The separation
-------------	---	--------	--	--

of the oily phase (API) and the aqueous phase (polymers) can be favored when polymeric dispersions with low viscosity values and high levels of nanoemulsified β -caryophyllene are applied. Keeping the uniformity for 1 hour at rest is relevant to the micromolding process. Although not classified as a CQA, any changes in physical characteristics should be investigated.

Nanometric characteristics	Y	Droplet size <400 nm	Nanometric characteristics to promote the stability of β -caryophyllene and its uniformity in the polymer matrix.
	e	Polydispersity index <0.50	
Viscosity	Y e s	From 200 cP to 3000 cP**	The viscosity is directly related to the concentration of the polymers and the combination ratio between PVA and PVP. Furthermore, this parameter must be controlled as it has an impact on the mold filling stage.
Physical attributes (color and appearance)	N o	Flat base (1 cm ²), translucent, and slightly yellowish with projections in the shape of pyramidal needles , opaque white in color.	By visual analysis, the base made up of PVP and adjuvant should appear homogeneous and translucent. The needles, due to the presence of nanoemulsified β -caryophyllene, should be white and opaque. Although not classified as a CQA, any changes in physical characteristics should be investigated.
Drug load [#]	Y e s	Maximize	Increasing the concentration of β -caryophyllene absorbed and potentiating the therapeutic effect.
Stability of the β -caryophyllene	Y e s	Maximize (>90% β -caryophyllene content)	Ensure the stability of β -caryophyllene and avoid possible losses through

content after
micromoldingvolatilization during the
micromolding process.Geometric
microstructure

Y
e
s

Pyramidal needles; height: 500–1000 μm ; inter-needle base spacing: 200–800 μm ; tip diameter: 20–70 μm ; density: ≥ 100 needles/cm².

The geometry of the microneedles should allow insertion into the skin up to the epidermis while enabling drug loading compatible with therapeutic efficacy. Skin insertion is influenced not only by the material composition but also by geometric parameters, including base and tip inter-needle spacing, needle height, tip diameter, base width, needle shape, and needle density.

Microneedle
integrity

Y
e
s

Completely filled matrix (10×10 needles/array) with no fractures in the microstructure

The integrity of the matrix is necessary for complete skin insertion and maintenance of the optimized drug load.

Compression
force

Y
e
s

Sufficient to promote skin insertion (>50 N/array)
(Larrañeta et al., 2014)

Ensure optimum compression force for skin insertion without needle breakage.

Skin insertion
profile

Y
e
s

Complete insertion of the MAP by applying manual force

Uniform insertion of the matrix (e.g. 10×10), representing the rupture of the stratum corneum (15 μm) and penetration of the epidermis.

Dissolution time
profile

Y
e
s

Complete dissolution of the needles during the prescribed period of use

To promote the release of nanoemulsified β -caryophyllene.

Water activity

N
o

Minimize without compromising the ideal mechanical characteristics for full insertion of the matrix into the skin

The reduced water activity in allows the control of a low bioburden and consequently reduces the risk of infection during application. (Dul et al., 2023)

Transdermal
absorption

Y
e
s

Promote prolonged release system

Prolonged effect to better adapt the dosage to the chronicity of the clinical indication (once-daily)

Stability	Y e s	12 months	Quality requirement to be performed by the optimized formulation in order to ensure safety and efficacy.
Packaging closure system	N o	Aluminum sachets with sealed polymeric film	An inert packaging that protects from humidity is necessary to guarantee its integrity, mechanical characteristics for skin insertion, and stability of the β -caryophyllene content during shelf life. The packaging must also be easy for the patient to handle.

394 API: Active Pharmaceutical Ingredient; EE: entrapment efficiency; FPF: final pharmaceutical formulation, dissolving
 395 microneedle integrated with β -caryophyllene nanoemulsion; PFI pharmaceutical formulation intermediate - polymer
 396 blend containing β -caryophyllene nanoemulsion; PVA: polyvinyl alcohol; PVP: polyvinyl pyrrolidone.

397 *The prototype of the dissolving microneedle integrated with the β -caryophyllene nanoemulsion was developed with
 398 the aim of being applied in clinical cases of chronic pain associated with inflammatory conditions. Firstly, its
 399 development process was based on the international Quality by Design guidelines and well documented in this article.
 400 Its clinical efficacy will be reported in specific documents for these trials. **Viscosity values obtained at 20 rpm,
 401 spindle number 18, Brookfield Rotational Viscometer, model DV-II+.

402

403

404 Usually, the QTPP is developed for the final pharmaceutical product. However, because of
 405 the specificities of the integrated system and the production of three intermediate products that
 406 directly affect quality, these intermediates were also detailed in the QTPP (Table 1). The
 407 intermediate pharmaceutical formulation (PFI) represents the mixture of polymeric dispersion with
 408 the nanoemulsion, respectively. The quality criteria of the final product are directly influenced by
 409 PFI because this intermediate is transferred to the micromolds and subjected to the drying process.
 410 After developing the QTPP, it became evident that the DoE should include variations in PFI's
 411 composition and process criteria. The optimized formulation should then be characterized according
 412 to the elements of the final formulation (FPF) and meet the pre-established targets.

413 CQAs are defined as properties or characteristics of a chemical, physical, biological, or
 414 microbiological nature that must remain within specific limits to ensure product quality, and
 415 consequently, safety and efficacy (International Council for Harmonisation, 2009). CQAs can apply
 416 to the materials (active pharmaceutical ingredient [API], excipients, and packaging) and the
 417 process. Considering the development of MAPs towards commercial products, and the need for
 418 regulatory guidance around MAP development and testing, the Microneedle Array Patch
 419 Regulatory Working Group has established a list of CQAs for these systems (MAP RWG, 2024).
 420 The biological attributes were categorized into biocompatibility and delivered dose, while
 421 microbiological attributes were divided into microbiological specification, water activity, and
 422 particulates. Chemical attributes include chemical stability, assay, content uniformity, drug purity,
 423 dissolution, and water content. Physical attributes encompass the container closure system,
 424 mechanical strength, puncture performance, and needle morphology (Dul et al., 2025).

425 Considering that CMAs and CPPs directly impact CQAs (International Council for
 426 Harmonisation, 2006), a risk assessment was conducted using a REM tool. Tables S3 and S4
 427 present the REM for CMAs versus CQAs and CPP versus CQAs, respectively.

428 As shown in Table S3, 10 high-risk interactions were identified between the CQAs and
 429 CMAs related to the API (β -caryophyllene) and polymers. Of these, factors that could be modulated
 430 and measured through DoE were selected. These factors were the concentration of the API, the
 431 concentration of the polymers in dispersions, and the combination ratio of the polymers. Other high-
 432 risk interactions were monitored. In Table S4, the CPP chosen for evaluation by full factorial design
 433 was the needle drying process, specifically the drying temperature, because of the volatility of β -
 434 caryophyllene. Also, to study the interactions between CMAs, CPPs, and their influence on CQAs,
 435 the QbD methodology involved applying DoE alongside preliminary risk analysis (Simões et al.,
 436 2024).

437

438 **3.3.2 Design of Experiments**

439 The screening DoE in this study was a two-level full factorial design, which allowed for the
 440 measurement of main effects, interaction effects, and quadratic effects by testing combinations of
 441 all factors (X_1 , X_2 , X_3) at both levels (-1 , $+1$) (Simões et al., 2024). Stepwise regression was
 442 applied to adjust the regression models, and R^2 and R^2 -adj values were compared before and after
 443 the adjustment. For both outputs— β -caryophyllene content (Y_1) and compression force (Y_2)—the
 444 fit of the coefficients of determination improved. The R^2 and R^2 -adj for β -caryophyllene content
 445 were 0.9247 and 0.8587, respectively. For compression force, R^2 was 0.9529 and R^2 -adj was
 446 0.7646. These values were considered acceptable for the purpose of verifying the factor effects and
 447 determining which factors to include in the optimization DoE.

448 Figure 1 presents Pareto charts and main effects charts for the full factorial design. As
 449 shown in Figure 1A, polymer solids (X_1), the interaction with the β -caryophyllene ratio (X_1X_2), and
 450 their interaction with the PVP:PVA ratio ($X_1X_2X_3$) influenced the β -caryophyllene content output.
 451 The needle drying temperature had no significant effect. This supports the findings from the
 452 homogeneity studies (Section 3.2), in which increasing the polymer concentration from 20.0% to
 453 40.0% w/w increased the β -caryophyllene content, while increasing the PVP:PVA ratio from 1.0 to
 454 2.5 slightly reduced the content.

455 The compression force output (Fig. 1B, D) was influenced by all factors, but nominal
 456 compression force values did not affect puncture efficiency because all experiments resulted in
 457 forces above 132 N. A study involving volunteers indicated that manual force applied during
 458 application ranged from 10 to 50 N (Larrañeta et al., 2014); thus, the dissolving MAP was designed
 459 to withstand up to 50 N of compression force. Given these results, DoE optimization focused on the
 460 β -caryophyllene content. The BBD was applied, allowing for the evaluation of main, interaction,
 461 and quadratic effects. The use of BBD supports a more sustainable approach in scientific research
 462 by reducing the number of experiments, thus minimizing resource consumption and waste (Politis et
 463 al., 2017).

464 Figure 2 shows the results of BBD. The model showed no lack of fit ($p = 0.140$), and the
 465 coefficients of determination after stepwise regression were $R^2 = 0.8952$ and R^2 -adj = 0.8370. The
 466 regression equation for the model is provided in Eq. (02).

467

468 Eq. (02)

469 β -caryophyllene content (%) = -133.7 + 4.201 X₁ + 643 X₂ + 73.6 X₃ - 5455 X₂² - 23.7 X₃²

470 Where: (X₁) percentage of polymers in the dispersion (% w/w), (X₂) β -caryophyllene ratio in
471 relation to the solids content of the polymers, and (X₃) PVP:PVA ratio.

472

473 The contour plots (Fig. 2A–C) indicate that β -caryophyllene contents above 90.0% can be
474 achieved with the following conditions: (X₁) polymer concentration between 35.0% and 40.0%
475 w/w, (X₂) car:polymer ratio between 0.03 and 0.10, and (X₃) PVP:PVA ratio between 1.2 and 2.1.
476 These area conditions can be verified in the navy-blue regions on the contour plots. It can also be
477 verified by the white area marked in Fig. 2-D.

478 To verify the optimization conditions, three scenarios were generated using Minitab® 17.1
479 software, with the highest desirability value (d = 1.000) chosen. The optimized conditions were (X₁)
480 polymer solids at 40.0% w/w, (X₂) β -caryophyllene ratio at 0.09, and (X₃) PVP:PVA ratio at 1.54.
481 This composition was used for microneedle production and further characterization of the array. It
482 is important to note that the baseplate composition remained constant throughout testing (15.0%
483 w/w PVP 360 kDa + 1.5% w/w glycerin), and the microneedles were dried at 40 °C for 1 hour (22%
484 ± 2% RH) before adding the base.

485

486 **3.4 Characterization of optimized dissolving MAP integrated with nanoemulsified β -**
487 **caryophyllene**

488

489 **3.4.1 Determination of MAP β -caryophyllene content and mechanical strength**

490

491 The formulation optimized through DoE met the quality profile outlined in the QTPP (Table
492 1). The average mass of β -caryophyllene loaded into the array was 1235 μ g, with a content of
493 95.96% ± 1.45%. This result demonstrates that optimizing the formulation by combining the
494 nanoemulsified system with MAP retarded the loss of β -caryophyllene through volatilization.
495 Furthermore, despite the β -caryophyllene being liquid at storage temperature, which could cause the
496 MAP to become fragile, the optimization resulted in a mechanical strength (129.9 ± 9.2 N)
497 compatible with the theoretical value estimated for promoting skin penetration.

498

499 **3.4.2 Dynamic light scattering and morphology analysis**

500 For the nanometric characteristics of β -caryophyllene nanoemulsion) and PFI (β -
501 caryophyllene nanoemulsion in polymer dispersion), the average droplet size (PDI) increased from
502 152 ± 1 nm (0.12 ± 0.02) to 398 ± 1 nm (0.45 ± 0.04), as measured by dynamic light scattering. In
503 addition to dynamic light scattering, the nanoemulsion, PFI, and the final formulation after
504 dissolution were analyzed by TEM (Fig. S4). These data showed that nanodroplets of similar size
505 were observed in β -caryophyllene nanoemulsion (Fig. S4A) and after dissolving the array (Fig.
506 S4C, D), but they were not clearly visible in PFI (Fig. S4B), as the circular structures seem to be
507 artefacts often found in TEM, also observed in Fig. S4A along with nanodroplets. These findings
508 further suggest that analyzing dissolving MAPs integrated with nanosystems is complex and
509 requires multiple techniques, and that future improvements in existing methods are needed.

510 In a scoping review conducted by our research group on the characterization of dissolvable
 511 MAP associated with nanostructured systems, we observed that fewer than 30% of the studies
 512 analyzed evaluated the size and morphology of the nanostructures after their incorporation into the
 513 MAP (Weimer et al., 2021). The primary reason reported for this limitation was the interference of
 514 polymeric matrices with conventional particle size characterization techniques. Furthermore, the
 515 incorporation of nanoemulsions into dissolvable microneedles remains scarcely explored in the
 516 literature, with most studies focusing predominantly on the feasibility of formulation and device
 517 development (Ali et al., 2024; Nasiri et al., 2022). Therefore, further investigations addressing the
 518 interactions and physicochemical phenomena between nanodroplets and the polymeric matrix are
 519 warranted.

520 MAPs (10×10 needles) were formed by micromolding, resulting in pyramidal needles (Fig.
 521 3A, B). SEM analysis (Fig. 5) confirmed the geometry and dimensions of the microneedles, with no
 522 significant differences between MAPs made from polymers alone (blank) (Fig. 5A) and those
 523 containing β -caryophyllene nanoemulsion (Fig. 5B). The optimized formulation resulted in
 524 microneedles measuring 916 μm in height, 542 μm in base width, and 61 μm in tip diameter; with
 525 1000 μm and 425 μm interneedle spacing at the tips and bases, respectively; and with a 106° angle
 526 between the baseplate and the needle. The pyramidal morphology was confirmed by X-ray
 527 microcomputed tomography (X μ CT; Fig. 5C), with slight porosity also observed (Fig. 5D).

528

529 **3.4.3 In vitro skin insertion and MAP dissolution**

530 Several studies have shown that MAP skin insertion efficiency is related to microneedle
 531 array design, including factors such as height, shape, aspect ratio, patch area, and interneedle
 532 spacing (Johnson et al., 2016; Makvandi et al., 2021; Olatunji et al., 2013). Despite the pyramidal
 533 geometry of the optimized MAPs, which could present points of fragility, a compression force
 534 exceeding 50.0 N (QTPP) (Table 1) indicated sufficient insertion capacity. This was confirmed
 535 using the Parafilm® and porcine ear skin as substrates (Fig. 3C, D).

536 As shown in Figure 3C, the optimized array achieved 100% penetration of the first
 537 Parafilm® layer and approximately 97% of the second layer. Insertion efficiency decreased with the
 538 remaining layers, with 11% perforation in the fifth layer. The total insertion depth reached 625 μm ,
 539 sufficient to penetrate the stratum corneum (10–20 μm) and epidermis/dermis (<800 μm) (Benson
 540 and Watkinson, 2012). Penetrations in porcine ear skin after application and removal are shown in
 541 Figure 3D. In this substrate, the MAPs showed penetration rates between 92 and 100%. This result
 542 was corroborated by the OCT scans, which indicated a penetration depth of approximately 610 μm
 543 (67% the total height; Fig. 4A).

544 Dissolution time analysis revealed rapid dissolution of the microneedles in PBS (pH 7.4)
 545 within 16 ± 2 seconds, with complete dissolution in the skin after 12 hours of contact (portion
 546 penetrated into the skin, Fig. 4). The OCT technique was used to check the depth of needle insertion
 547 and to monitor the dissolution profile in skin. As shown in Figure 4 (A, B), there was a significant
 548 reduction in the area in contact with the skin only at 12 hours. Further studies could be carried out
 549 in association with imaging techniques such as X μ CT to better understand the dissolution
 550 mechanism. In addition, the OCT technique indicated that approximately 33% of the needle did not
 551 come into contact with the skin. Although it is estimated that two-thirds ($605 \pm 26 \mu\text{m}$) of the total
 552 height of the needle will come into contact with the skin, adjustments to needle geometry and
 553 interspacing, for example, could be explored in the future to increase the depth of skin penetration.

554 The dissolution time in the skin correlates with the polymer concentration used in
 555 manufacturing and the needle size. Future studies could evaluate the therapeutic effects of β -

556 caryophyllene in chronic inflammatory conditions like osteoarthritis. A recent *in vivo* study
 557 demonstrated 72-hour tissue retention of diclofenac delivered via nanosuspension in PVA/PVP
 558 MAPs as a strategy for prolonged pain relief (Li et al., 2024).

559

560 **3.4.4 In vitro skin release of β -caryophyllene**

561

562 Transdermal delivery of β -caryophyllene into the receptor compartment was observed only
 563 with MAP administration (Table 2). Previous studies using topical nanoemulsified β -caryophyllene,
 564 resulted in API deposition within the skin (Peterle et al., 2020; Weimer et al., 2022). Whilst topical
 565 application of the nanoemulsion can facilitate skin penetration into the epidermis and dermis, it
 566 does not result in complete release through the tissue. In this study, transdermal delivery of β -
 567 caryophyllene was achieved through integrating the nanoemulsion with dissolving MAPs.

568

569 **Table 2** – *In vitro* skin released amount of β -caryophyllene after 24 h of administration of optimized
 570 formulations of microneedle and nanoemulsion.

Sample	Optimized microneedle	Nanoemulsion
Whole skin	$647 \pm 52 \mu\text{g}^*$	$864 \pm 133 \mu\text{g}$
Receptor fluid	$320 \pm 41 \mu\text{g}^*$	< LOQ

571 LOQ: Limit of quantification. Results expressed as mean mass of β -caryophyllene \pm standard
 572 deviation. Statistical analysis: Student's t-test * $p < 0.05$, comparison between optimized
 573 microneedle and nanoemulsion.

574 Regarding oral administration, a human study evaluated pharmacokinetic parameters after
 575 taking 100 mg of free β -caryophyllene and found a maximum concentration of 58.2 ng/mL (95%
 576 CI: 45.13–71.3 ng/mL). When delivered using a self-emulsifying drug delivery system, the same
 577 dose achieved a maximum concentration of 204.6 ng/mL (95% CI: 167.2–242.1 ng/mL) (Mödinger
 578 et al., 2022). A direct comparison with the MAP proposed in this work is not possible. However,
 579 the concentration measured in the receptor fluid indicates an innovative alternative to oral
 580 administration. Additionally, considering the intended clinical application in the QTPP (Table 1),
 581 the MAP could be applied near the inflammation site, and dose adjustments could be made, for
 582 example, by increasing the patch size. These ideas will be tested in future studies.

583

584 **3.4.5 Water activity**

585 The last quality parameter evaluated was water activity (aw). Analysis of the entire
 586 microneedle array yielded an aw value of 0.34 ± 0.03 . As yeast and pathogenic bacterial growth is
 587 favored at aw values above 0.60 and 0.75, respectively, this indicates a low potential for microbial
 588 growth in the dissolving MAP. Determining the water content and water activity of dissolving
 589 MAPs will support the regulatory dossier, enabling the specification of water limits that will

590 prevent microbial growth or reduce the risk of clinical infection. Ongoing and future clinical studies
 591 should consider such measurements to ameliorate potential infection risks associated with the use of
 592 MAPs (Dul et al., 2023; MAP RWG, 2024).

593

594 **3.5 Preliminary stability study**

595 A preliminary stability study was conducted to confirm the maintenance of β -caryophyllene
 596 content, compressive force, and *in vitro* skin insertion capacity for the optimized array stored in
 597 aluminum packaging with polymeric film. The results are shown in Figure 6. The β -caryophyllene
 598 content remained stable for 45 days (Fig. 6A). The stability of the β -caryophyllene content
 599 parameter can still be improved, considering the 12-month target established in the QTPP. Future
 600 studies may explore additional temperature and humidity ranges beyond those already evaluated (25
 601 $^{\circ}\text{C} \pm 5^{\circ}\text{C}$, 40% $\pm 10\%$ RH), as well as potential adjustments to the packaging system.

602 In a study evaluating dissolvable MAP for the delivery of amoxicillin sodium, it was
 603 observed that the drug content was influenced by the type of packaging material employed
 604 (McAlister et al., 2021). For formulations containing volatile compounds, additional precautionary
 605 measures may therefore be required. Future studies aimed at redefining packaging strategies for
 606 MAP containing volatile compounds will include the investigation of a dual-packaging system. For
 607 instance, the MAP may be housed in a plastic support and subsequently enclosed within an
 608 aluminum package. Additional variables, such as the sealing method, as well as the need of storage
 609 in refrigerator before use (e.g. long-term storage of unopened insulin) may also be systematically
 610 evaluated.

611 It is important to emphasize that the 45-day result does not invalidate the proof of concept
 612 regarding the delivery of a lipophilic and volatile API in a dissolving MAP. Moreover, we
 613 hypothesize that delivering a lipophilic API in nanostructured systems aids in uniform matrix
 614 distribution, stability, and action potentiation - all important factors during development.

615 No statistical differences were observed across time points for compression force (Fig. 6B)
 616 or insertion efficiency (Fig. 6C). The array's weight showed a consistent variation of approximately
 617 1.0%–0.5% (Fig. 6D). These results suggest that despite β -caryophyllene's vapor pressure
 618 promoting evaporation, β -caryophyllene content was maintained above 90.0% for 45 days. The
 619 packaging also ensured the stability of other variables, protecting the array from humidity.

620

621 **CONCLUSIONS**

622 This study's novelty lies in the successful transdermal delivery of β -caryophyllene using a
 623 nanoemulsion formulation integrated in a dissolvable MAP. The results demonstrate that the
 624 physicochemical challenges that typically hinder delivery of lipophilic volatile compounds from
 625 water-soluble MAPs can be addressed using nanotechnology and a QbD approach. The optimized
 626 formulation met the fundamental pre-determined quality criteria i.e. a MAP β -caryophyllene
 627 content of over 90% relative to the initial amount added, a reasonable skin insertion force and
 628 stability on storage. These results could serve as a foundation for the intra- or transdermal delivery
 629 of other terpenic compounds using dissolvable MAPs. Finally, this system holds potential for future
 630 studies investigating its use in treating chronic inflammatory pain.

631

632 **Supporting information**

633 The following files are available as supplemental material (PDF). Experimental section of
 634 rheological behavior. Supplementary tables of randomized experimental matrix for 2⁴ Full Factorial
 635 Design, Box–Behnken Design and risk estimation matrix. Supplementary figures - rheograms of
 636 polymeric dispersions, macroscopic appearance of polymeric dispersion containing nanoemulsion,
 637 residual plots of 2⁴ Full Factorial Design and Box–Behnken Design, and transmission electron
 638 microscopy.

639

640 **DECLARATIONS**

641

642 **Consent for publication:** The authors declare that they know of no competing financial interests or
 643 personal relationships that may have influenced the work reported in this paper.

644

645 **Acknowledgements:** This work was financially supported by Conselho Nacional de
 646 Desenvolvimento Científico e Tecnológico – CNPq, Fundação de Amparo à Pesquisa do Estado do
 647 Rio Grande do Sul – FAPERGS, and Coordenação de Aperfeiçoamento de Pessoal de Nível
 648 Superior. The authors would like to thank Professor Dr. Eduardo César Tondo and Giulia Giugliani
 649 Reta for their support in the water activity analysis. In this study, Dr Maria Dul (co-author),
 650 Professor James Birchall and Dr Sion Coulman (Cardiff University) supported the OCT imaging of
 651 microneedles in excised porcine skin.

652

653 **Competing interests:** The authors declare no conflict of interest.

654

655 **Authors' contributions:** **P. Weimer:** Conceptualization, validation, formal analysis, investigation,
 656 resources, writing original draft, and project administration. **I. M. Bordignon:** Formal analysis. **A.**
 657 **M. Rolim:** Formal analysis. **K. O. Araujo:** Formal analysis. **J. C. Waszak:** Formal analysis. **N. T.**
 658 **Brazil:** Formal analysis. **F. M. Collares:** Formal analysis. **M. Dul:** Investigation, formal analysis
 659 and writing review & editing. **R. C. Rossi:** Resources and writing review & editing. **L. S. Koester:**
 660 Conceptualization, resources, funding acquisition, writing review & editing, and supervision.

661

662 **Funding:** This work was supported by Conselho Nacional de Desenvolvimento Científico e
 663 Tecnológico – CNPq (406327/2025-4), Fundação de Amparo à Pesquisa do Estado do Rio Grande
 664 do Sul – FAPERGS (21/2551-0002064), and Coordenação de Aperfeiçoamento de Pessoal de Nível
 665 Superior, Finance Code 001 (CAPES).

666

667 **REFERENCES**

668

669 Ali, F.R., Shoaib, M.H., Ali, S.A., Yousuf, R.I., Ahmed, F.R., Siddiqui, F., Sarfaraz, S., Raja, R.,
 670 2024. Fabrication and evaluation of nanoemulsion based insulin loaded microneedles for

671 transdermal drug delivery. *Ther. Deliv.* 15, 605–617.
 672 <https://doi.org/10.1080/20415990.2024.2377065>

673 Alimardani, V., Abolmaali, S.S., Yousefi, G., Rahiminezhad, Z., Abedi, M., Tamaddon, A.,
 674 Ahadian, S., 2021. Microneedle arrays combined with nanomedicine approaches for
 675 transdermal delivery of therapeutics. *J. Clin. Med.* 10, 181.
 676 <https://doi.org/10.3390/jcm10020181>

677 Ando, D., Miyatsuji, M., Sakoda, H., Yamamoto, E., Miyazaki, T., 2024. Mechanical
 678 characterization of dissolving microneedles: factors affecting physical strength of needles.
 679 *Pharmaceutics* 16. <https://doi.org/10.3390/pharmaceutics16020200>

680 Benson, H.A.E., Watkinson, A.C., 2012. *Transdermal and Topical Drug Delivery: Principles and*
 681 *Practice, Transdermal and Topical Drug Delivery: Principles and Practice.* John Wiley & Sons,
 682 Hoboken. <https://doi.org/10.1002/9781118140505>

683 Cheng, Y., Dong, Z., Liu, S., 2014. β -caryophyllene ameliorates the Alzheimer-like phenotype in
 684 APP/PS1 mice through CB2 receptor activation and the PPAR γ pathway. *Pharmacology* 94, 1–
 685 12. <https://doi.org/10.1159/000362689>

686 Coulman, S.A., Anstey, A., Gateley, C., Morrissey, A., McLoughlin, P., Allender, C., Birchall, J.C.,
 687 2009. Microneedle mediated delivery of nanoparticles into human skin. *Int. J. Pharm.* 366,
 688 190–200. <https://doi.org/10.1016/j.ijpharm.2008.08.040>

689 Danaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh Davarani, F., Javanmard, R., Dokhani, A.,
 690 Khorasani, S., Mozafari, M.R., 2018. Impact of particle size and polydispersity index on the
 691 clinical applications of lipidic nanocarrier systems. *Pharmaceutics* 10, 1–17.
 692 <https://doi.org/10.3390/pharmaceutics10020057>

693 Dul, M., Alali, M., Ameri, M., Burke, M.D., Craig, C.M., Creelman, B.P., Dick, L., Donnelly, R.F.,
 694 Eakins, M.N., Frivold, C., Forster, A.H., Gilbert, P.A., Henke, S., Henry, S., Hunt, D., Lewis,
 695 H., Maibach, H.I., Mistilis, J.J., Park, J.H., Prausnitz, M.R., Robinson, D.K., Hernandez,
 696 C.A.R., Ross, C., Shin, J., Speaker, T.J., Taylor, K.M., Zehrung, D., Birchall, J.C., Jarrahian,
 697 C., Coulman, S.A., 2023. Assessing the risk of a clinically significant infection from a
 698 Microneedle Array Patch (MAP) product. *J. Control. Release* 361, 236–245.
 699 <https://doi.org/10.1016/j.jconrel.2023.07.001>

700 Dul, M., Alali, M., Ameri, M., Burke, M.D., Creelman, B.P., Dick, L., Donnelly, R.F., Eakins,
 701 M.N., Frivold, C., Forster, A.H., Gilbert, P.A., Henke, S., Henry, S., Hunt, D., Lewis, H.,
 702 Mistilis, J.J., Park, J.H., Prausnitz, M.R., Robinson, D.K., Hernandez, C.A.R., Shin, J.,
 703 Speaker, T.J., Strasinger, C., Taylor, K.M.G., Zehrung, D., Birchall, J.C., Jarrahian, C.,
 704 Coulman, S.A., 2025. White paper: Understanding, informing and defining the regulatory
 705 science of microneedle-based dosage forms that are applied to the skin. *J. Control. Release*
 706 378, 402–415. <https://doi.org/10.1016/j.jconrel.2024.11.056>

707 European Medicines Agency, 2022. ICH guideline Q2(R2) on validation of analytical procedures.
 708 EMA Guid. Doc. 50, 97–105.

709 European Medicines Agency, 2019. ICH Guideline M10 on Bioanalytical Method Validation. EMA
 710 Guid. Doc. 44, 57.

711 Francomano, F., Caruso, A., Barbarossa, A., Fazio, A., Torre, C. La, Ceramella, J., Mallamaci, R.,
 712 Saturnino, C., Iacopetta, D., Sinicropi, M.S., 2019. β -caryophyllene: A sesquiterpene with
 713 countless biological properties. *Appl. Sci.* 9. <https://doi.org/10.3390/app9245420>

714 Gertsch, J., Leonti, M., Raduner, S., Racz, I., Chen, J.-Z., Xie, X.-Q., Altmann, K.-H., Karsak, M.,
 715 Zimmer, A., 2008. Beta-caryophyllene is a dietary cannabinoid. *Proc. Natl. Acad. Sci.* 105,
 716 9099–9104. <https://doi.org/10.1073/pnas.0803601105>

717 International Council for Harmonisation, 2009. ICH guideline Q8 (R2) on pharmaceutical
 718 Development. Eur. Med. Agency.

719 International Council for Harmonisation, 2006. ICH Guideline Q9 on Quality Risk Management.
 720 Eur. Med. Agency.

721 Johnson, A.R., Caudill, C.L., Tumbleston, J.R., Bloomquist, C.J., Moga, K.A., Ermoshkin, A.,
 722 Shirvanyants, D., Mecham, S.J., Luft, J.C., De Simone, J.M., 2016. Single-step fabrication of
 723 computationally designed microneedles by continuous liquid interface production. *PLoS One*
 724 11, 1–17. <https://doi.org/10.1371/journal.pone.0162518>

725 Klauke, A.L., Racz, I., Pradier, B., Markert, A., Zimmer, A.M., Gertsch, J., Zimmer, A., 2014. The
 726 cannabinoid CB2 receptor-selective phytocannabinoid beta-caryophyllene exerts analgesic
 727 effects in mouse models of inflammatory and neuropathic pain. *Eur. Neuropsychopharmacol.*
 728 24, 608–620. <https://doi.org/10.1016/j.euroneuro.2013.10.008>

729 Kreutz, T., Carneiro, S.B., Soares, K.D., Limberger, R.P., Apel, M.A., Veiga-junior, V.F., Koester,
 730 L.S., 2021. *Aniba canelilla* (Kunth) Mez essential oil-loaded nanoemulsion: Improved stability
 731 of the main constituents and in vitro antichemotactic activity. *Ind. Crops Prod.* 171.
 732 <https://doi.org/10.1016/j.indcrop.2021.113949>

733 Larrañeta, E., Moore, J., Vicente-Pérez, E.M., González-Vázquez, P., Lutton, R., Woolfson, A.D.,
 734 Donnelly, R.F., 2014. A proposed model membrane and test method for microneedle insertion
 735 studies. *Int. J. Pharm.* 472, 65–73. <https://doi.org/10.1016/j.ijpharm.2014.05.042>

736 Li, M., Vora, L.K., Peng, K., Sabri, A.H.B., Qin, N., Abbate, M., Paredes, A.J., McCarthy, H.O.,
 737 Donnelly, R.F., 2024. Novel nano-in-micro fabrication technique of diclofenac nanoparticles
 738 loaded microneedle patches for localised and systemic drug delivery. *Biomater. Adv.* 161,
 739 213889. <https://doi.org/10.1016/j.bioadv.2024.213889>

740 Lucca, L.G., de Matos, S.P., Weimer, P., Teixeira, H.F., Koester, L.S., 2020. Improved skin
 741 delivery and validation of novel stability-indicating HPLC method for ketoprofen
 742 nanoemulsion. *Arab. J. Chem.* 13, 4505–4511. <https://doi.org/10.1016/j.arabjc.2019.09.005>

743 Makvandi, P., Kirkby, M., Hutton, A.R.J., Shabani, M., Yiu, C.K.Y., Baghbantaraghbari, Z.,
 744 Jamaledin, R., Carlotti, M., Mazzolai, B., Mattoli, V., Donnelly, R.F., 2021. Engineering
 745 microneedle patches for improved penetration: analysis, skin models and factors affecting
 746 needle insertion, *Nano-Micro Letters*. Springer Singapore. <https://doi.org/10.1007/s40820-021-00611-9>

748 MAP RWG, 2024. Microneedle Array Patch Regulatory Working Group [WWW Document]. URL
 749 <https://www.microneedleregulatory.org/> (accessed 7.1.24).

750 McAlister, E., Kearney, M.C., Martin, E.L., Donnelly, R.F., 2021. From the laboratory to the end-
 751 user: a primary packaging study for microneedle patches containing amoxicillin sodium. *Drug*
 752 *Deliv. Transl. Res.* 11, 2169–2185. <https://doi.org/10.1007/s13346-020-00883-5>

753 Meza, A., Lehmann, C., 2018. Betacaryophyllene – A phytocannabinoid as potential therapeutic
 754 modality for human sepsis? *Med. Hypotheses* 110, 68–70.
 755 <https://doi.org/10.1016/j.mehy.2017.10.025>

756 Mir, M., Permana, A.D., Ahmed, N., Khan, G.M., Rehman, A. ur, Donnelly, R.F., 2020.
 757 Enhancement in site-specific delivery of carvacrol for potential treatment of infected wounds
 758 using infection responsive nanoparticles loaded into dissolving microneedles: A proof of
 759 concept study. *Eur. J. Pharm. Biopharm.* 147, 57–68.
 760 <https://doi.org/10.1016/j.ejpb.2019.12.008>

761 Moawad, F., Pouliot, R., Brambilla, D., 2025. Dissolving microneedles in transdermal drug
 762 delivery: A critical analysis of limitations and translation challenges. *J. Control. Release* 383,
 763 113794. <https://doi.org/10.1016/j.jconrel.2025.113794>

764 Mödinger, Y., Knaub, K., Dharnsono, T., Wacker, R., Meyrat, R., Land, M.H., Petraglia, A.L.,
 765 Schön, C., 2022. Enhanced oral bioavailability of β -Caryophyllene in healthy subjects using
 766 the VESIsorb® formulation technology, a novel self-emulsifying drug delivery system
 767 (SEDDS). *Molecules* 27. <https://doi.org/10.3390/molecules27092860>

768 Nasiri, M.I., Vora, L.K., Ershaid, J.A., Peng, K., Tekko, I.A., Donnelly, R.F., 2022. Nanoemulsion-
 769 based dissolving microneedle arrays for enhanced intradermal and transdermal delivery. *Drug*
 770 *Deliv. Transl. Res.* 12, 881–896. <https://doi.org/10.1007/s13346-021-01107-0>

771 National Center for Biotechnology Information, 2019. PubChem CID: 5281515 [WWW
 772 Document].

773 NCBI, N.C. for B.I., 2022. Caryophyllene [WWW Document]. Natl. Libr. Med. URL
 774 <https://pubchem.ncbi.nlm.nih.gov/compound/5281515>

775 OCDE 428, 2004. OECD - GUIDELINE FOR THE TESTING OF CHEMICALS: Skin
 776 Absorption: in vitro Method. Test 1–8. <https://doi.org/10.1787/9789264071087-en>

777 Olatunji, O., Das, D.B., Garland, M.L., Belaid, L., Donnelly, R.F., 2013. Influence of array
 778 interspacing on the force required for successful microneedle skin penetration: theoretical and
 779 practical approaches. *J. Pharm. Sci.* 120, 1209–1221. <https://doi.org/10.1002/jps>

780 Permana, A.D., Anjani, Q.K., Sartini, Utomo, E., Volpe-Zanutto, F., Paredes, A.J., Evary, Y.M.,
 781 Mardikasari, S.A., Pratama, M.R., Tuany, I.N., Donnelly, R.F., 2021. Selective delivery of
 782 silver nanoparticles for improved treatment of biofilm skin infection using bacteria-responsive
 783 microparticles loaded into dissolving microneedles. *Mater. Sci. Eng. C* 120, 111786.
 784 <https://doi.org/10.1016/j.msec.2020.111786>

785 Permana, A.D., McCrudden, M.T.C., Donnelly, R.F., 2019. Enhanced intradermal delivery of
 786 nanosuspensions of antifilariasis drugs using dissolving microneedles: A proof of concept
 787 study. *Pharmaceutics* 11, 1–22. <https://doi.org/10.3390/pharmaceutics11070346>

788 Permana, A.D., Mir, M., Utomo, E., Donnelly, R.F., 2020. Bacterially sensitive nanoparticle-based
 789 dissolving microneedles of doxycycline for enhanced treatment of bacterial biofilm skin
 790 infection: A proof of concept study. *Int. J. Pharm. X* 2, 100047.
 791 <https://doi.org/10.1016/j.ijpx.2020.100047>

792 Peterle, J.P., Bidone, J., Lucca, L.G., Araújo, G. de M.S., Falkembach, M.C., Marques, M. da S.,
 793 Horn, A.P., Dos Santos, M.K., Veiga Jr, V.F., Limberger, Renata Pereira Teixeira, H.F., Dora,
 794 C.L., Koester, L.S., 2020. Healing activity of hydrogel containing nanoemulsified β -
 795 caryophyllene. *Eur. J. Pharm. Sci.* 148. <https://doi.org/10.1016/j.ejps.2020.105318>

796 Politis, S.N., Colombo, P., Colombo, G., Rekkas, D.M., Politis, S.N., Colombo, P., Colombo, G.,
 797 Rekkas, D.M., 2017. Design of experiments (DoE) in pharmaceutical development. *Drug Dev.*

799 800 801 802 Rai, V.K., Mishra, N., Yadav, K.S., Yadav, N.P., 2018. Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: Formulation development, stability issues, basic considerations and applications. *J. Control. Release* 270, 203–225.
<https://doi.org/10.1016/j.jconrel.2017.11.049>

803 804 805 806 Sharma, C., Al Kaabi, J.M., Nurulain, S.M., Goyal, S.N., Kamal, M.A., Ojha, S., 2016. Polypharmacological properties and therapeutic potential of β -caryophyllene: a dietary phytocannabinoid of pharmaceutical promise. *Curr. Pharm. Des.* 22, 3237–3264.
<https://doi.org/10.2174/1381612822666160311115226>

807 808 Sheskey, P.J., Hancock, B.C., Moss, G.P., Goldfarb, D.J., 2020. *Handbook of Pharmaceutical Excipients*, 9th ed. Pharmaceutical Press, London.

809 810 811 Simões, A., Veiga, F., Vitorino, C., 2024. Question-based review for pharmaceutical development: an enhanced quality approach. *Eur. J. Pharm. Biopharm.* 195.
<https://doi.org/10.1016/j.ejpb.2023.114174>

812 813 814 Singh, Y., Gopal, J., Raval, K., Ali, F., Chaurasia, M., Jain, N.K., Chourasia, M.K., 2017. Nanoemulsion: Concepts, development and applications in drug delivery. *J. Control. Release* 252, 28–49. <https://doi.org/10.1016/j.jconrel.2017.03.008>

815 816 817 818 Srivastava, P.K., Thakkar, H.P., 2021. QbD-driven development of dissolving microneedle patch loaded with ultradeformable liposomes encapsulated Noopept: Exploring a patient friendly, once-daily option to manage dementia. *Eur. J. Pharm. Sci.* 164, 105909.
<https://doi.org/10.1016/j.ejps.2021.105909>

819 820 821 822 823 824 Volpe-Zanutto, F., Ferreira, L.T., Permana, A.D., Kirkby, M., Paredes, A.J., Vora, L.K., P. Bonfanti, A., Charlie-Silva, I., Raposo, C., Figueiredo, M.C., Sousa, I.M.O., Brisibe, A., Costa, F.T.M., Donnelly, R.F., Foglio, M.A., 2021. Artemether and lumefantrine dissolving microneedle patches with improved pharmacokinetic performance and antimalarial efficacy in mice infected with *Plasmodium yoelii*. *J. Control. Release* 333, 298–315.
<https://doi.org/10.1016/j.jconrel.2021.03.036>

825 826 827 828 Weimer, P., Kirsten, C.N., de Araújo Lock, G., Nunes, K.A.A., Rossi, R.C., Koester, L.S., 2023. Co-delivery of beta-caryophyllene and indomethacin in the oily core of nanoemulsions potentiates the anti-inflammatory effect in LPS-stimulated macrophage model. *Eur. J. Pharm. Biopharm.* 191, 114–123. <https://doi.org/10.1016/j.ejpb.2023.08.020>

829 830 831 832 833 Weimer, P., Kreutz, T., Limberger, R.P., Rossi, R.C., de Lima, Á.A.N., Veiga, V.F., de Araújo, B.V., Koester, L.S., 2022. Correlation between the skin permeation profile of the synthetic sesquiterpene compounds, beta-Caryophyllene and caryophyllene oxide, and the antiedematogenic activity by topical application of nanoemulgels. *Biomolecules* 12.
<https://doi.org/10.3390/biom12081102>

834 835 836 837 Weimer, P., Rossi, R.C., Koester, L.S., 2021. Dissolving microneedles developed in association with nanosystems: A scoping review on the quality parameters of these emerging systems for drug or protein transdermal delivery. *Pharmaceutics* 13.
<https://doi.org/10.3390/pharmaceutics13101601>

839 **FIGURE LEGENDS**

840

841 **Figure 1** – Pareto chart plots of 2^4 Full Factorial Design for **(A)** β -caryophyllene content and **(B)** compression force; The horizontal bars beyond the dotted line represent statistically significant
 842 input factors by linear or interaction terms ($p < 0.05$). Main effects plots of 2^4 Full Factorial Design
 843 for **(C)** β -caryophyllene content and **(D)** compression force.

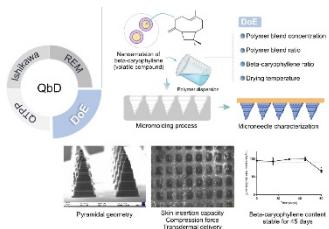
845

846 **Figure 2** - Contour plots of Box–Behnken Design showing effects on β -caryophyllene content: **(A)**
 847 β -caryophyllene:polymer ratio (car:polymer ratio) versus polymer solids (% w/w); **(B)** PVP:PVA
 848 ratio versus polymer solids (% w/w); **(C)** β -caryophyllene:polymer ratio (car:polymer ratio) versus
 849 PVP:PVA ratio. Contour plot of optimized condition **(D)**. The white region of the graph indicates
 850 the design space in which the β -caryophyllene content can be obtained above 90% with PVP:PVA
 851 ratio fixed at 1.54.

852

853 **Figure 3** - Macroscopic appearance of the dissolving microneedles integrated with β -caryophyllene
 854 nanoemulsion after optimization by Box–Behnken Design **(A)**. Digital microscopies of **(B)**
 855 formulation optimized by Box–Behnken Design, **(C)** perforated Parafilm® layers after *in vitro* skin
 856 insertion test (32.0 N application force), **(D)** porcine ear skin before and after perforation with
 857 microneedle array.

858

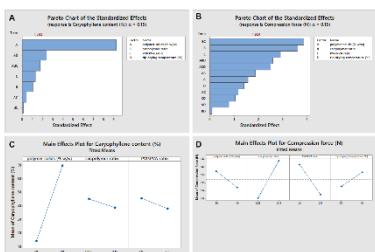

859 **Figure 4** – Results of optical coherence tomography **(A)** 2D cross-sectional scans over time. **(B)**
 860 Graph showing area reduction of the needle inserted into the skin over time.

861

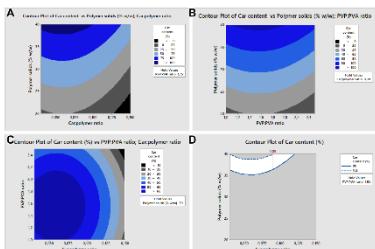
862 **Figure 5** - Scanning electron microscopy of **(A)** blank microneedles, needles composed of PVP 40
 863 kDa and PVA 9-10 kDa in concentration equivalent to the optimized formulation, **(B)** formulation
 864 optimized by Box–Behnken Design, needles composed of PVP 40 kDa and PVA 9-10 kDa in
 865 association with nanoemulsion β -caryophyllene. The green markings indicate the dimensions of the
 866 needles generated at 10.0 kV and 150 \times magnification (EVO MA10). X-ray microcomputed
 867 tomography (X μ CT) of formulation optimized by Box–Behnken Design **(C, D)**.

868

869 **Figure 6** - Data from a preliminary stability study of the optimized microneedle array stored in
 870 aluminum sachets ($25^{\circ}\text{C} \pm 5^{\circ}\text{C}$, $40\% \pm 10\%$ RH). **(A)** β -caryophyllene content, **(B)** compression
 871 force, **(C)** *in vitro* skin insertion efficiency, **(D)** variation mass of the arrays. *Statistical difference
 872 in relation to T1 by two-way ANOVA followed by Tukey's test ($p < 0.05$).

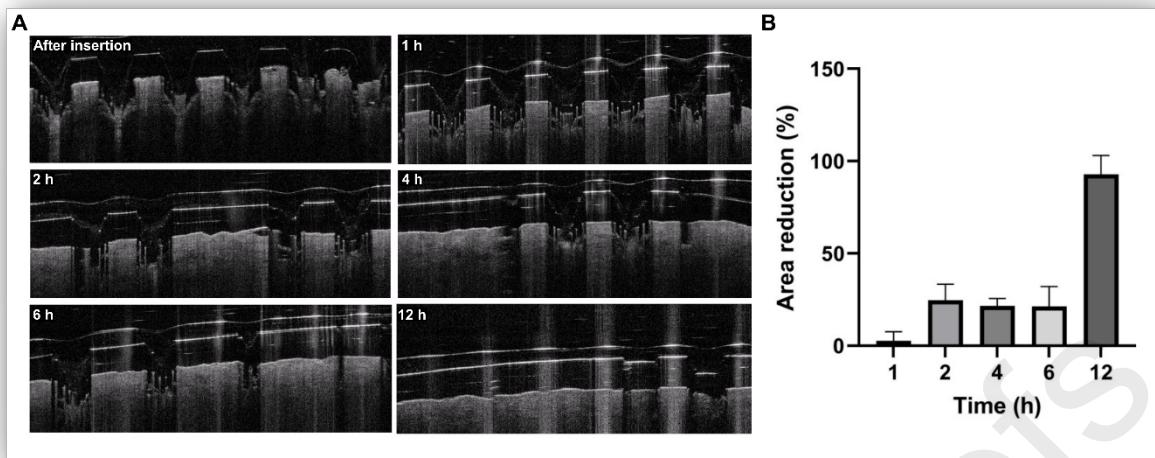


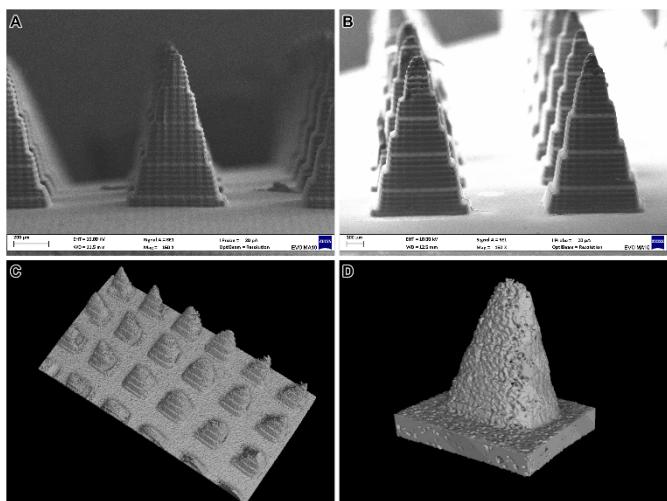
873

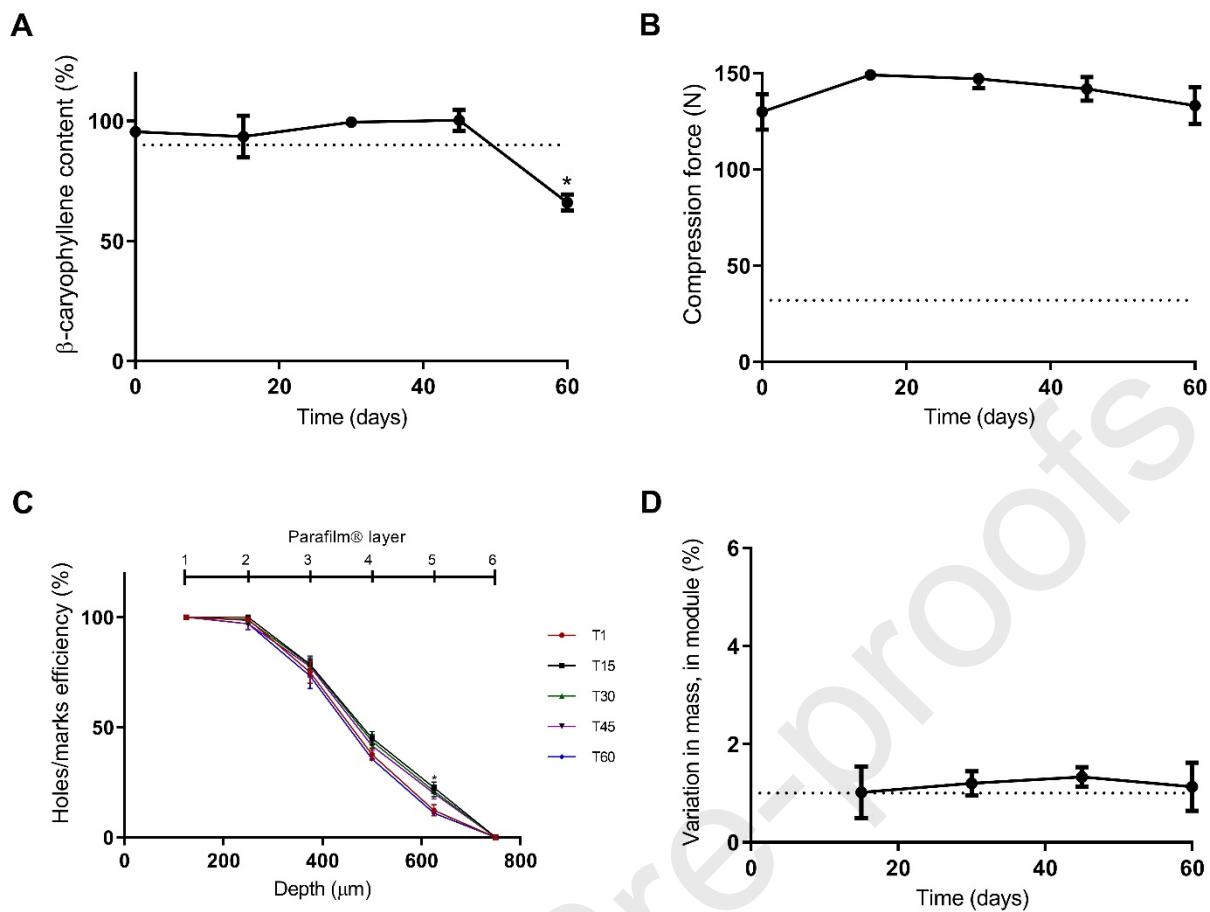

874 **HIGHLIGHTS**

875 ▪ QbD-driven development of an integrated dissolvable MN system with nanoemulsion
 876 ▪ Understanding the impact of formulation variables on content maintenance and CQAs
 877 ▪ Proof of the viability of β -caryophyllene delivery through polymeric MN
 878 ▪ Promotion of transdermal release with association of nanoemulsion in polymeric MN
 879 ▪ Maintaining the content of the lipophilic and volatile compound in MN for 45 days

880


881


882


883

884

885

