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Abstract—Federated Learning (FL) is a data-minimization
approach enabling collaborative model training across diverse
clients with local data, avoiding direct data exchange. However,
state-of-the-art FL solutions to identify fraudulent financial
transactions exhibit a subset of the following limitations. They
(1) lack a formal security definition and proof, (2) assume prior
freezing of suspicious customers’ accounts by financial institu-
tions (limiting the solutions’ adoption), (3) scale poorly, involving
either O(n*) computationally expensive modular exponentiation
(where n is the total number of financial institutions) or highly
inefficient fully homomorphic encryption, (4) assume the parties
have already completed the entity alignment phase, hence ex-
cluding it from the implementation, performance evaluation, and
security analysis, and (5) struggle to resist clients’ dropouts. This
work introduces Starlit, a novel scalable privacy-preserving FL
mechanism that overcomes these limitations. It has various appli-
cations, such as enhancing financial fraud detection, mitigating
terrorism, and enhancing digital health. We implemented Starlit
and conducted a thorough performance analysis using synthetic
data from a key player in global financial transactions. The
evaluation indicates Starlit’s scalability, efficiency, and accuracy.

Index Terms—Federated Learning, Private Set Intersection,
Financial Fraud.

I. INTRODUCTION

Sharing data is crucial in dealing with crime. Collaborative
data analysis among law enforcement agencies and relevant
stakeholders can significantly enhance crime prevention, in-
vestigation, and overall public safety. For instance, in the
United Kingdom, Cifas, a non-profit fraud database, and fraud
prevention organization that promotes data sharing among its
members, reported that its members detected and reported over
350,000 cases of fraud in 2019. This collective effort prevented
fraudulent activities amounting to £1.5 billion [23]. The Na-
tional Data Sharing Guidance, developed by the UK Home
Office and Ministry of Justice in 2023, further underscores
the importance of data sharing in dealing with crime [20].

Typically, inputs for collaborative data analysis come from
different parties, each of which may have concerns about
the privacy of their data. Federated Learning (FL) [25] and
secure Multi-party Computation (MPC) [26], along with their
combination, are examples of mechanisms that allow parties
to collaboratively analyze shared data while maintaining the
privacy of their input data.

FL is a machine learning framework where multiple par-
ties collaboratively build machine learning models without

revealing their sensitive input to their counterparts [25], [16].
Vertical Federated Learning (VFL) is a vital variant of FL,
with various applications, e.g., in dealing with crime [3] and
healthcare [17]. VFL refers to the FL setting where datasets
distributed among different parties (e.g., banks) have some
intersection concerning users (e.g., have certain customers’
names in common) while holding different features, e.g.,
customers’ names, addresses, and how they are perceived by
a financial institution. Horizontal Federated Learning (HFL)
is another important variant of FLL where participants share
the same feature space while holding different users, e.g.,
customers’ attributes are the same, but different banks may
have different customers.

Advanced privacy-preserving FL-based solutions aiming to
detect anomalies and deal with financial fraud may face a new
challenge. In this setting, datasets for financial transactions
might be partitioned both vertically and horizontally. For
instance, a third-party Financial Service Provider (FSP) may
have details of financial transactions including customers’
names, and involved banks, while each FSP’s partner bank
may have some details/features of a subset of these customers.
Thus, existing solutions for VFL or HFL cannot be directly
applied to deal with this challenge.

A. Our Contributions

In this work, we introduce Starlit, a novel scalable privacy-
preserving federated learning mechanism that can help en-
hance financial fraud detection. By devising and utilizing
Starlit in the context of financial fraud, we address all limita-
tions of the state-of-the-art FL-based mechanisms, proposed in
[31, [19], [12]. Specifically, we (1) formally define and prove
Starlit’s security, (2) do not place any assumption on how
suspicious accounts of customers are treated by their financial
institutions, (3) make Starlit scale linearly with the number of
participants (i.e., its overhead is O(n)) while refraining from
using fully homomorphic encryption, (4) include all phases
of Starlit in the implementation and evaluation, and (5) make
Starlit resilient against dropouts of clients.

Starlit offers two compelling properties not found in existing
VFL schemes. These include the ability to securely:

« Identify discrepancies among the values of shared features
in common users between distinct clients’ datasets. For
instance, in the context of banking, FSP and a bank can



detect if a certain customer provides a different home
address to each.

o Aggregate common features in shared users among different
clients’ datasets, even when these features have varying
values. For instance, this feature will enhance FSP’s data
by reflecting whether FSP and multiple banks consider a
certain customer suspicious, according to the value of a flag
allocated by each bank to that customer’s account.

We have implemented Starlit and evaluated its performance
using synthetic data which comprises about four million rows.
This synthetic data was provided by a major organization
globally handling financial transactions.

Starlit stands out as the first solution that simultaneously
provides the features mentioned above. To develop Starlit,
we use a combination of several tools and techniques, such
as SecureBoost (for VFL), Private Set intersection (for entity
alignment and finding discrepancies among different entities’
information), and Differential Privacy to preserve the privacy
of accounts’ flags (that indicate whether an account is deemed
suspicious). Moreover, based on our observation that each
dataset’s sample (or row), such as a financial transaction, can
be accompanied by a random identifier, we allow a third-party
feature collector to efficiently aggregate clients’ flags without
being able to associate the flags values with a specific feature,
e.g., customer’s name.

Summary of our Contributions. In this work, we:

e Introduce Starlit, a novel scalable privacy-preserving feder-
ated learning mechanism.

e Formally define Starlit’s security using the simulation-based
paradigm.

e Implement Starlit and conduct a comprehensive evaluation
of its performance.

B. Primary Goals and Setting

This paper focuses on a real-world scenario in which a
server Srv wants to train a machine-learning model to detect
anomalies using its data, and complementary data held by
different clients C' = {C,,...,C,,}. For instance, Srv can be
a Financial Service Provider (FSP) such as SWIFT!, Visa?,
and PayPal®, facilitating financial transactions and payments
between various clients in set C, such as banks, eBay, and
Amazon—that aims to detect anomalous transactions.

In this setting, Srv may maintain a database of samples/rows
between interacting clients, but it does not possess all the
details about the users included in each sample. For instance,
in the context of financial transactions, FSP holds a dataset
containing samples (i.e., transactions) between the ordering
account held by bank C,; and the beneficiary account held by
bank C;. Each sample may contain a customer’s name, the
amount sent, home address, and information about C,, and
C,. Each client in C' maintains a dataset containing certain
customers’ account information, including customers’ details,
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their transaction history, and even local assessments of their

known financial activities. However, each C; may not hold all

users (e.g., customers) that Srv is interested in.

While Srv is capable of training a model to detect anoma-
lous transactions using its data, it could enhance the analytics
by considering the complementary data held by other clients
concerning the entities involved in the transactions. The ul-
timate goal is to enable Srv to collaborate with other clients
to develop a model that is significantly better than the one
developed on Srv’s data alone, e.g., to detect suspicious trans-
actions and ultimately to deal with financial fraud. However,
a mechanism that offers the above feature must satisfy vital
security and system constraints; namely, (i) the privacy of
clients’ data should be preserved from their counterparts, and
(i1) the solution must be efficient for real-world use cases. The
aforementioned setting is an example of FL on vertically and
horizontally partitioned data in which each Srv’s transaction is
associated with a sender C, (e.g., ordering bank), and receiver
C,, e.g., beneficiary bank. Our solution will enhance Srv’s
dataset with two primary types of features using the datasets
of C; and C;:

o Discrepancy Feature: This will enhance Srv’s data by
reflecting whether there is a discrepancy between (i) the
(value of the) feature, such as a customer’s name and
address, it holds about a certain user U under investigation
and (ii) the feature held by sending client C; and receiving
client C; about the same user. For each user, this feature
is represented by a pair of binary values (b, ;, b, ;), where
b, and b, ; represents whether the information that Srv

holds matches the one held by the sending and receiving
clients respectively.
Sample’s Flag Feature: This will enhance Srv’s data by
reflecting whether Srv and a client have the same view of
a certain user, e.g., a customer is suspicious. This feature
is based on a pair of binary private flags for a certain
user, where one flag is held by the sending client and the
other one is held by the receiving client. In the context
of banking, banks often allocate flags to each customer’s
account for internal use. The value of this flag is set based
on the user’s transaction history and determines whether
the bank considers the account holder suspicious.

To preserve the privacy of the participating parties’ data
(e.g., data of non-suspicious customers held by banks) while
aligning Srv’s dataset with the features above, we rely on
a set of privacy-enhancing techniques, such as Private Set
Intersection (PSI) and Differential Privacy (DP). Briefly, to
enable Srv to find out whether the data it holds about a certain
(suspicious) user matches the one held by a client, we use PSL
Furthermore, to enhance Srv’s data with the flag feature, each
client uses local DP to add noise to their flags and sends the
noisy flags to a third-party flag collector which feeds them to
the model training phase.

II. RELATED WORK

In this section, we briefly discuss the privacy-preserving FL-
based approaches used to deal with fraudulent transactions.
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Lv et al. [15] introduced an approach to identify black market
fraud accounts before fraudulent transactions occur. It aims
to guarantee the safety of funds when users transfer funds to
black market accounts, enabling the financial industry to utilize
multi-party data more efficiently. It involves data provided by
financial and social enterprises. The approach utilizes insecure
hash-based PSI for entity alignment. This scheme differs from
Starlit in a couple of ways: (i) Starlit operates in a multi-party
setting, where various clients contribute their data, in contrast
to the aforementioned scheme, which has been designed for
only two parties, and (ii) Starlit deals with the data partitioned
both horizontally and vertically, whereas the above scheme
focuses only on vertically partitioned data.

Recently, Arora et al. [3] introduced an approach that
relies on oblivious transfer, secret sharing, DP, and multi-layer
perception. The authors have implemented the solution and
conducted a thorough analysis of its performance.

Starlit versus the Scheme of Arora et al. The latter assumes
that the ordering bank never allows a customer with a dubious
account to initiate transactions but allows the same account
to receive money. In simpler terms, this scheme exclusively
addresses frozen accounts, restricting its applicability. This
setting will exempt the ordering bank from participating in
MPC, enhancing the efficiency of the solution. In the real
world, users’ accounts might be deemed suspicious (though
not frozen), yet they can still conduct financial transactions
within their bank. The bank may handle such accounts more
cautiously than other non-suspicious accounts. In contrast,
Starlit (when applied to financial transactions context) does
not place any assumption on how a bank treats a suspicious
account. Unlike the scheme in [3], which depends on an ad-
hoc approach to preserve data privacy during training, our
solution, Starlit, uses SecureBoost, a well-known scheme.
Thus, compared to the one in [3], Starlit considers a more
generic scenario and relies on an established scheme for VFL.

Another approach has been developed by Qiu et al. [19].
It uses neural networks and shares the same objective as the
one by Arora et al. However, it strives for computational effi-
ciency primarily through the use of symmetric key primitives.
The scheme incorporates the elliptic-curve Diffie-Hellman key
exchange and one-time pads to secure exchanged messages
during the model training phase. This scheme has also been
implemented and subjected to performance evaluation.
Starlit versus the Scheme of Qiu et al. The latter scheme re-
quires each client (e.g., bank) to possess knowledge of the
public key of every other client and compute a secret key for
each through the elliptic-curve Diffie-Hellman key exchange
scheme. Consequently, this approach imposes O(n) modular
exponentiation on each client, resulting in the protocol having
a complexity of O(n?), where n represents the total number
of clients. In contrast, in Starlit, each client’s complexity is
independent of the total number of clients and each client does
not need to know any information about other participating
clients. Moreover, the scheme proposed in [19] assumes the
parties have already performed the entity alignment phase,
therefore, the implementation, performance evaluation, and

security analysis exclude the entity alignment phase.

Furthermore, the scheme in [19] fails to terminate success-
fully even if only one of the clients neglects to transmit its
message. In this scheme, each client, utilizing the agreed-upon
key with every other client, masks its outgoing message with
a vector of pseudorandom blinding factors. The expectation is
that the remaining clients will mask their outgoing messages
with the additive inverses of these blinding factors. These
blinding factors are generated such that, when all outgoing
messages are aggregated, the blinding factors cancel each
other out. Nevertheless, if one client fails to send its masked
message, the aggregated messages of the other clients will
still contain blinding factors, hindering the training on correct
inputs. In contrast, Starlit does not encounter this limitation.
This is because the message sent by each client is independent
of the messages transmitted by the other clients.

Kadhe et al. [12] proposed an anomaly detection scheme,
that uses fully homomorphic encryption (computationally ex-
pensive), DP, and secure multi-party computation.

Starlit versus the Scheme of Kadhe et al. The latter heavily
relies on fully homomorphic encryption. In this scheme, all
parties must perform fully homomorphic operations. This will
ultimately affect both the scalability and efficiency of this
scheme. Starlit does not use any fully homomorphic scheme.

All above solutions share another shortcoming, they lack

formal security definitions and proofs of the proposed systems.

ITI. INFORMAL THREAT MODEL
Starlit involves three types of parties:

e Server (Srv). It wants to train a model to detect anomalies
using its data, and complementary data held by different
clients. The data Srv maintains is partitioned vertically and
horizontally across different clients. Each sample in the data
includes various features, e.g., a user’s name, sender client,
and receiver client.

e Clients (C,,...,C,). They are different clients (e.g., nodes,
devices, or organizations) that contribute to FL by providing
local complementary data to the training process.

e Flag Collector (FC). It is a third-party helper that aggre-
gates some of the features held by different clients. FC is
involved in Starlit to enhance the system’s scalability.

We assume that all the participants are honest but curious, as
it is formally defined in [11]. Hence, they follow the protocol’s
description. But, they try to learn other parties’ private infor-
mation. We consider it a privacy violation if the information
about one party is learned by its counterpart during the model
training (including pre-processing). We assume that parties
communicate with each other through secure channels.

IV. PRELIMINARIES

A. Notations and Assumptions

Let G be a multi-output function, G(inp) —
(outp,, ...,outp,). Then, by G, (inp) we refer to the i-
th output of G(inp), i.e., outp,. In this paper, we consider
semi-honest adversaries. We use the simulation-based



paradigm of secure multi-party computation [11] to define
and discuss the security of the proposed scheme.

B. Private Set Intersection (PSI)

PSI is a cryptographic protocol that enables mutually dis-
trustful parties to compute the intersection of their private
datasets without revealing anything about the datasets beyond
the intersection. The fundamental functionality computed by
any n-party PSI can be defined as G which takes as input
sets Sy, ..., S, each of which belongs to a party and returns
the intersection S, of the sets to a party. More formally, the
functionality is defined as: G(S,,...,S,.) — (Sn,L,..., 1),

——

where S, = S5, N S,,...,N S,. In this work, we dengze the
concrete PSI protocol with PST.

C. Local Differential Privacy

Local Differential Privacy (LDP) entails that the necessary
noise addition for achieving differential privacy is executed
locally by each individual. Each individual employs a random
perturbation algorithm, denoted as M, and transmits the out-
comes to the central entity. The perturbed results are designed
to ensure the protection of individual data in accordance with
the specified € value. This concept has been formally stated
in [9]. We restate it in the full version of our paper [2].

D. Federated Learning

FL allows model training to occur on individual de-
vices/clients contributing private data. This preserves the pri-
vacy of the data to some extent by avoiding direct access to
them. The process involves training a global model through
collaborative learning on local data, and only the model
updates, rather than raw data, are transmitted to the central
server. This decentralized paradigm is particularly advanta-
geous in scenarios where data privacy is paramount, such
as in healthcare or finance, as it enables machine learning
advancements without compromising sensitive information.

1) SecureBoost: A Lossless Vertical Federated Learning
Framework: SecureBoost, introduced in [8], stands out as an
innovative FL framework designed to facilitate collaborative
machine learning model training among multiple parties while
safeguarding the privacy of their individual datasets. It accom-
plishes this by leveraging homomorphic encryption to execute
computations on encrypted data, ensuring the confidentiality
of sensitive information throughout the training procedure.
There are two main technical concepts and phases involved
in SecureBoost:

e Secure Tree Construction: SecureBoost builds boosting
trees by utilizing a non-federated tree boosting mechanism
called XGBoost [7] and a partially homomorphic encryption
scheme, such as Paillier encryption [18], allowing various
operations such as majority votes and tree splits to be
performed without exposing the underlying plaintext data
to the system’s participants.

o Entity Alignment: To enable collaborative training, Se-
cureBoost conducts entity alignment to recognize corre-
sponding user records across diverse data silos. This pro-

cess is typically executed through an MPC (such as PSI),
guaranteeing the confidentiality of individual identities.

E. Flower: A Federated Learning Implementation Platform

We implement Starlit within Flower [5]. This framework
offers several advantages, including scalability, ease of use,
and language and ML framework agnosticism.

V. SYSTEM DESIGN

Starlit consists of two main phases: (i) feature extraction
and (ii) training. During the feature extraction phase, the two
types of features (discussed in Section [-B) are retrieved in a
privacy-preserving manner, the data is aligned, and then passed
onto a third party, called “Feature Collector (FC)”. The use
of FC drastically simplifies the training phase from n-party
down to 2-party VFL, which will enable the system to scale
to a large number of banks. Figure 1 outlines the interaction
between the parties in Starlit. In Phase 1, each client initially
engages with Srv to identify discrepancies in specific user
features. Additionally, in the same phase, each client interacts
with Srv to extract flags for certain users. Subsequently, each
client combines the results of discrepancy extraction with the
outcomes of flag extraction, sending the pair along with a
random ID (known also to Srv) to FC. Moving on to Phase
2, FC and Srv collaborate to train the VFL model using FC’s
collected features, Srv’s local data, and SecureBoost.
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Fig. 1: Outline of parties’ interactions in Starlit.

This procedure may still leave the chance of an inference
attack during model training/deployment. To address this issue,
we use LDP, where any flag values that leave the client are
obfuscated via a randomization strategy. Note that this protec-
tion is an additional layer on top of what is already offered
by the SecureBoost protocol, which only shares encrypted
(aggregated) gradient information.

VI. FORMAL SECURITY DEFINITION

In this section, we introduce a generic formal definition,
that we call Celestial. It establishes the primary security
requirements of privacy-preserving (V)FL schemes such as
Starlit. Celestial involves three types of parties, (i) a service
provider Srv, (ii) a feature collector FC, and (iii) a set of clients
{C,,...,C,} contributing their private inputs. Informally, Ce-
lestial allows Srv to generate a (global) model given its initial
model and the inputs of C,,...,C,. To achieve a high level
of computational efficiency and scalability, in Celestial, we
involve a third-party FC that assists Srv with computing the



model (by interacting with C;s and retrieving the features they
hold). The functionality F that Celestial computes takes an
input initial model 6 from Srv, a set S; from every C,, and
no input from FC. It returns to Srv an updated model ¢'. It
returns nothing to the rest of the parties. Hence, F can be
formally defined as follows.

F0,8,,...,8,1)—= (0,1, .., 1, 1) (1)

——

n

Since (i) FC interacts with C,,...,C, and collects some
features from them and (ii) Srv generates the model in
collaboration with C,, ..., C, and FC, there is a possibility of
leakage to the participating parties. Depending on the protocol
that realizes JF this leakage could contain different types of
information. For instance, it could contain (a) each C,’s local
model outputs and corresponding gradients (a.k.a. intermediate
results) when using gradient descent [21] in VFL, (b) the
output of entity aligning procedure, (c) information about
features, or (d) nothing at all. We define this leakage as an
output of a leakage function defined as follows:

L(inp) = (L1, 1y, ooy lss) 2)

L(inp) takes all parties (encoded) inputs, denoted as inp.
It returns leakage [, to Srv, [, to FC, and leakage I; to C,_,,
for all 7, where 3 <1i <n+ 2.

We assert that a protocol securely realizes F if (1) it reveals
nothing beyond a predefined leakage to a certain party and (2)
whatever can be computed by a party in the protocol can be
obtained from its input and output only. This is formalized
by the simulation paradigm. We require a party’s view during
the execution of the protocol to be simulatable given its input,
output, and the leakage that has been defined for that party.

Definition 1 (Security of Celestial). Let F be the functionality
presented in Relation 1. Also, let £ be the above leakage
function, presented in Relation 2. We assert that protocol I'
securely realizes JF, in the presence of a semi-honest adversary,
if for every non-uniform PPT adversary 4 for the real model,
there exists a non-uniform PPT adversary (or simulator) Sim
for the ideal model, such that for every party P, where
P e {Srv,C,,...,C,,FC}, the following holds:

{SimZ“1(0,0)} ..., = {Views:" (inp)} .., 3)

Srv
{SimZe2 (L, 1)}, = {View T (inp) Y., 4)
{Sime“*2(S,, L)}y = {ViewZ " (inp) }..., (5)
where 1 < i <n.

VII. STARLIT’S PHASES IN DETAIL
A. Privacy-Preserving Feature Extraction

In this section, we elaborate on the two primary privacy-
preserving mechanisms that we designed to extract features.

1) Finding Features’ Discrepancies: Let T =
{tuis-stum}t be a subset of features that Srv holds
for a user U. Consider the scenario where Srv wants to
check with a pair of clients (C,,C,) if there is a discrepancy
between some of the features in 7' that Srv, C,, and C;
hold, without revealing and being able to learn anything else.
This approach could provide information about anomalous
transactions. In the domain of financial transactions, we
analyzed synthetic data provided to us and identified key
features possessed by FSP for each transaction (with FSP
acting as Srv). These features include: (i) customer,,,,.., (ii)
countryCity.peoq., and (iii) street,,,.,. for both the ordering
and beneficiary banks. Each bank, per user, maintains various
features such as customer,,,., countryCity.coq., and
street, ... (with an associated flag).

Different parties may hold different perspectives on the
value of these features. Discrepancies can arise from various
factors. For instance, a user may have supplied divergent infor-
mation to different parties. In the given scenario, a customer
might hold accounts with both the ordering and beneficiary
banks but could have provided inconsistent details, such as
their address, to these banks. Additionally, there is a possibility
that the values maintained by Srv have been tampered with,
potentially by external entities [4], [24]. Thus, incorporating
a feature that signals disparities between a client’s data and
Srv’s data can enhance the accuracy of models.

To detect discrepancies while preserving privacy we use
PSI, a method that safeguards the privacy of non-suspicious
users’ data maintained by the involved parties. The PSI out-
comes serve as additional features in the FL model. Specifi-
cally, Srv and each client C; participate in an instance of PSI,
receiving a set of strings from Srv and the client. The PSI
returns the intersection to C,. For each user, C; adds a binary
feature b to its dataset (if not already present). If a user’s
details are in the intersection, b is set to 1; otherwise, it is set
to 0. Figure 2 presents this procedure in detail. Hence, we not
only employ PSI (as a subroutine in SecureBoost) for entity
alignment, but we also leverage it to enhance the accuracy of
the final model. Note that the outcome of the protocol in Figure
2 will be transmitted to FC in the second phase (collecting
flags of suspicious users), presented below.

2) Collecting Flags of Users: Each user’s sample may
be accompanied by a flag whose value is computed and
allocated by a client. For instance, in the context of financial
transactions, for each user’s account that a bank holds, there
is a flag indicating whether the bank considers the account
suspicious. This flag type offers extra information crucial for
anomaly detection. Nevertheless, these flags are treated as
private information and cannot be directly shared with Srv.

To align the flags with the Srv’s dataset without revealing
them, we rely on the following observation and idea. The key
observation is that each user’s sample, which is held by Srv
and includes both sender and receiver clients, can be assigned
an ID selected uniformly at random from a sufficiently large
domain. In certain cases, such as financial transactions, each
sample (representing a transaction) already comes with a



e Parties: Srv and C,.
e Input:

o Srv’s input, for each user U, is a set T, of strings (taken
from a dataset DS,), where each string has the form
tuslltuzll--||tu.. and ¢, is a user’s unique ID.

¢ C;’s input, for each user U, is a set T¢, of strings (from
its dataset DSCi of all users), where each string has the
form ¢, 1||tu.2||-[|[tu.m-

e Output: Updated dataset DS,,.

1) Srv and C; invoke an stance of PSI protocol:
PSL(Ty., T¢,) — Th.

2) Given T,,, C, parses each element of T, as
tualltuzll- ||t m-

3) If binary feature b is not in DS, then C; adds b to
each user’s feature.

4) C, sets b as follows. For every ¢, ; € DS,:
e Sets b=1, when t,; € S,.
e Sets b = 0, otherwise.

5) C; returns DS,,.

Fig. 2: PSI-based method to identify discrepancies.

random ID. As a random string, this ID divulges no specific
information about a user’s features. For each user’s sample,
Srv can generate this ID and share this ID (along with a
unique feature in the sample) with the clients involved in that
sample. Accordingly, if each client groups each ID with a
set of binary flags and sends them to FC, FC cannot glean
significant information about the user’s features linked to those
IDs. Based on this observation, we rely on the following idea
to extract the flags.

For each user’s sample, Srv sends the random ID and
a unique feature of the user (e.g., their name or account
number) to the related clients. The clients then use their sample
information to group each ID with the correct user’s flags. It
sends this group to FC. When sending a flag for a user to
FC, each client also sends to FC the flag b that it generated in
Figure 2 (to detect discrepancies). Consequently, FC uses a set
(that includes an ID and flags for each user) to create a dataset
of flags. This dataset will then be used as the input data for the
ML model. The above private information retrieval mechanism
is highly computationally efficient. This approach still may
reveal certain information to the involved parties. Specifically
(a) each client gains knowledge of some of their users that are
in Srv’s dataset, and (b) FC acquires information about which
IDs originate from certain clients, enabling the calculation
of the number of transactions between each pair of clients.
However, the privacy of sensitive information is preserved,
as (i) each client remains unaware of details about other
participating clients or users’ features held at other clients and
(i1) FC cannot identify the user involved in a sample. FC only
has IDs and a set of flags for each ID. Consequently, FC cannot
glean any information about a specific account.

As evident during the feature extraction, each client inde-
pendently computes its message and sends it to FC without

the need to coordinate with other clients. Hence, even if
some clients choose not to send their messages, this phase
is completed. This is in contrast to the solution proposed in
[19] which cannot withstand clients’ dropouts.

B. Model Training and Inference

Following the feature extraction phase, Srv and FC jointly
possess all the necessary data for training the anomaly de-
tection model. Srv retains a dataset of samples, while FC
possesses certain features of samples, i.e., discrepancies and
flags (protected by DP). This represents the VFL setting, where
only Srv holds the labels to predict. This configuration allows
for the utilization of various off-the-shelf protocols suitable
for training an ML model, such as those presented in [6], [8],
[10]. We use the SecureBoost algorithm (discussed in Section
IV-D), which involves the exchange of encrypted (aggregate)
gradients between Srv and FC during the training phase. Srv
can decrypt the gradients to determine the best feature to split
on. Once the model is trained, each party owns the part of
the tree that uses the features it holds. Hence, when using the
distributed inference protocol in [8], Srv coordinates with the
FC to determine the split condition to be used.

Theorem 1 (informal). Let F be the functionality defined in
Relation 1. If the LDP, SecureBoost, and PSZT schemes are
secure, then Starlit securely realizes F, w.r.t. Definition 1.

We refer to the full version of the paper for a formal
statement of Theorem 1 and its proof.

VIII. IMPLEMENTATION OF STARLIT

We carry out comprehensive evaluations to study Starlit’s
performance from various aspects, including privacy-utility
trade-off, efficiency, scalability, and choice of parameters. In
the remainder of this section, we provide an overview of the
analysis. Due to space limits, we provided a far more detailed
analysis in the full version of the paper [2].

A. The Experiment’s Environment

We implement Starlit within an FL framework, called
Flower (discussed in Section IV-E). We use Python program-
ming language to implement Starlit. Experiments were run
using AWS ECS cloud with docker containers with 56GB
RAM and 8 Virtual CPUs. We adjusted and used the Python-
based implementation of the efficient PSI introduced in [14].
We have run experiments to evaluate the performance of this
PSI. We conducted the experiments when each party’s set’s
cardinality is in the range [2°,2'°]. Briefly, our evaluation
indicates that the PSI’s runtime increases from 0.84 to 367.93
seconds when the number of elements increases from 2° to
2'. The full version of the paper presents further details
on the outcome of the evaluation. Each instance of the
PSI, for each account, takes as input string: account,,,ye.||
cuStomer, ... ||street, ome ||countryCity.;y..... The output
of the PSI is received by the participating bank.

Our experiment involves the utilization of two synthetic
datasets. Dataset 1: Synthetic dataset that simulates transaction
data obtained from the global payment network of FSP (acting



as Srv); Dataset 2: Synthetic dataset related to customers (or
users), inclusive of their account information and flags, derived
from the partner banks (or clients) of FSP. We refer to the full
version of the paper [2] for more details about these datasets.

IX. EMPIRICAL RESULTS

In this study, we employ a straightforward approach, utiliz-
ing example features extracted from FSP, as provided in the
data, in conjunction with four binary values derived from the
banks’ data. The features extracted from FSP for model train-
ing encompass the following: settlement amount, instructed
amount, hour, sender hour frequency, sender currency fre-
quency, sender currency amount average, and sender-receiver
frequency. We also incorporate four binary flags, indicating the
agreement between FSP and the banks on sender and receiver
address details, as well as whether the sending and receiving
accounts share the same flag for a given account.

A. Privacy-Utility Trade-off

1) Baseline: To analyze the trade-off between utility and
privacy, we establish a benchmark using a centralized model
constructed within FSP. In this centralized model, all data from
banks is revealed in plaintext. The same set of features listed
above is extracted. We train a standard XGBoost model with
30 trees. We employ a 5-fold cross-validation with the average
precision score as the metric.

2) Evaluation Procedure: The “Area Under the Precision-
Recall Curve” (AUPRC) is a metric used to evaluate the
performance of an ML classification model. The unit of
AUPRC is a value in the range [0, 1]. It measures the trade-
off between precision and recall and provides a summary
of the model’s performance across different threshold values
for classification. A higher AUPRC indicates better model
performance, with 1 being the ideal value representing perfect
precision and recall.

3) Starlit: In the evaluation of Starlit’s implementation,
for analyzing AUPRC that can be achieved at a given level
of privacy, we modify the flag values that banks send using
DP and construct XGBoost models with these noisy features.
We use the same parameters as in the baseline model (30
trees and S-fold cross-validation) and measure the average
precision score for the final model on training and test data,
averaging over 5 runs to account for the randomness of the
privacy mechanism and the training process. SecureBoost does
the same computation as XGBoost while constructing the
trees albeit on encrypted gradients. Hence, the additional cost
will not be on accuracy but rather on performance. We also
observed this to be the case from our experimental results.

4) Key Takeaways: Figure 3 provides a summary of our
utility-privacy trade-off analysis. Plot(a) in this figure com-
pares the effect on AUPRC of the model when using Ran-
domized Response (RR) and Laplace mechanism with post-
processing for achieving LDP. Consistent with the optimality
results presented in [22], [13], RR offers a superior utility-
privacy trade-off when compared to the Laplace mechanism.
Both RR and the Laplace mechanism yield symmetric transfor-
mation matrices, meaning an equal probability for converting
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Fig. 3: Plot(a) compares the effect on AUPRC of the model when
using RR and Laplace mechanism with post-processing for achieving
LDP. Plot(b) compares the effect on AUPRC when using RR and
privacy mechanisms at the same value of € but with the constraint
of 10% less probability of converting 0 to 1 (1 to 0) than what is
recommended by RR. In Plot(a), red dotted line: non-private-train,
blue dotted line: non-private-test, solid blue line: RR-train, solid
orange line: RR-test, solid green line: Laplace-train, and solid red
line: Laplace-test. In Plot(b), red dotted line: non-private-train, blue
dotted line: non-private-test, solid blue line: RR-train, solid orange
line: RR-test, solid green line: 10% less 0— > 1 than RR-train, solid
red line: 10% less 0— > 1 than RR-test, solid purple line: 10% less
1— > 0 than RR-train, and solid brown line: 10% less 1— > 0 than
RR-test.

a0to 1 and a1 to 0. Plot(b) in Figure 3 illustrates the impact
on AUPRC when employing RR and privacy mechanisms.
This comparison is conducted at the same e value, with the
additional constraint of reducing the probability of converting
0to 1 (and 1 to 0) by 10% compared to the recommendations
provided by RR. These recommendations are determined using
our game framework. The results demonstrate that even a
slight increase in the probability of converting a zero flag to
a non-zero value has a significant impact on the model’s per-
formance. This observation aligns with intuition, considering
the substantial proportion of zero flag values in the dataset.

B. Efficiency and Scalability

1) Baseline: SecureBoost’s training was configured with
10 trees, each with a depth of 3, a dataset sampling rate
of 40%, and a “Gradient-based One Side Sampling” (GOSS)
sampling of 0.1. This baseline is used to investigate various
configurations’ impact on efficiency.

2) Starlit: We analyzed Starlit’s efficiency with different
SecureBoost configurations. The evaluation’s results are illus-
trated in Table 1. SecureBoost offers various options that can
be employed to enhance efficiency in different settings. For
instance, both direct sampling and GOSS sampling offers a
means to reduce network and memory overhead by decreasing
the volume of data processed in each round of training. The
tree depth is also a crucial parameter for improving accuracy
while maintaining an appropriate level of efficiency in terms of
training time and memory consumption. Also, the integration
of Starlit with FATE and Flower enables the splitting of large
messages into chunks, facilitating more efficient processing.
Starlit utilizes numerous Flower rounds, with a significant
portion of the final rounds remaining empty due to the require-
ment of a pre-set round number by Flower. This situation has
an impact on the network metrics.



TABLE I: Starli's Runtime using various training parameters. In
the table, H represents time in hours and GB refers to gigabyte. The
row highlighted in yellow corresponds to the choice of parameters
where AUPRC is at the highest level.

.. . . Sampling Approach )
Efficiency Metric Unit = Tree’s depth Max Message Size Result
Direct Sampling Rate | GOSS
40% 0.1 3 100MB 04715
100% 0.1 3 100MB 0.5786
<< 40% Disabled 3 100MB 0.47
N 40% 03 3 100MB 0.5965
40% 0.1 5 100MB 0.652
40% 0.1 3 1GB 04715
40% 0.1 3 100MB 1.1
s 100% 0.1 3 100MB 221
R " 40% Disabled 3 100MB 2.83
& 10% 03 3 100MB 15
A
¢ 40% 0.1 5 100MB 113
40% 0.1 3 1GB 1
40% 0.1 3 100MB 12.38
< 100% 0.1 3 100MB 17.48
R
\@\“‘b GB 40% Disabled 3 100MB 1839
QQ@}; [ 40% 03 3 100MB 13.66
‘\:&o“’ 40% 0.1 5 100MB 16.4
40% 0.1 3 1GB 1222
40% 0.1 3 100MB 4.98
« 100% 0.1 3 100MB 1451
S
& 40% Disabled 3 100MB 16.61
e GB
L0 40% 03 3 100MB 7.84
¢
T 40% 0.1 5 100MB 5.1
40% 0.1 3 1GB 434
40% 0.1 3 100MB 993
o 100% 0.1 3 100MB 1270
S P 40% Disabled 3 100MB 1256
Q' & 3]
\\@&‘” & 40% 03 3 100MB 1035
&
S 40% 0.1 5 100MB 1316
&
40% 0.1 3 1GB 927

C. Contrasting Starlit with the Baseline

Starlit and the baseline achieve the same level of AUPRC
when Starlit’s (i) direct sampling rate is 40%, (ii) the tree’s
depth is 3, and (iii) GOSS is not disabled. Starlit achieves
its highest AUPRC level (i.e., 0.652) when the tree’s depth
is set to 5. Remarkably, in this instance, Starlit's AUPRC
surpasses even the baseline setting (i.e., 0.652 versus 0.4715).
When the tree’s depths in Starlit and baseline are set to 5
and 3 respectively, then Starlit can attain a superior AUPRC
level compared to the baseline. However, in this setting, Starlit
would impose approximately 1.3 times higher cost.

X. CONCLUSION

In this work, we introduced Starlit, a scalable privacy-
preserving and demonstrated its applications in dealing with
financial fraud, mitigating terrorism, and improving digital
health. We formally defined and proved the security of Starlit
in the simulation-based model. To formally capture the secu-
rity of Starlit, we have defined a set of leakage functions that
may hold independent significance. We implemented Starlit
and conducted a comprehensive analysis of its performance
and accuracy, using synthetic data provided by one of the key
players facilitating financial transactions worldwide.

In secure FL, the output inevitably leaks some information
about participants private inputs, which may deter parties with
sensitive or valuable data, especially if they have no stake in
the outcome. Future work could extend Starlit to reward active
contributors, linking FLL with the data market [1].
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