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ABSTRACT

In order to make argumentation-based inference contestable, it
is crucial to explain what changes can achieve a desired (in-
stead of the contested) inference result. To this end, we introduce
strength change explanations for quantitative (bipolar) argumenta-
tion graphs. Strength change explanations describe changes to the
initial strengths of a subset of the arguments in a given graph that
can achieve a desired ordering based on the final strengths of some
(potentially different) subset of arguments. We show that the exist-
ing notions of inverse and counterfactual problems can be reduced
to strength change explanations. We also prove basic soundness
and completeness properties of our strength change explanations,
and demonstrate their existence and non-existence in some special
cases. By applying a heuristic search, we demonstrate that we can
often successfully find strength change explanations for layered
graphs that are common in typical application scenarios; still, limi-
tations remain for settings where we do not provide guarantees for
the presence (or absence) of explanations.
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1 INTRODUCTION

In order to facilitate human-centricity, applications of Artificial
Intelligence (AI) need to be contestable: not only must machines
explain the results of their decision-making processes to humans;
in addition, humans must be able to challenge these results [18].
Computational argumentation, in which inferences are drawn from
potentially dynamic graphs modelling arguments (nodes), as well
as attack and support relationships between them (edges), may
have the potential to be a key enabler of contestable AI [10, 16].
One way to achieve contestability is to enable machines to pro-
vide, given a decision outcome, explanations in the sense of sets of
required changes that lead to a more desirable outcome [12, 29]. We
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define such explanations for Quantitative Bipolar Argumentation
Graphs (QBAGs), graphs with weighted nodes and directed edges
representing two binary relations modelling attack and support,
respectively. Gradual semantics then draw inferences from QBAGs
by updating the weights from initial strengths to final strengths,
given the graph topology of the QBAG. QBAGs play an impor-
tant role in argumentative eXplainable AI (XAI), a line of research
that aims to advance the study and application of computational
argumentation in the broader XAI context [9]. A range of works
showcases the application of QBAGs to XAl use cases, such as ex-
plainable image recognition [4] and recommendation systems [27].
To facilitate contestability in QBAGs, we study which changes to
the initial strengths of a subset of the arguments in a QBAG can
yield a desired outcome in terms of the ordering arising from the
final strengths of another subset of the QBAG’s arguments.

For example, assume the arguments a and e that model variables
of a credit application decision in an intermediate layer of a layered
QBAG:; d models a variable influencing both a and e. Finally, b and
c in the output layer model the acceptance of the application only if
the final strength of c is greater than the final strength of b. This or-
dering can potentially be affected by changes to the initial strengths
of a and e. We may want to identify such initial strength changes
that specifically affect a change of the final strength ordering b > ¢
(b’s final strength is greater than c’s, application rejected) to ¢ > b
(application accepted), cf. Figure 1.

We can identify such changes, which we call Strength change
eXplanations (SXs), by generalizing the so-called inverse problem
in quantitative argumentation, which describes the assignment of
initial strengths to all arguments in a QBAG such that a desired
final strength ordering of these arguments is achieved [22].

Before we commence the formal part of this paper, let us expand
on the colloquial intuition of an SX. An SX depends on a QBAG, a
gradual semantics, and a subset of the QBAG’s arguments, which we
call mutable arguments. It defines a set of (mutable argument, initial
strength)-tuples that, if applied to the QBAG, yield a specific desired
ordering given by the final strengths of (some of) the arguments
in the QBAG. Roughly, we say that an SX is e-approximate if the
desired ordering cannot be achieved by a substantially better SX in
terms of the sum of all changes to arguments’ initial strengths (a
smaller sum is better). Intuitively, a 0-approximate SX is optimal,
while a larger € indicates weaker optimality guarantees. Below, we
give an example of SXs, applying a simplistic gradual semantics
that (given an acyclic QBAG) traverses the graph in topological
order and, given an argument, subtracts the final strengths of all



attackers from the argument’s initial strength, while adding the
final strengths of all supporters!.

Example 1

Consider the QBAG in Figure 1.1. Nodes in the graphs are arguments,
x (i) :f represents argument x with initial strength t(x) = i and final
strength o(x) = f, and edges labelled + and — represent support
and attack, respectively. The final strength of b is greater than the
final strength of c: o(b) > o(c). We want to find changes to the
initial strengths of the arguments a and e that yield o(b) < o(c).
Such changes are applied in Figures 1.2, 1.3, and 1.4. The changes
applied in Figures 1.2 and 1.3 are e-approximate, given € = 1 (i.e.,
technically any € > 1 would work as well). Clearly, the optimal way
of achieving the desired ordering is increasing the initial strength of a
by marginally more than 1. As the changes applied in G’ and G"’ are
It (a) — r6/(a)] + 77 (e) — 7 ()| = 2 and [rg () - 7g(a)] = 2,
respectively, the changes are still within the approximation “wiggle
room” of 1. The changes applied to G* are not e-approximate given
€ = 1: we have increased the initial strength of a by 1 and of e by 2,
but we could have increased the initial strength ofe by <2 -1 (e.g.,
by just 0.5) and still achieve the desired ordering.

Figure 1: QBAG G and its updates G’, G”/, and G*. Here and
henceforth, a node labelled x (i):f represents argument x
with initial strength 7(x) = i and final strength o(x) = f.
Edges labelled + and — represent support and attack, respec-
tively. Arguments with bold borders are strength change
explanation arguments, given the desired ordering (c, b) and
the mutable set {a, e}; arguments with bold dashed borders
make up 1-approximate strength change explanations.

Taking the idea sketched above as a starting point, the contribu-
tions of this paper are the following: (i) We provide a formal frame-
work for SXs (Section 4); (ii) We analyse basic properties of optimal
SXs (Section 5); (iii) We demonstrate existence and non-existence

'We use this semantics so that readers can easily verify the examples; our results do
not depend on it.

guarantees of SXs for some cases (Section 6); (iv) We implement
a heuristics-based search for identifying strength change explana-
tions, drawing from what we have learned from the theoretical
analysis and empirically demonstrate the feasibility of finding SXs
in small layered QBAGs, as well as some limitations (Section 7);
(v) Finally, we formally establish the connection between SXs re-
lated approaches in the literature (Section 8).

2 RELATED WORK

The work we present in this paper extends the line of research
on argumentative XAI [9, 30] and, more specifically, on the study
of explaining inferences drawn from argumentation frameworks—
QBAGsS, in our case. QBAG explainability has recently been studied
in a range of works [3, 13, 14, 32]. Most relevant in our context are
studies that define and analyse (i) (any, not only initial strength)
changes to QBAGs that can explain changes in the final strength-
-based ordering of two arguments [14]; (ii) initial strength changes
to the arguments in a QBAG that can affect the change of a spe-
cific argument’s final strength in a desirable way, i.e., so that a
desired final strength is achieved or a final strength threshold is
exceeded [32]. Our research differs from (i) in that we explain how
to achieve a counterfactual, desired ordering that requires searching
for a corresponding graph (changing only initial strengths); in con-
trast, [14] defines explanations as subsets of changed arguments in
a graph, given actual (factual) changes. In comparison to (ii), the
(strong) counterfactual problem defined in [32] can be reduced to a
special case of the SXs we introduce in our work. Finally, our work
is conceptually, but not formally, related to the idea of a semifac-
tual explanation that, in contrast to a counterfactual explanation,
describes a somewhat “maximal” change to a graph that does not
affect the outcome of an inference (either in general or to the extent
required), as first introduced to argumentative XAl in [1].

Beyond explainability, our work adds to the study of enforcement,
investigating how desired outcomes can be achieved (“enforced”) in
different variants of computational argumentation [11]. Here, the
most relevant work introduces the inverse problem that describes
the assignment of initial strengths to a gradual argumentation
framework such that a desirable outcome in terms of a final strength-
based ordering of the arguments is achieved [22]. Our work extends
the inverse problem to generate explanations, in order to support
bipolar (instead of attack-only) argumentation graphs, and to allow
for constraining the set of arguments whose initial strengths can
be changed and whose final strengths are of interest. We provide
a more formal integration with [22, 32] by means of an analysis
presented in Section 8.

3 PRELIMINARIES

A Quantitative Bipolar Argumentation Graph (QBAG) [6, 24] is a
tuple G = (Args, 7, Att, Supp) consisting of a set of arguments Args,
an attack relation Att C Args X Args, a support relation Supp C
Argsx Args such that AttNSupp = 0, and an initial strength function
7 : Args — 1. We denote the class of QBAGs by Q. Given a QBAG
G = (Args, 1, Att, Supp), we denote by Ré(x) and 735 (x) the sets
{y |y € Args,(y.x) € At} and {y | y € Args,(y,x) € Supp},
respectively, which we call the attackers/supporters of x. We drop
the subscript G where the context is clear.



For x,y € Args, we say that “x can reach y” iff there is a di-
rected path from x to y in (Args, Att U Supp); for S,S" C Args,
we say that “S can reach §’” iff 3x € S,y € S such that
x can reach y; analogously, we may say that “x can reach §’”,
given that {x} can reach S’. Given S C Args, we define G |s:=
(8,71 (SxI), Att N (S X S), Supp N (S X S)).

Gradual semantics determine the final strengths of arguments
in a QBAG.

Definition 1 (Gradual Semantics and Strength Function [6, 24])
A gradual semantics o defines for G = (Args, 7, Att, Supp) a (possibly
partial) final strength function g : Args — TU{L} that assigns the
final strength o g (x) to each x € Args, where L is a reserved symbol
meaning ‘undefined’.

There is a variety of gradual semantics [2, 7, 23, 28], most of
which belong to the class of modular semantics [20]. Modular se-
mantics define the strengths of arguments by an iterative process.
The strength values of all arguments are initialized with their ini-
tial strengths. Then the arguments’ strength values are updated
based on the strengths of their parents and the base score until they
converge. Since the procedure can fail to converge in cyclic graphs,
Definition 1 defines the final strength function as a partial function.

Modular semantics are called modular because their update func-
tion can be decomposed into an aggregation function that aggre-
gates the strength values of attackers and supporters, and an influ-
ence function that uses the aggregate to adapt the initial strength.
Intuitively, supporters increase the aggregate while attackers de-
crease it based on their strengths. A positive aggregate will increase
the initial strength, while a negative aggregate will decrease it
(cf. Example 1). Table 1 provides some aggregation and influence
functions from the literature [20, 24]. By combining them, we can
obtain the semantics listed in Table 2 including DF-QuAD [28],
Euler-based [2] and quadratic energy [23] semantics.

Aggregation Functions
Sum ay(s) =X v xs;

Product  afl(5) = Tlpmpos (1 = 50) = [igges (1= 50)
Influence Functions
Linear(k) llW(S) =w- ¥ szax{O, —st+ I_TW X max{0,s}
Euler-based  15,(s) =1 — 11;‘;35
p-Max(k) B(s)=w-wxh(-=£)+(1-w) xh($),
_  max{ox}P
forp e N where h(x) = Tomax(0x]P

Table 1: Common aggregation o and influence : functions.
Intuitively, s € [0, 1]" is a strength vector (associating each
argument with its current strength), v € {-1,0,1}" is a re-
lationship vector indicating which arguments attack (-1),
support (1) or are in no relationship to (0) the argument of
interest, and w is an initial strength.

Semantics Aggregation Influence
DF-QuAD (DFQuUAD)  Product Linear(1)
Euler-Based (EB) Sum EulerBased
QuadraticEnergy (QE)  Sum 2-Max(1)

Table 2: Examples of gradual semantics.

We can compare gradual semantics based on their satisfaction of
argumentation principles. Such principles can help us find classes

of cases for when, and when not, we can find strength change
explanations. Below we provide the definitions of the principles
that are relevant for our work.
Directionality describes that adding attacks or supports can only
affect their directed successors.
Principle 1 (Directionality)
A gradual semantics o satisfies directionality iff for all G =
(Args, 7, Att, Supp), G' = (Args, 7, Ait’, Supp’), and x € Args s.t.
AttU Supp = Att’ U Supp’ U (y, z) for somey € Args,z € Args\ {x}
s.t. there is no directed path from z to x, we have cg(x) = oG/ (x).
Let us note that directionality is a very weak assumption and is
satisfied by all modular semantics.

Proposition 3.1 ([26], Theorem 20). Every modular semantics sat-
isfies directionality.

Below, we assume an arbitrary QBAG G = (Args, 7, Att, Supp)
and x € Args. Stability describes that any differences between
initial and final strength of an argument depend on the presence of
attackers or supporters.

Principle 2 (Stability)
A gradual semantics o satisfies the stability principle iff R™(x) =
RF(x) = 0 implies that o(x) = 7(x).

Stability is a special case of the balance property [5], which states
that if the attackers and supporters of an argument are equally
strong, then its final strength is just its base score.

Principle 3 (Balance)

A gradual semantics o satisfies the balance principle iff it holds that
if the multisets {c(y) | y € R™ ()} and {a(y) | y € R*(x)} are
equal then o(x) = 7(x).

Balance does not hold for arbitrary modular semantics, but for
every elementary modular semantics.

Proposition 3.2 ([26], Theorem 20). Every elementary modular
semantics satisfies balance.

Most QBAG semantics are elementary modular semantics in-
cluding the Euler-based [2], DF-QuAD [28], Quadratic Energy [23],
MLP-based [25], TAC and CRC semantics [26]. They therefore sat-
isfy both directionality and balance.

4 STRENGTH CHANGE EXPLANATIONS (SXS)

Strength change explanations explain how to establish a desired
final strength ordering of arguments of interest, which we may
call topic arguments. Here and henceforth, we assume a QBAG
G = (Args, 7, Att, Supp) and a final strength function og, omitting
the subscript G where the context is clear.

Definition 2 (Final Strength Ordering, <-Satisfaction)

GivenS C Args, we define the final strength ordering < Go % follows:

ﬁgﬂ: {(xy) | xy €S8,06(x) < og(y)}.
For XC Argsx Args we say that “G satisfies X w.r.t.¢” iﬁjgﬁzj for
someS C Args. Forx,y € Argss.t. (X, y) Ej‘;a we use the short-hand

X 5Sg , Y we drop the subscript o where the context is clear.
We go back to the initial figure to give an example of a final
strength ordering.
Example 2
<Args

Consider again G from Figure 1.1. Because 25 is a total preorder,



. . Args
we can represent it as a sequence of sets, i.e., we can denote ﬁg &

({d,e}, {a}, {c}, {b}).

Our strength change explanations will change the initial
strengths of some the arguments of a QBAG. We first define such
strength changes in general.

Definition 3 (Strength Change)

A strength change of a QBAG G = (Args, 7, Att, Supp) is a (possibly
partial) function g : Args — 1 such that 5g(x) # t(x) whenever
Sg(x) # L. We callddom(5g) = {y | y € Args,dg(y) # L} its
defined domain.

We let ¢ := 0, which we call the empty strength change.

When a strength change is applied to a QBAG, it yields a QBAG
with an updated initial strength function.

Definition 4 (Strength Change Application)
We define the application of a strength change g to G, denoted by
1(G,9), as (Args, ©’, Att, Supp), where for x € Args:

by

, d(x), ifx € ddom(d);
T'(x) =
7(x), otherwise.
We illustrate the concept with our running example.
Example 3
In Figure 1, we can see the following strength changes and their
applications:

° S’Q ={(a,2), (e,3)}; applied to G we obtain f(G,8') =G’.
. 5é = {(a,3)}; applied to G we obtain f(G,8") = G" .
o 5*g ={(a,2), (e,4)}; applied to G we obtain f(G,5") = G".

Now we can define which strength changes amount to SXs. For
this, we assume a preorder < on our set of arguments Args, rep-
resenting the desired final strength ordering. For x,y € Args s.t.
(x,y) €=X, we use the shorthand x < vy, and if and only if it then
does not hold that y < x, we may use x < y.

Definition 5 (Final Strength Change Explanation (SX))

A strength change dg of G is a final Strength change eXplanation
(5X) of < w.rt. o and the mutable argument set M C Args iff it holds
that ddom(8g) € M and f(G, 6) satisfies X w.r.t. 0. We denote the
set of all SXs of X wr.t. o and M by SXg’M(j). {x|x € Args, Ay €
Args: (x 2y) or (y 2 x)} is called the topic set, denoted by T(X).

Whenever we have SXs w.r.t. o and Args, we may drop the sub-
script M and denote them by SXg(j); analogously we may then
call §g € SXg(j) an “SX of X w.rt. o”.

Example 4

We continue Example 3 and let X be the reflexive closure of {(b,c)}.
We can verify that &', 55, and 5*g are all SXs of X w.r.t. our naive
semantics 0 and M = {a, e} as we achieve the desired ordering via
og/(c) > og/(b), ogr(c) > ogr(b), and 5g+(c) > ag:(b).

The empty strength change §p is an SX only if a given QBAG
already satisfies the desired final strength ordering.

Lemma 4.1. VM C Args, it holds that 5¢ € SXg)M(j) iffG satisfies
< wrto.

Note that the proofs of lemmata have been relegated to the
technical appendix.

5 OPTIMAL SXS

Strength change explanations should not modify the original QBAG

more than necessary. This desideratum gives rise to our notion

of approximate and optimal SXs. As a prerequisite, we define the
amount of change of an SX as the sum of its arguments’ deltas to
their initial strengths in the QBAG.

Definition 6 (Amount of Change)

Given a strength change g, we call [|5g|l = Yxeddom(sg) 166 (%) —

7(x)| the amount of change of §g.

An SX is an e-approximate SX if it changes the initial strengths
of arguments by not more than € more than necessary. Hence, a
0-approximate SX is optimal.

Definition 7 (Approximate and optimal SX)

dg € SXE,M(ﬁ) is an e-approximate SX of X w.rt. o, and M C Args

iff there exists no S,Q € ng,M(j) s.t. ||5'g I < lI8gll — € (with

€ € Rxq). 8g is an optimal SX iff it is a 0-approximate SX. We denote
the set of all e-approximate SXs of X w.r.t. o and M by SXE‘M(j, €).

Again, whenever we have e-approximate SXs w.r.t. ¢ and
Args, we may drop the subscript M and simply denote them by
SXg*(ﬁ, €); analogously we may then call §g € SXg*(ﬁ, €) an
“e-approximate SX of < w.r.t. o”.

Example 5

Consider again the desired ordering < (Example 4), the mutable set

M = {a, e}, and the strength changes &', 5;, and é*g (Example 3).

We can observe that:

. 5/g and 5; are 1-approximate SXs of X w.r.t. our naive semantics
o and M. In the case of§’g, we change the initial strengths of a to 2
and of e to3 (in sum, a change of 2). Given our wiggle room of € = 1,
we cannot change the initial strengths of a and e substantially less
to achieve the desired ordering: while we could change the initial
strength of a just marginally more and abstain from changing e, the
change to a would then amount to > 1, which is greater than 2 — €.
In the case of 8, we clearly need to change the initial strength of
at least one argument and we cannot change the initial strength of
a substantially less (a change to at least marginally greater than 2
is required).

o In contrast, 5*g is not a 1-approximate SX, as the strength change
({a,2.99}) (a slightly smaller change than 55) achieves the desired
ordering by changing the initial strength of a substantially (by
more than 1) less.

If a desired strength ordering is already satisfied, only the empty
strength change is an optimal SX.

Lemma 5.1. If G satisfies < w.r.t. o then SX;*(j, 0) ={dp}

6 (NON-)EXISTENCE OF SXS

Finding SXs is a difficult problem. Note that SXs may not exist.
For example, if the mutable arguments cannot reach our topic
arguments, given modular semantics we cannot achieve a desired
ordering by changing their initial strengths. Below, we analyse
some basic properties w.r.t. the existence and non-existence of SXs.
As a prerequisite, we introduce some additional gradual semantics
principles. The first one is a variant of directionality (Principle 1)
pertaining to the existence of arguments rather than edges.



Principle 4 (Strong Directionality)
A gradual semantics o satisfies the strong directionality principle
iff for all G = (Args, 7, Att, Supp), x € Args, and G' = G | args\ Args’
s.t. Args’ cannot reach x it holds that g (x) = o (x).

Modular semantics satisfy strong directionality.

Lemma 6.1. Every modular semantics satisfies strong directionality.

Next, we consider a variant of monotonicity [5] that explicitly
assumes an initial strength difference (the general principle is not
sufficiently explicit about this case for our purposes).

Principle 5 (Weak Monotonicity)

A gradual semantics o satisfies the weak monotonicity principle iff
forall G = (Args, t, Att, Supp), x,y € Args, the following statements
hold if R~ (x) 2 R~ (y) and R* (x) € R*(y):

(1) ifr(x) < 7(y) then a(x) < a(y);
(2) ifo(y) < a(x) then z(y) < 7(x).

Intuitively, one would expect that many modular semantics sat-
isfy weak monotonicity: initially weaker arguments with strictly
less (or the same) attackers and more (or the same) supporters
should be finally weaker as well.

Proposition 6.2. DFQuAD, EB, and QE semantics satisfy weak
monotonicity.

Proor. Consider an aggregation function « that is either Product,
as applied by DFQuAD semantics, or Sum, as applied by EB and
QE semantics (cf. Tables 1 and 2). Given two arguments x and
y st R7(x) 2 R (y), and RT(x) € R*(y) and their strength
and relationship vectors sy, vx and Sy, Uy, respectively, it holds
that ay, (sx) < o, (sy). Given this and if 7(x) < 7(y) (Principle 5,
Condition 1), it follows for an influence function : that is either
Linear(1) (for DFQuUAD semantics), EulerBased (for EB), or 2-Max(l)
(for QE) that 1;(y) (a0, (sx)) < 17(y) (@, (sy)); conversely, because
an (5x) < ag, (sy), if o(y) < o(x) (Condition 2), this can only
be achieved by differences in initial strengths, i.e., given 7(y) <
7(x). O

Below, we assume our final strength function o is based on a
modular gradual semantics and we only consider QBAGs that do
not have undefined final strengths given o. We first give several
conditions under which we cannot find SXs, given the desired
ordering = is currently not satisfied, i.e., we assume that G does
not satisfy < w.rt. o.

If two arguments whose relative final strengths need to change
cannot be reached by the set of mutable arguments, then we cannot

find an SX.

Proposition 6.3. Given a modular semantics o it holds that
SXgM(j) = 0 ifIx,y € Args s.t. x 2y but x ﬁgrgs y and M
cannot reach {x, y}.

Proor. Consider x,y € Args s.t. x = y but x ,{;rgs y (as as-
sumed by the proposition). Observe that every modular seman-
tics o satisfies strong directionality (Lemma 6.1). Thus, because M
cannot reach {x,y}, for every dg s.t. {z | (z,s) € 6g} € M, for
every S C Args it must hold that x ﬁjsc( 6o Y and consequently

Sg ¢ ng,M(j)’ whence SXE,M(ﬁ) =0. |

An immediate consequence is that we cannot find an SX if no
mutable argument can reach any of the topic arguments.

Corollary 6.4. Given a modular semantics o, SXgM(j) =0 holds
if M cannot reach T(=X) and G does not satisfy < w.r.t. o.

ProOOF. As G does not satisfy <X w.rt. ¢ it must hold that
3(x,y) € Argss.t. x X y but M cannot reach {x,y} and for ev-
ery S C Argsit holds that x %_Sg y. Hence, the proof follows directly
from Proposition 6.3. O

Assuming our gradual semantics satisfies weak monotonicity,
we cannot find an SX, either, if two topic arguments whose relative
final strengths need to inverse are not mutable arguments and have
the same attackers and supporters.

Proposition 6.5. Given a semantics o that satisfies weak mono-
tonicity it holds that SXE,M(ﬁ) =0 if3Ixy € Args s.t. x <y but

X 20 vy ¢ M, and R (x) = R~ (y), as well asR* (x) = R* (y).

Proor. Consider x,y € Argss.t. x < y but x ,{ggs y, as well

as x,y € M and R™(x) = R (y), as well as R*(x) = R*(y) (as
assumed in the proposition). This means that o(x) > o(y) must hold

(as implied by x ,{;rgs

y). Because o satisfies weak monotonicity,
it must hold that 7(x) > 7(y) (as x and y share all attackers and
supporters). Consequently, for any g s.t. {z | (z,5) € §g} € M it
must hold for G’ := f(G, §) that o/ (x) > og (y) (otherwise, we
would again violate weak monotonicity). Therefore, it holds that

dg ¢ SXG () and thus SXg, \ (3) = 0. o

We now move on to some cases where we can guarantee that
SXs exist. First, if all topic arguments are mutable and have neither
attackers nor supporters, we can achieve the desired ordering by
modifying their initial strengths directly, assuming our semantics
satisfies stability.

Proposition 6.6. Given a gradual semantics o satisfying stability,
SXgT(ﬁ) # 0 if Vx € T(X) it holds that R (x) = R*(x) = 0 and
x € M.

ProOF. Because o satisfies stability and Vx € T(X) it holds that
R™(x) = R*(x) = 0, for every G’ = (Args, T/, Supp, Att) for every
initial strength function 7’ it must hold that 7’ (x) = a’g (x). We
can hence achieve a mapping g : T(x) — Rs.t. Vy,z € T(X) it
holds that §g(y) < dg(z) iff y < z, thus achieving that f(G, 9)
satisfies <; then, by definition of an SX (Definition 5), it must hold
that g € SXg’M(ﬁ), ie., SXg’M(j) # 0; intuitively: as all topic
arguments are mutable arguments without external influence, we
can change their initial strengths directly s.t. we achieve the desired
ordering <. O

Similarly, we can guarantee the existence of SXs if all topic
arguments are mutable arguments that cannot reach each other
and we can achieve zero influence of all incoming attackers and
supporters, by changing mutable arguments other than the topic
arguments.

Proposition 6.7. Given a gradual semantics o satisfying balance,
it holds thatSXgM(ﬁ) #0ifT(R) S M Vx,yeT(R)st.x#yit



holds that x cannot reach y, and there exists a strength change 5g
s.t.ddom(6g) € M\ T(X) andVz € Argss.t. Ix € T(X) : z €
R™(x) URT(x) it holds that o (5,G)(z) = 0.

ProOF. Because o satisfies balance and there exists a strength
change 8g s.t. Vz € Argss.it. Ix € T(X) : z € R™(x) UR*(x) it
holds that of (s G)(z) = 0, for this strength change g, ¥x € T()
it also holds that of(5,G)(x) = 7(x). Because it also holds that
ddom(6g) € M\ T(=), we can apply another strength change
5'g s.t. Vx € T(X) it still holds that O'f(gr’f((s’g))(x) = 7(x) and in
addition such that any total preorder < (on T (=), obviously), can
be achieved by assigning final strengths (in R) to all arguments
in T(=X) accordingly, analogous to how we can achieve this for
Proposition 6.6. O

7 HEURISTIC SEARCH

Experimental Setups. We conduct experiments on layered acyclic
QBAGs that we call MLP-like QBAGs because they feature a feed-
forward structure like Multi-Layer Perceptrons (MLPs). In a layered
QBAG, arguments can be partitioned into layers, such that only (and
all) arguments in the first layer have no parents; arguments in the
second layer then have parents only in the first layer and children
in the third layer, and so forth. Only (and all) nodes in the final layer
do not have children. Layered argumentation graphs are common
in applications of CA, both generally [19, 21, 31] and specifically
for weighted argumentation variants such as QBAGs [4, 8, 27].

While QBAGs in many real-world scenarios are naturally acyclic,
extending our approach to cyclic QBAGs remains future work. Since
there are no public benchmark datasets for QBAGs, we use syn-
thetic graphs to evaluate the performance. We next distinguish
two MLP types. The first type is randomly generated and may not
exhibit a solution. The second type is constructed with additional
constraints to guarantee the existence of a solution and we refer to
them as constrained QBAGs. For both types, we consider four differ-
ent structures that vary in the number of layers and arguments per
layer: [8,32,16,3], [8,32,16,8], [8,64,16,8,3] and [8,64, 16,8, 8].
For example, [8, 32, 16, 3] represents 8 arguments in the first layer,
32 in the second, 16 in the third, and 3 in the final layer. We refer to
the layers between the first and the last as intermediate layers. Ar-
guments are assigned random base scores uniformly sampled from
[0, 1]. Edges are added between all arguments in adjacent layers,
making the QBAGs fully connected between consecutive layers.
Each edge is independently labelled as either attack or support with
equal probability. The topic arguments are set as those in the final
layer, and the desired ordering follows the decreasing strengths of
these arguments. To reduce the effect of randomness, we create 100
QBAGs for each structure. Finally, we use DF-QuAD semantics for
evaluation due to its wide applicability (cf. [8, 15]).

In the constrained QBAG setting, the same structural templates
are reused but with additional constraints to ensure that the SXs are
guaranteed to exist. Let the layers be denoted by L; (the fist layer)
to Ly, (the final layer). Similarly, we set arguments in Ly, as the topic
arguments, which are mutually independent of each other. Our
focus is on decreasing the strength of arguments in layer L, to 0,
so that they have no influence on the final layer. Then, a valid SX
can be obtained if the algorithm successfully identifies a decreasing
ordering of base scores in L,. To this end, we make the arguments

in L,—1 immutable and assign them with small random base scores
uniformly sampled from [0, 0.1], so that their strength can be more
easily decreased to 0 by attackers from Lj_3. Furthermore, we
enforce that L, contains only attack relations targeting L,—1, and
L,,—3 contains only support relations targeting L, 5. This design
ensures that the strengths of arguments in L5 can be maximised
through supports from L;_3, enabling them to strongly attack and
minimise the arguments in L, _1.

Objective Function and Optimisation Setups. Suppose the final
layer arguments are denoted by a1, ag, - - - , ap(n > 1) with a desired
ordering o(ay) > o(az) > - -+ = o(ap). To find an ordering by local
search, we need an objective function that decreases with respect
to the number of order-constraint violations. We adopt the ReLU
cost function cost(a) = ;. ; max(0, (o(a;) — o(ai))).

We employ the gradient descent algorithm with Adam optimiser
to minimise the cost, with a maximum of 100 iterations. While
it may converge to local minima, it can serve here as a proof of
concept enabling our heuristic search. To evaluate the optimisation
results, we first check validity, i.e., whether the final ranking exactly
matches the desired ordering. Additionally, we employ two standard
ranking correlation metrics: Kendall’s T and Spearman’s p ranking
correlation (cf. [17]). These metrics directly capture ordering quality.
Both metrics range from —1 (reverse order) to 1 (equal order), with
higher scores indicating better alignment with the desired ordering.
We also report the average runtime across all QBAGs, as well as
the average absolute base score difference (per argument) for those
QBAGs for which we successfully identify the desired ordering.

Algorithm 1 illustrates the iterative heuristic search, which con-
sists of three main steps. Since a valid solution may not always
exist, a maximum number of iterations is set to prevent infinite
loops. First, the algorithm computes the ReLU cost. If the cost equals
0, indicating that a valid solution has been found, the algorithm
returns the base score function; otherwise, it proceeds to the next
step. Second, the gradients of the cost function w.r.t. each mutable
argument is computed and stored. Finally, the base scores are up-
dated based on their corresponding gradients, with the dynamic
learning rate a provided by the Adam optimiser. If no solution is
found, we return null.

Let us formally observe the time complexity of Algorithm 1.

Lemma 7.1. Letn be the number of topic arguments, K the maximum
number of iterations, and N = |Args| + |Att| + |Supp|. For acyclic
QBAGs, the time complexity of Algorithm 1is O(K - (M| - N + n?)).

We have seen that SXs may or may not exist. Deciding their
existence and finding an optimal SX are challenging problems:
Even in acyclic, layered QBAGs, the impact of one argument’s
initial strength on the final strength of another argument may not
be monotonic. E.g., increasing an argument’s initial strength by
a value of, assume, 0.1, may have a positive impact on the final
strength of another argument and further increasing the initial
strength (e.g. by 0.11 instead of just 0.1) may then have a negative
impact (cf. Figure 1 in [13]). To address this challenge pragmatically,
we design and implement a local search (gradient descent) algorithm
that tries to find SX by minimising the violation of order constraints.
Strictly speaking, since our algorithm takes gradient information
into account, it can only be applied if the strength function is



Algorithm 1 Heuristic Search

Input: QBAG G = (Args, 7, Att, Supp), semantics o, learning rate a,
mutable set M C Args, desired ordering o(a;) > - -+ > o(an)
Parameter: Perturbation value £, maximum iterations K
Output: Updated 7 (which also is an SX)

1: Vcost = {}

2: for k =1to K do

3: # 1. compute cost
compute o(a) for all a € Args
cost « Yi<icj<nmax(0,0(aj) — o(a;i))
if cost = 0 then

return 7

# gradient dictionary

# solution found

N A A

# 2. compute gradients
10: forain M do

11: 7(a) « 7(a) +¢ # perturb (a)
12: compute o(a) for all a € Args

13: cost’ « Yi<icj<nmax(0,0(a;) — o(a;))

14: Vcost[a] « (cost’ — cost) /e

15: r(a) « 7(a) — ¢ # restore (a)
16:

17:  # 3. update base scores

18:  forain M do

19: 7(a) « max(0,min(1,7(a) — « - Vcost[a]))
20: return null # No solution found

differentiable. While this is the case for acyclic QBAGs, the strength
function for cyclic QBAGs is not necessarily differentiable, and
even if it was, it would be difficult to derive a closed-form solution
for the partial derivatives. In principle, one could replace the partial
derivatives with difference quotients in this case. Still, since the
majority of QBAG applications results in acyclic graphs, we focus
on this case.

Results and Analysis. Table 3 shows the experimental results. The
third column shows the results for the constrained QBAGs. Our
algorithm consistently finds SXs, achieving 100% validity, which
results in the best Kendall and Spearman correlation. The runtime
increases with both the number of intermediate layers and the
number of topic arguments involved in the desired ordering. The
average absolute base score differences are larger for those QBAGs
with more topic arguments.

The remaining three columns show results of the random QBAGs
under different configurations of mutable arguments. Theoretically,
if all arguments are mutable, SXs always exist by directly assigning
decreasing base scores to the topic arguments and zero to all others,
thereby nullifying any undesired influence. Our experimental re-
sults (shown in the last column) confirm that the algorithm reliably
identifies SXs under this condition. Although the validity reaches
99% for the final configuration, the algorithm successfully could find
a solution for the previously failed case after increasing the number
of iterations to 1000. However, in cases with only partially mutable
arguments, our algorithm does not always succeed. This may be at-
tributed to several possible factors: SXs may not exist, the number of
iterations may be insufficient, or the algorithm may have converged
to a local minimum, which is a known limitation of gradient-based
methods. Despite these challenges, we observe a clear trend: as
the number of mutable arguments increases—from only first layer

Table 3: Average validity, Kendall & Spearman correlation,
runtime (in seconds), and absolute base score difference (per
argument) over 100 MLP-like QBAGs with varying structures.

. Constrained First Interm. All
Structure Metric Ly, fixed mutable mutable mutable
Validity 100% 0% 83% 100%
Kendall 1.00 -0.24 0.78 1.00
[8,32,16,3] Spearman 1.00 -0.24 0.78 1.00
Runtime 0.03 1.09 0.28 0.03
|A BS| 0.01 NA 030 0.15
Validity 100% 0% 33% 100%
Kendall 1.00 -0.02 0.62 1.00
[8,32,16,8]  Spearman 1.00 -0.03 0.68 1.00
Runtime 0.11 7.46 1.01 0.11
|ABS| 0.06 NA 0.39 0.27
Validity 100% 3% 87% 100%
Kendall 1.00 -0.19 0.89 1.00
[8,64,16,8,3] Spearman 1.00 -0.20 0.90 1.00
Runtime 0.08 3.57 0.70 0.08
|A BS| 0.01 ~0 0.08 0.04
Validity 100% 0% 24% 99%
Kendall 1.00 0.02 0.54 0.99
[8,64,16,8,8] Spearman 1.00 0.03 0.61 0.99
Runtime 0.34 3.99 3.19 0.40
|ABS| 0.03 NA 0.12 0.10

mutable, to intermediate layers mutable, and finally to all layers
mutable—the validity, Kendall, and Spearman correlation scores
improve consistently, which aligns with our expectation®. As for
the absolute base score difference, we observe that configurations
with more topic arguments require larger adjustments when the
number of mutable arguments is fixed.

Our experiments demonstrate that, while the general problem
is challenging, our algorithm can reliably identify SXs in some
scenarios where we can guarantee the existence of SXs. Accordingly,
future research towards more applied directions, e.g. by utilising
SXs for MLP debugging, can be considered promising.

8 RELATING SXS TO INVERSE &
COUNTERFACTUAL PROBLEMS

SXs are closely related to the inverse problem as introduced by [22],
as well as to the related strong counterfactual problem [32] that is de-
fined as a stepping stone to counterfactual explanations for QBAGs.
In this section, we will show the following: (i) Every solution of an
inverse problem is also an SX; note that the reverse is not the case
as SXs can specify specific sets of topic and mutable arguments, and
can start off with arbitrary initial strengths assignments; (ii) Strong
counterfactual problems and their solutions can be reduced to SXs;
again the reverse is not the case, as SXs cover preferences over
arbitrary many arguments in a QBAG.

To be able to formally integrate our explanations into the body
of related work, we introduce some additional definitions, starting
with the inverse problem, that given an argumentation framework
without initial strengths seeks to identify an initial strength assign-
ment that achieves a desired final strength-based ordering of the

2Note: the technical appendix contains results with an additional experimental setting
where both first and intermediate layers are mutable; we also report results for EB and
QE semantics.



arguments. Note that [22] defines the inverse problem for attack-
only instead of bipolar argumentation frameworks and semantics;
for the sake of conciseness, we generalise immediately to QBAGs.
Definition 8 (Inverse Problem)

An inverse problem with respect to a gradual semantics o is a 4-tuple
I = (Args, Att, Supp, <), where Args is a set of arguments, Att, Supp C
Args X Args, and XC Args X Args. < is called the desired ordering.
A solution of the inverse problem I is an initial strength function
7: Args > Ist. {(x,y) | x,y € Args,c(x) < o(y)} ==.

We denote the class of inverse problems by 7.

A somewhat similar problem has been introduced as a prerequi-
site of an argumentation-based XAI approach. The strong counter-
factual problem describes, given a QBAG and a topic argument of
that QBAG, the identification of an initial strength function that
achieves a specific desired final strength of the topic argument [32].
Definition 9 (Strong Counterfactual Problem)

The strong counterfactual problem with respect to an argumentation
semantics o is a 3-tuple C = (G, x, s), where G = (Args, T, Att, Supp)
is a QBAG, x € Args, s € I as well as s # og(x). The solution of the
strong counterfactual problem C is an initial strength function v’ # t
such that, given G’ = (Args, 7', Att, Supp), it holds that g (x) = s.

The following example illustrates the two problems.

Example 6

Consider G in Figure 2.13, with arguments Args = {a,b,c,d, e},
Att = {(a,b), (d,e)}, and Supp = {(a,c), (d,a), (e,c)}. With the
sequence =*= (d,e,a,b,c) giving rise to the corresponding total
order <*, we have the inverse problem I = (Args, Att, Supp, <).
Given G* in Figure 2.2, C = (G* ¢, 6) is a strong counterfactual
problem. The initial strength function seen in G’ (Figure 2.3), i.e.,
v ={(a,2),(b,8), (c,1),(d, 1), (e,3)}, is a solution of I, and of C.

Figure 2: Inverse and strong counterfactual problems (G, with
desired total order (d, e, a, b, c), and G*, with topic c and de-
sired strength 6, respectively) and their solutions (in G’).

To show that SXs generalise inverse problems and their solutions,
we first introduce a function that assigns an arbitrary value s € I
as the initial strength to all arguments of an inverse problem.
Definition 10 (Initial Strength Assignment Function)

The initial strength assignment function ¢s : I — Q, withs € 1,
takes an inverse problem (Args, Att, Supp, <) € I and returns a
OBAG (Args, 7, Att, Supp) € Q s.t. 7 = {(x,s)|x € Args}.

We can then show that the solution of an inverse problem is
also an SX, assuming an inverse problem that is augmented with
an initial strength assignment function assigning arbitrary initial

3Here, G is technically not a QBAG.
4Le., < is the transitive and reflexive closure of {(d, e), (e,a), (a,b), (b,c)}.

strengths s to all arguments, and excluding initial strength assign-
ments of arguments to s from the solution.

Proposition 8.1. For every inverse problem I = (Args, Att, Supp, <),

for every initial strength function t that is a solution of I, for every
. o

s € Lit holds that T \ {x|x € Args, (x,s) € 7} € SXf(qSS(I),r),Args’

ProorF. By definition of an inverse problem and its
solution,f (¢s(I), 7) satisfies <. However, for some (x,s’) € 7 it may
hold that s’ = s and therefore (x, s”) must not occur in a strength

change. Hence, 7 \ {x|x € Args, (x,s) € 7} € SX;S(I),Args(ﬁ)‘ O

Similarly, we can show that strong counterfactual problems
and their solutions can be reduced to SXs: a change to the ini-
tial strengths of arguments in a QBAG that leads to a desired final
strength of a specific topic argument can be characterised by an SX,
given we add a “dummy argument” to the QBAG that serves as a
reference to the desired final strength of the topic argument. Here,
we assume the gradual semantics satisfies the stability principle,
which we claim is a common-sense desideratum.

Proposition 8.2. Given a gradual semantics o satisfying sta-
bility, for every strong counterfactual problem C = (G =
(Args, 7, Att, Supp), %, s), for every t’ that is a solution of C it

holds that v/ € Sng,Args(j)’ where Gy = (Args U {y}, 7 U

{(y,9)}, Att, Supp), y ¢ Args, and 2= {(xy), (y, ) }.

PRrROOF. Because o satisfies stability and y ¢ Args, for Q{, =
(Args U {y}, " U {(y,s)}, Att, Supp) it must hold that oG, (y) =
ag, (y) = s (note that y has neither attackers nor supporters).
This means by definition of a strong counterfactual problem and
its solution, we must have og, (x) = 0g§(y). It follows that be-

cause g; = f(Gy,7'), it holds that 7" € Sng’Args(ﬁ), with

<= {(x,y), (y,x)}, as achieved by 9gG, O

Let us expand on Example 6 to give an intuition of the results.
Example 7
Consider the previous inverse and strong counterfactual problems
I = (Args, Att, Supp, %) and C = (G* = (Args, ¥, Att, Supp), ¢, 6),
respectively (cf. Figure 2), as well as their solution t’. We observe that:
o Given Gy = (Args, {(x,0) | x € Args}, Att, Supp) it holds that
e SXgo,Args(j);
o Given Gy = (ArgsU {y}, 7ty = U {(y,6)}, Att, Supp) it holds that

7\ ESXG L (@) (o).

9 CONCLUSIONS

We have introduced argumentative strength change explanations,
as a potential foundation for argumentative XAl and contestable
Al Our explanations generalise solutions of previously studied
problems in gradual argumentation. We have demonstrated some
(non)existence results, as well as the empirical feasibility of finding
explanations in relatively small, layered QBAGs, with some ex-
pected limitations. Future research may expand our investigations
regarding theoretical existence and empirical find-ability of our
strength change explanations, especially in large QBAGs, measure
other characteristics of the explanations, such as simplicity and
robustness, and apply the explanations to real-world contestability
problems and datasets.
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APPENDIX: STRENGTH CHANGE EXPLANATIONS IN QUANTITATIVE ARGUMENTATION

Appendix 1: Proofs

The appendix re-states all lemmata and provides their proofs.

Lemma4.1. VM C Args, it holds that ¢ € SXg’M(j) iff G satisfies
2 wrt. o.

Proor. “If” direction: VM C Args it holds that if G satisfies
< w.rt. o then g € SXg, (2). By definition of a strength change
application (Definition 4) it holds that f(G, dy) = G. Hence, if G
satisfies < w.r.t. o then it must also hold that f(G, §p) satisfies <
w.r.t. o, which implies §p € SX G. 11 (2), by Definition 5.

“Only if” direction: VM C Args it holds that if G does not
satisfy < w.r.t. o then g ¢ SXg(j). Because f(G, dp) = G it holds
that if G does not satisfy < w.rt. o, (G, 8p) does not satisfy < w.r.t.
o, either, and thus cannot be an SX. O

Lemma 5.1. If G satisfies X wr.t. o then SX;*(j, 0) ={dp}.

ProoF. From Lemma 4.1 it follows directly that if G satisfies <
w.r.t. o then §p € ng(j, 0). Now, it remains to be shown that:

(i) A6g € SXg’M(j) s.t. [[6gll < [8gll (8p is optimal);
(i) Vg € ng(j) st.8g # Jp it holds that [|5gll > |5l (no
other SX is optimal).
Clearly i) and ii) hold because for every dg € SXg(j) s.t. g # &
it holds that 3x € ddom(ég) s.t. [5G (x) —7(x)| > 0 (thus ||5gl| > 0)
but By € ddom(dy) s.t. |8p(y) — 7(y)| > 0 (thus ||5y|| = 0); hence
161l > 1150 1l- o

Lemma 6.1. Every modular semantics satisfies strong directionality.

Proor. The claim follows from observing that, under modular
semantics, the final strength of an argument only depends on the
initial strength of this argument and on the final strengths of its
attackers and supporters. O

Lemma 7.1. Letn be the number of topic arguments, K the maximum
number of iterations, and N = |Args| + |Att| + |Supp|. For acyclic
QBAGs, the time complexity of Algorithm 1is O(K - (|M| - N + n?)).

Proor. We first analyse the time complexity of computing the
strength values of arguments. For acyclic QBAGs, these values can
be computed in linear time O(N) [24, Proposition 3.1]. Since the
strength values must be recomputed for each base score pertur-
bation and there are |M| mutable arguments to be perturbed, the
time complexity for this step is O(|M| - N). Next, the time com-
plexity of computing the cost function is n?, as it involves pairwise
comparisons among the n topic arguments. Finally, since the algo-
rithm requires at most K iterations, the overall time complexity of
Algorithm 1is O(K - (M| - N + n?)). O

Appendix 2: Full Experimental Results

Table 4 contains all experimental results evaluating the heuristic
search. The experiments were run on a machine featuring an Apple
M4 with 10 cores and 24 GB RAM. The code for our experiments
is available at https://github.com/nicopotyka/Uncertainpy/blob/
master/examples/gradual/strength_change_explanations.ipynb.

In addition to the results in the main paper, we present results
for an experimental setting where both first and intermediate layers
are mutable. Note that the results can be interpreted as an exception
to the trend that adding more layers of arguments to the mutable
set yields better results. Indeed, the results are very similar to the
setting where only the intermediate layers are mutable, presumably
because the expansion of the search space to the first layer has little
effect. Accordingly, we consider the results as unsurprising and not
contradictory to the bigger picture.

Also, additional experimental results for EB and QE semantics
are provided. The results for these semantics are broadly speaking
similar to the ones for DFQuAD semantics, with close to perfect
performance when a solution can be guaranteed and mixed results
when it cannot. Notable differences can be observed for some of
the settings that fall into the latter class: (i) The search performs
somewhat better for EB and (even more so for) QF semantics given
only the first layer is mutable and there are only three topic argu-
ments. (ii) The search performs worse for EB and QE semantics
when the intermediate layer is mutable (no matter whether the first
layer is mutable or not), except for the smallest QBAG structure
([8,32,16,3]). These difference indicate that more comprehensive
experiments may be interesting future work.


https://github.com/nicopotyka/Uncertainpy/blob/master/examples/gradual/strength_change_explanations.ipynb
https://github.com/nicopotyka/Uncertainpy/blob/master/examples/gradual/strength_change_explanations.ipynb

Table 4: Heuristic search results, with additional experiment where both first and intermediate layers are mutable, and for
DFQuAD, as well as EB and QE semantics; average validity, Kendall correlation, Spearman correlation, runtime (in seconds),
and absolute base score difference (per argument) over 100 MLP-like QBAGs with varying structures.

Structure Metric Constrained First Interm.  First+Interm. All
L, fixed mutable mutable mutable mutable
DFQuAD Semantics
Validity 100% 0% 83% 82% 100%
Kendall 1.00 -0.24 0.78 0.82 1.00
[8,32,16,3] Spearman 1.00 -0.24 0.78 0.82 1.00
Runtime 0.03 1.09 0.28 0.30 0.03
|A BS| 0.01 NA 030 0.27 0.15
Validity 100% 0% 33% 32% 100%
Kendall 1.00 -0.02 0.62 0.57 1.00
[8,32,16,8] Spearman 1.00 -0.03 0.68 0.62 1.00
Runtime 0.11 7.46 1.01 1.04 0.11
|A BS| 0.06 NA 0.39 0.34 0.27
Validity 100% 3% 87% 86% 100%
Kendall 1.00 -0.19 0.89 0.85 1.00
[8,64,16,8,3] Spearman 1.00 -0.20 0.90 0.85 1.00
Runtime 0.08 3.57 0.70 0.80 0.08
|ABS| 0.01 ~0 0.08 0.07 0.04
Validity 100% 0% 24% 19% 99%
Kendall 1.00 0.02 0.54 0.48 0.99
[8,64,16,8,8] Spearman 1.00 0.03 0.61 0.54 0.99
Runtime 0.34 3.99 3.19 3.37 0.40
|ABS| 0.03 NA 0.12 0.12 0.10
EB Semantics
Validity 100% 14% 88% 90% 100%
Kendall 1.00 -0.05 0.85 0.89 1.00
[8,32,16,3] Spearman 1.00 -0.06 0.84 0.89 1.00
Runtime 0.03 0.91 0.21 0.21 0.02
|A BS| 0.02 0.10 0.20 0.18 0.13
Validity 100% 0% 16% 16% 98%
Kendall 1.00 0.03 0.49 0.53 0.99
[8,32,16,8] Spearman 1.00 0.04 0.57 0.59 1.00
Runtime 0.13 9.76 10.63 11.67 0.21
|ABS| 0.06 NA 0.35 0.33 0.29
Validity 100% 13% 64% 61% 100%
Kendall 1.00 -0.09 0.59 0.56 1.00
[8,64,16,8,3]  Spearman 1.00 -0.12 0.60 0.57 1.00
Runtime 0.09 21.54 13.89 14.74 0.08
|A BS| 0.01 0.04 0.19 0.17 0.14
Validity 100% 0% 3% 4% 100%
Kendall 1.00 0.02 0.25 0.27 1.00
[8,64,16,8,8]  Spearman 1.00 0.02 0.31 0.35 1.00
Runtime 0.34 25.04 26.29 36.07 9.51
|ABS| 0.03 NA 0.29 0.29 0.27
QE Semantics
Validity 100% 35% 82% 93% 100%
Kendall 1.00 0.25 0.85 0.92 1.00
[8,32,16,3] Spearman 1.00 0.26 0.87 0.92 1.00
Runtime 0.03 12.62 0.36 0.22 0.05
|A BS| 0.05 0.16 0.23 0.22 0.18
Validity 99% 0% 22% 25% 98%
Kendall 1.00 0.21 0.62 0.65 1.00
[8,32,16,8] Spearman 1.00 0.27 0.69 0.71 1.00
Runtime 0.17 11.79 2.73 1.28 0.36
|ABS| 0.15 NA 0.38 0.36 035
Validity 100% 30% 71% 78% 100%
Kendall 1.00 0.24 0.67 0.72 1.00
[8,64,16,8,3] Spearman 1.00 0.26 0.67 0.74 1.00
Runtime 0.09 2.72 14.45 1.13 0.12
|A BS| 0.01 0.09 0.20 0.18 0.15
Validity 100% 1% 4% 7% 97%
Kendall 1.00 0.13 0.42 0.46 0.99
[8,64,16,8,8] Spearman 1.00 0.17 0.50 0.55 1.00
Runtime 2.00 22.78 24.08 4.19 0.82

|A BS| 0.04 0.38 0.28 0.36 0.30
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