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ABSTRACT
In order to make argumentation-based inference contestable, it

is crucial to explain what changes can achieve a desired (in-

stead of the contested) inference result. To this end, we introduce

strength change explanations for quantitative (bipolar) argumenta-

tion graphs. Strength change explanations describe changes to the

initial strengths of a subset of the arguments in a given graph that

can achieve a desired ordering based on the final strengths of some

(potentially different) subset of arguments. We show that the exist-

ing notions of inverse and counterfactual problems can be reduced

to strength change explanations. We also prove basic soundness

and completeness properties of our strength change explanations,

and demonstrate their existence and non-existence in some special

cases. By applying a heuristic search, we demonstrate that we can

often successfully find strength change explanations for layered

graphs that are common in typical application scenarios; still, limi-

tations remain for settings where we do not provide guarantees for

the presence (or absence) of explanations.
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1 INTRODUCTION
In order to facilitate human-centricity, applications of Artificial

Intelligence (AI) need to be contestable: not only must machines

explain the results of their decision-making processes to humans;

in addition, humans must be able to challenge these results [18].

Computational argumentation, in which inferences are drawn from

potentially dynamic graphs modelling arguments (nodes), as well

as attack and support relationships between them (edges), may

have the potential to be a key enabler of contestable AI [10, 16].

One way to achieve contestability is to enable machines to pro-

vide, given a decision outcome, explanations in the sense of sets of

required changes that lead to a more desirable outcome [12, 29]. We
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define such explanations for Quantitative Bipolar Argumentation

Graphs (QBAGs), graphs with weighted nodes and directed edges

representing two binary relations modelling attack and support,
respectively. Gradual semantics then draw inferences from QBAGs

by updating the weights from initial strengths to final strengths,
given the graph topology of the QBAG. QBAGs play an impor-

tant role in argumentative eXplainable AI (XAI), a line of research

that aims to advance the study and application of computational

argumentation in the broader XAI context [9]. A range of works

showcases the application of QBAGs to XAI use cases, such as ex-

plainable image recognition [4] and recommendation systems [27].

To facilitate contestability in QBAGs, we study which changes to

the initial strengths of a subset of the arguments in a QBAG can

yield a desired outcome in terms of the ordering arising from the

final strengths of another subset of the QBAG’s arguments.

For example, assume the arguments a and e that model variables

of a credit application decision in an intermediate layer of a layered

QBAG; d models a variable influencing both a and e. Finally, b and

c in the output layer model the acceptance of the application only if

the final strength of c is greater than the final strength of b. This or-
dering can potentially be affected by changes to the initial strengths

of a and e. We may want to identify such initial strength changes

that specifically affect a change of the final strength ordering b ≻ c
(b’s final strength is greater than c’s, application rejected) to c ≻ b
(application accepted), cf. Figure 1.

We can identify such changes, which we call Strength change
eXplanations (SXs), by generalizing the so-called inverse problem
in quantitative argumentation, which describes the assignment of

initial strengths to all arguments in a QBAG such that a desired

final strength ordering of these arguments is achieved [22].

Before we commence the formal part of this paper, let us expand

on the colloquial intuition of an SX. An SX depends on a QBAG, a

gradual semantics, and a subset of the QBAG’s arguments, whichwe

callmutable arguments. It defines a set of (mutable argument, initial

strength)-tuples that, if applied to the QBAG, yield a specific desired

ordering given by the final strengths of (some of) the arguments

in the QBAG. Roughly, we say that an SX is 𝜖-approximate if the
desired ordering cannot be achieved by a substantially better SX in

terms of the sum of all changes to arguments’ initial strengths (a

smaller sum is better). Intuitively, a 0-approximate SX is optimal,
while a larger 𝜖 indicates weaker optimality guarantees. Below, we

give an example of SXs, applying a simplistic gradual semantics

that (given an acyclic QBAG) traverses the graph in topological

order and, given an argument, subtracts the final strengths of all



attackers from the argument’s initial strength, while adding the

final strengths of all supporters
1
.

Example 1
Consider the QBAG in Figure 1.1. Nodes in the graphs are arguments,
x (𝑖) : f represents argument x with initial strength 𝜏 (x) = 𝑖 and final
strength 𝜎 (x) = f , and edges labelled + and − represent support
and attack, respectively. The final strength of b is greater than the
final strength of c: 𝜎 (b) > 𝜎 (c). We want to find changes to the
initial strengths of the arguments a and e that yield 𝜎 (b) < 𝜎 (c).
Such changes are applied in Figures 1.2, 1.3, and 1.4. The changes
applied in Figures 1.2 and 1.3 are 𝜖-approximate, given 𝜖 = 1 (i.e.,
technically any 𝜖 ≥ 1 would work as well). Clearly, the optimal way
of achieving the desired ordering is increasing the initial strength of a
by marginally more than 1. As the changes applied in G′ and G′′ are
|𝜏G′ (a) − 𝜏G (a) | + |𝜏G′ (e) − 𝜏G (e) | = 2 and |𝜏G′′ (a) − 𝜏G (a) | = 2,
respectively, the changes are still within the approximation “wiggle
room” of 1. The changes applied to G∗ are not 𝜖-approximate given
𝜖 = 1: we have increased the initial strength of a by 1 and of e by 2,
but we could have increased the initial strength of e by < 2 − 1 (e.g.,
by just 0.5) and still achieve the desired ordering.

a (1) :2

b (8) :6 c (1) :4

d (1) :1

e (2) :1

- +
+

+ -

1.1: G

a (2) :3

b (8) :5 c (1) :6

d (1) :1

e (3) :2

- +
+

+ -

1.2: G′

a (3) :4

b (8) :4 c (1) :6

d (1) :1

e (2) :1

- + +

+ -

1.3: G′′

a (2) :3

b (8) :5 c (1) :7

d (1) :1

e (4) :3

- +
+

+ -

1.4: G∗

Figure 1: QBAG G and its updates G′, G′′, and G∗. Here and
henceforth, a node labelled x (𝑖) : f represents argument x
with initial strength 𝜏 (x) = 𝑖 and final strength 𝜎 (x) = f .
Edges labelled + and − represent support and attack, respec-
tively. Arguments with bold borders are strength change
explanation arguments, given the desired ordering ⟨c, b⟩ and
themutable set {a, e}; arguments with bold dashed borders
make up 1-approximate strength change explanations.

Taking the idea sketched above as a starting point, the contribu-

tions of this paper are the following: (i) We provide a formal frame-

work for SXs (Section 4); (ii) We analyse basic properties of optimal
SXs (Section 5); (iii) We demonstrate existence and non-existence

1
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not depend on it.

guarantees of SXs for some cases (Section 6); (iv) We implement

a heuristics-based search for identifying strength change explana-

tions, drawing from what we have learned from the theoretical

analysis and empirically demonstrate the feasibility of finding SXs

in small layered QBAGs, as well as some limitations (Section 7);

(v) Finally, we formally establish the connection between SXs re-

lated approaches in the literature (Section 8).

2 RELATEDWORK
The work we present in this paper extends the line of research

on argumentative XAI [9, 30] and, more specifically, on the study

of explaining inferences drawn from argumentation frameworks—

QBAGs, in our case. QBAG explainability has recently been studied

in a range of works [3, 13, 14, 32]. Most relevant in our context are

studies that define and analyse (i) (any, not only initial strength)

changes to QBAGs that can explain changes in the final strength-

-based ordering of two arguments [14]; (ii) initial strength changes

to the arguments in a QBAG that can affect the change of a spe-

cific argument’s final strength in a desirable way, i.e., so that a

desired final strength is achieved or a final strength threshold is

exceeded [32]. Our research differs from (i) in that we explain how

to achieve a counterfactual, desired ordering that requires searching
for a corresponding graph (changing only initial strengths); in con-

trast, [14] defines explanations as subsets of changed arguments in

a graph, given actual (factual) changes. In comparison to (ii), the
(strong) counterfactual problem defined in [32] can be reduced to a

special case of the SXs we introduce in our work. Finally, our work

is conceptually, but not formally, related to the idea of a semifac-
tual explanation that, in contrast to a counterfactual explanation,

describes a somewhat “maximal” change to a graph that does not

affect the outcome of an inference (either in general or to the extent

required), as first introduced to argumentative XAI in [1].

Beyond explainability, our work adds to the study of enforcement,
investigating how desired outcomes can be achieved (“enforced”) in

different variants of computational argumentation [11]. Here, the

most relevant work introduces the inverse problem that describes

the assignment of initial strengths to a gradual argumentation

framework such that a desirable outcome in terms of a final strength-

based ordering of the arguments is achieved [22]. Our work extends

the inverse problem to generate explanations, in order to support

bipolar (instead of attack-only) argumentation graphs, and to allow

for constraining the set of arguments whose initial strengths can

be changed and whose final strengths are of interest. We provide

a more formal integration with [22, 32] by means of an analysis

presented in Section 8.

3 PRELIMINARIES
A Quantitative Bipolar Argumentation Graph (QBAG) [6, 24] is a
tuple G = (Args, 𝜏,Att, Supp) consisting of a set of arguments Args,
an attack relation Att ⊆ Args × Args, a support relation Supp ⊆
Args×Args such thatAtt∩Supp = ∅, and an initial strength function
𝜏 : Args→ I. We denote the class of QBAGs by Q. Given a QBAG

G = (Args, 𝜏,Att, Supp), we denote by R−G (x) and R
+
G (x) the sets

{y | y ∈ Args, (y, x) ∈ Att} and {y | y ∈ Args, (y, x) ∈ Supp},
respectively, which we call the attackers/supporters of x. We drop

the subscript G where the context is clear.



For x, y ∈ Args, we say that “x can reach y” iff there is a di-

rected path from x to y in (Args,Att ∪ Supp); for 𝑆, 𝑆 ′ ⊆ Args,
we say that “𝑆 can reach 𝑆 ′” iff ∃x ∈ 𝑆, y ∈ 𝑆 ′ such that

x can reach y; analogously, we may say that “x can reach 𝑆 ′”,
given that {x} can reach 𝑆 ′. Given 𝑆 ⊆ Args, we define G ↓𝑆 :=
(𝑆, 𝜏 ∩ (𝑆 × I),Att ∩ (𝑆 × 𝑆), Supp ∩ (𝑆 × 𝑆)).

Gradual semantics determine the final strengths of arguments

in a QBAG.

Definition 1 (Gradual Semantics and Strength Function [6, 24])

A gradual semantics 𝜎 defines for G = (Args, 𝜏,Att, Supp) a (possibly
partial) final strength function 𝜎G : Args→ I∪{⊥} that assigns the
final strength 𝜎G (x) to each x ∈ Args, where ⊥ is a reserved symbol
meaning ‘undefined’.

There is a variety of gradual semantics [2, 7, 23, 28], most of

which belong to the class of modular semantics [20]. Modular se-

mantics define the strengths of arguments by an iterative process.

The strength values of all arguments are initialized with their ini-

tial strengths. Then the arguments’ strength values are updated

based on the strengths of their parents and the base score until they

converge. Since the procedure can fail to converge in cyclic graphs,

Definition 1 defines the final strength function as a partial function.

Modular semantics are calledmodular because their update func-
tion can be decomposed into an aggregation function that aggre-

gates the strength values of attackers and supporters, and an influ-

ence function that uses the aggregate to adapt the initial strength.

Intuitively, supporters increase the aggregate while attackers de-

crease it based on their strengths. A positive aggregate will increase

the initial strength, while a negative aggregate will decrease it

(cf. Example 1). Table 1 provides some aggregation and influence

functions from the literature [20, 24]. By combining them, we can

obtain the semantics listed in Table 2 including DF-QuAD [28],

Euler-based [2] and quadratic energy [23] semantics.

Aggregation Functions
Sum 𝛼Σ

𝑣 (𝑠 ) =
∑𝑛

𝑖=1 𝑣𝑖 × 𝑠𝑖
Product 𝛼Π

𝑣 (𝑠 ) =
∏

𝑖 :𝑣𝑖=−1 (1 − 𝑠𝑖 ) −
∏

𝑖 :𝑣𝑖=1
(1 − 𝑠𝑖 )

Influence Functions
Linear(𝑘) 𝜄𝑙𝑤 (𝑠 ) = 𝑤 − 𝑤

𝑘
×𝑚𝑎𝑥 {0, −𝑠 } + 1−𝑤

𝑘
×𝑚𝑎𝑥 {0, 𝑠 }

Euler-based 𝜄𝑒𝑤 (𝑠 ) = 1 − 1−𝑤2

1+𝑤×𝑒𝑠
p-Max(𝑘) 𝜄

𝑝
𝑤 (𝑠 ) = 𝑤 − 𝑤 × ℎ (− 𝑠

𝑘
) + (1 − 𝑤 ) × ℎ ( 𝑠

𝑘
),

for 𝑝 ∈ N where ℎ (𝑥 ) = 𝑚𝑎𝑥 {0,𝑥 }𝑝
1+𝑚𝑎𝑥 {0,𝑥 }𝑝

Table 1: Common aggregation 𝛼 and influence 𝜄 functions.
Intuitively, 𝑠 ∈ [0, 1]𝑛 is a strength vector (associating each
argument with its current strength), 𝑣 ∈ {−1, 0, 1}𝑛 is a re-
lationship vector indicating which arguments attack (−1),
support (1) or are in no relationship to (0) the argument of
interest, and𝑤 is an initial strength.

Semantics Aggregation Influence
DF-QuAD (DFQuAD) Product Linear(1)

Euler-Based (EB) Sum EulerBased

QuadraticEnergy (QE) Sum 2-Max(1)

Table 2: Examples of gradual semantics.

We can compare gradual semantics based on their satisfaction of

argumentation principles. Such principles can help us find classes

of cases for when, and when not, we can find strength change

explanations. Below we provide the definitions of the principles

that are relevant for our work.

Directionality describes that adding attacks or supports can only

affect their directed successors.

Principle 1 (Directionality)

A gradual semantics 𝜎 satisfies directionality iff for all G =

(Args, 𝜏,Att, Supp), G′ = (Args, 𝜏,Att′, Supp′), and x ∈ Args s.t.
Att ∪ Supp = Att′ ∪ Supp′ ∪ (y, z) for some y ∈ Args, z ∈ Args \ {x}
s.t. there is no directed path from z to x, we have 𝜎G (x) = 𝜎G′ (x).

Let us note that directionality is a very weak assumption and is

satisfied by all modular semantics.

Proposition 3.1 ([26], Theorem 20). Every modular semantics sat-
isfies directionality.

Below, we assume an arbitrary QBAG G = (Args, 𝜏,Att, Supp)
and x ∈ Args. Stability describes that any differences between

initial and final strength of an argument depend on the presence of

attackers or supporters.

Principle 2 (Stability)

A gradual semantics 𝜎 satisfies the stability principle iff R− (x) =
R+ (x) = ∅ implies that 𝜎 (x) = 𝜏 (x).

Stability is a special case of the balance property [5], which states
that if the attackers and supporters of an argument are equally

strong, then its final strength is just its base score.

Principle 3 (Balance)

A gradual semantics 𝜎 satisfies the balance principle iff it holds that
if the multisets {𝜎 (y) | y ∈ R− (x)} and {𝜎 (y) | y ∈ R+ (x)} are
equal then 𝜎 (x) = 𝜏 (x).

Balance does not hold for arbitrary modular semantics, but for

every elementary modular semantics.

Proposition 3.2 ([26], Theorem 20). Every elementary modular
semantics satisfies balance.

Most QBAG semantics are elementary modular semantics in-

cluding the Euler-based [2], DF-QuAD [28], Quadratic Energy [23],

MLP-based [25], TAC and CRC semantics [26]. They therefore sat-

isfy both directionality and balance.

4 STRENGTH CHANGE EXPLANATIONS (SXS)
Strength change explanations explain how to establish a desired

final strength ordering of arguments of interest, which we may

call topic arguments. Here and henceforth, we assume a QBAG

G = (Args, 𝜏,Att, Supp) and a final strength function 𝜎G , omitting

the subscript G where the context is clear.

Definition 2 (Final Strength Ordering, ⪯-Satisfaction)
Given 𝑆 ⊆ Args, we define the final strength ordering ⪯𝑆G,𝜎 as follows:

⪯𝑆G,𝜎 := {(x, y) | x, y ∈ 𝑆, 𝜎G (x) ≤ 𝜎G (y)}.

For ⪯⊆ Args×Args we say that “G satisfies ⪯ w.r.t. 𝜎” iff ⪯𝑆G,𝜎=⪯ for

some 𝑆 ⊆ Args. For x, y ∈ Args s.t. (x, y) ∈⪯𝑆G,𝜎 we use the short-hand

x ⪯𝑆G,𝜎 y; we drop the subscript 𝜎 where the context is clear.
We go back to the initial figure to give an example of a final

strength ordering.

Example 2
Consider again G from Figure 1.1. Because ⪯ArgsG is a total preorder,



we can represent it as a sequence of sets, i.e., we can denote ⪯ArgsG by
⟨{d, e}, {a}, {c}, {b}⟩.

Our strength change explanations will change the initial

strengths of some the arguments of a QBAG. We first define such

strength changes in general.

Definition 3 (Strength Change)

A strength change of a QBAG G = (Args, 𝜏,Att, Supp) is a (possibly
partial) function 𝛿G : Args → I such that 𝛿G (x) ≠ 𝜏 (x) whenever
𝛿G (x) ≠ ⊥. We call ddom(𝛿G) = {y | y ∈ Args, 𝛿G (y) ≠ ⊥} its
defined domain.

We let 𝛿∅ := ∅, which we call the empty strength change.
When a strength change is applied to a QBAG, it yields a QBAG

with an updated initial strength function.

Definition 4 (Strength Change Application)

We define the application of a strength change 𝛿G to G, denoted by
𝑓 (G, 𝛿), as (Args, 𝜏 ′,Att, Supp), where for x ∈ Args:

𝜏 ′ (x) =
{
𝛿 (x), if x ∈ ddom(𝛿);
𝜏 (x), otherwise.

We illustrate the concept with our running example.

Example 3
In Figure 1, we can see the following strength changes and their
applications:

• 𝛿 ′G = {(a, 2), (e, 3)}; applied to G we obtain 𝑓 (G, 𝛿 ′) = G′.
• 𝛿 ′′G = {(a, 3)}; applied to G we obtain 𝑓 (G, 𝛿 ′′) = G′′.
• 𝛿∗G = {(a, 2), (e, 4)}; applied to G we obtain 𝑓 (G, 𝛿∗) = G∗.

Now we can define which strength changes amount to SXs. For

this, we assume a preorder ⪯ on our set of arguments Args, rep-
resenting the desired final strength ordering. For x, y ∈ Args s.t.
(x, y) ∈⪯, we use the shorthand x ⪯ y, and if and only if it then

does not hold that y ⪯ x, we may use x ≺ y.
Definition 5 (Final Strength Change Explanation (SX))

A strength change 𝛿G of G is a final Strength change eXplanation

(SX) of ⪯ w.r.t. 𝜎 and the mutable argument set𝑀 ⊆ Args iff it holds
that ddom(𝛿G) ⊆ 𝑀 and 𝑓 (G, 𝛿) satisfies ⪯ w.r.t. 𝜎 . We denote the
set of all SXs of ⪯ w.r.t. 𝜎 and 𝑀 by 𝑆𝑋𝜎G,𝑀 (⪯). {x|x ∈ Args, ∃y ∈
Args : (x ⪯ y) or (y ⪯ x)} is called the topic set, denoted by 𝑇 (⪯).

Whenever we have SXs w.r.t. 𝜎 and Args, we may drop the sub-

script 𝑀 and denote them by 𝑆𝑋𝜎G (⪯); analogously we may then

call 𝛿G ∈ 𝑆𝑋𝜎G (⪯) an “SX of ⪯ w.r.t. 𝜎”.

Example 4
We continue Example 3 and let ⪯ be the reflexive closure of {(b, c)}.
We can verify that 𝛿 ′G , 𝛿

′′
G , and 𝛿

∗
G are all SXs of ⪯ w.r.t. our naive

semantics 𝜎 and 𝑀 = {a, e} as we achieve the desired ordering via
𝜎G′ (c) > 𝜎G′ (b), 𝜎G′′ (c) > 𝜎G′′ (b), and 𝜎G∗ (c) > 𝜎G∗ (b).

The empty strength change 𝛿∅ is an SX only if a given QBAG

already satisfies the desired final strength ordering.

Lemma 4.1. ∀𝑀 ⊆ Args, it holds that 𝛿∅ ∈ 𝑆𝑋𝜎G,𝑀 (⪯) iff G satisfies
⪯ w.r.t. 𝜎 .

Note that the proofs of lemmata have been relegated to the

technical appendix.

5 OPTIMAL SXS
Strength change explanations should not modify the original QBAG

more than necessary. This desideratum gives rise to our notion

of approximate and optimal SXs. As a prerequisite, we define the
amount of change of an SX as the sum of its arguments’ deltas to

their initial strengths in the QBAG.

Definition 6 (Amount of Change)

Given a strength change 𝛿G , we call ∥𝛿G ∥ =
∑
x∈ddom(𝛿G ) |𝛿G (x) −

𝜏 (x) | the amount of change of 𝛿G .
An SX is an 𝜖-approximate SX if it changes the initial strengths

of arguments by not more than 𝜖 more than necessary. Hence, a

0-approximate SX is optimal.
Definition 7 (Approximate and optimal SX)

𝛿G ∈ 𝑆𝑋𝜎G,𝑀 (⪯) is an 𝜖-approximate SX of ⪯ w.r.t. 𝜎 , and𝑀 ⊆ Args
iff there exists no 𝛿 ′G ∈ 𝑆𝑋

𝜎
G,𝑀 (⪯) s.t. ∥𝛿

′
G ∥ < ∥𝛿G ∥ − 𝜖 (with

𝜖 ∈ R≥0). 𝛿G is an optimal SX iff it is a 0-approximate SX. We denote
the set of all 𝜖-approximate SXs of ⪯ w.r.t. 𝜎 and𝑀 by 𝑆𝑋𝜎∗G,𝑀 (⪯, 𝜖).

Again, whenever we have 𝜖-approximate SXs w.r.t. 𝜎 and

Args, we may drop the subscript 𝑀 and simply denote them by

𝑆𝑋𝜎∗G (⪯, 𝜖); analogously we may then call 𝛿G ∈ 𝑆𝑋𝜎∗G (⪯, 𝜖) an
“𝜖-approximate SX of ⪯ w.r.t. 𝜎”.

Example 5
Consider again the desired ordering ⪯ (Example 4), the mutable set
𝑀 = {a, e}, and the strength changes 𝛿 ′G , 𝛿

′′
G , and 𝛿

∗
G (Example 3).

We can observe that:

• 𝛿 ′G and 𝛿 ′′G are 1-approximate SXs of ⪯ w.r.t. our naive semantics
𝜎 and𝑀 . In the case of 𝛿 ′G , we change the initial strengths of a to 2
and of e to 3 (in sum, a change of 2). Given our wiggle room of 𝜖 = 1,
we cannot change the initial strengths of a and e substantially less
to achieve the desired ordering: while we could change the initial
strength of a just marginally more and abstain from changing e, the
change to a would then amount to > 1, which is greater than 2 − 𝜖 .
In the case of 𝛿 ′′G , we clearly need to change the initial strength of
at least one argument and we cannot change the initial strength of
a substantially less (a change to at least marginally greater than 2

is required).
• In contrast, 𝛿∗G is not a 1-approximate SX, as the strength change
({a, 2.99}) (a slightly smaller change than 𝛿 ′′G ) achieves the desired
ordering by changing the initial strength of a substantially (by
more than 1) less.

If a desired strength ordering is already satisfied, only the empty

strength change is an optimal SX.

Lemma 5.1. If G satisfies ⪯ w.r.t. 𝜎 then 𝑆𝑋𝜎∗G (⪯, 0) = {𝛿∅}.

6 (NON-)EXISTENCE OF SXS
Finding SXs is a difficult problem. Note that SXs may not exist.

For example, if the mutable arguments cannot reach our topic

arguments, given modular semantics we cannot achieve a desired

ordering by changing their initial strengths. Below, we analyse

some basic properties w.r.t. the existence and non-existence of SXs.

As a prerequisite, we introduce some additional gradual semantics

principles. The first one is a variant of directionality (Principle 1)

pertaining to the existence of arguments rather than edges.



Principle 4 (Strong Directionality)

A gradual semantics 𝜎 satisfies the strong directionality principle

iff for all G = (Args, 𝜏,Att, Supp), x ∈ Args, and G′ := G ↓Args\Args′
s.t. Args′ cannot reach x it holds that 𝜎G (x) = 𝜎G′ (x).

Modular semantics satisfy strong directionality.

Lemma 6.1. Every modular semantics satisfies strong directionality.

Next, we consider a variant of monotonicity [5] that explicitly

assumes an initial strength difference (the general principle is not

sufficiently explicit about this case for our purposes).

Principle 5 (Weak Monotonicity)

A gradual semantics 𝜎 satisfies the weak monotonicity principle iff
for all G = (Args, 𝜏,Att, Supp), x, y ∈ Args, the following statements
hold if R− (x) ⊇ R− (y) and R+ (x) ⊆ R+ (y):
(1) if 𝜏 (x) ≤ 𝜏 (y) then 𝜎 (x) ≤ 𝜎 (y);
(2) if 𝜎 (y) < 𝜎 (x) then 𝜏 (y) < 𝜏 (x).

Intuitively, one would expect that many modular semantics sat-

isfy weak monotonicity: initially weaker arguments with strictly

less (or the same) attackers and more (or the same) supporters

should be finally weaker as well.

Proposition 6.2. DFQuAD, EB, and QE semantics satisfy weak
monotonicity.

Proof. Consider an aggregation function𝛼 that is either Product,
as applied by DFQuAD semantics, or Sum, as applied by EB and

QE semantics (cf. Tables 1 and 2). Given two arguments x and

y s.t. R− (x) ⊇ R− (y), and R+ (x) ⊆ R+ (y) and their strength

and relationship vectors 𝑠x, 𝑣x and 𝑠y, 𝑣y, respectively, it holds

that 𝛼𝑣x (𝑠x) ≤ 𝛼𝑣y (𝑠y). Given this and if 𝜏 (x) ≤ 𝜏 (y) (Principle 5,
Condition 1), it follows for an influence function 𝜄 that is either

Linear(1) (for DFQuAD semantics), EulerBased (for EB), or 2-Max(l)
(for QE) that 𝜄𝜏 (x) (𝛼𝑣x (𝑠x)) ≤ 𝜄𝜏 (y) (𝛼𝑣y (𝑠y)); conversely, because
𝛼𝑣x (𝑠x) ≤ 𝛼𝑣y (𝑠y), if 𝜎 (y) < 𝜎 (x) (Condition 2), this can only

be achieved by differences in initial strengths, i.e., given 𝜏 (y) <
𝜏 (x). □

Below, we assume our final strength function 𝜎 is based on a

modular gradual semantics and we only consider QBAGs that do

not have undefined final strengths given 𝜎 . We first give several

conditions under which we cannot find SXs, given the desired

ordering ⪯ is currently not satisfied, i.e., we assume that G does

not satisfy ⪯ w.r.t. 𝜎 .

If two arguments whose relative final strengths need to change

cannot be reached by the set of mutable arguments, then we cannot

find an SX.

Proposition 6.3. Given a modular semantics 𝜎 it holds that
𝑆𝑋𝜎G,𝑀 (⪯) = ∅ if ∃x, y ∈ Args s.t. x ⪯ y but x ⪯̸Args

G y and 𝑀
cannot reach {x, y}.

Proof. Consider x, y ∈ Args s.t. x ⪯ y but x ⪯̸Args
G y (as as-

sumed by the proposition). Observe that every modular seman-

tics 𝜎 satisfies strong directionality (Lemma 6.1). Thus, because𝑀

cannot reach {x, y}, for every 𝛿G s.t. {z | (z, 𝑠) ∈ 𝛿G} ⊆ 𝑀 , for

every 𝑆 ⊆ Args it must hold that x ⪯̸𝑆
𝑓 (G,𝛿 ) y and consequently

𝛿G ∉ 𝑆𝑋𝜎G,𝑀 (⪯), whence 𝑆𝑋
𝜎
G,𝑀 (⪯) = ∅. □

An immediate consequence is that we cannot find an SX if no

mutable argument can reach any of the topic arguments.

Corollary 6.4. Given a modular semantics 𝜎 , 𝑆𝑋𝜎G,𝑀 (⪯) = ∅ holds
if𝑀 cannot reach 𝑇 (⪯) and G does not satisfy ⪯ w.r.t. 𝜎 .

Proof. As G does not satisfy ⪯ w.r.t. 𝜎 it must hold that

∃(x, y) ∈ Args s.t. x ⪯ y but 𝑀 cannot reach {x, y} and for ev-

ery 𝑆 ⊆ Args it holds that x ⪯̸𝑆G y. Hence, the proof follows directly
from Proposition 6.3. □

Assuming our gradual semantics satisfies weak monotonicity,

we cannot find an SX, either, if two topic arguments whose relative

final strengths need to inverse are not mutable arguments and have

the same attackers and supporters.

Proposition 6.5. Given a semantics 𝜎 that satisfies weak mono-
tonicity it holds that 𝑆𝑋𝜎G,𝑀 (⪯) = ∅ if ∃x, y ∈ Args s.t. x ≺ y but

x ⪯̸Args
G y, x, y ∉ 𝑀 , and R− (x) = R− (y), as well as R+ (x) = R+ (y).

Proof. Consider x, y ∈ Args s.t. x ⪯ y but x ⪯̸Args
G y, as well

as x, y ∉ 𝑀 and R− (x) = R− (y), as well as R+ (x) = R+ (y) (as
assumed in the proposition). Thismeans that𝜎 (x) > 𝜎 (y)must hold

(as implied by x ⪯̸Args
G y). Because 𝜎 satisfies weak monotonicity,

it must hold that 𝜏 (x) > 𝜏 (y) (as x and y share all attackers and

supporters). Consequently, for any 𝛿G s.t. {z | (z, 𝑠) ∈ 𝛿G} ⊆ 𝑀 it

must hold for G′ := 𝑓 (G, 𝛿) that 𝜎G′ (x) ≥ 𝜎G′ (y) (otherwise, we
would again violate weak monotonicity). Therefore, it holds that

𝛿G ∉ 𝑆𝑋𝜎G,𝑀 (⪯) and thus 𝑆𝑋𝜎G,𝑀 (⪯) = ∅. □

We now move on to some cases where we can guarantee that

SXs exist. First, if all topic arguments are mutable and have neither

attackers nor supporters, we can achieve the desired ordering by

modifying their initial strengths directly, assuming our semantics

satisfies stability.

Proposition 6.6. Given a gradual semantics 𝜎 satisfying stability,
𝑆𝑋𝜎G,𝑇 (⪯) ≠ ∅ if ∀x ∈ 𝑇 (⪯) it holds that R

− (x) = R+ (x) = ∅ and
x ∈ 𝑀 .

Proof. Because 𝜎 satisfies stability and ∀x ∈ 𝑇 (⪯) it holds that
R− (x) = R+ (x) = ∅, for every G′ = (Args, 𝜏 ′, Supp,Att) for every
initial strength function 𝜏 ′ it must hold that 𝜏 ′ (x) = 𝜎′G (x). We

can hence achieve a mapping 𝛿G : 𝑇 (⪯) → R s.t. ∀y, z ∈ 𝑇 (⪯) it
holds that 𝛿G (y) ≤ 𝛿G (z) iff y ⪯ z, thus achieving that 𝑓 (G, 𝛿)
satisfies ⪯; then, by definition of an SX (Definition 5), it must hold

that 𝛿G ∈ 𝑆𝑋𝜎G,𝑀 (⪯), i.e., 𝑆𝑋
𝜎
G,𝑀 (⪯) ≠ ∅; intuitively: as all topic

arguments are mutable arguments without external influence, we

can change their initial strengths directly s.t. we achieve the desired

ordering ⪯. □

Similarly, we can guarantee the existence of SXs if all topic

arguments are mutable arguments that cannot reach each other

and we can achieve zero influence of all incoming attackers and

supporters, by changing mutable arguments other than the topic

arguments.

Proposition 6.7. Given a gradual semantics 𝜎 satisfying balance,
it holds that 𝑆𝑋𝜎G,𝑀 (⪯) ≠ ∅ if 𝑇 (⪯) ⊆ 𝑀 , ∀x, y ∈ 𝑇 (⪯) s.t. x ≠ y it



holds that x cannot reach y, and there exists a strength change 𝛿G
s.t. 𝑑𝑑𝑜𝑚(𝛿G) ⊆ 𝑀 \ 𝑇 (⪯) and ∀z ∈ Args s.t. ∃x ∈ 𝑇 (⪯) : z ∈
R− (x) ∪ R+ (x) it holds that 𝜎𝑓 (𝛿,G) (z) = 0.

Proof. Because 𝜎 satisfies balance and there exists a strength

change 𝛿G s.t. ∀z ∈ Args s.t. ∃x ∈ 𝑇 (⪯) : z ∈ R− (x) ∪ R+ (x) it
holds that 𝜎𝑓 (𝛿,G) (z) = 0, for this strength change 𝛿G , ∀x ∈ 𝑇 (⪯)
it also holds that 𝜎𝑓 (𝛿,G) (x) = 𝜏 (x). Because it also holds that

𝑑𝑑𝑜𝑚(𝛿G) ⊆ 𝑀 \ 𝑇 (⪯), we can apply another strength change

𝛿 ′G s.t. ∀x ∈ 𝑇 (⪯) it still holds that 𝜎𝑓 (𝛿 ′,𝑓 (𝛿,G) ) (x) = 𝜏 (x) and in

addition such that any total preorder ⪯ (on 𝑇 (⪯), obviously), can
be achieved by assigning final strengths (in R) to all arguments

in 𝑇 (⪯) accordingly, analogous to how we can achieve this for

Proposition 6.6. □

7 HEURISTIC SEARCH
Experimental Setups. We conduct experiments on layered acyclic

QBAGs that we call MLP-like QBAGs because they feature a feed-

forward structure like Multi-Layer Perceptrons (MLPs). In a layered

QBAG, arguments can be partitioned into layers, such that only (and

all) arguments in the first layer have no parents; arguments in the

second layer then have parents only in the first layer and children

in the third layer, and so forth. Only (and all) nodes in the final layer

do not have children. Layered argumentation graphs are common

in applications of CA, both generally [19, 21, 31] and specifically

for weighted argumentation variants such as QBAGs [4, 8, 27].

While QBAGs in many real-world scenarios are naturally acyclic,

extending our approach to cyclic QBAGs remains future work. Since

there are no public benchmark datasets for QBAGs, we use syn-

thetic graphs to evaluate the performance. We next distinguish

two MLP types. The first type is randomly generated and may not

exhibit a solution. The second type is constructed with additional

constraints to guarantee the existence of a solution and we refer to

them as constrained QBAGs. For both types, we consider four differ-

ent structures that vary in the number of layers and arguments per

layer: [8, 32, 16, 3], [8, 32, 16, 8], [8, 64, 16, 8, 3] and [8, 64, 16, 8, 8].
For example, [8, 32, 16, 3] represents 8 arguments in the first layer,

32 in the second, 16 in the third, and 3 in the final layer. We refer to

the layers between the first and the last as intermediate layers. Ar-
guments are assigned random base scores uniformly sampled from

[0, 1]. Edges are added between all arguments in adjacent layers,

making the QBAGs fully connected between consecutive layers.

Each edge is independently labelled as either attack or support with

equal probability. The topic arguments are set as those in the final

layer, and the desired ordering follows the decreasing strengths of

these arguments. To reduce the effect of randomness, we create 100

QBAGs for each structure. Finally, we use DF-QuAD semantics for

evaluation due to its wide applicability (cf. [8, 15]).

In the constrained QBAG setting, the same structural templates

are reused but with additional constraints to ensure that the SXs are

guaranteed to exist. Let the layers be denoted by 𝐿1 (the fist layer)

to 𝐿𝑛 (the final layer). Similarly, we set arguments in 𝐿𝑛 as the topic

arguments, which are mutually independent of each other. Our

focus is on decreasing the strength of arguments in layer 𝐿𝑛−1 to 0,

so that they have no influence on the final layer. Then, a valid SX

can be obtained if the algorithm successfully identifies a decreasing

ordering of base scores in 𝐿𝑛 . To this end, we make the arguments

in 𝐿𝑛−1 immutable and assign them with small random base scores

uniformly sampled from [0, 0.1], so that their strength can be more

easily decreased to 0 by attackers from 𝐿𝑛−2. Furthermore, we

enforce that 𝐿𝑛−2 contains only attack relations targeting 𝐿𝑛−1, and
𝐿𝑛−3 contains only support relations targeting 𝐿𝑛−2. This design
ensures that the strengths of arguments in 𝐿𝑛−2 can be maximised

through supports from 𝐿𝑛−3, enabling them to strongly attack and

minimise the arguments in 𝐿𝑛−1.

Objective Function and Optimisation Setups. Suppose the final
layer arguments are denoted by 𝑎1, 𝑎2, · · · , 𝑎𝑛 (𝑛 > 1) with a desired
ordering 𝜎 (𝑎1) ≥ 𝜎 (𝑎2) ≥ · · · ≥ 𝜎 (𝑎𝑛). To find an ordering by local
search, we need an objective function that decreases with respect

to the number of order-constraint violations. We adopt the ReLU

cost function 𝑐𝑜𝑠𝑡 (𝜎) := ∑
𝑖< 𝑗 𝑚𝑎𝑥 (0, (𝜎 (𝑎 𝑗 ) − 𝜎 (𝑎𝑖 ))).

We employ the gradient descent algorithm with Adam optimiser

to minimise the cost, with a maximum of 100 iterations. While

it may converge to local minima, it can serve here as a proof of

concept enabling our heuristic search. To evaluate the optimisation

results, we first check validity, i.e., whether the final ranking exactly
matches the desired ordering. Additionally, we employ two standard

ranking correlation metrics: Kendall’s 𝜏 and Spearman’s 𝜌 ranking

correlation (cf. [17]). Thesemetrics directly capture ordering quality.

Both metrics range from −1 (reverse order) to 1 (equal order), with

higher scores indicating better alignment with the desired ordering.

We also report the average runtime across all QBAGs, as well as

the average absolute base score difference (per argument) for those

QBAGs for which we successfully identify the desired ordering.

Algorithm 1 illustrates the iterative heuristic search, which con-

sists of three main steps. Since a valid solution may not always

exist, a maximum number of iterations is set to prevent infinite

loops. First, the algorithm computes the ReLU cost. If the cost equals

0, indicating that a valid solution has been found, the algorithm

returns the base score function; otherwise, it proceeds to the next

step. Second, the gradients of the cost function w.r.t. each mutable

argument is computed and stored. Finally, the base scores are up-

dated based on their corresponding gradients, with the dynamic

learning rate 𝛼 provided by the Adam optimiser. If no solution is

found, we return null.
Let us formally observe the time complexity of Algorithm 1.

Lemma7.1. Let𝑛 be the number of topic arguments,𝐾 themaximum
number of iterations, and 𝑁 = |𝐴𝑟𝑔𝑠 | + |𝐴𝑡𝑡 | + |𝑆𝑢𝑝𝑝 |. For acyclic
QBAGs, the time complexity of Algorithm 1 is O(𝐾 · ( |𝑀 | · 𝑁 + 𝑛2)).

We have seen that SXs may or may not exist. Deciding their

existence and finding an optimal SX are challenging problems:

Even in acyclic, layered QBAGs, the impact of one argument’s

initial strength on the final strength of another argument may not

be monotonic. E.g., increasing an argument’s initial strength by

a value of, assume, 0.1, may have a positive impact on the final

strength of another argument and further increasing the initial

strength (e.g. by 0.11 instead of just 0.1) may then have a negative

impact (cf. Figure 1 in [13]). To address this challenge pragmatically,

we design and implement a local search (gradient descent) algorithm

that tries to find SX by minimising the violation of order constraints.

Strictly speaking, since our algorithm takes gradient information

into account, it can only be applied if the strength function is



Algorithm 1 Heuristic Search

Input: QBAG G = (Args, 𝜏,Att, Supp) , semantics 𝜎 , learning rate 𝛼 ,

mutable set𝑀 ⊆ Args, desired ordering 𝜎 (a1 ) ≥ · · · ≥ 𝜎 (a𝑛 )
Parameter: Perturbation value 𝜀 , maximum iterations 𝐾

Output: Updated 𝜏 (which also is an SX)

1: ∇𝑐𝑜𝑠𝑡 = {} # gradient dictionary
2: for 𝑘 = 1 to 𝐾 do
3: # 1. compute cost
4: compute 𝜎 (a) for all a ∈ 𝐴𝑟𝑔𝑠
5: 𝑐𝑜𝑠𝑡 ← ∑

1≤𝑖< 𝑗≤𝑛 max(0, 𝜎 (a𝑗 ) − 𝜎 (a𝑖 ) )
6: if 𝑐𝑜𝑠𝑡 = 0 then
7: return 𝜏 # solution found
8:

9: # 2. compute gradients
10: for a in𝑀 do
11: 𝜏 (a) ← 𝜏 (a) + 𝜀 # perturb 𝜏 (a)
12: compute 𝜎 (a) for all a ∈ 𝐴𝑟𝑔𝑠
13: 𝑐𝑜𝑠𝑡 ′ ← ∑

1≤𝑖< 𝑗≤𝑛 max(0, 𝜎 (a𝑗 ) − 𝜎 (a𝑖 ) )
14: ∇𝑐𝑜𝑠𝑡 [a] ← (𝑐𝑜𝑠𝑡 ′ − 𝑐𝑜𝑠𝑡 )/𝜀
15: 𝜏 (a) ← 𝜏 (a) − 𝜀 # restore 𝜏 (a)
16:

17: # 3. update base scores
18: for a in𝑀 do
19: 𝜏 (a) ← max(0,min(1, 𝜏 (a) − 𝛼 · ∇𝑐𝑜𝑠𝑡 [a] ) )
20: return null # No solution found

differentiable. While this is the case for acyclic QBAGs, the strength

function for cyclic QBAGs is not necessarily differentiable, and

even if it was, it would be difficult to derive a closed-form solution

for the partial derivatives. In principle, one could replace the partial

derivatives with difference quotients in this case. Still, since the

majority of QBAG applications results in acyclic graphs, we focus

on this case.

Results and Analysis. Table 3 shows the experimental results. The

third column shows the results for the constrained QBAGs. Our

algorithm consistently finds SXs, achieving 100% validity, which

results in the best Kendall and Spearman correlation. The runtime

increases with both the number of intermediate layers and the

number of topic arguments involved in the desired ordering. The

average absolute base score differences are larger for those QBAGs

with more topic arguments.

The remaining three columns show results of the randomQBAGs

under different configurations of mutable arguments. Theoretically,

if all arguments are mutable, SXs always exist by directly assigning

decreasing base scores to the topic arguments and zero to all others,

thereby nullifying any undesired influence. Our experimental re-

sults (shown in the last column) confirm that the algorithm reliably

identifies SXs under this condition. Although the validity reaches

99% for the final configuration, the algorithm successfully could find

a solution for the previously failed case after increasing the number

of iterations to 1000. However, in cases with only partially mutable

arguments, our algorithm does not always succeed. This may be at-

tributed to several possible factors: SXsmay not exist, the number of

iterations may be insufficient, or the algorithmmay have converged

to a local minimum, which is a known limitation of gradient-based

methods. Despite these challenges, we observe a clear trend: as

the number of mutable arguments increases—from only first layer

Table 3: Average validity, Kendall & Spearman correlation,
runtime (in seconds), and absolute base score difference (per
argument) over 100MLP-likeQBAGswith varying structures.

Structure Metric Constrained
𝐿𝑛−1 fixed

First
mutable

Interm.
mutable

All
mutable

[8,32,16,3]

Validity 100% 0% 83% 100%
Kendall 1.00 -0.24 0.78 1.00

Spearman 1.00 -0.24 0.78 1.00

Runtime 0.03 1.09 0.28 0.03

|Δ BS | 0.01 NA 0.30 0.15

[8,32,16,8]

Validity 100% 0% 33% 100%
Kendall 1.00 -0.02 0.62 1.00

Spearman 1.00 -0.03 0.68 1.00

Runtime 0.11 7.46 1.01 0.11

|Δ BS | 0.06 NA 0.39 0.27

[8,64,16,8,3]

Validity 100% 3% 87% 100%
Kendall 1.00 -0.19 0.89 1.00

Spearman 1.00 -0.20 0.90 1.00

Runtime 0.08 3.57 0.70 0.08

|Δ BS | 0.01 ∼ 0 0.08 0.04

[8,64,16,8,8]

Validity 100% 0% 24% 99%

Kendall 1.00 0.02 0.54 0.99

Spearman 1.00 0.03 0.61 0.99

Runtime 0.34 3.99 3.19 0.40

|Δ BS | 0.03 NA 0.12 0.10

mutable, to intermediate layers mutable, and finally to all layers

mutable—the validity, Kendall, and Spearman correlation scores

improve consistently, which aligns with our expectation
2
. As for

the absolute base score difference, we observe that configurations

with more topic arguments require larger adjustments when the

number of mutable arguments is fixed.

Our experiments demonstrate that, while the general problem

is challenging, our algorithm can reliably identify SXs in some

scenarios where we can guarantee the existence of SXs. Accordingly,

future research towards more applied directions, e.g. by utilising

SXs for MLP debugging, can be considered promising.

8 RELATING SXS TO INVERSE &
COUNTERFACTUAL PROBLEMS

SXs are closely related to the inverse problem as introduced by [22],

as well as to the related strong counterfactual problem [32] that is de-

fined as a stepping stone to counterfactual explanations for QBAGs.

In this section, we will show the following: (i) Every solution of an

inverse problem is also an SX; note that the reverse is not the case

as SXs can specify specific sets of topic and mutable arguments, and

can start off with arbitrary initial strengths assignments; (ii) Strong

counterfactual problems and their solutions can be reduced to SXs;

again the reverse is not the case, as SXs cover preferences over

arbitrary many arguments in a QBAG.

To be able to formally integrate our explanations into the body

of related work, we introduce some additional definitions, starting

with the inverse problem, that given an argumentation framework

without initial strengths seeks to identify an initial strength assign-

ment that achieves a desired final strength-based ordering of the

2
Note: the technical appendix contains results with an additional experimental setting

where both first and intermediate layers are mutable; we also report results for EB and

QE semantics.



arguments. Note that [22] defines the inverse problem for attack-

only instead of bipolar argumentation frameworks and semantics;

for the sake of conciseness, we generalise immediately to QBAGs.

Definition 8 (Inverse Problem)

An inverse problem with respect to a gradual semantics 𝜎 is a 4-tuple
𝐼 = (Args,Att, Supp, ⪯), where Args is a set of arguments, Att, Supp ⊆
Args × Args, and ⪯⊆ Args × Args. ⪯ is called the desired ordering.
A solution of the inverse problem 𝐼 is an initial strength function
𝜏 : Args→ I s.t. {(x, y) | x, y ∈ Args, 𝜎 (x) ≤ 𝜎 (y)} =⪯.

We denote the class of inverse problems by I.
A somewhat similar problem has been introduced as a prerequi-

site of an argumentation-based XAI approach. The strong counter-
factual problem describes, given a QBAG and a topic argument of

that QBAG, the identification of an initial strength function that

achieves a specific desired final strength of the topic argument [32].

Definition 9 (Strong Counterfactual Problem)

The strong counterfactual problem with respect to an argumentation
semantics 𝜎 is a 3-tuple 𝐶 = (G, x, 𝑠), where G = (Args, 𝜏,Att, Supp)
is a QBAG, x ∈ Args, 𝑠 ∈ I as well as 𝑠 ≠ 𝜎G (x). The solution of the
strong counterfactual problem 𝐶 is an initial strength function 𝜏 ′ ≠ 𝜏
such that, given G′ = (Args, 𝜏 ′,Att, Supp), it holds that 𝜎G′ (x) = 𝑠 .

The following example illustrates the two problems.
Example 6
Consider G in Figure 2.13, with arguments Args = {a, b, c, d, e},
Att = {(a, b), (d, e)}, and Supp = {(a, c), (d, a), (e, c)}. With the
sequence ⪯∗= ⟨d, e, a, b, c⟩ giving rise to the corresponding total
order ⪯4, we have the inverse problem 𝐼 = (Args,Att, Supp, ⪯).
Given G∗ in Figure 2.2, 𝐶 = (𝐺∗, c, 6) is a strong counterfactual
problem. The initial strength function seen in G′ (Figure 2.3), i.e.,
𝜏 ′ = {(a, 2), (b, 8), (c, 1), (d, 1), (e, 3)}, is a solution of 𝐼 , and of 𝐶 .

a

b c

d

e

- +
+

+ -

2.1: G

a (1) :2

b (8) :6 c (1) :4

d (1) :1

e (2) :1

- +
+

+ -

2.2: G∗

a (2) :3

b (8) :5 c (1) :6

d (1) :1

e (3) :2

- +
+

+ -

2.3: G′

Figure 2: Inverse and strong counterfactual problems (G, with
desired total order ⟨d, e, a, b, c⟩, and G∗, with topic c and de-
sired strength 6, respectively) and their solutions (in G′).

To show that SXs generalise inverse problems and their solutions,

we first introduce a function that assigns an arbitrary value 𝑠 ∈ I
as the initial strength to all arguments of an inverse problem.

Definition 10 (Initial Strength Assignment Function)

The initial strength assignment function 𝜙𝑠 : I → Q, with 𝑠 ∈ I,
takes an inverse problem (Args,Att, Supp, ⪯) ∈ I and returns a
QBAG (Args, 𝜏,Att, Supp) ∈ Q s.t. 𝜏 = {(x, 𝑠) |x ∈ Args}.

We can then show that the solution of an inverse problem is

also an SX, assuming an inverse problem that is augmented with

an initial strength assignment function assigning arbitrary initial

3
Here, G is technically not a QBAG.

4
I.e., ⪯ is the transitive and reflexive closure of { (d, e), (e, a), (a, b), (b, c) }.

strengths 𝑠 to all arguments, and excluding initial strength assign-

ments of arguments to 𝑠 from the solution.

Proposition 8.1. For every inverse problem 𝐼 = (Args,Att, Supp, ⪯),
for every initial strength function 𝜏 that is a solution of 𝐼 , for every
𝑠 ∈ I it holds that 𝜏 \ {x|x ∈ Args, (x, 𝑠) ∈ 𝜏} ∈ 𝑆𝑋𝜎

𝑓 (𝜙𝑠 (𝐼 ),𝜏 ),Args .

Proof. By definition of an inverse problem and its

solution,𝑓 (𝜙𝑠 (𝐼 ), 𝜏) satisfies ⪯. However, for some (x, 𝑠′) ∈ 𝜏 it may

hold that 𝑠′ = 𝑠 and therefore (x, 𝑠′) must not occur in a strength

change. Hence, 𝜏 \ {x|x ∈ Args, (x, 𝑠) ∈ 𝜏} ∈ 𝑆𝑋𝜎
𝜙𝑠 (𝐼 ),Args (⪯). □

Similarly, we can show that strong counterfactual problems

and their solutions can be reduced to SXs: a change to the ini-

tial strengths of arguments in a QBAG that leads to a desired final

strength of a specific topic argument can be characterised by an SX,

given we add a “dummy argument” to the QBAG that serves as a

reference to the desired final strength of the topic argument. Here,

we assume the gradual semantics satisfies the stability principle,

which we claim is a common-sense desideratum.

Proposition 8.2. Given a gradual semantics 𝜎 satisfying sta-
bility, for every strong counterfactual problem 𝐶 = (G =

(Args, 𝜏,Att, Supp), x, 𝑠), for every 𝜏 ′ that is a solution of 𝐶 it
holds that 𝜏 ′ ∈ 𝑆𝑋𝜎Gy,Args (⪯), where Gy = (Args ∪ {y}, 𝜏 ∪
{(y, 𝑠)},Att, Supp), y ∉ Args, and ⪯= {(x, y), (y, x)}.

Proof. Because 𝜎 satisfies stability and y ∉ Args, for G′y =

(Args ∪ {y}, 𝜏 ′ ∪ {(y, 𝑠)},Att, Supp) it must hold that 𝜎Gy (y) =

𝜎G′y (y) = 𝑠 (note that y has neither attackers nor supporters).

This means by definition of a strong counterfactual problem and

its solution, we must have 𝜎G′y (x) = 𝜎G′y (y). It follows that be-
cause G′y = 𝑓 (Gy, 𝜏 ′), it holds that 𝜏 ′ ∈ 𝑆𝑋𝜎Gy,Args (⪯), with
⪯= {(x, y), (y, x)}, as achieved by 𝜎G′y . □

Let us expand on Example 6 to give an intuition of the results.

Example 7
Consider the previous inverse and strong counterfactual problems
𝐼 = (Args,Att, Supp, ⪯) and 𝐶 = (G∗ = (Args, 𝜏∗,Att, Supp), c, 6),
respectively (cf. Figure 2), as well as their solution 𝜏 ′. We observe that:
• Given G0 = (Args, {(x, 0) | x ∈ Args},Att, Supp) it holds that
𝜏 ′ ∈ 𝑆𝑋𝜎G0,Args (⪯);
• Given Gy = (Args ∪ {y}, 𝜏y = 𝜏 ∪ {(y, 6)},Att, Supp) it holds that
𝜏 ′ \ 𝜏∗ ∈ 𝑆𝑋𝜎Gy,Args ({(c, y), (y, c)}).

9 CONCLUSIONS
We have introduced argumentative strength change explanations,

as a potential foundation for argumentative XAI and contestable

AI. Our explanations generalise solutions of previously studied

problems in gradual argumentation. We have demonstrated some

(non)existence results, as well as the empirical feasibility of finding

explanations in relatively small, layered QBAGs, with some ex-

pected limitations. Future research may expand our investigations

regarding theoretical existence and empirical find-ability of our

strength change explanations, especially in large QBAGs, measure

other characteristics of the explanations, such as simplicity and

robustness, and apply the explanations to real-world contestability

problems and datasets.
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APPENDIX: STRENGTH CHANGE EXPLANATIONS IN QUANTITATIVE ARGUMENTATION
Appendix 1: Proofs
The appendix re-states all lemmata and provides their proofs.

Lemma 4.1. ∀𝑀 ⊆ Args, it holds that 𝛿∅ ∈ 𝑆𝑋𝜎G,𝑀 (⪯) iff G satisfies
⪯ w.r.t. 𝜎 .

Proof. “If” direction: ∀𝑀 ⊆ Args it holds that if G satisfies

⪯ w.r.t. 𝜎 then 𝛿∅ ∈ 𝑆𝑋𝜎G,𝑀 (⪯). By definition of a strength change

application (Definition 4) it holds that 𝑓 (G, 𝛿∅) = G. Hence, if G
satisfies ⪯ w.r.t. 𝜎 then it must also hold that 𝑓 (G, 𝛿∅) satisfies ⪯
w.r.t. 𝜎 , which implies 𝛿∅ ∈ 𝑆𝑋𝜎G,𝑀 (⪯), by Definition 5.

“Only if” direction: ∀𝑀 ⊆ Args it holds that if G does not

satisfy ⪯ w.r.t. 𝜎 then 𝛿∅ ∉ 𝑆𝑋𝜎G (⪯). Because 𝑓 (G, 𝛿∅) = G it holds

that if G does not satisfy ⪯ w.r.t. 𝜎 , 𝑓 (G, 𝛿∅) does not satisfy ⪯ w.r.t.

𝜎 , either, and thus cannot be an SX. □

Lemma 5.1. If G satisfies ⪯ w.r.t. 𝜎 then 𝑆𝑋𝜎∗G (⪯, 0) = {𝛿∅}.

Proof. From Lemma 4.1 it follows directly that if G satisfies ⪯
w.r.t. 𝜎 then 𝛿∅ ∈ 𝑆𝑋𝜎G (⪯, 0). Now, it remains to be shown that:

(i) �𝛿G ∈ 𝑆𝑋𝜎G,𝑀 (⪯) s.t. ∥𝛿G ∥ < ∥𝛿∅ ∥ (𝛿∅ is optimal);

(ii) ∀𝛿G ∈ 𝑆𝑋𝜎G (⪯) s.t. 𝛿G ≠ 𝛿∅ it holds that ∥𝛿G ∥ > ∥𝛿∅ ∥ (no
other SX is optimal).

Clearly i) and ii) hold because for every 𝛿G ∈ 𝑆𝑋𝜎G (⪯) s.t. 𝛿G ≠ 𝛿∅
it holds that ∃x ∈ ddom(𝛿G) s.t. |𝛿G (x) −𝜏 (x) | > 0 (thus ∥𝛿G ∥ > 0)

but �y ∈ ddom(𝛿∅) s.t. |𝛿∅ (y) − 𝜏 (y) | > 0 (thus ∥𝛿∅ ∥ = 0); hence

∥𝛿G ∥ > ∥𝛿∅ ∥. □

Lemma 6.1. Every modular semantics satisfies strong directionality.

Proof. The claim follows from observing that, under modular

semantics, the final strength of an argument only depends on the

initial strength of this argument and on the final strengths of its

attackers and supporters. □

Lemma7.1. Let𝑛 be the number of topic arguments,𝐾 themaximum
number of iterations, and 𝑁 = |𝐴𝑟𝑔𝑠 | + |𝐴𝑡𝑡 | + |𝑆𝑢𝑝𝑝 |. For acyclic
QBAGs, the time complexity of Algorithm 1 is O(𝐾 · ( |𝑀 | · 𝑁 + 𝑛2)).

Proof. We first analyse the time complexity of computing the

strength values of arguments. For acyclic QBAGs, these values can

be computed in linear time O(𝑁 ) [24, Proposition 3.1]. Since the

strength values must be recomputed for each base score pertur-

bation and there are |𝑀 | mutable arguments to be perturbed, the

time complexity for this step is O(|𝑀 | · 𝑁 ). Next, the time com-

plexity of computing the cost function is 𝑛2, as it involves pairwise

comparisons among the 𝑛 topic arguments. Finally, since the algo-

rithm requires at most 𝐾 iterations, the overall time complexity of

Algorithm 1 is O(𝐾 · ( |𝑀 | · 𝑁 + 𝑛2)). □

Appendix 2: Full Experimental Results
Table 4 contains all experimental results evaluating the heuristic

search. The experiments were run on a machine featuring an Apple

M4 with 10 cores and 24 GB RAM. The code for our experiments

is available at https://github.com/nicopotyka/Uncertainpy/blob/

master/examples/gradual/strength_change_explanations.ipynb.

In addition to the results in the main paper, we present results

for an experimental setting where both first and intermediate layers

are mutable. Note that the results can be interpreted as an exception

to the trend that adding more layers of arguments to the mutable

set yields better results. Indeed, the results are very similar to the

setting where only the intermediate layers are mutable, presumably

because the expansion of the search space to the first layer has little

effect. Accordingly, we consider the results as unsurprising and not

contradictory to the bigger picture.

Also, additional experimental results for EB and QE semantics

are provided. The results for these semantics are broadly speaking

similar to the ones for DFQuAD semantics, with close to perfect

performance when a solution can be guaranteed and mixed results

when it cannot. Notable differences can be observed for some of

the settings that fall into the latter class: (i) The search performs

somewhat better for EB and (even more so for) QE semantics given

only the first layer is mutable and there are only three topic argu-

ments. (ii) The search performs worse for EB and QE semantics

when the intermediate layer is mutable (no matter whether the first

layer is mutable or not), except for the smallest QBAG structure

([8, 32, 16, 3]). These difference indicate that more comprehensive

experiments may be interesting future work.

https://github.com/nicopotyka/Uncertainpy/blob/master/examples/gradual/strength_change_explanations.ipynb
https://github.com/nicopotyka/Uncertainpy/blob/master/examples/gradual/strength_change_explanations.ipynb


Table 4: Heuristic search results, with additional experiment where both first and intermediate layers are mutable, and for
DFQuAD, as well as EB and QE semantics; average validity, Kendall correlation, Spearman correlation, runtime (in seconds),
and absolute base score difference (per argument) over 100 MLP-like QBAGs with varying structures.

Structure Metric Constrained
𝐿𝑛−1 fixed

First
mutable

Interm.
mutable

First+Interm.
mutable

All
mutable

DFQuAD Semantics

[8,32,16,3]

Validity 100% 0% 83% 82% 100%
Kendall 1.00 -0.24 0.78 0.82 1.00

Spearman 1.00 -0.24 0.78 0.82 1.00

Runtime 0.03 1.09 0.28 0.30 0.03

|Δ BS | 0.01 NA 0.30 0.27 0.15

[8,32,16,8]

Validity 100% 0% 33% 32% 100%
Kendall 1.00 -0.02 0.62 0.57 1.00

Spearman 1.00 -0.03 0.68 0.62 1.00

Runtime 0.11 7.46 1.01 1.04 0.11

|Δ BS | 0.06 NA 0.39 0.34 0.27

[8,64,16,8,3]

Validity 100% 3% 87% 86% 100%
Kendall 1.00 -0.19 0.89 0.85 1.00

Spearman 1.00 -0.20 0.90 0.85 1.00

Runtime 0.08 3.57 0.70 0.80 0.08

|Δ BS | 0.01 ∼ 0 0.08 0.07 0.04

[8,64,16,8,8]

Validity 100% 0% 24% 19% 99%

Kendall 1.00 0.02 0.54 0.48 0.99

Spearman 1.00 0.03 0.61 0.54 0.99

Runtime 0.34 3.99 3.19 3.37 0.40

|Δ BS | 0.03 NA 0.12 0.12 0.10

EB Semantics

[8,32,16,3]

Validity 100% 14% 88% 90% 100%
Kendall 1.00 -0.05 0.85 0.89 1.00

Spearman 1.00 -0.06 0.84 0.89 1.00

Runtime 0.03 0.91 0.21 0.21 0.02

|Δ BS | 0.02 0.10 0.20 0.18 0.13

[8,32,16,8]

Validity 100% 0% 16% 16% 98%

Kendall 1.00 0.03 0.49 0.53 0.99

Spearman 1.00 0.04 0.57 0.59 1.00

Runtime 0.13 9.76 10.63 11.67 0.21

|Δ BS | 0.06 NA 0.35 0.33 0.29

[8,64,16,8,3]

Validity 100% 13% 64% 61% 100%
Kendall 1.00 -0.09 0.59 0.56 1.00

Spearman 1.00 -0.12 0.60 0.57 1.00

Runtime 0.09 21.54 13.89 14.74 0.08

|Δ BS | 0.01 0.04 0.19 0.17 0.14

[8,64,16,8,8]

Validity 100% 0% 3% 4% 100%
Kendall 1.00 0.02 0.25 0.27 1.00

Spearman 1.00 0.02 0.31 0.35 1.00

Runtime 0.34 25.04 26.29 36.07 9.51

|Δ BS | 0.03 NA 0.29 0.29 0.27

QE Semantics

[8,32,16,3]

Validity 100% 35% 82% 93% 100%
Kendall 1.00 0.25 0.85 0.92 1.00

Spearman 1.00 0.26 0.87 0.92 1.00

Runtime 0.03 12.62 0.36 0.22 0.05

|Δ BS | 0.05 0.16 0.23 0.22 0.18

[8,32,16,8]

Validity 99% 0% 22% 25% 98%

Kendall 1.00 0.21 0.62 0.65 1.00

Spearman 1.00 0.27 0.69 0.71 1.00

Runtime 0.17 11.79 2.73 1.28 0.36

|Δ BS | 0.15 NA 0.38 0.36 0.35

[8,64,16,8,3]

Validity 100% 30% 71% 78% 100%
Kendall 1.00 0.24 0.67 0.72 1.00

Spearman 1.00 0.26 0.67 0.74 1.00

Runtime 0.09 2.72 14.45 1.13 0.12

|Δ BS | 0.01 0.09 0.20 0.18 0.15

[8,64,16,8,8]

Validity 100% 1% 4% 7% 97%

Kendall 1.00 0.13 0.42 0.46 0.99

Spearman 1.00 0.17 0.50 0.55 1.00

Runtime 2.00 22.78 24.08 4.19 0.82

|Δ BS | 0.04 0.38 0.28 0.36 0.30
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