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Abstract
Biplanar videoradiography (BVR) is a gold-standard technique for quantifying in vivo bone
motion, yet the influence of x-ray image resolution on pose estimation accuracy remains unex-
plored. This study investigates how downsampling x-ray images impacts model-based pose estim-
ation, using high-speed BVR data from a participant with implanted tantalum beads. Images were
downsampled from 2048× 2048 to 512× 512 using bicubic and nearest-neighbour interpolation.
Across multiple bones and varying perturbation levels, downsampling significantly reduced rota-
tional and translational errors when compared to full-resolution images for both interpolation res-
ults. Bicubic interpolation led to slightly improved pose accuracy for certain bones, demonstrating
enhanced edge clarity that benefits the optimisation algorithm. Pose estimates for full-resolution
images exhibited more outliers and greater variability for all the bones investigated. These find-
ings highlight that downsampling images improves pose estimation accuracy even for challenging
anatomical areas such as the ankle. We recommend bicubic downsampling to 512× 512 pixels as a
best practice for BVR tracking of the ankle complex, when using both automated optimisation and
manual workflows.

Abbreviations

BVR Biplanar videoradiography
CT Computed tomography
DRRs Digitally reconstructed radiographs
LOA Limits of agreement
MAD Median absolute deviation

1. Introduction

BVR is a powerful imaging modality for measuring three-dimensional (3D) bone and joint motion
during dynamic tasks. By capturing dynamic x-ray images from two spatially calibrated cameras, BVR
provides highly accurate measurements of an individual’s bone movements, including bones that are
difficult or impossible to track externally, such as the scapula, patella, and talus. Reported accuracies
range from 0.3 to 2.0◦ and 0.3–1.3 mm, depending on the protocol and joint system (Wang et al 2015,
Iaquinto et al 2018, Pitcairn et al 2018, Akhbari et al 2019, Kage et al 2020, Setliff and Anderst 2024).
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To estimate a bone’s position and orientation (pose) from BVR images, a 3D bone model is aligned
with the x-ray data at each frame through a semi-automatic matching process (Akhbari et al 2019, Welte
et al 2022). First, a partial volume is derived from a CT scan, containing only the bone of interest. The
partial volume is virtually placed within the BVR volume and virtual x-rays are passed through it to cre-
ate DRRs. The DRRs are projected onto the two calibrated x-ray images. The partial volume is manually
rotated and translated until the DRRs visually match the x-ray images, providing an initial bone pose.
Then, an optimisation fine-tunes the pose, minimising the normalised cross-correlation values between
the DRRs and x-ray images (Nelder and Mead 1965, Kennedy and Eberhart 1995). This workflow is
influenced by multiple factors, including input data quality and operator dependence, making it suscept-
ible to error.

One potential source of error in the pose estimation process is the resolution of the x-ray images.
The x-ray image sequences that capture dynamic tasks are acquired with high-speed video cameras.
Modern cameras typically have a high resolution on the order of 2048 × 2048 pixels. Image processing
filters are applied to both the x-ray images and the DRRs to enhance contrast and sharpen the edges of
the bones. While it may seem intuitive that using as much information as possible (e.g. all 2048 × 2048
pixels), high-resolution images may have higher noise compared to lower-resolution images (Gonzalez
and Woods 2017). Since the matching process relies on strong edges, its accuracy could vary with image
resolution. While some researchers address this by downsampling their images before the matching
process, the effects of image resolution on pose estimation accuracy have not been previously assessed.
Understanding how image resolution affects accuracy will allow researchers to establish best practices for
image processing prior to pose estimation.

This study evaluates how image resolution affects pose estimation accuracy, leveraging a rare data-
set in which the participant had three or more metal beads surgically implanted into their ankle bones.
These beads serve as precise markers, allowing for gold standard tracking of bone motion. Using this,
the estimated pose’s accuracy can be evaluated. Since the pose estimation algorithm relies heavily on
detecting strong edges, and downsampling can enhance edge contrast, we expected that lower-resolution
images would provide higher accuracy during the matching process compared to high-resolution images.

2. Methods

An open-source BVR dataset was used as the gold standard for dynamic pose measurement (Welte et al
2022). In summary, the data set consists of a single participant (M, 49 years, 83 kg, 1.75 m) who had
three or more 1 mm tantalum beads implanted into their calcaneus (3 beads), talus (4 beads) and tibia
(5 beads). CT images were captured (Resolution: 0.441 mm × 0.441 mm × 0.625) and segmented to
generate bone surface models and partial volumes of the individual’s right calcaneus, talus and tibia.
During the experimental protocol, the participant hopped to a metronome at 108 bpm while BVR cap-
tured two x-ray image pairs at 250 Hz. A total of 35 frames were included in the analysis, from when
the heel contacts the floor, to the frame where at least one bone is out of view. The reference bone
poses were determined by digitising bead positions in XMALab (Brown University, https://bitbucket.
org/xromm/xmalab/src/master/), which is the gold standard for pose estimation (Brainerd et al 2010,
Miranda et al 2011, Knörlein et al 2016). The tantalum beads in the x-ray images were then digitally
removed to avoid biasing the model-based pose estimation algorithm.

To simulate manual initial seed poses, the gold standard bead-tracked poses were perturbed. First,
each bone’s inertial coordinate system was defined, with the origin set at its inertial centre. Rotational
perturbations of varying magnitudes (±2◦, ±4◦, and ±8◦) were applied individually about the bone’s
X, Y, and Z axes, as well as about four additional axes formed by diagonal unit vectors (figure 1). These
perturbations represented different levels of initial bone pose accuracy. For each bone, this process gen-
erated 42 perturbed poses (seven axes with both positive and negative rotational perturbations applied).

BVR images were downsampled from the original capture image resolution, 2048 × 2048, to
512 × 512 using two different approaches: bicubic and nearest-neighbour interpolation. Bicubic inter-
polation uses a weighted average of 4 × 4 grids (the nearest 16 pixels) around the output pixel (Keys
1981). To test performance against filtering effects, and to provide a comparison against a non-filtered
method, we also included nearest-neighbour interpolation, which was applied without any adjustment
for anti-aliasing, thereby avoiding the introduction of additional filtering. Nearest-neighbour interpola-
tion assigns each output pixel in the 512 × 512 image the values of the closest corresponding pixel in
the original 2048 × 2048 image. This method considers only the nearest pixel and does not introduce
any new pixel values (Parker et al 1983). Bicubic produces a smoothed image compared with the sharper
image from nearest neighbour interpolation. This was performed for both approaches using the in-built
imresize function in MATLAB (The Mathworks, Inc.)

2

https://bitbucket.org/xromm/xmalab/src/master/
https://bitbucket.org/xromm/xmalab/src/master/


Med. Eng. Phys. 147 (2026) 02NT01 D E Williams et al

Figure 1. Shows the applied inertial coordinate system to the calcaneus with X, Y and Z represented as red, green and blue,
respectively. The diagonal unit vectors are shown in grey.

An open-source image-based 2D–3D motion tracking software, SlicerAutoscoperM (SAM, Brown
University, https://autoscoperm.slicer.org/) estimated the bone poses. This software supports batch pro-
cessing through a transmission control protocol socket in MATLAB, enabling high-throughput pose
estimation. For each frame, the bone’s perturbed pose was refined using a particle swarm optimisation
(Kennedy and Eberhart 1995). This optimisation fine-tunes the individual bone poses until the normal-
ised cross-correlation values between the DRRs and x-ray images are minimised. These newly optimised
pose estimates were exported for each perturbation across all three bones using each image resolution
(fullres, bicubic, nearest neighbour). At each frame, the difference between the gold standard bead track-
ing pose and the perturbed and re-optimised pose was quantified using the helical axis of motion para-
meters. To simplify the analysis, we defined rotational error as the helical axis angle, phi, that describes
how much rotation occurs about the helical axis. Translational errors were quantified as the translation
that occurs along the axis (Panjabi et al 1982).

For each image resolution and perturbation (±2◦, ±4◦, and ±8◦), the variations in helical rotation
and translation were combined across frames. To assess variability and accuracy across perturbations and
resolutions, the cumulative error, median, LOA and MAD were calculated for each dataset. Cumulative
error, representing the sum of absolute differences from the gold standard, provided an overall measure
of deviation. The median and LOA (calculated as the median ±1.45× interquartile range of the differ-
ences, with any negative lower bounds truncated to 0 as the data represent absolute errors) were used to
evaluate central tendency and spread, while the MAD, a robust measure unaffected by outliers, allowed
for comparison of variability across resolutions. Outliers were identified using the Hampel identifier,
which calculates deviations from the median relative to MAD, with a threshold of 3.5 (Hampel 1974,
Wilcox 2012).

Statistical analyses assessed differences in helical rotation and translation across image resolutions
separately for each combination of bone and perturbation level. Kruskal–Wallis tests were conducted
to determine if significant differences existed among image resolutions within each perturbation level
and bone. For cases where the Kruskal–Wallis test was significant (p < 0.05), Dunn’s post-hoc test with
Bonferroni correction was applied to identify specific pairwise differences. All statistical analyses were
performed using R v4.3.2 (R Core Team n.d.).

3
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3. Results

The downsampled images significantly outperformed the full resolution images for all comparisons
except calcaneus rotation at ±2◦, with lower median differences and smaller LOA for both helical rota-
tion and translation (tables 1–3). At 2◦ of perturbation, which approximates a careful initial guess, full-
resolution helical rotation median differences [LOA] ranged from 0.3◦ [2.73◦] to 1.2◦ [155.38◦] across
the three bones, compared to much lower values (0.1◦ [0.3◦] to 0.6◦ [0.9◦]) for downsampled images
using the nearest neighbour method. At 8◦, which approximates a rough initial guess, this difference was
even more pronounced: full-resolution median differences [LOA] ranged from 3.4◦ [10.22◦] to 105.4◦

[252.5◦], while nearest neighbour downsampling maintained significantly lower values (0.1◦ [0.4◦] to
0.6◦ ([1.4◦]). LOA values above 180◦ reflect the calculation rather than the underlying measurements.
The same trend exists for helical translation, with downsampled images consistently yielding smaller
median differences, LOA, cumulative errors, and MADs across all bones and perturbation levels.

When comparing the two downsampling methods directly, the nearest neighbour approach generally
had higher median differences, LOA, and MAD values compared to bicubic interpolation. For both the
talus and calcaneus, small but statistically significant differences between the two downsampling methods
suggest that bicubic interpolation generally outperforms the nearest neighbour algorithm.

The full resolution images had the most outliers as defined by the Hampel identifier, typically caused
by frames where the pose estimation algorithm failed to reach a solution. No outliers were identified for
the calcaneus rotation at ±4◦ and ±8◦ using full resolution images (table 1). This occurred because the
overall median and MAD were high enough that large errors were not flagged as outliers. Visual inspec-
tion confirmed that the full resolution images generally resulted in poor calcaneus pose estimations com-
pared to downsampled images.

4. Discussion

This study aimed to evaluate the effects of image resolution and initial guess accuracy on pose-
estimation accuracy, using gold-standard in vivo BVR data of the calcaneus, talus and tibia. Overall,
downsampling using either bicubic or nearest-neighbour algorithms provided clear improvements in
accuracy over full-resolution images across all perturbations and bones. Although the differences between
the downsampling approaches were much more subtle, there were no instances where the nearest-
neighbour algorithm outperformed the bicubic algorithm. We therefore recommend that users down-
sample their images using the bicubic algorithm to improve pose-estimation accuracy when processing
BVR data.

This result likely arises as the alignment of DRRs to the 2D biplanar x-ray images relies heavily on
edge detection algorithms, such as the Sobel edge detection algorithm used by SAM. In high-resolution
images, the edges of bone structures often appear finer and less prominent due to the increased pixel
density, which captures subtle transitions in anatomical detail. In contrast, downsampling combines
adjacent pixels, effectively enhancing the contrast and definition of key anatomical features. This process
results in thicker, more distinct edges, which improves their detectability and facilitates the performance
of pose estimation algorithms (figure 2).

These enhanced edges may also be of particular benefit when aligning with CT-derived DRRs, as
their resolution is often more comparable to the downsampled images (typically 512 × 512 pixels per
slice). Additionally, downsampling reduces the data size of input images which could benefit certain pose
estimation algorithms’ computational efficiency.

Pose estimation performance improved for certain bones when comparing the two downsampling
methods. Bicubic interpolation produces smoother images by taking a weighted average of multiple
pixels during downsampling. This helps preserve more of the original information and creates a gradual
gradient at bone edges. In contrast, nearest-neighbour interpolation selects a single pixel’s value, which
can introduce aliasing errors, leading to jagged edges (Parsania and Pv 2016). Further research is needed
to determine whether other interpolation methods could further enhance pose estimation accuracy.

The effects of downsampling were particularly evident for the tibia and talus bones, where high-
resolution images led to significant challenges in pose estimation accuracy. The tibia produced many
outliers (Helical rotation: 143; translation: 125 at ±2 perturbation), especially during phases of the
motion where most of the diaphysis/metaphysis was out of the field of view. For the BVR imaging, this
occurred at the start and end of the movement. Downsampling was able to provide strong enough fea-
tures for the distal end of the tibia to overcome these challenges for the nearest neighbour (29 and 39
outliers at the ±2◦ perturbation for helical rotation and translation respectively) and bicubic methods
(34 and 38 outliers at the ±2◦ perturbation for helical rotation and translation respectively). At higher
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Table 1. Descriptive statistics for helical rotation differences between full resolution and downsampled images.

Tibia

Perturbation ±2◦ ±4◦ ±8◦

Helical difference

Rotation Rotation Rotation

Median
(LOA)/◦

Cumulative
error/◦ MAD/◦

No. of
outliers

Median
(LOA)/◦

Cumulative
error/◦ MAD/◦

No. of
outliers

Median
(LOA)/◦

Cumulative
error/◦ MAD/◦

No. of
outliers

Fullres 0.28 (2.73) 1451.30 0.20 143 1.57 (7.04) 2787.84 1.43 70 3.38 (10.22) 4842.40 2.00 101
Bicubic 0.10 (0.27) 62.19 0.06 34 0.10 (0.26) 71.34 0.05 49 0.10 (0.29) 152.19 0.06 55
Nearest neighbour 0.10 (0.26) 60.38 0.05 29 0.10 (0.26) 75.20 0.05 46 0.12 (0.31) 255.11 0.06 67

Talus

Perturbation ±2◦ ±4◦ ±8◦

Helical difference

Rotation Rotation Rotation

Median
(LOA)/◦

Cumulative
error/◦ MAD/◦

No. of
outliers

Median
(LOA)/◦

Cumulative
error/◦ MAD/◦

No. of
outliers

Median
(LOA)/◦

Cumulative
error/◦ MAD/◦

No. of
outliers

Fullres 1.18 (155.38) 23 056.76 1.12 218 105.08 (259.24) 35 558.38 3.97 178 105.40 (252.53) 38 215.37 3.59 155
Bicubic 0.15 (0.39) 88.13 0.08 16 0.15 (0.42) 97.41 0.09 17 0.14 (0.41) 101.89 0.08 32
Nearest neighbour 0.16 (0.51) 119.40 0.11 23 0.17 (0.53) 140.25 0.11 48 0.17 (0.57) 164.71 0.12 49

Calcaneus

Perturbation ±2◦ ±4◦ ±8◦

Helical difference

Rotation Rotation Rotation

Median
(LOA)/◦

Cumulative
error/◦ MAD/◦

No. of
outliers

Median
(LOA)/◦

Cumulative
error/◦ MAD/◦

No. of
outliers

Median
(LOA)/◦

Cumulative
error/◦ MAD/◦

No. of
outliers

Fullres 0.51 (9.98) 1720.44 0.38 141 5.47 (20.88) 3047.00 5.01 0a 7.44 (22.39) 3627.32 5.70 0a

Bicubic 0.50 (0.83) 267.23 0.15 16 0.54 (0.88) 279.78 0.15 3 0.58 (1.11) 375.22 0.20 22
Nearest neighbour 0.55 (0.93) 280.69 0.16 2 0.58 (1.03) 298.58 0.18 11 0.62 (1.32) 447.41 0.24 28
aNo outliers were detected as the Hampel identifier considers variability (MAD), because of the high median and MAD values, all data points remained within the threshold.
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Table 2. Descriptive statistics for helical translation differences between full resolution and downsampled images.

Tibia

Perturbation ±2◦ ±4◦ ±8◦

Helical difference

Translation Translation Translation

Median
(LOA)/mm

Cumulative
error/mm MAD/mm

No. of
outliers

Median
(LOA)/mm

Cumulative
error/mm MAD/mm

No. of
outliers

Median
(LOA)/mm

Cumulative
error/mm MAD/mm

No. of
outliers

Fullres 1.42 (6.92) 3405.56 0.96 125 5.39 (28.80) 6545.08 4.84 93 15.66 (48.05) 11 098.27 10.33 28
Bicubic 0.61 (1.94) 453.51 0.44 38 0.64 (1.91) 482.88 0.42 35 0.68 (2.16) 767.27 0.47 65
Nearest Neighbour 0.71 (1.74) 440.46 0.36 39 0.68 (1.91) 458.58 0.42 35 0.74 (2.73) 1308.86 0.45 88

Talus

Perturbation ±2◦ ±4◦ ±8◦

Helical difference

Translation Translation Translation

Median
(LOA)/mm

Cumulative
error/mm MAD/mm

No. of
outliers

Median
(LOA)/mm

Cumulative
error/mm MAD/mm

No. of
outliers

Median
(LOA)/mm

Cumulative
error/mm MAD/mm

No. of
outliers

Fullres 5.59 (44.42) 7298.15 5.36 199 26.25 (61.01) 12 134.28 5.99 115 27.70 (26.95) 16 719.88 4.90 94
Bicubic 0.76 (2.32) 480.77 0.53 33 0.75 (2.30) 494.29 0.52 37 0.78 (2.37) 501.85 0.52 37
Nearest Neighbour 0.94 (2.78) 677.45 0.59 58 1.01 (2.94) 676.71 0.64 51 1.02 (3.08) 777.46 0.64 57

Calcaneus

Perturbation ±2◦ ±4◦ ±8◦

Helical difference

Translation Translation Translation

Median
(LOA)/mm

Cumulative
error/mm MAD/mm

No. of
outliers

Median
(LOA)/mm

Cumulative
error/mm MAD/mm

No. of
outliers

Median
(LOA)/mm

Cumulative
error/mm MAD/mm

No. of
outliers

Fullres 3.32 (9.73) 2703.40 1.66 91 6.70 (23.10) 4315.65 6.70 1 10.32 (26.26) 5243.31 5.60 3
Bicubic 0.57 (1.57) 371.95 0.34 29 0.70 (1.83) 458.40 0.70 33 0.82 (2.43) 880.89 0.47 59
Nearest Neighbour 0.66 (1.83) 435.53 0.38 34 0.68 (2.22) 517.60 0.68 37 1.06 (3.25) 1118.72 0.68 54
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Table 3. Kruskal–Wallis analysis results using Dunn’s post-hoc test with Bonferroni correction to test differences between full resolution, downsampling using bicubic and nearest neighbour interpolation.

Tibia

Perturbation ±2◦ ±4◦ ±8◦

Helical difference

Rotation Translation Rotation Translation Rotation Translation

Z-score Adjusted p-value Z-score Adjusted p-value Z-score Adjusted p-value Z-score Adjusted p-value Z-score Adjusted p-value Z-score Adjusted p-value

Fullres vs bicubic −15.18 ⩽0.001 −12.78 ⩽0.001 −20.62 ⩽0.001 −20.67 ⩽0.001 −24.89 ⩽0.001 −25.14 ⩽0.001
Fullres vs NN 15.14 ⩽0.001 12.61 ⩽0.001 20.03 ⩽0.001 20.63 ⩽0.001 22.80 ⩽0.001 23.31 ⩽0.001
Bicubic vs NN −0.04 1 −0.17 1 −0.60 1 −0.05 1 −2.09 0.110 −1.83 0.201

Talus

Perturbation ±2◦ ±4◦ ±8◦

Helical difference

Rotation Translation Rotation Translation Rotation Translation

Z-score Adjusted p-value Z-score Adjusted p-value Z-score Adjusted p-value Z-score Adjusted p-value Z-score Adjusted p-value Z-score Adjusted p-value

Fullres vs bicubic −20.70 ⩽0.001 −18.26 ⩽0.001 −23.77 ⩽0.001 −25.46 ⩽0.001 −26.03 ⩽0.001 −27.73 ⩽0.001
Fullres vs NN 18.29 ⩽0.001 14.68 ⩽0.001 21.97 ⩽0.001 22.42 ⩽0.001 24.09 ⩽0.001 24.81 ⩽0.001
Bicubic vs NN −2.41 0.048 −3.58 0.001 −1.80 0.216 −3.04 0.007 −1.95 0.154 −2.92 0.011

Calcaneus

Perturbation ±2◦ ±4◦ ±8◦

Helical difference

Rotation Translation Rotation Translation Rotation Translation

Z-score Adjusted p-value Z-score Adjusted p-value Z-score Adjusted p-value Z-score Adjusted p-value Z-score Adjusted p-value Z-score Adjusted p-value

Fullres vs bicubic −0.70 1 −24.02 ⩽0.001 −13.62 ⩽0.001 −23.34 ⩽0.001 −21.88 ⩽0.001 −22.13 ⩽0.001
Fullres vs NN −1.07 0.856 21.53 ⩽0.001 12.09 ⩽0.001 22.96 ⩽0.001 19.94 ⩽0.001 19.62 ⩽0.001
Bicubic vs NN −1.77 0.229 −2.49 0.039 −1.52 0.385 −0.38 1 −1.94 0.157 −2.51 0.036

Note: Bold shows statistical significance below P < 0.05. Bold and underline shows statistical significance below P < 0.001.
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Figure 2. X-ray of foot during activity at different resolutions and edge detection applied. The bottom images show the down-
sampled images have stronger lines compared with the full resolution (top-right).

perturbations, the number of outliers increased for both downsampling methods but decreased for full-
resolution images. This occurred because outlier detection depends on the MAD which remained con-
sistent (∼0.05◦ rotation, ∼0.45 mm translation) across perturbation levels for downsampled images, but
increased substantially (from 0.20◦/0.96 mm to 2.00◦/10.33 mm) at the 8◦ perturbation for full resol-
ution images. As a result, fewer values were identified as outliers at higher perturbations for the full-
resolution images.

Similarly, the talus posed considerable challenges for high-resolution images, likely due to its anatom-
ical location. The talus is enclosed by adjacent bones, and this bone overlap makes edge detection par-
ticularly challenging, resulting in many outliers throughout the movement (helical rotation: 218; transla-
tion: 199 outliers at ±2◦ perturbation). Downsampling substantially improved talus tracking by enhan-
cing edge clarity and reducing interference from surrounding bone structures. Bicubic downsampling
performed the best, with only 32 (rotation) and 37 (translation) outliers across all perturbations.

In contrast, the calcaneus, being less obstructed by surrounding bones, demonstrated fewer track-
ing issues (outliers) across resolutions. However, it consistently had higher median difference and levels
of agreement when compared to the other bones. This is most likely due to the posterior edge of the
bone being slightly out of the field of view for one of the x-ray views, making it challenging for all
three methods accurately estimate the pose. Despite this for 4◦ and 8◦ perturbation the median dif-
ference, LOA and cumulative error were all significantly reduced for the two downsampling methods.
This underscores the critical importance of clear bone visibility in the x-ray images for accurate pose
estimation.
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It is important to note that this data is based on a single volunteer performing one activity captured
in 35 frames. However, a validation study on the ankle with a notably larger dataset (999 frames) repor-
ted similar accuracy when applying downsampling techniques, with mean error (bias) <0.5◦ (1.8◦) and
<0.8 mm (3.1 mm) (Morton et al 2025). These findings are consistent with accuracy ranges reported in
the wider literature (0.3–1.3 mm and 0.9–3.3◦) (Setliff and Anderst 2024). As shown by the improved
performance of bicubic over nearest neighbour, filtering of the x-ray images prior to pose estimation
will likely also have a direct impact on the accuracy of the data. Filtering and downsampling images will
most likely be the best combination for accurate pose estimation. For the purposes of this study, and to
avoid introducing bias through manual corrections, the algorithm was allowed to perform the match-
ing autonomously, with the understanding that this automated method is not truly representative of
how a user would typically carry out the pose estimation process. This is evident by some of the more
extreme outliers. The recommended approach involves the user manually matching key frames posi-
tioned throughout the activity, followed by using particle swarm optimisation to refine the remaining
frames. As there are currently no fully automated algorithms for tracking ankle bones, the algorithm
occasionally produces erroneous results. In practice, the user would remove these errors and rely on sur-
rounding frames and spline curve fitting of the poses to correctly position the bone. The goal of achiev-
ing fully automated pose estimation for the ankle may be more attainable with the use of downsampled
images.

The ideal level of downsampling will likely depend on factors such as bone anatomy, the nature of
the activity being captured, and the geometry of the BVR system. While this study focused on a single
resolution (512 × 512), future work should explore the effects of both higher and lower resolutions
(e.g. 1024 × 1024 or 256 × 256). There is likely a lower bound below which resolution becomes too
coarse to retain sufficient edge detail, and an upper bound where noise and weak edges begin to degrade
pose estimation performance. As demonstrated in this study, the method of downsampling also plays
a key role. Bicubic interpolation, in addition to reducing resolution, effectively smooths the image by
averaging adjacent pixels, which acts as a form of low-pass filtering. This smoothing may enhance edge
continuity and reduce high-frequency noise, contributing to its improved performance over nearest-
neighbour interpolation. The interaction between this inherent filtering effect and any additional pre-
processing steps—such as edge sharpening or contrast adjustment—may further influence accuracy. A
more comprehensive understanding of how resolution, downsampling method, and filtering interact will
be important for establishing best practices in BVR image processing across different anatomical regions
and movement tasks.

Downsampling plays an important role in enhancing the accuracy and efficiency of pose estimation
algorithms for BVR data of the ankle. Based on these findings, we recommend continuing to collect
high-resolution data, as this may prove valuable for future research questions. However, when applying
the particle swarm algorithm or other manual or automated techniques, we recommend downsampling
images to 512 × 512 using the bicubic method.
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