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Background: Pharmacogenomics is viewed as one route to understanding inter-
individual variability in drug response. However, clinical uptake in psychiatry is
slower than in other medical fields such as oncology, so assessing evidence for
psychiatric genotype-drug pairs and understanding what influences the
magnitude of these effects is essential.

Methods: We performed a systematic search for studies investigating
pharmacogenomic variation in the context of antipsychotic and
antidepressant use. Outcomes varied, including those related to drug
bioavailability (‘proximal”) or side effects, symptom severity, and other
treatment outcomes (“distal’). We performed a meta-analysis, moderated by
outcome type, to quantify the average pharmacogenomic effect size across
proximal and distal outcomes and assess whether they differ significantly from
one another. We developed a Pharmacogenomic (PGx) Effect Size Explorer for
Psychiatric Drugs dashboard that allows users to explore the dataset and perform
simplified meta-analyses, power calculations, and Bayesian shrinkage analyses
based on drugs, enzymes, and outcomes of interest (see: https://locksk.
shinyapps.io/pgx-effect-sizes/).

Results: We analysed 2,102 standardised mean differences (SMDs) from
184 studies, finding evidence that pharmacogenomic effect sizes for proximal
outcomes were significantly larger than distal (A = -0.203 [95% CI
—-0.288 to —-0.118], p = 6 x 107°). This trend was consistent across sub-groups
restricted to the most common gene-drug pairings in the dataset. Power
calculations for hypothetical future studies using two-sample t-tests showed
that, to attain at least 80% statistical power, analyses of distal outcomes require a
larger sample size than proximal outcomes.

Discussion: We demonstrate that pharmacogenomic effect sizes are significantly
larger for proximal outcomes related to pharmacokinetics than for distal
outcomes related to efficacy and toxicity. Understanding how the biological
mechanisms underlying different outcomes might impact pharmacogenomic
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effect sizes could help to inform participant recruitment for future psychiatric
pharmacogenomic studies, alongside the development of pharmacogenomic
guidelines for psychiatric medications.

antidepressant, antipsychotic, meta-analysis, metaboliser status, pharmacodynamics,
pharmacokinetics, statistical power, winner's curse

1 Introduction

The effects of most drugs vary even when prescribed to
for the
effectiveness often falls below the expectations set by clinical

individuals same indication. Moreover, real-world
trials, an “efficacy-effectiveness gap” that pervades medicine
(Eichler et al, 2011). Pharmacological effects can lead to huge
benefits for some individuals, be barely noticeable for others, and
for a few even cause a net negative impact through adverse drug
reactions (ADRs). Problems with the external validity of randomised
controlled trials, diverse healthcare and drug use practices, or
patient-level variation in drug response are all likely contributors
to the gap (Groenwold, 2021). In psychiatry, where “treatment
resistant” symptoms affect a large proportion of patients (Howes
et al, 2022), these issues have been systematically raised and
examined. While there is limited evidence that common
psychotropics or even psychotherapy interventions are less
efficacious than drugs prescribed for non-psychiatric conditions
(Leucht et al., 2012; Huhn et al, 2014), the development and
refinement of psychiatric drugs is notoriously slow compared to
other fields (Nutt, 2025), partly because many mechanisms of action
involved in psychopharmacology and their precise effect on disease
processes and neurobiology remain unclear (Huda, 2019; Howes
et al., 2022).

Substantial efforts in psychiatric research are dedicated to more
accurately predicting treatment response to current drugs, which could
eventually lessen the efficacy-effectiveness gap (Dellen, 2024). One
route to accomplishing this task is stratified medicine or “precision
psychiatry”, which involves identifying patient subgroups with respect
to their characteristics or response to drugs (Bell, 2014). While a
myriad of factors (e.g., environmental, physiological, genomic) are
known to affect treatment response in psychiatry (Stern et al., 2018),
genetic variation is of particularly strong interest for developing
stratified approaches as it is identifiable and stable from birth.
Which genetic variants affect response to drugs, and whether they
influence pharmacokinetic or pharmacodynamic processes, is the topic
of study of pharmacogenomics (Pirmohamed and Park, 2001).
Advances in this field have led to algorithms, developed by expert
groups (Klein and Ritchie, 2018) or industry (Behera et al., 2025), that
can inform screening for haplotypes known to influence the activity of
drug metabolising enzymes (classically termed “star alleles”), and infer
how carriers might respond to a given drug. While the research
sustaining the psychiatric arm of this discipline has seen a large
growth in activity in recent years, and an increasing number of
prospective trials are being funded, most promising results are still
confined to the scientific literature and have not yet been translated
into clinical interventions (Bousman et al., 2023a).

Translational efforts need to be based on robust research
evidence, and pharmacogenomics has a number of international
expert consortia routinely assessing any pharmacogenomic reports
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linked to commonly prescribed drugs (Whirl-Carrillo et al., 2021).
Indeed, for many drug-gene pairs, pharmacogenomic effects have
been investigated broadly, from simple molecular processes to
complex patient-reported outcomes. While any of these reports
could be used by regulators in deciding whether to recommend an
implementation of pharmacogenomic testing (Wu, 2015), genetic
evidence related to pharmacodynamic phenotypes such as drug
response and ADRs tends to be considered the most likely to lead to
a clinically useful and cost-effective intervention (Hughes, 2018).

This perception is worth emphasising. In psychiatry, robust
associations of pharmacogenomic variants with pharmacodynamic
outcomes are rare, and pharmacogenomic guidelines for
psychotropics are mostly based on studies of drug metabolism
and other indicators of drug pharmacokinetics (Bousman et al.,
2020). A potential explanation for this asymmetry is that, outside of
severe ADRs, pharmacodynamic phenotypes seem akin to complex
traits. They are multifactorial, polygenic, and require large samples
for accurately estimating genetic effects, given these are often weak
(Roden et al.,, 2019). In contrast, pharmacokinetic phenotypes seem
to fit oligogenic inheritances with moderate-to-high heritabilities,
and are therefore more tractable for genetic discovery studies
(Roden et al., 2006; Ingelman-Sundberg and Molden, 2025). This
echoes classic discussions in psychiatry about the use of
“endophenotypes”: quantitative measures of biological processes
relevant to psychiatric disorders that show stronger associations
with genetic variants than the disorders themselves (Gottesman and
Gould, 2003). Endophenotypes are meant to be surrogates of some
of the elements that characterise multifactorial disorders, in the
same way that pharmacokinetic processes are important drivers of
pharmacodynamics, but not the only ones (Simon and von Fabeck,
2025). This implies the expectation that the effects of any given
genetic variant are largest on phenotypes that closely reflect the
biological processes that it directly causes or moderates. On the
other hand, effect sizes become diluted as phenotypes move further
away from basic molecular mechanisms and become influenced by
other factors, genetic and otherwise.

In this paper, we aim to quantify effects of pharmacogenomic
variation through this framework, initially postulated in research on
metabolic control (Kacser and Burns, 1981). Borrowing from the
“proximal-distal continuum” concept of health outcomes research
(Brenner et al., 1995), we term “proximal outcomes” as those based
which tend to be
mechanistically closer to genetic variation. On the other end,
“distal
phenotyping, being often further away from any single genetic

on quantitative biological measures,

outcomes” are those usually captured by clinical
effect and subject to multifactorial influences. We implemented
this classification on a series of meta-analyses of pharmacogenomic
reports focused on enzymes important to the metabolism of
antidepressant and antipsychotic drugs (i.e, the cytochrome
P450, or CYP, family of enzymes). While this literature is
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FIGURE 1

Flowchart showing the number of records identified from the literature search, the numbers following screening, retrieval, and finally, the number of
records included in the final analysis. Flowchart template was adapted from the Preferred Reporting Items for Systematic reviews and Meta-Analyses

(PRISMA; Moher et al., 2010).

necessarily heterogeneous, investigating many drugs, enzymes, and
outcomes, our aim was to curate a corpus of data that can be used for
diverse applications, including the design and interpretation of
psychiatric pharmacogenomic studies. If indeed genetic effects
differ between proximal and distal outcomes, identifying even a
wide range of plausible effect sizes for each category could assist with
accurately estimating the statistical power of future basic and
translational research (Huang et al., 2020), as well as flagging
potential errors or biases in existing studies (Gelman and
Carlin, 2014).

2 Methods
2.1 Literature search

This meta-analysis was performed in line with the Preferred
Reporting Items for Systematic reviews and Meta-Analyses
(PRISMA; Moher et al, 2010) guidelines (Supplementary
Material). We searched PUBMED, Cochrane, and SCOPUS
1996
standardised pharmacogenomic nomenclature was introduced)

databases for literature published between (when

and November 2024. Briefly, the search looked across titles for
the following key terms in the format [pharmacogenomic term]
AND [drug term] AND [outcome term] AND NOT [‘review’/
‘guidelines’]. The full list of search terms is found in the
three

Supplementary Material. Records returned from the
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databases were combined, and duplicate entries were

removed (Figure 1).

2.2 Study selection

We compiled studies investigating associations of genotype-
based pharmacogenomic variables with a range of outcomes in
individuals taking psychiatric drugs. Broadly, these outcomes
included measures of drug or metabolite bioavailability or
clearance, drug doses, and measures of clinical response or ADRs
(Table 1). We
(i.e., genetics-inferred metabolism phenotypes, pharmacogenomic

focussed on pharmacogenomic variation
star alleles) in the CYP family of proteins given their role in the
metabolism of many widely prescribed drugs (Zhao et al.,, 2021),
including most psychotropics (Spina and de Leon, 2015).

Titles and abstracts were screened first to determine eligibility
based on fit to the research topic of this study. For reports passing
this screening, we retrieved the full text and Supplementary Material
if available. After full text inspection, we included reports in our
analyses that were (i) original research articles, (i) in English
language, or able to be translated without ambiguities by the
authors, (iii) were methodologically relevant, (iv) investigated an
outcome, enzyme, or drug of interest, and (v) contained sufficient
information to extract or infer effect sizes (see “Statistical Analysis”).
We excluded studies conducted in vitro, using population
modelling, or investigating drug-drug interactions. Studies in
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TABLE 1 Examples of phenotypes included in the meta-analyses and whether they were rated as proximal or distal outcomes.

Proximal outcomes Distal outcomes

Active moiety pharmacokinetics (e.g., concentration, half-life,
clearance, AUC)

Drug pharmacokinetics (e.g., concentration, half-life, clearance, AUC)

Metabolite pharmacokinetics (e.g., concentration, half-life, clearance, AUC)
Metabolic ratios
which

(i.e., phenotyping by probe
combinatorial metabolism phenotypes were also excluded. Where

pharmacogenomic  information ~was not  used

drug) or those investigating
effect size information was shown graphically but was not explicitly
mentioned in the report text, it was extracted from plots using a free
online application (PlotDigitizer: Version 3.1.6, 2025). Finally, we
also examined the reference lists of included studies for any relevant
work that might have been missed by the initial literature search and
screened these references as above (Figure 1).

2.3 Statistical analysis

Data were analysed in R v4.4.0 in R Studio 2024.04.0 Build 735
(R Core Team, 2021). Based on the information available in the
eligible reports, we derived standardised mean differences (SMDs).
In the context of this study, SMDs refer to the difference in effect
between a group of individuals with an atypical CYP metabolism
phenotype versus a normal metabolism phenotype. We also
extracted SMDs for the effects of individual pharmacogenomic
variants against wild-type alleles when these were reported. To
calculate SMDs, group means and standard deviations were the
preferred inputs. Where median and interquartile ranges were
reported, approximate means and standard deviations were
calculated using methods outlined by Wan et al. (2014). These
were converted to SMDs using the esc ‘effect size conversion’ R
package (v0.5.1; Liidecke, 2018). Other data reported (e.g., number
of observations, Odds Ratios, and ¢ statistics, in order of preference)
were also converted using the esc package. Full information about
these calculations is provided in the Supplementary Material.

Additional details that were extracted from each report included:
authors, year of publication, drug, enzyme, assessed outcome, and
pharmacogenomic information. Where available, pharmacogenomic
information was obtained as metabolism phenotypes; otherwise,
phenotypes were inferred from genotype information using
reference tables provided by ClinPGx (formerly PharmGKB) and
CPIC
possible, information was left in the same format as reported. For
classifying outcomes, a binary variable was created, as described in

(Supplementary Material). When conversion was not

Table 1. In summary, pharmacokinetic outcomes (e.g., relating to
bioavailability or clearance of a drug or metabolite) were rated as
“proximal”. Outcomes were alternatively labelled “distal” if they related
to pharmacodynamics or potential consequences of altered
metabolism; these included, for example, reports of drug doses,
experiences of adverse drug reactions (ADRs), or ratings of

symptom severity.
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Drug dose

Adverse drug reactions

Treatment outcomes (e.g., remission, hospitalisation, treatment discontinuation, medication
switching)

Symptom severity

Our primary analysis utilised the full set of calculated effect sizes.
To account for heterogeneity between drugs, enzymes, and
pharmacogenomic measures analysed, we used absolute effect
sizes as the outcome variable, and the outcome binary rating
(i.e, proximal/distal) as the moderator variable. We included a
random intercept for effect size ID, and study ID, and a random
slope for the moderator, with an unstructured variance-covariance
matrix. As a sensitivity analysis, we repeated the primary meta-
analysis on gene-drug subgroups to determine whether findings
relating to proximal and distal effect sizes were replicable across
subsets of the data. Gene-drug pairings with at least one hundred
effect sizes were selected, including CYP2D6-risperidone (N = 412),
CYP2C19-escitalopram (N = 221), CYP2D6-aripiprazole (N = 120),
and CYP2D6-haloperidol (N = 106). For these analyses, we used a
simplified random effects structure of effect size ID nested
within study ID.

As a secondary analysis, we tested for whether the outcome
phenotype (“proximal” or “distal”) influenced the effects of genetics-
inferred enzyme activity across distinct metabolism phenotypes.
This analysis included only effect sizes for which pharmacogenomic
information was available as, or could be converted to, metabolism
phenotypes. We extended the primary meta-analysis model to
include an interaction term between rating and metabolism
phenotype as the moderators, keeping the same random-effects
structure. Comparisons between estimates of metaboliser
phenotype effect sizes were performed using Wald-type tests.
Holm’s method was used to correct for multiple comparisons.

We used metafor (v4.8.0; Viechtbauer, 2010) to fit multi-level,
multivariate meta-analyses. In all analyses, we used a three-level
correlated and hierarchical effects model. To account for
dependency in our data, we imputed a variance-covariance
matrix in metafor with positive correlations between clusters of
effects (p = 0.6). We also performed robust variance estimation
based on the clubSandwich package (v0.6.1; Pustejovsky, 2024) to
further account for this dependency via a sandwich estimator with
bias reduced-linearisation for small-sample correction. We tested
models using different random effect structures, alongside different
parameters of p to assess how these affected our analysis, also using
profile likelihood plots to assess parameter identifiability and
potential model over-parametrisation (see Supplementary
Material). We fit two meta-analyses, one without the intercept to
attain effect estimates for both proximal and distal outcomes, and
one with an intercept to test whether proximal and distal effect
estimates are significantly different. Finally, due to concerns that
assessing traditional funnel plots using the SMD can lead to false

positives when checking for publication bias, we additionally plot
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the SMD against 1/4/N (Zwetsloot et al., 2017). We formally tested
for publication bias using an adjusted version of Egger’s Test that
accounts for the multi-level nature of the data, also using 1/4/N in
place of the standard
Pustejovsky, 2021).

error moderator (Rodgers and

2.4 Applications

We conducted power analyses using the pwr package
(v1.3.0; Champely, 2020) to assess how sample sizes required
to attain 80% power in pharmacogenomics research vary
depending on the phenotype assessed. Effect sizes used were
the proximal and distal effect estimates obtained from the
primary  meta-analysis  and  their = robust = 95%
confidence intervals.

We also used the SMDs from this meta-analysis to model
potential effect-size inflation for proximal and distal outcomes,
consistent with the ‘winner’s curse’ phenomenon (Zollner and
Pritchard, 2007). As described in the Supplementary Material,
results from our models can be used as prior distributions to
generate posterior bias-reduced estimates of pharmacogenomic
effects in existing and future studies.

Finally, we developed an interactive dashboard allowing
users to filter, browse, visualise, and download data collected
for this meta-analysis. This allows interested readers to access
the effect size data in a user-friendly manner, alongside acting as
a resource to help researchers to plan their future studies into
pharmacogenomic variation and psychiatric medicine through a
basic power calculation. The dashboard also allows users to fit
three-level correlated and hierarchical effects meta-analyses on
the filtered data to allow for an initial assessment of the pooled
effect sizes for genes, drugs, and enzymes of interest. The
dashboard was built using the R shiny package (v1.11.0;
Chang et al., 2025) and follows the guidelines in the
Netherlands eScience Center ‘Five Recommendations for
FAIR Software’ tool (Netherlands eScience Center & DANS,
2020), which is based on FAIR4RS (FAIR for Research Software;
Barker et al., 2022) Principles.

3 Results

Briefly, we identified and screened for eligibility 6,129 entries
from the literature search, of which 386 full texts were selected to be
assessed for inclusion. Following this, we identified an additional
257 records from citation searching, of which 168 were selected to
have full texts assessed for inclusion. In total, we calculated
2,119 effect sizes from 184 studies (N = 129 from the literature
search; N = 55 from citation searching). After excluding extreme
values (SMD > 5 or SMD < -5), 2,102 effect sizes remained.

Over half (63%) of analyses were performed on samples
recruited in Europe, with the next largest group (23%) coming
from Asia. The most frequently studied drugs were risperidone
(20%) and escitalopram (13%). The most studied enzymes were
CYP2D6 (57%) and CYP2C19 (30%). There were similar numbers
of proximal (56%) and distal (44%) outcomes across the analyses. A
full description of the dataset is found in Table 2, below.
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3.1 Meta-analysis of proximal and
distal outcomes

As shown in Figure 2, we found evidence for a significant effect
of pharmacogenomic variation on proximal (f = 0.481 [95% CI
0.411-0.552], p = 8 x 107**) and distal outcomes ( = 0.278 [95% CI
0.218-0.339], p = 1 x 107"). The intercept model showed that the
proximal effect size was indeed significantly larger than the distal
effect size (AP = —0.203 [95% CI -0.288 to —0.118], p = 6 x 107°).
Most of the variance in our dataset was at a within-study level (02 =
0.164). Between-study variance was larger for proximal outcomes
(t* = 0.062), than for distal outcomes (t*> = 0.017).

3.2 Sensitivity meta-analyses: across gene-
drug pairings

We repeated the primary analysis in subgroups restricted to the
most common gene-drug pairings (i.e., those with at least
100 analyses available). We observed that proximal effect sizes
were significantly larger than distal effect sizes in the
Risperidone-CYP2D6 ~ group (AP = -0206 [95% CI
-0.361 to —0.052], p = 0.013) and the Aripiprazole-CYP2D6
group (AP = —0.301 [95% CI -0.591 to —0.011], p = 0.044). We
did not observe a significant difference between the effect sizes in the
haloperidol-CYP2D6 group (AP = —0.294 [95% CI -0.602-0.014],
p =0.057) and the escitalopram-CYP2C19 group (Ap = —0.171 [95%
CI -0.633-0.29], p = 0.405). However, the directions of all effects
were consistent with the primary analysis. Results for effect sizes for
proximal and distal outcomes, separately, across each of the gene-
drug subgroups are given in the Supplementary Material.

3.3 Secondary analysis: differences across
metabolism phenotypes

We fit a meta-analysis restricted to effect sizes for which
metabolism phenotype information was available. We tested for
moderation effects via the addition of an outcome-metabolism
phenotype interaction term to the model, comparing the effect of
an atypical metabolism phenotype (i.e., Poor, Intermediate, Rapid,
or Ultrarapid) versus the normal metabolism phenotype for either
proximal, or distal outcomes. We included 1,682 effect sizes from
146 different studies with results shown in Figure 3 and the
Supplementary Material.

We tested for differences between model estimates using Wald-
type tests. Reported p values are corrected for multiple comparisons
with Holm’s method. Effect sizes for proximal outcomes were
significantly larger than distal outcomes for the poor metabolism
phenotype (B = —0.63 (SE = 0.103), p = 9 x 107) and the
intermediate metabolism phenotype (p = —0.187 (SE = 0.046), p =
3 x 107*). There was no significant difference between proximal and
distal estimates for both the rapid ( = 0.15 (SE = 0.094), p = 0.272) and
ultrarapid (B = -0.019 (SE = 0.11), p = 0.863) metaboliser statuses.
When assessing whether metabolism phenotypes had distinct effects
within outcomes, we observed that the estimate for the poor
metabolism phenotype was significantly different to all other
phenotypes for proximal outcomes (Table 3). The effect size of an
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TABLE 2 Descriptive information about the analyses included in the effect size data. For each variable, number of studies and effect sizes are reported. The
mean of the Standardised Mean Difference (SMD) and absolute Standardised Mean Difference (abs (SMD)) for each group are also given.

Variable N (effect sizes) (%) N (studies) (%) Mean SMD Mean abs (SMD)
Outcome

Proximal 1,172 (56%) 124 (54%) 0.198 0.698
Distal 930 (44%) 107 (46%) 0.062 0.393
Continent

Asia 475 (23%) 69 (38%) 0.236 0.641
Europe 1,328 (63%) 91 (49%) 0.128 0.579
Mixed 4 (0.2%) 1 (1%) 0.083 0.083
North America 213 (10%) 18 (10%) 0.040 0.453
Oceania 72 (3.4%) 3 (2%) 0.006 0.096
South America 10 (0.5%) 2 (1%) -0.191 0.531
Africa 0 (0%) 0 (0%)

Drug studied

Antidepressant 839 (40%) 60 (31%) 0.144 0.624
Antipsychotic 1,019 (48%) 98 (51%) 0.132 0.573
Unknown/Multiple 244 (12%) 34 (18%) 0.140 0.312
Enzyme studied

CYP1A2 139 (6.6%) 19 (8%) —-0.038 0.299
CYP2B6 35 (1.7%) 3 (1%) ~0.046 0.428
CYP2C19 627 (30%) 45 (20%) 0.047 0.412
CYP2C9 46 (2.2%) 6 (3%) 0.101 0.359
CYP2D6 1,188 (57%) 145 (64%) 0.233 0.691
CYP3A4/5 67 (3.2%) 8 (4%) -0.226 0.464
Metabolism phenotype

Intermediate Metaboliser 811 (48%) 130 (40%) 0.243 0.578
Poor metaboliser 429 (26%) 68 (21%) 0.321 0.837
Rapid metaboliser 113 (6.7%) 18 (5%) -0.118 0.236
Ultrarapid metaboliser 329 (20%) 50 (15%) —-0.130 0.449
Unknown 420 62 (19%) 0.025 0.429

intermediate metabolism phenotype was also significantly larger than
that of a rapid metabolism phenotype. For distal outcomes, there were
no significant differences between the effect estimates of metabolism
phenotypes (Table 4). As in the primary analysis, the largest variance
component was at the within-study level (¢* = 0.171), with greater
between-study heterogeneity for proximal outcomes (t* = 0.075) than
distal outcomes (> = 0.024).

3.4 Applications
Based on the effect sizes generated in the primary meta-analysis,

across all drugs and genes assessed, we generated curves to visualise the
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relationship between sample size and statistical power. These values are
given as N per group for a two-sample -test and are based on the
average pharmacogenomic effect sizes estimated for proximal and distal
outcomes (Figure 4). For a proximal outcome, the optimum sample size
for 80% power was estimated at 69 individuals per group (range: 53-94),
where each group constitutes a specific genotype or metabolism
phenotype. For a distal outcome, the optimum sample size for 80%
power was estimated at 204 individuals per group (range: 138-332).
Similarly, the Bayesian analysis supports a larger shrinkage factor (also
called “exaggeration ratio”) across most of the z-score distribution for
distal outcomes (mean = 1.97) than for proximal outcomes (mean =
1.28). Assuming the simplest scenario of equal unadjusted effect sizes,
this suggests that posterior estimates for distal outcomes will be smaller
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FIGURE 2
Orchard plot (Nakagawa et al,, 2021) showing the distribution of effect sizes (Standardised Mean Difference, SMD) across proximal and distal

outcomes. Size of points is determined by a sample-size based measure of precision (1/+/N). Pooled estimates for proximal and distal effect sizes are
represented by the black diamond, with error bars representing robust 95% confidence intervals (thick) and 95% prediction intervals (thin); see IntHout
et al. (2016) for more information. Number of effect sizes is represented by k, with number of studies in brackets. Note that while an absolute scale

was used for the effect sizes included in the meta-analysis, standard procedures were used for calculating prediction intervals, in which the lower bound is
not limited at zero.

Ultrarapid Metaboliser -

e
.

Rapid Metaboliser -

©- Proximal
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FIGURE 3

Forest plot showing absolute effect sizes of pharmacogenomic metabolism phenotypes on proximal and distal outcomes. Point shows the effect
estimates for proximal (pink) and distal (blue) outcomes, error bars show robust 95% confidence intervals. Effect estimates reflect that of an atypical
metabolism phenotype (i.e., Poor, Intermediate, Rapid, or Ultrarapid) versus the normal metabolism phenotype for either proximal, or distal outcomes.

than that for proximal outcomes in most cases (Supplementary  analyses using the full dataset, or filtered to whichever enzyme, drug, and
Material). Finally, we developed a companion Shiny App allowing  outcome combinations desired. This also generates probability
for the visualisation of effect size distributions and power curves. We  distributions based on the filtered data and a calculator for
also included the ability for users to perform their own exploratory meta-  estimating posterior effect sizes that account for winner’s curse.
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TABLE 3 Results of ANOVA comparing whether proximal effect sizes for two different metabolism phenotypes (shown in the test column) are significantly
different from each other.

Tests of equality of effect sizes (proximal outcomes) Estimate SE p value p value (Holm)
Intermediate metaboliser - poor metaboliser -0.5320 0.0946 7 x10°° 4x107°

Rapid metaboliser - poor metaboliser -0.8985 0.1416 1x10* 5x10™*

Ultrarapid metaboliser - poor metaboliser -1.3657 0.1333 2x 10 1x 10"

Rapid metaboliser - intermediate metaboliser -0.3665 0.0913 0.004 0.012

Ultrarapid metaboliser - intermediate metaboliser —-0.1219 0.0905 0.192 0.192

Ultrarapid metaboliser - rapid metaboliser 0.2445 0.1240 0.081 0.162

TABLE 4 Results of ANOVA comparing whether distal effect sizes for two different metabolism phenotypes (shown in the test column) are significantly
different from each other.

Tests of equality of effect sizes (distal outcomes) Estimate SE p value p value (Holm)
Intermediate metaboliser - poor metaboliser -0.0893 0.0368 0.0250 0.1270
Rapid metaboliser - poor metaboliser -0.1185 0.0353 0.0140 0.0840
Ultrarapid metaboliser - poor metaboliser -0.0435 0.0414 0.3120 0.8980
Rapid metaboliser - intermediate metaboliser -0.0291 0.0301 0.3720 0.8980
Ultrarapid metaboliser - intermediate metaboliser 0.0458 0.0422 0.2990 0.8980
Ultrarapid metaboliser - rapid metaboliser 0.0750 0.0425 0.1280 0.5120
A Power Curves for estimated n across Effect Sizes B Power Curves for estimated n across Effect Sizes
N given at effect size intervals (0.2 - 0.7) with Proximal effect estimate N given at effect size intervals (0.1 - 0.5) with Distal effect estimate (0.278)
(0.481) overlaid (shaded = 95% CI [0.411 - 0.552]). overlaid (shaded = 95% Cl [0.218 - 0.339)]).
1.00- 1.00-

0.75- 0.75-
e 02
- o4
- 03
_ Iy _ - 02
o : [ -
g -- 05 g 03
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FIGURE 4

Plot shows power at a given effect size and sample size. Panels show power curves based on effect sizes generated for proximal (A) and distal (B)
effect sizes (and robust 95% Cl) from the primary meta-analysis. Black horizontal line indicates 80% power.

4 Discussion pharmacogenomics experiments, often restricted to single drugs,
disorders, or outcomes (Teng et al., 2023). Instead, we employ broad

Here, we assess and quantify the effect size of pharmacogenomic  inclusion criteria enabling a substantial meta-analysis of psychiatric
variation across a large spectrum of phenotypes related to  pharmacogenomic effects. We report on 2,102 effect sizes from
antidepressants and antipsychotics. This study builds on primary 184 studies, demonstrating larger effects of pharmacogenomic
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variation on proximal outcomes than on distal outcomes. This result
echoes reports of larger odds ratios for associations between genetic
variants and pharmacogenomic phenotypes than for genetic
variants and other dichotomous outcomes in the GWAS catalog,
including complex polygenic disorders (Maranville and Cox, 2016).
We also showcase how the collected corpus of studies can be used to
inform future pharmacogenomics research and study design and
provide an interactive web app for browsing the raw data, facilitating
the reproduction of our analyses or their adaptation to outcomes or
drugs of specific interest for other researchers.

Our primary finding was that, as expected, the effect of
pharmacogenomic  variation on proximal outcomes was
significantly greater than that of distal outcomes. This generalises
previous observations made in drug-gene guidelines about strong
genetic effects on pharmacokinetics translating into weaker or
unclear effects on clinical outcomes (Bousman et al, 2023b;
Duarte et al., 2024). The difference in effect sizes between
proximal and distal outcomes was consistent in all sensitivity
analyses we made on each of the most common gene-drug
subgroups in the psychiatric literature and significant in half of
them, suggesting that our results are not driven by heterogeneity in
the drugs or enzyme systems captured by our broad literature
review. Furthermore, our analysis provides a rationale for the
lack of pharmacodynamic primary evidence observed in
psychiatric pharmacogenomic guidelines (Bousman et al., 2020),
and supports that pharmacogenomic studies might see benefits in
explicitly assessing how their phenotypes map to a “proximal-distal
continuum” (Brenner et al., 1995) of genetic effects. Ideally, studies
should also consider multiple outcomes relevant to clinical practice
when possible, as recommended previously (Guchelaar et al., 2025).

Currently, the translation of pharmacogenomics research to
clinical recommendations is primarily informed by strength of
evidence ratings written into drug-gene guidelines. As an
example, the five-step variant scoring system employed by
ClinPGx to standardise reports includes evidence ratings by
phenotype, p-value, cohort size, study type, and effect size
(Whirl-Carrillo et al., 2021). In this calculation, the “phenotype”
criteria gives a larger score to studies of drug efficacy, toxicity or
dosage, while the “effect size” category increases the weight of an
association if a threshold of magnitude is passed (OR > 2, OR =<
0.5). Our results suggest that these two ratings might effectively have
opposing effects, as proximal associations tend to report larger
effects (pooled OR = 2.4) more commonly than distal outcomes
(pooled OR = 1.7). Therefore, as the size of the pharmacogenomics
literature increases and the routine access of clinicians to genomic
information draws near, specific pharmacogenomic weighting rules
for different phenotypes or outcome classes might need to be added
to the present scheme. As there is already an explicit aim of ensuring
that analyses of clinically meaningful (often distal) outcomes form
the basis of drug-gene guidelines when available, such a
modification would ensure a fairer evaluation of their results on
the evidence assessment process.

We also
differences in effect sizes existed across the functional spectrum

investigated whether proximal-distal outcome
of the enzymes included in our review. In these analyses we noted
the distinction between estimates for proximal and distal outcomes
was less pronounced than in the primary analysis, with differences
apparent slower

only across the metabolism  phenotypes
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(i.e., intermediate and poor). In particular, studies of poor versus
normal metabolisers showed significantly larger effects than other
atypical metabolism phenotypes, albeit only across proximal
outcomes (Figure 3), which is consistent with previous meta-
analyses across a range of outcomes (Calafato et al., 2020; Zhang
et al., 2020; Li et al., 2024). These results suggest that greater care
might be needed for defining metabolism phenotypes, particularly
for those reflecting increased function. Furthermore, the fact that
effect size estimates from ultra-rapid metabolisers versus normal
metabolisers mostly overlap those of rapid and intermediate
metabolisers for both proximal and distal outcomes supports that
this phenotype might be particularly ill-defined in most studies. To
this effect, it has already been shown that “normal” metabolisers of
several enzymes have higher variability in pharmacokinetic
measures when compared to atypical metabolisers identified by
genetic testing, which might be attributed to the existence of
functional alleles not currently assessed in pharmacogenomic
studies (Lauschke et al., 2024).

Our findings have applications beyond this study. First, we
provide estimates for the expected effect sizes of psychiatric
pharmacogenomics analyses, based on the type of phenotype
investigated. These can inform data collection efforts for future
research. As an illustration, our results suggest that if per-group
sample sizes are collected aiming for an appropriately-powered
analysis of a proximal phenotype (e.g. drug metabolism), they are
likely to be substantially underpowered for assessing a distal
outcome (e.g. treatment response). Second, a retrospective
analysis of our dataset using outcome-specific calculations for
80% statistical power (Figure 4), shows that most analyses
included in our review may indeed not reach this power
threshold (78.4% proximal, 84.3% distal). This suggests that
barriers to participant recruitment, and potentially the availability
of research funding, remain a limitation to psychiatric
pharmacogenomics work (Pardifias et al., 2021). Motivated by
this finding, we conducted an estimation of the signal-to-noise
ratio of past research in psychiatric pharmacogenomics using our
collected studies, following the general procedure in van Zwet and
Gelman (2022). The derived estimates allow for a Bayesian re-
evaluation of the test statistics of comparable studies, accounting
for the inflation in effect sizes that is often due to “winner’s curse”
(Zollner and Pritchard, 2007). We provide a worked example of this
methodology in the Supplementary Material, and implement all the
relevant formulae to reproduce or replicate our calculations in a
dedicated section of our Shiny app.

One of the strengths of this research is the large number of
studies and effects included in the meta-analysis. This was attained
through broad but well-defined inclusion criteria, namely all
analyses investigating pharmacogenomic variation in cytochrome
P450 (CYP) genes in participants taking psychiatric drugs. In the
future, we anticipate well-powered pharmacogenomic analyses will
come from biobank cohorts with linked electronic health records
(Empey et al., 2025). Such population-scale datasets will be an asset
for broader research questions. However, they may not allow for
more granular analyses focusing on specific subsets of patients,
drugs, genes, or outcomes, given their rarity in the general
population or comparative lack of phenotypic detail. In line with
this, and based on calls to improve transparency and reproducibility
in meta-analytic research (Ahern et al, 2021), we developed a
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companion dashboard in R Shiny that enables users to browse, filter,
and download the data used in the present meta-analysis. The
application also allows users to perform exploratory meta-
analyses of subgroups of the data, as well as power calculations
based on these results. In such a rapidly evolving field, this is not
intended to substitute future efforts to compile or curate the
literature but does allow users to quickly assess reported effect
sizes for arbitrary combinations of drugs, enzymes, and/or
outcomes that might be of interest; we anticipate that these
features will be useful for quickly and easily assessing feasibility
of study designs early in the research process.

A primary limitation of this research is the lack of studies
identified from African and South American nations, excluding
Brazil. Therefore, the results from this meta-analysis may not be
generalisable to countries and participants in these locations.
This needs to be taken into account as pharmacogenomic
variation is known to differ across populations, in some
instances quite dramatically (e.g., CYP3A4/5; Masimirembwa
et al., 2014). However, consistent with a previous review
(Popejoy, 2019),
ancestry information and so we were unable to statistically

many studies did not report detailed
account for this. Another limitation derived from the assessed
papers is that, while most studies used up-to-date nomenclature
and metabolism phenotype definitions, several used criteria
which are currently outdated. This has been corrected
wherever possible, but it has not been feasible in all cases.
Methodologically, visual inspection of funnel plots from the
meta-analysis and results from the adapted Egger’s regression
test are suggestive of funnel plot asymmetry. This has sometimes
been argued as a consequence of publication bias and the
inclusion of underpowered studies, but more complex factors
could be at play (Afonso et al., 2024). Therefore, we made efforts
to guard against potential biases in our effect size estimations by
using correlated and hierarchical effects models with robust
variance structures, as is best practice for datasets with
potentially complex dependencies. A final limitation is that it
is possible that measurement issues could partly explain our
findings. Proximal outcomes such as drug pharmacokinetics and
clearance can be physically measured and are thus generally
easier to quantify than distal outcomes such as symptom
severity. While ADRs and other distal clinical events (i.e.
death) might if
instruments of lower psychometric resolution are more

also be easily and reliably assessed,
common in distal outcomes research, this would also dilute
genetic effects (Sluis et al., 2010). We are unable to account for
this in our analysis as we do not have good estimates of the
reliability or measurement error of all instruments involved, so
our results should be considered with this caveat.

In summary, we found evidence of substantial variability in the
magnitude of effect sizes reported by psychiatric pharmacogenomic
studies, which we could relate to a simple phenotype classification
involving either “proximal” or “distal” outcomes. We found
evidence that this effect size disparity is apparent even when
explicitly accounting for metabolism phenotype and is
particularly pronounced for variation conferring slower enzyme
activity. We have quantified these differences between proximal
and distal effect sizes and provide ways in which future study design

can be improved, for example via power calculations based on the
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results we compiled throughout our literature review. These findings
may also have relevance for pharmacogenomics consortia, and
future efforts focused on other drugs and disciplines of study
might support new evaluations of the strength of evidence
behind genotype-guided pharmacogenomic recommendations.
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