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Background: Pharmacogenomics is viewed as one route to understanding inter- 
individual variability in drug response. However, clinical uptake in psychiatry is 
slower than in other medical fields such as oncology, so assessing evidence for 
psychiatric genotype-drug pairs and understanding what influences the 
magnitude of these effects is essential.
Methods: We performed a systematic search for studies investigating 
pharmacogenomic variation in the context of antipsychotic and 
antidepressant use. Outcomes varied, including those related to drug 
bioavailability (“proximal”) or side effects, symptom severity, and other 
treatment outcomes (“distal”). We performed a meta-analysis, moderated by 
outcome type, to quantify the average pharmacogenomic effect size across 
proximal and distal outcomes and assess whether they differ significantly from 
one another. We developed a Pharmacogenomic (PGx) Effect Size Explorer for 
Psychiatric Drugs dashboard that allows users to explore the dataset and perform 
simplified meta-analyses, power calculations, and Bayesian shrinkage analyses 
based on drugs, enzymes, and outcomes of interest (see: https://locksk. 
shinyapps.io/pgx-effect-sizes/).
Results: We analysed 2,102 standardised mean differences (SMDs) from 
184 studies, finding evidence that pharmacogenomic effect sizes for proximal 
outcomes were significantly larger than distal (Δβ = −0.203 [95% CI 
−0.288 to −0.118], p = 6 × 10−6). This trend was consistent across sub-groups 
restricted to the most common gene-drug pairings in the dataset. Power 
calculations for hypothetical future studies using two-sample t-tests showed 
that, to attain at least 80% statistical power, analyses of distal outcomes require a 
larger sample size than proximal outcomes.
Discussion: We demonstrate that pharmacogenomic effect sizes are significantly 
larger for proximal outcomes related to pharmacokinetics than for distal 
outcomes related to efficacy and toxicity. Understanding how the biological 
mechanisms underlying different outcomes might impact pharmacogenomic 
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effect sizes could help to inform participant recruitment for future psychiatric 
pharmacogenomic studies, alongside the development of pharmacogenomic 
guidelines for psychiatric medications.
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antidepressant, antipsychotic, meta-analysis, metaboliser status, pharmacodynamics, 
pharmacokinetics, statistical power, winner’s curse

1 Introduction

The effects of most drugs vary even when prescribed to 
individuals for the same indication. Moreover, real-world 
effectiveness often falls below the expectations set by clinical 
trials, an “efficacy-effectiveness gap” that pervades medicine 
(Eichler et al., 2011). Pharmacological effects can lead to huge 
benefits for some individuals, be barely noticeable for others, and 
for a few even cause a net negative impact through adverse drug 
reactions (ADRs). Problems with the external validity of randomised 
controlled trials, diverse healthcare and drug use practices, or 
patient-level variation in drug response are all likely contributors 
to the gap (Groenwold, 2021). In psychiatry, where “treatment 
resistant” symptoms affect a large proportion of patients (Howes 
et al., 2022), these issues have been systematically raised and 
examined. While there is limited evidence that common 
psychotropics or even psychotherapy interventions are less 
efficacious than drugs prescribed for non-psychiatric conditions 
(Leucht et al., 2012; Huhn et al., 2014), the development and 
refinement of psychiatric drugs is notoriously slow compared to 
other fields (Nutt, 2025), partly because many mechanisms of action 
involved in psychopharmacology and their precise effect on disease 
processes and neurobiology remain unclear (Huda, 2019; Howes 
et al., 2022).

Substantial efforts in psychiatric research are dedicated to more 
accurately predicting treatment response to current drugs, which could 
eventually lessen the efficacy-effectiveness gap (Dellen, 2024). One 
route to accomplishing this task is stratified medicine or “precision 
psychiatry”, which involves identifying patient subgroups with respect 
to their characteristics or response to drugs (Bell, 2014). While a 
myriad of factors (e.g., environmental, physiological, genomic) are 
known to affect treatment response in psychiatry (Stern et al., 2018), 
genetic variation is of particularly strong interest for developing 
stratified approaches as it is identifiable and stable from birth. 
Which genetic variants affect response to drugs, and whether they 
influence pharmacokinetic or pharmacodynamic processes, is the topic 
of study of pharmacogenomics (Pirmohamed and Park, 2001). 
Advances in this field have led to algorithms, developed by expert 
groups (Klein and Ritchie, 2018) or industry (Behera et al., 2025), that 
can inform screening for haplotypes known to influence the activity of 
drug metabolising enzymes (classically termed “star alleles”), and infer 
how carriers might respond to a given drug. While the research 
sustaining the psychiatric arm of this discipline has seen a large 
growth in activity in recent years, and an increasing number of 
prospective trials are being funded, most promising results are still 
confined to the scientific literature and have not yet been translated 
into clinical interventions (Bousman et al., 2023a).

Translational efforts need to be based on robust research 
evidence, and pharmacogenomics has a number of international 
expert consortia routinely assessing any pharmacogenomic reports 

linked to commonly prescribed drugs (Whirl-Carrillo et al., 2021). 
Indeed, for many drug-gene pairs, pharmacogenomic effects have 
been investigated broadly, from simple molecular processes to 
complex patient-reported outcomes. While any of these reports 
could be used by regulators in deciding whether to recommend an 
implementation of pharmacogenomic testing (Wu, 2015), genetic 
evidence related to pharmacodynamic phenotypes such as drug 
response and ADRs tends to be considered the most likely to lead to 
a clinically useful and cost-effective intervention (Hughes, 2018).

This perception is worth emphasising. In psychiatry, robust 
associations of pharmacogenomic variants with pharmacodynamic 
outcomes are rare, and pharmacogenomic guidelines for 
psychotropics are mostly based on studies of drug metabolism 
and other indicators of drug pharmacokinetics (Bousman et al., 
2020). A potential explanation for this asymmetry is that, outside of 
severe ADRs, pharmacodynamic phenotypes seem akin to complex 
traits. They are multifactorial, polygenic, and require large samples 
for accurately estimating genetic effects, given these are often weak 
(Roden et al., 2019). In contrast, pharmacokinetic phenotypes seem 
to fit oligogenic inheritances with moderate-to-high heritabilities, 
and are therefore more tractable for genetic discovery studies 
(Roden et al., 2006; Ingelman-Sundberg and Molden, 2025). This 
echoes classic discussions in psychiatry about the use of 
“endophenotypes”: quantitative measures of biological processes 
relevant to psychiatric disorders that show stronger associations 
with genetic variants than the disorders themselves (Gottesman and 
Gould, 2003). Endophenotypes are meant to be surrogates of some 
of the elements that characterise multifactorial disorders, in the 
same way that pharmacokinetic processes are important drivers of 
pharmacodynamics, but not the only ones (Simon and von Fabeck, 
2025). This implies the expectation that the effects of any given 
genetic variant are largest on phenotypes that closely reflect the 
biological processes that it directly causes or moderates. On the 
other hand, effect sizes become diluted as phenotypes move further 
away from basic molecular mechanisms and become influenced by 
other factors, genetic and otherwise.

In this paper, we aim to quantify effects of pharmacogenomic 
variation through this framework, initially postulated in research on 
metabolic control (Kacser and Burns, 1981). Borrowing from the 
“proximal-distal continuum” concept of health outcomes research 
(Brenner et al., 1995), we term “proximal outcomes” as those based 
on quantitative biological measures, which tend to be 
mechanistically closer to genetic variation. On the other end, 
“distal outcomes” are those usually captured by clinical 
phenotyping, being often further away from any single genetic 
effect and subject to multifactorial influences. We implemented 
this classification on a series of meta-analyses of pharmacogenomic 
reports focused on enzymes important to the metabolism of 
antidepressant and antipsychotic drugs (i.e., the cytochrome 
P450, or CYP, family of enzymes). While this literature is 
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necessarily heterogeneous, investigating many drugs, enzymes, and 
outcomes, our aim was to curate a corpus of data that can be used for 
diverse applications, including the design and interpretation of 
psychiatric pharmacogenomic studies. If indeed genetic effects 
differ between proximal and distal outcomes, identifying even a 
wide range of plausible effect sizes for each category could assist with 
accurately estimating the statistical power of future basic and 
translational research (Huang et al., 2020), as well as flagging 
potential errors or biases in existing studies (Gelman and 
Carlin, 2014).

2 Methods

2.1 Literature search

This meta-analysis was performed in line with the Preferred 
Reporting Items for Systematic reviews and Meta-Analyses 
(PRISMA; Moher et al., 2010) guidelines (Supplementary 
Material). We searched PUBMED, Cochrane, and SCOPUS 
databases for literature published between 1996 (when 
standardised pharmacogenomic nomenclature was introduced) 
and November 2024. Briefly, the search looked across titles for 
the following key terms in the format [pharmacogenomic term] 
AND [drug term] AND [outcome term] AND NOT [‘review’/ 
‘guidelines’]. The full list of search terms is found in the 
Supplementary Material. Records returned from the three 

databases were combined, and duplicate entries were 
removed (Figure 1).

2.2 Study selection

We compiled studies investigating associations of genotype- 
based pharmacogenomic variables with a range of outcomes in 
individuals taking psychiatric drugs. Broadly, these outcomes 
included measures of drug or metabolite bioavailability or 
clearance, drug doses, and measures of clinical response or ADRs 
(Table 1). We focussed on pharmacogenomic variation 
(i.e., genetics-inferred metabolism phenotypes, pharmacogenomic 
star alleles) in the CYP family of proteins given their role in the 
metabolism of many widely prescribed drugs (Zhao et al., 2021), 
including most psychotropics (Spina and de Leon, 2015).

Titles and abstracts were screened first to determine eligibility 
based on fit to the research topic of this study. For reports passing 
this screening, we retrieved the full text and Supplementary Material
if available. After full text inspection, we included reports in our 
analyses that were (i) original research articles, (ii) in English 
language, or able to be translated without ambiguities by the 
authors, (iii) were methodologically relevant, (iv) investigated an 
outcome, enzyme, or drug of interest, and (v) contained sufficient 
information to extract or infer effect sizes (see “Statistical Analysis”). 
We excluded studies conducted in vitro, using population 
modelling, or investigating drug-drug interactions. Studies in 

FIGURE 1 
Flowchart showing the number of records identified from the literature search, the numbers following screening, retrieval, and finally, the number of 
records included in the final analysis. Flowchart template was adapted from the Preferred Reporting Items for Systematic reviews and Meta-Analyses 
(PRISMA; Moher et al., 2010).
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which pharmacogenomic information was not used 
(i.e., phenotyping by probe drug) or those investigating 
combinatorial metabolism phenotypes were also excluded. Where 
effect size information was shown graphically but was not explicitly 
mentioned in the report text, it was extracted from plots using a free 
online application (PlotDigitizer: Version 3.1.6, 2025). Finally, we 
also examined the reference lists of included studies for any relevant 
work that might have been missed by the initial literature search and 
screened these references as above (Figure 1).

2.3 Statistical analysis

Data were analysed in R v4.4.0 in R Studio 2024.04.0 Build 735 
(R Core Team, 2021). Based on the information available in the 
eligible reports, we derived standardised mean differences (SMDs). 
In the context of this study, SMDs refer to the difference in effect 
between a group of individuals with an atypical CYP metabolism 
phenotype versus a normal metabolism phenotype. We also 
extracted SMDs for the effects of individual pharmacogenomic 
variants against wild-type alleles when these were reported. To 
calculate SMDs, group means and standard deviations were the 
preferred inputs. Where median and interquartile ranges were 
reported, approximate means and standard deviations were 
calculated using methods outlined by Wan et al. (2014). These 
were converted to SMDs using the esc ‘effect size conversion’ R 
package (v0.5.1; Lüdecke, 2018). Other data reported (e.g., number 
of observations, Odds Ratios, and t statistics, in order of preference) 
were also converted using the esc package. Full information about 
these calculations is provided in the Supplementary Material.

Additional details that were extracted from each report included: 
authors, year of publication, drug, enzyme, assessed outcome, and 
pharmacogenomic information. Where available, pharmacogenomic 
information was obtained as metabolism phenotypes; otherwise, 
phenotypes were inferred from genotype information using 
reference tables provided by ClinPGx (formerly PharmGKB) and 
CPIC (Supplementary Material). When conversion was not 
possible, information was left in the same format as reported. For 
classifying outcomes, a binary variable was created, as described in 
Table 1. In summary, pharmacokinetic outcomes (e.g., relating to 
bioavailability or clearance of a drug or metabolite) were rated as 
“proximal”. Outcomes were alternatively labelled “distal” if they related 
to pharmacodynamics or potential consequences of altered 
metabolism; these included, for example, reports of drug doses, 
experiences of adverse drug reactions (ADRs), or ratings of 
symptom severity.

Our primary analysis utilised the full set of calculated effect sizes. 
To account for heterogeneity between drugs, enzymes, and 
pharmacogenomic measures analysed, we used absolute effect 
sizes as the outcome variable, and the outcome binary rating 
(i.e., proximal/distal) as the moderator variable. We included a 
random intercept for effect size ID, and study ID, and a random 
slope for the moderator, with an unstructured variance-covariance 
matrix. As a sensitivity analysis, we repeated the primary meta- 
analysis on gene-drug subgroups to determine whether findings 
relating to proximal and distal effect sizes were replicable across 
subsets of the data. Gene-drug pairings with at least one hundred 
effect sizes were selected, including CYP2D6-risperidone (N = 412), 
CYP2C19-escitalopram (N = 221), CYP2D6-aripiprazole (N = 120), 
and CYP2D6-haloperidol (N = 106). For these analyses, we used a 
simplified random effects structure of effect size ID nested 
within study ID.

As a secondary analysis, we tested for whether the outcome 
phenotype (“proximal” or “distal”) influenced the effects of genetics- 
inferred enzyme activity across distinct metabolism phenotypes. 
This analysis included only effect sizes for which pharmacogenomic 
information was available as, or could be converted to, metabolism 
phenotypes. We extended the primary meta-analysis model to 
include an interaction term between rating and metabolism 
phenotype as the moderators, keeping the same random-effects 
structure. Comparisons between estimates of metaboliser 
phenotype effect sizes were performed using Wald-type tests. 
Holm’s method was used to correct for multiple comparisons.

We used metafor (v4.8.0; Viechtbauer, 2010) to fit multi-level, 
multivariate meta-analyses. In all analyses, we used a three-level 
correlated and hierarchical effects model. To account for 
dependency in our data, we imputed a variance-covariance 
matrix in metafor with positive correlations between clusters of 
effects (ρ = 0.6). We also performed robust variance estimation 
based on the clubSandwich package (v0.6.1; Pustejovsky, 2024) to 
further account for this dependency via a sandwich estimator with 
bias reduced-linearisation for small-sample correction. We tested 
models using different random effect structures, alongside different 
parameters of ρ to assess how these affected our analysis, also using 
profile likelihood plots to assess parameter identifiability and 
potential model over-parametrisation (see Supplementary 
Material). We fit two meta-analyses, one without the intercept to 
attain effect estimates for both proximal and distal outcomes, and 
one with an intercept to test whether proximal and distal effect 
estimates are significantly different. Finally, due to concerns that 
assessing traditional funnel plots using the SMD can lead to false 
positives when checking for publication bias, we additionally plot 

TABLE 1 Examples of phenotypes included in the meta-analyses and whether they were rated as proximal or distal outcomes.

Proximal outcomes Distal outcomes

Active moiety pharmacokinetics (e.g., concentration, half-life, 
clearance, AUC)

Adverse drug reactions

Drug pharmacokinetics (e.g., concentration, half-life, clearance, AUC) Drug dose

Metabolite pharmacokinetics (e.g., concentration, half-life, clearance, AUC) Treatment outcomes (e.g., remission, hospitalisation, treatment discontinuation, medication 
switching)

Metabolic ratios Symptom severity
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the SMD against 1/√N (Zwetsloot et al., 2017). We formally tested 
for publication bias using an adjusted version of Egger’s Test that 
accounts for the multi-level nature of the data, also using 1/√N in 
place of the standard error moderator (Rodgers and 
Pustejovsky, 2021).

2.4 Applications

We conducted power analyses using the pwr package 
(v1.3.0; Champely, 2020) to assess how sample sizes required 
to attain 80% power in pharmacogenomics research vary 
depending on the phenotype assessed. Effect sizes used were 
the proximal and distal effect estimates obtained from the 
primary meta-analysis and their robust 95% 
confidence intervals.

We also used the SMDs from this meta-analysis to model 
potential effect-size inflation for proximal and distal outcomes, 
consistent with the ‘winner’s curse’ phenomenon (Zöllner and 
Pritchard, 2007). As described in the Supplementary Material, 
results from our models can be used as prior distributions to 
generate posterior bias-reduced estimates of pharmacogenomic 
effects in existing and future studies.

Finally, we developed an interactive dashboard allowing 
users to filter, browse, visualise, and download data collected 
for this meta-analysis. This allows interested readers to access 
the effect size data in a user-friendly manner, alongside acting as 
a resource to help researchers to plan their future studies into 
pharmacogenomic variation and psychiatric medicine through a 
basic power calculation. The dashboard also allows users to fit 
three-level correlated and hierarchical effects meta-analyses on 
the filtered data to allow for an initial assessment of the pooled 
effect sizes for genes, drugs, and enzymes of interest. The 
dashboard was built using the R shiny package (v1.11.0; 
Chang et al., 2025) and follows the guidelines in the 
Netherlands eScience Center ‘Five Recommendations for 
FAIR Software’ tool (Netherlands eScience Center & DANS, 
2020), which is based on FAIR4RS (FAIR for Research Software; 
Barker et al., 2022) Principles.

3 Results

Briefly, we identified and screened for eligibility 6,129 entries 
from the literature search, of which 386 full texts were selected to be 
assessed for inclusion. Following this, we identified an additional 
257 records from citation searching, of which 168 were selected to 
have full texts assessed for inclusion. In total, we calculated 
2,119 effect sizes from 184 studies (N = 129 from the literature 
search; N = 55 from citation searching). After excluding extreme 
values (SMD ≥ 5 or SMD ≤ −5), 2,102 effect sizes remained.

Over half (63%) of analyses were performed on samples 
recruited in Europe, with the next largest group (23%) coming 
from Asia. The most frequently studied drugs were risperidone 
(20%) and escitalopram (13%). The most studied enzymes were 
CYP2D6 (57%) and CYP2C19 (30%). There were similar numbers 
of proximal (56%) and distal (44%) outcomes across the analyses. A 
full description of the dataset is found in Table 2, below.

3.1 Meta-analysis of proximal and 
distal outcomes

As shown in Figure 2, we found evidence for a significant effect 
of pharmacogenomic variation on proximal (β = 0.481 [95% CI 
0.411–0.552], p = 8 × 10−25) and distal outcomes (β = 0.278 [95% CI 
0.218–0.339], p = 1 × 10−13). The intercept model showed that the 
proximal effect size was indeed significantly larger than the distal 
effect size (Δβ = −0.203 [95% CI -0.288 to −0.118], p = 6 × 10−6). 
Most of the variance in our dataset was at a within-study level (σ2 = 
0.164). Between-study variance was larger for proximal outcomes 
(τ2 = 0.062), than for distal outcomes (τ2 = 0.017).

3.2 Sensitivity meta-analyses: across gene- 
drug pairings

We repeated the primary analysis in subgroups restricted to the 
most common gene-drug pairings (i.e., those with at least 
100 analyses available). We observed that proximal effect sizes 
were significantly larger than distal effect sizes in the 
Risperidone-CYP2D6 group (Δβ = −0.206 [95% CI 
-0.361 to −0.052], p = 0.013) and the Aripiprazole-CYP2D6 
group (Δβ = −0.301 [95% CI -0.591 to −0.011], p = 0.044). We 
did not observe a significant difference between the effect sizes in the 
haloperidol-CYP2D6 group (Δβ = −0.294 [95% CI -0.602–0.014], 
p = 0.057) and the escitalopram-CYP2C19 group (Δβ = −0.171 [95% 
CI -0.633–0.29], p = 0.405). However, the directions of all effects 
were consistent with the primary analysis. Results for effect sizes for 
proximal and distal outcomes, separately, across each of the gene- 
drug subgroups are given in the Supplementary Material.

3.3 Secondary analysis: differences across 
metabolism phenotypes

We fit a meta-analysis restricted to effect sizes for which 
metabolism phenotype information was available. We tested for 
moderation effects via the addition of an outcome-metabolism 
phenotype interaction term to the model, comparing the effect of 
an atypical metabolism phenotype (i.e., Poor, Intermediate, Rapid, 
or Ultrarapid) versus the normal metabolism phenotype for either 
proximal, or distal outcomes. We included 1,682 effect sizes from 
146 different studies with results shown in Figure 3 and the 
Supplementary Material.

We tested for differences between model estimates using Wald- 
type tests. Reported p values are corrected for multiple comparisons 
with Holm’s method. Effect sizes for proximal outcomes were 
significantly larger than distal outcomes for the poor metabolism 
phenotype (β = −0.63 (SE = 0.103), p = 9 × 10−7) and the 
intermediate metabolism phenotype (β = −0.187 (SE = 0.046), p = 
3 × 10−4). There was no significant difference between proximal and 
distal estimates for both the rapid (β = 0.15 (SE = 0.094), p = 0.272) and 
ultrarapid (β = −0.019 (SE = 0.11), p = 0.863) metaboliser statuses. 
When assessing whether metabolism phenotypes had distinct effects 
within outcomes, we observed that the estimate for the poor 
metabolism phenotype was significantly different to all other 
phenotypes for proximal outcomes (Table 3). The effect size of an 
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intermediate metabolism phenotype was also significantly larger than 
that of a rapid metabolism phenotype. For distal outcomes, there were 
no significant differences between the effect estimates of metabolism 
phenotypes (Table 4). As in the primary analysis, the largest variance 
component was at the within-study level (σ2 = 0.171), with greater 
between-study heterogeneity for proximal outcomes (τ2 = 0.075) than 
distal outcomes (τ2 = 0.024).

3.4 Applications

Based on the effect sizes generated in the primary meta-analysis, 
across all drugs and genes assessed, we generated curves to visualise the 

relationship between sample size and statistical power. These values are 
given as N per group for a two-sample t-test and are based on the 
average pharmacogenomic effect sizes estimated for proximal and distal 
outcomes (Figure 4). For a proximal outcome, the optimum sample size 
for 80% power was estimated at 69 individuals per group (range: 53–94), 
where each group constitutes a specific genotype or metabolism 
phenotype. For a distal outcome, the optimum sample size for 80% 
power was estimated at 204 individuals per group (range: 138–332). 
Similarly, the Bayesian analysis supports a larger shrinkage factor (also 
called “exaggeration ratio”) across most of the z-score distribution for 
distal outcomes (mean = 1.97) than for proximal outcomes (mean = 
1.28). Assuming the simplest scenario of equal unadjusted effect sizes, 
this suggests that posterior estimates for distal outcomes will be smaller 

TABLE 2 Descriptive information about the analyses included in the effect size data. For each variable, number of studies and effect sizes are reported. The 
mean of the Standardised Mean Difference (SMD) and absolute Standardised Mean Difference (abs (SMD)) for each group are also given.

Variable N (effect sizes) (%) N (studies) (%) Mean SMD Mean abs (SMD)

Outcome

Proximal 1,172 (56%) 124 (54%) 0.198 0.698

Distal 930 (44%) 107 (46%) 0.062 0.393

Continent

Asia 475 (23%) 69 (38%) 0.236 0.641

Europe 1,328 (63%) 91 (49%) 0.128 0.579

Mixed 4 (0.2%) 1 (1%) 0.083 0.083

North America 213 (10%) 18 (10%) 0.040 0.453

Oceania 72 (3.4%) 3 (2%) 0.006 0.096

South America 10 (0.5%) 2 (1%) −0.191 0.531

Africa 0 (0%) 0 (0%)

Drug studied

Antidepressant 839 (40%) 60 (31%) 0.144 0.624

Antipsychotic 1,019 (48%) 98 (51%) 0.132 0.573

Unknown/Multiple 244 (12%) 34 (18%) 0.140 0.312

Enzyme studied

CYP1A2 139 (6.6%) 19 (8%) −0.038 0.299

CYP2B6 35 (1.7%) 3 (1%) −0.046 0.428

CYP2C19 627 (30%) 45 (20%) 0.047 0.412

CYP2C9 46 (2.2%) 6 (3%) 0.101 0.359

CYP2D6 1,188 (57%) 145 (64%) 0.233 0.691

CYP3A4/5 67 (3.2%) 8 (4%) −0.226 0.464

Metabolism phenotype

Intermediate Metaboliser 811 (48%) 130 (40%) 0.243 0.578

Poor metaboliser 429 (26%) 68 (21%) 0.321 0.837

Rapid metaboliser 113 (6.7%) 18 (5%) −0.118 0.236

Ultrarapid metaboliser 329 (20%) 50 (15%) −0.130 0.449

Unknown 420 62 (19%) 0.025 0.429
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than that for proximal outcomes in most cases (Supplementary 
Material). Finally, we developed a companion Shiny App allowing 
for the visualisation of effect size distributions and power curves. We 
also included the ability for users to perform their own exploratory meta- 

analyses using the full dataset, or filtered to whichever enzyme, drug, and 
outcome combinations desired. This also generates probability 
distributions based on the filtered data and a calculator for 
estimating posterior effect sizes that account for winner’s curse.

FIGURE 2 
Orchard plot (Nakagawa et al., 2021) showing the distribution of effect sizes (Standardised Mean Difference, SMD) across proximal and distal 
outcomes. Size of points is determined by a sample-size based measure of precision (1/√N). Pooled estimates for proximal and distal effect sizes are 
represented by the black diamond, with error bars representing robust 95% confidence intervals (thick) and 95% prediction intervals (thin); see IntHout 
et al. (2016) for more information. Number of effect sizes is represented by k, with number of studies in brackets. Note that while an absolute scale 
was used for the effect sizes included in the meta-analysis, standard procedures were used for calculating prediction intervals, in which the lower bound is 
not limited at zero.

FIGURE 3 
Forest plot showing absolute effect sizes of pharmacogenomic metabolism phenotypes on proximal and distal outcomes. Point shows the effect 
estimates for proximal (pink) and distal (blue) outcomes, error bars show robust 95% confidence intervals. Effect estimates reflect that of an atypical 
metabolism phenotype (i.e., Poor, Intermediate, Rapid, or Ultrarapid) versus the normal metabolism phenotype for either proximal, or distal outcomes.
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4 Discussion

Here, we assess and quantify the effect size of pharmacogenomic 
variation across a large spectrum of phenotypes related to 
antidepressants and antipsychotics. This study builds on primary 

pharmacogenomics experiments, often restricted to single drugs, 
disorders, or outcomes (Teng et al., 2023). Instead, we employ broad 
inclusion criteria enabling a substantial meta-analysis of psychiatric 
pharmacogenomic effects. We report on 2,102 effect sizes from 
184 studies, demonstrating larger effects of pharmacogenomic 

TABLE 3 Results of ANOVA comparing whether proximal effect sizes for two different metabolism phenotypes (shown in the test column) are significantly 
different from each other.

Tests of equality of effect sizes (proximal outcomes) Estimate SE p value p value (Holm)

Intermediate metaboliser - poor metaboliser −0.5320 0.0946 7 × 10−6 4 × 10−5

Rapid metaboliser - poor metaboliser −0.8985 0.1416 1 × 10−4 5 × 10−4

Ultrarapid metaboliser - poor metaboliser −1.3657 0.1333 2 × 10−14 1 × 10−13

Rapid metaboliser - intermediate metaboliser −0.3665 0.0913 0.004 0.012

Ultrarapid metaboliser - intermediate metaboliser −0.1219 0.0905 0.192 0.192

Ultrarapid metaboliser - rapid metaboliser 0.2445 0.1240 0.081 0.162

TABLE 4 Results of ANOVA comparing whether distal effect sizes for two different metabolism phenotypes (shown in the test column) are significantly 
different from each other.

Tests of equality of effect sizes (distal outcomes) Estimate SE p value p value (Holm)

Intermediate metaboliser - poor metaboliser −0.0893 0.0368 0.0250 0.1270

Rapid metaboliser - poor metaboliser −0.1185 0.0353 0.0140 0.0840

Ultrarapid metaboliser - poor metaboliser −0.0435 0.0414 0.3120 0.8980

Rapid metaboliser - intermediate metaboliser −0.0291 0.0301 0.3720 0.8980

Ultrarapid metaboliser - intermediate metaboliser 0.0458 0.0422 0.2990 0.8980

Ultrarapid metaboliser - rapid metaboliser 0.0750 0.0425 0.1280 0.5120

FIGURE 4 
Plot shows power at a given effect size and sample size. Panels show power curves based on effect sizes generated for proximal (A) and distal (B) 
effect sizes (and robust 95% CI) from the primary meta-analysis. Black horizontal line indicates 80% power.
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variation on proximal outcomes than on distal outcomes. This result 
echoes reports of larger odds ratios for associations between genetic 
variants and pharmacogenomic phenotypes than for genetic 
variants and other dichotomous outcomes in the GWAS catalog, 
including complex polygenic disorders (Maranville and Cox, 2016). 
We also showcase how the collected corpus of studies can be used to 
inform future pharmacogenomics research and study design and 
provide an interactive web app for browsing the raw data, facilitating 
the reproduction of our analyses or their adaptation to outcomes or 
drugs of specific interest for other researchers.

Our primary finding was that, as expected, the effect of 
pharmacogenomic variation on proximal outcomes was 
significantly greater than that of distal outcomes. This generalises 
previous observations made in drug-gene guidelines about strong 
genetic effects on pharmacokinetics translating into weaker or 
unclear effects on clinical outcomes (Bousman et al., 2023b; 
Duarte et al., 2024). The difference in effect sizes between 
proximal and distal outcomes was consistent in all sensitivity 
analyses we made on each of the most common gene-drug 
subgroups in the psychiatric literature and significant in half of 
them, suggesting that our results are not driven by heterogeneity in 
the drugs or enzyme systems captured by our broad literature 
review. Furthermore, our analysis provides a rationale for the 
lack of pharmacodynamic primary evidence observed in 
psychiatric pharmacogenomic guidelines (Bousman et al., 2020), 
and supports that pharmacogenomic studies might see benefits in 
explicitly assessing how their phenotypes map to a “proximal-distal 
continuum” (Brenner et al., 1995) of genetic effects. Ideally, studies 
should also consider multiple outcomes relevant to clinical practice 
when possible, as recommended previously (Guchelaar et al., 2025).

Currently, the translation of pharmacogenomics research to 
clinical recommendations is primarily informed by strength of 
evidence ratings written into drug-gene guidelines. As an 
example, the five-step variant scoring system employed by 
ClinPGx to standardise reports includes evidence ratings by 
phenotype, p-value, cohort size, study type, and effect size 
(Whirl-Carrillo et al., 2021). In this calculation, the “phenotype” 
criteria gives a larger score to studies of drug efficacy, toxicity or 
dosage, while the “effect size” category increases the weight of an 
association if a threshold of magnitude is passed (OR ≥ 2, OR =< 
0.5). Our results suggest that these two ratings might effectively have 
opposing effects, as proximal associations tend to report larger 
effects (pooled OR = 2.4) more commonly than distal outcomes 
(pooled OR = 1.7). Therefore, as the size of the pharmacogenomics 
literature increases and the routine access of clinicians to genomic 
information draws near, specific pharmacogenomic weighting rules 
for different phenotypes or outcome classes might need to be added 
to the present scheme. As there is already an explicit aim of ensuring 
that analyses of clinically meaningful (often distal) outcomes form 
the basis of drug-gene guidelines when available, such a 
modification would ensure a fairer evaluation of their results on 
the evidence assessment process.

We also investigated whether proximal-distal outcome 
differences in effect sizes existed across the functional spectrum 
of the enzymes included in our review. In these analyses we noted 
the distinction between estimates for proximal and distal outcomes 
was less pronounced than in the primary analysis, with differences 
apparent only across the slower metabolism phenotypes 

(i.e., intermediate and poor). In particular, studies of poor versus 
normal metabolisers showed significantly larger effects than other 
atypical metabolism phenotypes, albeit only across proximal 
outcomes (Figure 3), which is consistent with previous meta- 
analyses across a range of outcomes (Calafato et al., 2020; Zhang 
et al., 2020; Li et al., 2024). These results suggest that greater care 
might be needed for defining metabolism phenotypes, particularly 
for those reflecting increased function. Furthermore, the fact that 
effect size estimates from ultra-rapid metabolisers versus normal 
metabolisers mostly overlap those of rapid and intermediate 
metabolisers for both proximal and distal outcomes supports that 
this phenotype might be particularly ill-defined in most studies. To 
this effect, it has already been shown that “normal” metabolisers of 
several enzymes have higher variability in pharmacokinetic 
measures when compared to atypical metabolisers identified by 
genetic testing, which might be attributed to the existence of 
functional alleles not currently assessed in pharmacogenomic 
studies (Lauschke et al., 2024).

Our findings have applications beyond this study. First, we 
provide estimates for the expected effect sizes of psychiatric 
pharmacogenomics analyses, based on the type of phenotype 
investigated. These can inform data collection efforts for future 
research. As an illustration, our results suggest that if per-group 
sample sizes are collected aiming for an appropriately-powered 
analysis of a proximal phenotype (e.g. drug metabolism), they are 
likely to be substantially underpowered for assessing a distal 
outcome (e.g. treatment response). Second, a retrospective 
analysis of our dataset using outcome-specific calculations for 
80% statistical power (Figure 4), shows that most analyses 
included in our review may indeed not reach this power 
threshold (78.4% proximal, 84.3% distal). This suggests that 
barriers to participant recruitment, and potentially the availability 
of research funding, remain a limitation to psychiatric 
pharmacogenomics work (Pardiñas et al., 2021). Motivated by 
this finding, we conducted an estimation of the signal-to-noise 
ratio of past research in psychiatric pharmacogenomics using our 
collected studies, following the general procedure in van Zwet and 
Gelman (2022). The derived estimates allow for a Bayesian re- 
evaluation of the test statistics of comparable studies, accounting 
for the inflation in effect sizes that is often due to “winner’s curse” 
(Zöllner and Pritchard, 2007). We provide a worked example of this 
methodology in the Supplementary Material, and implement all the 
relevant formulae to reproduce or replicate our calculations in a 
dedicated section of our Shiny app.

One of the strengths of this research is the large number of 
studies and effects included in the meta-analysis. This was attained 
through broad but well-defined inclusion criteria, namely all 
analyses investigating pharmacogenomic variation in cytochrome 
P450 (CYP) genes in participants taking psychiatric drugs. In the 
future, we anticipate well-powered pharmacogenomic analyses will 
come from biobank cohorts with linked electronic health records 
(Empey et al., 2025). Such population-scale datasets will be an asset 
for broader research questions. However, they may not allow for 
more granular analyses focusing on specific subsets of patients, 
drugs, genes, or outcomes, given their rarity in the general 
population or comparative lack of phenotypic detail. In line with 
this, and based on calls to improve transparency and reproducibility 
in meta-analytic research (Ahern et al., 2021), we developed a 
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companion dashboard in R Shiny that enables users to browse, filter, 
and download the data used in the present meta-analysis. The 
application also allows users to perform exploratory meta- 
analyses of subgroups of the data, as well as power calculations 
based on these results. In such a rapidly evolving field, this is not 
intended to substitute future efforts to compile or curate the 
literature but does allow users to quickly assess reported effect 
sizes for arbitrary combinations of drugs, enzymes, and/or 
outcomes that might be of interest; we anticipate that these 
features will be useful for quickly and easily assessing feasibility 
of study designs early in the research process.

A primary limitation of this research is the lack of studies 
identified from African and South American nations, excluding 
Brazil. Therefore, the results from this meta-analysis may not be 
generalisable to countries and participants in these locations. 
This needs to be taken into account as pharmacogenomic 
variation is known to differ across populations, in some 
instances quite dramatically (e.g., CYP3A4/5; Masimirembwa 
et al., 2014). However, consistent with a previous review 
(Popejoy, 2019), many studies did not report detailed 
ancestry information and so we were unable to statistically 
account for this. Another limitation derived from the assessed 
papers is that, while most studies used up-to-date nomenclature 
and metabolism phenotype definitions, several used criteria 
which are currently outdated. This has been corrected 
wherever possible, but it has not been feasible in all cases. 
Methodologically, visual inspection of funnel plots from the 
meta-analysis and results from the adapted Egger’s regression 
test are suggestive of funnel plot asymmetry. This has sometimes 
been argued as a consequence of publication bias and the 
inclusion of underpowered studies, but more complex factors 
could be at play (Afonso et al., 2024). Therefore, we made efforts 
to guard against potential biases in our effect size estimations by 
using correlated and hierarchical effects models with robust 
variance structures, as is best practice for datasets with 
potentially complex dependencies. A final limitation is that it 
is possible that measurement issues could partly explain our 
findings. Proximal outcomes such as drug pharmacokinetics and 
clearance can be physically measured and are thus generally 
easier to quantify than distal outcomes such as symptom 
severity. While ADRs and other distal clinical events (i.e. 
death) might also be easily and reliably assessed, if 
instruments of lower psychometric resolution are more 
common in distal outcomes research, this would also dilute 
genetic effects (Sluis et al., 2010). We are unable to account for 
this in our analysis as we do not have good estimates of the 
reliability or measurement error of all instruments involved, so 
our results should be considered with this caveat.

In summary, we found evidence of substantial variability in the 
magnitude of effect sizes reported by psychiatric pharmacogenomic 
studies, which we could relate to a simple phenotype classification 
involving either “proximal” or “distal” outcomes. We found 
evidence that this effect size disparity is apparent even when 
explicitly accounting for metabolism phenotype and is 
particularly pronounced for variation conferring slower enzyme 
activity. We have quantified these differences between proximal 
and distal effect sizes and provide ways in which future study design 
can be improved, for example via power calculations based on the 

results we compiled throughout our literature review. These findings 
may also have relevance for pharmacogenomics consortia, and 
future efforts focused on other drugs and disciplines of study 
might support new evaluations of the strength of evidence 
behind genotype-guided pharmacogenomic recommendations.
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