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Abstract: Stroke rehabilitation requires personalised and continuously adapted exercise programmes, resulting in sig-
nificant therapist involvement and is often impractical for patients recovering at home in community settings.
This motivates the need for assistive tools and decision support systems to enhance efficiency and rehabil-
itation progress. This position paper presents an integrated pipeline combining a therapist-informed tablet
application with artificial intelligence (AI) models to support therapists in decision-making. Co-designed with
stroke therapists, HCI researchers, AI experts, and PwS, the application captures baseline and weekly reassess-
ment data, including BBS, TUG, pain, perceived difficulty, and FITT prescriptions, across 4–6 week cycles to
determine whether to progress, sustain, or regress exercises. To facilitate early model development, we created
a clinically informed synthetic dataset (n = 336 sessions across 5 PwS profiles over 12 weeks) that simulates
functional progression and therapist decision-making patterns. This dataset reflects key features identified
through workshops with clinicians and PwS, capturing essential assessment metrics such as stroke character-
istics, functional scores, therapist goals, patient feedback, exercise difficulty, repetitions, duration, body area,
FITT parameters, and exercise recommendations. We trained and evaluated models to predict weekly pro-
gression decisions. Logistic regression achieved a weighted F1-score of 51.6%, while a multilayer perceptron
reached 79.3% and a decision tree 90.2%. Clinical data will be collected in the next stage of the project (5–8
PwS, 4–6 weeks) and integrated with the synthetic dataset using real–synthetic fusion. Future work includes
exploring generative AI for richer rehabilitation trajectories and validating models through an ongoing clinical
study. Overall, this work advocates for AI-augmented tools in rehabilitation informatics to support scalable,
patient-centred stroke care in the community.
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1 Introduction
Stroke remains one of the leading causes of death and
long-term disability worldwide, with profound impli-
cations for healthcare systems and individual qual-
ity of life. In 2025, the global burden of stroke is
staggering, affecting an estimated 13.7 million peo-
ple annually and incurring costs exceeding US$890
billion, with projections indicating a near-doubling by
2050.(Feigin et al., 2025). Effective rehabilitation is
critical for mitigating these impacts, as timely and
personalised interventions can restore motor func-
tion, enhance independence, and reduce secondary



Figure 1: Stroke Rehabilitation - Artificial Intelligence Pipeline

complications such as falls. However, traditional
stroke rehabilitation approaches face significant bar-
riers. Programmes must be highly tailored to indi-
vidual needs, requiring substantial therapist involve-
ment that is often resource-intensive and geographi-
cally constrained. For persons with stroke (PwS) re-
covering in the community, where over 80% of re-
habilitation occurs post-discharge (American Stroke
Association, 2025), these approaches are impractical,
leading to suboptimal adherence and outcomes.

The advent of digital health technologies and ar-
tificial intelligence (AI) offers a transformative op-
portunity to address these challenges. By integrating
AI with wearable sensors, cameras, mobile applica-
tions, and decision-support systems, AI-augmented
tools can enable scalable, patient-centred care that
bridges the gap between clinical expertise and every-
day recovery. Such innovations align with the grow-
ing emphasis on assistive technologies, home mon-
itoring, and physiological/behavioural modelling in
health informatics, fostering equitable access and per-
sonalised care(Verma et al., 2022; Thayabaranathan
and Cadilhac, 2025). However, no existing pipeline
integrates patient feedback, exercises, and therapist
assessments with AI to assist in generating exercise
programmes.

In this position paper, as depicted in Figure 1,
we advocate for an integrated AI pipeline designed
to enhance exercise management in stroke rehabil-
itation. Our tablet-based application is being co-
designed with stroke therapists, HCI researchers, AI
experts and PwS. Therapists prescribe exercises via
frequency, intensity, duration, and type (FITT prin-
ciples). The application will capture data across a
4–6 week rehabilitation cycle, including initial assess-

ments (e.g., Berg Balance Scale and Timed Up-and-
Go scores), patient demographics, diagnosis details,
and session feedback on exercise difficulty, fatigue,
and pain. The application will support therapists by
recommending changes to exercise programmes dur-
ing assessments. The therapist will be able to make
the final decision on the AI-prescribed recommenda-
tions before assigning to the PwS. The input features
to the AI model include demographics, therapist as-
sessments, exercise sessions, diagnoses, and patient
feedback. The AI models will address the following
(supervised machine learning) tasks, where the model
takes d features.

• Classification: predict exercise progression
f : Rd →{Regress, Sustain, Progress}

• Classification: predict exercise prescription
f : Rd →{0,1}

• Regression: predict FITT
f : Rd →{# Repetitions,# Sets}
Collectively, these tasks enable the application

to generate personalised exercise programme recom-
mendations. In our initial evaluation using a rule-
based synthetic dataset, a range of linear and non-
linear models were assessed to balance predictive per-
formance with interpretability. While linear baselines
performed modestly, non-linear models more effec-
tively captured the encoded therapist decision rules,
with the decision tree achieving a weighted F1-score
of 90.2%. These results highlight our approach’s po-
tential to improve stroke rehabilitation in the commu-
nity. Our contributions are as follows.

• A co-designed, user-centred tablet application
that operationalises rehabilitation informatics
workflows for community-based stroke care.



• A rule-based, clinically informed synthetic
dataset that enables early experimentation and
model development prior to real clinical data col-
lection.

• An evaluation of supervised machine learning
models and structured ML pipelines for exercise
progression decision-support, comparing inter-
pretable linear and non-linear approaches, includ-
ing logistic regression, multilayer perceptrons,
and decision trees.

• Preliminary findings demonstrating strong align-
ment between non-linear model predictions and
encoded therapist logic, motivating further HCI
refinements and planned clinical studies for equi-
table deployment.

2 Background and Related Work
2.1 Stroke Rehabilitation Informatics
Stroke remains a leading cause of death and disability
worldwide, with millions of new cases each year and
substantial long-term motor functional impact (Feigin
et al., 2025). Throughout the acute, inpatient, and
community phases of care, survivors frequently ex-
perience persistent impairments in balance, gait, co-
ordination, and mobility that call for organised, goal-
oriented rehabilitation. In order to monitor recovery
and facilitate transitions into community and home-
based rehabilitation, current national guidelines em-
phasise the importance of progressive, high-intensity
therapy, frequent evaluation of rehabilitation poten-
tial, and the use of validated measures (Intercollegiate
Stroke Working Party, 2023). Validated tests such
as the Timed Up-and-Go (TUG) test and the Berg
Balance Scale (BBS) are used in standard rehabilita-
tion practices and assessments. While the TUG offers
a dependable timed measure of fundamental mobil-
ity and change over time, the BBS captures impor-
tant aspects of postural stability and has shown strong
associations with functional and motor performance.
(Berg et al., 1992; Podsiadlo and Richardson, 1991).

2.2 Artificial Intelligence and Decision
Support in Stroke Rehabilitation

Artificial intelligence is increasingly integrated across
the stroke rehabilitation support, from accelerated
imaging interpretation to technologies supporting
neurological and functional recovery (Chandrabhatla
et al., 2023). In rehabilitation, growing evidence
has shown how ML and sensor-based approaches can
model motor performance and personalise therapy ad-
justments (Senadheera et al., 2024). UK policy ini-
tiatives further reveal a progressive increase for AI-
enabled decision support, with early deployments im-

proving workflow speed and recovery outcomes in
clinical practice (Department of Health and Social
Care, 2022). Collectively, these advances highlight
the potential for AI to augment therapist decision-
making and extend timely, individualised support into
community and home-based rehabilitation.

Despite rapid advancements, the majority of AI
systems in stroke rehabilitation are still restricted to
discrete prediction tasks such as predicting outcomes
or categorising mobility rather than supporting the
day-to-day decisions involved in adapting exercises
or managing rehabilitation programmes. Research in
human–AI collaboration shows that interactive sys-
tems, which allow therapists to review, refine, and
guide model outputs, can improve assessment accu-
racy and align more closely with clinical reasoning
(Lee et al., 2021; Turmo Vidal et al., 2025). However,
these design principles have yet to be extended into
practical, stroke-specific tools capable of informing
individual exercises or supporting session-to-session
adjustments in real-world rehabilitation.

2.3 Co-Design, Data Structures, and
Digital Infrastructure

Human-centred and co-design approaches are essen-
tial for ensuring that digital rehabilitation tools align
with therapist reasoning, patient needs, and practical
use in community-based recovery. Thematic analy-
sis and participatory design methods help surface re-
quirements and translate therapy experiences into ap-
plication interfaces and workflows that support both
clinicians and PwS (Braun and Clarke, 2021; Adam
et al., 2019). This is especially important in stroke
rehabilitation, where motor, cognitive, and sensory
changes influence how people use technology and
perform prescribed exercises, as observed clearly re-
flected during prototype testing in our workshops.

Although telerehabilitation can extend therapist
oversight into the home, many existing systems re-
main limited to basic exercise delivery or simple
check-ins, often still paper-based, with little integra-
tion of structured assessments, patient feedback, or
detailed prescription data (Kringle et al., 2023). Na-
tional guidelines further call for interoperable digi-
tal infrastructure, clear goal-setting, and continuity of
care across hospital, community, and remote settings
(National Institute for Health and Care Excellence,
2023; Intercollegiate Stroke Working Party, 2023).

Cross-platform applications provide a strong
foundation for this objective. Organising clinical in-
formation around entities such as Patient, Therapist,
Assessment, Exercise, and Session enables rich, longi-
tudinal datasets that capture both clinical progress and
engagement, supporting AI-driven personalisation.



2.4 Gap in Literature and Motivation
for an Integrated AI Pipeline

Although telerehabilitation has expanded access to re-
mote therapy sessions, current assistive systems ma-
jorly focus on basic communication or simple ex-
ercise delivery and limited support to the depth of
assessment, feedback capturing, and iterative adap-
tations, which is essentially needed for day-to-day
stroke rehabilitation progress (Kringle et al., 2023).
Similarly, advances in AI have shown positive out-
comes for modelling motor performance and predict-
ing rehabilitation needs, yet most applications re-
main task-specific and do not operate within a unified
workflow that connects therapist expertise, patient-
reported information, and per-session weekly data
(Senadheera et al., 2024). Equity-focused research
further highlights that digital innovations must be
designed to close, rather than widen, gaps in ac-
cess, particularly for community-based stroke sur-
vivors who already face barriers to sustained rehabil-
itation (Verma et al., 2022).

Addressing these gaps, this work proposes an inte-
grated, AI-enabled rehabilitation pipeline that incor-
porates supervised learning models, structured data
collection, and a co-designed digital application. The
objective is to provide PwS with individualised pro-
gram management and exercise progression in com-
munity settings. The co-design procedure, creation of
a synthetic dataset with clinical knowledge, and pre-
liminary assessment of the machine learning elements
integrated into this pipeline are described in the fol-
lowing sections.

3 Methodology
This work develops a decision-support pipeline
for community stroke rehabilitation, integrating co-
design, structured data modelling, clinically grounded
synthetic data generation, and supervised machine
learning. The workflow comprises four core compo-
nents: (i) Assessment metrics elicitation, (ii) a rela-
tional rehabilitation data model, (iii) Rule-based clin-
ically informed synthetic dataset generation, and (iv)
supervised machine learning models predicting and
reflecting therapist decision-making.

3.1 Co-Design and Assessment metrics
elicitation

Workshops were conducted with stroke therapists,
PwS, and HCI researchers to identify the data needed
for weekly progression decisions and how it is to
be captured within the tablet application. Therapists
prioritised core assessments (BBS, TUG), symptom
feedback from the patient(pain, perceived difficulty),

goal-setting fields, and FITT prescription parameters
after each exercise is completed in the session. These
sessions also shaped the broader data flow from base-
line assessment through weekly review and informed
how model outputs should be surfaced to clinicians
without automating decision-making.

3.2 Structured Rehabilitation Data
Model

The co-design process informed a relational schema
connecting six entities: Patient, Therapist, Assess-
ment, Exercise, Prescription, and Session (Figure 2).
Assessments capture functional scores and goals; pre-
scriptions encode FITT parameters and exercise as-
signments; and sessions record pain, difficulty, repe-
titions, and duration. This structure aligns with real
rehabilitation workflows and provides a stable foun-
dation for consistent, longitudinal feature extraction
required by machine-learning models.

Figure 2: Entity Relationship Diagram (ERD) illustrating
the data model linking patient, therapist, and exercise ses-
sion entities.



3.3 Rule-based Clinically Informed
Synthetic Dataset Generation

As real-world application data collection forms the
next stage of the project, we developed a clinically
informed rule-based generator to simulate exercise-
level rehabilitation patterns. The generator ini-
tialises each patient with demographics and func-
tional baselines (BBS, TUG, range of motion), sam-
pled from clinically discussed distributions reflecting
typical community settings. Each patient is then as-
signed a multi-exercise programme (three to six exer-
cises) drawn from the Next Step rehabilitation exer-
cise video repository, which organises exercises into
three progression levels across major stroke-affected
body areas, categories, difficulty, equipment, and de-
fined progression/regression links enabling clinically
meaningful sequencing.

Weekly updates combine the latent clinical state
BBS, TUG, range of motion, pain, perceived diffi-
culty, and current FITT dose into a readiness score
in [0,1]. This score incorporates functional capac-
ity, time since stroke, dose effects, and pain penal-
ties. It is mapped to a true recommendation ytrue ∈
{Regress,Sustain,Progress} using probabilistic rules
with per-patient balancing to ensure realistic mixes of
progression, sustaining, and regression. Controlled
label noise produces an observed label yobs, modelling
documentation variability near borderline or high-
pain scenarios. Clinical evolution (changes in BBS,
TUG, range of motion, pain, FITT duration) follows
ytrue, and a closed-loop titration rule adjusts FITT fre-
quency or intensity based on pain and recent progress.
Exercise programmes evolve accordingly: progress-
ing, regressing, or sustaining. Per-exercise outputs
include repetitions, duration, patient feedback, ther-
apist feedback, and updated assessments, creating a
progression-based exercise-level dataset suitable for
model development.

3.4 Machine-Learning Approaches
As outlined in the Introduction, the pipeline focuses
on three supervised machine learning tasks that reflect
weekly therapist decisions within community rehabil-
itation. Each model receives a feature vector of d in-
puts derived from demographics, assessments, FITT
prescriptions, exercise attributes, and patient-reported
feedback.

The first task predicts whether an exercise should
be Regressed, Sustained, or Progressed. The second
determines whether the programme structure should
change (e.g., add or remove exercises). The third esti-
mates personalised dosage targets, such as repetitions,
number of sets (sessions) and per-exercise duration,
for the following week. Formally, these tasks corre-

spond to:

f1 : Rd →{Regress,Sustain,Progress}, f2 : Rd →{0,1}, f3 : Rd → R2

We assess baseline models such as logistic regres-
sion, naı̈ve Bayes, multilayer perceptrons, and deci-
sion trees to investigate feasibility using our synthetic
dataset, providing an early indication of how these
approaches may support real-time decision-making
once in-app clinical data become available.

4 Application
4.1 System Architecture and Data Flow
The decision-support pipeline is deployed within a
cross-platform Flutter application designed for both
therapists and PwS. With co-designing insights, the
interface was iteratively prototyped to reflect real re-
habilitation workflows while remaining accessible for
individuals with motor, cognitive, or visual limita-
tions, and also to incorporate feedback from PwS
and their caregivers on the app functionalities could
be added that were not part of their usual rehabili-
tation, such as the ability to provide and track their
feedback, monitor their progress, and more. The app
collects routine clinical and patient-reported data in
both community and home settings, serving as the pri-
mary data-collection mechanism for the project’s later
stages.

Therapists can review AI-derived recommenda-
tions and adjust prescriptions through an adminis-
trative interface that consolidates assessments, func-
tional histories, symptom trends, and programme de-
tails, ensuring that clinical judgement remains cen-
tral and that any AI-generated routine is validated and
refined by the therapist before being assigned. PwS
complete daily or weekly sessions, record perfor-
mance for each exercise or session, and report symp-
tom feedback using a simplified interface. Real-time
synchronisation of all interactions with the backend
allows for tracking in accordance with the structured
data model described in Methodology.

The patient-facing feedback screen (Figure 3) en-
ables PwS to record repetitions, duration, pain, per-
ceived difficulty, fatigue, and posture-related obser-
vations. These data fields directly support weekly
progression analysis and are informed by validated
symptom and activity measures reported in the liter-
ature (Pindus et al., 2018; Kunkel et al., 2015). An
optional text-based feedback field allows individuals
to describe discomfort, emotional factors, or contex-
tual challenges in their own words, adding qualita-
tive depth that can later support NLP-focused mod-
elling and analyses of access to rehabilitation services
(Verma et al., 2022; NHS England, 2023; Farooqi and
et al., 2022).



Figure 3: Patient Feedback Screen interface for providing
pain, difficulty, fatigue, repetitions, and duration.

4.2 Model Integration and Decision
Support

At each reassessment point, the application merges
functional assessments, symptom trends, exercise at-
tributes, and recent session performance into a struc-
tured feature vector that is forwarded to the analytics
layer. The deployed models produce three outputs: an
exercise-level recommendation (Progress, Sustain, or
Regress); a programme-level classification indicating
whether exercises should be added or removed; and
updated FITT dosage estimates for the exercises that
remain. These outputs appear in the therapist inter-
face as decision-support prompts rather than prescrip-
tive instructions, preserving clinical reasoning and re-
flecting principles of human–AI collaboration (Lee
et al., 2021; Lee et al., 2022; Turmo Vidal et al.,
2025).

A forthcoming clinical pilot involving 5–8 PwS
over 4–6 weeks will deploy the system in shadow
mode, where model outputs are recorded but do not
influence clinical decision-making. This approach
allows direct comparison between algorithmic rec-
ommendations and therapist judgement, while also
examining how the system fits into routine practice
and how acceptable it is within community settings
(Kringle et al., 2023; American Stroke Association,
2025; Thayabaranathan and Cadilhac, 2025). As real-
world data become available, the influence of syn-
thetic and generative samples will be progressively re-
duced, enabling a safe and equitable transition toward
clinically aligned, AI-supported rehabilitation work-
flows (Verma et al., 2022; NHS England, 2023; De-
partment of Health and Social Care, 2022).

5 Results
The synthetic dataset generated realistic rehabilita-
tion dynamics across 336 sessions and five PwS pro-
files, with ages ranging from 45 to 80 years and

60–72 recorded sessions per individual. These pro-
files exhibited clinically coherent diversity: younger
individuals (e.g., 45–57 years) showed faster early
gains, while older individuals (77–80 years) demon-
strated more gradual progress and higher variabil-
ity in pain and difficulty ratings. Across all pro-
files, higher pain consistently increased perceived dif-
ficulty and reduced repetitions, while BBS and TUG
improvements were most prominent during the first
two weeks before stabilising. TUG performance reli-
ably differentiated Progress from Sustain/Regress de-
cisions in a manner consistent with established mobil-
ity markers in community rehabilitation. The result-
ing label distribution - 41% Sustain, 33% Progress,
25% Regress—aligned closely with expected thera-
pist decision patterns, and patient-specific proportions
(e.g., Patient 2 with 50% Sustain; Patient 4 with 33%
Regress) further confirmed the internal coherence of
the generator.

Table 1: Performance of baseline models on prescription
classification.

Model Type Weighted F1

Logistic Regression Linear 0.516
Naı̈ve Bayes Stochastic 0.476
MLP Neural Network 0.793
Decision Tree Non-linear 0.902

As shown in Table 1, the non-linear models, par-
ticularly the Multi-Layer Perceptron with a weighted
F1-score of 79.3% and the Decision Tree reach-
ing 90.2%, substantially outperformed the linear and
stochastic baselines. Logistic Regression achieved
51.6% and Naı̈ve Bayes 47.6%, reflecting their diffi-
culty in capturing the non-linear, threshold-based re-
lationships embedded in the recovery patterns. Given
this imbalance, the weighted F1-score was adopted
as the primary evaluation metric, clearly highlight-
ing the advantage of non-linear approaches in mod-
elling the nuanced decision rules present in the syn-
thetic dataset.

Notably, the Decision Tree demonstrated both su-
perior accuracy and strong interpretability: as illus-
trated in Figure 4, the model first splits on Perceived
Difficulty (≤ 3.5) to distinguish manageable sessions
from those where patients report higher strain. When
difficulty is low, the subsequent split on Week Number
(≤ 4.5) reflects expected early-phase improvements,
predicting Progress in the initial weeks and Regress
once gains begin to plateau. When difficulty is high,
the tree evaluates functional mobility using the TUG
Score (≤ 15.4), sustaining exercises when mobility
remains adequate and regressing them when slower
TUG times indicate reduced stability or higher fall



Figure 4: Interpretable decision tree illustrating the dominant features influencing weekly exercise recommendations.

risk. These learned thresholds mirror therapist heuris-
tics, showing that the model captures clinically mean-
ingful nuances embedded within the synthetic dataset.

Two additional components of the pipeline
programme-level classification (exercise add/remove
decisions) and FITT multi-output prediction—were
successfully prototyped and will be fully validated us-
ing real data in the upcoming 5–8 PwS clinical pilot.
An NLP pipeline for analysing therapist and patient
free-text feedback will be incorporated once real-
world annotations are available, and a conditional dif-
fusion model is planned to generate richer and more
diverse recovery scenarios, improving robustness on
rare progression patterns and downstream ML tasks.
Overall, these developments position the pipeline for
real-world data collection and clinical validation.
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7 Conclusion
This position paper has presented a co-designed, AI-
enabled pipeline to support exercise programme man-
agement for persons with stroke in community set-
tings. Grounded in rehabilitation guidelines and
human-centred design, the tablet application inte-
grates therapist-facing and patient-facing interfaces
with a structured data model spanning patients, as-
sessments, prescriptions, sessions, and exercise-level
feedback. Using this schema, we developed a clin-

ically informed synthetic dataset that encodes func-
tional progression, symptom reports, and therapist de-
cision patterns, enabling early experimentation with
supervised machine learning models before large-
scale clinical deployment. Our initial modelling re-
sults demonstrate that non-linear approaches, partic-
ularly decision trees and multilayer perceptrons, can
effectively capture the threshold-based and non-linear
relationships that determine and interpret the weekly
progression decisions. The correspondence between
the learned tree structure and clinical reasoning val-
idates the synthetic generator and highlights the po-
tential of AI models to augment rather than replace
therapist judgment.

Next, the data collection using the application will
be implemented in a clinical pilot involving 5–8 PwS
over 4–6 weeks, operating in a real setting to com-
pare algorithmic recommendations with actual thera-
pist decisions and assess usability in routine commu-
nity practice. Clinical data collected during this pilot
will be integrated with the synthetic dataset through
real–synthetic fusion, while NLP and generative AI
including diffusion models will support richer inter-
pretation of free-text feedback and enable simulation
of diverse rehabilitation trajectories. To ensure AI-
generated recommendations translate into tangible,
comprehensible actions, the graded video-based ex-
ercise repository can be expanded to cover additional
stroke-affected body areas and more nuanced progres-
sion levels.

Overall, this work advocates for co-designed,
clinician-centred AI as an assistive decision-support
system, strengthening therapist decision-making and
enabling safe, scalable, and clinically grounded com-
munity stroke rehabilitation.
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