

The interface of sustainability and risk in supply chain management: Insights and implications

International Journal of Engineering Business Management
Volume 18: 1–15
© The Author(s) 2026
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/18479790251411164
journals.sagepub.com/home/enb

Ying Li¹ , Helen Walker¹, Jonathan Gosling¹ and Ying Kei Tse¹

Abstract

Due to increasing global political and economic uncertainties and awakening public awareness caused by drastic climate change in recent years, stakeholders are increasingly demanding sustainability and robustness in supply chains. During the pandemic, supply chains experienced multiple pressures, particularly for products in high demand such as food and medical supplies. In this context, researchers have devoted attention to sustainable supply chain management (SSCM) and supply chain risk management (SCRM). That made these two research fields have many intersections, but currently there is no literature discussing the similarities and differences between the two, and there is no definitive definition of the nexus between the two. This study makes a novel contribution by executing a structured literature review of 65 articles related to SSCM and SCRM published between 2007 and 2025, conducting descriptive and thematic analyses to explore the interface between them, developing a theoretical framework, identifying key lessons for practitioners and illuminating future research directions.

Keywords

sustainable supply chain management, supply chain risk management, structured literature review, risk types, sustainability development, sustainable supply chain risk management

Received: 15 July 2025; accepted: 8 December 2025

Introduction

In recent years, systemic changes in the global political, economic, and healthcare landscape have impacted on supply chains. For example, the war between Russia and Ukraine in 2022 led to food and energy supply problems in Europe.¹ The impact of COVID-19 on supply chains has been profound, reflected in supply and demand,^{2,3} and in production, transportation and sales in global supply chains.⁴ It has been suggested that during the pandemic, 94% of global Fortune 1000 companies experienced disruptions in their supply chains (Fortune 2020)¹. Whether it is food agriculture,⁵ healthcare,⁶ manufacturing or service sectors,⁷ all supply chains seem to have been negatively impacted by COVID-19.⁸

Mass have also become more aware of the climate crisis and its consequences, such as extreme temperatures, flooding and wildfires, which have heightened societal

concerns. Companies are being scrutinised more closely for how their supply chains impact on the environment. For example, in August 2023, Japan's Tokyo Electric Power Company released nuclear contaminated water into the Pacific Ocean, raising concerns about nuclear contamination and triggering a fishing crisis.⁹ Stakeholders such as customers, employees, government regulators and NGOs, are paying more attention to sustainability in supply chains, requiring supply chain decision makers to solve and manage environmental and social issues.¹⁰

¹Logistics and Operations Management Section, Cardiff Business School, Cardiff University, Cardiff, UK

Corresponding author:

Ying Li, Logistics and Operations Management Section, Cardiff Business School, Cardiff University, Colum Drive, Cardiff CF10 3EU, UK.
Email: ly332@cardiff.ac.uk

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (<https://creativecommons.org/licenses/by-nc/4.0/>) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (<https://us.sagepub.com/en-us/nam/open-access-at-sage>).

In order to manage the social, environmental and economic impacts in supply chains caused by risk events and uncontrollable factors, researchers have turned their attention to sustainable supply chain management (SSCM) and supply chain risk management (SCRM), with a view to managing supply chain risks from a sustainability perspective. Over the past two decades, there has been a growing interest in both fields, as evidenced by an increase in the number of published papers. Although both are separate fields, they are both important aspects of supply chain research. If SSCM and SCRM continue to develop as two separate fields without integration, it will be difficult to adequately explain the interrelationship between risk initiatives and sustainability initiatives within the supply chain. Therefore, the integration of these two fields in this study is both meaningful and necessary.

There have been many definitions of SSCM and SCRM over the years, and we discuss some highly cited and more recent definitions here. A top cited definition is provided by Seuring and Mueller (2008), who suggest that SSCM is “managing the flow of materials, information and capital while collaborating with companies that are in the supply chain and taking into account the economic, environmental and social goals stemming from customers and stakeholders in sustainable development.” More recently, SSCM has been defined as the need to “... design, organize, coordinate and control the supply chain without harming the social and environmental system while ensuring economic development.¹¹” Although this newer definition appears similar to that of Seuring and Müller in emphasizing the economic, environmental, and social dimensions of supply chains, its underlying logic differs significantly. In Seuring and Müller’s definition, economic objectives are treated as goals on an equal footing with environmental and social objectives, implying that firms should actively pursue initiatives to achieve all three dimensions of sustainability. In contrast, the newer definition regards economic goals as a baseline necessary for a firm’s operation, suggesting that as long as business activities do not harm environmental or social systems, sustainability is achieved. This distinction in the conceptualization of SSCM highlights ongoing debates and divergences within the academic community.

A regularly cited definition of SCRM is provided by Christopher et al. (2003) who suggest that SCRM is “the identification of potential sources of risk and implementation of appropriate strategies through a coordinated approach among supply chain members, to reduce supply chain vulnerability”. More recently, SCRM has been defined as “the identification, assessment, treatment, and monitoring of supply chain risks, with the aid of the internal implementation of tools, techniques and strategies and of external coordination and collaboration with supply chain members so as to reduce vulnerability and ensure continuity coupled with profitability, leading to competitive advantage.¹²” These evolving definitions indicate that risks within

supply chains have become increasingly complex, requiring firms to manage and control them through systematic processes involving both internal mechanisms and external collaboration at technical and operational levels.

As sustainability and risk management have become intertwined goals in supply chains, many scholars have added *sustainable elements to risk models*, addressing sustainability and robustness simultaneously.¹³⁻²⁰ For example, Ghadge et al. (2016) developed a contemporary model that incorporates environmental sustainability metrics alongside supply chain risk factors. Golpîra et al. (2017) introduced the concept of the Green Opportunistic Supply Chain (GrOSC), integrating environmental considerations and risk into a unified framework. Similarly, Darom et al. (2018) incorporated carbon emissions and safety stock into their analysis and proposed a two-stage recovery model for continuous supply chains to mitigate the effects of supply disruptions.

Conversely, some studies have added risk elements to sustainability models to enhance the resilience of sustainable supply chains.^{21,22} For instance, Abdel-Basset and Mohamed embedded risk management strategies into sustainable supply chain management by considering both financial and environmental risks and developed a TOPSIS-based model to strengthen supply chain resilience. Building on this line of inquiry, Giannakis and Papadopoulos conceptualized supply chain sustainability as an extension of the risk management process and advanced an operational perspective on sustainable supply chain management. This perspective suggests that sustainability itself has become a nexus of risks,²³ forming the basis upon which the present study further extends this stream of research.

Numerous literature review studies have investigated SCRM²⁴⁻²⁶ and SSCM.^{27,28} For example, Ho et al. (2015) conducted a comprehensive review of SCRM, analyzing the types of risks, risk factors, and risk management approaches identified in previous supply chain research. Pournader et al. (2020) reviewed and synthesized emerging themes in the SCRM literature, while Seuring and Müller (2008) developed a conceptual framework for SSCM based on existing studies and outlined directions for future research. Reviews from both fields have consistently indicated that SSCM and SCRM have evolved into mature research domains. However, it is noteworthy that while these studies mention each other to varying degrees, they have not explicitly integrated the two concepts or explored the interface between them. The interface between SSCM and SCRM is becoming increasingly important as real-world business practices demand and develop. Indeed, this intersection appears to be emerging as a distinct research domain in its own right. Accordingly, this study aims to answer the following research questions (RQs):

RQ1: What is the interface and the current state of research between SSCM and SCRM?

RQ2: What are the problems at the interface between SSCM and SCRM? What are the implications for future research?

In order to answer these questions, a comprehensive review of past studies has been conducted to clarify how to define the interface and nexus between SSCM and SCRM, to explore key factors affecting SSCM and SCRM and identify practical implications. The interface of SSCM and SCRM as an emerging field has not been reviewed, so there is a necessary and urgent to conduct a systematic review of this intersection field.

This study makes three contributions. Firstly, the fuzzy area between SSCM and SCRM is explored to clarify the boundaries of SSCM and SCRM, which is conducive to the discussion and development of both SSCM and SCRM. Secondly, the study builds on the thematic analysis to develop a theoretical framework (Figure 4) for understanding the interface between SSCM and SCRM, which we term Sustainable Supply Chain Risk Management (SSCRM). We review the methods and factors identified by previous studies to solve sustainability and risk problems in the supply chain, and integrate operations and technology into the theoretical framework, providing a reference point for scholars and practitioners to solve similar problems in the future. Finally, based on the interface of SSCM and SCRM, we discuss the current status and development direction of this emerging field, laying a foundation for future research and theoretical development.

The remainder of this paper is structured as follows. In the next section, the research methodology is introduced, including the criteria for selecting appropriate papers as well as the procedures for data processing and coding. The third findings section presents both descriptive and thematic analyses of the relevant literature, summarizing key themes and theoretical development trends that integrate SSCM and SCRM. In the fourth discussion section, the study addresses the proposed research questions based on the findings, synthesizing the current research status at the intersection of

SSCM and SCRM and developing a reasonable and practical definition of SSCRM grounded in the literature. Finally, the last section discusses the research results, highlights the limitations of this study, and outlines directions for future research.

Method

Selection of articles

This study conducted a systematic literature review and adopted the steps of Tranfield et al. (2003), by conducting a scoping study ([Appendix A of the Supplemental Material](#)) to clarify search terms and inclusion and exclusion criteria, followed by filtering the articles for relevance by reading the abstracts and then full text as necessary.²⁹ In order to minimize subjectivity in the selection process, one author led the article selection process, and after each phase all authors independently checked the article selections and met to discuss any discrepancies until a consensus was reached. The selection process also met the modified AMSTAR criteria to assess the quality of literature reviews,³⁰ as shown in [Appendix B in the Supplemental Material](#).

[Table 1](#) shows the search and screening process for relevant articles that combined both SSCM and SCRM. Search terms were entered as Boolean searches in the Scopus and EBSCO databases. A comprehensive literature search was conducted for “abstract”, “keywords” and “title”, and the search results were screened according to the inclusion and exclusion criteria. The full text was read for those articles where the relevance was difficult to determine, and literature of low relevance was removed.

Coding of articles identified in main study

The final 65 articles ([Appendix C of Supplemental Materials](#)) were coded and data was recorded in a spreadsheet, to identify the characteristics of the 65 studies. We have provided an illustrative Table of some of the coding

Table 1. Number of articles identified in main study.

Search terms	Number of articles in scopus	Number of articles in EBSCO
Search key words (supply chain*) AND (sustain* OR green) AND (social OR environment) AND (risk) AND (disruption OR resilien* OR robust OR uncertain) in abstract, keywords, title	512	373
Limit by English language	499	360
Limit by peer reviewed journal article rather than conference paper, book, book chapter, review, conference review, note, etc.	369	321
Limit by journal fields, business and management	210	161
Exclude papers to be published	121	107
Read abstract, and read full text when necessary	67	58
Remove duplicate items	77	
Final number of articles	65	

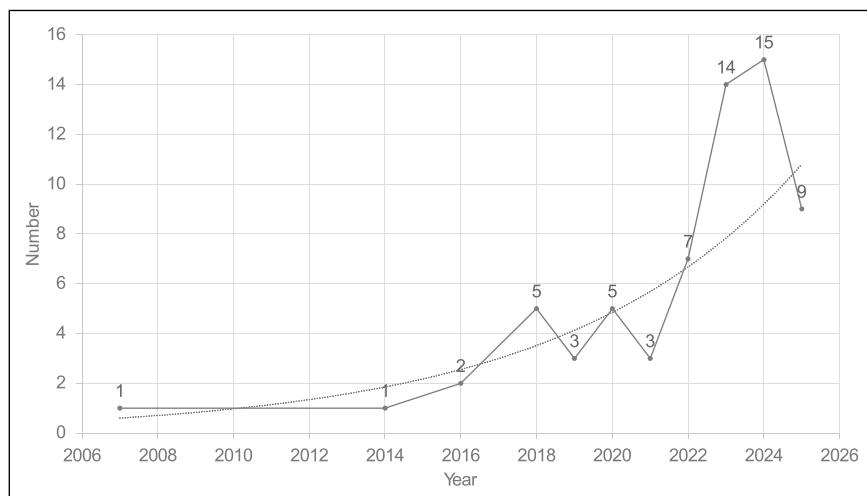
categories for the first five articles ([Appendix D of Supplemental Materials](#)). The descriptive analysis considered publication trends by year, industries and sectors by Global Industry Classification Standard (GICS), and research methods (Modelling, Experimental Research, Case Study, Survey, Interview, Grounded Theory Approach, Literature Review, Observation). The thematic analysis of the dataset identified sustainability factors (social, economic, environmental) and influencing factors (operational, technology), and associated risk theme categories (environmental, social, economic, operational, technology).

Findings

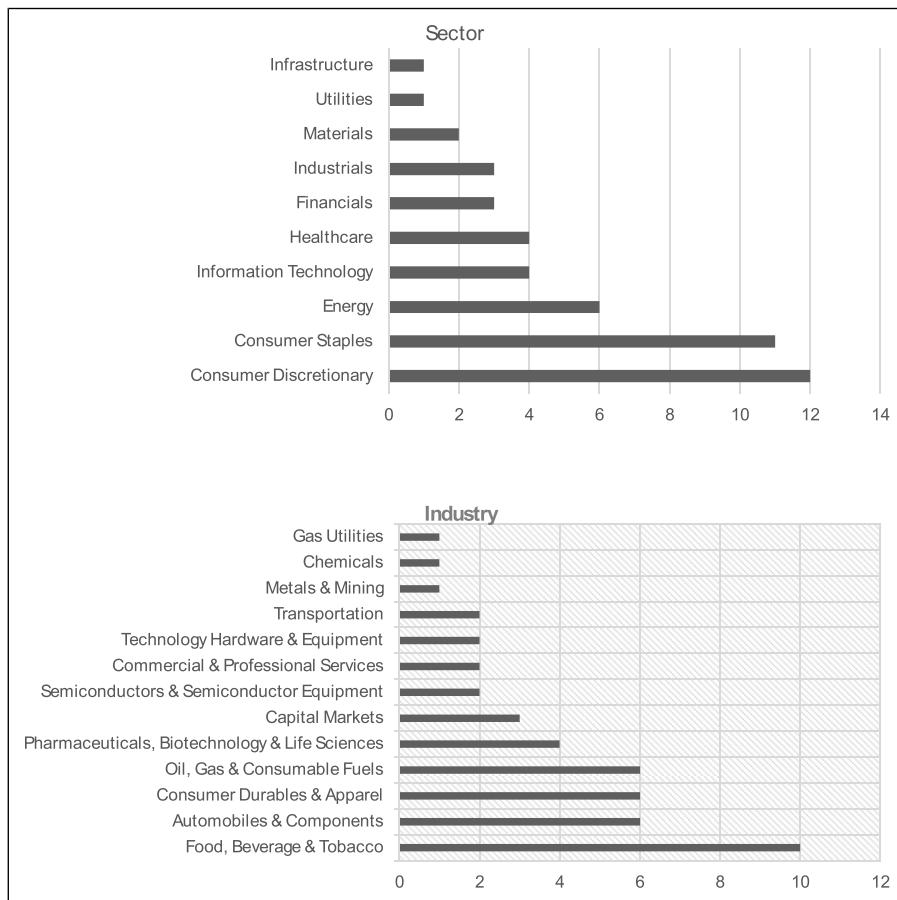
Descriptive analysis

Publications. The number of articles discuss both SSCM and SCRM is increasing over time. The solid line in [Figure 1](#) represents the number of articles published over time, while the dashed line represents the trend in the number of articles published in the field, showing articles published up to November 2025. Before 2014, there were few articles discussing SSCM and SCRM at the same time, while after 2016, the idea of combining sustainability and risk in the supply chain field gradually became popular and gained explosive attention after 2020. About 81% of the articles were published at this time, which may be closely related to the outbreak of the pandemic and the impact on the global supply chain system. This indicates that the overlapping part of the two fields of risk and sustainability is growing as an independent research area.

Sectors. [Figure 2](#) shows the sectors and industries focused on in articles, these industries are categorized according to the Global Industry Classification Standard (GICS). Consumer Discretionary and Consumer Staples have received


the most attention within these sectors, and within the industries within these sectors, Food, Beverage & Tobacco, Consumer Durables & Apparel and Automobiles & Components, Oil, Gas & Consumable Fuels were discussed more often. The results indicate that industries involving tangible products have received considerably more focus within this intersectional field compared to industries without tangible products, such as services or finance. This discrepancy in attention across industries may be related to the varying sustainability needs and pressures faced by firms in different sectors.

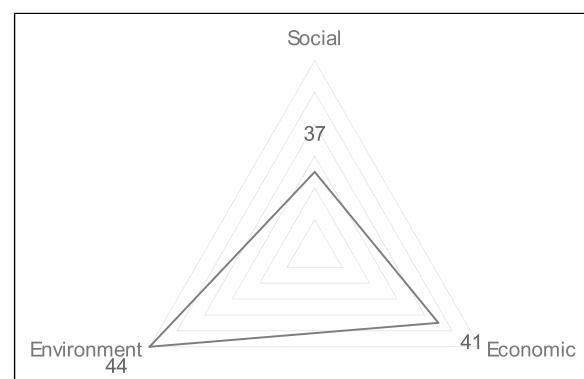
Methods adopted in studies. [Table 2](#) shows the methods adopted across the 65 articles, with some articles employing more than two methods, showing that the majority adopt statistical analysis of company data to develop supply chain models, followed by case studies, surveys, interviews and experimental designs. It is apparent that there are a lot more studies adopting quantitative methods as a research strategy to investigate the combination of SSCM and SCRM. Notably, in addressing supply chain network optimization problems, multi-objective or multi-stage decision-making and planning models are most commonly used. However, when exploring the impact of specific factors on supply chain performance, researchers typically employ qualitative methods such as interviews or quantitative techniques like Partial Least Squares Structural Equation Modeling (PLS-SEM).


Thematic analysis

Sustainability elements. The articles were coded as social, environmental, and economic, and it is apparent that many articles address all three SEE elements.

[Figure 3](#) shows that “environment” received the most attention across the articles, and “social” and “economic”

Figure 1. Distribution of journal articles over time.


Figure 2. Distribution of sectors and industries across articles.

received less attention. “Social” and “environment” were often regarded as the ‘icing on the cake’ after meeting the organization’s economic goals and needs. The notation “N/A” in Table 3 does not indicate the absence of specific focal elements. Rather, it refers to cases where the elements of interest cannot be simply represented by the categories Social, Economic, or Environmental (SEE). These studies focus more on the overall concept of sustainability, or on other factors beyond SEE that are nonetheless highly relevant to sustainable development.

Table 2. Research methods adopted across studies.

Research method	Number	Cites
Modelling	38	14,16,31–66
Experimental research	14	18,53,56,65,67–76
Case study	12	17,34,36,41,43,47,60,64,66,77–79
Survey	10	59,63,71,80–86
Interview	8	58,61,62,71,80,85–88
Grounded theory approach	2	89,90
Literature review	1	46
Observation	1	70

Factors affecting SSCM and SCRM. Table 4 shows the factors affecting SSCM identified across the 65 articles. As well as SEE factors, operations⁹¹ and technology^{30–32} also emerged strongly as additional categories during the course of the analysis, as many studies are actively exploring other sustainable development possibilities beyond the three pillars. Example studies include the application of artificial

Figure 3. Which sustainability elements received the most attention?

Table 3. Elements of sustainability addressed in articles (N/A refers to articles not easily categorised as SEE).

Elements of sustainability	Number
Social, economic & environment	23
Economic & environment	9
Economic	7
Social	6
Environment	6
N/A	6
Social & environment	6
Social & economic	2
Total	65

intelligence technology to pursue the improvement of supply chain resilience,⁸² or the adoption of new production technology to improve production efficiency.^{71,87} These influencing factors also reveal which practical problems are paid more attention to in SSCM research. For example, in the environment theme, greenhouse gas emissions and related factors receive a lot of attention. In the economy theme, research has tended to focus on cost reduction in production.

Table 5 shows the factors affecting SCRM identified across the 65 articles. The factors affecting SCRM in the articles were categorised according to the source of risk. Often articles focused on single or several risk factors, or the lack of attention to the impact of risk on the overall supply chain. However, it is worth mentioning that since 2020, risk events represented by Covid-19 have understandably attracted more attention from scholars and often appear in papers.

Risk factors can also be classified according to SEE factors. It is clear there is some overlap in items when looking at the factors affecting SSCM and SCRM, because managing and controlling risk in the supply chain is to some extent promoting the sustainable development of the supply chain. The objectives of the two are similar in the process of supply chain management.

Themes from studies combining SSCM and SCRM

The literature review identified a range of studies that addressed SSCM and SCRM issues, which are discussed by theme below.

Environmental sustainability and risk. Some authors have a broad approach to 'environment', including 'political environment' or 'business environment', emphasizing that the realization of sustainability requires attention to the potential risks of the business environment within the industry.⁹³ Fattahi et al. (2021) quantified air pollutants and greenhouse gas emissions according to risk measures, aiming to reduce the harm of environmental risks in the supply

chain.⁹⁴ Ghadge et al. (2016) included sustainable facility location as a required consideration to reduce carbon emissions during operations and transportation by reducing the total distance covered by the supply chain network.¹⁴

Brandenburg (2017) considers how to configure new product supply chains for ecological efficiency, and through the modelling method, explores the operations and the relations between financial and environment measures and the resulting risk.¹³ da Silva et al. (2020) considered factors such as demand uncertainty and environmental monetization, and developed a general decision support tool that takes into account both risk minimization and expected economic and environmental impact maximization.⁹⁵ Darom et al. (2018) consider supply disruptions and the cost of carbon emissions, so the supply chain can become environmentally sustainable and robust.¹⁶ Khan et al. (2022) evaluated five supply chain strategies in order to enable firms to select the best green SCM strategic decision based on the attributes of sustainability.⁹⁶

Social sustainability and risk. Some studies have explored how social sustainability affects supply chain risk. For example, employee benefits were suspended in favour of profit during the pandemic lockdown, leading to the proliferation of modern slavery.⁹⁷ Also focusing on modern slavery, the risk of disruption to the social sustainability of supply chains has been discussed.⁹⁸ In the humanitarian field, one study has focused on external emergency response and humanitarian logistics in the face of the pandemic.⁹⁹ Another study has proposed a comprehensive model for sustainable humanitarian supply chain (SHSC) decision-making.¹⁰⁰ These studies show that attention to social responsibility can influence risk in the supply chain. Adopting social sustainability measures can convey a responsible corporate image to consumers and regulators, and can reduce the reputational risks associated with negative social supply chain practices.

Economic sustainability and risk. Some studies consider the negative impact of supply chain risk on economic sustainability. One study found that sustainable supply chain practices (SSCP) can help organisations reduce their financial risks.¹⁸ Jabbarzadeh et al. (2019) believe that economy and environment are contradictory in many cases, and it is difficult for organisations to minimize the overall environmental impact and the total cost of the supply chain at the same time, so they propose a multi-objective optimization model to help achieve a strategic balance between the two.¹⁰¹

Combining SEE elements and risk. Some studies have combined the SEE elements and risk to offer models that bring benefits for the organisation, the supply chain and contributing to sustainable development in society.¹⁰² Ebrahimi (2018) attempts to establish a stochastic multi-objective model that simultaneously considers total cost,

Table 4. Factors affecting SSCM.

Theme	Sub-theme	Factors affecting SSCM
Social	Environmental, social, and governance (ESG)	Social impact ³¹ Social expectations ³¹ Corporate social responsibility ^{56,75,80}
	Labour rights	Life-threatening issues ³¹ Social benefits ⁶⁰ Job creation ^{43,48,50,52,54} NGO's ability to monitor ³⁸
Environment	Public welfare	Carbon emission ^{14,16,35,41,44,47,49,50,54,60,61,78}
	Pollution	Waste elimination ⁷⁷
	Resources, waste	
Economic	Financial	Economic development ^{31,76} Financial objective ⁴⁴
	Cost	Cost premium ³⁷ Total cost minimization ^{52,66} Costs of carbon dioxide emissions and transportation ⁴⁷
Operations	Operations	Supply chain risk management ^{73,77} Green supplier development ⁶⁷ Supplier relationship management (SRM) ⁶⁷ Risk attitudes ¹⁷
	Production	Cleaner production ⁷⁷ Energy production ⁴⁸
	Culture	Organization culture ⁶⁷
Technology	Technical	Artificial intelligence ⁹²
	Innovation	Innovation and flexibility ^{53,67,71}

environment and risk to improve the sustainability of the supply chain network.¹⁰³ Kolotzek et al. (2018) evaluated supply chains in terms of supply risk, environmental impact, and social impact, developing an assessment model that shows that sustainability-oriented companies are more likely to be economically successful.¹⁰⁴ Tat & Heydari (2021) proposed a two-tier optimal coordination model that simultaneously considered environmental, economic and social responsibility indicators to help companies address the risk of pharmaceutical waste.¹⁰⁵ Bai et al. (2022) proposed a MCDM method that uses q-ROF to assess the SCSC risk of manufacturers to help achieve sustainability.⁹³

Kumar et al. (2021) analysed risk mitigation strategies during the pandemic, ranked preferences and provided priority weights for risk mitigation strategies.¹⁰⁶ Some studies include sustainability factors in the priority weights of risk mitigation strategies. For example, Darom et al. (2018) included the carbon emission cost of supply chain logistics activities in the measurement index, took safety inventory as a mitigation strategy, and established a supply chain disruption recovery model, which can effectively control risks in the short term.¹⁶ In the long-term, it can help organisations reduce carbon emissions and establish a good corporate reputation, thus reducing the probability of future risks.

Discussion

This study sought to answer the following research questions, which are answered in turn in the sections below.

What is the interface and the current state of research between SSCM and SCRM?

SSCM and SCRM share some similarity of purpose. Some scholars believe that improving sustainability can effectively reduce supply disruption caused by risk events, and conversely improving the robustness can also improve sustainability in supply chain.^{17,18,35,60} In terms of how they are managed, SSCM usually takes social, environment and economic as the starting point and adopts a series of sustainable practices to improve the sustainable development of firms, while SCRM often starts from the risk and adopts risk management practices to achieve the robust development of firms. Firms can improve profitability and business continuity through effective SSCM and SCRM.

However, some scholars believe that sustainability and risk in supply chains are different goals in supply chain management,^{33,42,107,108} so scholars often choose multi-objective optimization methods to solve the problems that need to consider both sustainability and risk.

Although SSCM and SCRM are conceptually independent, there is no clear boundary between them. The two domains influence each other and form an overlapping area, which can represent the risk-related aspects within SSCM or the sustainability-related aspects within SCRM. Looking across the studies we analysed, no article explicitly puts forward a definition of the interface between SSCM and SCRM. The overlap can be seen as either resilient/robust SSCM, or as sustainable SCRM. We also found that

Table 5. Factors affecting SCRM.

Source of risk	Sub-theme	Factors affecting SCRM
Environmental	Natural	Natural disasters ^{34,59,72,73,81,89} Weather variability ⁹² Biological and environmental risks ³⁴ Insect infestation ⁸¹
	Disease	Diseases or epidemic ^{59,62} COVID-19 ^{40,47,55,70,75,85}
	Resource	Water scarcity ⁹²
	Pollution & waste	Waste ^{79,92} Pollution ^{72,92} Environmental accident ⁷² Energy consumption ⁷² Excessive packaging ⁷²
	Labour rights	Unhealthy and dangerous working environment ⁹² Safety issue related to workers ⁸¹ Working hours ⁷² Unfair wages/rate ⁷² Discrimination ⁷² Health and safety ⁷² Unbalanced demand in labour ⁸¹ Safety violations and social welfare violations ⁵⁸
	Public welfare	External risk exposure ³⁷
	Social governance	Lack of linkage between institution ⁹² Industry and government ⁹² Theft and pilferage ⁸¹ Integration/relationship risk ⁷² Information fraud ³⁵
	Political & legal risks	Socio-political instability ⁶² Regulatory and administrative risks ⁶² Public policy and institutional risks ³⁴ Political and security risks ³⁴ Change of legislation and political instability ⁵⁹ Geo-political conflicts and challenges ^{36,73,90} Cultural and political risk ^{72,89}
	Corporation Financial risk	Financial risk ^{18,59,62,76} Volatility of price and cost ^{72,92} Cost of buffer stocks ⁸¹
	Macro-economic	Inflation costs ⁵⁸ Financial crisis ^{59,92}
Economic	Financial regulation	Exchange rate fluctuation ^{59,60} Corruption ⁹² Country litigation risk (e.g. Tax/customs policy) ⁷² Antitrust claim/dishonesty claim ⁷²

(continued)

Table 5. (continued)

Source of risk	Sub-theme	Factors affecting SCRM
Operations	Supply	Feedstock seasonality (supply uncertainty) ³¹ Outsourcing risk ⁵⁹ Supplier failure ^{59,64} Time delay risk ⁶⁰ Raw material quality ⁶⁰ Capacity fluctuations ⁶² Quality problem ^{59,62} Delivery reliability ⁵¹ Product/Process complexity ⁶² Frequency of design changes ⁶²
	Product	Logistical and infrastructural risks ³⁴ Transportation risks ⁵⁹ Transport disruptions ⁹² Infrastructural risks ^{34,62}
	Transport	Safety stock ¹⁶ Inventory flows ³² Lack of proper storage facilities ⁹² Lack of storage capacity ⁸¹ Improper storage conditions ⁸¹ Improper inventory management ⁸¹
	Inventory	Market uncertainty ^{17,89} Stakeholder demands ^{33,74} Uncertainty of demand ⁵⁹ Key customer failure ⁵⁹ Market changes ⁵⁹ Unanticipated (or volatile) customer demand ⁶² Insufficient or distorted order information ⁶² Competitive pressure ³³ Shift in consumer preference ⁸¹ Human resource regulatory risks ⁵⁸
	Market	Lack of a long-term approach for mitigating SC risks ⁸¹ Improper information transfer between stakeholders ⁸¹ Lack of government supportive policies ⁸¹ Lack of commitment from the top management ⁸¹ Labour strikes ⁸¹ Lack of an internal auditing program ⁸¹
	Institutional risk	IT system risks ⁶² Technological risks ⁷¹ Inadequate manufacturing, processing, and/or logistics capability ⁶² Improper tracking and traceability system ⁸¹ Poor quality control ⁸¹ Technology failure ⁵⁹ Technological change ⁵⁹ Scarcity of skilled personnel ⁵⁹
	Technology	Technical risks
	Innovation	

operations and technology emerged (Table 4) as strong factors alongside the traditional SEE sustainable dimensions. We propose the term “Sustainable Supply Chain Risk Management” (SSCRM) to describe this overlap. We therefore offer the following definition of SSCRM:

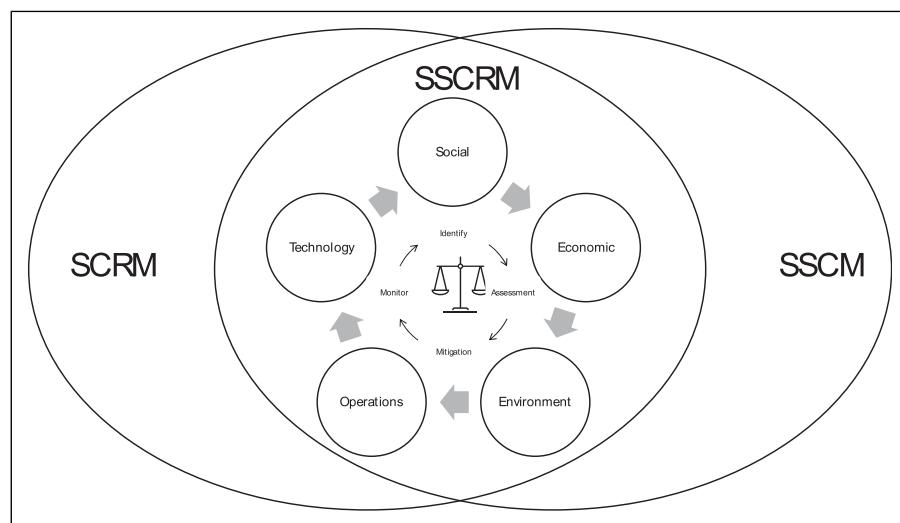
‘SSCRM entails balancing economic, social, environmental, operational and technology impacts across the whole supply chain, so that risks are identified, assessed, mitigated and monitored in all processes in order to pursue reducing vulnerability and ensuring profitability and business continuity’.

This definition integrates the concepts of SSCM and SCRM, and considers the scope (whole supply chain), factors (balance SEE, operations and technology; identify, assess, mitigate and monitor risks) and goals (pursue SDG; reduce vulnerability; ensure profitability and business continuity) of SSCRM. The definition also has an emphasis on the long term, for example focusing on carbon emissions and labour rights may not bring significant benefits in the short term, but may help organizations achieve sustainability and risk management goals in the longer term.

We propose a theoretical framework of SSCRM, that encapsulates the various aspects of the definition of SSCRM that we offer above. The proposed SSCRM framework is directly derived from the patterns identified in our systematic analysis. Specifically, the five domains integrated into the framework (Social, Economic, Environmental, Operational and Technology) emerged consistently across the reviewed studies as the principal factors influencing both sustainability-oriented and risk-oriented supply chain practices (Tables 4 and 5). In parallel, the four risk management stages (risk identification, assessment, mitigation and monitoring) were the dominant processual elements through which SCRM was conceptualised in the literature.

As shown in Figure 4, by integrating the five domains of SSCM with the four processual stages of SCRM, this framework reveals a core mechanism through which both supply chain sustainability and supply chain robustness can be simultaneously enhanced. Therefore, the framework not only synthesizes the most recurring themes identified in prior research but also highlights the distinctive theoretical positioning of SSCRM at the intersection of SSCM and SCRM.

Furthermore, several observations can be made at current state of research area in SSCRM from our analysis of the literature. Regarding the descriptive analysis, it seems that the majority of studies focus on manufacturing and physical product supply chains, with service supply chains underrepresented, and no studies looking at the public sector and its supply chains. There is also a proliferation of quantitative studies that employ mathematical modelling, with qualitative methods that afford a deeper understanding between SSCM and SCRM being underrepresented.


The thematic analysis identified that the majority of studies included some assessment of economic elements, suggesting that most studies are focused on looking at the

economic viability of firms. It seems a good proportion of studies combine SEE elements, or environment and economic elements. The analysis also identified all the sustainability, risk and performance factors that have been related to SSCM and SCRM in previous studies. There was overlap between some of the factors across SSCM and SCRM, which could be viewed as broader issues relevant across supply chain research, including inventory, products, transport, finance, and technology. Furthermore, the analysis revealed that the issues most frequently addressed by scholars are “reducing greenhouse gas emissions,” “reducing total costs,” and “improving job opportunities”.

The current research mainly explores the influence of certain factors on the sustainability or robustness of the supply chain, or considers the design of multi-factor and multi-level robust and sustainable supply chain. The SSCRM concept has not been subjected to in-depth theoretical development as an independent emerging field.

What are the problems at the interface between SSCM and SCRM? What are the implications for future research?

Having reviewed the 65 articles, we find that there are still many issues in this field that deserve attention. The first is environmental issues. Before discussing environmental issues in depth, it is necessary to clarify the boundaries of environmental factors in the supply chain. ‘Environment’ in a humanistic context refers to the space of human life, including the natural environment and social environment. Whereas risks such as natural disasters concern the impact of the natural environment on the supply chain, pollution and waste mainly explore the impact of the supply chain on the natural environment. This distinction has not been

Figure 4. SSCRM theoretical framework.

significantly explored in SSCRM research. The social environment, in this context, mainly refers to factors related to human society, such as the business environment and financial environment. Compared with the natural environment, the social environment has received little attention. Research tends to investigate the impact of social environmental factors on the supply chain, but the impact of the supply chain on social environmental factors is rarely mentioned.^{18,59,63,68,80,86} It is also worth considering whether social environmental factors should be classified as social, environmental or both. Clarifying the boundaries between social and environmental factors can help firms formulate clearer sustainable development strategies.

Secondly, when firms formulate development strategies, although the ultimate results they pursue are consistent, the approaches and routes they adopt are often different or even contradictory. For example, a firm invests a lot of money to improve the workplace environment and corporate social image, reducing reputational risk and hoping to achieve sustainable development of the firm in the social and environmental dimensions, but the investment of this capital cannot be converted into economic benefits in the short term, which may be unsustainable for the firm in the longer term. The contradictions and tensions, as well as the different routes adopted by firms, would benefit from further research.

Currently, robustness and sustainability have become important factors that many firms must consider in their supply chain processes, and simply considering one of them at the expense of the other can no longer meet the actual needs of firms. This has led many practitioners and scholars to devote their efforts to developing robust and sustainable supply-chain network designs and explore new ways for firms to improve the sustainability of supply chains while reducing their risk exposure. This new way requires firms to consider not only the traditional SEE, but also incorporate operations and technology into the framework. In this new framework, operations and technology factors can serve as representatives of risk management to balance the firm's sustainable development needs with its risk management needs. These dimensions enrich the concept of sustainable development but are not widely accepted and applied, which may be related to the different perceptions that scholars have of sustainable development.

Conclusions

This paper provides the first comprehensive and systematic review of overlapping SSCM and SCRM literature published between 2007 and 2025. Unlike prior reviews that examined SSCM or SCRM in isolation, this study explicitly explores their intersection, synthesising insights across both domains to create an integrated perspective. This unique approach enables a more comprehensive understanding of

how sustainability and risk considerations interact in supply chains, thereby filling a critical gap in existing academic research.

From a practical perspective, we identify various SSCM and SCRM factors from previous studies (Tables 4 and 5) which can serve as a practitioner-oriented checklist. We integrate the factors into a single comprehensive framework (Figure 4) for developing more robust, sustainable, and risk-resilient supply chains. By moving beyond models that address only one or two sustainability factors, and incorporating operations and technology, our work provides decision-makers with tools that better reflect the complex, multi-dimensional nature of real-world supply chain challenges.

This study has several limitations. By tightly defining the search terms and criteria for inclusion and exclusion, some relevant publications may have been excluded. We also observed that much of the current literature relies on mathematical modelling, leaving room for richer qualitative explorations of the organisational and behavioural dimensions of SSCRM.

Future research can build on our conceptualisation of SSCRM by testing, refining, or challenging its theoretical underpinnings. Given the limited definitional work and theory development in this emerging field, we call for studies that advance theoretical integration and practical applicability. As publication activity accelerates, our study provides a foundational platform for shaping scholarly discourse and guiding empirical and theoretical advances in SSCRM.

ORCID iDs

Ying Li <https://orcid.org/0009-0006-3213-8591>

Ying Kei Tse <https://orcid.org/0000-0001-6174-0326>

Funding

The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the China Scholarship Council (CSC) under Grant CSC NO 202208420031.

Declaration of conflicting interests

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Data Availability Statement

Data sharing is not applicable to this article as no new data were created or analysed in this study.

Disclosure

The authors report there are no competing interests to declare.

Supplemental material

Supplemental material for this article is available online.

Note

1. Fortune, 2020. <https://fortune.com/2020/02/21/fortune-1000-coronavirus-china-supply-chain-impact/>, accessed on March 10, 2020.

References

1. Allam Z, Bibri SE and Sharpe SA. The rising impacts of the COVID-19 pandemic and the Russia–Ukraine war: energy transition, climate justice, global inequality, and supply chain disruption. *Resources* 2022; 11(11): 99.
2. Ivanov D. Predicting the impacts of epidemic outbreaks on global supply chains: a simulation-based analysis on the coronavirus outbreak (COVID-19/SARS-CoV-2) case. *Transp Res E Logist Transp Rev* 2020; 136: 101922.
3. Sharma M, Luthra S, Joshi S, et al. Developing a framework for enhancing survivability of sustainable supply chains during and post-COVID-19 pandemic. *Int J Logist Res Appl* 2022; 25(4-5): 433–453.
4. Zhou X, Jing D, Dai L, et al. Evaluating the economic impacts of COVID-19 pandemic on shipping and port industry: a case study of the port of Shanghai. *Ocean Coast Manag* 2022; 230: 106339.
5. Barman A, Das R and De PK. Impact of COVID-19 in food supply chain: disruptions and recovery strategy. *Curr Res Behav Sci* 2021; 2: 100017.
6. Bhaskar S, Tan J, Bogers M, et al. At the epicenter of COVID-19—the tragic failure of the global supply chain for medical supplies. *Front Public Health* 2020; 8: 562882.
7. Belhadi A, Kamble S, Jabbour CJC, et al. Manufacturing and service supply chain resilience to the COVID-19 outbreak: lessons learned from the automobile and airline industries. *Technol Forecast Soc Change* 2021; 163: 120447.
8. Li Z, Sheng Y, Meng Q, et al. Sustainable supply chain operation under COVID-19: influences and response strategies. *Int J Logist Res Appl* 2022; 28: 24–50.
9. Wu X, Zhang Y and Feng X. The impact of Japanese nuclear wastewater discharge into the sea on the global economy: input-output model approach. *Mar Pollut Bull* 2023; 192: 115067.
10. Carter CR, Liane Easton P and Liane Easton P. Sustainable supply chain management: evolution and future directions. *Int J Phys Distrib Logist Manag* 2011; 41(1): 46–62.
11. Pagell M and Shevchenko A. Why research in sustainable supply chain management should have no future. *J Supply Chain Manag* 2014; 50(1): 44–55.
12. Fan Y and Stevenson M. A review of supply chain risk management: definition, theory, and research agenda. *Int J Phys Distrib Logist Manag* 2018; 48(3): 205–230.
13. Brandenburg M. A hybrid approach to configure eco-efficient supply chains under consideration of performance and risk aspects. *Omega* 2017; 70: 58–76.
14. Ghadge A, Yang Q, Caldwell N, et al. Facility location for a closed-loop distribution network: a hybrid approach. *Int J Retail Distrib Manag* 2016; 44(9): 884–902.
15. Golpîra H, Najafi E, Zandieh M, et al. Robust bi-level optimization for green opportunistic supply chain network design problem against uncertainty and environmental risk. *Comput Ind Eng* 2017; 107: 301–312.
16. Darom NA, Hishamuddin H, Ramli R, et al. An inventory model of supply chain disruption recovery with safety stock and carbon emission consideration. *J Clean Prod* 2018; 197: 1011–1021.
17. Hombach LE, Büsing C and Walther G. Robust and sustainable supply chains under market uncertainties and different risk attitudes – a case study of the German biodiesel market. *Eur J Oper Res* 2018; 269(1): 302–312.
18. Lam HKS. Doing good across organizational boundaries. *Int J Oper Prod Manag* 2018; 38(12): 2389–2412.
19. Lovisotto L and Bezzo F. Introducing social acceptance into the design of CCS supply chains: a case study at a European level. *J Clean Prod* 2020; 249.
20. Babaenesami A, Tohidi H and Seyedaliakbar SM. Designing a data-driven leagile sustainable closed-loop supply chain network. *Int J Manag Sci Eng Manag* 2020; 16(1): 14–26.
21. Firoozi M, Siadat A, Salehi N, et al. A novel multi-objective fuzzy mathematical model for designing a sustainable supply chain network considering outsourcing risk under uncertainty. In: *2013 IEEE International Conference on Industrial Engineering and Engineering Management 2013* IEEE, pp. 88–92.
22. Abdel-Basset M and Mohamed R. A novel plithogenic TOPSIS- CRITIC model for sustainable supply chain risk management. *J Clean Prod* 2020; 247: 119586.
23. Giannakis M and Papadopoulos T. Supply chain sustainability: a risk management approach. *Int J Prod Econ* 2016; 171: 455–470.
24. Ho W, Zheng T, Yildiz H, et al. Supply chain risk management: a literature review. *Int J Prod Res* 2015; 53(16): 5031–5069.
25. Kamalahmadi M and Parast MM. A review of the literature on the principles of enterprise and supply chain resilience: major findings and directions for future research. *Int J Prod Econ* 2016; 171: 116–133.
26. Pournader M, Kach A and Talluri SS. A review of the existing and emerging topics in the supply chain risk management literature. *Decis Sci* 2020; 51(4): 867–919.
27. Seuring S and Müller M. From a literature review to a conceptual framework for sustainable supply chain management. *J Clean Prod* 2008; 16(15): 1699–1710.
28. Gimenez C, Tachizawa EM and Tachizawa EM. Extending sustainability to suppliers: a systematic literature review. *Supp Chain Mnagnmt* 2012; 17(5): 531–543.
29. Tranfield D, Denyer D and Smart P. Towards a methodology for developing evidence-informed management knowledge by means of systematic review. *Br J Manag* 2003; 14(3): 207–222.
30. Carter CR and Washipack S. Mapping the path forward for sustainable supply chain management: a review of reviews. *J Bus Logist* 2018; 39(4): 242–247.

31. Fattahi M and Govindan K. A multi-stage stochastic program for the sustainable design of biofuel supply chain networks under biomass supply uncertainty and disruption risk: a real-life case study. *Transp Res Part E Logist Transp Rev* 2018; 118: 534–567.

32. Cimprich A, Bach V, Helbig C, et al. Raw material criticality assessment as a complement to environmental life cycle assessment: examining methods for product-level supply risk assessment. *J Ind Ecol* 2019; 23(5): 1226–1236.

33. Rajesh R. Social and environmental risk management in resilient supply chains: a periodical study by the Grey-Verhulst model. *Int J Prod Res* 2019; 57(11): 3748–3765.

34. Yazdani M, Gonzalez EDRS and Chatterjee P. A multi-criteria decision-making framework for agriculture supply chain risk management under a circular economy context. *Manag Decis* 2019; 59(8): 1801–1826.

35. Gholizadeh H, Fazlollahtabar H and Khalilzadeh M. A robust fuzzy stochastic programming for sustainable procurement and logistics under hybrid uncertainty using big data. *J Clean Prod* 2020; 258: 120640.

36. Sundarakani B, Pereira V and Ishizaka A. Robust facility location decisions for resilient sustainable supply chain performance in the face of disruptions. *Int J Logist Manag* 2020; 32(2): 357–385.

37. Bian J, Liao Y, Wang YY, et al. Analysis of firm CSR strategies. *Eur J Oper Res* 2021; 290(3): 914–926.

38. Guo L, Yin H, Zhao X, et al. Managing your own low-tier suppliers via donation to NGOs: why do multi-national corporations bother? *Int J Prod Econ* 2022; 250.

39. Habib MS, Omair M, Ramzan MB, et al. A robust possibilistic flexible programming approach toward a resilient and cost-efficient biodiesel supply chain network. *J Clean Prod* 2022; 366: 132752.

40. Mohammadi M and Nikzad A. Sustainable and reliable closed-loop supply chain network design during pandemic outbreaks and disruptions. *Oper Manag Res* 2022; 16(2): 969–991.

41. Rabbani M, Mohammad Hadji Molana S, Mojtaba Sajadi S, et al. Sustainable fertilizer supply chain network design using evolutionary-based resilient robust stochastic programming. *Comput Ind Eng* 2022; 174: 108770.

42. Taleizadeh AA, Ahmadzadeh K, Sarker BR, et al. Designing an optimal sustainable supply chain system considering pricing decisions and resilience factors. *J Clean Prod* 2022; 332: 129895.

43. Heidari M and Rabbani M. Leagile sustainable supply chain network design considering disruption risk by C-Var approach: a case study. *Int J Syst Assur Eng Manag* 2023; 14(3): 1062–1088.

44. Moayedi M and Sadeghian R. A multi-objective stochastic programming approach with untrusted suppliers for green supply chain design by uncertain demand, shortage, and transportation costs. *J Clean Prod* 2023; 408: 137007.

45. Mohammed A, Bai C, Channouf N, et al. G-resilient multi-tier supplier selection and order allocation in food industry: a hybrid methodology. *Int J Syst Sci: Operations & Logistics* 2023; 10(1): 2195055.

46. Safari L, Sadjadi SJ and Sobhani FM. Resilient and sustainable supply chain design and planning under supply disruption risk using a multi-objective scenario-based robust optimization model. *Environ Dev Sustain* 2023; 26(11): 27485–27527.

47. Seif M, Yaghoubi S and Khodoomi MR. Optimization of food-energy-water-waste nexus in a sustainable food supply chain under the COVID-19 pandemic: a case study in Iran. *Environ Dev Sustain* 2023; 26(3): 1–35.

48. Doodman M, Soleimani F, Jolai F, et al. An integrated scenario-based multi-period multi-objective mathematical model for a sustainable biomass supply chain network considering social factors and disruption risk under uncertainty. *Environ Dev Sustain* 2024.

49. Fander A, Yaghoubi S and Shabaab M. Risk aversion in green energy-efficient vehicle-petrol supply chain based on C-VaR model with government intervention: a game theoretic approach. *Environ Dev Sustain* 2024; 27(8): 19191–19239.

50. Khalili SM, Pooya A, Kazemi M, et al. Integrated resilient and sustainable gasoline supply chain model with operational and disruption risks: a case study of Iran. *Environ Dev Sustain* 2024.

51. Saputro TE, Rosiani TY, Mubin A, et al. Green supplier selection under supply risks using novel integrated fuzzy multi-criteria decision making techniques. *J Clean Prod* 2024; 449: 141788.

52. Sharifi E, Amin SH and Fang L. Designing a sustainable, resilient, and responsive wheat supply chain under mixed uncertainty: a multi-objective approach. *J Clean Prod* 2024; 434: 140076.

53. Li B, Wen S, Li X, et al. Contract adoption of motivating green technological innovation in a supply chain. *Int Trans Oper Res* 2024; 33(1): 603–630.

54. Mondal A and Roy SK. Fuzzy-stochastic distributional robust approach for microalgae-based bio-plastic supply chain with new sustainability aspects. *J Clean Prod* 2024; 476: 143630.

55. Shi X, Prajogo D, Fan D, et al. Is operational flexibility a viable strategy during major supply chain disruptions? Evidence from the COVID-19 pandemic. *Transp Res Part E Logist Transp Rev* 2025; 195: 103952.

56. Liu H, Liu Y and Wang Y. Sustainable supply chain and organisational resilience: evidence from China. *Account Finance* 2025; 65: 3649–3663.

57. Ji X, Fu S, Djajadikerta HG, et al. Impacts of CSR and demand disruption on the optimal decisions in logistics service supply chain: a comparison of four analytical models. *Ann Oper Res* 2025; 353(3): 917–948.

58. Handfield R, Sun H and Rothenberg L. Assessing supply chain risk for apparel production in low cost countries using newsfeed analysis. *Supply Chain Manag: Int J* 2020; 25(6): 803–821.

59. Majumdar A, Sinha SK, Shaw M, et al. Analysing the vulnerability of green clothing supply chains in South and Southeast Asia using fuzzy analytic hierarchy process. *Int J Prod Res* 2020; 59(3): 752–771.

60. Kalantari F and Hosseinienezhad SJ. A multi-objective cross Entropy-based algorithm for sustainable global food supply chain with risk considerations: a case study. *Comput Ind Eng* 2022; 164: 107766.

61. Gündoğdu HG, Aytekin A, Toptancı Ş, et al. Environmental, social, and governance risks and environmentally sensitive competitive strategies: a case study of a multinational logistics company. *Bus Strat Environ* 2023; 32(7): 4874–4906.

62. Soyer A, Bozdag E, Kadaifci C, et al. A hesitant approach to sustainable supply chain risk assessment. *J Clean Prod* 2023; 418: 138103.

63. Alam MFB, Tushar SR, Ahmed T, et al. Analysis of the enablers to deal with the ripple effect in food grain supply chains under disruption: implications for food security and sustainability. *Int J Prod Econ* 2024; 270.

64. Alfzari KA, Ibrahim F, Cheaitou A, et al. Towards sustainable supply chains: an SDG-informed framework for managing supplier-related risks. *IMA J Manag Math* 2025.

65. Zhang CY, Ji J and Zhang T. Can sustainable supply chain sustain supplier's operational efficiency? *Int J Prod Econ* 2025; 285.

66. Han B, Wang M, Xu Y, et al. An electric vehicle battery recycling and remanufacturing supply chain network design with sustainability and robustness under demand uncertainty. *J Environ Manag* 2025; 390: 126202.

67. Bag S, Gupta S and Telukdarie A. Importance of innovation and flexibility in configuring supply network sustainability. *Benchmark Int J* 2018; 25(9): 3951–3985.

68. Fan D, Lo CKY and Zhou Y. Sustainability risk in supply bases: the role of complexity and coupling. *Transp Res Part E Logist Transp Rev* 2021; 145: 102175.

69. Das A. Predictive value of supply chain sustainability initiatives for ESG performance: a study of large multinationals. *Multinatl Bus Rev* 2023; 32(1): 20–40.

70. Rodríguez-González RM, Madrid-Guijarro A and Maldonado-Guzmán G. Digital organizational culture and absorptive capacity as precursors to supply chain resilience and sustainable performance. *J Clean Prod* 2023; 420.

71. Chaudhuri R, Singh B, Agrawal AK, et al. A TOE-DCV approach to green supply chain adoption for sustainable operations in the semiconductor industry. *Int J Prod Econ* 2024; 275: 109327.

72. Han N and Um J. Risk management strategy for supply chain sustainability and resilience capability. *Risk Manage* 2024; 26(2): 6.

73. Moktadir MA and Ren J. Global semiconductor supply chain resilience challenges and mitigation strategies: a novel integrated decomposed fuzzy set Delphi, WINGS and QFD model. *Int J Prod Econ* 2024; 273.

74. Egila AE, Kamal Muhammad M, Kumar Mangla S, et al. Highly reliable organisations and sustainability risk management: safety cultures in the Nigerian oil and gas supply chain sector. *Bus Strat Environ* 2024; 34(2): 2680–2701.

75. Li N, Li G and Xue J. Does ESG protect firms equally during crises? The role of supply chain concentration. *Omega* 2025; 130: 103171.

76. Pellegrino R, Gaudenzi B, Fraccascia L, et al. Can the adoption of circular economy practices foster supply chain resilience and performance improvements? *Bus Strat Environ* 2025; 35: 438–457.

77. Govindan K, Azevedo SG, Carvalho H, et al. Impact of supply chain management practices on sustainability. *J Clean Prod* 2014; 85: 212–225.

78. Mohajeri A and Fallah M. A carbon footprint-based closed-loop supply chain model under uncertainty with risk analysis: a case study. *Transp Res Part D Transp Environ* 2016; 48: 425–450.

79. Liu M, Ding Y and Zhu M. Evaluation of adaptation strategies for sustainable supply chains: application in medical waste reverse supply chains. *Oper Manag Res* 2024; 1126–1139.

80. Yang Y, Lau AKW, Lee PKC, et al. The performance implication of corporate social responsibility in matched Chinese small and medium-sized buyers and suppliers. *Int J Prod Econ* 2020; 230: 107796.

81. Das S, Myla AY, Barve A, et al. A systematic assessment of multi-dimensional risk factors for sustainable development in food grain supply chains: a business strategic prospective analysis. *Bus Strat Environ* 2023; 32(8): 5536–5562.

82. Dey PK, Chowdhury S, Abadie A, et al. Artificial intelligence-driven supply chain resilience in Vietnamese manufacturing small- and medium-sized enterprises. *Int J Prod Res* 2023; 62(15): 5417–5456.

83. Junaid M, Zhang Q, Cao M, et al. Nexus between technology enabled supply chain dynamic capabilities, integration, resilience, and sustainable performance: an empirical examination of healthcare organizations. *Technol Forecast Soc Change* 2023; 196.

84. Torres Vergara JI, Saucedo Martínez JA and Olivo Lucio D. Resilient and sustainable supply chain criteria for performance evaluation: selection and ranking through fuzzy Delphi. *Benchmark Int J* 2023; 31(3): 799–823.

85. Kumari S, Venkatesh VG, Deakins E, et al. Agriculture value chain sustainability during COVID-19: an emerging economy perspective. *Int J Logist Manag* 2021; 34(2): 280–303.

86. Valizadeh J, Ghahroudi AG, Soltani S, et al. Mathematical modeling for the closed-loop supply chain with consideration of sustainability risks: a hybrid optimization approach. *Environ Dev Sustain* 2024; 27(5): 10593–10628.

87. Matos S and Hall J. Integrating sustainable development in the supply chain: the case of life cycle assessment in oil and gas and agricultural biotechnology. *J of Ops Management* 2007; 25(6): 1083–1102.

88. Bade C, Olsacher A, Boehme P, et al. Sustainability in the pharmaceutical industry—An assessment of sustainability maturity and effects of sustainability measure implementation on supply chain security. *Corp Soc Responsib Environ Manag* 2023; 31(1): 224–242.

89. Wu H, Li G and Zheng H. How does digital intelligence technology enhance supply chain resilience? Sustainable framework and agenda. *Ann Oper Res* 2024; 355: 901–923.

90. Zheng LJ, Islam N, Zhang JZ, et al. Aligning risk and value creation: a process model of supply chain risk management in geopolitical disruptions. *Int J Oper Prod Manag* 2025; 45(5): 1178–1210.

91. Hendiani S, Liao H and Jabbour CJC. A new sustainability indicator for supply chains: theoretical and practical contribution towards sustainable operations. *Int J Logist Res Appl* 2022; 25(4-5): 384–409.

92. Benabdallah C, El-Amraoui A, Delmotte F, et al. Evaluation on risks of sustainable supply chain based on integrated rough DEMATEL in Tunisian dairy industry. *Int J Supply Oper Manag* 2022; 9(3): 338–359.

93. Bai L, Garcia FJS and Mishra AR. Retracted article: adoption of the sustainable circular supply chain under disruptions risk in manufacturing industry using an integrated fuzzy decision-making approach. *Oper Manag Res* 2022; 15(3-4): 743–759.

94. Fattahi M, Govindan K and Farhadkhani M. Sustainable supply chain planning for biomass-based power generation with environmental risk and supply uncertainty considerations: a real-life case study. *Int J Prod Res* 2021; 59(10): 3084–3108.

95. da Silva C, Barbosa-Póvoa AP and Carvalho A. Environmental monetization and risk assessment in supply chain design and planning. *J Clean Prod* 2020; 270.

96. Khan SAR, Mathew M, Dominic PDD, et al. Evaluation and selection strategy for green supply chain using interval-valued q-rung orthopair fuzzy combinative distance-based assessment. *Environ Dev Sustain* 2022; 24(9): 10633–10665.

97. Cole R and Shirgholami Z. The outlook for modern slavery in the apparel sector in a post-lockdown economy. *Supply Chain Manag: Int J* 2021; 27(4): 526–537.

98. Stevenson M. Hidden in plain sight: the bystander effect and the mobilisation of modern slavery whistleblowing. *Supply Chain Manag* 2022; 27(1): 128–139.

99. Lusiantoro L and Pradiptyo R. Rebuilding disrupted supply chains: how can a self-organised social group facilitate supply chain resilience? *Int J Oper Prod Manag* 2022; 42(10): 1544–1575.

100. Cao C, Liu Y, Tang O, et al. A fuzzy bi-level optimization model for multi-period post-disaster relief distribution in sustainable humanitarian supply chains. *Int J Prod Econ* 2021; 235: 108081.

101. Jabbarzadeh A, Haughton M and Pourmehdi F. A robust optimization model for efficient and green supply chain planning with postponement strategy. *Int J Prod Econ* 2019; 214: 266–283.

102. Vanany I and Zailani S. Urgency in managing the risk in supply chain amongst Indonesian manufacturing companies. *Int Bus Manag* 2010; 4(4): 199–208.

103. Ebrahimi SB. A stochastic multi-objective location-allocation-routing problem for tire supply chain considering sustainability aspects and quantity discounts. *J Clean Prod* 2018; 198: 704–720.

104. Kolotzek C, Helbig C, Thorenz A, et al. A company-oriented model for the assessment of raw material supply risks, environmental impact and social implications. *J Clean Prod* 2018; 176: 566–580.

105. Tat R and Heydari J. Avoiding medicine wastes: introducing a sustainable approach in the pharmaceutical supply chain. *J Clean Prod* 2021; 320: 128698.

106. Kumar A, Mangla SK, Kumar P, et al. Mitigate risks in perishable food supply chains: learning from COVID-19. *Technol Forecast Soc Change* 2021; 166: 120643.

107. Mohammed A, Harris I, Soroka A, et al. A hybrid MCDM-fuzzy multi-objective programming approach for a G-resilient supply chain network design. *Comput Ind Eng* 2019; 127: 297–312.

108. Rahimi M and Ghezavati V. Sustainable multi-period reverse logistics network design and planning under uncertainty utilizing conditional value at risk (CVaR) for recycling construction and demolition waste. *J Clean Prod* 2018; 172: 1567–1581.