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ABSTRACT 
Georeferencing text documents has typically relied on either 
gazetteer-based methods to assign geographic coordinates to 
place names or on language modelling approaches that associate 
textual terms with geographic locations. However, many location 
descriptions specify positions relatively with spatial relationships, 
making geocoding based solely on place names or geo-indicative 
words inaccurate. This issue frequently arises in biological speci
men collection records, where locations are often described 
through narratives rather than coordinates if they pre-date GPS. 
Accurate georeferencing is vital for biodiversity studies, yet the 
process remains labour-intensive, leading to a demand for auto
mated georeferencing solutions. This paper explores the potential 
of Large Language Models (LLMs) to georeference complex local
ity descriptions automatically, focusing on the biodiversity collec
tions domain. We first identified effective prompting patterns, 
then fine-tuned an LLM using Quantized Low-Rank Adaptation 
(QLoRA) on biodiversity datasets from multiple regions and lan
guages. Our approach outperforms existing baselines with an 
average, across datasets, of 65% of records within a 10 km radius, 
for a fixed amount of training data. The best results (New York 
state) were 85% within 10 km and 67% within 1 km. The selected 
LLM performs well for lengthy, complex descriptions, highlighting 
its potential for georeferencing intricate locality descriptions.
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1. Introduction

While most geographical information systems are predominantly based on structured 
digital map data, there remains a vast amount of information embedded within text
ual resources. Access to the information content of such resources is the subject of 
the field of geographical information retrieval (Purves et al. 2018), which depends to a 

CONTACT Aneesha Fernando afwboosa@massey.ac.nz 
� 2026 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/ 
licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is 
properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by 
the author(s) or with their consent.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 
https://doi.org/10.1080/13658816.2026.2613291

http://crossmark.crossref.org/dialog/?doi=10.1080/13658816.2026.2613291&domain=pdf&date_stamp=2026-01-17
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.tandfonline.com
https://doi.org/10.1080/13658816.2026.2613291


large extent on the effectiveness of georeferencing methods to determine the geospa
tial focus of the content of text documents. To date, georeferencing methods for text
ual data have usually been applied to the content of web pages and of social media 
postings. These methods typically employ either gazetteer-based approaches to detect 
and geocode (determine coordinates for) place names in the texts, or language model
ling approaches that depend upon determining the association between text and loca
tions, or some combination of these (Melo and Martins 2017, Gritta et al. 2018). 
References to geographic locations through the use of place names are usually assumed 
to be absolute, in the sense that the location is regarded as equivalent to that of a 
place name or some other words that are indicative of a location (Han et al. 2012). Little 
attention has been given to the fact that some descriptions of location are relative, in 
that they refer to a location that has some spatial relationship to a reference place 
name (Wieczorek et al. 2004, van Erp et al. 2015, Chen et al. 2018). Spatial relational 
terms include phrases and words that indicate a specified distance, such as 10 km west 
of, as well as relative positions like near, adjacent to, and along from.

A domain in which complex locality descriptions are commonly found is that of the 
collection records of natural history agencies such as museums and herbaria. These 
collections can include records of biological specimens of plants and animals, fungi 
and bacteria, as well as soil and geological samples. Many of the records, especially 
those collected before the widespread availability of GPS, do not have associated geo
graphical coordinates. Instead, their locations are described solely through textual 
descriptions that include locality descriptions. At its simplest, a locality description 
might just consist of place names (toponyms), but very commonly, place names are 
combined with relative spatial terms (Wieczorek et al. 2004, van Erp et al. 2015, Scott 
et al. 2021). There are billions of such records and there is a strong motivation to 
georeference them, as being able to assign coordinates, and hence map the locations 
at which they were found, is a crucial step in studying biodiversity. Such georefer
enced data enables researchers to monitor the geographical distribution of species 
over time, the impacts of environmental changes on species, and to predict how envi
ronmental changes will affect biodiversity in specific regions (van Erp et al. 2015).

To georeference textual documents such as Wikipedia articles, news articles, and 
social media posts with coordinates that best represent the content, various methods 
are employed (Stock 2018). While gazetteer-based approaches are commonly used in 
this context to detect the presence of place names (Karimzadeh et al. 2019), other 
methods, such as probabilistic language modelling techniques and discriminative clas
sifiers, have also been utilised. Probabilistic language modelling techniques use gen
erative models that estimate the likelihood of a textual document belonging to a 
particular region. Discriminative classifiers, such as logistic regression and multi-layer 
neural networks, classify documents into their most likely regions (Melo and Martins 
2017). Furthermore, the introduction of Transformer models (Vaswani 2017) has 
spurred several research efforts using BERT-based models for tweet or tweet user geo
location prediction (Scherrer and Ljube�si�c 2020, Simanjuntak et al. 2022, Lutsai and 
Lampert 2023, Li et al. 2023a).

The often complex relative descriptions of localities where biological specimens are 
found present an additional challenge from standard document georeferencing 
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approaches mentioned above. As an example, manually georeferencing the locality ‘C. 
10 km N of Lake Wanaka, 1 km N of Makarora. near Pipson Creek’, which explains the 
location of a fungi specimen found in the Canterbury district of New Zealand, requires 
determining the coordinates of Lake Wanaka and the town of Makarora; interpreting 
the spatial relationship described by ‘approximately 10 km north of Lake Wanaka’ and 
‘1 km north of Makarora’ to find the general vicinity; and finally, using the reference to 
‘near Pipson Creek’ to pinpoint the precise location. Thus, there is a need for more spe
cialised automated georeferencing techniques. Additional examples of such descrip
tions are presented in Table 5.

Recently, the field of Natural Language Processing (NLP) has been transformed by 
the advent of Large Language Models (LLMs), demonstrating advanced functionalities 
and effective solutions. The vast size of LLMs, which typically include billions of param
eters, enables them to discern complex patterns and subtleties in human language, 
resulting in outputs that are both highly precise and contextually appropriate 
(Fujiwara et al. 2024). Leveraging these abilities, LLMs have been successfully applied 
in various complex domains such as mathematical reasoning (Imani et al. 2023, Yu 
et al. 2023) and geospatial reasoning (Li et al. 2023b). They have often been found to 
outperform previous solutions based on traditional Machine Learning (ML) techniques 
such as Logistic Regression and BERT-based models (Karanikolas et al. 2023).

In this study, we introduce a novel approach for automatic georeferencing of bio
logical collection data using LLMs. To the best of our knowledge, our study is the first 
to employ LLMs to georeference text data by predicting coordinates that best match 
the given locality descriptions. We conducted multiple initial experiments to identify 
the most suitable LLM and the prompting pattern for our use case. Subsequently, we 
performed supervised fine-tuning with quantized Low-Rank Adaptation (QLoRA) to 
adapt the selected LLM for the task of georeferencing. This was applied to multiple 
datasets containing data from different regions at varying granularities of area size. 
We also experimented with non-English data to demonstrate the model’s linguistic 
generalizability. The results were benchmarked against several existing georeferencing 
baselines as well as commercial LLMs. In addition, we investigated the model’s sensi
tivity to spatial information embedded in locality descriptions and explored its transfer 
learning capabilities across geographic regions.

To summarize, the contributions of this research are as follows:

� We demonstrate the effectiveness of applying LLMs to georeferencing locality 
descriptions with relative spatial relationships, and establish a strong benchmark 
that significantly outperforms the commonly used baselines.

� We investigate the optimal LLM prompting patterns for georeferencing use cases 
and introduce a new prompt that yields very good results for the considered task.

� We analyse the regional and linguistic generalizability of our LLM-based approach 
for the task of georeferencing.

� We demonstrate that our proposed model is more robust for non-English datasets 
compared to the baselines. For smaller regions, such as New Zealand, our model, 
fine-tuned with just 5000 samples, outperforms the baselines.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 3



The remainder of this article is organized as follows. Section 2 describes related 
work. Section 3 describes the data we used and our methodology for automatic 
georeferencing. Section 4 discusses the results, and Section 5 concludes the paper 
with a look into future directions.

2. Related work

2.1. Georeferencing text data

The idea of georeferencing text documents or specific descriptions of localities and 
incidents is quite well established (Goodchild et al. 2004, Murphey et al. 2004, Doherty 
et al. 2011, Melo and Martins 2017). Gazetteer-based methods are commonly used to 
georeference text by detecting place names (Karimzadeh et al. 2019). In contrast, other 
techniques that consider all text, not just the place names, have also been applied, 
including probabilistic language models, discriminative classifiers, and hybrid 
approaches that combine these models with gazetteers (Melo and Martins 2017).

Gazetteer-based approaches (Karimzadeh et al. 2019) primarily focus on geoparsing, 
and have two steps; toponym recognition, to detect the presence of a location refer
ence, and toponym resolution to disambiguate and hence determine coordinates 
(Wang and Hu 2019, Liu et al. 2022). Toponym recognition is mostly performed as a 
Named Entity Recognition (NER) task and the identified toponyms may then be 
resolved via gazetteer matching in association with a disambiguation process (Leidner 
et al. 2003, Li et al. 2003). However, gazetteers can sometimes be incomplete or out
dated, particularly when dealing with historical place names, cultural variations, or 
locations that have undergone name changes over time, posing challenges for geore
ferencing based solely on them (Sharma et al. 2024). To address such limitations, 
some studies have proposed enhancements. For example, Lieberman et al. (2010) 
introduced audience-specific local lexicons to better capture regionally relevant topo
nyms that might be overlooked by global gazetteers.

For the task of georeferencing textual content such as tweets and Wikipedia 
articles, early research has predominantly utilised ML models, approaching georefer
encing as a classification problem. This involves classifying location descriptions at the 
country and city levels. Probabilistic classifiers, such as n-gram models (Flatow et al. 
2015, Iso et al. 2017) and discriminative classifiers [e.g. Support Vector Machines (SVM) 
and Gaussian Mixture Models (GMM)], have been employed in these studies 
(Priedhorsky et al. 2014, Liu and Inkpen 2015, Melo and Martins 2015). In addition to 
employing classification models, some studies have incorporated clustering techniques 
and feature selection strategies in combination with various models to georeference 
documents (Han et al. 2014, Laere et al. 2014). For example, Di Rocco et al. (2021) 
introduced Sherloc, a knowledge-based approach for subcity-level geolocation of 
tweets. Sherloc improves geolocation accuracy within a specified parent region by 
matching tweets to a geographic embedding constructed from known toponyms for 
that region, using clustering approaches to enhance precision.

More recent advancements in ML techniques have introduced Deep Learning mod
els, such as Deep Neural Networks (DNN), Long Short-Term Memory (LSTM) networks, 
and Transformer-based models, for the task of georeferencing. Specifically, 
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georeferencing approaches utilizing pre-trained Transformer models such as BERT 
have demonstrated stronger performance compared to earlier ML systems. For 
instance, in the study by Simanjuntak et al. (2022), BERT significantly outperformed 
LSTM in predicting Twitter users’ home locations. However, their most effective 
method involved aggregating all tweets from a single user to predict their location, a 
strategy that is potentially constrained by BERT’s 512-token limit. Scherrer and Ljube�si�c 
(2020) demonstrated that BERT in regression mode can be effectively fine-tuned to 
predict geolocations from text. Edwards et al. (2025) built on the latter BERT-based 
method to georeference social media posts in a hybrid approach, in which the inferred 
location guided disambiguation of place names when present. Coordinates of the 
finest-grained place name then represented the tweet’s location, otherwise, the 
transformer-predicted location was used. Lutsai and Lampert (2023) integrated BERT 
with two-dimensional GMMs to estimate locations as coordinate pairs. Nevertheless, in 
addition to adapting pre-trained language models to tweet content, most tweet 
georeferencing methods also incorporate tweet metadata and user network informa
tion as inputs for the model (Do et al. 2018, Miura et al. 2017, Lutsai and Lampert 
2023).

When dealing with generic documents and social media content georeferencing, 
spatial relation terms are not frequently found, unlike in biological collection records. 
Equally, the methods mentioned above do not pay attention to spatial relationship 
terms that provide critical context by describing how one location is positioned rela
tive to another. Such spatial relation terms can include prepositional phrases, verbs, 
and adverbs (Liao et al. 2022). Recent work by Li et al. (2021) proposes a geospatial 
semantic graph representation to better capture spatial dependencies in text, empha
sising that modelling such relationships improves the interpretation of complex geo
graphic descriptions. Moncla et al. (2014) also discuss the importance of spatial 
relations in estimating the spatial footprint of non-gazetteered place names. In con
trast, their geocoding method relies heavily on the clustering of nearby known topo
nyms, which limits the potential to fully exploit spatial cues provided in the text.

Chen et al. (2018) have successfully leveraged spatial relations in georeferencing 
text documents. They convert raw text descriptions to place graphs as the model 
input and leverage spatial relation models for approximate locating and matching. 
However, this methodology is challenging for georeferencing larger datasets with 
multi-clausal location descriptions, as it assumes the prior existence of a place graph, 
the creation of which could be a complex task in itself.

This highlights that current georeferencing methods are not well-suited for text in 
which locations are described in relative terms rather than by absolute place names. 
These complex descriptions are common in the biological specimen domain, and 
hence, there is a need for more specialised methods tailored to this field, capable of 
handling complex relative locality descriptions.

2.2. Georeferencing biological specimen data

Among digitised biological specimen records, only a small portion of the data is 
georeferenced, whereas most records include a verbal locality description (Stock et al. 
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2023). Several methods have been developed for georeferencing these locality descrip
tions, including the point-radius method (Wieczorek et al. 2004), shape method, 
bounding box method, and probability method (Guo et al. 2008). These methods 
involve the time-consuming process of determining precise locations and calculating 
the associated uncertainty using GIS tools, maps, and aerial photography (Hackeloeer 
et al. 2014). Doherty et al. (2011) indicate that the processing time for the point- 
radius method ranges from 5 to 15 min, while the shape method can take between 
15 and 90 min to georeference a single locality description. Given the sheer volume of 
records (billions worldwide), these semi-automated methods are not scalable or 
efficient.

Among studies to automate the georeferencing of biological specimen data, van 
Erp et al. (2015) developed a knowledge-driven, rule-based approach. Their method 
also produces a confidence score to indicate the certainty of the results. Scott et al. 
(2021) introduced an automated georeferencing method for Antarctic species by 
developing a pipeline that extracts and processes text from legacy documents. This 
method identifies species and toponyms within the documents and predicts species- 
toponym pairs representing actual geospatial relationships. It combines rules and 
dictionary-based species extraction with place name extraction methods, followed by 
tree-based classifiers to match species with their toponyms.

BioGeomancer (Guralnick et al. 2006) and GEOLocate1 are applications developed 
to automatically georeference biological specimen data. BioGeomancer 
processes text, interprets it, queries gazetteers, and intersects spatial descriptions, 
ultimately delivering a standardized geographical reference complete with levels of 
uncertainty (van Erp et al. 2015). At the time of writing, the BioGeomancer applica
tion appears to be non-functional, and its website does not appear to be actively 
maintained.

On the other hand, GEOLocate is a fully operational stand-alone online application 
that translates textual locality descriptions associated with biodiversity collections into 
geographic coordinates. The GEOLocate algorithm begins by standardizing the input 
locality string into commonly understood terms (Rios and Bart 2014). It extracts details 
such as distances, compass directions, and significant geographic identifiers, which are 
used in lookups across various datasets such as place names, river miles, legal land 
descriptions, and highway-water body crossings to calculate geographic coordinates. 
Adjustments are made based on the parsed data. Further refinement of coordinates is 
achieved by scanning for water body names in the locality string and adjusting to the 
nearest point on the identified water body, enhancing accuracy for aquatic collections. 
The final coordinates are ranked, displayed digitally, and subjected to human verifica
tion or correction (Rios and Bart 2014). GEOLocate is primarily developed for georefer
encing data from the USA, Canada, and Mexico.

Both GEOLocate and BioGeomancer were developed initially in the early 2000s. 
GeoPick (Marcer et al. 2023) is the latest addition to these georeferencing tools, devel
oped by implementing the guidelines provided in Chapman and Wieczorek (2020). 
It offers a comprehensive guide for georeferencing biological collections. A common 
feature among these tools—GEOLocate, BioGeomancer, and GeoPick—is their imple
mentation of the point-radius method. Introduced by Wieczorek et al. (2004), the 
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point-radius method does more than describing a location using a single coordinate 
pair; it indicates an area of uncertainty using a circle with a well-defined radius 
(Doherty et al. 2011). However, unlike its predecessors, GeoPick is not an automatic 
georeferencing tool; instead, it aids georeferencers in following standards and guide
lines more effectively and in a user-friendly manner.

2.3. Large language models (LLMs)

The emergence of LLMs has brought significant advancements to the field of Natural 
Language Processing (NLP). LLMs, primarily based on the decoder Transformer archi
tecture, have evolved from the development of the GPT (Generative Pre-trained 
Transformer) models. As a result of the widespread success of these models, encoder- 
based approaches, such as BERT and XLNET, as well as encoder-decoder-based models 
such as BART and T5, have become less prominent. Characterised by their large num
ber of parameters and immense training datasets, LLMs have shown high proficiency 
in comprehending and generating human language (Karanikolas et al. 2023). Fine- 
tuning pre-trained LLMs via supervised learning has become the key to achieving high 
performance in various tasks (Ouyang et al. 2022, Ranjit et al. 2023, Singhal et al. 2023, 
Zhang et al. 2023a). Fine-tuning is the process of adapting a pre-trained LLM to a spe
cific task or domain by continuing its training on a smaller, task-specific dataset. This 
approach leverages the model’s existing knowledge while allowing it to specialise in a 
particular application (Ziegler et al. 2019). By adjusting the model’s parameters based 
on task-specific labelled data, fine-tuning enhances performance and enables LLMs to 
generate more accurate and contextually relevant outputs (Wei et al. 2021). While GPT 
models (Achiam et al. 2023) are restricted to online inference and paid APIs, the state- 
of-the-art open source models such as Mistral (Jiang et al. 2023), Llama 1–4 (Touvron 
et al. 2023a, 2023b), GLM (Zeng et al. 2022), and Gemma (GemmaTeam et al. 2024) 
are often fine-tuned for downstream tasks, with accuracies comparable to those of the 
GPT models.

However, due to the computational costs and complexity of fine-tuning very large 
parameter spaces, deploying and adapting LLMs to specific tasks via fine-tuning is 
challenging (Fujiwara et al. 2024). To address this issue, several Parameter Efficient 
Fine-Tuning (PEFT) methods have been introduced (Lester et al. 2021, Liu et al. 2021, 
Zaken et al. 2021, Hu et al. 2022). Among those methods, Low-Rank Adaptation (LoRA) 
(Hu et al. 2022) has gained attention for its efficiency in fine-tuning by focusing on a 
limited set of parameters, thus lowering the total computational load. Taking one step 
further, QLoRA (Quantization and LoRA) presents an even more memory-efficient iter
ation of LoRA by quantizing the weights of the LoRA adapters to a lower precision 
(Dettmers et al. 2023).

Prompt engineering is an essential skill for effective communication with LLMs 
(White et al. 2024). A prompt is a set of instructions given to an LLM to tailor its 
behaviour and/or enhance its capabilities (Liu et al. 2023). Empirical evidence shows 
that higher-quality prompts result in better performance across various tasks (Wei 
et al. 2022, Yao et al. 2024). Zero-shot prompting is the simplest prompting technique. 
It involves giving the model the task in the form of a prompt without any prior 

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 7



examples. Some of the prompting patterns discussed in the literature are the Persona 
pattern, Context Manager pattern, Thought Generation pattern, Template pattern, and 
Question Refinement pattern (Schulhoff et al. 2024, White et al. 2024).

The Persona pattern, which is a type of output customisation prompting, assigns an 
LLM a specific persona or role, guiding it to adopt a particular point of view when 
generating the output. This approach leverages the LLM’s ability to simulate expert- 
level understanding, thereby enhancing its performance in complex domains that 
require specialised knowledge (Desmond and Brachman 2024, White et al. 2024). In 
contrast, the Context Manager pattern controls the contextual information, refining 
the response according to the given context.

Chain of Thought (CoT) prompting, which is a Thought Generation prompting pat
tern, has been identified as performing well in complex reasoning tasks (Wei et al. 
2022). This pattern guides the model through a step-by-step reasoning process to 
reach a conclusion. The simplest form of CoT, zero-shot CoT essentially involves add
ing the phrase ‘Let’s think step by step’ to the original prompt which has also shown 
better performance in reasoning tasks (Kojima et al. 2022). With each pattern having a 
different approach to define the task for the LLM, the best pattern depends on the 
task for which the LLM is used.

In the context of georeferencing biological specimen data, most existing technolo
gies have not kept pace with these advancements in NLP. Several studies 
demonstrate the use of early transformer models, notably BERT, for geolocating social 
media data as discussed earlier (Scherrer and Ljube�si�c 2020, Simanjuntak et al. 2022, 
Lutsai and Lampert 2023). With modern LLMs becoming more powerful due to their 
decoder-based architecture, there is a motivation to apply them to the georeferencing 
task.

A few studies have utilized LLMs in related disciplines such as geospatial reasoning, 
geographic information systems, and geoscience, showing promising results (Mooney 
et al. 2023, Roberts et al. 2023, Li et al. 2023b, Zhang et al. 2023b, Deng et al. 2024, 
Yang et al. 2024). A recent study by Hu et al. (2024) has successfully employed LLMs 
for toponym resolution by fine-tuning the models to estimate the unambiguous refer
ences of toponyms. However, the authors acknowledge that LLMs alone are insuffi
cient for comprehensive toponym resolution and incorporate additional geocoding 
services in their methodology to address inaccuracies in the LLM-generated results. 
Relatedly, Hu et al. (2023) propose a geo-knowledge-guided GPT approach for disaster 
response that injects domain-specific geographic knowledge into prompts to extract 
complete location descriptions from Hurricane Harvey tweets. Their method substan
tially outperforms off-the-shelf NER baselines (reported as > 40% improvement) and 
also improves markedly over default GPT models (reported as � 76% improvement), 
highlighting the practical value of explicit geographic guidance for strengthening 
LLM-based location understanding and extraction.

Bhandari et al. (2023) evaluated whether LLMs are geospatially knowledgeable 
through three experimental approaches. They assessed the geospatial awareness of 
LLMs by analysing the use of geospatial prepositions in sentences. The study found 
that LLMs were able to correctly arrange cities that are physically closer to each other 
when prepositions such as ‘near’ and ‘close to’ were used to indicate proximity. 
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Conversely, when the context involved the preposition ‘far’, indicating a distant loca
tion, the generated cities tended to be farther apart. The study concludes that LLMs 
hold significant potential for supporting human tasks in geospatial reasoning and ana
lysis, especially with targeted fine-tuning tailored to specific use cases. However, to 
the best of our knowledge, no existing studies have applied LLMs for georeferencing 
tasks to obtain geographic coordinates that best match the textual locality descrip
tions provided.

3. Methodology

3.1. Data

In this study, we utilise multiple biological collection datasets obtained from the 
Global Biodiversity Information Facility2 (GBIF). GBIF is the largest online biodiversity 
data network in the world, containing biological collection records from many institu
tions worldwide. We selected multiple datasets from GBIF (GBIF.org 2024a, 2024b, 
2024c, 2024d), which contain records from the regions of the USA, New Zealand, 
Australia, and Mexico. The USA, New Zealand, and Australia datasets are in English, 
while the dataset from Mexico is in Spanish. Since datasets available through GBIF fol
low the same data standards, these datasets share a common structure and can be 
preprocessed using the same steps. An occurrence record from GBIF contains a wealth 
of information, including details about the location where the samples were collected, 
information about the collector, and specifics of the collection event, such as tempera
ture and altitude. Among this information, we extracted the columns ‘locality’, 
‘decimalLatitude’, ‘decimalLongitude’, ‘countryCode’, and ‘stateProvince’, which are 
related to the location of the specimen found for our final dataset. ‘locality’ is the text 
that should be georeferenced. ‘decimalLatitude’ and ‘decimalLongitude’ provide the ori
ginal coordinates of the location described by ‘locality’, and we treat them as ground 
truth for georeferencing. The country and state/province where the specimen was 
found were used as additional contextual information.

We extracted a subset of these datasets and applied several preprocessing steps: 
these included removing duplicate locality descriptions and eliminating records that 
do not have original coordinates. After preprocessing, we randomly selected �30,000 
records from each dataset for our initial experiments. Subsequently, we experimented 
with different dataset sizes. Since the datasets include only records georeferenced 
with the coordinates of the specimen collection site, these coordinates serve as the 
ground truth for model training. A study by Yesson et al. (2007) reports that 83% of 
records in GBIF are annotated with accurate coordinates. The summary of the datasets 
used is provided in Table 1. Each country-specific dataset was divided into training 

Table 1. Sources of datasets extracted from GBIF for fine-tuning LLMs across different regions.
Country Source

New Zealand Manaaki Whenua–Landcare Research
USA New York Botanical Garden Herbarium
Australia Australasian Virtual Herbarium (AVH)
Mexico National Biological Collections of the Institute of Biology, UNAM
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(70%), validation (15%), and testing (15%) sets for model training, validation, and test
ing, respectively.

3.2. Prompt engineering

Since LLMs have not previously been used in georeferencing text data with geograph
ical coordinates, the most effective prompt structure for the task was identified by 
experimenting with multiple prompting patterns. During this exploratory phase, we 
initially utilised ChatGPT-4 (OpenAI’s3 GPT-4 model) accessed via the ChatGPT4 inter
face, chosen for its rapid inference capabilities and ease of access. We subsequently 
evaluated each prompting pattern using the latest GPT models, with the comparative 
results discussed in Section 4.2.2. The prompting patterns examined included Chain of 
Thought, Zero-Shot Chain of Thought, Context Manager, and Persona. These patterns 
were chosen for their applicability to the georeferencing context. Table 2 presents 
examples of how each prompting pattern is adapted to the georeferencing problem 
using a locality description.

The LLM successfully returned coordinate pairs in the majority of cases, producing 
generally acceptable results. Notably, this was the case even in Zero-Shot prompting, 
where the model was given the task without any prior examples or additional instruc
tions (see Table 2). In these cases, the LLM claimed to produce these coordinates by 
calculating offsets based on the approximate locations of the place names mentioned 
in the text (see Figure A1 in Appendix A). This suggests that LLMs already possess 
some understanding of the task at hand. However, when the LLM lacks knowledge of 
the geographical coordinates for place names mentioned in the description, it did not 
generate coordinates but instead provided follow-up instructions.

Table 2. Examples of prompts corresponding to different prompting patterns as adapted for the 
georeferencing task.
Prompt pattern Prompt

Zero-shot Accurately georeference the location provided in the Locality Description’ below, 
expressing the coordinates in decimal degrees. Locality Description: 21 km west of 
Opotiki, south of Wainui Road

Zero-shot CoT Accurately georeference the location provided in the ‘Locality Description’ below, 
expressing the coordinates in decimal degrees.

Locality Description: 21 km west of Opotiki, south of Wainui Road. Think step-by-step.
Chain of thought Task: Convert the Locality Description below into decimal degree coordinates Locality 

Description: 21 km west of Opotiki, south of Wainui Road. Steps to follow: Start by 
identifying the decimal coordinates of the key reference point. Then, convert these 
coordinates into eastings and northings for precise adjustment.

Afterward, apply the specified distance and
direction adjustments as per the locality description.
Finally, convert the adjusted eastings and northings back into decimal degree 

coordinates for the final location.
Context control Accurately georeference the location provided in the ‘Locality Description’ below, 

expressing the coordinates in decimal degrees.
Context: This ‘Locality Description’ refers to a location in North Island, New Zealand. 

Locality Description: 21 km west of Opotiki, south of Wainui Road
Persona prompting Act as a georeferencer and accurately georeference the location provided

in the ‘Locality Description’ below, expressing the coordinates in decimal degrees. 
Locality Description: 21 km west of Opotiki, south of Wainui Road
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Motivated by the success of CoT prompting in various complex tasks involving rea
soning, we constructed step-by-step instructions for the LLM to follow in solving the 
problem of georeferencing. This approach generated a coordinate pair to represent 
the geographical location described, adhering to the provided instructions. 
Nonetheless, developing a set of instructions that would enable the LLM to derive 
accurate results proved challenging, as manual georeferencing is typically a complex 
process that involves analysing maps, aerial imagery, and various spatial data layers to 
accurately pinpoint locations.

Following the Context Manager pattern, we conducted an experiment where we 
specified the country and state or province in which the specimen was found, thereby 
constraining the output to that specific region. This approach produced more 
reliable results by restricting outputs to the relevant geographic region. We also 
explored the Persona pattern, where the LLM was instructed to assume the role of a 
georeferencer to derive coordinates from locality descriptions. Although this 
method aimed to leverage the LLM’s ability to mimic expert georeferencing skills, the 
results were less effective. The Persona pattern mostly led the LLM to explain the 
steps a georeferencer would take, rather than generating the coordinates 
independently.

Through experimentation with various locality descriptions under different prompt
ing patterns, we determined that the Context Manager pattern is the optimal prompt 
for our use case. This pattern is not only straightforward but also ensures that the pro
duced coordinates accurately align with the specified geographic context. We then 
formatted the datasets according to the Context Manager pattern. In the training and 
validation prompts, the original coordinates are included as ground truth data, as illus
trated in Figure 1.

3.3. Fine-tuning LLM

Fine-tuning an LLM typically includes multiple steps. The process begins with prepar
ing the dataset, followed by selecting and loading a pre-trained model. Before train
ing, the text data must undergo tokenization, where it is broken into smaller units 
called tokens (which can be words, subwords, or characters) and then converted into 
numerical representations that the model can process. Tokenized data is used to train 

Figure 1. Sample prompt used for fine-tuning the LLM. Both the training and validation datasets 
were structured using this pattern, with the original coordinates serving as the ground truth for 
supervised fine-tuning of the LLM. The test data was similarly formatted but without the inclusion 
of the coordinates.
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the LLM, during which the LLM’s parameters are adjusted, performance is monitored, 
and iterative refinements are made to improve accuracy. The steps we followed in this 
process are summarized in Figure 2.

To select the most suitable LLM for our task, we conducted initial experiments 
using several open-source pre-trained LLMs. 4-bit quantization and Low-Rank 
Adaptation (QLoRA) were applied to the base LLM to efficiently manage the large size 
and complexity of the LLM while maintaining high performance. This approach 
enabled us to fine-tune the model using a single NVIDIA A100 24 GB GPU, eliminating 
the need for large-scale computing infrastructure and making the solution more 
accessible and practical for scaling georeferencing tasks.

3.4. Experiment setup

Initial experiments were conducted on the base version of the following open-source 
pre-trained LLMs: Llama2-7B, Llama3-7B, Gemma-7B, and Mistral-7B to identify the 
model that best matches the use case (we also tested instruct models, but they per
formed less well than the base models for this task). We chose open-source LLMs due 
to their accessibility, flexibility for customisation, and cost-efficiency compared to pro
prietary LLMs such as ChatGPT, aligning with our long-term objective of releasing a 
open-source tool for biological specimen georeferencing. These experiments identified 
the Mistral-7B base model as the most suitable for the task. For brevity, we focus on 
reporting the results of the selected model.

The key hyperparameters for model training were carefully selected to optimize 
performance while preventing overfitting, based on experiments with multiple set
tings. The learning rate was set to 2e-4, which offers a balance between convergence 
stability and training speed, mitigating divergence or oscillatory behaviour. The batch 
size was set to 32, a choice that offered stable gradient estimates without exceeding 
memory limits. For efficient fine-tuning, LoRA parameters were configured with a LoRA 
rank of 32 and LoRA alpha of 64. The rank specifies the dimensionality of the low-rank 
adaptation matrices, controlling their expressive capacity, while alpha rescales the out
put of the low-rank matrices before combining them with the frozen base weights, 

Figure 2. Framework of fine-tuning an LLM for georeferencing biological specimen collection 
records.
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effectively controlling the contribution of the LoRA adaptation (Hu et al. 2022). The 
training process consisted of three epochs. The low-rank matrices were iteratively 
updated at each batch step within each epoch using gradients calculated from the 
loss function.

Checkpoints were established at regular intervals throughout the training process 
to facilitate continuous monitoring and potential retrieval of intermediate models. This 
fine-tuning process was performed separately for each region-specific dataset, result
ing in a dedicated LLM fine-tuned for georeferencing within each region. The final 
models were saved and subsequently used for inference on the test datasets. 
Performance metrics were calculated to evaluate each model’s accuracy in georefer
encing locality descriptions.

4. Evaluation

4.1. Baseline systems

Given the lack of publicly accessible and functional methods for georeferencing bio
logical collection data, our selection of benchmarks was limited. While van Erp et al. 
(2015) offer the most recent study on georeferencing biological specimen data, we 
were unable to use their methodology as a baseline because their application, 
‘GeoImp’, is no longer available. Furthermore, the latest tweet georeferencing method
ologies are also inapplicable to the domain of biological specimen data georeferenc
ing, as they rely on metadata and social media user network data, in addition to the 
tweet text.

As a result, we compared the performance of our models against two georeferenc
ing baselines: GEOLocate and a gazetteer-matching algorithm. GEOLocate is the only 
currently available tool for georeferencing locality descriptions of biodiversity collec
tion records. For a given description, GEOLocate can return multiple coordinate pairs 
as potential geolocations, and these coordinates are ranked according to their prob
ability of being correct (Rios and Bart 2014). For our analysis, we selected the coordin
ate pair ranked as the most likely.

Since many methods for georeferencing textual data primarily focus on identifying 
and geocoding place names through gazetteer-matching approaches, we imple
mented a gazetteer-matching algorithm as our second baseline (see Appendix B). This 
algorithm can be regarded as analogous to the spatial minimality disambiguation 
method of Leidner et al. (2003). It involves the steps of place name recognition and 
resolution. To improve the accuracy of place name identification, we fine-tuned the 
spaCy5 model using 50 annotated locality descriptions of our data. The identified place 
names were then geocoded using a gazetteer-matching process. We experimented 
with both the GeoNames6 and Nominatim7 gazetteers to determine the most suitable 
option. During geocoding, we specified the country and state or province to initially 
disambiguate the place names. Given that a single locality description can contain 
multiple place names, it was necessary to disambiguate these names and identify the 
coordinates that best represent the overall locality description. To achieve this, we 
conceptually plotted all possible locations of the identified place names using the 
DBSCAN algorithm (Ester et al. 1996) and identified the cluster with the highest 
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concentration of points, assuming this cluster contained most of the place names 
mentioned in the description. To determine the final coordinate pair, we calculated 
the mean latitude and mean longitude of the points within the identified cluster.

In addition to these baselines, we also evaluated our fine-tuned LLM against three 
prominent GPT models, GPT-5, GPT-4.1, and GPT-4o, to assess its relative performance 
in the georeferencing task.

4.2. Results and discussion

The mean and median of the SAE (Simple Accuracy Error) and the percentages of pre
dicted locations that are within a 10 km and 1 km radius of the actual locations were 
used to evaluate the performance. The error was calculated by measuring the distance 
between the predicted location and the original location, utilising the Haversine for
mula. Table 3 shows a comparison of the performance metrics between the fine-tuned 
Mistral model and baselines for each dataset.

4.2.1. Performance across different regions
The fine-tuned LLM for the New Zealand region outperformed all baselines, correctly 
predicting 70.43% of localities within a 10 km radius, 25.36% within a 1 km radius, and 
7.71% within 100 m. It also achieved a median SAE of 3.55 km and a mean SAE of 
41.95 km. In comparison, GEOLocate reached only 45.39% within 10 km and 10.45% 
within 1 km, with substantially higher error values, while the gazetteer method per
formed worst overall.

Table 3. Comparison of the results from the fine-tuned LLMs with baseline systems across 
regional datasets.
Dataset No of records Model Accuracy@10 km Accuracy@1 km Med SAE Mean SAE

New Zealand 29,024 GEOLocate 45.39% 10.45% 12.24 km 129.62 km
Gazetteer-based 23.24% 5.30% 35.96 km 117.91 km
Fine-tuned Mistral 7B 70.43% 25.36% 3.55 km 41.95 km

USA 29,566 GEOLocate 56.40% 26.82% 5 km 62.38 km
Gazetteer-based 12.81% 3.47% 584 km 1062 km
Fine-tuned Mistral 7B 35.24% 7.40% 19.18 km 63.9 km

Australia 29,566 GEOLocate 41.89% 6.85% 16.28 km 237 km
Gazetteer-based 16.16% 1.91% 18.25 km 345.92 km
Fine-tuned Mistral 7B 53.82% 9.80% 8.52 km 51.28 km

New York (USA) 20,962 GEOLocate 55.73% 32% 3.52 km 79 km
Gazetteer-based 31.98% 9.63% 11.82 km 488 km
Fine-tuned Mistral 7B 84.89% 66.71% 0.083 km 17.59 km

California (USA) 12,441 GEOLocate 50.78% 20.78% 8.94 km 88 km
Gazetteer-based 15.48% 2.09% 24.17 km 158.24 km
Fine-tuned Mistral 7B 66.26% 28.70% 4.17 km 40.20 km

Victoria (Australia) 29,568 GEOLocate 48.82% 8.22% 10.73 km 169.44 km
Gazetteer-based 20.26% 3.09% 12.76 km 264.11 km
Fine-tuned Mistral 7B 81.76% 22.79% 2.94 km 11.97 km

Mexico 32,116 GEOLocate 29.85% 10.43% 54 km 251 km
Gazetteer-based 15.94% 2.71% 82.66 km 313.11 km
Fine-tuned Mistral 7B 75.82% 51.41% 0.89 km 20km

All datasets are in English, except for Mexico, which is in Spanish. The number of records shown refers to the entire 
dataset, which was subsequently divided into 70% for training, 15% for validation, and 15% for testing. 
Bold values indicate the best performing results for each dataset.
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For the Australian dataset, the fine-tuned LLM also surpassed the baselines, predict
ing 53.82% of records within 10 km and 9.8% within 1 km, with a median SAE of 
8.52 km and a mean SAE of 51.28 km. While the performance did not reach the level 
achieved in New Zealand, the results for Australia were still clearly positive. In contrast, 
for the USA dataset, GEOLocate outperformed our LLM. GEOLocate predicted 26.82% 
of localities within a 1 km radius, whereas our LLM predicted only 7.40% within the 
same radius. The median and mean SAE given by GEOLocate also outperformed our 
model. The higher performance for the USA with GEOLocate might relate to the fact 
that GEOLocate is described as intended for the USA, Canada, and Mexico regions 
(Rios and Bart 2014). However, as demonstrated subsequently, our approach was 
found to be superior when applied to data for Mexico and for two states of the USA.

Based on these results, we hypothesize that the lower performance in the USA dataset 
and the slightly reduced performance in the Australian dataset are due to the lower 
density of records relative to their large geographic extents. With fewer records per unit 
area, the training data may not provide sufficient coverage for the model to effectively 
learn relevant place names, recurring locality descriptions, and spatial language. If the 
availability of these features is a function of geographic area, then for a fixed number of 
training records, larger regions will yield fewer such signals per unit area, thereby reduc
ing model effectiveness. To validate our hypothesis regarding the influence of record 
density and geographic extent, we designed two complementary experiments.

In the first experiment, we expanded the USA dataset to �150,000 records and fine- 
tuned the LLM on 70% of these data. The LLM demonstrated a significant improvement 
over the smaller dataset, accurately georeferencing 61% of localities within a 10 km 
radius and 17.87% within a 1 km radius. It achieved a median SAE of 5.91 km and a mean 
SAE of 36.48 km, while GEOLocate’s performance remained consistent with that of the 
smaller dataset. These results indicate that increasing dataset size, and thereby effective 
record density, enhances the model’s effectiveness in interpreting locality descriptions 
and resolving place names and associated spatial semantics.

In the second experiment, we restricted training to smaller geographic regions 
using state-specific data. From the USA dataset, we fine-tuned separate LLMs with 
20,962 records from New York and 12,441 from California. As shown in Table 3, the 
New York model predicted 84.86% of coordinates within 10 km and 66.71% within 
1 km, while the California model achieved 66.26% within 10 km and 28.7% within 
1 km, both outperforming the baselines. A similar pattern was observed for Australia, 
where a Victoria-specific model (29,568 records) predicted 81% of localities within 
10 km and 22.79% within 1 km.

Together, these experiments support our hypothesis: the methodology is more 
effective in smaller regions with higher record density, and for larger regions, achiev
ing comparable accuracy requires substantially more data.

Building on these region-specific results, we next examined whether the model’s 
effectiveness extends across languages, since LLMs are trained on multilingual data 
(Thellmann et al. 2024, Qin et al. 2025). Given the global need for georeferencing bio
logical specimen collection data, we were particularly interested in testing the linguis
tic generalizability of the LLM. Thus, we extended our experiments to test the model 
with Spanish-language data from the Mexico region. Our model, fine-tuned for the 
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Mexico region with Spanish-language data, returned excellent results, predicting 
75.82% of coordinates within 10 km from the actual location and 51.41% of localities 
within 1 km from the actual location. This model also achieved low error distances, 
with a median SAE of 0.89 km and a mean SAE of 20 km. GEOLocate tool, which is 
said to have been optimised for the Mexico region, only predicted 29% records within 
a 10 km radius. These results suggest that our methodology effectively leverages the 
multilingual inference capability of LLMs, making it generalizable both regionally and 
linguistically.

4.2.2. Performance compared to GPT models
In addition to comparing our fine-tuned LLMs with existing georeferencing baselines, 
we conducted experiments using the latest and most prominent GPT models [GPT-5 
(OpenAI 2025b), GPT-4.1 (OpenAI 2025a), and GPT-4o (OpenAI 2024)] with the prompt
ing strategies shown in Table 2. These experiments were performed via the OpenAI 
API.8 Due to the proprietary nature and high cost associated with these services, we 
evaluated only a random subset of 500 samples from the New Zealand test dataset, 
rather than the full test datasets for each region. The corresponding results are pre
sented in Table 4. We have also included the results from the Mistral-7B model with
out fine-tuning, as well as our fine-tuned Mistral-7B model.

Our fine-tuned LLM significantly outperformed all GPT variants, including the new
est GPT-5 model. This suggests that the proprietary models, regardless of how intelli
gent they have become or how much their reasoning capabilities have improved, are 
currently limited in their ability to perform the type of spatial reasoning required for 
accurate georeferencing. The substantial performance margin highlights the effective
ness of our domain-specific fine-tuning approach. However, it is worth noting that 
GPT models with the context control prompt achieved the best mean SAE values over
all, with the lowest recorded by GPT-4o.

Table 4. Comparison of results from the fine-tuned Mistral-7B model and GPT models on the 
New Zealand test set.
LLM Prompt pattern Accuracy@10 km Accuracy@1 km Med SAE Mean SAE

GPT-4o Zero-shot 52% 6.8% 9.12 km 476 km
Zero-shot CoT 48.4% 6.8% 10.26 km 373.76 km
CoT 48% 6.2% 10.69 km 501.76 km
Context control 54.8% 8.4% 8.69 km 45.33 km
Persona 48.2% 6.4% 10.59 km 452.79 km

GPT-4.1 Zero-shot 45.4% 6.2% 11.72 km 399.14 km
Zero-shot CoT 45% 6.4% 11.42 km 340.63 km
CoT 48.6% 6.4% 11.42 km 340.63 km
Context control 50.8% 7% 9.9 km 51.18 km
Persona 47.6% 7.8% 10.92 km 405.33 km

GPT-5 Zero-shot 43.57% 6.2% 13.26 km 333km
Zero-shot CoT 59.4% 10% 7.17 km 159.13 km
CoT 57.6% 9.6% 7.27 km 139.59 km
Context control 57.4% 8.8% 7.81 km 50.94 km
Persona 36.27% 5.4% 18.41 km 416.76 km

Mistral 7B Context control 5.23% 0.48% 49.78 km 1120 km
Fine-tuned Mistral 7B Context control 71% 31% 3.81 km 52.01 km

Note: Bold values indicate the best result for each metric.
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Moreover, these experiments highlight the importance of prompt design. As shown 
in Table 4, the context control prompting pattern consistently yielded the best per
formance for both GPT-4.1 and GPT-4o. However, with the newest GPT-5 model, the 
Zero-shot CoT prompts produced slightly better results, likely due to the enhanced 
reasoning capabilities (GPT-5 thinking) introduced. Overall, these findings validate our 
prompting strategy.

4.2.3. Effect of locality description length on performance
Another aspect we explored in our research was the impact of the character length of 
a locality description in a collection record on LLM’s performance. In our dataset, we 
observed that longer descriptions tend to be more complex, often detailing the loca
tion of a specimen in relation to multiple distances and directions, referencing various 
locations. Examples of locality descriptions categorised by length are presented in 
Table 5.

Table 6 presents a comparison of the results of our New Zealand fine-tuned LLM 
(reported previously in Table 3), grouped by description length. There is an incremen
tal improvement in the accuracy of the prediction when the length of the description 
increases. The bar chart in Figure 3 further complements our observation. To 

Table 5. Examples of locality descriptions with different lengths (in characters).
Length Locality description

<30 Off Great Barrier Island
near Gulf Harbour
Beach near Devonport

30–60 Three Kings Group, West Island. Off W side of S summit
Stream at Te Moori, 3 miles south of Kaeo, Northland
Jacko’s pond, 3 km south of Coromandel

60–90 Little Barrier Island, Awaroa Stream, about 150 m from the sea
Gully facing sea, on bluffs opposite cottage, 2 km southwest of Kaihoka Lakes, Nelson
Milford, near beach at end of Milford Road, Waitemata County, North Island

90–120 South Island, Fiordland National Park, W of Homer Tunnel, 9 mi SE of Milford Sound on 
Hw. 94

Central Volcanic Plateau: c. 2 km S of National Park, forest margin near grazed meadow 
300 m W of Mountain Hights Lodge.

South Island, Westland, 0.6 miles W. of Rahu Saddle on Rte. 7, Terrestrial on roadside bank
>120 Knightia Railway Reserve and adjoining grazed bush containing abundant moss-covered small 

shrubs, on Morrison Farm about 4 km by road NW of Mataroa, itself on Mataroa Rd NW of 
Taihape

Nelson Lakes National Park, St Arnaud, picnic/camping area on lake shore at Kerr Bay, about 
100 m towards DoC Headquarters from Black Stream bridge

Farm trail north side of Parau Stream, 200 yards (182 m) above bridge across tributary, W 
aimana Valley, inland Bay of Plenty, North Island, New Zealand.

Table 6. Comparison of prediction accuracy of the fine-tuned LLM by description length in the 
New Zealand test set.
Length in number of characters Acc@1 km Acc@10 km Median SAE Mean SAE

<30 4.07% 48.54% 11.52 km 55.85 km
30–60 17.60% 59.70% 6 km 66.45 km
60–90 15.61% 67.81% 5.03 km 26.37 km
90–120 20.55% 72.59% 3.78 km 24.27 km
More than 120 32.01% 76.77% 2.40 km 25.16 km

Note: Bold values indicate the best result for each metric.
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investigate the statistical basis of this pattern, we analysed the correlation between 
error distance and description length using Spearman’s rank correlation. This method 
was chosen because it does not assume linearity or normally distributed variables and 
is robust to outliers. The analysis revealed a moderately negative correlation 
(q ¼ −0:19; p� 0:001), indicating that longer descriptions are associated with 
reduced error, although the modest effect size suggests that description length may 
be only one of several factors influencing prediction accuracy.

To clarify the source of these gains, we examined the description content by 
length. We looked into the place names and spatial indicators present in the locality 
descriptions. Spatial indicators are textual elements that express geographic 

Figure 3. Distribution of accuracy in error distance by the description length for the New Zealand 
dataset.

Figure 4. Distribution of locality description features by length: (a) number of place names and (b) 
number of spatial indicators.
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relationships, providing cues to locate a place in reference to other geographic enti
ties. For example, in the locality description ‘10 km north of Lake Wanaka, 1 km north 
of Makarora, near Pipson Creek’, there are three place names (‘Lake Wanaka’, 
‘Makarora’, ‘Pipson Creek’) that act as reference points, while the three spatial indica
tors (‘10 km north of’, ‘1 km north of’, ‘near’) specify the relative positions needed to 
infer the exact location. Longer localities contained more place names and spatial indi
cators as revealed by the box-plots in Figure 4. Correlation analysis confirmed that the 
number of place names was moderately and negatively associated with error distance 
(Spearman q ¼ n0:16, p� 0:001), indicating that descriptions with more toponyms 
tend to yield more accurate predictions.

We further disaggregated spatial indicators into three types: directional (e.g. ‘north 
of’, ‘SE side of’, ‘west-facing’), distance (both quantitative, e.g. ‘5 km N of Wellington’, 
and qualitative, e.g. ‘near the river’), and topological (e.g. ‘on stone’, ‘at the base’). As 
shown by the box-plots in Figure 5, directional and distance cues increased sharply 
with description length, particularly beyond 90 characters, while topological indicators 
remained relatively frequent across all bins but peaked in the longest descriptions. 
These findings explain the observed performance gains: richer descriptions do not sim
ply add verbosity but supply both a higher density of place names and a greater var
iety of spatial relations, which collectively improve LLM inference.

Together, these analyses demonstrate that description length is a meaningful pre
dictor of georeferencing success, not because of length itself but because longer 
records tend to encode more place names and spatial relationships. Our results sug
gest that the fine-tuned LLM effectively leverages this additional context to reduce 
spatial error, underscoring the importance of detailed specimen metadata for accurate 
automated georeferencing. This interpretation is consistent with Ji et al. (2025), who 
show that LLMs can interpret formal topological relations with moderate accuracy, but 
frequently confuse conceptually adjacent predicates, indicating that relying on topo
logical cues alone to describe a location can remain ambiguous. In our setting, longer 
specimen records mitigate this ambiguity by providing more place anchors and stron
ger directional/distance constraints, enabling more precise coordinate inference.

Table 7 lists the ten localities where GEOLocate exhibited the highest georeferenc
ing errors in the California state dataset. These errors are measured as the distance 
between the predicted and actual locations. The table compares these errors with 

Figure 5. Distribution of spatial indicators (distance, direction, and topological) as a function of 
locality description length.
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those produced by our fine-tuned LLM for the same localities. Notably, the localities 
that produced the poorest results with GEOLocate are characterized by long descrip
tions containing multiple spatial terms and place names. In 9 out of these 10 instan
ces, our model achieved significantly lower error margins. This finding further 
demonstrates that our method provides more accurate results in handling complex 
locality descriptions compared to current georeferencing approaches.

4.2.4. Effect of prompt wording variations on fine-tuning performance
As detailed in Section 3.2 and Table 2, we initially experimented with several prompt 
patterns and identified the Context Control prompt pattern as the most appropriate 
for our use case. Accordingly, we used this pattern to structure the input data for 
training the fine-tuned LLMs. To explore whether the specific wording of prompts 
within this pattern influences the model performance of the fine-tuned LLM, we fur
ther extended our experiments to test different phrasings of the same Context 
Manager pattern. We used the New Zealand dataset (29,024 records) and compared 
the outcomes of the original prompt with two alternative phrasings. The results of 
these experiments are presented in Table 8, where we observed minor differences in 
performance across the variations.

The first prompt represents the original wording used in our experiments. The 
second version introduces a slight modification to the instructional phrasing. The third 
prompt combines the Context Manager pattern with elements of the Persona pattern 
by explicitly defining the user’s persona alongside the context. Among these, the latter 
two variations showed a slight improvement in results. Accuracy within 10 km ranged 
only from 70.43 to 71.72%, and accuracy within 1 km varied between 25.36 and 
26.23% across the three prompt versions. Median and mean errors likewise differed 
only marginally (3.38–3.55 and 40–42.38 km, respectively). These results suggest that 
while prompt wording may have a minor influence on performance, it is not a domin
ant factor in the context of our fine-tuning setup.

Table 7. Georeferencing error comparison between GEOLocate and the fine-tuned Mistral 7B LLM 
for the ten worst-performing localities by GEOLocate in the California state dataset.

Locality description Error with GEOLocate
Error with  

fine-tuned Mistral 7B

Amargosa Desert, along dirt rd sw. of Calif.-Nev. state line from 
Calif. Hwy 127 toward abandoned Tonopah & Tidewater Railroad. 
Drainage Basin: Amargosa; U. S. Atomic Energy Commission’s 
Nevada Test Site and vicinity.

1891.73 km 49.60 km

Head of Etna Creek, Marble Mountains 997.35 km 24.39 km
Cleveland National Forest, Black Canyon Rd, 6 km N of Ramona 986.59 km 6.60 km
Cleveland National Forest, Palomar district, Black Canyon Rd, 7 km S 

of junction with Rd 12S05
982.91 km 27.92 km

Vicinity of Leonard Hot Spring, E side of Surprise Valley. 971.70 km 26.10 km
Mohave Desert, northeast of the San Bernardino Mountains, 9 airline 

miles north-northeast of junction of Calif. Highway 62 and 
highway to Lucerne Valley (Yucca Valley town).

970.43 km 915.58 km

Pyramid Point, forming a distinct zone in the middle zone of the 
litoral region, on rocks

948.77 km 0.02 km

Vail Lake area, lower slopes of Agua Tibia Mtn. along Hwy 79, E of 
USFWS Dripping Springs Guard Sta.

937.70 km 0.48 km

Just S.W. of sand hills, 5 mi. N.E. of Glamis. 887.96 km 5.78 km
927 Candlelight Place, adjacent to N terminus of Cass St 842.72 km 0.78 km
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4.2.5. Evaluation of model sensitivity to spatial distance information
Many descriptions in our dataset include quantitative spatial distance values refer
enced to a place name, such as ‘200 metres west of Mangatoetoe Stream’ or ‘6 km SSE 
of Westport’. To assess whether our fine-tuned LLM makes meaningful use of these 
numerical distance references in prediction, we conducted a targeted evaluation.

We randomly selected 100 records from the New Zealand test dataset and identified 59 
descriptions containing explicit quantitative spatial information. These distance values were 
then manually removed from the text, with care taken to preserve the overall semantic 
meaning and spatial context. For example, the description ‘30 miles S of Auckland City’ was 
revised to ‘S of Auckland City’ by removing the quantitative distance ‘30 miles’.

We evaluated model performance on both the original and modified versions of these 
records using GPT-4o and our Mistral 7B model fine-tuned for the New Zealand region. 
Results are illustrated in the bar chart in Figure 6. Interestingly, GPT-4o exhibited unex
pected behaviour, its prediction accuracy was higher when the distance values were 
removed. In contrast, the fine-tuned Mistral model behaved as expected, showing a 
slight decline in accuracy when distance expressions were removed. This suggests that 
the fine-tuned LLM is more attuned to leveraging such spatial cues during prediction.

Despite the use of a smaller dataset, these results indicate that our fine-tuned LLM 
is capable of interpreting quantitative spatial cues, reinforcing its potential for accurate 
georeferencing of biodiversity collection records.

4.2.6. Analysis of transfer learning capabilities of LLMs
To evaluate the transfer learning (TL) capabilities of our approach, we tested whether 
a model fine-tuned on data from one region could be applied to another, and 
whether combining or adapting datasets could improve performance.

Table 8. Comparison of results from variations of context manager pattern prompts for the New 
Zealand dataset.
Sample prompt Acc@10 km Acc@1 km Median Mean

Accurately georeference the location provided in the 
‘Locality Description’ below, expressing the coordinates 
in decimal degrees. 
Context: This ‘Locality Description’ refers to a location 
in Canterbury Land District, New Zealand. 
Locality description: ‘Inverary’, Mt Somers, Mid 
Canterbury, above Blondin Stream.

70.43% 25.36% 3.55 km 41.95 km

Determine the precise geographic coordinates for the 
location described in the ‘Locality Description’ below, 
providing the latitude and longitude in decimal 
degrees. 
Context: The described locality is situated in 
Canterbury Land District, New Zealand. 
Locality description: ‘Inverary’, Mt Somers, Mid 
Canterbury, above Blondin Stream.

71.72% 26.05% 3.38 km 42.38 km

You are a GIS specialist verifying geographic data for 
locations in New Zealand. Your task is to determine 
the precise latitude and longitude (in decimal degrees) 
for the locality described below. 
Region: Canterbury, New Zealand 
Locality description: ‘Inverary’, Mt Somers, Mid 
Canterbury, above Blondin Stream.

71.12% 26.23% 3.48 km 40 km

Note: Bold values indicate the best result for each metric.
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We first tested whether a model fine-tuned exclusively on Australian data could be 
applied directly to New Zealand. The model was able to generate coordinates, but the 
predictions exhibited very high error margins (see Table 9). This indicates that while 
training on data from another country may help the LLM capture the general seman
tics of the task, it is insufficient for accurate coordinate prediction without region- 
specific information.

We next evaluated multi-region training configurations combining different propor
tions of Australian and New Zealand training data (see Table 9) and testing on the 
New Zealand test dataset. Adding 20% New Zealand training data to an Australia-fine- 
tuned LLM reduced the mean error to 57.27 km, performing well above the baseline 
(GEOLocate). A balanced dataset (50% AUS/50% NZ) lowered it further to 47.9 km 
mean error. Training with predominantly New Zealand data (20% AUS/100% NZ) 
achieved the best result of 39 km, only slightly better than New Zealand–only training 

Figure 6. Comparison of sensitivity to spatial distance information between GPT-4o and the fine- 
tuned Mistral 7B models in predicting coordinates, evaluated on a subset of the New Zealand 
test set.

Table 9. Performance on the New Zealand test set across models fine-tuned with different multi- 
region training data compositions.
Model AUS training data NZ training data Mean Median Within 10 km Within 1 km

GeoLocate – – 129.62 km 12.24 km 10.45% 45.39%
Mistral 7B 100% (20,697) 0 (0) 1314.3 km 1706 km 2.30% 0.50%

100% (20,697) 20% (4063) 57.27 km 10.39 km 48.56% 8.10%
50% (10,348) 50% (10,158) 47.9 km 5.71 km 62.83% 15.18%

0% (0) 100% (20,318) 41.95 km 3.55 km 70.43% 25.36%
20% (4139) 100% (20,318) 39 km 3.41 km 70.89% 26.07%

Training dataset proportions are relative to the original training data splits (70%) of each dataset. Bold values indi
cate the best result for each metric.
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(41.95 km). These results suggest that modest amounts of local data can markedly 
improve the transferability, but cross-region data alone contributes little beyond what 
region-specific training achieves.

We also tested the generalisability of the New Zealand–fine-tuned LLM across 
different datasets within the same region. Specifically, we used the model originally 
fine-tuned on the New Zealand Allan Herbarium (CHR) (GBIF.org 2024a) dataset to 
georeference a randomly selected sample of 5000 records from both the New Zealand 
Arthropod Collection (NZAC) (GBIF.org 2025a) and the New Zealand National Forestry 
Herbarium (GBIF.org 2025b). The model achieved mean SAEs of 23.2 km (NZAC) and 
43.4 km (Forestry Herbarium), comparable to the performance on the original CHR 
dataset (41.95 km). Median errors were consistently low across datasets (3.55–7.99 km). 
These results suggest that the model can generalise reasonably well across independ
ently curated datasets within a region, indicating a degree of transferability beyond 
the dataset it was originally fine-tuned on.

To further validate this robustness, we conducted a 5-fold cross-validation experi
ment on the original New Zealand dataset. As shown in Figure 7, the results were 
highly consistent across folds, with an overall mean SAE of 42.29 km and a median 
SAE of only 2.95 km. This stability across partitions supports the transfer learning find
ings, showing that the model’s performance is not dependent on a specific training/ 
test split but generalises reliably to unseen data.

Our results are consistent with recent evaluations of LLM spatial reasoning and spatial 
cognition. Yang et al. (2025) report that both proprietary and open-source models exhibit 
limited robustness on spatial tasks that require integrating multiple cues into a globally 
coherent representation, rather than recalling isolated geographic facts. This aligns with 
our transfer-learning outcomes: cross-country transfer was minimal without local training 
data, whereas transfer across independently curated datasets within New Zealand 

Figure 7. Cross-validation results of the fine-tuned Mistral-7B model for New Zealand.
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remained comparatively stable, demonstrating that the learned mapping is strongly condi
tioned on regional spatial distributions. Importantly, Yang et al. (2025) further demon
strates that coupling LLMs with deterministic external tools can substantially enhance 
large-scale spatial cognition, highlighting a promising direction for improving both accur
acy and generalisability beyond what text-only inference can achieve.

4.2.7. Summary of results
Across all experiments, the fine-tuned Mistral 7B model consistently outperformed 
baselines when locality descriptions carried richer spatial cues. In smaller/denser (with 
regard to data) settings, it was strongest (e.g. New Zealand 70.43% Acc@10 km/25.36% 
Acc@1 km; New York 84.89/66.71%; Victoria 81.76/22.79%), and it generalized well to 
Spanish (Mexico 75.82/51.41%, median SAE 0.89 km). In larger regions such as the USA 
and Australia, achieving higher performance required a substantial training dataset for 
broad geographic coverage. Comparisons with prominent GPT models (GPT-5, GPT-4.1, 
and GPT-4o) further underscored the value of domain-specific fine-tuning, as general- 
purpose proprietary models failed to reach similar levels of accuracy.

Content analysis shows what the model actually learned: it integrates multiple top
onyms with directional and distance expressions to compose a plausible coordinate, 
rather than matching a single place name. Longer descriptions that include more 
place names and spatial indicators were associated with lower errors. Moreover, when 
explicit distances were removed, the fine-tuned LLM’s accuracy declined slightly, sug
gesting genuine reliance on quantitative cues. Prompt rewordings within the same 
pattern had only a minor effect, implying that the gains come from learned spatial 
composition rather than prompt phrasing.

Because performance is closely tied to record density and the geographic extent of 
the training data, cross-country transfer was limited without local adaptation. Even 
modest amounts of in-region data yielded measurable improvements, whereas 
foreign-only training resulted in substantially higher errors. Taken together, these find
ings show that fine-tuning enables the model to internalize spatial language and com
positional cues, achieving strong georeferencing performance across regions and 
languages when sufficient and representative training data are available.

4.2.8. Limitations and future work
Although our methodology for georeferencing complex locality descriptions using 
LLMs yielded favourable results compared to the baselines, we identified several limi
tations. One key consideration is the need for substantial training datasets. To explore 
the impact of training dataset size on performance, we fine-tuned the model with 
varying sizes of the New Zealand dataset. As shown in Table 10, there is a clear trend 

Table 10. Analysis of the impact of training dataset size on the accuracy of the fine-tuned LLM 
using the New Zealand dataset.
Training dataset size Acc@10 km Acc@1 km Median SAE Mean SAE

0 5.23% 0.48% 49.78 km 1120km
1000 24.42% 2.07% 23.8 km 70.78 km
5000 48.51% 8.16% 10.53 km 56.4 km
10,000 60.76% 15.37% 6.15 km 48.09 km
15,000 67.60% 20.42% 4.31 km 42.43 km
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indicating that the model’s performance improves as the training dataset size 
increases. Notably, these experiments highlight that fine-tuning the LLM with just 
5000 samples is sufficient to surpass the performance of GEOLocate.

Another limitation of our LLM-based georeferencing approach is its limited transfer 
learning capability, since accurate georeferencing often requires local geographic 
knowledge as discussed in Section 4.2.6. In continuing our research on multi-region 
fine-tuning, we plan to enhance the model’s ability to access external resources, such 
as gazetteers and geographic databases, to supplement its georeferencing capabilities. 
This could be achieved by integrating retrieval-augmented generation (RAG) (Guu 
et al. 2020) or API-based lookups (Schick et al. 2023) that allow the model to reference 
location data dynamically. By incorporating such external knowledge sources, we aim 
to improve the model’s accuracy in georeferencing data from previously unseen 
regions and enhance its generalizability across different geographical contexts.

Additionally, our model currently lacks a measure of the associated uncertainty in 
the results. This measure is crucial for determining the effectiveness and suitability of 
the model, an aspect extensively explored in previous studies, such as those by 
Wieczorek et al. (2004), Guo et al. (2008), and van Erp et al. (2015). However, several 
techniques have been developed for estimating the uncertainty of LLM outputs, such 
as Negative Log-Likelihood (NLL), consistency-based aggregation techniques, or intro
ducing prompting techniques to verbalize confidence scores in LLM outputs (Lin et al. 
2022, 2023, Tian et al. 2023). Furthermore, Catak and Kuzlu (2024) introduce a novel 
geometric approach that applies convex hull analysis to the spatial embeddings of 
LLM outputs, quantifying uncertainty based on the dispersion of generated responses. 
This method leverages the inherent structure of embedding spaces to infer confi
dence. The introduction of such spatially-informed Uncertainty Quantification (UQ) 
techniques for LLMs opens promising directions for our future work.

5. Conclusion

In this paper, we introduced an automatic georeferencing methodology that utilises 
LLMs. To the best of our knowledge, this study is the first to employ LLMs for geore
ferencing text data by predicting coordinates that best match the provided locality 
descriptions. This novel approach utilizes the ability of LLMs to be fine-tuned for spe
cific domains by leveraging their extensive pre-trained knowledge base and adaptabil
ity to new datasets. By integrating domain-specific training data, we enable the model 
to accurately interpret and align textual descriptions with corresponding geographic 
coordinates. This fine-tuning process enhances the model’s precision in biological col
lection data georeferencing tasks, ensuring that it can effectively handle the nuances 
and context-specific terminology unique to different geographic datasets.

The results show that our approach outperforms commonly used baselines in 
almost all cases, demonstrating that our methodology is effective in georeferencing 
complex locality descriptions of biological collection data across various regions and 
languages compared to existing methods. Due to limited access to the high- 
performing GPUs, we experimented only with a 7B parameter LLM variant, which still 
outperformed existing baselines. We believe that it is likely that the results could be 
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further improved with larger LLMs. Utilising models with a larger parameter count 
could potentially enhance the granularity and accuracy of georeferencing by capturing 
more intricate patterns and relationships within the data.

Although our model outperformed the baselines, for fully automated georeferencing of 
biological records, a higher level of accuracy would be desirable when limited training 
data are available. Additionally, the absence of uncertainty measures for the predicted 
coordinates is another drawback of our methodology. Nevertheless, this study represents 
an initial effort to implement a more advanced and comprehensive approach to georefer
encing complex locality descriptions in biological collection data using LLMs. Future work 
will focus on refining the LLM’s reasoning processes, with input from georeferencing 
experts. We also plan to incorporate Retrieval-Augmented Generation (RAG) and integrate 
external data sources, such as gazetteers and web mapping platforms like 
OpenStreetMap, to enhance the model’s accuracy and reliability.

Notes 

1. https://www.geo-locate.org.
2. http://www.gbif.org.
3. https://openai.com/.
4. https://chatgpt.com/.
5. https://spacy.io/.
6. https://www.geonames.org/.
7. https://wiki.openstreetmap.org/wiki/Nominatim.
8. https://platform.openai.com/.
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Appendices 
Appendix A. 
Sample responses from LLMs

Figure A1 shows a response provided by ChatGPT-4 when presented with a georeferencing 
task. In this example, the context manager pattern was utilized. The response from ChatGPT 
includes the calculation of offsets from a reference location.

Figure A1. Response from ChatGPT-4 for a georeferencing problem, generated on June 30, 2024.
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Figure A2 shows how our fine-tuned LLM responded to the task of georeferencing locality 
descriptions. The response was generated in a manner similar to the formatting of the training 
data.

Appendix B. 
Gazetteer-matching algorithm

The following pseudocode summarizes the gazetteer-matching algorithm, which was imple
mented as one of the baseline methods.

Algorithm 1. Gazetteer-matching algorithm.

1: Input: localityDescription, state, country
2: Output: latitude, longitude
3: CALL Spacy with localityDescription returning locationEntities
4: possibleLocations  empty list
5: for each entity in locationEntities do
6: CALL GeoNames with entity, state, country returning gazetteerLocations
7: APPEND gazetteerLocations to possibleLocations
8: end for
9: CALL DBSCAN with possibleLocations returning clusters
10: clusterWithMostPoints  SELECT cluster with the maximum number of points from clusters
11: latitude  Average(latitudes of points in clusterWithMostPoints)
12: longitude  Average(longitudes of points in clusterWithMostPoints)
13: return latitude, longitude

Figure A2. Response from the fine-tuned mistral model for a georeferencing problem.
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