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ABSTRACT ARTICLE HISTORY

Georeferencing text documents has typically relied on either Received 11 October 2024
gazetteer-based methods to assign geographic coordinates to Accepted 2 January 2026
place names or on language modelling approaches that associate
textual terms with geographic locations. However, many location
descriptions specify positions relatively with spatial relationships,
making geocoding based solely on place names or geo-indicative
words inaccurate. This issue frequently arises in biological speci-
men collection records, where locations are often described
through narratives rather than coordinates if they pre-date GPS.
Accurate georeferencing is vital for biodiversity studies, yet the
process remains labour-intensive, leading to a demand for auto-
mated georeferencing solutions. This paper explores the potential
of Large Language Models (LLMs) to georeference complex local-
ity descriptions automatically, focusing on the biodiversity collec-
tions domain. We first identified effective prompting patterns,
then fine-tuned an LLM using Quantized Low-Rank Adaptation
(QLoRA) on biodiversity datasets from multiple regions and lan-
guages. Our approach outperforms existing baselines with an
average, across datasets, of 65% of records within a 10 km radius,
for a fixed amount of training data. The best results (New York
state) were 85% within 10km and 67% within 1km. The selected
LLM performs well for lengthy, complex descriptions, highlighting
its potential for georeferencing intricate locality descriptions.

KEYWORDS

Biological collections;
generative Al; LLMs;
locative expressions; spatial
relations

1. Introduction

While most geographical information systems are predominantly based on structured
digital map data, there remains a vast amount of information embedded within text-
ual resources. Access to the information content of such resources is the subject of
the field of geographical information retrieval (Purves et al. 2018), which depends to a
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large extent on the effectiveness of georeferencing methods to determine the geospa-
tial focus of the content of text documents. To date, georeferencing methods for text-
ual data have usually been applied to the content of web pages and of social media
postings. These methods typically employ either gazetteer-based approaches to detect
and geocode (determine coordinates for) place names in the texts, or language model-
ling approaches that depend upon determining the association between text and loca-
tions, or some combination of these (Melo and Martins 2017, Gritta et al. 2018).
References to geographic locations through the use of place names are usually assumed
to be absolute, in the sense that the location is regarded as equivalent to that of a
place name or some other words that are indicative of a location (Han et al. 2012). Little
attention has been given to the fact that some descriptions of location are relative, in
that they refer to a location that has some spatial relationship to a reference place
name (Wieczorek et al. 2004, van Erp et al. 2015, Chen et al. 2018). Spatial relational
terms include phrases and words that indicate a specified distance, such as 70 km west
of, as well as relative positions like near, adjacent to, and along from.

A domain in which complex locality descriptions are commonly found is that of the
collection records of natural history agencies such as museums and herbaria. These
collections can include records of biological specimens of plants and animals, fungi
and bacteria, as well as soil and geological samples. Many of the records, especially
those collected before the widespread availability of GPS, do not have associated geo-
graphical coordinates. Instead, their locations are described solely through textual
descriptions that include locality descriptions. At its simplest, a locality description
might just consist of place names (toponyms), but very commonly, place names are
combined with relative spatial terms (Wieczorek et al. 2004, van Erp et al. 2015, Scott
et al. 2021). There are billions of such records and there is a strong motivation to
georeference them, as being able to assign coordinates, and hence map the locations
at which they were found, is a crucial step in studying biodiversity. Such georefer-
enced data enables researchers to monitor the geographical distribution of species
over time, the impacts of environmental changes on species, and to predict how envi-
ronmental changes will affect biodiversity in specific regions (van Erp et al. 2015).

To georeference textual documents such as Wikipedia articles, news articles, and
social media posts with coordinates that best represent the content, various methods
are employed (Stock 2018). While gazetteer-based approaches are commonly used in
this context to detect the presence of place names (Karimzadeh et al. 2019), other
methods, such as probabilistic language modelling techniques and discriminative clas-
sifiers, have also been utilised. Probabilistic language modelling techniques use gen-
erative models that estimate the likelihood of a textual document belonging to a
particular region. Discriminative classifiers, such as logistic regression and multi-layer
neural networks, classify documents into their most likely regions (Melo and Martins
2017). Furthermore, the introduction of Transformer models (Vaswani 2017) has
spurred several research efforts using BERT-based models for tweet or tweet user geo-
location prediction (Scherrer and Ljubesi¢ 2020, Simanjuntak et al. 2022, Lutsai and
Lampert 2023, Li et al. 2023a).

The often complex relative descriptions of localities where biological specimens are
found present an additional challenge from standard document georeferencing



INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE . 3

approaches mentioned above. As an example, manually georeferencing the locality ‘C.
10km N of Lake Wanaka, 1km N of Makarora. near Pipson Creek’, which explains the
location of a fungi specimen found in the Canterbury district of New Zealand, requires
determining the coordinates of Lake Wanaka and the town of Makarora; interpreting
the spatial relationship described by ‘approximately 10km north of Lake Wanaka' and
‘1 km north of Makarora' to find the general vicinity; and finally, using the reference to
‘near Pipson Creek’ to pinpoint the precise location. Thus, there is a need for more spe-
cialised automated georeferencing techniques. Additional examples of such descrip-
tions are presented in Table 5.

Recently, the field of Natural Language Processing (NLP) has been transformed by
the advent of Large Language Models (LLMs), demonstrating advanced functionalities
and effective solutions. The vast size of LLMs, which typically include billions of param-
eters, enables them to discern complex patterns and subtleties in human language,
resulting in outputs that are both highly precise and contextually appropriate
(Fujiwara et al. 2024). Leveraging these abilities, LLMs have been successfully applied
in various complex domains such as mathematical reasoning (Imani et al. 2023, Yu
et al. 2023) and geospatial reasoning (Li et al. 2023b). They have often been found to
outperform previous solutions based on traditional Machine Learning (ML) techniques
such as Logistic Regression and BERT-based models (Karanikolas et al. 2023).

In this study, we introduce a novel approach for automatic georeferencing of bio-
logical collection data using LLMs. To the best of our knowledge, our study is the first
to employ LLMs to georeference text data by predicting coordinates that best match
the given locality descriptions. We conducted multiple initial experiments to identify
the most suitable LLM and the prompting pattern for our use case. Subsequently, we
performed supervised fine-tuning with quantized Low-Rank Adaptation (QLoRA) to
adapt the selected LLM for the task of georeferencing. This was applied to multiple
datasets containing data from different regions at varying granularities of area size.
We also experimented with non-English data to demonstrate the model’'s linguistic
generalizability. The results were benchmarked against several existing georeferencing
baselines as well as commercial LLMs. In addition, we investigated the model’s sensi-
tivity to spatial information embedded in locality descriptions and explored its transfer
learning capabilities across geographic regions.

To summarize, the contributions of this research are as follows:

e We demonstrate the effectiveness of applying LLMs to georeferencing locality
descriptions with relative spatial relationships, and establish a strong benchmark
that significantly outperforms the commonly used baselines.

e We investigate the optimal LLM prompting patterns for georeferencing use cases
and introduce a new prompt that yields very good results for the considered task.

e We analyse the regional and linguistic generalizability of our LLM-based approach
for the task of georeferencing.

e We demonstrate that our proposed model is more robust for non-English datasets
compared to the baselines. For smaller regions, such as New Zealand, our model,
fine-tuned with just 5000 samples, outperforms the baselines.
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The remainder of this article is organized as follows. Section 2 describes related
work. Section 3 describes the data we used and our methodology for automatic
georeferencing. Section 4 discusses the results, and Section 5 concludes the paper
with a look into future directions.

2, Related work
2.1. Georeferencing text data

The idea of georeferencing text documents or specific descriptions of localities and
incidents is quite well established (Goodchild et al. 2004, Murphey et al. 2004, Doherty
et al. 2011, Melo and Martins 2017). Gazetteer-based methods are commonly used to
georeference text by detecting place names (Karimzadeh et al. 2019). In contrast, other
techniques that consider all text, not just the place names, have also been applied,
including probabilistic language models, discriminative classifiers, and hybrid
approaches that combine these models with gazetteers (Melo and Martins 2017).

Gazetteer-based approaches (Karimzadeh et al. 2019) primarily focus on geoparsing,
and have two steps; toponym recognition, to detect the presence of a location refer-
ence, and toponym resolution to disambiguate and hence determine coordinates
(Wang and Hu 2019, Liu et al. 2022). Toponym recognition is mostly performed as a
Named Entity Recognition (NER) task and the identified toponyms may then be
resolved via gazetteer matching in association with a disambiguation process (Leidner
et al. 2003, Li et al. 2003). However, gazetteers can sometimes be incomplete or out-
dated, particularly when dealing with historical place names, cultural variations, or
locations that have undergone name changes over time, posing challenges for geore-
ferencing based solely on them (Sharma et al. 2024). To address such limitations,
some studies have proposed enhancements. For example, Lieberman et al. (2010)
introduced audience-specific local lexicons to better capture regionally relevant topo-
nyms that might be overlooked by global gazetteers.

For the task of georeferencing textual content such as tweets and Wikipedia
articles, early research has predominantly utilised ML models, approaching georefer-
encing as a classification problem. This involves classifying location descriptions at the
country and city levels. Probabilistic classifiers, such as n-gram models (Flatow et al.
2015, Iso et al. 2017) and discriminative classifiers [e.g. Support Vector Machines (SVM)
and Gaussian Mixture Models (GMM)], have been employed in these studies
(Priedhorsky et al. 2014, Liu and Inkpen 2015, Melo and Martins 2015). In addition to
employing classification models, some studies have incorporated clustering techniques
and feature selection strategies in combination with various models to georeference
documents (Han et al. 2014, Laere et al. 2014). For example, Di Rocco et al. (2021)
introduced Sherloc, a knowledge-based approach for subcity-level geolocation of
tweets. Sherloc improves geolocation accuracy within a specified parent region by
matching tweets to a geographic embedding constructed from known toponyms for
that region, using clustering approaches to enhance precision.

More recent advancements in ML techniques have introduced Deep Learning mod-
els, such as Deep Neural Networks (DNN), Long Short-Term Memory (LSTM) networks,
and Transformer-based models, for the task of georeferencing. Specifically,
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georeferencing approaches utilizing pre-trained Transformer models such as BERT
have demonstrated stronger performance compared to earlier ML systems. For
instance, in the study by Simanjuntak et al. (2022), BERT significantly outperformed
LSTM in predicting Twitter users’ home locations. However, their most effective
method involved aggregating all tweets from a single user to predict their location, a
strategy that is potentially constrained by BERT's 512-token limit. Scherrer and Ljubesi¢
(2020) demonstrated that BERT in regression mode can be effectively fine-tuned to
predict geolocations from text. Edwards et al. (2025) built on the latter BERT-based
method to georeference social media posts in a hybrid approach, in which the inferred
location guided disambiguation of place names when present. Coordinates of the
finest-grained place name then represented the tweet's location, otherwise, the
transformer-predicted location was used. Lutsai and Lampert (2023) integrated BERT
with two-dimensional GMMs to estimate locations as coordinate pairs. Nevertheless, in
addition to adapting pre-trained language models to tweet content, most tweet
georeferencing methods also incorporate tweet metadata and user network informa-
tion as inputs for the model (Do et al. 2018, Miura et al. 2017, Lutsai and Lampert
2023).

When dealing with generic documents and social media content georeferencing,
spatial relation terms are not frequently found, unlike in biological collection records.
Equally, the methods mentioned above do not pay attention to spatial relationship
terms that provide critical context by describing how one location is positioned rela-
tive to another. Such spatial relation terms can include prepositional phrases, verbs,
and adverbs (Liao et al. 2022). Recent work by Li et al. (2021) proposes a geospatial
semantic graph representation to better capture spatial dependencies in text, empha-
sising that modelling such relationships improves the interpretation of complex geo-
graphic descriptions. Moncla et al. (2014) also discuss the importance of spatial
relations in estimating the spatial footprint of non-gazetteered place names. In con-
trast, their geocoding method relies heavily on the clustering of nearby known topo-
nyms, which limits the potential to fully exploit spatial cues provided in the text.

Chen et al. (2018) have successfully leveraged spatial relations in georeferencing
text documents. They convert raw text descriptions to place graphs as the model
input and leverage spatial relation models for approximate locating and matching.
However, this methodology is challenging for georeferencing larger datasets with
multi-clausal location descriptions, as it assumes the prior existence of a place graph,
the creation of which could be a complex task in itself.

This highlights that current georeferencing methods are not well-suited for text in
which locations are described in relative terms rather than by absolute place names.
These complex descriptions are common in the biological specimen domain, and
hence, there is a need for more specialised methods tailored to this field, capable of
handling complex relative locality descriptions.

2.2. Georeferencing biological specimen data

Among digitised biological specimen records, only a small portion of the data is
georeferenced, whereas most records include a verbal locality description (Stock et al.
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2023). Several methods have been developed for georeferencing these locality descrip-
tions, including the point-radius method (Wieczorek et al. 2004), shape method,
bounding box method, and probability method (Guo et al. 2008). These methods
involve the time-consuming process of determining precise locations and calculating
the associated uncertainty using GIS tools, maps, and aerial photography (Hackeloeer
et al. 2014). Doherty et al. (2011) indicate that the processing time for the point-
radius method ranges from 5 to 15min, while the shape method can take between
15 and 90 min to georeference a single locality description. Given the sheer volume of
records (billions worldwide), these semi-automated methods are not scalable or
efficient.

Among studies to automate the georeferencing of biological specimen data, van
Erp et al. (2015) developed a knowledge-driven, rule-based approach. Their method
also produces a confidence score to indicate the certainty of the results. Scott et al.
(2021) introduced an automated georeferencing method for Antarctic species by
developing a pipeline that extracts and processes text from legacy documents. This
method identifies species and toponyms within the documents and predicts species-
toponym pairs representing actual geospatial relationships. It combines rules and
dictionary-based species extraction with place name extraction methods, followed by
tree-based classifiers to match species with their toponyms.

BioGeomancer (Guralnick et al. 2006) and GEOLocate' are applications developed
to automatically georeference biological specimen data. BioGeomancer
processes text, interprets it, queries gazetteers, and intersects spatial descriptions,
ultimately delivering a standardized geographical reference complete with levels of
uncertainty (van Erp et al. 2015). At the time of writing, the BioGeomancer applica-
tion appears to be non-functional, and its website does not appear to be actively
maintained.

On the other hand, GEOLocate is a fully operational stand-alone online application
that translates textual locality descriptions associated with biodiversity collections into
geographic coordinates. The GEOLocate algorithm begins by standardizing the input
locality string into commonly understood terms (Rios and Bart 2014). It extracts details
such as distances, compass directions, and significant geographic identifiers, which are
used in lookups across various datasets such as place names, river miles, legal land
descriptions, and highway-water body crossings to calculate geographic coordinates.
Adjustments are made based on the parsed data. Further refinement of coordinates is
achieved by scanning for water body names in the locality string and adjusting to the
nearest point on the identified water body, enhancing accuracy for aquatic collections.
The final coordinates are ranked, displayed digitally, and subjected to human verifica-
tion or correction (Rios and Bart 2014). GEOLocate is primarily developed for georefer-
encing data from the USA, Canada, and Mexico.

Both GEOLocate and BioGeomancer were developed initially in the early 2000s.
GeoPick (Marcer et al. 2023) is the latest addition to these georeferencing tools, devel-
oped by implementing the guidelines provided in Chapman and Wieczorek (2020).
It offers a comprehensive guide for georeferencing biological collections. A common
feature among these tools—GEOLocate, BioGeomancer, and GeoPick—is their imple-
mentation of the point-radius method. Introduced by Wieczorek et al. (2004), the
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point-radius method does more than describing a location using a single coordinate
pair; it indicates an area of uncertainty using a circle with a well-defined radius
(Doherty et al. 2011). However, unlike its predecessors, GeoPick is not an automatic
georeferencing tool; instead, it aids georeferencers in following standards and guide-
lines more effectively and in a user-friendly manner.

2.3. Large language models (LLMs)

The emergence of LLMs has brought significant advancements to the field of Natural
Language Processing (NLP). LLMs, primarily based on the decoder Transformer archi-
tecture, have evolved from the development of the GPT (Generative Pre-trained
Transformer) models. As a result of the widespread success of these models, encoder-
based approaches, such as BERT and XLNET, as well as encoder-decoder-based models
such as BART and T5, have become less prominent. Characterised by their large num-
ber of parameters and immense training datasets, LLMs have shown high proficiency
in comprehending and generating human language (Karanikolas et al. 2023). Fine-
tuning pre-trained LLMs via supervised learning has become the key to achieving high
performance in various tasks (Ouyang et al. 2022, Ranijit et al. 2023, Singhal et al. 2023,
Zhang et al. 2023a). Fine-tuning is the process of adapting a pre-trained LLM to a spe-
cific task or domain by continuing its training on a smaller, task-specific dataset. This
approach leverages the model’s existing knowledge while allowing it to specialise in a
particular application (Ziegler et al. 2019). By adjusting the model’s parameters based
on task-specific labelled data, fine-tuning enhances performance and enables LLMs to
generate more accurate and contextually relevant outputs (Wei et al. 2021). While GPT
models (Achiam et al. 2023) are restricted to online inference and paid APIs, the state-
of-the-art open source models such as Mistral (Jiang et al. 2023), Llama 1-4 (Touvron
et al. 2023a, 2023b), GLM (Zeng et al. 2022), and Gemma (GemmaTeam et al. 2024)
are often fine-tuned for downstream tasks, with accuracies comparable to those of the
GPT models.

However, due to the computational costs and complexity of fine-tuning very large
parameter spaces, deploying and adapting LLMs to specific tasks via fine-tuning is
challenging (Fujiwara et al. 2024). To address this issue, several Parameter Efficient
Fine-Tuning (PEFT) methods have been introduced (Lester et al. 2021, Liu et al. 2021,
Zaken et al. 2021, Hu et al. 2022). Among those methods, Low-Rank Adaptation (LoRA)
(Hu et al. 2022) has gained attention for its efficiency in fine-tuning by focusing on a
limited set of parameters, thus lowering the total computational load. Taking one step
further, QLoRA (Quantization and LoRA) presents an even more memory-efficient iter-
ation of LoRA by quantizing the weights of the LoRA adapters to a lower precision
(Dettmers et al. 2023).

Prompt engineering is an essential skill for effective communication with LLMs
(White et al. 2024). A prompt is a set of instructions given to an LLM to tailor its
behaviour and/or enhance its capabilities (Liu et al. 2023). Empirical evidence shows
that higher-quality prompts result in better performance across various tasks (Wei
et al. 2022, Yao et al. 2024). Zero-shot prompting is the simplest prompting technique.
It involves giving the model the task in the form of a prompt without any prior
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examples. Some of the prompting patterns discussed in the literature are the Persona
pattern, Context Manager pattern, Thought Generation pattern, Template pattern, and
Question Refinement pattern (Schulhoff et al. 2024, White et al. 2024).

The Persona pattern, which is a type of output customisation prompting, assigns an
LLM a specific persona or role, guiding it to adopt a particular point of view when
generating the output. This approach leverages the LLM’s ability to simulate expert-
level understanding, thereby enhancing its performance in complex domains that
require specialised knowledge (Desmond and Brachman 2024, White et al. 2024). In
contrast, the Context Manager pattern controls the contextual information, refining
the response according to the given context.

Chain of Thought (CoT) prompting, which is a Thought Generation prompting pat-
tern, has been identified as performing well in complex reasoning tasks (Wei et al.
2022). This pattern guides the model through a step-by-step reasoning process to
reach a conclusion. The simplest form of CoT, zero-shot CoT essentially involves add-
ing the phrase ‘Let’s think step by step’ to the original prompt which has also shown
better performance in reasoning tasks (Kojima et al. 2022). With each pattern having a
different approach to define the task for the LLM, the best pattern depends on the
task for which the LLM is used.

In the context of georeferencing biological specimen data, most existing technolo-
gies have not kept pace with these advancements in NLP. Several studies
demonstrate the use of early transformer models, notably BERT, for geolocating social
media data as discussed earlier (Scherrer and Ljubesi¢ 2020, Simanjuntak et al. 2022,
Lutsai and Lampert 2023). With modern LLMs becoming more powerful due to their
decoder-based architecture, there is a motivation to apply them to the georeferencing
task.

A few studies have utilized LLMs in related disciplines such as geospatial reasoning,
geographic information systems, and geoscience, showing promising results (Mooney
et al. 2023, Roberts et al. 2023, Li et al. 2023b, Zhang et al. 2023b, Deng et al. 2024,
Yang et al. 2024). A recent study by Hu et al. (2024) has successfully employed LLMs
for toponym resolution by fine-tuning the models to estimate the unambiguous refer-
ences of toponyms. However, the authors acknowledge that LLMs alone are insuffi-
cient for comprehensive toponym resolution and incorporate additional geocoding
services in their methodology to address inaccuracies in the LLM-generated results.
Relatedly, Hu et al. (2023) propose a geo-knowledge-guided GPT approach for disaster
response that injects domain-specific geographic knowledge into prompts to extract
complete location descriptions from Hurricane Harvey tweets. Their method substan-
tially outperforms off-the-shelf NER baselines (reported as > 40% improvement) and
also improves markedly over default GPT models (reported as ~ 76% improvement),
highlighting the practical value of explicit geographic guidance for strengthening
LLM-based location understanding and extraction.

Bhandari et al. (2023) evaluated whether LLMs are geospatially knowledgeable
through three experimental approaches. They assessed the geospatial awareness of
LLMs by analysing the use of geospatial prepositions in sentences. The study found
that LLMs were able to correctly arrange cities that are physically closer to each other
when prepositions such as ‘near’ and ‘close to’ were used to indicate proximity.
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Conversely, when the context involved the preposition ‘far’, indicating a distant loca-
tion, the generated cities tended to be farther apart. The study concludes that LLMs
hold significant potential for supporting human tasks in geospatial reasoning and ana-
lysis, especially with targeted fine-tuning tailored to specific use cases. However, to
the best of our knowledge, no existing studies have applied LLMs for georeferencing
tasks to obtain geographic coordinates that best match the textual locality descrip-
tions provided.

3. Methodology
3.1. Data

In this study, we utilise multiple biological collection datasets obtained from the
Global Biodiversity Information Facility? (GBIF). GBIF is the largest online biodiversity
data network in the world, containing biological collection records from many institu-
tions worldwide. We selected multiple datasets from GBIF (GBIF.org 2024a, 2024b,
2024c¢, 2024d), which contain records from the regions of the USA, New Zealand,
Australia, and Mexico. The USA, New Zealand, and Australia datasets are in English,
while the dataset from Mexico is in Spanish. Since datasets available through GBIF fol-
low the same data standards, these datasets share a common structure and can be
preprocessed using the same steps. An occurrence record from GBIF contains a wealth
of information, including details about the location where the samples were collected,
information about the collector, and specifics of the collection event, such as tempera-
ture and altitude. Among this information, we extracted the columns ‘locality’,
‘decimallatitude’, ‘decimallongitude’, ‘countryCode’, and ‘stateProvince’, which are
related to the location of the specimen found for our final dataset. ‘locality’ is the text
that should be georeferenced. ‘decimalLatitude’ and ‘decimallLongitude’ provide the ori-
ginal coordinates of the location described by ‘locality’, and we treat them as ground
truth for georeferencing. The country and state/province where the specimen was
found were used as additional contextual information.

We extracted a subset of these datasets and applied several preprocessing steps:
these included removing duplicate locality descriptions and eliminating records that
do not have original coordinates. After preprocessing, we randomly selected ~30,000
records from each dataset for our initial experiments. Subsequently, we experimented
with different dataset sizes. Since the datasets include only records georeferenced
with the coordinates of the specimen collection site, these coordinates serve as the
ground truth for model training. A study by Yesson et al. (2007) reports that 83% of
records in GBIF are annotated with accurate coordinates. The summary of the datasets
used is provided in Table 1. Each country-specific dataset was divided into training

Table 1. Sources of datasets extracted from GBIF for fine-tuning LLMs across different regions.

Country Source
New Zealand Manaaki Whenua-Landcare Research
USA New York Botanical Garden Herbarium
Australia Australasian Virtual Herbarium (AVH)

Mexico National Biological Collections of the Institute of Biology, UNAM
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Table 2. Examples of prompts corresponding to different prompting patterns as adapted for the
georeferencing task.

Prompt pattern Prompt

Zero-shot Accurately georeference the location provided in the Locality Description’ below,
expressing the coordinates in decimal degrees. Locality Description: 21 km west of
Opotiki, south of Wainui Road
Zero-shot CoT Accurately georeference the location provided in the ‘Locality Description’ below,
expressing the coordinates in decimal degrees.
Locality Description: 21 km west of Opotiki, south of Wainui Road. Think step-by-step.
Chain of thought Task: Convert the Locality Description below into decimal degree coordinates Locality
Description: 21 km west of Opotiki, south of Wainui Road. Steps to follow: Start by
identifying the decimal coordinates of the key reference point. Then, convert these
coordinates into eastings and northings for precise adjustment.
Afterward, apply the specified distance and
direction adjustments as per the locality description.
Finally, convert the adjusted eastings and northings back into decimal degree
coordinates for the final location.
Context control Accurately georeference the location provided in the ‘Locality Description” below,
expressing the coordinates in decimal degrees.
Context: This ‘Locality Description’ refers to a location in North Island, New Zealand.
Locality Description: 21 km west of Opotiki, south of Wainui Road
Persona prompting Act as a georeferencer and accurately georeference the location provided
in the ‘Locality Description” below, expressing the coordinates in decimal degrees.
Locality Description: 21 km west of Opotiki, south of Wainui Road

(70%), validation (15%), and testing (15%) sets for model training, validation, and test-
ing, respectively.

3.2. Prompt engineering

Since LLMs have not previously been used in georeferencing text data with geograph-
ical coordinates, the most effective prompt structure for the task was identified by
experimenting with multiple prompting patterns. During this exploratory phase, we
initially utilised ChatGPT-4 (OpenAl's®> GPT-4 model) accessed via the ChatGPT* inter-
face, chosen for its rapid inference capabilities and ease of access. We subsequently
evaluated each prompting pattern using the latest GPT models, with the comparative
results discussed in Section 4.2.2. The prompting patterns examined included Chain of
Thought, Zero-Shot Chain of Thought, Context Manager, and Persona. These patterns
were chosen for their applicability to the georeferencing context. Table 2 presents
examples of how each prompting pattern is adapted to the georeferencing problem
using a locality description.

The LLM successfully returned coordinate pairs in the majority of cases, producing
generally acceptable results. Notably, this was the case even in Zero-Shot prompting,
where the model was given the task without any prior examples or additional instruc-
tions (see Table 2). In these cases, the LLM claimed to produce these coordinates by
calculating offsets based on the approximate locations of the place names mentioned
in the text (see Figure A1 in Appendix A). This suggests that LLMs already possess
some understanding of the task at hand. However, when the LLM lacks knowledge of
the geographical coordinates for place names mentioned in the description, it did not
generate coordinates but instead provided follow-up instructions.
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Task: Accurately georeference the location provided in the 'Locality
Description' below, expressing the coordinates in decimal degrees.

Context: This 'Locality Description' refers to a location in Nelson Land District,
New Zealand.

Locality Description: About 300m downstream of bridge over Mangatini
Stream, Stockton Plateau.

Geographic Coordinates: Latitude: -41.652 Longitude: 171.896

Figure 1. Sample prompt used for fine-tuning the LLM. Both the training and validation datasets
were structured using this pattern, with the original coordinates serving as the ground truth for
supervised fine-tuning of the LLM. The test data was similarly formatted but without the inclusion
of the coordinates.

Motivated by the success of CoT prompting in various complex tasks involving rea-
soning, we constructed step-by-step instructions for the LLM to follow in solving the
problem of georeferencing. This approach generated a coordinate pair to represent
the geographical location described, adhering to the provided instructions.
Nonetheless, developing a set of instructions that would enable the LLM to derive
accurate results proved challenging, as manual georeferencing is typically a complex
process that involves analysing maps, aerial imagery, and various spatial data layers to
accurately pinpoint locations.

Following the Context Manager pattern, we conducted an experiment where we
specified the country and state or province in which the specimen was found, thereby
constraining the output to that specific region. This approach produced more
reliable results by restricting outputs to the relevant geographic region. We also
explored the Persona pattern, where the LLM was instructed to assume the role of a
georeferencer to derive coordinates from locality descriptions. Although this
method aimed to leverage the LLM’s ability to mimic expert georeferencing skills, the
results were less effective. The Persona pattern mostly led the LLM to explain the
steps a georeferencer would take, rather than generating the coordinates
independently.

Through experimentation with various locality descriptions under different prompt-
ing patterns, we determined that the Context Manager pattern is the optimal prompt
for our use case. This pattern is not only straightforward but also ensures that the pro-
duced coordinates accurately align with the specified geographic context. We then
formatted the datasets according to the Context Manager pattern. In the training and
validation prompts, the original coordinates are included as ground truth data, as illus-
trated in Figure 1.

3.3. Fine-tuning LLM

Fine-tuning an LLM typically includes multiple steps. The process begins with prepar-
ing the dataset, followed by selecting and loading a pre-trained model. Before train-
ing, the text data must undergo tokenization, where it is broken into smaller units
called tokens (which can be words, subwords, or characters) and then converted into
numerical representations that the model can process. Tokenized data is used to train
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Figure 2. Framework of fine-tuning an LLM for georeferencing biological specimen collection
records.

the LLM, during which the LLM's parameters are adjusted, performance is monitored,
and iterative refinements are made to improve accuracy. The steps we followed in this
process are summarized in Figure 2.

To select the most suitable LLM for our task, we conducted initial experiments
using several open-source pre-trained LLMs. 4-bit quantization and Low-Rank
Adaptation (QLoRA) were applied to the base LLM to efficiently manage the large size
and complexity of the LLM while maintaining high performance. This approach
enabled us to fine-tune the model using a single NVIDIA A100 24 GB GPU, eliminating
the need for large-scale computing infrastructure and making the solution more
accessible and practical for scaling georeferencing tasks.

3.4. Experiment setup

Initial experiments were conducted on the base version of the following open-source
pre-trained LLMs: Llama2-7B, Llama3-7B, Gemma-7B, and Mistral-7B to identify the
model that best matches the use case (we also tested instruct models, but they per-
formed less well than the base models for this task). We chose open-source LLMs due
to their accessibility, flexibility for customisation, and cost-efficiency compared to pro-
prietary LLMs such as ChatGPT, aligning with our long-term objective of releasing a
open-source tool for biological specimen georeferencing. These experiments identified
the Mistral-7B base model as the most suitable for the task. For brevity, we focus on
reporting the results of the selected model.

The key hyperparameters for model training were carefully selected to optimize
performance while preventing overfitting, based on experiments with multiple set-
tings. The learning rate was set to 2e-4, which offers a balance between convergence
stability and training speed, mitigating divergence or oscillatory behaviour. The batch
size was set to 32, a choice that offered stable gradient estimates without exceeding
memory limits. For efficient fine-tuning, LoRA parameters were configured with a LoRA
rank of 32 and LoRA alpha of 64. The rank specifies the dimensionality of the low-rank
adaptation matrices, controlling their expressive capacity, while alpha rescales the out-
put of the low-rank matrices before combining them with the frozen base weights,
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effectively controlling the contribution of the LoRA adaptation (Hu et al. 2022). The
training process consisted of three epochs. The low-rank matrices were iteratively
updated at each batch step within each epoch using gradients calculated from the
loss function.

Checkpoints were established at regular intervals throughout the training process
to facilitate continuous monitoring and potential retrieval of intermediate models. This
fine-tuning process was performed separately for each region-specific dataset, result-
ing in a dedicated LLM fine-tuned for georeferencing within each region. The final
models were saved and subsequently used for inference on the test datasets.
Performance metrics were calculated to evaluate each model’'s accuracy in georefer-
encing locality descriptions.

4, Evaluation
4.1. Baseline systems

Given the lack of publicly accessible and functional methods for georeferencing bio-
logical collection data, our selection of benchmarks was limited. While van Erp et al.
(2015) offer the most recent study on georeferencing biological specimen data, we
were unable to use their methodology as a baseline because their application,
‘Geolmp’, is no longer available. Furthermore, the latest tweet georeferencing method-
ologies are also inapplicable to the domain of biological specimen data georeferenc-
ing, as they rely on metadata and social media user network data, in addition to the
tweet text.

As a result, we compared the performance of our models against two georeferenc-
ing baselines: GEOLocate and a gazetteer-matching algorithm. GEOLocate is the only
currently available tool for georeferencing locality descriptions of biodiversity collec-
tion records. For a given description, GEOLocate can return multiple coordinate pairs
as potential geolocations, and these coordinates are ranked according to their prob-
ability of being correct (Rios and Bart 2014). For our analysis, we selected the coordin-
ate pair ranked as the most likely.

Since many methods for georeferencing textual data primarily focus on identifying
and geocoding place names through gazetteer-matching approaches, we imple-
mented a gazetteer-matching algorithm as our second baseline (see Appendix B). This
algorithm can be regarded as analogous to the spatial minimality disambiguation
method of Leidner et al. (2003). It involves the steps of place name recognition and
resolution. To improve the accuracy of place name identification, we fine-tuned the
spaCy> model using 50 annotated locality descriptions of our data. The identified place
names were then geocoded using a gazetteer-matching process. We experimented
with both the GeoNames® and Nominatim’ gazetteers to determine the most suitable
option. During geocoding, we specified the country and state or province to initially
disambiguate the place names. Given that a single locality description can contain
multiple place names, it was necessary to disambiguate these names and identify the
coordinates that best represent the overall locality description. To achieve this, we
conceptually plotted all possible locations of the identified place names using the
DBSCAN algorithm (Ester et al. 1996) and identified the cluster with the highest
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Table 3. Comparison of the results from the fine-tuned LLMs with baseline systems across
regional datasets.

Dataset No of records Model Accuracy@10km Accuracy@1km Med SAE  Mean SAE
New Zealand 29,024 GEOLocate 45.39% 10.45% 12.24km  129.62km
Gazetteer-based 23.24% 5.30% 3596km  117.91km
Fine-tuned Mistral 7B 70.43% 25.36% 3.55km  41.95km
USA 29,566 GEOLocate 56.40% 26.82% 5km 62.38 km
Gazetteer-based 12.81% 3.47% 584 km 1062 km
Fine-tuned Mistral 7B 35.24% 7.40% 19.18 km 63.9km
Australia 29,566 GEOLocate 41.89% 6.85% 16.28 km 237 km
Gazetteer-based 16.16% 1.91% 18.25km  345.92 km
Fine-tuned Mistral 7B 53.82% 9.80% 8.52km  51.28km
New York (USA) 20,962 GEOLocate 55.73% 32% 3.52km 79 km
Gazetteer-based 31.98% 9.63% 11.82km 488 km
Fine-tuned Mistral 7B 84.89% 66.71% 0.083km 17.59 km
California (USA) 12,441 GEOLocate 50.78% 20.78% 8.94km 88 km
Gazetteer-based 15.48% 2.09% 24.17km  158.24km
Fine-tuned Mistral 7B 66.26% 28.70% 417km  40.20 km
Victoria (Australia) 29,568 GEOLocate 48.82% 8.22% 10.73km  169.44 km
Gazetteer-based 20.26% 3.09% 1276 km  264.11km
Fine-tuned Mistral 7B 81.76% 22.79% 294km 1197 km
Mexico 32,116 GEOLocate 29.85% 10.43% 54 km 251 km
Gazetteer-based 15.94% 2.71% 82.66km  313.11km
Fine-tuned Mistral 7B 75.82% 51.41% 0.89 km 20km

All datasets are in English, except for Mexico, which is in Spanish. The number of records shown refers to the entire
dataset, which was subsequently divided into 70% for training, 15% for validation, and 15% for testing.
Bold values indicate the best performing results for each dataset.

concentration of points, assuming this cluster contained most of the place names
mentioned in the description. To determine the final coordinate pair, we calculated
the mean latitude and mean longitude of the points within the identified cluster.

In addition to these baselines, we also evaluated our fine-tuned LLM against three
prominent GPT models, GPT-5, GPT-4.1, and GPT-40, to assess its relative performance
in the georeferencing task.

4.2. Results and discussion

The mean and median of the SAE (Simple Accuracy Error) and the percentages of pre-
dicted locations that are within a 10km and 1km radius of the actual locations were
used to evaluate the performance. The error was calculated by measuring the distance
between the predicted location and the original location, utilising the Haversine for-
mula. Table 3 shows a comparison of the performance metrics between the fine-tuned
Mistral model and baselines for each dataset.

4.2.1. Performance across different regions

The fine-tuned LLM for the New Zealand region outperformed all baselines, correctly
predicting 70.43% of localities within a 10 km radius, 25.36% within a 1 km radius, and
7.71% within 100 m. It also achieved a median SAE of 3.55km and a mean SAE of
41.95km. In comparison, GEOLocate reached only 45.39% within 10km and 10.45%
within 1km, with substantially higher error values, while the gazetteer method per-
formed worst overall.
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For the Australian dataset, the fine-tuned LLM also surpassed the baselines, predict-
ing 53.82% of records within 10km and 9.8% within 1km, with a median SAE of
8.52km and a mean SAE of 51.28 km. While the performance did not reach the level
achieved in New Zealand, the results for Australia were still clearly positive. In contrast,
for the USA dataset, GEOLocate outperformed our LLM. GEOLocate predicted 26.82%
of localities within a 1km radius, whereas our LLM predicted only 7.40% within the
same radius. The median and mean SAE given by GEOLocate also outperformed our
model. The higher performance for the USA with GEOLocate might relate to the fact
that GEOLocate is described as intended for the USA, Canada, and Mexico regions
(Rios and Bart 2014). However, as demonstrated subsequently, our approach was
found to be superior when applied to data for Mexico and for two states of the USA.

Based on these results, we hypothesize that the lower performance in the USA dataset
and the slightly reduced performance in the Australian dataset are due to the lower
density of records relative to their large geographic extents. With fewer records per unit
area, the training data may not provide sufficient coverage for the model to effectively
learn relevant place names, recurring locality descriptions, and spatial language. If the
availability of these features is a function of geographic area, then for a fixed number of
training records, larger regions will yield fewer such signals per unit area, thereby reduc-
ing model effectiveness. To validate our hypothesis regarding the influence of record
density and geographic extent, we designed two complementary experiments.

In the first experiment, we expanded the USA dataset to ~150,000 records and fine-
tuned the LLM on 70% of these data. The LLM demonstrated a significant improvement
over the smaller dataset, accurately georeferencing 61% of localities within a 10 km
radius and 17.87% within a 1 km radius. It achieved a median SAE of 5.91 km and a mean
SAE of 36.48km, while GEOLocate’s performance remained consistent with that of the
smaller dataset. These results indicate that increasing dataset size, and thereby effective
record density, enhances the model’s effectiveness in interpreting locality descriptions
and resolving place names and associated spatial semantics.

In the second experiment, we restricted training to smaller geographic regions
using state-specific data. From the USA dataset, we fine-tuned separate LLMs with
20,962 records from New York and 12,441 from California. As shown in Table 3, the
New York model predicted 84.86% of coordinates within 10km and 66.71% within
1km, while the California model achieved 66.26% within 10km and 28.7% within
1km, both outperforming the baselines. A similar pattern was observed for Australia,
where a Victoria-specific model (29,568 records) predicted 81% of localities within
10km and 22.79% within 1km.

Together, these experiments support our hypothesis: the methodology is more
effective in smaller regions with higher record density, and for larger regions, achiev-
ing comparable accuracy requires substantially more data.

Building on these region-specific results, we next examined whether the model’s
effectiveness extends across languages, since LLMs are trained on multilingual data
(Thellmann et al. 2024, Qin et al. 2025). Given the global need for georeferencing bio-
logical specimen collection data, we were particularly interested in testing the linguis-
tic generalizability of the LLM. Thus, we extended our experiments to test the model
with Spanish-language data from the Mexico region. Our model, fine-tuned for the
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Table 4. Comparison of results from the fine-tuned Mistral-7B model and GPT models on the
New Zealand test set.

LLM Prompt pattern Accuracy@10 km Accuracy@1 km Med SAE Mean SAE
GPT-40 Zero-shot 52% 6.8% 9.12km 476 km
Zero-shot CoT 48.4% 6.8% 10.26 km 373.76 km
CoT 48% 6.2% 10.69 km 501.76 km
Context control 54.8% 8.4% 8.69 km 45.33km
Persona 48.2% 6.4% 10.59 km 452.79 km
GPT-4.1 Zero-shot 45.4% 6.2% 11.72km 399.14km
Zero-shot CoT 45% 6.4% 11.42km 340.63 km
CoT 48.6% 6.4% 11.42 km 340.63 km
Context control 50.8% 7% 9.9km 51.18 km
Persona 47.6% 7.8% 10.92 km 405.33 km
GPT-5 Zero-shot 43.57% 6.2% 13.26 km 333km
Zero-shot CoT 59.4% 10% 7.17 km 159.13km
CoT 57.6% 9.6% 7.27 km 139.59 km
Context control 57.4% 8.8% 7.81km 50.94 km
Persona 36.27% 5.4% 18.41 km 416.76 km
Mistral 7B Context control 5.23% 0.48% 49.78 km 1120 km
Fine-tuned Mistral 7B Context control 71% 31% 3.81km 52.01 km

Note: Bold values indicate the best result for each metric.

Mexico region with Spanish-language data, returned excellent results, predicting
75.82% of coordinates within 10 km from the actual location and 51.41% of localities
within 1km from the actual location. This model also achieved low error distances,
with a median SAE of 0.89km and a mean SAE of 20 km. GEOLocate tool, which is
said to have been optimised for the Mexico region, only predicted 29% records within
a 10km radius. These results suggest that our methodology effectively leverages the
multilingual inference capability of LLMs, making it generalizable both regionally and
linguistically.

4.2.2. Performance compared to GPT models

In addition to comparing our fine-tuned LLMs with existing georeferencing baselines,
we conducted experiments using the latest and most prominent GPT models [GPT-5
(OpenAl 2025b), GPT-4.1 (OpenAl 2025a), and GPT-40 (OpenAl 2024)] with the prompt-
ing strategies shown in Table 2. These experiments were performed via the OpenAl
APL® Due to the proprietary nature and high cost associated with these services, we
evaluated only a random subset of 500 samples from the New Zealand test dataset,
rather than the full test datasets for each region. The corresponding results are pre-
sented in Table 4. We have also included the results from the Mistral-7B model with-
out fine-tuning, as well as our fine-tuned Mistral-7B model.

Our fine-tuned LLM significantly outperformed all GPT variants, including the new-
est GPT-5 model. This suggests that the proprietary models, regardless of how intelli-
gent they have become or how much their reasoning capabilities have improved, are
currently limited in their ability to perform the type of spatial reasoning required for
accurate georeferencing. The substantial performance margin highlights the effective-
ness of our domain-specific fine-tuning approach. However, it is worth noting that
GPT models with the context control prompt achieved the best mean SAE values over-
all, with the lowest recorded by GPT-4o.
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Table 5. Examples of locality descriptions with different lengths (in characters).

Length Locality description

<30 Off Great Barrier Island
near Gulf Harbour
Beach near Devonport
30-60 Three Kings Group, West Island. Off W side of S summit
Stream at Te Moori, 3 miles south of Kaeo, Northland
Jacko's pond, 3km south of Coromandel
60-90 Little Barrier Island, Awaroa Stream, about 150 m from the sea
Gully facing sea, on bluffs opposite cottage, 2 km southwest of Kaihoka Lakes, Nelson
Milford, near beach at end of Milford Road, Waitemata County, North Island
90-120 South Island, Fiordland National Park, W of Homer Tunnel, 9 mi SE of Milford Sound on
Hw. 94
Central Volcanic Plateau: c¢. 2km S of National Park, forest margin near grazed meadow
300m W of Mountain Hights Lodge.
South Island, Westland, 0.6 miles W. of Rahu Saddle on Rte. 7, Terrestrial on roadside bank
>120 Knightia Railway Reserve and adjoining grazed bush containing abundant moss-covered small
shrubs, on Morrison Farm about 4 km by road NW of Mataroa, itself on Mataroa Rd NW of
Taihape
Nelson Lakes National Park, St Arnaud, picnic/camping area on lake shore at Kerr Bay, about
100 m towards DoC Headquarters from Black Stream bridge
Farm trail north side of Parau Stream, 200 yards (182 m) above bridge across tributary, W
aimana Valley, inland Bay of Plenty, North Island, New Zealand.

Table 6. Comparison of prediction accuracy of the fine-tuned LLM by description length in the
New Zealand test set.

Length in number of characters Acc@1 km Acc@10 km Median SAE Mean SAE
<30 4.07% 48.54% 11.52km 55.85km
30-60 17.60% 59.70% 6km 66.45 km
60-90 15.61% 67.81% 5.03 km 26.37 km
90-120 20.55% 72.59%% 3.78km 24.27 km
More than 120 32.01% 76.77% 2.40 km 25.16 km

Note: Bold values indicate the best result for each metric.

Moreover, these experiments highlight the importance of prompt design. As shown
in Table 4, the context control prompting pattern consistently yielded the best per-
formance for both GPT-4.1 and GPT-40. However, with the newest GPT-5 model, the
Zero-shot CoT prompts produced slightly better results, likely due to the enhanced
reasoning capabilities (GPT-5 thinking) introduced. Overall, these findings validate our
prompting strategy.

4.2.3. Effect of locality description length on performance

Another aspect we explored in our research was the impact of the character length of
a locality description in a collection record on LLM’s performance. In our dataset, we
observed that longer descriptions tend to be more complex, often detailing the loca-
tion of a specimen in relation to multiple distances and directions, referencing various
locations. Examples of locality descriptions categorised by length are presented in
Table 5.

Table 6 presents a comparison of the results of our New Zealand fine-tuned LLM
(reported previously in Table 3), grouped by description length. There is an incremen-
tal improvement in the accuracy of the prediction when the length of the description
increases. The bar chart in Figure 3 further complements our observation. To
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Figure 3. Distribution of accuracy in error distance by the description length for the New Zealand
dataset.
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Figure 4. Distribution of locality description features by length: (a) number of place names and (b)
number of spatial indicators.

investigate the statistical basis of this pattern, we analysed the correlation between
error distance and description length using Spearman’s rank correlation. This method
was chosen because it does not assume linearity or normally distributed variables and
is robust to outliers. The analysis revealed a moderately negative correlation
(p =-0.19, p <« 0.001), indicating that longer descriptions are associated with
reduced error, although the modest effect size suggests that description length may
be only one of several factors influencing prediction accuracy.

To clarify the source of these gains, we examined the description content by
length. We looked into the place names and spatial indicators present in the locality
descriptions. Spatial indicators are textual elements that express geographic
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Distribution of different types of spatial indicators by description length
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Figure 5. Distribution of spatial indicators (distance, direction, and topological) as a function of
locality description length.

relationships, providing cues to locate a place in reference to other geographic enti-
ties. For example, in the locality description ‘10 km north of Lake Wanaka, 1km north
of Makarora, near Pipson Creek’, there are three place names (‘Lake Wanaka’,
‘Makarora’, ‘Pipson Creek’) that act as reference points, while the three spatial indica-
tors (‘10km north of, ‘1 km north of, ‘near’) specify the relative positions needed to
infer the exact location. Longer localities contained more place names and spatial indi-
cators as revealed by the box-plots in Figure 4. Correlation analysis confirmed that the
number of place names was moderately and negatively associated with error distance
(Spearman p =n0.16,p < 0.001), indicating that descriptions with more toponyms
tend to yield more accurate predictions.

We further disaggregated spatial indicators into three types: directional (e.g. ‘north
of,, ‘SE side of’, ‘west-facing’), distance (both quantitative, e.g. '5km N of Wellington’,
and qualitative, e.g. ‘near the river), and topological (e.g. ‘on stone’, ‘at the base’). As
shown by the box-plots in Figure 5, directional and distance cues increased sharply
with description length, particularly beyond 90 characters, while topological indicators
remained relatively frequent across all bins but peaked in the longest descriptions.
These findings explain the observed performance gains: richer descriptions do not sim-
ply add verbosity but supply both a higher density of place names and a greater var-
iety of spatial relations, which collectively improve LLM inference.

Together, these analyses demonstrate that description length is a meaningful pre-
dictor of georeferencing success, not because of length itself but because longer
records tend to encode more place names and spatial relationships. Our results sug-
gest that the fine-tuned LLM effectively leverages this additional context to reduce
spatial error, underscoring the importance of detailed specimen metadata for accurate
automated georeferencing. This interpretation is consistent with Ji et al. (2025), who
show that LLMs can interpret formal topological relations with moderate accuracy, but
frequently confuse conceptually adjacent predicates, indicating that relying on topo-
logical cues alone to describe a location can remain ambiguous. In our setting, longer
specimen records mitigate this ambiguity by providing more place anchors and stron-
ger directional/distance constraints, enabling more precise coordinate inference.

Table 7 lists the ten localities where GEOLocate exhibited the highest georeferenc-
ing errors in the California state dataset. These errors are measured as the distance
between the predicted and actual locations. The table compares these errors with
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Table 7. Georeferencing error comparison between GEOLocate and the fine-tuned Mistral 7B LLM
for the ten worst-performing localities by GEOLocate in the California state dataset.

Error with
Locality description Error with GEOLocate  fine-tuned Mistral 7B
Amargosa Desert, along dirt rd sw. of Calif.-Nev. state line from 1891.73 km 49.60 km
Calif. Hwy 127 toward abandoned Tonopah & Tidewater Railroad.
Drainage Basin: Amargosa; U. S. Atomic Energy Commission’s
Nevada Test Site and vicinity.
Head of Etna Creek, Marble Mountains 997.35km 24.39 km
Cleveland National Forest, Black Canyon Rd, 6 km N of Ramona 986.59 km 6.60 km
Cleveland National Forest, Palomar district, Black Canyon Rd, 7km S 982.91 km 27.92 km
of junction with Rd 12505
Vicinity of Leonard Hot Spring, E side of Surprise Valley. 971.70 km 26.10 km
Mohave Desert, northeast of the San Bernardino Mountains, 9 airline 970.43 km 915.58 km
miles north-northeast of junction of Calif. Highway 62 and
highway to Lucerne Valley (Yucca Valley town).
Pyramid Point, forming a distinct zone in the middle zone of the 948.77 km 0.02 km
litoral region, on rocks
Vail Lake area, lower slopes of Agua Tibia Mtn. along Hwy 79, E of 937.70 km 0.48 km
USFWS Dripping Springs Guard Sta.
Just S.W. of sand hills, 5mi. N.E. of Glamis. 887.96 km 5.78 km
927 Candlelight Place, adjacent to N terminus of Cass St 842.72 km 0.78 km

those produced by our fine-tuned LLM for the same localities. Notably, the localities
that produced the poorest results with GEOLocate are characterized by long descrip-
tions containing multiple spatial terms and place names. In 9 out of these 10 instan-
ces, our model achieved significantly lower error margins. This finding further
demonstrates that our method provides more accurate results in handling complex
locality descriptions compared to current georeferencing approaches.

4.2.4. Effect of prompt wording variations on fine-tuning performance

As detailed in Section 3.2 and Table 2, we initially experimented with several prompt
patterns and identified the Context Control prompt pattern as the most appropriate
for our use case. Accordingly, we used this pattern to structure the input data for
training the fine-tuned LLMs. To explore whether the specific wording of prompts
within this pattern influences the model performance of the fine-tuned LLM, we fur-
ther extended our experiments to test different phrasings of the same Context
Manager pattern. We used the New Zealand dataset (29,024 records) and compared
the outcomes of the original prompt with two alternative phrasings. The results of
these experiments are presented in Table 8, where we observed minor differences in
performance across the variations.

The first prompt represents the original wording used in our experiments. The
second version introduces a slight modification to the instructional phrasing. The third
prompt combines the Context Manager pattern with elements of the Persona pattern
by explicitly defining the user’s persona alongside the context. Among these, the latter
two variations showed a slight improvement in results. Accuracy within 10 km ranged
only from 70.43 to 71.72%, and accuracy within 1km varied between 2536 and
26.23% across the three prompt versions. Median and mean errors likewise differed
only marginally (3.38-3.55 and 40-42.38 km, respectively). These results suggest that
while prompt wording may have a minor influence on performance, it is not a domin-
ant factor in the context of our fine-tuning setup.
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Table 8. Comparison of results from variations of context manager pattern prompts for the New
Zealand dataset.

Sample prompt Acc@10km Acc@1 km Median Mean

Accurately georeference the location provided in the 70.43% 25.36% 3.55km 41.95 km
‘Locality Description” below, expressing the coordinates
in decimal degrees.
Context: This ‘Locality Description’ refers to a location
in Canterbury Land District, New Zealand.
Locality description: ‘Inverary’, Mt Somers, Mid
Canterbury, above Blondin Stream.
Determine the precise geographic coordinates for the 71.72% 26.05% 3.38km 42.38km
location described in the ‘Locality Description’ below,
providing the latitude and longitude in decimal
degrees.
Context: The described locality is situated in
Canterbury Land District, New Zealand.
Locality description: ‘Inverary’, Mt Somers, Mid
Canterbury, above Blondin Stream.
You are a GIS specialist verifying geographic data for 71.12% 26.23% 3.48 km 40 km
locations in New Zealand. Your task is to determine
the precise latitude and longitude (in decimal degrees)
for the locality described below.
Region: Canterbury, New Zealand
Locality description: ‘Inverary’, Mt Somers, Mid
Canterbury, above Blondin Stream.

Note: Bold values indicate the best result for each metric.

4.2.5. Evaluation of model sensitivity to spatial distance information

Many descriptions in our dataset include quantitative spatial distance values refer-
enced to a place name, such as ‘200 metres west of Mangatoetoe Stream’ or ‘6 km SSE
of Westport'. To assess whether our fine-tuned LLM makes meaningful use of these
numerical distance references in prediction, we conducted a targeted evaluation.

We randomly selected 100 records from the New Zealand test dataset and identified 59
descriptions containing explicit quantitative spatial information. These distance values were
then manually removed from the text, with care taken to preserve the overall semantic
meaning and spatial context. For example, the description ‘30 miles S of Auckland City’ was
revised to ‘S of Auckland City’ by removing the quantitative distance ‘30 miles'.

We evaluated model performance on both the original and modified versions of these
records using GPT-40 and our Mistral 7B model fine-tuned for the New Zealand region.
Results are illustrated in the bar chart in Figure 6. Interestingly, GPT-40 exhibited unex-
pected behaviour, its prediction accuracy was higher when the distance values were
removed. In contrast, the fine-tuned Mistral model behaved as expected, showing a
slight decline in accuracy when distance expressions were removed. This suggests that
the fine-tuned LLM is more attuned to leveraging such spatial cues during prediction.

Despite the use of a smaller dataset, these results indicate that our fine-tuned LLM
is capable of interpreting quantitative spatial cues, reinforcing its potential for accurate
georeferencing of biodiversity collection records.

4.2.6. Analysis of transfer learning capabilities of LLMs

To evaluate the transfer learning (TL) capabilities of our approach, we tested whether
a model fine-tuned on data from one region could be applied to another, and
whether combining or adapting datasets could improve performance.
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Figure 6. Comparison of sensitivity to spatial distance information between GPT-40 and the fine-
tuned Mistral 7B models in predicting coordinates, evaluated on a subset of the New Zealand
test set.

Table 9. Performance on the New Zealand test set across models fine-tuned with different multi-
region training data compositions.

Model AUS training data NZ training data Mean Median Within 10 km Within 1 km
Geolocate - - 129.62 km 12.24km 10.45% 45.39%
Mistral 7B 100% (20,697) 0 (0) 1314.3 km 1706 km 2.30% 0.50%
100% (20,697) 20% (4063) 57.27km 10.39km 48.56% 8.10%
50% (10,348) 50% (10,158) 47.9km 5.71km 62.83% 15.18%
0% (0) 100% (20,318) 41.95 km 3.55km 70.43% 25.36%
20% (4139) 100% (20,318) 39 km 3.41km 70.89% 26.07%

Training dataset proportions are relative to the original training data splits (70%) of each dataset. Bold values indi-
cate the best result for each metric.

We first tested whether a model fine-tuned exclusively on Australian data could be
applied directly to New Zealand. The model was able to generate coordinates, but the
predictions exhibited very high error margins (see Table 9). This indicates that while
training on data from another country may help the LLM capture the general seman-
tics of the task, it is insufficient for accurate coordinate prediction without region-
specific information.

We next evaluated multi-region training configurations combining different propor-
tions of Australian and New Zealand training data (see Table 9) and testing on the
New Zealand test dataset. Adding 20% New Zealand training data to an Australia-fine-
tuned LLM reduced the mean error to 57.27 km, performing well above the baseline
(GEOLocate). A balanced dataset (50% AUS/50% NZ) lowered it further to 47.9km
mean error. Training with predominantly New Zealand data (20% AUS/100% NZ)
achieved the best result of 39 km, only slightly better than New Zealand-only training
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Figure 7. Cross-validation results of the fine-tuned Mistral-7B model for New Zealand.

(41.95 km). These results suggest that modest amounts of local data can markedly
improve the transferability, but cross-region data alone contributes little beyond what
region-specific training achieves.

We also tested the generalisability of the New Zealand-fine-tuned LLM across
different datasets within the same region. Specifically, we used the model originally
fine-tuned on the New Zealand Allan Herbarium (CHR) (GBIF.org 2024a) dataset to
georeference a randomly selected sample of 5000 records from both the New Zealand
Arthropod Collection (NZAC) (GBIF.org 2025a) and the New Zealand National Forestry
Herbarium (GBIF.org 2025b). The model achieved mean SAEs of 23.2km (NZAC) and
43.4km (Forestry Herbarium), comparable to the performance on the original CHR
dataset (41.95 km). Median errors were consistently low across datasets (3.55-7.99 km).
These results suggest that the model can generalise reasonably well across independ-
ently curated datasets within a region, indicating a degree of transferability beyond
the dataset it was originally fine-tuned on.

To further validate this robustness, we conducted a 5-fold cross-validation experi-
ment on the original New Zealand dataset. As shown in Figure 7, the results were
highly consistent across folds, with an overall mean SAE of 42.29km and a median
SAE of only 2.95km. This stability across partitions supports the transfer learning find-
ings, showing that the model’'s performance is not dependent on a specific training/
test split but generalises reliably to unseen data.

Our results are consistent with recent evaluations of LLM spatial reasoning and spatial
cognition. Yang et al. (2025) report that both proprietary and open-source models exhibit
limited robustness on spatial tasks that require integrating multiple cues into a globally
coherent representation, rather than recalling isolated geographic facts. This aligns with
our transfer-learning outcomes: cross-country transfer was minimal without local training
data, whereas transfer across independently curated datasets within New Zealand
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remained comparatively stable, demonstrating that the learned mapping is strongly condi-
tioned on regional spatial distributions. Importantly, Yang et al. (2025) further demon-
strates that coupling LLMs with deterministic external tools can substantially enhance
large-scale spatial cognition, highlighting a promising direction for improving both accur-
acy and generalisability beyond what text-only inference can achieve.

4.2.7. Summary of results

Across all experiments, the fine-tuned Mistral 7B model consistently outperformed
baselines when locality descriptions carried richer spatial cues. In smaller/denser (with
regard to data) settings, it was strongest (e.g. New Zealand 70.43% Acc@10km/25.36%
Acc@1 km; New York 84.89/66.71%; Victoria 81.76/22.79%), and it generalized well to
Spanish (Mexico 75.82/51.41%, median SAE 0.89 km). In larger regions such as the USA
and Australia, achieving higher performance required a substantial training dataset for
broad geographic coverage. Comparisons with prominent GPT models (GPT-5, GPT-4.1,
and GPT-40) further underscored the value of domain-specific fine-tuning, as general-
purpose proprietary models failed to reach similar levels of accuracy.

Content analysis shows what the model actually learned: it integrates multiple top-
onyms with directional and distance expressions to compose a plausible coordinate,
rather than matching a single place name. Longer descriptions that include more
place names and spatial indicators were associated with lower errors. Moreover, when
explicit distances were removed, the fine-tuned LLM's accuracy declined slightly, sug-
gesting genuine reliance on quantitative cues. Prompt rewordings within the same
pattern had only a minor effect, implying that the gains come from learned spatial
composition rather than prompt phrasing.

Because performance is closely tied to record density and the geographic extent of
the training data, cross-country transfer was limited without local adaptation. Even
modest amounts of in-region data yielded measurable improvements, whereas
foreign-only training resulted in substantially higher errors. Taken together, these find-
ings show that fine-tuning enables the model to internalize spatial language and com-
positional cues, achieving strong georeferencing performance across regions and
languages when sufficient and representative training data are available.

4.2.8. Limitations and future work

Although our methodology for georeferencing complex locality descriptions using
LLMs yielded favourable results compared to the baselines, we identified several limi-
tations. One key consideration is the need for substantial training datasets. To explore
the impact of training dataset size on performance, we fine-tuned the model with
varying sizes of the New Zealand dataset. As shown in Table 10, there is a clear trend

Table 10. Analysis of the impact of training dataset size on the accuracy of the fine-tuned LLM
using the New Zealand dataset.

Training dataset size Acc@10 km Acc@1 km Median SAE Mean SAE
0 5.23% 0.48% 49.78 km 1120km

1000 24.42% 2.07% 23.8km 70.78 km
5000 48.51% 8.16% 10.53 km 56.4 km
10,000 60.76% 15.37% 6.15 km 48.09 km

15,000 67.60% 20.42% 4.31km 42.43 km
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indicating that the model's performance improves as the training dataset size
increases. Notably, these experiments highlight that fine-tuning the LLM with just
5000 samples is sufficient to surpass the performance of GEOLocate.

Another limitation of our LLM-based georeferencing approach is its limited transfer
learning capability, since accurate georeferencing often requires local geographic
knowledge as discussed in Section 4.2.6. In continuing our research on multi-region
fine-tuning, we plan to enhance the model’s ability to access external resources, such
as gazetteers and geographic databases, to supplement its georeferencing capabilities.
This could be achieved by integrating retrieval-augmented generation (RAG) (Guu
et al. 2020) or APl-based lookups (Schick et al. 2023) that allow the model to reference
location data dynamically. By incorporating such external knowledge sources, we aim
to improve the model's accuracy in georeferencing data from previously unseen
regions and enhance its generalizability across different geographical contexts.

Additionally, our model currently lacks a measure of the associated uncertainty in
the results. This measure is crucial for determining the effectiveness and suitability of
the model, an aspect extensively explored in previous studies, such as those by
Wieczorek et al. (2004), Guo et al. (2008), and van Erp et al. (2015). However, several
techniques have been developed for estimating the uncertainty of LLM outputs, such
as Negative Log-Likelihood (NLL), consistency-based aggregation techniques, or intro-
ducing prompting techniques to verbalize confidence scores in LLM outputs (Lin et al.
2022, 2023, Tian et al. 2023). Furthermore, Catak and Kuzlu (2024) introduce a novel
geometric approach that applies convex hull analysis to the spatial embeddings of
LLM outputs, quantifying uncertainty based on the dispersion of generated responses.
This method leverages the inherent structure of embedding spaces to infer confi-
dence. The introduction of such spatially-informed Uncertainty Quantification (UQ)
techniques for LLMs opens promising directions for our future work.

5. Conclusion

In this paper, we introduced an automatic georeferencing methodology that utilises
LLMs. To the best of our knowledge, this study is the first to employ LLMs for geore-
ferencing text data by predicting coordinates that best match the provided locality
descriptions. This novel approach utilizes the ability of LLMs to be fine-tuned for spe-
cific domains by leveraging their extensive pre-trained knowledge base and adaptabil-
ity to new datasets. By integrating domain-specific training data, we enable the model
to accurately interpret and align textual descriptions with corresponding geographic
coordinates. This fine-tuning process enhances the model’s precision in biological col-
lection data georeferencing tasks, ensuring that it can effectively handle the nuances
and context-specific terminology unique to different geographic datasets.

The results show that our approach outperforms commonly used baselines in
almost all cases, demonstrating that our methodology is effective in georeferencing
complex locality descriptions of biological collection data across various regions and
languages compared to existing methods. Due to limited access to the high-
performing GPUs, we experimented only with a 7B parameter LLM variant, which still
outperformed existing baselines. We believe that it is likely that the results could be
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further improved with larger LLMs. Utilising models with a larger parameter count
could potentially enhance the granularity and accuracy of georeferencing by capturing
more intricate patterns and relationships within the data.

Although our model outperformed the baselines, for fully automated georeferencing of
biological records, a higher level of accuracy would be desirable when limited training
data are available. Additionally, the absence of uncertainty measures for the predicted
coordinates is another drawback of our methodology. Nevertheless, this study represents
an initial effort to implement a more advanced and comprehensive approach to georefer-
encing complex locality descriptions in biological collection data using LLMs. Future work
will focus on refining the LLM's reasoning processes, with input from georeferencing
experts. We also plan to incorporate Retrieval-Augmented Generation (RAG) and integrate
external data sources, such as gazetteers and web mapping platforms like
OpenStreetMap, to enhance the model’s accuracy and reliability.

Notes

https://www.geo-locate.org.
http://www.gbif.org.

https://openai.com/.

https://chatgpt.com/.

https://spacy.io/.

https://www.geonames.org/.
https://wiki.openstreetmap.org/wiki/Nominatim.
https://platform.openai.com/.
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Appendices

Appendix A.

Sample responses from LLMs

Figure A1 shows a response provided by ChatGPT-4 when presented with a georeferencing

task. In this example, the context manager pattern was utilized. The response from ChatGPT
includes the calculation of offsets from a reference location.

Task: Accurately georeference the location provided in the "Locality
Description' below, expressing the coordinates in decimal degrees.
Context: This 'Locality Description’ refers to a location in Northland,
New Zealand.

Locality Description: 21 km west of Opotiki, south of Wainui Road

@  To georeference the location accurately, we need to convert the locality description into geographic

coordinates. Here’s how to approach it:
1. Identify the starting point: Opctiki, New Zealand. The ccordinates for Opotiki are
approximately:
e Latitude: -38.0046
e Longitude: 177.2871

2. Determine the direction and distance: 21 km west of Opotiki. This means we need to move
westward by 21 km.

3. Adjust the coordinates:
e Moving west (longitude decreases as we go westward). To calculate the shift in longitude:

e The approximate distance per degree of longitude in this region (near -38° latitude) is
about 86.4 km (1 degree of longitude = 86.4 km).

e Distance to move: 21 km west.

21 km

~ 0.2 eoTees
86.4 km /degree 0.243 de grees.

e Change in longitude:

e Adjusting the original longitude: 177.2871 — 0.243 = 177.0441.

Se, the approximate coordinates 21 km west of Opotiki are:
e Latitude: -38.0046
e Longitude: 177.0441
4. Refine the locality by considering “south of Wainui Road":
e Without an exact positicn of Wainui Road, but assuming it lies within a reascnable distance
south, we sheould adjust the latitude slightly southwards.
5. Final approximation:
e Move slightly south, adjusting the latitude:
e Small southward adjustment (about 1-2 km southwards).
e Latitude adjustment: = —38.0046 — 0.01 = —38.0146 (approximate small shift
southwards).
Therefore, the refined coordinates in decimal degrees for the described locality are approximately:
e Latitude: -38.0146

* Longitude: 177.0441

Figure A1. Response from ChatGPT-4 for a georeferencing problem, generated on June 30, 2024.
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Task: Accurately georeference the location provided in the 'Locality
Description' below, expressing the coordinates in decimal degrees.

Context: This 'Locality Description' refers to a location in New Zealand.

Locality Description: SOUTH ISLAND: Maitai Valley road, near Golf Course, 2
km SE of Nelson.

Geographic Coordinates: Latitude: -41.2833 Longitude: 173.3167

Figure A2. Response from the fine-tuned mistral model for a georeferencing problem.

Figure A2 shows how our fine-tuned LLM responded to the task of georeferencing locality
descriptions. The response was generated in a manner similar to the formatting of the training
data.

Appendix B.
Gazetteer-matching algorithm

The following pseudocode summarizes the gazetteer-matching algorithm, which was imple-
mented as one of the baseline methods.

Algorithm 1. Gazetteer-matching algorithm.

: Input: localityDescription, state, country

: Output: latitude, longitude

: CALL Spacy with localityDescription returning locationEntities

: possibleLocations <« empty list

: for each entity in locationEntities do

: CALL GeoNames with entity, state, country returning gazetteerLocations
: APPEND gazetteerLocations to possibleLocations

: end for

9: CALL DBSCAN with possibleLocations returning clusters

10: clusterWithMostPoints < SELECT cluster with the maximum number of points from clusters
11: latitude <+ Average(latitudes of points in clusterWithMostPoints)

12: longitude < Average(longitudes of points in clusterWithMostPoints)
13: return latitude, longitude

oONOUL DA WN =
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