

This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository:<https://orca.cardiff.ac.uk/id/eprint/184272/>

This is the author's version of a work that was submitted to / accepted for publication.

Citation for final published version:

Tarafdar, Nawar, Varambally, Meghna, Karimi, Nima, Akuffo-Addo, Edgar, Ingram, John R. and Piguet, Vincent 2026. Hidradenitis suppurativa patient-reported outcome measures. *JAMA Dermatology* 10.1001/jamadermatol.2025.5644

Publishers page: <http://dx.doi.org/10.1001/jamadermatol.2025.5644>

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See <http://orca.cf.ac.uk/policies.html> for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.

1 **Article type:** Original Article

2 **Title:** Hidradenitis Suppurativa Patient-Reported Outcome Measures: A Systematic Review and
3 Meta-Analysis

4 Nawar Tarafdar, BSc¹, Meghna Varambally, BHSc¹, Nima Karimi, BSc¹, Edgar Akuffo-Addo,
5 MD², John R Ingram, DM(Oxon) FRCP(Derm)³, Vincent Piguet, MD, PhD, FRCP^{2,4}

6 ¹Schulich School of Medicine and Dentistry, Western University, Canada

7 ²Division of Dermatology, Department of Medicine, University of Toronto, Toronto, Ontario,
8 Canada

9 ³Division of Infection & Immunity, Cardiff University, Cardiff, UK

10 ⁴Division of Dermatology, Department of Medicine, Women's College Hospital, Toronto,
11 Ontario, Canada

12 **Corresponding author:**

13 Nawar Tarafdar, BSc

14 1151 Richmond St

15 London, ON N6A 5C1

16 Email: ntarafdar2026@meds.uwo.ca

17 Date of revision: Nov 18, 2025

18 **Manuscript word count:** 1194 words [excluding references and tables]

19 **ORCID iDs:**

20 **Nawar Tarafdar** - <https://orcid.org/0009-0001-9968-9367>

21 **Meghna Varambally** – <https://orcid.org/0000-0002-6609-9686>

22 **Edgar Akuffo-Addo** – <https://orcid.org/0000-0002-8867-0935>

23 **John Ingram** - <https://orcid.org/0000-0002-5257-1142>

24 **Vincent Piguet** - <https://orcid.org/0000-0001-6079-4517>

25

26

27

28

29

30

36 **Key Points**

37 **Question**

38 What are the measurement properties of hidradenitis suppurativa (HS)-specific patient-reported
39 outcome measures (PROMs)?

40 **Findings**

41 In this systematic review and meta-analysis of 26 studies, 15 HS-specific PROMs were
42 identified. Seven (HiSQOL-17, PBI-HS, HODs, HIDRAdisk, PtGA-HS, HSBOD, HSSID) met
43 COSMIN standards, demonstrating sufficient content validity and internal consistency. These
44 PROMs involved patients in concept elicitation and presented evidence for unidimensionality.
45 HiSQOL-17 showed the strongest psychometric support and established interpretation
46 thresholds.

47 **Meaning**

48 Seven PROMs met COSMIN criteria for recommendation. Remaining PROMs show promise,
49 but further psychometric validation is needed to inform recommendations for their clinical and
50 research use.

51

52

53

54

55

56 **Abstract**

57 **Importance:** Hidradenitis suppurativa (HS) is a chronic inflammatory skin disorder with high
58 psychosocial burden. Despite growing use of patient-reported outcome measures (PROMs) in HS
59 trials, existing instruments vary in quality and validation.

60 **Objective:** To systematically review HS-specific PROMs using the COSMIN framework,
61 evaluating development quality and psychometric evidence, and to perform a meta-analysis of
62 key properties to summarize the evidence base and provide recommendations for clinical and
63 research use.

64 **Data Sources:** MEDLINE, EMBASE, and PubMed were searched from inception to October 23,
65 2025, for English-language studies.

66 **Study Selection:** Articles describing the development or validation of HS-specific PROMs that
67 evaluated at least one psychometric property were included. Generic instruments (e.g.,
68 Dermatology Life Quality Index, pain NRS) were excluded. Screening was conducted by two
69 independent reviewers.

70 **Data Extraction and Synthesis:** Two reviewers independently extracted data, appraised risk of
71 bias with the COSMIN checklist, and graded quality of evidence (QoE) using COSMIN-
72 modified GRADE. Random-effects meta-analysis pooled Cronbach α and correlation
73 coefficients; heterogeneity was quantified using I^2 .

74 **Main Outcome(s) and Measure(s):** COSMIN-guided appraisal and graded QoE of PROM
75 measurement properties, including content validity, structural validity, internal consistency,
76 reliability, responsiveness, and measurement error.

77 **Results:** Of 504 records screened, 26 studies (14 developmental, 12 validation) met criteria,
78 identifying 15 unique HS-specific PROMs (10 health-related quality of life, four symptom, one
79 treatment benefit). Fourteen achieved sufficient content validity and eight (HiSQOL-17,
80 HiSQOL-23, HSIA, HS-QoL, HSSA, QoL-HS, HSSID, HIDE) demonstrated ‘very good’
81 development design. Meta-analysis demonstrated strong internal consistency and construct
82 validity for HiSQOL-17 (pooled Cronbach α = 0.96; I^2 = 81.3%; pooled r = 0.84–0.88; I^2 = 74–
83 92%). Of seven evaluated PROMs, two displayed sufficient internal consistency. The remainder
84 were indeterminate due to absent or low-quality evidence for unidimensionality. Test-retest
85 reliability was sufficient in nine PROMs, and responsiveness was rated sufficient in five. No
86 studies evaluated measurement error. Seven PROMs (HiSQOL-17, PBI-HS, HODs, HIDRAdisk,
87 PtGA-HS, HSBOD, HSSID) met COSMIN criteria for recommendation.

88 **Conclusions and Relevance:** Seven (HiSQOL-17, PBI-HS, HODs, HIDRAdisk, PtGA-HS,
89 HSBOD, and HSSID) demonstrated sufficiency of both content validity and either internal
90 consistency, or another relevant measurement property (formative instruments). Further research
91 is needed to strengthen the validation of HS-specific instruments.

92

93

94

95 **Introduction**

96 Hidradenitis suppurativa (HS) is a chronic, inflammatory skin disorder with substantial
97 psychosocial burden.¹ Patient-reported outcome measures (PROMs) capture functional impact
98 and quality of life (QoL), supporting shared decision-making and treatment evaluation.² In HS,
99 use of dermatology-specific measures such as the Dermatology Life Quality Index (DLQI)
100 remains common in trials. However, these tools may underestimate disease burden and have
101 poorer responsiveness to change than HS-specific measures that better capture the diverse effects
102 of HS.³ The Hidradenitis Suppurativa Core Outcomes Set International Collaboration
103 (HiSTORIC) has recommended core patient-reported domains and encouraged outcome
104 standardization.⁶ As HS-specific measures vary in quality and measurement properties,
105 identifying those with the strongest validation is important for clinical practice and
106 researchtrials.³ This systematic review identifies and appraises HS-specific PROMs using the
107 COSMIN framework.

108 **Methods**

109 This review followed COSMIN guidance (Version 2.0).⁷ The protocol was registered on
110 PROSPERO [[CRD420251018744](https://www.crd420251018744)]. MEDLINE, EMBASE, and PubMed were searched to
111 October 23, 2025 (Table S1-S3) to identify English-language studies reporting psychometric
112 validation or development of HS-specific PROMs. Generic PROMs were excluded.
113 Two reviewers independently screened, extracted, and appraised studies. Appraised
114 measurement properties (Table S4) were judged using COSMIN criteria and COSMIN-modified
115 GRADE.⁷ The risk of bias (RoB) was assessed using the COSMIN RoB Checklist (Version 3.1).

116 For reflective instruments, structural validity and internal consistency were evaluated; these were
117 not applied to formative or single-item PROMs. Random-effects models were used to pool
118 Cronbach α and correlation coefficients (language versions and subscales analyzed separately).
119 **Heterogeneity** was summarized with I^2 .

120 **Results**

121 *Study Selection and Characteristics*

122 From 504 records, 26 studies were included^{5,8-32} (14 development and 12 validation, Figure S1),
123 encompassing 15 unique HS-specific PROMs (Table 1). Ten assessed HRQoL, four symptoms,
124 and one treatment-benefit. Total sample sizes were 599 (development) and 5212 (validation)
125 (Table S5).

126

127 *PROM Development and Content Validity*

128 Eight PROMs – HS Quality of Life (HiSQOL-17) and precursor HiSQOL-23, HS Symptom
129 Assessment (HSSA), HS Impact Assessment (HSIA), HS Quality of Life measure (HS-QoL),
130 Quality of Life in HS (QoL-HS), HS Symptoms and Impacts Daily Diary (HSSID), and the HS
131 Drainage Instrument (HIDE) – achieved ‘very good’ development based on qualitative concept
132 elicitation and cognitive debriefing (Table S6). Hidradenitis Odour and Drainage Scale (HODs),
133 Patient Global Assessment for HS-specific HRQoL (PtGA-HS), and Patient Benefit Index for HS
134 (PBI-HS) used informal data collection methods and were rated adequate. Four relied on
135 clinician guidance or lacked pilot testing, receiving doubtful/inadequate ratings (Table 2). Only
136 HODs applied a formal Content Validity Index (CVI = 0.77 and 0.74 for Odour and Drainage
137 domains).

138 All PROMs had sufficient content validity except for PtGA-HS (rated ‘inconsistent’) (Figure 1).
139 Evidence quality for content validity was low-to-moderate, with moderate QoE the highest grade
140 observed (HiSQOL-17 and 23, HSSA, HSIA, HS-QoL, QoL-HS, HSSID, HIDE).

141 *Quality of Other Measurement Properties*

142 HiSQOL-17 showed the strongest psychometric support, with high-quality evidence for
143 structural validity, internal consistency, reliability, and responsiveness. HODs, PBI-HS, and
144 HIDRAdisk also showed sufficient results for multiple domains, while evidence for the
145 remaining PROMs was mixed. Structural validity was sufficient in three reflective PROMs, with
146 QoE ranging from high (HiSQOL-17) to low/very low (QoL-HS, HODs) due to small samples.

147 Although the HIDE development study and French HiSQOL-17 validation followed COSMIN
148 translation procedures, neither assessed cross-language equivalence. Of seven reflective PROMs
149 assessed for internal consistency, two were sufficient and the rest were indeterminate due to
150 absent or low-quality evidence of unidimensionality (Table S7-S8, Figure 1). Meta-analysis for
151 total HiSQOL-17 (English version) yielded pooled Cronbach’s α of 0.94 ($I^2 = 94\%$) (Table S9).

152 Reliability was sufficient in nine PROMs, and construct validity in nine ($\geq 75\%$ hypotheses
153 confirmed), with meta-analytic results supporting validity for HiSQOL-17 (Pearson $r = 0.84$;
154 Spearman $r = 0.90$) and HSQoL-24 (Pearson $r = 0.81$) (Table S9). Responsiveness was sufficient
155 in five of six evaluated PROMs; PtGA-HS was downgraded due to weak anchors (Figure 1).

156 HiSQOL-17 provided the strongest anchor-based evidence for interpretability, with meaningful
157 change thresholds established for total and subscale scores using multiple convergent anchors. In
158 contrast, the HSSID study found low item-anchor correlations, allowing threshold estimation
159 only for the “worst pain” item.

160 **Recommendations (COSMIN)**

161 Based on COSMIN criteria, HiSQOL-17 demonstrated the most comprehensive validation
162 among HRQoL instruments, with high-quality evidence for reliability, responsiveness, construct
163 validity, and interpretability in both clinical trial and real-world settings. Six additional
164 instruments (HODs, HIDRADisk, PBI-HS, PtGA-HS, HS Burden of Disease tool [HSBOD], and
165 HSSID) also met Category A criteria, supported by sufficient content validity and internal
166 consistency or another key measurement property. Other PROMs remain promising but limited
167 by incomplete validation (Category B). No PROMs met Category C (high-quality evidence for
168 insufficient measurement properties).

169 **Discussion**

170 This review provides an updated COSMIN-based evaluation of 15 HS-specific PROMs. Among
171 these, HiSQOL-17 demonstrated the strongest psychometric evidence, meeting high-quality
172 criteria across core domains. HODs, HIDRADisk, PtGA-HS, HSBOD, and HSSID also met
173 COSMIN standards for recommendation, spanning HRQoL, symptoms, and treatment-benefit.
174 However, data on measurement error and feasibility remain limited.

175 Most instruments, including HiSQOL-17, PBI-HS, and HODs, incorporated semi-structured
176 qualitative interviews and cognitive debriefing, aligning with COSMIN standards for content
177 validity. Although the French HiSQOL-17 validation followed COSMIN-recommended cross-
178 cultural procedures, it lacked any formal invariance testing.

179 HiSQOL-17 and HODs were the only instruments with strong evidence for unidimensional
180 structure and internal consistency across domains. In contrast, several multidomain tools such as

181 HSQoL-24, HS-QoL, and QoL-HS limited evidence for unidimensionality undermined
182 justification for score aggregation. Importantly, HiSQOL-17 provided clinically meaningful
183 change thresholds aiding interpretation of within-patient and group-level changes. Although such
184 thresholds reflect group averages and may not capture individual trajectories due to measurement
185 error, they remain essential for contextualizing clinically important differences between
186 treatments. Emerging instrument HSSID presented preliminary interpretability data, with valid
187 thresholds estimated for the “worst lesion-related pain” item. This mirrors findings in other
188 dermatologic conditions, such as psoriasis, where interpretation evidence is inconsistent.³³

189 The HiSTORIC consensus identified patient-reported core domains for HS trials, including HS-
190 specific QoL, pain, patient global assessment, and symptoms of drainage and fatigue.^{6, 34}
191 Recently developed instruments such as HSSID and HIDE address these under-measured
192 symptoms, targeting broader symptom burden (pain, fatigue, odour, and drainage) and drainage
193 severity, respectively. However, both remain in early validation, with HIDE evaluated only for
194 content validity. Although pain is often assessed using generic NRS or VAS scales, none of the
195 reviewed PROMs captured detailed pain characteristics (e.g. neuropathic vs inflammatory
196 pain).^{3, 35}

197 This review has several limitations. Statistical heterogeneity was high in several pooled analyses
198 ($I^2 > 90\%$), limiting confidence in pooled estimates. Subgroup analyses were not feasible due to
199 few eligible studies per category. Generic dermatology instruments such as the DLQI and
200 NRS/VAS pain scales were not evaluated in this review. Although the French HiSQOL-17 and
201 the HIDE study followed recommended translation steps, none of the studies assessed
202 measurement invariance. Measurement error and feasibility remain unaddressed. A broader

203 limitation of the COSMIN framework is its reliance on classical test theory, with limited
204 integration of modern approaches such as Rasch and item response theory.³⁶ None of the
205 included instruments were developed or validated using these models.

206 Despite these gaps, this review provides a foundation for standardizing PROM use in HS trials,
207 with recommendations grounded in the gold standard COSMIN criteria. Further high-quality
208 psychometric validation is needed to strengthen patient-centered outcome measurement in HS.

209

210 **Acknowledgement Section**

211 **Author contributions:**

212 N.T. had full access to all the data and takes responsibility for the integrity of the data and the
213 accuracy of the data analysis.

214 *Concept and design:* NT

215 *Acquisition, analysis, or interpretation of data:* All authors.

216 *Drafting of the manuscript:* NT.

217 *Critical revision of the manuscript for important intellectual content:* All authors.

218 *Statistical analysis:* NT.

219 *Obtained funding:* NA.

220 *Administrative, technical, or material support:* JR, VP.

221 *Supervision:* VP.

222 **Conflict of Interest Disclosures:**

223 Dr. Piguet reports receiving grants from AbbVie, Bausch Health, Celgene, Eli Lilly, Incyte,
224 Janssen, LEO Pharma, L'Oréal, Novartis, Organon, Pfizer, Sandoz, Sanofi, and Bristol Myers
225 Squibb; honoraria for speaking engagements from Sanofi; serving on advisory boards for LEO

226 Pharma, Novartis, Sanofi, Union Therapeutics, AbbVie, and UCB; and receiving an equipment
227 donation from L'Oréal. All other authors declare no conflicts of interest.

228 Dr Ingram received a stipend as immediate past-Editor-in-Chief of the British Journal of
229 Dermatology and an authorship honorarium from UpToDate. He is a consultant for Abbvie,
230 Boehringer Ingelheim, Cantargia, ChemoCentryx, Citryll, Elasmogen, Engitix, Incyte, Indero,
231 Insmed, Kymera Therapeutics, MoonLake, Novartis, UCB Pharma, UNION Therapeutics, and
232 Viela Bio. He is co-copyright holder of HiSQOL, HIDE, Investigator Global Assessment and
233 Patient Global Assessment instruments for HS and his department receives income from
234 copyright of the Dermatology Life Quality Index (DLQI) and related instruments.

235 **Funding/support:**

236 No funding or financial support was received for this work.

237 **Data sharing:**

238 The review protocol was registered in PROSPERO [CRD420251018744] and can be accessed.
239 Additional materials such as data collection template, raw data included in analysis, and R
240 software code used for meta-analysis can be provided by the corresponding author (NT) upon
241 reasonable request.

242 **Meetings/presentations:**

243 There is no upcoming scheduled presentation/meeting.

244 **Originality of content:**

245 The authors affirm that the content of this manuscript is original and has not been published or
246 submitted for publication elsewhere, in whole or in part, except as disclosed in the manuscript.

247

248

249

250

251

252

253 **References**

254 1. Chernyshov PV, Zouboulis CC, Tomas-Aragones L, et al. Quality of life measurement in
255 hidradenitis suppurativa: position statement of the European Academy of Dermatology
256 and Venereology task forces on Quality of Life and Patient-Oriented Outcomes and
257 Acne, Rosacea and Hidradenitis Suppurativa. *J Eur Acad Dermatol Venereol.*
258 2019;33(9):1633-1643. doi:10.1111/jdv.15519

259 2. Snyder, A., Chen, S., Chren, M., Ferris, L., Edwards, L., Swerlick, R., Flint, N., Cizik,
260 A., Hess, R., Kean, J., & Secret, A. Patient-Reported Outcome Measures and Their
261 Clinical Applications in Dermatology. *American Journal of Clinical Dermatology.* 2023
262 <https://doi.org/10.1007/s40257-023-00758-8>.

263 3. Chernyshov PV, Finlay AY, Tomas-Aragones L, Poot F, Sampogna F, Marron SE,
264 Zemskov SV, Abeni D, Tzellos T, Szepietowski JC, et al. Quality of Life in Hidradenitis
265 Suppurativa: An Update. *International Journal of Environmental Research and Public
266 Health.* 2021; 18(11):6131. <https://doi.org/10.3390/ijerph18116131>

267 4. Kimball, A., Kirby, J., Ingram, J., Tran, T., Pansar, I., Ciaravino, V., Willems, D., Lewis-
268 Mikhael, A., Tongbram, V., & Garg, A. Burden of Hidradenitis Suppurativa: A
269 Systematic Literature Review of Patient Reported Outcomes. *Dermatology and Therapy.*
270 2024; 14. <https://doi.org/10.1007/s13555-023-01085-w>.

271 5. Garg A., Burge R., Cohee A., et al. Validation of the real-world application of the
272 Hidradenitis Suppurativa Quality of Life (HiSQOL) score to adults with hidradenitis
273 suppurativa. *British Journal of Dermatology.* 2025;192(2):261EP - 268.
274 doi:[10.1093/bjd/ljae367](https://doi.org/10.1093/bjd/ljae367)

275 6. Ingram, J., Hadjieconomou, S., & Piguet, V. Development of core outcome sets in
276 hidradenitis suppurativa: systematic review of outcome measure instruments to inform
277 the process. *British Journal of Dermatology.* 2016; 175.
278 <https://doi.org/10.1111/bjd.14475>.

279 7. Mokkink LB, Elsman EBM, Terwee CB. COSMIN guideline for systematic reviews of
280 patient-reported outcome measures version 2.0. *Qual Life Res.* 2024;33(11):29292939.
281 doi:10.1007/s11136-024-03761-6

282 8. Kirby J.S., Thorlacius L., Villumsen B., et al. The Hidradenitis Suppurativa Quality of
283 Life (HiSQOL) score: development and validation of a measure for clinical trials. *British
284 Journal of Dermatology.* 2020;183(2):340EP - 348. doi:[10.1111/bjd.18692](https://doi.org/10.1111/bjd.18692)

285 9. Kursawe Larsen C., Kjaersgaard Andersen R., Kirby J.S., Tan J., Saunte D.M.L., Jemec
286 G.B.E. Convergent Validity of Suffering and Quality of Life as Measured by The
287 Hidradenitis Suppurativa Quality of Life. *Journal of the European Academy of
288 Dermatology and Venereology.* 2021;35(7):1577EP - 1581. doi:[10.1111/jdv.17148](https://doi.org/10.1111/jdv.17148)

289 10. Santos L.L., Zhu Z., Brown K., Kirby J.S. Initial validation of the Hidradenitis
290 Suppurativa Quality of Life tool in a clinical trial setting. *British Journal of Dermatology.*
291 2023;188(5):672EP - 673. doi:[10.1093/bjd/ljac141](https://doi.org/10.1093/bjd/ljac141)

292 11. Wu K., Larney C., Marshman G., et al. Quality-of-life evaluation in hidradenitis
293 suppurativa in Australia: Validation and outcomes of the HiSQOL questionnaire.
294 *Australasian Journal of Dermatology.* 2024;65(8):630EP - 635. doi:[10.1111/ajd.14370](https://doi.org/10.1111/ajd.14370)

295 12. Kirby J.S., Hereford B., Thorlacius L., et al. Validation of global item for assessing
296 impact on quality of life of patients with hidradenitis suppurativa*. *British Journal of*
297 *Dermatology*. 2021;184(4):681EP - 687. doi:[10.1111/bjd.19344](https://doi.org/10.1111/bjd.19344)

298 13. Machado M.O., Lu J.D., Brar R., et al. Hidradenitis suppurativa odour and drainage
299 scale: a novel method for evaluating odour and drainage in patients with hidradenitis
300 suppurativa. *British Journal of Dermatology*. 2021;184(4):772EP - 774.
301 doi:[10.1111/bjd.19686](https://doi.org/10.1111/bjd.19686)

302 14. Alavi A, Anand N, Yamanaka-Takaichi M, et al. Evaluating the hidradenitis odor and
303 drainage scale (HODS): A new validated potential instrument to assess odor and drainage
304 in hidradenitis suppurativa-A cross-sectional study. *JAAD Int*. 2022;10:75-76. Published
305 2022 Nov 15. doi:[10.1016/j.jdin.2022.11.003](https://doi.org/10.1016/j.jdin.2022.11.003)

306 15. Kirsten N., Augustin M., Blome C., et al. Development and Validation of a Disease-
307 specific Outcomes Tool for the Assessment of Patient Benefits of Treatment for
308 Hidradenitis Suppurativa: the PBI-HS. *Acta dermato-venereologica*. 2025;105((Kirsten,
309 Augustin, Blome, Topp, Schwager, Girbig, Lindegaard, Otten) Institute for Health
310 Services Research in Dermatology and Nursing (IVDP), University Medical Center
311 Hamburg-Eppendorf (UKE), Hamburg, Germany(Bechara) Dermatologic Surgery Unit,
312 Departm):adv41298. doi:[10.2340/actadv.v105.41298](https://doi.org/10.2340/actadv.v105.41298)

313 16. Marrón SE, Gómez-Barrera M, Tomás-Aragonés L, et al. Development and Preliminary
314 Validation of the HSQoL-24 Tool to Assess Quality of Life in Patients With Hidradenitis
315 Suppurativa. Desarrollo y validación preliminar del instrumento HSQoL-24 para evaluar
316 calidad de vida en pacientes con hidradenitis supurativa. *Actas Dermosifiliogr (Engl Ed)*.
317 2019;110(7):554-560. doi:[10.1016/j.ad.2019.02.002](https://doi.org/10.1016/j.ad.2019.02.002)

318 17. Marron S.E., Gomez-Barrera M., Tomas-Aragones L., et al. Quality of life in hidradenitis
319 suppurativa: Validation of the hsql-24. *Acta Dermato-Venereologica*.
320 2021;101(8):adv00529. doi:[10.2340/00015555-3905](https://doi.org/10.2340/00015555-3905)

321 18. Krajewski PK, Marrón SE, Gomez-Barrera M, Tomas-Aragones L, Gilaberte-Calzada Y,
322 Szepietowski JC. The Use of HSQoL-24 in an Assessment of Quality-of-Life Impairment
323 among Hidradenitis Suppurativa Patients: First Look at Real-Life Data. *J Clin Med*.
324 2021;10(22). doi:[10.3390/jcm10225446](https://doi.org/10.3390/jcm10225446)

325 19. Krajewski P.K., Bardowska K., Matusiak L., et al. Hidradenitis Suppurativa Quality of
326 Life 24 (HSQoL-24) now available for Polish patients: creation and validation of the
327 Polish language version. *Postepy Dermatologii i Alergologii*. 2022;39(6):1053EP - 1058.
328 doi:[10.5114/ada.2022.114885](https://doi.org/10.5114/ada.2022.114885)

329 20. Sisic M., Kirby J.S., Boyal S., Plant L., McLellan C., Tan J. Development of a quality-of-
330 life measure for hidradenitis suppurativa. *Journal of Cutaneous Medicine and Surgery*.
331 2017;21(2):152EP - 155. doi:[10.1177/1203475416677721](https://doi.org/10.1177/1203475416677721)

332 21. McLellan C, Sisic M, Oon HH, Tan J. Preliminary Validation of the HS-QoL: A Quality-
333 of-Life Measure for Hidradenitis Suppurativa. *Journal of cutaneous medicine and*
334 *surgery*. 2018;22(2):142-146. doi:[10.1177/1203475417736281](https://doi.org/10.1177/1203475417736281)

335 22. Kimball A.B., Sundaram M., Banderas B., Foley C., Shields A.L. Development and
336 initial psychometric evaluation of patient-reported outcome questionnaires to evaluate the
337 symptoms and impact of hidradenitis suppurativa. *Journal of Dermatological Treatment*.
338 2018;29(2):152EP - 164. doi:[10.1080/09546634.2017.1341614](https://doi.org/10.1080/09546634.2017.1341614)

339 23. Thorlacius L., Esmann S., Miller I., Vinding G., Jemec G.B.E. Development of HiSQOL:
340 A Hidradenitis Suppurativa-Specific Quality of Life Instrument. *Skin Appendage*
341 *Disorders*. 2019;5(4):221EP - 229. doi:[10.1159/000496234](https://doi.org/10.1159/000496234)

342 24. Chiricozzi A, Bettoli V, De Pità O, et al. HIDRAdisk: an innovative visual tool to assess
343 the burden of hidradenitis suppurativa. *J Eur Acad Dermatol Venereol*. 2019;33(1):e24-
344 e26. doi:10.1111/jdv.15122

345 25. Peris K., Lo Schiavo A., Fabbrocini G., et al. HIDRAdisk: validation of an innovative
346 visual tool to assess the burden of hidradenitis suppurativa. *Journal of the European*
347 *Academy of Dermatology and Venereology*. 2019;33(4):766EP - 773.
348 doi:[10.1111/jdv.15425](https://doi.org/10.1111/jdv.15425)

349 26. Senthilnathan A., Kolli S.S., Cardwell L.A., Richardson I., Feldman S.R., Pichardo R.O.
350 Validation of a Hidradenitis Suppurativa Self-Assessment Tool. *Journal of Cutaneous*
351 *Medicine and Surgery*. 2019;23(4):388EP - 390. doi:[10.1177/1203475419839965](https://doi.org/10.1177/1203475419839965)

352 27. Otten M., Augustin M., Blome C., et al. Measuring quality of life in hidradenitis
353 suppurativa: Development and validation of a disease-specific patient-reported outcome
354 measure for practice and research. *Acta Dermato-Venereologica*. 2023;103((Otten,
355 Augustin, Blome, Topp, Niklaus, Hilbring, Kirsten) Institute for Health Services
356 Research in Dermatology and Nursing (IVDP), University Medical Center Hamburg-
357 Eppendorf (UKE), Hamburg, Germany(Bechara) Dermatologic Surgery Unit,
358 Department of Derm). doi:[10.2340/actadv.v102.2485](https://doi.org/10.2340/actadv.v102.2485)

359 28. Pinard J, Vleugels RA, Joyce C, Merola JF, Patel M. Hidradenitis suppurativa burden of
360 disease tool: Pilot testing of a disease-specific quality of life questionnaire. *J Am Acad*
361 *Dermatol*. 2018;78(1):215-217.e2. doi:10.1016/j.jaad.2017.08.030

362 29. Berros S, Ficheux AS, Misery L, Jouan N, Brenaut E. Validation of the French version of
363 the hidradenitis suppurativa quality of life (HiSQOL) questionnaire. *Ann Dermatol*
364 *Venereol*. 2025;152(2):103379. doi:10.1016/j.annder.2025.103379

365 30. Ingram JR, Wozniak MB, Passera A, et al. The Hidradenitis Suppurativa Symptom and
366 Impact Diary: Development and psychometric evaluation of a novel set of patient
367 reported outcomes for hidradenitis suppurativa. *Br J Dermatol*. Published online August
368 5, 2025. doi:10.1093/bjd/bjaf307

369 31. Thorlacius L, Villumsen B, McGrath BM, et al. The Hidradenitis suppurativa DrainagE
370 (HIDE) Scale: development and content validation of patient reported outcome
371 measure. *Br J Dermatol*. Published online August 19, 2025. doi:10.1093/bjd/bjaf317

372 32. Kirby JS, Thorlacius L, Lambert J, et al. Psychometric Validation and Interpretation
373 Thresholds of the Hidradenitis Suppurativa Quality of Life (HiSQOL[©]) Questionnaire
374 Using Pooled Data from the Phase 3 BE HEARD I & II Trials of Bimekizumab in
375 Hidradenitis Suppurativa. *Br J Dermatol*. Published online April 2, 2025.

376 33. Ali FM, Cueva AC, Vyas J, et al. A systematic review of the use of quality-of-life
377 instruments in randomized controlled trials for psoriasis. *Br J Dermatol*.
378 2017;176(3):577-593. doi:10.1111/bjd.14788

379 34. Thorlacius L, Ingram JR, Villumsen B, et al. A core domain set for hidradenitis
380 suppurativa trial outcomes: an international Delphi process. *Br J Dermatol*.
381 2018;179(3):642-650. doi:10.1111/bjd.16672

382 35. Hasan SB, Gendra R, James J, Morris D, Orenstein LAV, Ingram JR. Pain measurement
383 in painful skin conditions and rheumatoid arthritis randomized controlled trials: a scoping

384 review to inform pain measurement in hidradenitis suppurativa. *Br J Dermatol.*
385 2022;187(6):846-854. doi:10.1111/bjd.21821

386 36. McKenna SP, Heaney A. COSMIN reviews: the need to consider measurement theory,
387 modern measurement and a prospective rather than retrospective approach to evaluating
388 patient-based measures. *J Med Econ.* 2021;24(1):860-861.
389 doi:10.1080/13696998.2021.1948232

390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427

428 **Figure 1. COSMIN Ratings and GRADE Certainty of Evidence of Other Measurement**
429 **Properties for HS-Specific PROMs**

430

431 COSMIN quality ratings were assigned according to the criteria for good measurement
432 properties and are represented by a green/red/yellow/grey scale: Sufficient (green), Insufficient
433 (red), Indeterminate (yellow), and Not Evaluated (grey). Certainty of evidence for each
434 measurement property was graded using the COSMIN-modified GRADE approach and is
435 displayed in shades of blue (High, Moderate, Low, Very Low), with greater color intensity
436 indicating higher certainty of evidence. Abbreviations: NA=not applicable; NE=not
437 evaluated; ?=indeterminate. For single-item or formative instruments where structural validity
438 and internal consistency are not conceptually applicable (e.g., PtGA-HS, HIDRAdisk, PBI-HS),
439 these were denoted as 'NA' in tables, whereas 'NE' indicates properties that were applicable but
440 not evaluated.

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473 **Table 1. Characteristics of Hidradenitis Suppurativa-Specific Patient-Reported Outcome
474 Measures**
475

PROM ^a	Construct	Recall Period	No. of Items	(Sub)scale(s)	Response Options	Range of (Sub)Scale and Scoring ^b
HiSQOL-17 ⁷ (English)	HRQoL	7 days	17	3 domains: Symptom, psychosocial, activities/adaptation	5-point Likert/adjunctive scale	0-68
HiSQOL-17 ²⁹ (French version)	HRQoL	7 days	17	3 domains: Symptom, psychosocial, activities/adaptation	5-point Likert/adjunctive scale	0-68
PBI-HS ¹⁵	Patient-reported treatment benefit	NR	26	2 domains: Physical impairments, Psychosocial impairments	5-point Likert/adjunctive scale	0 to 4, Mean benefit score (higher = more benefit)
HSQoL-24 ¹⁶	HRQoL	4 weeks	24	6 domains: Psychosocial; Daily activities; Symptoms; Sexual activity; Employment; Relationships	4-point Likert/adjunctive scale	0 to 96
HS-QoL ²⁰	HRQoL	NR	44	7 domains/subscales: Physical consequences; HS symptoms; sexual activity; emotional; social; work; social support	5-point Likert/adjunctive scale	Each subscale scored as a mean (1-5)
PtGA-HS ¹²	HRQoL	7 days	1	1 (single-item global measure)	5-point Likert/adjunctive scale	0-4
HSSA ²²	HS-symptom severity	7 days	9	1 domain: Signs and symptoms	11-point NRS (0-10)	0-100 (rescaled)
HSIA ²²	HRQoL	7 days	18	1 domain: Impacts	11-point NRS (0-10)	0-100 (mean of items 1-16)
HiSQOL-23 ²³	HRQoL	7 days	23	3 domains: Physical, psychological, and social QoL domains	5-point Likert/adjunctive scale	NR
HIDRADisk ^c ²⁴	HRQoL	7 days	10	10 domains: skin; symptom control; uneasiness; sexuality; social life; work; daily activities; odour; general health; pain	5-point Likert/adjunctive scale	Scores connected in a polygon. Larger polygon area = greater burden

Senthilnathan et al's HSSA ²⁶	HS-symptom Severity	NR	1	1 severity selection task using photo grid	One score (from 10 photographs representing Hurley stages 0–3)	0–3 (clear skin to Hurley Stage 3)
QoL-HS ²⁷	HRQoL	7 days	22	2 domains/subscales: social and psychological impairment; physical impairments	5-point Likert/adjectival scale	For each subscale: Average of all item scores (0-4)
HODS ¹³	Odour and drainage-specific symptom severity	NR	8	2 domains/subscales: odour; drainage	5-point Likert/adjectival scale	1-5 for each subscale
HSBOD ²⁸	HRQoL	NR	19	5 domains: symptoms and feelings, daily activities, leisure, work/school, personal relationships	Visual analog scale	0-10, Average of all item scores
HSSID ³⁰	Symptoms and associated burden	24-hour	11	Two domains: symptoms of HS (pain, itching, drainage, odour, and physical fatigue) and impacts (walking, moving, sleep, socializing, emotions, work)	NRS and verbal rating scales	For NRS-formatted questions, range was 0-10; daily responses incorporated into weekly score calculated as average of 7 daily scores
HIDE ³¹	Drainage symptom severity and burden	7 days	2	One domain: drainage	NRS for both items/questions	0-10, one score for overall drainage and one score for worst level of drainage experienced in last 7 days

476

477 Abbreviations: HiSQOL (17 items) = Hidradenitis Suppurativa Quality of Life (an instrument
 478 developed by Kirby et al. in 2020); HSQoL-24 = HS-specific Quality of Life (24 items);
 479 HisQOL (23 items)=Hidradenitis suppurativa-specific quality of life instrument (developed by
 480 Thorlacius et al. in 2019); HSBOD = Hidradenitis Suppurativa Burden of Disease tool;
 481 HRQoL=health-related quality of life; HS= Hidradenitis Suppurativa; PROM = patient-reported
 482 outcome measure; Pt-GA-HS = Patient global assessment for HS-specific health-related quality
 483 of life; PBI-HS = Patient benefit index for HS; HSSID = HS symptoms and impacts daily diary;
 484 HIDE =HS drainage instrument; NR = not reported; NRS = numeric rating scale
 485

486 ^aCitation for development study of PROM

487 ^bHigher scores generally indicate worse disease burden or poorer QoL unless otherwise specified
 488 (e.g. PBI-HS, higher score = greater benefit)

489 ^cFor HIDRADisk, scores are visually represented as a polygon; larger polygon area denotes
 490 greater burden

491

492

493

494

495

496

497
498
499
500

Table 2. HS-Specific Patient-Reported Outcome Measure (PROM) Development and Content Validity Quality Rating

Source ^c	PROM	PROM Development ^a		Content Validity ^b			Overall		
		Design	Pilot Study	Relevance	Comprehensiveness	Comprehensibility	Quality ^c	GRADE ^d	
Kirby 2020 ⁷	HiSQO L-17	VG	VG	+	+	+	+	M	
Thorlacius 2025 ²⁹	HiSQO L-17 (French)	NA	D	NA	NA	?	?	?	
Kirby 2021 ¹²	PtGA-HS	A	VG	+	-	+	±	VL	
Machado 2021 ¹³	HODs (odour and drainage scales)	A	VG	+	+	+	+	L	
Marron 2019 ¹⁶	HSQoL-24	D	D	+	+	+	+	VL	
Kirsten 2025 ¹⁵	PBI-HS	A	VG	+	+	+	+	L	
Kimball 2018 ²²	HSSA	VG	VG	+	+	+	+	M	
Kimball 2018 ²²	HSIA	VG	VG	+	+	+	+	M	
Thorlacius 2019 ²³	HiSQO L-23	VG	VG	+	+	+	+	M	
Susic 2017 ²⁰	HS-QoL	VG	VG	+	+	+	+	M	
Chiricozzi 2019 ²⁴	HIDRA Disk	A	D	+	+	+	+	L	
Senthilnathan 2019 ²⁶	HSSA	I	D	+	+	+	+	VL	
Otten 2023 ²⁷	QoL-HS	VG	VG	+	+	+	+	M	

Pinard 2018 ²⁸	HSBOD	D	D	+	+		+	+	VL
Ingram 2025 ³⁰	HSSID	VG	A	+	+		+	+	M
Thorlaciu s 2025 ³¹	HIDE	A	A	+	+		+	+	L

501

502

503 Abbreviations: HiSQOL (17 items) = Hidradenitis Suppurativa Quality of Life (an instrument
504 developed by Kirby et al. in 2020); HSQoL-24 = HS-specific Quality of Life (24 items);
505 HiSQOL (23 items)=Hidradenitis suppurativa-specific quality of life instrument (developed by
506 Thorlacius et al. in 2019); HSBOD = Hidradenitis Suppurativa Burden of Disease tool; HS=

507 Hidradenitis Suppurativa; PROM = patient-reported outcome measure; Pt-GA-HS = Patient
508 global assessment for HS-specific health-related quality of life; PBI-HS = Patient benefit index
509 for HS

510 ^aMethodological quality and risk of bias (RoB) scored according to COSMIN RoB guidelines,
511 denoted as: VG = very good; A=adequate; D=doubtful; I=inadequate

512 ^bSummarized quality score based on COSMIN definitions and 10 criteria for good measurement
513 properties, taking into account 1) PROM development quality; 2) pilot study quality and 3)
514 reviewers' own ratings. No additional content validity studies outside of original development
515 study were identified for HS-specific PROMs. Denoted as: (+)=Sufficient; (±) = Inconsistent, (–)
516 = Insufficient

517 ^cSummarized rating for content validity per PROM evaluated as follows: (+) if all elements
518 (relevance, comprehensiveness, and comprehensibility) are (+); (–) assigned if all elements are
519 (–). (±) assigned if at least one of the ratings is (+) or (±) and at least one of the ratings is (–) or
520 (±)

521 ^dQuality of evidence scored using COSMIN Grade Scoring, denoted as: H=high; M=moderate;
522 L=low; VL= very low

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541
542
543
544
545
546
547
548
549
550
551
552
553