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Abstract
Fast machine learning (FastML) has strong potential to enhance energy optimization and operational efficiency 
in heating, ventilation, and air conditioning (HVAC) systems within building management systems (BMS). 
Traditional HVAC control approaches frequently depend on static schedules and computationally intensive, 
CPU-based optimization techniques, which often lack the responsiveness and scalability required for real-
time embedded applications. To address these limitations, we propose a fast machine learning framework that 
integrates a random forest surrogate model implemented as a hardware accelerator on the programmable logic 
(PL) with a lightweight and adaptive genetic algorithm (GA) executed on the processing system (PS), thereby 
forming a hybrid PS–PL deployment. This combination of fast machine learning and evolutionary algorithms 
optimization delivers substantial computational efficiency, achieving over 1.67 million predictions per second 
on a PYNQ-Z1 FPGA and significantly outperforming recent FPGA-based approaches. By using a case study, 
we demonstrate how FastML can employ a GA multi-objective fitness function to dynamically optimize hourly 
airflow rates and supply air temperatures in response to occupancy and seasonal environmental patterns, thereby 
reducing electricity and thermal energy consumption while maintaining occupant comfort within standard pre-
dicted mean vote (PMV) thresholds. Empirical evaluation conducted over 72 days across four distinct seasons 
reveals consistent electricity savings exceeding 50%, alongside thermal energy reductions of up to 150 kWh 
per day during heating periods. A comprehensive three-dimensional Pareto front analysis further substantiates 
the system’s capability to effectively balance energy efficiency and occupant comfort. These results highlight 
the practicality, scalability, and substantial promise of FPGA-based multi-objective optimization as a robust, 
real-time solution for intelligent and sustainable building energy management at the edge.

Keywords  Fast machine learning · Genetic algorithms · Building management systems · Energy efficiency · 
Optimisation

Abbreviations
AFR	� Air flow rate
AT	� Air temperature
AXI	� Advanced eXtensible interface
BMS	� Building management system
BRAM	� Block random-access memory
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CoP	� Coefficient of performance
CPU	� Central processing unit
DDPG	� Deep deterministic policy gradient
DL	� Deep learning
DMA	� Direct memory access
DRL	� Deep reinforcement learning
DSP	� Digital signal processing (block)
FastML-GA	� Fast machine learning with genetic algorithm
FPGA	� Field-programmable gate array
GA	� Genetic algorithm
GA-Opt	� Genetic algorithm optimization
HLS	� High-level synthesis
HVAC	� Heating, ventilation, and air conditioning
II	� Initiation interval
IoT	� Internet of Things
MAE	� Mean absolute error
ML	� Machine learning
MPC	� Model predictive control
PMV	� Predicted mean vote
RBFNN	� Radial basis function neural network
RF	� Random forest
RFR	� Random forest regressor
RH	� Relative humidity
RMSE	� Root mean square error
RT	� Room temperature
RTL	� Register transfer level
SEMS	� Smart energy management system
SoC	� System on chip
WT	� Water temperature

1  Introduction

The building sector is a cornerstone of global decarbonisation strategies, accounting for approximately 34% of 
global final energy consumption and 37% of energy-related CO2 emissions as of 2022 [1]. Heating, ventilation, 
and air conditioning (HVAC) systems, which can consume up to 40% of a building’s total energy [2], represent 
a critical opportunity for improving energy efficiency and reducing environmental impact. Optimizing HVAC 
operations is essential not only for achieving climate goals but also for enhancing occupant comfort and support-
ing the long-term sustainability of the built environment.

Traditional building automation systems (BAS) rely heavily on rule-based or schedule-driven control strate-
gies, which are often inadequate for responding to dynamic factors such as fluctuating occupancy, real-time 
weather changes, and seasonal variations [3, 4]. These static approaches frequently lead to energy waste, sub-
optimal thermal comfort, and failure to meet stringent energy efficiency targets. For instance, fixed schedules 
may maintain HVAC operation during unoccupied periods, exacerbating energy consumption due to the thermal 
inertia of buildings, which causes temperature changes to lag behind occupancy shifts [5]. Such inefficiencies 
underscore the need for adaptive, intelligent control systems capable of real-time decision-making.
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Recent advancements in data-driven predictive control have shown promise in addressing these challenges. By 
leveraging real-time sensor data—such as occupancy, temperature, and humidity—and historical building perfor-
mance records, machine learning (ML) models can accurately forecast indoor climate dynamics and dynamically 
adjust HVAC setpoints [6]. Among ML forecasting techniques, random forests (RF) stand out for their robustness 
to noisy inputs, ability to model complex nonlinear relationships, and low inference complexity, making them 
ideal for deployment on resource-constrained edge devices [7, 8]. RF models serve as effective surrogate models, 
predicting key performance metrics like electricity consumption, thermal energy use, and thermal comfort (via 
the Predicted Mean Vote, PMV) with high accuracy.

However, most ML-based HVAC systems rely on conventional CPU-based or cloud-computing architectures, 
which introduce significant limitations for real-time applications. Cloud-based systems suffer from communica-
tion latencies due to round-trip data transfers, while CPU-based edge platforms, such as Raspberry Pi, often lack 
the computational power for advanced tasks like real-time video processing or high-throughput ML inference [9]. 
These delays can result in overheating, overcooling, or delayed ventilation, compromising both energy efficiency 
and occupant comfort. For example, even a few seconds of latency in processing occupancy signals can lead to 
prolonged HVAC operation, wasting energy in unoccupied spaces.

Field-programmable gate arrays (FPGAs) offer a compelling solution to these challenges. FPGAs provide 
ultra-low-latency inference and high energy efficiency, consuming significantly less dynamic power than general-
purpose CPUs. Studies have shown that FPGA-accelerated workloads can reduce operational carbon footprints 
by up to 40% compared to CPU-based systems, making them a sustainable choice for smart building applica-
tions  [10]. By enabling task-specific hardware acceleration, FPGAs support rapid evaluation of thousands of 
candidate control strategies, a critical requirement for real-time HVAC optimization in dynamic environments.

The thermal mass of buildings further complicates HVAC control, as temperature changes occur gradually 
rather than instantaneously [5]. This inertia can lead to unnecessary heating or cooling after occupants leave, 
increasing energy consumption. Predictive control models, pre-trained to account for building thermal dynam-
ics, can anticipate such changes and adjust HVAC setpoints proactively. Studies demonstrate that predictive 
approaches can achieve energy savings ranging from 1% to 13.3%, depending on the balance between thermal 
comfort and efficiency [11]. Fast machine learning (FastML), characterized by sub-millisecond inference times, 
is thus essential for enabling real-time, localized decision-making at the edge, where environmental and occu-
pancy signals can change within seconds.

Evolutionary algorithms, particularly Genetic algorithms (GAs), offer significant potential for multi-objective 
HVAC optimization by exploring complex setpoint spaces to balance energy use, comfort, and operational sta-
bility in buildings [12]. However, their integration with ML models on embedded platforms has been limited 
by computational constraints and latency issues. Most GA implementations rely on high-performance comput-
ing resources, which are impractical for edge deployment in resource-constrained environments such as smart 
buildings.

This work introduces FastML-GA, a novel FPGA-accelerated framework that integrates a random forest 
(RF) surrogate model implemented as a hardware accelerator on the programmable logic (PL) with a lightweight 
genetic algorithm (GA) executed on the embedded ARM Cortex-A9 CPUs of the PYNQ-Z1 processing system 
(PS), forming a hybrid PS–PL architecture for real-time HVAC optimization in buildings. FastML-GA achieves 
over 1.67 million predictions per second, surpassing existing FPGA-based energy management systems [13]. By 
combining the low-latency inference of the FPGA-based RF with the optimization capabilities of the GA running 
on the PS, the framework enables rapid evaluation of thousands of candidate setpoints, ensuring timely responses 
to dynamic building conditions. Unlike traditional CPU- or cloud-based solutions, FastML-GA delivers high-
throughput, energy-efficient control suitable for real-time applications.

We validate FastML-GA through seasonal simulations using high-fidelity building datasets, achieving over 50% 
reductions in electricity and thermal energy consumption while maintaining thermal comfort within ASHRAE 
Standard 55-2020 guidelines (PMV index)  [14, 15]. Pareto analysis demonstrates the framework’s ability to 
navigate trade-offs between energy efficiency and comfort across diverse operational scenarios, highlighting its 
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adaptability to varying occupancy and environmental conditions. Additionally, the system’s FPGA-based imple-
mentation minimizes operational emissions, aligning with broader sustainability goals for smart buildings.

By advancing the integration of FastML and embedded optimization, FastML-GA contributes to the decarbon-
ization of the building sector and the development of responsive, sustainable building management systems. The 
rest of the paper is structured as follows: Sect. 2 reviews related literature, Sect. 3 details the FastML-GA frame-
work, Sect. 4 describes the experimental setup, Sect. 5 presents results and analysis, and Section 6 concludes with 
final remarks and future research directions.

2  Related work

Improving building energy performance is central to the global effort to decarbonize the built environment, with 
intelligent HVAC control representing a critical opportunity for energy transition and sustainability. The integra-
tion of machine learning (ML) into building energy systems has gained increasing attention as a means to reduce 
operational emissions and meet net-zero targets. A recent special issue edited by Guo et al. [16] consolidates 
major developments in data-driven HVAC control, highlighting the role of ML in performance forecasting, fault 
detection, and pattern recognition—tools critical for advancing low-energy building operations.

Numerous studies have addressed the computational burden of simulation-based HVAC optimization by 
replacing costly simulations with ML-based surrogate models. For example, Araújo et al. [17] combined a vali-
dated building energy simulation tool with ML approximators, achieving up to 22% cost savings and 100× 
faster execution. However, such methods typically remain confined to CPU-bound pipelines and lack support for 
embedded or real-time deployment, limiting their practical utility in dynamic control environments.

A comprehensive review by Ala’raj et al. [18] classified data-driven HVAC optimization strategies and high-
lighted the effectiveness of models such as random forests and neural networks for predicting thermal comfort 
and energy use. These findings were reinforced by Wang et al. [19], who applied a random forest model for hourly 
energy prediction in educational buildings, outperforming Regression Trees and SVR by 14–25% and 5-−5.5%, 
respectively. Their study also showed that feature importance varies with seasons, underscoring the adaptability 
of RFs to dynamic conditions and climatic variability—factors crucial for low-carbon HVAC design.

ML models such as artificial neural networks (ANNs), support vector machines (SVMs), and random forests 
(RFs) have also been widely combined with evolutionary optimization methods to balance the competing objec-
tives of energy reduction and occupant comfort. Ilbeigi et al. [20] proposed a multi-layer perceptron (MLP) 
trained on EnergyPlus simulation data and optimized via the Galapagos genetic algorithm, achieving 35% energy 
savings. Similarly, Ferreira et al. [21] demonstrated that ANN-based predictive control could yield over 50% 
reductions in energy use, highlighting their potential for real-world building decarbonisation.

Other recent innovations in modeling include symbolic regression [22], which achieved a 16.1% reduction in 
peak power using a model predictive control framework, and reinforcement learning (RL)-based HVAC control. 
For instance, Ding et al. [23] proposed CLUE, a model-based RL system using Gaussian Processes for safe and 
data-efficient HVAC operation, while [2] applied deep RL in multi-zone office buildings, achieving up to 37% 
energy savings.

The design of multi-energy systems for net/nearly zero energy buildings (NZEBs) has also advanced, with 
recent work by Lu et al. [24] addressing correlated uncertainties in system sizing using a copula-based scenario 
generator and NSGA-II optimization. Their results demonstrate high energy self-sufficiency and thermal com-
fort, reinforcing the need for uncertainty-aware, multi-objective optimization in smart buildings, a challenge 
we address from a real-time, embedded perspective. Evolutionary algorithms (EAs) remain a popular choice 
for multi-objective HVAC optimization. However, most implementations operate offline, are simulation-heavy, 
and lack real-time applicability or embedded deployment, thus limiting their practical integration into energy-
responsive building management systems.
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In contrast to these approaches, our work eliminates runtime simulation entirely. We train a random forest 
regressor (RFR) on pre-generated HVAC simulation data and deploy it on FPGA hardware for high-throughput, 
low-latency inference. This is coupled with a lightweight, multi-objective genetic algorithm tailored for HVAC 
control, enabling dynamic, scenario-based optimization directly at the edge. Our system achieves electricity 
savings exceeding 50% and up to 23.95× performance gains over CPU-based methods, while maintaining high 
prediction accuracy and control robustness.

Furthermore, FPGA-based edge computing is inherently more energy-efficient compared to CPU- or GPU-
based systems. For instance, Xu et al. [25] demonstrated that FPGA edge deployment for mobile vision tasks 
reduced response time by 3×, execution time by 15×, and power consumption across both mobile devices and 
edge nodes. More broadly, Vaithianathan et al. [26] showed that low-power FPGA techniques such as dynamic 
voltage scaling and clock gating can achieve over 40% energy savings in mobile and embedded applications. In 
addition, configuration-aware and duty-cycling strategies for FPGA deep-learning accelerators can cut configura-
tion energy by ∼40× and extend operational lifetime via idle-waiting and adaptive strategy switching [27]. This 
is particularly important for reducing the carbon footprint of edge devices, which often operate continuously and 
in large numbers. To the best of our knowledge, no prior work has combined ML-based surrogate modeling and 
genetic algorithm optimization for HVAC control on FPGA hardware. Although GA and ML accelerators have 
been independently explored in other domains, our work is the first to unify both into a compact, embedded, and 
energy-efficient optimization framework.

Beyond HVAC-specific studies, recent work on embedded AI highlights the portability of ML frameworks 
across microcontrollers (MCUs), FPGAs, and GPUs. TinyML benchmarks demonstrate that modern MCUs such 
as the STM32N6 can achieve inference latencies of 1.6–2.9 ms with energy consumption as low as 153–331 µJ per 
inference, making them attractive for ultra-low-power but higher-latency applications [28]. Lightweight FPGA 
boards such as the PYNQ-Z1 have been shown to deliver up to 4.54 × 105 inferences/s at only 1.87 W [29], while 
higher-capacity platforms like the Xilinx ZCU102 MPSoC further reduce DNN latency and surpass GPU base-
lines in energy efficiency [30, 31]. Conversely, Nvidia Jetson Orin GPUs achieve sub-millisecond inference and 
throughputs approaching 1 M inferences/s [32, 33], but at 20–60 W power consumption depending on mode [34]. 
These findings underline a clear trade-off: MCUs maximize energy efficiency, FPGAs strike the best balance 
between latency and power, and GPUs provide the highest throughput at significantly higher energy cost. Our 
framework builds on these insights by targeting FPGAs as a practical compromise for real-time HVAC optimiza-
tion, while remaining portable to MCUs or GPUs depending on deployment constraints.

By tightly integrating a random forest surrogate with a season-adaptive genetic algorithm on FPGA, our system 
delivers sub-millisecond inference latency, ensures thermal comfort compliance, and supports scalable optimiza-
tion under dynamic environmental and occupancy conditions. This represents a novel and practical advancement 
in intelligent building control—contributing directly to the goal of decarbonizing the built environment through 
embedded, high-performance HVAC optimization.

While ML-based surrogate models and genetic algorithms (GAs) have been individually applied in building 
energy and HVAC optimization, they have rarely been integrated into a unified, embedded framework, par-
ticularly not within a FastML-system that ensures real-time energy optimisation capability. As summarized in 
Table 1, recent studies typically focus on either ML or GA—often relying on CPU-based simulations—and lack 
real-time or FPGA-based implementations. This gap underscores the novelty of our approach, which unifies ML-
based surrogate modeling and GA-based optimization within an energy-efficient FPGA framework for real-time 
HVAC optimisation in buildings.
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3  Methodology

Real-time HVAC control in buildings requires immediate response to fluctuating energy signals such as occu-
pancy, weather, and internal load changes. Delays in inference or actuation can lead to energy waste or occupant 
discomfort. Conventional CPU- or cloud-based ML pipelines often introduce latency that is incompatible with 
these dynamic conditions. To address this, we integrate fast machine learning (FastML) into our energy optimisa-
tion framework. Implemented via a random forest regressor on FPGA hardware, FastML delivers sub-millisecond 
inference latency and high throughput—enabling the evaluation of thousands of candidate setpoints generated 
by the genetic algorithm in real time. This allows prompt selection of optimal control actions, ensuring timely 
and energy-efficient HVAC operation. By supporting ultra-fast, localized decision-making, FastML enhances the 
responsiveness of smart buildings and directly contributes to emissions reduction and sustainability goals.

3.1  Overview of the FastML-GA framework

The proposed methodology combines fast machine learning with genetic algorithms to optimize energy con-
sumption in buildings by determining HVAC setpoints in real time. The overall system architecture is depicted in 
Fig. 1, and is composed of three key components: 

1.	Surrogate model module (Random forest regressor): A trained multi-output random forest regressor is used to 
approximate the building performance metrics (e.g., electricity consumption, thermal energy use, and thermal 
comfort) for a given set of HVAC setpoints.

2.	Hardware acceleration module (HLS and FPGA): The trained model is exported to synthesizable C++ using 
High-Level Synthesis (HLS) and deployed on FPGA hardware. This enables low-latency, high-throughput 
inference via batched AXI-Stream interfaces.

3.	Genetic algorithm (GA) optimization module: A lightweight GA searches the HVAC setpoint space to mini-
mize energy usage while maintaining thermal comfort. Candidate solutions are evaluated in batches using the 
FPGA-accelerated surrogate model.

Table 1  Related studies on ML, FPGA, and GA in building energy management and HVAC
References Research direction ML/AI method FPGA/GA Application Key contr
[13] Fast ML for BMS FPGA LSTM FPGA Energy prediction 520+ inf/s, low-latency
[35] HVAC control via ANN-MPC ANN + MPC None Energy saving 27–39% energy saved
[36] Smart EMS on FPGA None FPGA Demand response Grid–battery switching
[37] RBFNN + MPC control RBFNN + MPC None HVAC efficiency 15% saved, validated
[38] DRL for HVAC control DRL (multi-agent) None HVAC cost saving 75% saved, scalable
[39] Comfort–energy optimization DDPG + DNN None HVAC control Comfort–energy trade-off
[40] Review of ML in BMS SVM, RF, CNN, RL None Faults, prediction Hybrid ML, explainability
[41] Temp forecasting (multi-zone) LSTM (seq2seq) None Temp prediction Seq2seq, uncertainty-aware
[42] AI anomaly detection review DL, RF, Clustering None Fault detection Dataset, reproducibility
[43] GA-tuned PID on FPGA None FPGA + GA PID control Real-time PID tuning
[44] GA vs PSO for HVAC None GA Setpoint optimization MOGA vs NSGA-II/III
[45] GA-based model validation None GA Fault localization Detects mismatches
[46] GA on FPGA (parallel) None FPGA + GA GA tasks 170,000× speedup
[47] FPGA-based SEMS for microgrid None FPGA Load management Fast SEMS
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3.2  Random forest surrogate model for HVAC prediction

This module operates in coordination with the data processing and genetic algorithm (GA) modules. It learns the 
mapping from HVAC control and environmental inputs to energy and comfort outputs, acting as a fast and reli-
able surrogate model for optimization.

This study utilizes a dataset from the FIDIA sports facility in Rome, Italy, described by  [48]. The facility 
features wooden external walls and roof (9 cm thick), swimming pools, gymnasiums, and multi-purpose courts. 
It employs cogeneration units, solar thermal collectors, gas boilers, and advanced metering systems (Table 2). 

Table 2  FIDIA sports facility characteristics
Attribute Description
Location Rome, Italy
Building 
structure

Wooden external walls and roof (9 cm thick), concrete floor, single-glass windows (thermal transmittance: 5.7 W/m2K, solar 
gain: 0.7)

Geometry Gable roof (Hmin = 3 m, Hmax = 6 m), window surfaces ≈ 70 m2

Facilities Indoor pool (25 m × 16 m, 760 m3), learning pool (16 m × 4 m, 64 m3), gym, fitness room (486 m3), volleyball court 
(8960 m3), outdoor tennis and five-a-side courts

Metering Electricity, thermal, and water metering; co-generation units; solar thermal collectors; gas boilers; PMV sensors; 1-h sampling
Monitoring 
period

72 days, covering occupancy, temperature, humidity, and energy consumption during operational hours (Monday–Friday 
08:00–22:00, Saturday 08:00–18:00, Sunday 10:00–13:00)

Fig. 1  System architecture illustrating the FPGA-accelerated HVAC optimization framework. A random forest-based sur-
rogate model is deployed on the FPGA to enable high-throughput batch evaluation of candidate solutions generated by the 
genetic algorithm
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The dataset, generated through 72 days of high-fidelity HVAC simulation, contains approximately 4320 hourly-
aggregated entries.

The RFR model predicts electricity consumption in kWh from HVAC fans and compressors(Elec_Cons), 
thermal energy consumption in kWh for heating and cooling loads (Therm_Eng_Cons), and PMV (Predicted 
Mean Vote) from environmental and control inputs, while the GA module optimizes HVAC settings to minimize 
energy consumption and maintain thermal comfort. The PMV metric quantifies thermal comfort on a 7-point 
scale ranging from −3 (cold) to +3 (hot), as shown in Table 3, and is widely adopted in HVAC research [49].

Data preprocessing included removing incomplete entries, normalizing features and targets using the Min-
MaxScaler from the scikit-learn Python package, and splitting the dataset into 80% training and 20% 
testing subsets. Output targets were jointly scaled to preserve their relative magnitudes.

The RFR was selected for its robustness to overfitting, capacity to model both linear and nonlinear relation-
ships, and native support for multi-output regression via the MultiOutputRegressor wrapper [50]. Each target 
output is predicted by an ensemble of 20 decision trees with a maximum depth of 6, totaling 60 trees. This con-
figuration balances predictive accuracy with hardware feasibility on FPGA.

Empirical tests showed that model accuracy plateaued beyond 20 trees per output and depth 6, with R2 and 
RMSE metrics stabilizing. Unlike neural networks that typically require quantization for speedup, random forests 
use ensemble averaging and are inherently quantization-free [51]. FPGA synthesis confirmed a linear growth in 
LUTs, flip-flops, BRAMs, and DSP usage with tree count, validating the 60-tree configuration (Fig. 2).

The trained RFR model was evaluated using Root Mean Square Error (RMSE), Mean Absolute Error (MAE), 
and the R2 coefficient of determination. Results showed strong alignment between predictions and actual values 
(Table 4), with high throughput suitable for real-time applications.

Fig. 2  Estimated FPGA 
resource utilization for dif-
ferent numbers of decision 
trees in a 3-output random 
forest model. LUTs and FFs 
are shown on the left y-axis, 
while BRAMs and DSPs are 
plotted on the right y-axis. 
Resource usage scales lin-
early with model complexity

 

PMV value Thermal sensation
+3 Hot
+2 Warm
+1 Slightly warm
0 Neutral
-1 Slightly cool
-2 Cool
-3 Cold

Table 3  PMV thermal com-
fort scale
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Linear regression was evaluated as a baseline model; however, it could not adequately capture the nonlinear 
interactions among HVAC variables such as airflow, supply air temperature, occupancy, and external condi-
tions [52, 53]. Moreover, the wide disparity in target variable magnitudes (e.g., Elec_Cons and PMV in the range 
[−6.4, 2.7] versus Therm_Eng_Cons exceeding 39) introduced fixed-point scaling challenges during FPGA 
deployment, reducing accuracy when using a unified representation [54, 55]. Artificial Neural Networks (ANNs) 
were also considered, but their reliance on large numbers of multiplications and additions requires extensive DSP 
slices and LUT resources, making them far less efficient for lightweight FPGA platforms without aggressive 
quantization or pruning [56]. By contrast, random forests perform only threshold comparisons, minimizing DSP 
usage while remaining robust to seasonal variability and sensor noise [57]. This robustness is further supported 
by recent reviews highlighting sensor reliability and deployment challenges in building control systems [58, 59]. 
For these reasons, random forest was selected as the surrogate model.

For FPGA deployment, all trained decision trees were exported into fixed-format C++ header and source 
files. Each tree was encoded into a custom data structure using static arrays for node features, thresholds, child 
indices, leaf scores, and decision flags. Arrays were padded to 128 nodes to enable uniform indexing and avoid 
out-of-bounds behavior during traversal in C++, as required by Vivado HLS. Trees were grouped into a structure 
of target_trees[N_TARGETS][N_TREES_PER_TARGET]. Normalization constants were exported to 
enable real-time scaling on hardware.

The preprocessed test data was exported as C++ header files for direct simulation and synthesis use. Prediction 
timing was benchmarked on CPU for comparison. Three NumPy arrays—scaled test inputs, RFR predictions, and 
ground-truth labels—were saved for validating inference accuracy between Python and FPGA implementations.

3.2.1  HLS and hardware-accelerated implementation

We implemented a hardware-accelerated random forest regressor (RFR) on a PYNQ-Z1 FPGA to enable real-
time HVAC optimization. As discussed in Sect. 3.2, simpler alternatives such as linear regression and ANNs were 
considered; however, linear regression could not capture the nonlinear HVAC dynamics effectively, while ANN 
models posed significant resource demands and required quantization and pruning, which may reduce model 
accuracy on FPGA deployment. Consequently, random forest was selected as a more practical balance between 
accuracy, robustness, and resource efficiency. The model predicts electricity consumption (kWh), thermal energy 
consumption (kWh), and Predicted Mean Vote (PMV) for thermal comfort assessment. The RFR was trained 
using scikit-learn in Python and subsequently exported to synthesizable C++ code using Vivado High-
Level Synthesis (HLS). For deployment, we mapped 20 decision trees per output to hardware, totaling 60 trees, 
which achieves an optimal balance between inference accuracy and FPGA resource efficiency.

During model export and deployment, we encountered significant challenges due to the differing scales of 
the target variables: Elec_Cons, Therm_Eng_Cons, and PMV. Specifically, Elec_Cons and PMV exhibit 
small magnitudes, with PMV ranging from −6.4 to +2.7, while Therm_Eng_Cons can exceed 39. This dispar-
ity complicated the selection of a unified fixed-point format that could accommodate all targets with sufficient 
precision and dynamic range.

Initially, we adopted a fixed-point representation with 18-bit width and 8-bit integer portion for features and 
thresholds (ap_fixed<18,8>, where the notation ap_fixed<Total,Int> indicates a fixed-point num-
ber with Total total bits and Int integer bits, with the remaining bits allocated to fractional precision, and 

Table 4  Performance metrics of the RFR surrogate model
Target variable RMSE MAE R2

Elec_Cons 0.0027 0.0004 0.9826
Therm_Eng_Cons 1.5683 0.9280 0.9714
PMV 0.2330 0.1791 0.9673
RMSE and MAE are reported in kWh for Elec_Cons and Therm_Eng_Cons, and in PMV units for thermal comfort (PMV)
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18-bit width with 12-bit integer portion for scores (ap_fixed<18,12>). While this format provided the higher 
fractional resolution necessary for accurately representing Therm_Eng_Cons, it resulted in increased FPGA 
resource consumption.

To address this limitation, we applied Min-Max normalization to both input features and output targets during 
training, and implemented the corresponding normalization process in hardware. This transformation aligned 
the ranges of all targets, enabling the adoption of a more resource-efficient configuration with 16-bit width and 
6-bit integer portion (ap_fixed<16,6>) for all data types. This reduced-precision setup preserved high predic-
tion accuracy across all outputs, including the previously problematic Therm_Eng_Cons, while significantly 
decreasing hardware resource utilization.

All decision trees exported from Python were preprocessed with Min-Max normalization, and hardware mod-
ules were designed to apply normalization to input features before inference and to de-normalize outputs after 
prediction. This approach ensured full compatibility with fixed-point arithmetic on FPGA while maintaining high 
inference fidelity. For targets with larger dynamic ranges—such as Therm_Eng_Cons–this precise normaliza-
tion was critical to avoid quantization errors. The normalized values allow the 16-bit fixed-point representation 
to retain sufficient fractional precision and dynamic range for real-time embedded inference.

The normalization and de-normalization processes are mathematically defined as:

 
	

Xnorm = X − Xmin

Xrange

Y = Ynorm · Yrange + Ymin

� (1)

The scaling constants Xmin, Xrange, Ymin, and Yrange were extracted from the MinMaxScaler and stored in a 
hardware-accessible header file. The specific values are:

	 Xmin = [0.0, 21.5072, −3.9189, 1.5, 4.8266] � (2)

	 Xrange = [11.0, 78.4928, 43.9189, 2.2842, 30.0955] � (3)

	 Ymin = [0.0349, 0.01, −6.4031] � (4)

	 Yrange = [0.0547, 39.4573, 9.1423] � (5)

The complete hardware inference pipeline is optimized using several HLS directives and modular design strate-
gies. Each decision tree structure—comprising feature indices, thresholds, child node indices, and leaf values—is 
exported into static C++ arrays, which are used to reconstruct the model on FPGA.

During Vivado HLS synthesis, the core inference function is optimized using the following directives: (i) HLS 
PIPELINE II=1 enables full pipelining to process one input sample per clock cycle; (ii) HLS ARRAY_PAR-
TITION complete ensures simultaneous access to all tree nodes and feature arrays for parallel tree evalu-
ation; (iii) HLS UNROLL unrolls tree evaluation loops to exploit the parallelism inherent in the FPGA fabric; 
(iv) HLS RESOURCE core=AddSub_DSP maps arithmetic operations to DSP slices, reducing LUT usage 
and improving timing; and (v) HLS DATAFLOW enables concurrent execution of different pipeline stages for 
throughput maximization.

To support high-speed data transfers, the system employs AXI-Stream interfaces combined with Direct Mem-
ory Access (DMA). This configuration eliminates CPU bottlenecks during inference and enables high-throughput 
batch predictions. Unlike AXI-Lite, which is suitable only for low-frequency transactions, AXI-Stream provides 
sufficient bandwidth to handle thousands of samples efficiently.

The tree traversal algorithm is implemented using a single-pass, loop-based structure to ensure bounded latency 
and avoid recursion. The procedure is detailed in Algorithm 1: 
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Algorithm 1  Hardware-optimized tree traversal

Table 5 summarizes the FPGA resource utilization after synthesis. The efficient use of normalization and fixed-
point arithmetic enabled substantial resource savings, allowing the model to be deployed on low-power FPGAs 
with sufficient headroom for additional logic.

This FPGA-based implementation of random forest regression delivers sub-millisecond inference latency and high 
throughput, supporting accurate prediction of HVAC control targets in real-time with limited hardware resources. 
The model’s combination of robustness, efficiency, and low latency makes it ideally suited as a surrogate for genetic 
optimization in energy-efficient HVAC systems. The successful deployment demonstrates the viability of machine 
learning acceleration on resource-constrained embedded platforms for real-time building automation applications.

3.3  Genetic algorithm optimization

A custom seasonal genetic algorithm (GA) was developed to optimize the setpoints of a Heating, ventilation, and 
air conditioning (HVAC) system, leveraging predictions from a random forest (RF) surrogate model accelerated 
by a field-programmable gate array (FPGA). The FPGA enhances the speed of RF predictions, while the GA runs 
on the embedded ARM Cortex-A9 CPUs of the PYNQ-Z1 processing system (PS), determining optimal hourly 
air flow rates and temperatures across seasons. The optimization targets operational hours from 08:00 to 17:00 
(H = 10 h), adapting to seasonal energy patterns and comfort requirements for heating and cooling in commer-
cial buildings. The optimization process is illustrated in Fig. 3, which outlines the workflow from data initializa-
tion to result generation, highlighting FPGA setup, seasonal optimization, and GA operations.

Table 5  FPGA resource utilization summary
Resource type BRAM_18K DSP48E FF LUT URAM
DSP – 3 – – –
Expression – – 0 1108 –
FIFO 0 – 40 240 –
Instance – 3 0 270 –
Memory 90 – 0 0 –
Multiplexer – – – 316 –
Register 0 – 4868 1440 –
Total 90 6 4908 3374 0
Available 280 220 106,400 53,200 0
Utilization (%) 32.1 2.7 4.6 6.3 0

1 3

11Page 11 of 31     25 



Neural Computing and Applications

https://doi.org/10.1007/s00521-025-11737-x

3.3.1  Genetic algorithm optimization for FPGA HVAC

The optimization is formulated as a constrained, multi-objective minimization task, balancing electrical consumption, 
thermal energy (heating or cooling), thermal comfort, and setpoint smoothness. The decision variables form a vector

 
	 x = {f1, t1, f2, t2, . . . , fH , tH} ∈ R2 H

where fi and ti are the air flow rate (m3/s) and air temperature (◦C) for hour i, respectively. The season-specific 
objective function is:

 
 
	

min
x

fs(x) = wE,s

H∑
i=1

Ei + wT,s

H∑
i=1

T s
i + 100

H∑
i=1

ϕ(PMVi) + 5S(x)

− δs,summer · 0.1
H∑

i=1
max(30 − ti, 0)

s.t. fi ∈ [fmin,s, fmax,s], ti ∈ [tmin,s, tmax,s] if occupied
fi ∈ [fmin,s − 0.3, fmin,s], ti ∈ [tmin,s − 2, tmin,s] if unoccupied

� (6)

 
where Ei is electrical consumption (kWh), T s

i  is season-specific thermal energy (kWh), ϕ(PMVi) is the comfort 
penalty, S(x) is the smoothness penalty, and δs,summer is 1 for summer and 0 otherwise. The weights are:

 
	 wE,s, wT,s =




0.7, 0.3 (summer)
0.4, 0.6 (winter)
0.5, 0.5 (spring/autumn)

 
The summer efficiency bonus reduces cooling load for lower air temperatures, reflecting practical HVAC opera-
tion where cooler supply air decreases compressor demand [14].

3.3.2  Season-adaptive energy calculation

The thermal energy term T s
i  adapts to seasonal HVAC modes, accounting for heating versus cooling:

Summer season (June–August): In summer, thermal energy is typically negative, representing cooling load. 
The absolute value is used to quantify cooling energy, as heating is negligible in temperate climates [60]. The 
objective function prioritizes electrical consumption (fans, compressors):

 
	

T summer
i = |thermali| (cooling energy)

fsummer(x) = 0.7
H∑

i=1
Ei + 0.3

H∑
i=1

T summer
i + 100

H∑
i=1

ϕ(PMVi) + 5S(x)

− 0.1
H∑

i=1
max(30 − ti, 0)

� (7)

 
Winter season (December–February): Heating dominates, with positive thermal energy values. The objective 
emphasizes thermal energy:

 
	

T winter
i = max(thermali, 0) (heating energy)

fwinter(x) = 0.4
H∑

i=1
Ei + 0.6

H∑
i=1

T winter
i + 100

H∑
i=1

ϕ(PMVi) + 5S(x)

� (8)
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Fig. 3  Flowchart of the FastML-Based HVAC GA Optimization System, showing the hybrid PS–PL deployment: the GA 
executes on the PS (ARM Cortex-A9), while the RF surrogate model runs on the FPGA (PL) for batched fitness evaluations
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Spring/Autumn seasons (March–May, September–November): A balanced approach handles mixed heating/
cooling:

 
	

T
spring/autumn
i = |thermali| (mixed modes)

fspring/autumn(x) = 0.5
H∑

i=1
Ei + 0.5

H∑
i=1

T
spring/autumn
i + 100

H∑
i=1

ϕ(PMVi) + 5S(x)

� (9)

3.3.3  Season-specific operational constraints

Operational bounds, informed by ASHRAE Standard 55-2020 [14, 15], adapt to seasonal climatic conditions 
(Table 6):

For unoccupied periods, bounds are tightened to reduce energy use while maintaining minimal ventilation:

 
	 funoccupied ∈ [fmin,s − 0.3, fmin,s] � (10)

 
	 tunoccupied ∈ [tmin,s − 2, tmin,s] � (11)

These constraints ensure compliance with thermal comfort standards and energy efficiency goals, adapting to 
occupancy patterns detected in the input dataset.

3.3.4  Enhanced comfort and smoothness penalties

Thermal comfort is enforced using the Predicted Mean Vote (PMV) model, with a comfort range of [−0.5, 0.5] 
per ASHRAE Standard 55-2020 [14], corresponding to less than 10% predicted percentage of dissatisfied occu-
pants. The comfort penalty counts violations:

	 ϕ(PMVi) = 100 · 1{|P MVi|>0.5}� (12)

The high weight (100) prioritizes occupant satisfaction, penalizing any hour outside the comfort zone to reflect 
practical building management priorities [61]. The binary penalty ensures robust comfort enforcement over mar-
ginal PMV improvements within the acceptable range.

The smoothness penalty promotes stable HVAC operation, reducing wear on equipment:

 
	

S(x) = 5
[

H∑
i=2

|fi − fi−1| +
H∑

i=2
|ti − ti−1|

]
� (13)

This penalty, weighted at 5, balances energy savings with operational stability, preventing abrupt setpoint changes 
that could stress HVAC components.

Table 6  Season-specific HVAC operational bounds
Season Months Air flow rate (m3/s) Air temperature (◦C) Energy focus
Winter Dec, Jan, Feb [1.2, 2.7] [20, 25] Heating (60%)
Spring Mar, Apr, May [1.3, 2.7] [18, 24] Balanced (50/50)
Summer Jun, Jul, Aug [1.5, 2.7] [16, 24] Cooling (70%)
Autumn Sep, Oct, Nov [1.4, 2.5] [18, 26] Balanced (50/50)
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3.3.5  Enhanced genetic algorithm parameters

The GA uses a robust configuration to ensure convergence to high-quality solutions, with parameters tuned for 
the HVAC optimization problem (Table 7):

The population size (50) and generations (50) are larger than typical GA settings (e.g., 20–30 individuals, 20–30 genera-
tions [62]), enhancing exploration of the 20-dimensional search space. The elite ratio (30%) preserves top solutions, while 
crossover (0.8) and mutation (0.2) balance exploitation and exploration. The Gaussian mutation with σ = 0.1 introduces 
controlled perturbations, ensuring fine-tuned adjustments within seasonal bounds.  

Algorithm 2  Seasonal FPGA-accelerated genetic algorithm for HVAC optimization based on PS–PL

Parameter Value
Population size 50 individuals
Number of generations 50
Elite ratio 30% (15 individuals)
Crossover rate 0.8 (uniform crossover)
Mutation rate 0.2
Mutation distribution Gaussian, σ = 0.1
PMV penalty weight 100
Smoothness weight 5
Working hours 08:00–17:00 (10 h)
Decision variables 20 (10 h × 2 setpoints)

Table 7  Genetic algorithm 
parameters
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4  Results and discussion

The FPGA-accelerated genetic algorithm optimization was applied across all four seasons using 18 valid days per 
season from the HVAC dataset. The system demonstrated consistent performance improvements across different 
seasonal conditions, with electricity savings ranging from 49.6% to 56.4% and significant thermal energy reduc-
tions in heating and cooling dominated periods.

4.1  Validation of hardware prediction accuracy

Figure 4 compares the mean predicted values from the Python-based random forest model (scikit-learn) and our 
hardware-accelerated FastRFR framework deployed on FPGA. The near-perfect alignment of both curves across 
200 test samples demonstrates excellent consistency between CPU and FPGA predictions, validating the correct-
ness of the model export process and fixed-point quantization. The “mean predicted value” represents the average 
of the model’s three outputs: electricity consumption, thermal energy use, and PMV, for easier interpretability.

In addition to high accuracy, our FastRFR framework achieved a peak inference throughput of 1,671,008 
predictions/sec on the PYNQ-Z1 platform using ap_fixed<16,6>, with an on-chip power consumption of 
1.821 W and an energy efficiency of 1.089 µJ/sample. This significantly outperforms prior work  [57], which 
reported 490,196 predictions/sec, 1.824 W power, and 3.721 µJ/sample on the same hardware. FastRFR’s supe-
rior performance stems from aggressive HLS optimizations, including initiation interval (II) = 1 pipelining, full 
array partitioning, stream-based dataflow, and DSP-accelerated fixed-point arithmetic. These choices minimize 
latency and resource overhead—unlike the DMA-controlled, 5-stage Decision Tree Processor (DTP) architecture 
used in that study.

The performance gap can be attributed to architectural differences. The DTP design incorporates a finite state 
machine (FSM) in the DECODE stage and shared memory controllers (e.g., BRAM in the MEM ACCESS stage), 
which introduce control complexity and inference latency. FSMs inherently incur overhead due to clock-driven 
state transitions, increasing power consumption and delay [63, 64]. Moreover, RAM-based FSM implementa-
tions often suffer from performance limitations due to memory decoding and access latency [65]. While the DTP 
pipeline reports a two-cycle BRAM access latency, per-decision latency is not specified. Nonetheless, the use 

Fig. 4  Comparison of mean predicted values from the Python-based random forest (scikit-learn) and the FPGA-deployed 
FastRFR model. The close alignment across 200 test samples confirms high prediction consistency and accurate model 
export. Mean values are averaged over electricity, thermal energy, and PMV outputs
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of FSM-based stage control and memory arbitration adds architectural overhead—particularly in streaming and 
parallel processing scenarios.

These results underscore not only the functional correctness of the exported FastRFR model, but also its 
architectural efficiency achieving higher throughput and energy savings through a lean, stateless, and dataflow-
optimized FPGA implementation (see Fig. 5).

4.2  Sensitivity analysis

To evaluate the robustness of the proposed optimization framework, we conducted a sensitivity analysis by vary-
ing key GA parameters, including population size, mutation rate, and the PMV penalty weight in the objective 
function. Table 8 reports the detailed results, and Fig. 6 provides a heatmap visualization. The results show that 
the framework consistently achieves electricity savings in the range of 41–53% across different GA configura-
tions, while maintaining 7–9 comfort hours within the accepted thermal comfort range. Savings remain close to 
50% even under extreme parameter variations, confirming that the optimization performance is robust and not 
overly sensitive to GA parameter tuning.

In terms of scalability, although experiments were conducted on the PYNQ-Z1 board, which is among the 
smallest FPGA platforms with limited resources, the design fit comfortably and consumed very low resources due 
to the optimizations applied in the random forest accelerator. On higher-capacity industrial FPGAs (e.g., Xilinx 
Virtex UltraScale or Intel Stratix families), the framework can scale efficiently by instantiating multiple parallel 
inference engines and supporting larger GA populations, thereby improving throughput and solution quality. To 
further validate adaptability, simulations were conducted under high-load and edge-case conditions, including 
occupancy spikes, heat waves, and cold snaps across different seasons. Results demonstrated that the framework 
consistently maintained stable optimization, ensuring PMV remained within the accepted thermal comfort band 

Table 8  Sensitivity analysis of GA parameters on electricity savings and comfort hours
Pop. size Mutation rate PMV weight Savings (%) Comfort hours
10 0.05 50 41.3 7
20 0.05 50 53.2 9
40 0.05 50 47.3 8
10 0.10 100 47.3 8
20 0.10 100 53.2 9
40 0.10 100 41.3 7
10 0.20 200 53.2 9
20 0.20 200 47.2 8
40 0.20 200 53.2 9

Fig. 5  Architecture of the FastRFR framework for random forest acceleration. The design integrates several HLS optimiza-
tion directives: Pipelined (II=1) = loop pipelining with initiation interval of one cycle; Array Partitioning = dividing arrays 
into smaller memories for parallel access; Cyclic Partitioning = distributing array elements across memory banks cyclically; 
DSP-Accelerated Arithmetic = mapping arithmetic operations to dedicated DSP slices
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and achieving significant reductions in both electricity and thermal energy consumption compared to baseline 
operation. These findings confirm the resilience of the proposed system under demanding operating conditions.

Although the experiments in this work were conducted using a simulation-derived dataset, the proposed frame-
work is readily adaptable to real-time deployment. In practice, live sensor streams (e.g., temperature, humidity, 
occupancy, CO2, and energy metering) can be fed directly into the ARM processing system (PS) of the PYNQ-
Z1 or a higher-capacity FPGA platform. These signals may be interfaced via standard IoT protocols or through a 
middleware layer such as a Raspberry Pi, as demonstrated by Mshragi et al. [29] for real-time smart meter data 
preprocessing and FPGA-based energy prediction in building management systems. The FPGA-accelerated ran-
dom forest then processes incoming data in real time to predict energy consumption and comfort indices, while 
the genetic algorithm running on the PS evaluates and selects optimal HVAC setpoints. The resulting setpoints 
are transmitted to the building controllers for actuation, thereby completing the loop from acquisition to predic-
tion, optimization, and control.

In our experiments, the optimization was performed with an hourly granularity, which aligns with practical 
building control horizons and minimizes unnecessary switching. However, due to the high inference through-
put of the FPGA implementation (>1.6M predictions/s), the framework can also support finer resolutions (e.g., 
15 min) without computational bottlenecks. This flexibility enables the system to respond effectively to rapid 
variations in occupancy or environmental conditions. The proposed framework incorporates several mechanisms 
for real-time robustness. First, operating on hourly windows (08:00–18:00) inherently smooths high-frequency 

Fig. 6  Sensitivity analysis of GA parameters (population size, mutation rate, PMV weight) on electricity savings. Results 
show consistently high savings across configurations, confirming the robustness of the optimization framework
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fluctuations and noise. Second, error handling and data validation are integrated into the pipeline: missing or 
corrupted records are skipped, and safe fallback values are returned in case of FPGA prediction errors. These 
mechanisms allow the optimizer to continue functioning under imperfect data conditions. For deployment with 
live sensors, the same data interface used for simulation can be connected to real-time measurements, with 
additional filtering and anomaly detection modules incorporated if required. Finally, because the framework 
is modular—separating prediction (random forest acceleration), optimization (genetic algorithm), and control 
into independent components with standardized input–output interfaces—it can be integrated with commercial 
BMS platforms. In this way, it can be deployed as an edge-level optimization module that operates alongside 
existing building control systems rather than replacing them, thereby facilitating practical integration into legacy 
infrastructure.

Although our framework was demonstrated on a single-zone HVAC system, it is readily extensible to multi-
zone scenarios due to its modular design and low FPGA resource utilization (32.1% BRAM, 2.7% DSP, 6.3% 
LUT). The random forest accelerator, implemented as an overlay on the PYNQ-Z1 development board (which 
integrates a Xilinx Zynq-7020 SoC), currently processes five input features (occupancy, relative humidity, room 
temperature, air flow rate, and supply air temperature) using AXI-Stream DMA and HLS-optimized parallel 
inference in fixed-point arithmetic (ap_fixed<16,6>). For a four-zone configuration, this input expands to 20 
features, which can be handled by replicating inference cores or batching inputs without requiring a redesign of 
the architecture. Given the Zynq-7020’s available resources (≈ 53k LUTs, 220 DSPs), the estimated utilization 
remains well within capacity when scaled to four zones, particularly with quantization optimizations, thereby 
preserving sub-millisecond inference latency. The GA, which currently optimizes 20 decision variables per zone 
(temperature and airflow setpoints), naturally scales to higher dimensions (e.g., 80 variables for four zones) by 
increasing the population size, as validated in our sensitivity analysis. Inter-zone dependencies can be incorpo-
rated into the fitness function through thermal coupling terms, ensuring balanced optimization of comfort and 
energy across zones. Finally, hardware extensions such as motorized dampers for zone airflow control and wire-
less sensors for real-time data collection can be seamlessly integrated via the existing GPIO, UART, or Ethernet 
interfaces. These characteristics confirm that the proposed framework can be adapted to multi-zone HVAC sys-
tems in large buildings, further enhancing its generality and practical applicability. Moreover, future extensions 
could incorporate additional contextual factors that strongly influence HVAC performance and occupant comfort. 
For example, solar radiation data would enable the optimizer to anticipate passive heat gains and adjust cooling 
loads accordingly. Dynamic energy pricing signals could be integrated to shift demand to lower-cost periods 
without sacrificing comfort. Similarly, building usage patterns (e.g., occupancy schedules or equipment usage) 
provide valuable prior knowledge for constraining optimization decisions and reducing unnecessary setpoint 
changes. In large public or commercial buildings, socio-cultural comfort factors (such as regional adaptive com-
fort expectations, clothing habits, or varying comfort ranges across different occupant groups) could be incorpo-
rated into the fitness function to better align energy savings with human well-being.

4.3  Seasonal performance overview

Figure 7 presents a comprehensive four-panel analysis of the seasonal HVAC optimization performance. The 
top-left panel demonstrates remarkably consistent electricity consumption reductions across all seasons, with 
winter achieving 51.2% savings, spring 50.0%, summer 49.6%, and autumn 51.7%. This consistency validates 
the robustness of the genetic algorithm approach regardless of seasonal variations in environmental conditions 
and operational requirements.

The top-right panel illustrates thermal energy reduction patterns, where seasonal differences become pro-
nounced due to varying heating and cooling demands. Winter demonstrates the highest absolute thermal energy 
savings at 150.3 kWh, reflecting the substantial heating loads characteristic of cold weather operations. Spring 
follows with 100.9 kWh savings, indicating moderate thermal requirements during transitional weather. Autumn 
achieves 74.8 kWh savings as buildings transition from cooling to heating modes. Notably, summer shows "N/A" 

1 3

19Page 19 of 31     25 



Neural Computing and Applications

https://doi.org/10.1007/s00521-025-11737-x

for thermal savings because the dataset analysis revealed negligible thermal energy consumption during peak 
summer periods, where HVAC systems operate almost exclusively in cooling mode with minimal thermal energy 
requirements.

The bottom-left panel reveals significant variations in comfort hour improvements across seasons. Summer 
optimization achieved the most dramatic enhancement with 6.7 additional comfort hours, demonstrating the algo-
rithm’s effectiveness in managing challenging high-temperature conditions where baseline systems frequently 
failed to maintain acceptable PMV levels. Autumn follows with 5.2 additional comfort hours, spring with 3.9 h, 
and winter with 0.7 h. The modest winter improvement reflects the inherently better baseline comfort perfor-
mance during heating-dominated periods, where thermal management is generally more predictable than cooling 
operations.

The bottom-right radar chart provides a normalized multi-dimensional performance comparison across all 
optimization objectives. Each axis represents a different performance metric scaled from 0 to 1, where values 
closer to the perimeter indicate superior performance. The electricity savings axis shows all seasons performing 
excellently with values near 1.0, confirming consistent energy efficiency gains. The thermal savings axis clearly 
distinguishes heating-dominated seasons (winter and autumn) from cooling-dominated periods (summer show-
ing minimal values). The comfort improvement axis highlights summer’s exceptional performance in addressing 
thermal discomfort challenges. The radar visualization reveals that autumn and spring achieve the most balanced 

Fig. 7  Seasonal HVAC optimization performance comparison: (Top-left) Electricity consumption reduction showing consis-
tent 49.6−51.7% savings across seasons; (Top-right) Thermal energy reduction with highest savings in winter (150.3 kWh) 
and summer marked N/A due to minimal thermal energy use; (Bottom-left) Comfort hour improvements ranging from 0.7 
(winter) to 6.7 (summer); (Bottom-right) Normalized radar chart comparing multi-dimensional performance with autumn 
and spring showing most balanced profiles
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performance profiles, excelling across multiple dimensions simultaneously, while winter and summer show more 
specialized optimization characteristics aligned with their dominant thermal loads.

4.4  Best day hourly performance analysis

Figure 8 presents the hourly performance dynamics for the best performing day in each season, illustrating how 
optimization strategies adapt to different temporal and seasonal patterns. Each seasonal subplot displays electric-
ity consumption (solid lines), PMV comfort levels (dashed lines), and their corresponding optimization trajecto-
ries throughout the 10-h operational period from 08:00 to 17:00.

Winter’s best day (M01D05, 55.9% savings) demonstrates dramatic morning energy reductions where electric-
ity consumption drops from 0.088 kWh to 0.039 kWh during peak heating startup periods (08:00–10:00). The 
PMV profile shows successful comfort maintenance with optimized values consistently within the acceptable 
range (−0.5 to 0.5), while baseline conditions exhibit excessive cooling sensations below −0.5 during morning 
hours. The optimization achieves this through strategic reduction of air flow rates and temperature adjustments 
that minimize heat loss while preserving thermal comfort.

Spring’s best day (M05D03, 56.2% savings) exhibits the most stable optimization performance with smooth 
energy transitions and exceptional comfort control. The baseline PMV values consistently exceed 0.5 (indicating 
warm discomfort), while optimization maintains perfect comfort throughout all operational hours. The electricity 
profile shows consistent reduction from approximately 0.089 kWh to 0.039 kWh, demonstrating the algorithm’s 
ability to maintain steady performance during transitional weather conditions with mixed heating and cooling 
requirements.

Fig. 8  Best day performance by season (hourly analysis): Winter (M01D05), Spring (M05D03), Summer (M06D06), and 
Autumn (M09D04) showing electricity consumption, PMV comfort levels, and optimization effectiveness throughout 
08:00–17:00 operational periods. Each plot demonstrates season-specific optimization characteristics with consistent energy 
savings and improved thermal comfort management
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Summer’s best day (M06D06, 56.4% savings) focuses primarily on electrical consumption management due to 
minimal thermal energy requirements. The most significant improvements occur during peak thermal stress peri-
ods (12:00–16:00) where baseline PMV values exceed 1.0 (indicating hot discomfort), while optimization suc-
cessfully maintains comfortable conditions around −0.25. The consistent electrical consumption reduction from 
0.089 kWh to approximately 0.039 kWh throughout the day demonstrates effective cooling load management.

Autumn’s best day (M09D04, 56.2% savings) shows balanced optimization across both energy dimensions with smooth 
PMV transitions. The algorithm effectively manages the transition from daytime cooling needs to evening heating require-
ments, maintaining comfort while achieving substantial energy savings. The PMV profile demonstrates sophisticated 
thermal control with optimized values remaining stable around −0.25 while baseline conditions show significant variation.

4.5  Individual seasonal trade-off analysis

The individual seasonal 3D Pareto analyses provide detailed visualization of the multi-objective optimization 
trade-offs achieved in each season, revealing distinct seasonal characteristics and optimization patterns.

4.5.1  Winter season analysis

Figure 9 illustrates winter optimization results with the best day (M01D05) achieving 55.9% electricity savings 
and substantial thermal energy reductions from 248.21 kWh to 125.91 kWh. The baseline points (red circles) 

Fig. 9  Winter season: 3D 
energy-comfort trade-offs 
showing optimization from 
high thermal energy baseline 
(248.21 kWh) to efficient 
operation (125.91 kWh) with 
best day M01D05 achieving 
55.9% electricity savings 
and maintaining 9/8 comfort 
hours
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cluster in high thermal energy regions (15–30 kWh/10 h) with poor comfort performance, while optimized points 
(red circles) concentrate in the efficient zone with thermal consumption below 10 kWh/10 h. The clear optimiza-
tion path from baseline representative (red square) to optimal representative (black star) demonstrates the algo-
rithm’s capability to navigate complex winter heating requirements while maintaining comfort constraints. The 
tight clustering of optimized points indicates consistent performance across different winter operating conditions.

4.5.2  Spring season analysis

Figure 10 demonstrates spring optimization characteristics with best day (M05D03) achieving 56.2% electricity 
savings and thermal reduction from 66.95 kWh to 1.99 kWh. The spring optimization shows excellent clustering 
of optimized points (green squares) in the low-energy, high-comfort region. The Pareto front analysis reveals 
superior convergence with optimized solutions forming a distinct cluster separated from baseline performance. 
The optimization path clearly indicates the algorithm’s success in managing transitional weather requirements 
while achieving perfect comfort (10/10 h) compared to poor baseline performance (0/10 h).

4.5.3  Summer season analysis

Figure 11 presents unique summer optimization characteristics with best day (M06D06) achieving 56.4% elec-
tricity savings. The thermal energy dimension shows minimal values (near zero) reflecting cooling-dominated 

Fig. 10  Spring season: 3D 
energy-comfort trade-offs 
demonstrating excellent 
optimization clustering with 
best day M05D03 achiev-
ing 56.2% electricity sav-
ings, thermal reduction from 
66.95 kWh to 1.99 kWh, and 
perfect comfort performance 
(10/10 h)
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operations where thermal energy consumption is negligible. Optimized points (orange triangles) cluster in the 
minimal thermal energy region while achieving significant comfort improvements from 0.0% to 56.4% comfort 
hours. The baseline thermal consumption shows "N/A" indicating virtually no thermal energy requirements dur-
ing summer cooling operations, validating the seasonal optimization strategy focus on electrical consumption.

4.5.4  Autumn season analysis

Figure 12 reveals autumn optimization results with best day (M09D04) achieving 56.2% electricity savings and 
thermal reduction from 31.23 kWh to 1.91 kWh. The autumn optimization demonstrates balanced performance 
across energy dimensions with optimized points (red diamonds) achieving superior clustering in the efficient 
zone. The 93.9% thermal savings and 90.1% PMV improvement indicate excellent optimization effectiveness 
during transitional autumn conditions. The clear separation between baseline and optimized regions confirms the 
algorithm’s adaptability to mixed heating/cooling requirements.

4.6  Multi-seasonal comparative analysis

Figure 13 provides a comprehensive view of all seasonal optimization results in a single 3D space, enabling direct 
comparison of seasonal characteristics and optimization effectiveness. The multi-seasonal clustering reveals dis-
tinct patterns: winter solutions (red circles) occupy high thermal energy regions (20–25 kWh/10 h) reflecting 

Fig. 11  Summer season: 3D 
energy-comfort trade-offs 
showing cooling-dominated 
optimization with minimal 
thermal energy (N/A base-
line) and best day M06D06 
achieving 56.4% electricity 
savings with dramatic com-
fort improvement from 0% to 
56.4% comfort hours
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heating requirements, summer solutions (orange triangles) cluster near zero thermal energy confirming cool-
ing-dominated operations, while spring (green squares) and autumn (red diamonds) show intermediate thermal 
energy levels consistent with mixed heating/cooling demands.

The comparative analysis demonstrates the genetic algorithm’s remarkable adaptability to diverse seasonal 
conditions while maintaining consistent electricity savings performance across all seasons. Each season forms 
distinct clusters in the 3D space, validating the seasonal optimization strategy and confirming that the algorithm 
successfully identifies season-appropriate solutions. The comfort dimension improvements are evident across all 
seasons, with each achieving substantial PMV enhancements compared to baseline operations.

This comprehensive seasonal analysis validates the effectiveness of the FPGA-accelerated genetic algorithm 
approach for HVAC optimization across diverse operating conditions. The system demonstrates both consistency 
in electricity savings (49.6−51.7%) and remarkable adaptability to seasonal requirements. Thermal energy opti-
mization shows appropriate seasonal variation, with substantial savings in heating-dominated periods and mini-
mal consumption during cooling-dominated summer operations. Comfort improvements are significant across 
all seasons, with particularly impressive gains during challenging summer conditions. The 3D Pareto analyses 
confirm the algorithm’s ability to navigate complex multi-objective trade-offs while maintaining operational con-
straints and achieving superior performance compared to baseline operations.

Fig. 12  Autumn season: 3D 
energy-comfort trade-offs 
showing balanced optimiza-
tion with best day M09D04 
achieving 56.2% electric-
ity savings, 93.9% thermal 
savings, and 90.1% PMV 
improvement during transi-
tional weather conditions
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5  Conclusion

This paper introduced FastML-GA, a novel FPGA-accelerated framework designed to optimize energy and 
HVAC systems by integrating embedded machine learning with a genetic algorithm. Experimental evaluations 
across multiple seasons demonstrated significant and consistent electricity savings, with an average reduction of 
46.8% and up to 56% on the best-performing days, contributing to building decarbonization trajectories without 
compromising comfort, highlighting the framework’s practical effectiveness.

The novelty of FastML-GA lies in its hybrid PS–PL architecture, where the random forest surrogate model is 
implemented as a hardware accelerator on the FPGA’s programmable logic (PL), while the lightweight genetic 
algorithm executes on the embedded ARM Cortex-A9 processors of the processing system (PS). This integra-
tion achieves inference throughput rates surpassing 1.67 million predictions per second and enables real-time, 
fine-grained optimization at the edge, effectively addressing the latency and computational efficiency constraints 
typical of embedded building management systems.

The importance of this research extends beyond technical novelty, offering a substantial practical contribu-
tion to the field of intelligent building management. By significantly improving energy efficiency and occupant 
comfort simultaneously, the framework addresses key sustainability and operational challenges facing contem-
porary buildings and aligns with decarbonization targets through reduced operational energy use. Consequently, 
FastML-GA represents a meaningful advancement towards more responsive, adaptive, and energy-conscious 
building environments that balance occupant well-being with environmental conditions.

The FastML-GA framework demonstrates significant potential for enhancing HVAC efficiency in buildings 
through embedded machine learning and optimization. The FPGA-accelerated random forest regressor (RFR) 

Fig. 13  Multi-seasonal 3D 
Pareto analysis: Comprehen-
sive comparison showing 
distinct seasonal clustering 
with winter (red) in high ther-
mal zones, summer (orange) 
near zero thermal energy, and 
spring/autumn (green/red) in 
intermediate regions, demon-
strating algorithm adaptabil-
ity across diverse operating 
conditions
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achieves sub-millisecond inference latency supporting up to 1.67 million predictions per second—enabling rapid 
adaptation to dynamic environmental and occupancy conditions.

The current evaluation relies on datasets that provide controlled benchmarking. However, real-time build-
ing deployments introduce challenges such as sensor noise, occupant behavior variability, and environmental 
uncertainties. To address sensor noise—which impacted Therm_Eng_Cons accuracy—we implemented hard-
ware-based Min-Max normalization, allowing a reduction in fixed-point precision from ap_fixed<18,12> 
to ap_fixed<16,6> without sacrificing accuracy. This normalization mitigates sensor scale mismatches and 
target range disparities, enabling efficient inference that supports sustained energy savings in practice.

In practical situations, implementing aggressive lower setpoints during unoccupied times is difficult due to 
system delays and sensor uncertainties. However, FastML-GA facilitates quick adaptations to changes in occu-
pancy and the environment, making energy-saving strategies reactive and more efficacious thus reducing avoid-
able energy use consistent with these targets. Furthermore, the ensemble nature of the random forest regression 
(RFR) boosts robustness to variability and noise, outperforming CPU-based reinforcement learning methods by 
enabling rapid, low-power, edge-based control that prioritizes both comfort and energy performance.

Dynamic building characteristics such as weather variation, equipment degradation, and maintenance events 
need to be considered to improve long-term adaptability. Evaluating deployment on diverse embedded platforms 
will help characterize trade-offs between energy efficiency, prediction speed, and system complexity. Expanding 
the surrogate model to include contextual features (e.g., occupancy schedules or user preferences) may further 
enhance predictive accuracy and system responsiveness in service of occupant comfort and carbon reduction.

5.1  Limitations and future work

Our hybrid FastML-GA FPGA implementation employs a fixed random forest regressor; however, model retrain-
ing can be performed offline and redeployed to the FPGA as updated parameters or bitstreams. This approach 
would allow the system to adapt over time to model drift caused by evolving occupancy patterns, equipment 
degradation, or changing environmental conditions while remaining consistent with decarbonization ambitions 
and occupant well-being. FastML-GA could be enhanced through integration with external predictive models, 
such as occupancy forecasting systems or weather prediction APIs, to further improve control robustness and 
energy savings without compromising comfort. In real deployments, sensors may drift, fail, or provide noisy 
readings; therefore, future extensions should incorporate redundancy (e.g., multiple sensors per key variable), 
anomaly detection, or fallback to safe default control strategies to ensure fault tolerance and uninterrupted com-
fort delivery. Since FastML-GA operates at the edge, sensitive data is processed locally, reducing exposure risks 
associated with transmission to centralized clouds. Nevertheless, cybersecurity and privacy remain critical, par-
ticularly in protecting FPGA bitstreams, control data, and sensitive occupancy information; secure data handling, 
authentication protocols, and encrypted FPGA configuration are therefore essential for resilient, trustworthy, and 
sustainable building operation.

In addition to these considerations, this study demonstrates the feasibility and performance benefits of FPGA-
accelerated HVAC optimization under controlled simulation conditions. Future analyses should include vali-
dation using long-term, real-world building data with unpredictable occupancy patterns and sensor variability, 
which is essential to fully assess practical effectiveness and sustained impact on decarbonization pathways. 
Although the random forest predictor is inherently robust to moderate noise, lightweight preprocessing tech-
niques (e.g., moving average smoothing or Kalman-based filtering) and systematic noise sensitivity tests can 
further reinforce reliability under real-world conditions. In practical deployments, additional resilience mecha-
nisms are required to manage sensor drift, bias, and intermittent failures. Such approaches could include integrat-
ing moving average, exponential, or Kalman-based filters within the processing system (PS) pipeline prior to 
FPGA inference to smooth fluctuations, correct long-term drift, and reconstruct missing data. In addition, noise 
sensitivity experiments could be performed by injecting Gaussian noise, bias offsets, and dropout scenarios into 
the dataset, thereby quantifying how uncertainty propagates through the random forest surrogate and affects GA 
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optimization outcomes. Redundancy strategies (e.g., fusing multiple sensors for temperature or occupancy) and 
anomaly detection modules could further safeguard operation by detecting faulty measurements and reverting 
to safe fallback strategies. Together, these methods would ensure stable optimization decisions, preserving both 
occupant comfort and energy efficiency even under adverse sensing conditions. While the current design does 
not support online model adaptation, retraining can be performed offline and redeployed to the FPGA as updated 
parameters or bitstreams while incremental retraining strategies or dynamic partial reconfiguration may enable 
more flexible adaptation. The random forest surrogate could be extended with additional contextual features 
such as weather forecasts, occupancy schedules, or user preferences to enhance adaptability in situ. Finally, edge 
deployment provides advantages in latency reduction and local data processing, and creates opportunities to 
strengthen resilience through redundancy, fault detection, and secure data handling for supporting human-centric, 
energy-efficient operation consistent with these targets.

Acknowledgements  Not applicable.

Author contributions  Mohammed Mshragi developed the model and wrote the manuscript. Ioan Petri supervised the re-
search, reviewed the manuscript, and provided critical revision and strategic guidance.

Funding  No external funding was received for this study. Authors’ contributions: Mohammed Mshragi developed the 
model and wrote the manuscript. Ioan Petri supervised the research, reviewed the manuscript, and provided critical revision 
and strategic guidance.

Data availability  The datasets generated and/or analysed during the current study are available from the corresponding 
author on reasonable request.

Declarations

Conflict of interest  The authors declare that they have no competing interests.

Ethical approval and consent to participate  Not applicable.

Consent for publication  Not applicable.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The 
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your 
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​/​4​.​0​/.

References

	 1.	Hamilton I, Kennard H, Rapf O, Amorocho J, Steuwer S, Kockat J, Toth Z (2024) Global status report for buildings 
and construction—beyond foundations: mainstreaming sustainable solutions to cut emissions from the buildings sector. 
United Nations Environment Programme (UNEP) / Global Alliance for Buildings and Construction, Nairobi, Kenya. 
ISBN: 978-92-807-4131-5. ​h​t​t​p​s​:​/​/​g​l​o​b​a​l​a​b​c​.​o​r​g​/​s​i​t​e​s​/​d​e​f​a​u​l​t​/​f​i​l​e​s​/​2​0​2​4​-​1​1​/​g​l​o​b​a​l​_​s​t​a​t​u​s​_​r​e​p​o​r​t​_​b​u​i​l​d​i​n​g​s​_​c​o​n​s​t​r​u​c​t​i​o​
n​_​2​0​2​3​.​p​d​f

	 2.	Wang H, Chen X, Vital N, Duffy E, Razi A (2024) Energy optimization for HVAC systems in multi-VAV open offices: a 
deep reinforcement learning approach. Appl Energy 356:122354

	 3.	Hsu P-C, Gao L, Hwang Y, Radermacher R (2025) A review of the state-of-the-art data-driven modeling of building 
HVAC systems. Energy Build 115881

	 4.	Zhou SL, Shah AA, Leung PK, Zhu X, Liao Q (2023) A comprehensive review of the applications of machine learning 
for HVAC. DeCarbon 2:100023. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​1​6​/​j​.​d​e​c​a​r​b​.​2​0​2​3​.​1​0​0​0​2​3

1 3

28   25   Page 28 of 31

http://creativecommons.org/licenses/by/4.0/
https://globalabc.org/sites/default/files/2024-11/global_status_report_buildings_construction_2023.pdf
https://globalabc.org/sites/default/files/2024-11/global_status_report_buildings_construction_2023.pdf
https://doi.org/10.1016/j.decarb.2023.100023


Neural Computing and Applications

https://doi.org/10.1007/s00521-025-11737-x

	 5.	Kurte K, Munk J, Kotevska O, Amasyali K, Smith R, McKee E, Du Y, Cui B, Kuruganti T, Zandi H (2020) Evaluating 
the adaptability of reinforcement learning based HVAC control for residential houses. Sustainability 12(18):7727

	 6.	Zhao D, Watari D, Ozawa Y, Taniguchi I, Suzuki T, Shimoda Y, Onoye T (2023) Data-driven online energy management 
framework for HVAC systems: an experimental study. Appl Energy 352:121921. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​1​6​/​j​.​a​p​e​n​e​r​g​y​.​2​0​2​
3​.​1​2​1​9​2​1

	 7.	Ahmad MW, Mourshed M, Rezgui Y (2017) Trees vs neurons: comparison between random forest and ANN for high-
resolution prediction of building energy consumption. Energy Build 147:77–89. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​1​6​/​j​.​e​n​b​u​i​l​d​.​2​0​1​7​.​
0​4​.​0​3​8

	 8.	Van Essen B, Macaraeg C, Gokhale M, Prenger R (2012) Accelerating a random forest classifier: multi-core, GP-GPU, or 
FPGA? In: 2012 IEEE 20th international symposium on field-programmable custom computing machines, pp 232–239. ​
h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​1​0​9​/​F​C​C​M​.​2​0​1​2​.​4​7

	 9.	Aftab M, Chen C, Chau C-K, Rahwan T (2017) Automatic HVAC control with real-time occupancy recognition and 
simulation-guided model predictive control in low-cost embedded system. Preprint at ​a​r​X​i​v​:​1​7​0​8​.​0​5​2​0​8

	10.	Choppali Sudarshan C, Arora A, Chhabria VA (2024) GREENFPGA: evaluating FPGAS as environmentally sustainable 
computing solutions. In: Proceedings of the 61st ACM/IEEE design automation conference, pp 1–6

	11.	Turley C, Jacoby M, Pavlak G, Henze G (2020) Development and evaluation of occupancy-aware HVAC control for 
residential building energy efficiency and occupant comfort. Energies 13(20):5396

	12.	Hozayen MI, Abass WH (2025) Optimized human-centric decision-maker for HVAC systems using genetic algorithms to 
establish an equilibrium point for enhanced thermal comfort. In: 15th international conference on environmental science 
and development (ICESD), pp 111–122. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​0​7​/​9​7​8​-​3​-​0​3​1​-​8​8​6​8​3​-​6​_​9

	13.	Mshragi M, Petri I (2025) Fast machine learning for building management systems. Artif Intell Rev 58(7):211
	14.	ASHRAE: ANSI/ASHRAE Standard 55-2020: thermal environmental conditions for human occupancy. Technical 

report, American Society of Heating, Refrigerating and Air-Conditioning Engineers (2021). Pages: 80. ​h​t​t​p​s​:​/​/​w​w​w​.​a​s​h​r​
a​e​.​o​r​g​/​t​e​c​h​n​i​c​a​l​-​r​e​s​o​u​r​c​e​s​/​s​t​a​n​d​a​r​d​s​-​a​n​d​-​g​u​i​d​e​l​i​n​e​s​/​r​e​a​d​-​o​n​l​y​-​v​e​r​s​i​o​n​s​-​o​f​-​a​s​h​r​a​e​-​s​t​a​n​d​a​r​d​s

	15.	International Organization for Standardization (1984) ISO 7730: moderate thermal environments-determination of the 
PMV and PPD indices and specification of the conditions for thermal comfort. Technical report, ISO, Geneva, Switzerland

	16.	Guo Y, Liu Y, Wang Z, Hu Y (2023) Application of data-driven methods for heating ventilation and air conditioning 
systems. MDPI 11(11):3133

	17.	Araújo GR, Gomes R, Gomes MG, Guedes MC, Ferrão P (2023) Surrogate models for efficient multi-objective 
optimization of building performance. Energies 16(10):4030

	18.	Ala’raj M, Radi M, Abbod MF, Majdalawieh M, Parodi M (2022) Data-driven based HVAC optimisation approaches: a 
systematic literature review. J Build Eng 46:103678

	19.	Wang Z, Wang Y, Zeng R, Srinivasan RS, Ahrentzen S (2018) Random forest based hourly building energy prediction. 
Energy Build 171:11–25

	20.	Ilbeigi M, Ghomeishi M, Dehghanbanadaki A (2020) Prediction and optimization of energy consumption in an office 
building using artificial neural network and a genetic algorithm. Sustain Cities Soc 61:102325

	21.	Ferreira P, Ruano A, Silva S, Conceicao E (2012) Neural networks based predictive control for thermal comfort and 
energy savings in public buildings. Energy build 55:238–251

	22.	Ozawa Y, Zhao D, Watari D, Taniguchi I, Suzuki T, Shimoda Y, Onoye T (2023) Data-driven HVAC control using 
symbolic regression: design and implementation. In: 2023 IEEE Power & Energy Society General Meeting (PESGM). 
IEEE, pp 1–5

	23.	Ding X, An Z, Rathee A, Du W (2025) A safe and data-efficient model-based reinforcement learning system for HVAC 
control. IEEE Internet Things J

	24.	Lu M, Sun Y, Ma Z (2024) Multi-objective design optimization of multiple energy systems in net/nearly zero energy 
buildings under uncertainty correlations. Appl Energy 370:123620

	25.	Xu C, Jiang S, Luo G, Sun G, An N, Huang G, Liu X (2022) The case for FPGA-based edge computing. IEEE Trans Mob 
Comput 21(7):2610–2619. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​1​0​9​/​T​M​C​.​2​0​2​0​.​3​0​4​1​7​8​1

	26.	Vaithianathan M, Patil M, Ng SF, Udkar S (2024) Low-power FPGA design techniques for next-generation mobile 
devices. ESP Int J Adv Comput Technol(ESP-IJACT) 2(2):82–93

	27.	Qian C, Ling T, Cichiwskyj C, Schiele G (2025) Configuration-aware approaches for enhancing energy efficiency in 
FPGA-based deep learning accelerators. J Syst Architect 163:103410

	28.	Bartoli P, Veronesi C, Giudici A, Siorpaes D, Trojaniello D, Zappa F (2025) Benchmarking energy and latency in tinyml: 
a novel method for resource-constrained ai. Preprint at ​a​r​X​i​v​:​2​5​0​5​.​1​5​6​2​2

	29.	Mshragi M, Petri I, Rana O (2025) FPGA-accelerated fast machine learning for heterogeneous edge systems. In: 2025 
IEEE international conference on edge computing and communications (EDGE). IEEE, pp 183–191

	30.	Omidsajedi SN, Reddy R, Yi J, Herbst J, Lipps C, Schotten HD (2024) Latency optimized deep neural networks (DNNs): 
an artificial intelligence approach at the edge using multiprocessor system on chip (MPSOC). Preprint at ​a​r​X​i​v​:​2​4​0​7​.​1​8​
2​6​4

1 3

29Page 29 of 31     25 

https://doi.org/10.1016/j.apenergy.2023.121921
https://doi.org/10.1016/j.apenergy.2023.121921
https://doi.org/10.1016/j.enbuild.2017.04.038
https://doi.org/10.1016/j.enbuild.2017.04.038
https://doi.org/10.1109/FCCM.2012.47
https://doi.org/10.1109/FCCM.2012.47
http://arxiv.org/abs/1708.05208
https://doi.org/10.1007/978-3-031-88683-6_9
https://www.ashrae.org/technical-resources/standards-and-guidelines/read-only-versions-of-ashrae-standards
https://www.ashrae.org/technical-resources/standards-and-guidelines/read-only-versions-of-ashrae-standards
https://doi.org/10.1109/TMC.2020.3041781
http://arxiv.org/abs/2505.15622
http://arxiv.org/abs/2407.18264
http://arxiv.org/abs/2407.18264


Neural Computing and Applications

https://doi.org/10.1007/s00521-025-11737-x

	31.	Qasaimeh M, Denolf K, Khodamoradi A, Blott M, Lo J, Halder L, Vissers K, Zambreno J, Jones PH (2021) Benchmarking 
vision kernels and neural network inference accelerators on embedded platforms. J Syst Architect 113:101896

	32.	Archet A, Gac N, Orieux F, Ventroux N (2023) Embedded ai performances of nvidia’s jetson orin soc series. In: 17ème 
Colloque National du GDR SOC2

	33.	Fursin G (2024) Enabling more efficient and cost-effective AI/ML systems with collective mind, virtualized MLOps, 
MLPerf, and reproducible optimization tournaments. Technical report, cKnowledge.org and MLCommons. White Paper

	34.	Karumbunathan LS (2022) Nvidia jetson agx orin series. A Giant leap forward for robotics and edge AI applications. 
Technical Brief

	35.	Agouzoul A, Chegari B, Tabaa M, Simeu E (2022) Using neural network in a model-based predictive control loop to 
enhance energy performance of buildings. Energy Rep 8:1196–1207

	36.	Arun S, Selvan M (2019) Smart residential energy management system for demand response in buildings with energy 
storage devices. Front Energy 13(4):715–730

	37.	Almazam K, Humaidan O, Shannan NM, Bashir FM, Gammoudi T, Dodo YA (2025) Innovative energy efficiency 
in HVAC systems with an integrated machine learning and model predictive control technique: a prospective toward 
sustainable buildings. Sustainability 17(7):2916

	38.	Hanumaiah V, Genc S (2021) Distributed multi-agent deep reinforcement learning framework for whole-building HVAC 
control. Preprint at ​a​r​X​i​v​:​2​1​1​0​.​1​3​4​5​0

	39.	Gao G, Li J, Wen Y (2019) Energy-efficient thermal comfort control in smart buildings via deep reinforcement learning. 
Preprint at ​a​r​X​i​v​:​1​9​0​1​.​0​4​6​9​3

	40.	Li D, Qi Z, Zhou Y, Elchalakani M (2025) Machine learning applications in building energy systems: review and 
prospects. Buildings 15(4):648

	41.	Fang Z, Crimier N, Scanu L, Midelet A, Alyafi A, Delinchant B (2021) Multi-zone indoor temperature prediction with 
LSTM-based sequence to sequence model. Energy Build 245:111053

	42.	Himeur Y, Ghanem K, Alsalemi A, Bensaali F, Amira A (2021) Artificial intelligence based anomaly detection of energy 
consumption in buildings: a review, current trends and new perspectives. Appl Energy 287:116601

	43.	Chen Y, Wu Q (2011) Design and implementation of PID controller based on FPGA and genetic algorithm. In: Proceedings 
of 2011 international conference on electronics and optoelectronics, vol 4. IEEE, pp 4–308

	44.	Garces-Jimenez A, Gomez-Pulido J-M, Gallego-Salvador N, Garcia-Tejedor A-J (2021) Genetic and swarm algorithms 
for optimizing the control of building HVAC systems using real data: a comparative study. Math 9(18):2181

	45.	Lauret P, Boyer H, Riviere C, Bastide A (2005) A genetic algorithm applied to the validation of building thermal models. 
Energy build 37(8):858–866

	46.	Torquato MF, Fernandes MA (2019) High-performance parallel implementation of genetic algorithm on FPGA. Circuit 
Syst Signal Process 38(9):4014–4039

	47.	Elkholy M, Metwally H, Farahat M, Senjyu T, Lotfy ME (2022) Smart centralized energy management system for 
autonomous microgrid using FPGA. Appl Energy 317:119164

	48.	Petri I, Li H, Rezgui Y, Chunfeng Y, Yuce B, Jayan B (2014) A modular optimisation model for reducing energy 
consumption in large scale building facilities. Renew Sustain Energy Rev 38:990–1002. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​1​6​/​j​.​r​s​e​r​.​2​0​
1​4​.​0​7​.​0​4​4

	49.	Olesen BW, Parsons K (2002) Introduction to thermal comfort standards and to the proposed new version of EN ISO 
7730. Energy build 34(6):537–548

	50.	Zhou Z, Qiu C, Zhang Y (2023) A comparative analysis of linear regression, neural networks and random forest regression 
for predicting air ozone employing soft sensor models. Sci Rep 13(1):22420

	51.	Nagel M, Fournarakis M, Amjad RA, Bondarenko Y, Van Baalen M, Blankevoort T (2021) A white paper on neural 
network quantization. Preprint ​a​r​X​i​v​:​2​1​0​6​.​0​8​2​9​5

	52.	Shashank R, Rajagopal M (2025) Machine learning algorithm for optimising comfort cooling in buildings. International 
J Sci Eng Technol 13(1). ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​6​1​4​6​3​/​i​j​s​e​t​.​v​o​l​.​1​3​.​i​s​s​u​e​1​.​1​5​0

	53.	Ali A, Jayaraman R, Mayyas A, Alaifan B, Azar E (2023) Machine learning as a surrogate to building performance 
simulation: predicting energy consumption under different operational settings. Energy Build 289:112940. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​
g​/​1​0​.​1​0​1​6​/​j​.​e​n​b​u​i​l​d​.​2​0​2​3​.​1​1​2​9​4​0

	54.	Przybył A (2021) Fixed-point arithmetic unit with a scaling mechanism for FPGA-based embedded systems. Electron 
10(10):1164. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​3​3​9​0​/​e​l​e​c​t​r​o​n​i​c​s​1​0​1​0​1​1​6​4

	55.	Constantinides G, Kinsman A, Nicolici N (2011) Numerical data representations for FPGA-based scientific computing. 
IEEE Design Test Comput 28(4):8–17. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​1​0​9​/​M​D​T​.​2​0​1​1​.​4​8

	56.	Ney J, Hammoud B, Dörner S, Herrmann M, Clausius J, Brink S, Wehn N (2022) Efficient FPGA implementation of an 
ANN-based demapper using cross-layer analysis. Electron 11(7):1138. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​3​3​9​0​/​e​l​e​c​t​r​o​n​i​c​s​1​1​0​7​1​1​3​8

	57.	Dinh TP, Pham-Quoc C, Thinh TN, Nguyen BKD, Kha PC (2023) A flexible and efficient FPGA-based random forest 
architecture for IoT applications. Internet Thing 22:100813. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​1​6​/​j​.​i​o​t​.​2​0​2​3​.​1​0​0​8​1​3

1 3

30   25   Page 30 of 31

http://arxiv.org/abs/2110.13450
http://arxiv.org/abs/1901.04693
https://doi.org/10.1016/j.rser.2014.07.044
https://doi.org/10.1016/j.rser.2014.07.044
http://arxiv.org/abs/2106.08295
https://doi.org/10.61463/ijset.vol.13.issue1.150
https://doi.org/10.1016/j.enbuild.2023.112940
https://doi.org/10.1016/j.enbuild.2023.112940
https://doi.org/10.3390/electronics10101164
https://doi.org/10.1109/MDT.2011.48
https://doi.org/10.3390/electronics11071138
https://doi.org/10.1016/j.iot.2023.100813


Neural Computing and Applications

https://doi.org/10.1007/s00521-025-11737-x

	58.	Bae Y, Bhattacharya S, Cui B, Lee S, Li Y, Zhang L, Im P, Adetola V, Vrabie D, Leach M, Kuruganti T (2021) Sensor 
impacts on building and HVAC controls: a critical review for building energy performance. Adv Appl Energy 4:100068. ​
h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​1​6​/​j​.​a​d​a​p​e​n​.​2​0​2​1​.​1​0​0​0​6​8

	59.	Im P, Bae Y, Cui B, Lee S, Bhattacharya S, Adetola V, Vrabie D, Zhang L, Leach M (2020) Literature review for sensor 
impact evaluation and verification use cases - building controls and fault detection and diagnosis (fdd). Technical report, 
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​2​1​7​2​/​1​6​4​9​1​6​8 . ​h​t​t​p​s​:​/​/​w​w​
w​.​o​s​t​i​.​g​o​v​/​b​i​b​l​i​o​/​1​6​4​9​1​6​8

	60.	Li Z, Huang G (2013) Re-evaluation of building cooling load prediction models for use in humid subtropical area. Energy 
Build 62:442–449

	61.	Fanger PO (1970) Thermal comfort. In: Analysis and applications in environmental engineering. Danish Technical Press, 
Copenhagen, p 244

	62.	Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Reading, MA, 
p 412

	63.	Ouni B (2014) Low power design finite state machine on field programmable gate arrays. Int J Appl Eng Res 9:16341–
16352

	64.	Borowik G (2006) Serial decomposition of finite state machines for FPGA-based implementation. In: Photonics 
applications in astronomy, communications, industry, and high-energy physics experiments IV, vol 6159. SPIE, pp 927–
934

	65.	Senhadji-Navarro R, Garcia-Vargas I, Guisado JL (2012) Performance evaluation of ram-based implementation of finite 
state machines in FPGAs. In: 2012 19th IEEE international conference on electronics, circuits, and systems (ICECS 
2012). IEEE, pp 225–228

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional 
affiliations.

Authors and Affiliations

Mohammed Mshragi1  · Ioan Petri1

	
 Mohammed Mshragi
MshragiM@cardiff.ac.uk
Ioan Petri
petrii@cardiff.ac.uk

1	 School of Engineering, Cardiff University, Cardiff, UK

1 3

31Page 31 of 31     25 

https://doi.org/10.1016/j.adapen.2021.100068
https://doi.org/10.1016/j.adapen.2021.100068
https://doi.org/10.2172/1649168
https://www.osti.gov/biblio/1649168
https://www.osti.gov/biblio/1649168
http://orcid.org/0009-0003-6511-4594

	﻿FastML-GA: FPGA-accelerated machine learning for real-time energy HVAC optimization in buildings
	﻿Abstract
	﻿1﻿ ﻿Introduction
	﻿﻿2﻿ ﻿Related work
	﻿﻿3﻿ ﻿Methodology
	﻿3.1﻿ ﻿Overview of the FastML-GA framework
	﻿﻿3.2﻿ ﻿Random forest surrogate model for HVAC prediction
	﻿3.2.1﻿ ﻿HLS and hardware-accelerated implementation


	﻿3.3﻿ ﻿Genetic algorithm optimization
	﻿3.3.1﻿ ﻿Genetic algorithm optimization for FPGA HVAC
	﻿3.3.2﻿ ﻿Season-adaptive energy calculation
	﻿3.3.3﻿ ﻿Season-specific operational constraints
	﻿3.3.4﻿ ﻿Enhanced comfort and smoothness penalties
	﻿3.3.5﻿ ﻿Enhanced genetic algorithm parameters

	﻿﻿4﻿ ﻿Results and discussion
	﻿4.1﻿ ﻿Validation of hardware prediction accuracy
	﻿4.2﻿ ﻿Sensitivity analysis
	﻿4.3﻿ ﻿Seasonal performance overview
	﻿4.4﻿ ﻿Best day hourly performance analysis
	﻿4.5﻿ ﻿Individual seasonal trade-off analysis
	﻿4.5.1﻿ ﻿Winter season analysis
	﻿4.5.2﻿ ﻿Spring season analysis
	﻿4.5.3﻿ ﻿Summer season analysis
	﻿4.5.4﻿ ﻿Autumn season analysis


	﻿4.6﻿ ﻿Multi-seasonal comparative analysis
	﻿﻿5﻿ ﻿Conclusion
	﻿5.1﻿ ﻿Limitations and future work

	﻿References


