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Abstract

Fast machine learning (FastML) has strong potential to enhance energy optimization and operational efficiency
in heating, ventilation, and air conditioning (HVAC) systems within building management systems (BMS).
Traditional HVAC control approaches frequently depend on static schedules and computationally intensive,
CPU-based optimization techniques, which often lack the responsiveness and scalability required for real-
time embedded applications. To address these limitations, we propose a fast machine learning framework that
integrates a random forest surrogate model implemented as a hardware accelerator on the programmable logic
(PL) with a lightweight and adaptive genetic algorithm (GA) executed on the processing system (PS), thereby
forming a hybrid PS-PL deployment. This combination of fast machine learning and evolutionary algorithms
optimization delivers substantial computational efficiency, achieving over 1.67 million predictions per second
on a PYNQ-Z1 FPGA and significantly outperforming recent FPGA-based approaches. By using a case study,
we demonstrate how FastML can employ a GA multi-objective fitness function to dynamically optimize hourly
airflow rates and supply air temperatures in response to occupancy and seasonal environmental patterns, thereby
reducing electricity and thermal energy consumption while maintaining occupant comfort within standard pre-
dicted mean vote (PMV) thresholds. Empirical evaluation conducted over 72 days across four distinct seasons
reveals consistent electricity savings exceeding 50%, alongside thermal energy reductions of up to 150 kWh
per day during heating periods. A comprehensive three-dimensional Pareto front analysis further substantiates
the system’s capability to effectively balance energy efficiency and occupant comfort. These results highlight
the practicality, scalability, and substantial promise of FPGA-based multi-objective optimization as a robust,
real-time solution for intelligent and sustainable building energy management at the edge.
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Abbreviations

AFR Air flow rate

AT Air temperature

AXI Advanced eXtensible interface

BMS Building management system

BRAM Block random-access memory
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CoP Coefficient of performance

CPU Central processing unit

DDPG Deep deterministic policy gradient
DL Deep learning

DMA Direct memory access

DRL Deep reinforcement learning

DSP Digital signal processing (block)
FastML-GA Fast machine learning with genetic algorithm
FPGA Field-programmable gate array

GA Genetic algorithm

GA-Opt Genetic algorithm optimization

HLS High-level synthesis

HVAC Heating, ventilation, and air conditioning
II Initiation interval

IoT Internet of Things

MAE Mean absolute error

ML Machine learning

MPC Model predictive control

PMV Predicted mean vote

RBFNN Radial basis function neural network
RF Random forest

RFR Random forest regressor

RH Relative humidity

RMSE Root mean square error

RT Room temperature

RTL Register transfer level

SEMS Smart energy management system
SoC System on chip

WT Water temperature

1 Introduction

The building sector is a cornerstone of global decarbonisation strategies, accounting for approximately 34% of
global final energy consumption and 37% of energy-related CO, emissions as of 2022 [1]. Heating, ventilation,
and air conditioning (HVAC) systems, which can consume up to 40% of a building’s total energy [2], represent
a critical opportunity for improving energy efficiency and reducing environmental impact. Optimizing HVAC
operations is essential not only for achieving climate goals but also for enhancing occupant comfort and support-
ing the long-term sustainability of the built environment.

Traditional building automation systems (BAS) rely heavily on rule-based or schedule-driven control strate-
gies, which are often inadequate for responding to dynamic factors such as fluctuating occupancy, real-time
weather changes, and seasonal variations [3, 4]. These static approaches frequently lead to energy waste, sub-
optimal thermal comfort, and failure to meet stringent energy efficiency targets. For instance, fixed schedules
may maintain HVAC operation during unoccupied periods, exacerbating energy consumption due to the thermal
inertia of buildings, which causes temperature changes to lag behind occupancy shifts [5]. Such inefficiencies
underscore the need for adaptive, intelligent control systems capable of real-time decision-making.
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Recent advancements in data-driven predictive control have shown promise in addressing these challenges. By
leveraging real-time sensor data—such as occupancy, temperature, and humidity—and historical building perfor-
mance records, machine learning (ML) models can accurately forecast indoor climate dynamics and dynamically
adjust HVAC setpoints [6]. Among ML forecasting techniques, random forests (RF) stand out for their robustness
to noisy inputs, ability to model complex nonlinear relationships, and low inference complexity, making them
ideal for deployment on resource-constrained edge devices [7, 8]. RF models serve as effective surrogate models,
predicting key performance metrics like electricity consumption, thermal energy use, and thermal comfort (via
the Predicted Mean Vote, PMV) with high accuracy.

However, most ML-based HVAC systems rely on conventional CPU-based or cloud-computing architectures,
which introduce significant limitations for real-time applications. Cloud-based systems suffer from communica-
tion latencies due to round-trip data transfers, while CPU-based edge platforms, such as Raspberry Pi, often lack
the computational power for advanced tasks like real-time video processing or high-throughput ML inference [9].
These delays can result in overheating, overcooling, or delayed ventilation, compromising both energy efficiency
and occupant comfort. For example, even a few seconds of latency in processing occupancy signals can lead to
prolonged HVAC operation, wasting energy in unoccupied spaces.

Field-programmable gate arrays (FPGAs) offer a compelling solution to these challenges. FPGAs provide
ultra-low-latency inference and high energy efficiency, consuming significantly less dynamic power than general-
purpose CPUs. Studies have shown that FPGA-accelerated workloads can reduce operational carbon footprints
by up to 40% compared to CPU-based systems, making them a sustainable choice for smart building applica-
tions [10]. By enabling task-specific hardware acceleration, FPGAs support rapid evaluation of thousands of
candidate control strategies, a critical requirement for real-time HVAC optimization in dynamic environments.

The thermal mass of buildings further complicates HVAC control, as temperature changes occur gradually
rather than instantaneously [5]. This inertia can lead to unnecessary heating or cooling after occupants leave,
increasing energy consumption. Predictive control models, pre-trained to account for building thermal dynam-
ics, can anticipate such changes and adjust HVAC setpoints proactively. Studies demonstrate that predictive
approaches can achieve energy savings ranging from 1% to 13.3%, depending on the balance between thermal
comfort and efficiency [11]. Fast machine learning (FastML), characterized by sub-millisecond inference times,
is thus essential for enabling real-time, localized decision-making at the edge, where environmental and occu-
pancy signals can change within seconds.

Evolutionary algorithms, particularly Genetic algorithms (GAs), offer significant potential for multi-objective
HVAC optimization by exploring complex setpoint spaces to balance energy use, comfort, and operational sta-
bility in buildings [12]. However, their integration with ML models on embedded platforms has been limited
by computational constraints and latency issues. Most GA implementations rely on high-performance comput-
ing resources, which are impractical for edge deployment in resource-constrained environments such as smart
buildings.

This work introduces FastML-GA, a novel FPGA-accelerated framework that integrates a random forest
(RF) surrogate model implemented as a hardware accelerator on the programmable logic (PL) with a lightweight
genetic algorithm (GA) executed on the embedded ARM Cortex-A9 CPUs of the PYNQ-Z1 processing system
(PS), forming a hybrid PS—PL architecture for real-time HVAC optimization in buildings. FastML-GA achieves
over 1.67 million predictions per second, surpassing existing FPGA-based energy management systems [13]. By
combining the low-latency inference of the FPGA-based RF with the optimization capabilities of the GA running
on the PS, the framework enables rapid evaluation of thousands of candidate setpoints, ensuring timely responses
to dynamic building conditions. Unlike traditional CPU- or cloud-based solutions, FastML-GA delivers high-
throughput, energy-efficient control suitable for real-time applications.

We validate FastML-GA through seasonal simulations using high-fidelity building datasets, achieving over 50%
reductions in electricity and thermal energy consumption while maintaining thermal comfort within ASHRAE
Standard 55-2020 guidelines (PMV index) [14, 15]. Pareto analysis demonstrates the framework’s ability to
navigate trade-offs between energy efficiency and comfort across diverse operational scenarios, highlighting its
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adaptability to varying occupancy and environmental conditions. Additionally, the system’s FPGA-based imple-
mentation minimizes operational emissions, aligning with broader sustainability goals for smart buildings.

By advancing the integration of FastML and embedded optimization, FastML-GA contributes to the decarbon-
ization of the building sector and the development of responsive, sustainable building management systems. The
rest of the paper is structured as follows: Sect. 2 reviews related literature, Sect. 3 details the FastML-GA frame-
work, Sect. 4 describes the experimental setup, Sect. 5 presents results and analysis, and Section 6 concludes with
final remarks and future research directions.

2 Related work

Improving building energy performance is central to the global effort to decarbonize the built environment, with
intelligent HVAC control representing a critical opportunity for energy transition and sustainability. The integra-
tion of machine learning (ML) into building energy systems has gained increasing attention as a means to reduce
operational emissions and meet net-zero targets. A recent special issue edited by Guo et al. [16] consolidates
major developments in data-driven HVAC control, highlighting the role of ML in performance forecasting, fault
detection, and pattern recognition—tools critical for advancing low-energy building operations.

Numerous studies have addressed the computational burden of simulation-based HVAC optimization by
replacing costly simulations with ML-based surrogate models. For example, Araujo et al. [17] combined a vali-
dated building energy simulation tool with ML approximators, achieving up to 22% cost savings and 100X
faster execution. However, such methods typically remain confined to CPU-bound pipelines and lack support for
embedded or real-time deployment, limiting their practical utility in dynamic control environments.

A comprehensive review by Ala’raj et al. [18] classified data-driven HVAC optimization strategies and high-
lighted the effectiveness of models such as random forests and neural networks for predicting thermal comfort
and energy use. These findings were reinforced by Wang et al. [19], who applied a random forest model for hourly
energy prediction in educational buildings, outperforming Regression Trees and SVR by 14-25% and 5-—5.5%,
respectively. Their study also showed that feature importance varies with seasons, underscoring the adaptability
of RFs to dynamic conditions and climatic variability—factors crucial for low-carbon HVAC design.

ML models such as artificial neural networks (ANNs), support vector machines (SVMs), and random forests
(RFs) have also been widely combined with evolutionary optimization methods to balance the competing objec-
tives of energy reduction and occupant comfort. Ilbeigi et al. [20] proposed a multi-layer perceptron (MLP)
trained on EnergyPlus simulation data and optimized via the Galapagos genetic algorithm, achieving 35% energy
savings. Similarly, Ferreira et al. [21] demonstrated that ANN-based predictive control could yield over 50%
reductions in energy use, highlighting their potential for real-world building decarbonisation.

Other recent innovations in modeling include symbolic regression [22], which achieved a 16.1% reduction in
peak power using a model predictive control framework, and reinforcement learning (RL)-based HVAC control.
For instance, Ding et al. [23] proposed CLUE, a model-based RL system using Gaussian Processes for safe and
data-efficient HVAC operation, while [2] applied deep RL in multi-zone office buildings, achieving up to 37%
energy savings.

The design of multi-energy systems for net/nearly zero energy buildings (NZEBs) has also advanced, with
recent work by Lu et al. [24] addressing correlated uncertainties in system sizing using a copula-based scenario
generator and NSGA-II optimization. Their results demonstrate high energy self-sufficiency and thermal com-
fort, reinforcing the need for uncertainty-aware, multi-objective optimization in smart buildings, a challenge
we address from a real-time, embedded perspective. Evolutionary algorithms (EAs) remain a popular choice
for multi-objective HVAC optimization. However, most implementations operate offline, are simulation-heavy,
and lack real-time applicability or embedded deployment, thus limiting their practical integration into energy-
responsive building management systems.
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In contrast to these approaches, our work eliminates runtime simulation entirely. We train a random forest
regressor (RFR) on pre-generated HVAC simulation data and deploy it on FPGA hardware for high-throughput,
low-latency inference. This is coupled with a lightweight, multi-objective genetic algorithm tailored for HVAC
control, enabling dynamic, scenario-based optimization directly at the edge. Our system achieves electricity
savings exceeding 50% and up to 23.95x performance gains over CPU-based methods, while maintaining high
prediction accuracy and control robustness.

Furthermore, FPGA-based edge computing is inherently more energy-efficient compared to CPU- or GPU-
based systems. For instance, Xu et al. [25] demonstrated that FPGA edge deployment for mobile vision tasks
reduced response time by 3 x, execution time by 15X, and power consumption across both mobile devices and
edge nodes. More broadly, Vaithianathan et al. [26] showed that low-power FPGA techniques such as dynamic
voltage scaling and clock gating can achieve over 40% energy savings in mobile and embedded applications. In
addition, configuration-aware and duty-cycling strategies for FPGA deep-learning accelerators can cut configura-
tion energy by ~40x and extend operational lifetime via idle-waiting and adaptive strategy switching [27]. This
is particularly important for reducing the carbon footprint of edge devices, which often operate continuously and
in large numbers. To the best of our knowledge, no prior work has combined ML-based surrogate modeling and
genetic algorithm optimization for HVAC control on FPGA hardware. Although GA and ML accelerators have
been independently explored in other domains, our work is the first to unify both into a compact, embedded, and
energy-efficient optimization framework.

Beyond HVAC-specific studies, recent work on embedded Al highlights the portability of ML frameworks
across microcontrollers (MCUs), FPGAs, and GPUs. TinyML benchmarks demonstrate that modern MCUs such
as the STM32N6 can achieve inference latencies of 1.6-2.9 ms with energy consumption as low as 153-331 pJ per
inference, making them attractive for ultra-low-power but higher-latency applications [28]. Lightweight FPGA
boards such as the PYNQ-Z1 have been shown to deliver up to 4.54 x 10° inferences/s at only 1.87 W [29], while
higher-capacity platforms like the Xilinx ZCU102 MPSoC further reduce DNN latency and surpass GPU base-
lines in energy efficiency [30, 31]. Conversely, Nvidia Jetson Orin GPUs achieve sub-millisecond inference and
throughputs approaching 1 M inferences/s [32, 33], but at 20—60 W power consumption depending on mode [34].
These findings underline a clear trade-off: MCUs maximize energy efficiency, FPGAs strike the best balance
between latency and power, and GPUs provide the highest throughput at significantly higher energy cost. Our
framework builds on these insights by targeting FPGAs as a practical compromise for real-time HVAC optimiza-
tion, while remaining portable to MCUs or GPUs depending on deployment constraints.

By tightly integrating a random forest surrogate with a season-adaptive genetic algorithm on FPGA, our system
delivers sub-millisecond inference latency, ensures thermal comfort compliance, and supports scalable optimiza-
tion under dynamic environmental and occupancy conditions. This represents a novel and practical advancement
in intelligent building control—contributing directly to the goal of decarbonizing the built environment through
embedded, high-performance HVAC optimization.

While ML-based surrogate models and genetic algorithms (GAs) have been individually applied in building
energy and HVAC optimization, they have rarely been integrated into a unified, embedded framework, par-
ticularly not within a FastML-system that ensures real-time energy optimisation capability. As summarized in
Table 1, recent studies typically focus on either ML or GA—often relying on CPU-based simulations—and lack
real-time or FPGA-based implementations. This gap underscores the novelty of our approach, which unifies ML-
based surrogate modeling and GA-based optimization within an energy-efficient FPGA framework for real-time
HVAC optimisation in buildings.
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Table 1 Related studies on ML, FPGA, and GA in building energy management and HVAC

References Research direction ML/AI method FPGA/GA Application Key contr

[13] Fast ML for BMS FPGA LSTM FPGA Energy prediction 520+ inf/s, low-latency
[35] HVAC control via ANN-MPC ANN + MPC None Energy saving 27-39% energy saved
[36] Smart EMS on FPGA None FPGA Demand response Grid-battery switching
[37] RBFNN + MPC control RBFNN + MPC None HVAC efficiency 15% saved, validated

[38] DRL for HVAC control DRL (multi-agent) None HVAC cost saving 75% saved, scalable

[39] Comfort—energy optimization DDPG + DNN None HVAC control Comfort—energy trade-off
[40] Review of ML in BMS SVM, RF, CNN, RL  None Faults, prediction Hybrid ML, explainability
[41] Temp forecasting (multi-zone) LSTM (seq2seq) None Temp prediction Seq2seq, uncertainty-aware
[42] Al anomaly detection review DL, RF, Clustering None Fault detection Dataset, reproducibility
[43] GA-tuned PID on FPGA None FPGA + GA  PID control Real-time PID tuning

[44] GA vs PSO for HVAC None GA Setpoint optimization = MOGA vs NSGA-II/III
[45] GA-based model validation None GA Fault localization Detects mismatches

[46] GA on FPGA (parallel) None FPGA+GA  GAtasks 170,000x speedup

[47] FPGA-based SEMS for microgrid  None FPGA Load management Fast SEMS

3 Methodology

Real-time HVAC control in buildings requires immediate response to fluctuating energy signals such as occu-
pancy, weather, and internal load changes. Delays in inference or actuation can lead to energy waste or occupant
discomfort. Conventional CPU- or cloud-based ML pipelines often introduce latency that is incompatible with
these dynamic conditions. To address this, we integrate fast machine learning (FastML) into our energy optimisa-
tion framework. Implemented via a random forest regressor on FPGA hardware, FastML delivers sub-millisecond
inference latency and high throughput—enabling the evaluation of thousands of candidate setpoints generated
by the genetic algorithm in real time. This allows prompt selection of optimal control actions, ensuring timely
and energy-efficient HVAC operation. By supporting ultra-fast, localized decision-making, FastML enhances the
responsiveness of smart buildings and directly contributes to emissions reduction and sustainability goals.

3.1 Overview of the FastML-GA framework

The proposed methodology combines fast machine learning with genetic algorithms to optimize energy con-
sumption in buildings by determining HVAC setpoints in real time. The overall system architecture is depicted in
Fig. 1, and is composed of three key components:

1. Surrogate model module (Random forest regressor): A trained multi-output random forest regressor is used to
approximate the building performance metrics (e.g., electricity consumption, thermal energy use, and thermal
comfort) for a given set of HVAC setpoints.

2. Hardware acceleration module (HLS and FPGA): The trained model is exported to synthesizable C++ using
High-Level Synthesis (HLS) and deployed on FPGA hardware. This enables low-latency, high-throughput
inference via batched AXI-Stream interfaces.

3. Genetic algorithm (GA) optimization module: A lightweight GA searches the HVAC setpoint space to mini-
mize energy usage while maintaining thermal comfort. Candidate solutions are evaluated in batches using the
FPGA-accelerated surrogate model.

) Springer Neural Computing and Applications



https://doi.org/10.1007/500521-025-11737-x Page 7 of 31 25

FPGA-Accelerated HVAC Optimization Framework
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* 3464 samples/batch « Electrical consumption * PMV optimization * Hardware speedup
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Data Flow & Integration
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« Relative humidity * Air temperature (16-28°C) « RF inference « Performance metrics
*Room temperature | * Setpoints bounds | * Output denormalization * Energy savings

Fig. 1 System architecture illustrating the FPGA-accelerated HVAC optimization framework. A random forest-based sur-
rogate model is deployed on the FPGA to enable high-throughput batch evaluation of candidate solutions generated by the
genetic algorithm

Table 2 FIDIA sports facility characteristics

Attribute Description
Location Rome, Italy
Building Wooden external walls and roof (9 cm thick), concrete floor, single-glass windows (thermal transmittance: 5.7 W/m?2K, solar
structure gain: 0.7)
Geometry Gable roof (Hpmin = 3 m, Hmax = 6 m), window surfaces ~ 70 m?
Facilities Indoor pool (25 m x 16 m, 760 m?3), learning pool (16 m X 4 m, 64 m?), gym, fitness room (486 m?), volleyball court

(8960 m?), outdoor tennis and five-a-side courts
Metering Electricity, thermal, and water metering; co-generation units; solar thermal collectors; gas boilers; PMV sensors; 1-h sampling
Monitoring 72 days, covering occupancy, temperature, humidity, and energy consumption during operational hours (Monday—Friday
period 08:00-22:00, Saturday 08:00—18:00, Sunday 10:00—13:00)

3.2 Random forest surrogate model for HVAC prediction

This module operates in coordination with the data processing and genetic algorithm (GA) modules. It learns the
mapping from HVAC control and environmental inputs to energy and comfort outputs, acting as a fast and reli-
able surrogate model for optimization.

This study utilizes a dataset from the FIDIA sports facility in Rome, Italy, described by [48]. The facility
features wooden external walls and roof (9 cm thick), swimming pools, gymnasiums, and multi-purpose courts.
It employs cogeneration units, solar thermal collectors, gas boilers, and advanced metering systems (Table 2).
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Table 3 PMV thermal com-  PMYV value Thermal sensation
fort scale +3 Hot

+2 Warm

+1 Slightly warm

0 Neutral

-1 Slightly cool

2 Cool

-3 Cold
Fig.2 Estimated FPGA FPGA Resource Utilization vs Number of Decision Trees

resource utilization for dif-

ferent numbers of decision iy

trees in a 3-output random 10000 | —4— BRAMS -
forest model. LUTs and FFs —— DSPs (x10) I
are shown on the left y-axis,

while BRAMs and DSPs are 8000 200

plotted on the right y-axis.
Resource usage scales lin-
early with model complexity

6000 - 150

LUTs / FFs

4000 1

S
)
BRAMs / DSPs (x10)

2000 - I 50

[Note- DSP values multiplied by 10 for wsnb:lnty]
0 60 120 180
Number of Trees

The dataset, generated through 72 days of high-fidelity HVAC simulation, contains approximately 4320 hourly-
aggregated entries.

The RFR model predicts electricity consumption in kWh from HVAC fans and compressors(Elec_Cons),
thermal energy consumption in kWh for heating and cooling loads (T'herm__Eng _Cons), and PMV (Predicted
Mean Vote) from environmental and control inputs, while the GA module optimizes HVAC settings to minimize
energy consumption and maintain thermal comfort. The PMV metric quantifies thermal comfort on a 7-point
scale ranging from —3 (cold) to 43 (hot), as shown in Table 3, and is widely adopted in HVAC research [49].

Data preprocessing included removing incomplete entries, normalizing features and targets using the Min-
MaxScaler from the scikit-learn Python package, and splitting the dataset into 80% training and 20%
testing subsets. Output targets were jointly scaled to preserve their relative magnitudes.

The RFR was selected for its robustness to overfitting, capacity to model both linear and nonlinear relation-
ships, and native support for multi-output regression via the MultiOutputRegressor wrapper [50]. Each target
output is predicted by an ensemble of 20 decision trees with a maximum depth of 6, totaling 60 trees. This con-
figuration balances predictive accuracy with hardware feasibility on FPGA.

Empirical tests showed that model accuracy plateaued beyond 20 trees per output and depth 6, with R? and
RMSE metrics stabilizing. Unlike neural networks that typically require quantization for speedup, random forests
use ensemble averaging and are inherently quantization-free [51]. FPGA synthesis confirmed a linear growth in
LUTs, flip-flops, BRAMs, and DSP usage with tree count, validating the 60-tree configuration (Fig. 2).

The trained RFR model was evaluated using Root Mean Square Error (RMSE), Mean Absolute Error (MAE),
and the R? coefficient of determination. Results showed strong alignment between predictions and actual values
(Table 4), with high throughput suitable for real-time applications.
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Table 4 Performance metrics of the RFR surrogate model

Target variable RMSE MAE R2

Elec_Cons 0.0027 0.0004 0.9826
Therm_Eng_Cons 1.5683 0.9280 0.9714
PMV 0.2330 0.1791 0.9673

RMSE and MAE are reported in kWh for Elec_Cons and Therm_Eng_Cons, and in PMV units for thermal comfort (PMV)

Linear regression was evaluated as a baseline model; however, it could not adequately capture the nonlinear
interactions among HVAC variables such as airflow, supply air temperature, occupancy, and external condi-
tions [52, 53]. Moreover, the wide disparity in target variable magnitudes (e.g., Elec Cons and PMV in the range
[—6.4,2.7] versus Therm__Eng Cons exceeding 39) introduced fixed-point scaling challenges during FPGA
deployment, reducing accuracy when using a unified representation [54, 55]. Artificial Neural Networks (ANNs)
were also considered, but their reliance on large numbers of multiplications and additions requires extensive DSP
slices and LUT resources, making them far less efficient for lightweight FPGA platforms without aggressive
quantization or pruning [56]. By contrast, random forests perform only threshold comparisons, minimizing DSP
usage while remaining robust to seasonal variability and sensor noise [57]. This robustness is further supported
by recent reviews highlighting sensor reliability and deployment challenges in building control systems [58, 59].
For these reasons, random forest was selected as the surrogate model.

For FPGA deployment, all trained decision trees were exported into fixed-format C++ header and source
files. Each tree was encoded into a custom data structure using static arrays for node features, thresholds, child
indices, leaf scores, and decision flags. Arrays were padded to 128 nodes to enable uniform indexing and avoid
out-of-bounds behavior during traversal in C++, as required by Vivado HLS. Trees were grouped into a structure
of target trees[N TARGETS] [N TREES PER TARGET]. Normalization constants were exported to
enable real-time scaling on hardware.

The preprocessed test data was exported as C++ header files for direct simulation and synthesis use. Prediction
timing was benchmarked on CPU for comparison. Three NumPy arrays—scaled test inputs, RFR predictions, and
ground-truth labels—were saved for validating inference accuracy between Python and FPGA implementations.

3.2.1 HLS and hardware-accelerated implementation

We implemented a hardware-accelerated random forest regressor (RFR) on a PYNQ-Z1 FPGA to enable real-
time HVAC optimization. As discussed in Sect. 3.2, simpler alternatives such as linear regression and ANNs were
considered; however, linear regression could not capture the nonlinear HVAC dynamics effectively, while ANN
models posed significant resource demands and required quantization and pruning, which may reduce model
accuracy on FPGA deployment. Consequently, random forest was selected as a more practical balance between
accuracy, robustness, and resource efficiency. The model predicts electricity consumption (kWh), thermal energy
consumption (kWh), and Predicted Mean Vote (PMV) for thermal comfort assessment. The RFR was trained
using scikit-learn in Python and subsequently exported to synthesizable C++ code using Vivado High-
Level Synthesis (HLS). For deployment, we mapped 20 decision trees per output to hardware, totaling 60 trees,
which achieves an optimal balance between inference accuracy and FPGA resource efficiency.

During model export and deployment, we encountered significant challenges due to the differing scales of
the target variables: Elec Cons, Therm Eng Cons, and PMV. Specifically, Elec Cons and PMV exhibit
small magnitudes, with PMV ranging from —6.4 to +2.7, while Therm Eng Cons can exceed 39. This dispar-
ity complicated the selection of a unified fixed-point format that could accommodate all targets with sufficient
precision and dynamic range.

Initially, we adopted a fixed-point representation with 18-bit width and 8-bit integer portion for features and
thresholds (ap fixed<18, 8>, where the notation ap fixed<Total, Int> indicates a fixed-point num-
ber with Total total bits and Int integer bits, with the remaining bits allocated to fractional precision, and
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18-bit width with 12-bit integer portion for scores (ap fixed<18, 12>). While this format provided the higher
fractional resolution necessary for accurately representing Therm Eng Cons, it resulted in increased FPGA
resource consumption.

To address this limitation, we applied Min-Max normalization to both input features and output targets during
training, and implemented the corresponding normalization process in hardware. This transformation aligned
the ranges of all targets, enabling the adoption of a more resource-efficient configuration with 16-bit width and
6-bit integer portion (ap_fixed<16, 6>) for all data types. This reduced-precision setup preserved high predic-
tion accuracy across all outputs, including the previously problematic Therm Eng Cons, while significantly
decreasing hardware resource utilization.

All decision trees exported from Python were preprocessed with Min-Max normalization, and hardware mod-
ules were designed to apply normalization to input features before inference and to de-normalize outputs after
prediction. This approach ensured full compatibility with fixed-point arithmetic on FPGA while maintaining high
inference fidelity. For targets with larger dynamic ranges—such as Therm Eng Cons-this precise normaliza-
tion was critical to avoid quantization errors. The normalized values allow the 16-bit fixed-point representation
to retain sufficient fractional precision and dynamic range for real-time embedded inference.

The normalization and de-normalization processes are mathematically defined as:
X . X - Xmin
norm Xrange ( 1 )

Y = Ynorm ' Y}ange + Ymin

The scaling constants X ,in, Xrange, Ymin, and Yrange were extracted from the MinMaxScaler and stored in a
hardware-accessible header file. The specific values are:

Xpin = [0.0, 21.5072, —3.9189, 1.5, 4.8266] )
Xrange = [11.0,78.4928, 43.9189, 2.2842, 30.0955] 3)
Yt = [0.0349,0.01, —6.4031] (4)

Yiange = [0.0547,39.4573,9.1423) (5)

The complete hardware inference pipeline is optimized using several HLS directives and modular design strate-
gies. Each decision tree structure—comprising feature indices, thresholds, child node indices, and leaf values—is
exported into static C++ arrays, which are used to reconstruct the model on FPGA.

During Vivado HLS synthesis, the core inference function is optimized using the following directives: (i) HLS
PIPELINE II=1 enables full pipelining to process one input sample per clock cycle; (i1) HLS ARRAY PAR-
TITION complete ensures simultancous access to all tree nodes and feature arrays for parallel tree evalu-
ation; (iii) HLS UNROLL unrolls tree evaluation loops to exploit the parallelism inherent in the FPGA fabric;
(iv) HLS RESOURCE core=AddSub_ DSP maps arithmetic operations to DSP slices, reducing LUT usage
and improving timing; and (v) HLS DATAFLOW enables concurrent execution of different pipeline stages for
throughput maximization.

To support high-speed data transfers, the system employs AXI-Stream interfaces combined with Direct Mem-
ory Access (DMA). This configuration eliminates CPU bottlenecks during inference and enables high-throughput
batch predictions. Unlike AXI-Lite, which is suitable only for low-frequency transactions, AXI-Stream provides
sufficient bandwidth to handle thousands of samples efficiently.

The tree traversal algorithm is implemented using a single-pass, loop-based structure to ensure bounded latency
and avoid recursion. The procedure is detailed in Algorithm 1:
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Algorithm 1 Hardware-optimized tree traversal

Require: Normalized features features[N_FEATURES], tree index tree_idx, target
index target_idx.
Ensure: Predicted score.
1: currentNode < 0
2: for i = 1 to MAX_TREE_DEPTH do

3: if isLeaf (currentNode, tree_idx, target_idx) then

4: return getLeafValue(currentNode, tree_idx, target_idx)

5: end if

6: feature_idx ¢ getFeatureIndex(currentNode, tree_idx, target_idx)
7 threshold < getThreshold(currentNode, tree_idx, target_idx)

8: if features[feature_idx] < threshold then

9: currentNode ¢— getLeftChild(currentNode)

10: else

11: currentNode < getRightChild(currentNode)

12: end if

13: end for
14: return getLeafValue(currentNode, tree_idx, target_idx)

Table 5 summarizes the FPGA resource utilization after synthesis. The efficient use of normalization and fixed-
point arithmetic enabled substantial resource savings, allowing the model to be deployed on low-power FPGAs
with sufficient headroom for additional logic.

This FPGA-based implementation of random forest regression delivers sub-millisecond inference latency and high
throughput, supporting accurate prediction of HVAC control targets in real-time with limited hardware resources.
The model’s combination of robustness, efficiency, and low latency makes it ideally suited as a surrogate for genetic
optimization in energy-efficient HVAC systems. The successful deployment demonstrates the viability of machine
learning acceleration on resource-constrained embedded platforms for real-time building automation applications.

3.3 Genetic algorithm optimization

A custom seasonal genetic algorithm (GA) was developed to optimize the setpoints of a Heating, ventilation, and
air conditioning (HVAC) system, leveraging predictions from a random forest (RF) surrogate model accelerated
by a field-programmable gate array (FPGA). The FPGA enhances the speed of RF predictions, while the GA runs
on the embedded ARM Cortex-A9 CPUs of the PYNQ-Z1 processing system (PS), determining optimal hourly
air flow rates and temperatures across seasons. The optimization targets operational hours from 08:00 to 17:00
(H = 10 h), adapting to seasonal energy patterns and comfort requirements for heating and cooling in commer-
cial buildings. The optimization process is illustrated in Fig. 3, which outlines the workflow from data initializa-
tion to result generation, highlighting FPGA setup, seasonal optimization, and GA operations.

Table 5 FPGA resource utilization summary

Resource type BRAM 18K DSP48E FF LUT URAM
DSP - 3 - - -
Expression - - 0 1108 -
FIFO 0 - 40 240 -
Instance - 3 0 270 -
Memory 90 - 0 0 -
Multiplexer - - - 316 -
Register 0 - 4868 1440 -
Total 90 6 4908 3374 0
Available 280 220 106,400 53,200 0
Utilization (%) 32.1 2.7 4.6 6.3 0
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3.3.1 Genetic algorithm optimization for FPGA HVAC

The optimization is formulated as a constrained, multi-objective minimization task, balancing electrical consumption,
thermal energy (heating or cooling), thermal comfort, and setpoint smoothness. The decision variables form a vector

T = {f17t17f27t27"'7fH7tH} ERQH

where f; and t; are the air flow rate (m3/s) and air temperature (°C) for hour i, respectively. The season-specific
objective function is:

H H H
min = fs(z) = wgs Z E; + wr Z T7 + 100 Z d(PMV;) +5S(x)

=1 =1 =1

H (6)
- 5s,summer -0.1 Z maX(SO — 1, 0)
=1
s.t. fz S [fmin,37 fmax,s]; ti € [tmin,s;tmax,s] if occupied
fi € [fmins — 0.3, fmin,s]s i € [tmin,s — 2, tmins] if unoccupied

where FE; is electrical consumption (kWh), 77 is season-specific thermal energy (kWh), ¢(PMV;) is the comfort
penalty, S(x) is the smoothness penalty, and 0 summer 1S 1 for summer and 0 otherwise. The weights are:

0.7,0.3 (summer)
wpg.s,wr,s =< 0.4,0.6 (winter)
0.5,0.5 (spring/autumn)

The summer efficiency bonus reduces cooling load for lower air temperatures, reflecting practical HVAC opera-
tion where cooler supply air decreases compressor demand [14].

3.3.2 Season-adaptive energy calculation

The thermal energy term 77 adapts to seasonal HVAC modes, accounting for heating versus cooling:

Summer season (June—August): In summer, thermal energy is typically negative, representing cooling load.
The absolute value is used to quantify cooling energy, as heating is negligible in temperate climates [60]. The
objective function prioritizes electrical consumption (fans, compressors):

TP — |thermal;|  (cooling energy)

Fsummer(2) = 0.7 E; +0.3> TP 4+ 100 Y ¢(PMV;) + 55(x)

i=1 i=1 i=1

H
— 0.1 max(30 — t;,0)

i=1

Winter season (December—February): Heating dominates, with positive thermal energy values. The objective
emphasizes thermal energy:
T — max(thermal;, 0)  (heating energy) (8)
H H H
fwinter(z) = 04> E; 4+ 0.6 Y T 4100 Y~ ¢(PMV;) + 55(x)

=1 i=1 i=1

) Springer Neural Computing and Applications



https://doi.org/10.1007/500521-025-11737-x Page 13 0f 31 25
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Fig. 3 Flowchart of the FastML-Based HVAC GA Optimization System, showing the hybrid PS—PL deployment: the GA
executes on the PS (ARM Cortex-A9), while the RF surrogate model runs on the FPGA (PL) for batched fitness evaluations
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Spring/Autumn seasons (March—-May, September—November): A balanced approach handles mixed heating/

cooling:
& spring/autumn
T;

= |thermal;| (mixed modes) )

H H H
fspring/autumn(x) =05 Z E; 4+ 0.5 Zﬂsprmg/autumn 1100 Z qﬁ(PMV;) n 55(33)

=1 =1 i=1
3.3.3 Season-specific operational constraints

Operational bounds, informed by ASHRAE Standard 55-2020 [14, 15], adapt to seasonal climatic conditions
(Table 6):

For unoccupied periods, bounds are tightened to reduce energy use while maintaining minimal ventilation:
funoccupied € [fmin,s - 037 fmin,s] (10)

75unoccupied € [tmin,s - 2; tmin,s] (11)

These constraints ensure compliance with thermal comfort standards and energy efficiency goals, adapting to
occupancy patterns detected in the input dataset.

3.3.4 Enhanced comfort and smoothness penalties

Thermal comfort is enforced using the Predicted Mean Vote (PMV) model, with a comfort range of [—0.5, 0.5]
per ASHRAE Standard 55-2020 [14], corresponding to less than 10% predicted percentage of dissatisfied occu-
pants. The comfort penalty counts violations:

S(PMV;) =100 - 11 parvij=0.5) (12)

The high weight (100) prioritizes occupant satisfaction, penalizing any hour outside the comfort zone to reflect
practical building management priorities [61]. The binary penalty ensures robust comfort enforcement over mar-
ginal PMV improvements within the acceptable range.

The smoothness penalty promotes stable HVAC operation, reducing wear on equipment:

H H
S(x) =5 > |fi = ficrl + D [t — tii] (13)
=2 =2

This penalty, weighted at 5, balances energy savings with operational stability, preventing abrupt setpoint changes
that could stress HVAC components.

Table 6 Season-specific HVAC operational bounds

Season Months Air flow rate (m3/s) Air temperature (°C) Energy focus
Winter Dec, Jan, Feb [1.2,2.7] [20, 25] Heating (60%)
Spring Mar, Apr, May [1.3,2.7] [18, 24] Balanced (50/50)
Summer Jun, Jul, Aug [1.5,2.7] [16,24] Cooling (70%)
Autumn Sep, Oct, Nov [1.4,2.5] [18,26] Balanced (50/50)
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Table 7 Genetic algorithm Parameter Value
parameters Population size 50 individuals
Number of generations 50

Elite ratio

Crossover rate
Mutation rate
Mutation distribution

30% (15 individuals)
0.8 (uniform crossover)
0.2

Gaussian, o0 = 0.1

PMV penalty weight 100
Smoothness weight 5
Working hours 08:00—17:00 (10 h)

Decision variables

20 (10 h x 2 setpoints)

3.3.5 Enhanced genetic algorithm parameters

The GA uses a robust configuration to ensure convergence to high-quality solutions, with parameters tuned for
the HVAC optimization problem (Table 7):

The population size (50) and generations (50) are larger than typical GA settings (e.g., 20-30 individuals, 20-30 genera-
tions [62]), enhancing exploration of the 20-dimensional search space. The elite ratio (30%) preserves top solutions, while
crossover (0.8) and mutation (0.2) balance exploitation and exploration. The Gaussian mutation with o = (.1 introduces
controlled perturbations, ensuring fine-tuned adjustments within seasonal bounds.

Algorithm 2 Seasonal FPGA-accelerated genetic algorithm for HVAC optimization based on PS—PL

Require: Seasonal data D_s, environmental conditions X_env, season s, FPGA model
M.

Ensure: Optimized seasonal setpoints .

1: Load seasonal data for months corresponding to season s

2: Extract valid days with minimum 8 hours of data

3: Initialize seasonal bounds per Table 7

4: for each valid day (month, day) do

5: Extract hourly environmental conditions X_env for hours 8-17
6 Set adaptive bounds based on occupancy

7 Initialize population P = {1, x2,...,250} within bounds

8 for g =1 to 50 do

9: Normalize P using min-max ranges (e.g., occupancy [0, 11], humidity [21.5,

100))

10: Perform FPGA batch prediction Y = M(P)
11: Compute fitness £_s(x) using Eq. (6)
12: Select top 15 elite individuals
13: Generate 35 offspring via crossover and mutation
14: Form new population from elites and offspring
15: end for
16: Store daily optimization results

17: end for
18: Aggregate seasonal performance metrics
19: return best performing daily setpoints x}
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4 Results and discussion

The FPGA-accelerated genetic algorithm optimization was applied across all four seasons using 18 valid days per
season from the HVAC dataset. The system demonstrated consistent performance improvements across different
seasonal conditions, with electricity savings ranging from 49.6% to 56.4% and significant thermal energy reduc-
tions in heating and cooling dominated periods.

4.1 Validation of hardware prediction accuracy

Figure 4 compares the mean predicted values from the Python-based random forest model (scikit-learn) and our
hardware-accelerated FastRFR framework deployed on FPGA. The near-perfect alignment of both curves across
200 test samples demonstrates excellent consistency between CPU and FPGA predictions, validating the correct-
ness of the model export process and fixed-point quantization. The “mean predicted value” represents the average
of the model’s three outputs: electricity consumption, thermal energy use, and PMYV, for easier interpretability.

In addition to high accuracy, our FastRFR framework achieved a peak inference throughput of 1,671,008
predictions/sec on the PYNQ-Z1 platform using ap fixed<16, 6>, with an on-chip power consumption of
1.821 W and an energy efficiency of 1.089 pJ/sample. This significantly outperforms prior work [57], which
reported 490,196 predictions/sec, 1.824 W power, and 3.721 pJ/sample on the same hardware. FastRFR’s supe-
rior performance stems from aggressive HLS optimizations, including initiation interval (II) = 1 pipelining, full
array partitioning, stream-based dataflow, and DSP-accelerated fixed-point arithmetic. These choices minimize
latency and resource overhead—unlike the DM A-controlled, 5-stage Decision Tree Processor (DTP) architecture
used in that study.

The performance gap can be attributed to architectural differences. The DTP design incorporates a finite state
machine (FSM) in the DECODE stage and shared memory controllers (e.g., BRAM in the MEM ACCESS stage),
which introduce control complexity and inference latency. FSMs inherently incur overhead due to clock-driven
state transitions, increasing power consumption and delay [63, 64]. Moreover, RAM-based FSM implementa-
tions often suffer from performance limitations due to memory decoding and access latency [65]. While the DTP
pipeline reports a two-cycle BRAM access latency, per-decision latency is not specified. Nonetheless, the use
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Fig. 4 Comparison of mean predicted values from the Python-based random forest (scikit-learn) and the FPGA-deployed

FastRFR model. The close alignment across 200 test samples confirms high prediction consistency and accurate model
export. Mean values are averaged over electricity, thermal energy, and PMV outputs
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FastRFR: HLS-Optimized Random Forest Architecture

INPUT FEATURE TREE PARALLEL OUTPUT
AXI Stream . EXTRACTION TRAVERSAL PREDICTION AXI Stream
Pipelined (II=1) DSP-Accelerated

N_FEATURES = 5 Complete Partition ~ MAX_DEPTH=6  N_TARGETS = 3 32-bit AXI

1
CONTINUOUS STREAM-BASED DATAFLOW E
No DMA Overhead * 11 =1 H

Fig. 5 Architecture of the FastRFR framework for random forest acceleration. The design integrates several HLS optimiza-
tion directives: Pipelined (II=1) = loop pipelining with initiation interval of one cycle; Array Partitioning = dividing arrays
into smaller memories for parallel access; Cyclic Partitioning = distributing array elements across memory banks cyclically;
DSP-Accelerated Arithmetic = mapping arithmetic operations to dedicated DSP slices

Table 8 Sensitivity analysis of GA parameters on electricity savings and comfort hours

Pop. size Mutation rate PMV weight Savings (%) Comfort hours
10 0.05 50 413 7
20 0.05 50 53.2 9
40 0.05 50 473 8
10 0.10 100 473 8
20 0.10 100 53.2 9
40 0.10 100 41.3 7
10 0.20 200 53.2 9
20 0.20 200 47.2 8
40 0.20 200 53.2 9

of FSM-based stage control and memory arbitration adds architectural overhead—particularly in streaming and
parallel processing scenarios.

These results underscore not only the functional correctness of the exported FastRFR model, but also its
architectural efficiency achieving higher throughput and energy savings through a lean, stateless, and dataflow-
optimized FPGA implementation (see Fig. 5).

4.2 Sensitivity analysis

To evaluate the robustness of the proposed optimization framework, we conducted a sensitivity analysis by vary-
ing key GA parameters, including population size, mutation rate, and the PMV penalty weight in the objective
function. Table 8 reports the detailed results, and Fig. 6 provides a heatmap visualization. The results show that
the framework consistently achieves electricity savings in the range of 41-53% across different GA configura-
tions, while maintaining 7-9 comfort hours within the accepted thermal comfort range. Savings remain close to
50% even under extreme parameter variations, confirming that the optimization performance is robust and not
overly sensitive to GA parameter tuning.

In terms of scalability, although experiments were conducted on the PYNQ-Z1 board, which is among the
smallest FPGA platforms with limited resources, the design fit comfortably and consumed very low resources due
to the optimizations applied in the random forest accelerator. On higher-capacity industrial FPGAs (e.g., Xilinx
Virtex UltraScale or Intel Stratix families), the framework can scale efficiently by instantiating multiple parallel
inference engines and supporting larger GA populations, thereby improving throughput and solution quality. To
further validate adaptability, simulations were conducted under high-load and edge-case conditions, including
occupancy spikes, heat waves, and cold snaps across different seasons. Results demonstrated that the framework
consistently maintained stable optimization, ensuring PMV remained within the accepted thermal comfort band
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Fig. 6 Sensitivity analysis of GA parameters (population size, mutation rate, PMV weight) on electricity savings. Results
show consistently high savings across configurations, confirming the robustness of the optimization framework

and achieving significant reductions in both electricity and thermal energy consumption compared to baseline
operation. These findings confirm the resilience of the proposed system under demanding operating conditions.

Although the experiments in this work were conducted using a simulation-derived dataset, the proposed frame-
work is readily adaptable to real-time deployment. In practice, live sensor streams (e.g., temperature, humidity,
occupancy, COs, and energy metering) can be fed directly into the ARM processing system (PS) of the PYNQ-
Z1 or a higher-capacity FPGA platform. These signals may be interfaced via standard IoT protocols or through a
middleware layer such as a Raspberry Pi, as demonstrated by Mshragi et al. [29] for real-time smart meter data
preprocessing and FPGA-based energy prediction in building management systems. The FPGA-accelerated ran-
dom forest then processes incoming data in real time to predict energy consumption and comfort indices, while
the genetic algorithm running on the PS evaluates and selects optimal HVAC setpoints. The resulting setpoints
are transmitted to the building controllers for actuation, thereby completing the loop from acquisition to predic-
tion, optimization, and control.

In our experiments, the optimization was performed with an hourly granularity, which aligns with practical
building control horizons and minimizes unnecessary switching. However, due to the high inference through-
put of the FPGA implementation (>1.6M predictions/s), the framework can also support finer resolutions (e.g.,
15 min) without computational bottlenecks. This flexibility enables the system to respond effectively to rapid
variations in occupancy or environmental conditions. The proposed framework incorporates several mechanisms
for real-time robustness. First, operating on hourly windows (08:00-18:00) inherently smooths high-frequency
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fluctuations and noise. Second, error handling and data validation are integrated into the pipeline: missing or
corrupted records are skipped, and safe fallback values are returned in case of FPGA prediction errors. These
mechanisms allow the optimizer to continue functioning under imperfect data conditions. For deployment with
live sensors, the same data interface used for simulation can be connected to real-time measurements, with
additional filtering and anomaly detection modules incorporated if required. Finally, because the framework
is modular—separating prediction (random forest acceleration), optimization (genetic algorithm), and control
into independent components with standardized input—output interfaces—it can be integrated with commercial
BMS platforms. In this way, it can be deployed as an edge-level optimization module that operates alongside
existing building control systems rather than replacing them, thereby facilitating practical integration into legacy
infrastructure.

Although our framework was demonstrated on a single-zone HVAC system, it is readily extensible to multi-
zone scenarios due to its modular design and low FPGA resource utilization (32.1% BRAM, 2.7% DSP, 6.3%
LUT). The random forest accelerator, implemented as an overlay on the PYNQ-Z1 development board (which
integrates a Xilinx Zyng-7020 SoC), currently processes five input features (occupancy, relative humidity, room
temperature, air flow rate, and supply air temperature) using AXI-Stream DMA and HLS-optimized parallel
inference in fixed-point arithmetic (ap fixed<16, 6>). For a four-zone configuration, this input expands to 20
features, which can be handled by replicating inference cores or batching inputs without requiring a redesign of
the architecture. Given the Zynq-7020’s available resources (= 53k LUTs, 220 DSPs), the estimated utilization
remains well within capacity when scaled to four zones, particularly with quantization optimizations, thereby
preserving sub-millisecond inference latency. The GA, which currently optimizes 20 decision variables per zone
(temperature and airflow setpoints), naturally scales to higher dimensions (e.g., 80 variables for four zones) by
increasing the population size, as validated in our sensitivity analysis. Inter-zone dependencies can be incorpo-
rated into the fitness function through thermal coupling terms, ensuring balanced optimization of comfort and
energy across zones. Finally, hardware extensions such as motorized dampers for zone airflow control and wire-
less sensors for real-time data collection can be seamlessly integrated via the existing GPIO, UART, or Ethernet
interfaces. These characteristics confirm that the proposed framework can be adapted to multi-zone HVAC sys-
tems in large buildings, further enhancing its generality and practical applicability. Moreover, future extensions
could incorporate additional contextual factors that strongly influence HVAC performance and occupant comfort.
For example, solar radiation data would enable the optimizer to anticipate passive heat gains and adjust cooling
loads accordingly. Dynamic energy pricing signals could be integrated to shift demand to lower-cost periods
without sacrificing comfort. Similarly, building usage patterns (e.g., occupancy schedules or equipment usage)
provide valuable prior knowledge for constraining optimization decisions and reducing unnecessary setpoint
changes. In large public or commercial buildings, socio-cultural comfort factors (such as regional adaptive com-
fort expectations, clothing habits, or varying comfort ranges across different occupant groups) could be incorpo-
rated into the fitness function to better align energy savings with human well-being.

4.3 Seasonal performance overview

Figure 7 presents a comprehensive four-panel analysis of the seasonal HVAC optimization performance. The
top-left panel demonstrates remarkably consistent electricity consumption reductions across all seasons, with
winter achieving 51.2% savings, spring 50.0%, summer 49.6%, and autumn 51.7%. This consistency validates
the robustness of the genetic algorithm approach regardless of seasonal variations in environmental conditions
and operational requirements.

The top-right panel illustrates thermal energy reduction patterns, where seasonal differences become pro-
nounced due to varying heating and cooling demands. Winter demonstrates the highest absolute thermal energy
savings at 150.3 kWh, reflecting the substantial heating loads characteristic of cold weather operations. Spring
follows with 100.9 kWh savings, indicating moderate thermal requirements during transitional weather. Autumn
achieves 74.8 kWh savings as buildings transition from cooling to heating modes. Notably, summer shows "N/A"
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Fig.7 Seasonal HVAC optimization performance comparison: (Top-left) Electricity consumption reduction showing consis-
tent 49.6—51.7% savings across seasons; (Top-right) Thermal energy reduction with highest savings in winter (150.3 kWh)
and summer marked N/A due to minimal thermal energy use; (Bottom-left) Comfort hour improvements ranging from 0.7
(winter) to 6.7 (summer); (Bottom-right) Normalized radar chart comparing multi-dimensional performance with autumn
and spring showing most balanced profiles

for thermal savings because the dataset analysis revealed negligible thermal energy consumption during peak
summer periods, where HVAC systems operate almost exclusively in cooling mode with minimal thermal energy
requirements.

The bottom-left panel reveals significant variations in comfort hour improvements across seasons. Summer
optimization achieved the most dramatic enhancement with 6.7 additional comfort hours, demonstrating the algo-
rithm’s effectiveness in managing challenging high-temperature conditions where baseline systems frequently
failed to maintain acceptable PMV levels. Autumn follows with 5.2 additional comfort hours, spring with 3.9 h,
and winter with 0.7 h. The modest winter improvement reflects the inherently better baseline comfort perfor-
mance during heating-dominated periods, where thermal management is generally more predictable than cooling
operations.

The bottom-right radar chart provides a normalized multi-dimensional performance comparison across all
optimization objectives. Each axis represents a different performance metric scaled from 0 to 1, where values
closer to the perimeter indicate superior performance. The electricity savings axis shows all seasons performing
excellently with values near 1.0, confirming consistent energy efficiency gains. The thermal savings axis clearly
distinguishes heating-dominated seasons (winter and autumn) from cooling-dominated periods (summer show-
ing minimal values). The comfort improvement axis highlights summer’s exceptional performance in addressing
thermal discomfort challenges. The radar visualization reveals that autumn and spring achieve the most balanced
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Best Day Performance by Season (Hourly Analysis)
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Fig. 8 Best day performance by season (hourly analysis): Winter (M01D05), Spring (M05D03), Summer (M06D06), and
Autumn (M09D04) showing electricity consumption, PMV comfort levels, and optimization effectiveness throughout
08:00—17:00 operational periods. Each plot demonstrates season-specific optimization characteristics with consistent energy
savings and improved thermal comfort management

performance profiles, excelling across multiple dimensions simultaneously, while winter and summer show more
specialized optimization characteristics aligned with their dominant thermal loads.

4.4 Best day hourly performance analysis

Figure 8 presents the hourly performance dynamics for the best performing day in each season, illustrating how
optimization strategies adapt to different temporal and seasonal patterns. Each seasonal subplot displays electric-
ity consumption (solid lines), PMV comfort levels (dashed lines), and their corresponding optimization trajecto-
ries throughout the 10-h operational period from 08:00 to 17:00.

Winter’s best day (M01DO05, 55.9% savings) demonstrates dramatic morning energy reductions where electric-
ity consumption drops from 0.088 kWh to 0.039 kWh during peak heating startup periods (08:00—10:00). The
PMYV profile shows successful comfort maintenance with optimized values consistently within the acceptable
range (—0.5 to 0.5), while baseline conditions exhibit excessive cooling sensations below —0.5 during morning
hours. The optimization achieves this through strategic reduction of air flow rates and temperature adjustments
that minimize heat loss while preserving thermal comfort.

Spring’s best day (M05D03, 56.2% savings) exhibits the most stable optimization performance with smooth
energy transitions and exceptional comfort control. The baseline PMV values consistently exceed 0.5 (indicating
warm discomfort), while optimization maintains perfect comfort throughout all operational hours. The electricity
profile shows consistent reduction from approximately 0.089 kWh to 0.039 kWh, demonstrating the algorithm’s
ability to maintain steady performance during transitional weather conditions with mixed heating and cooling
requirements.
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Summer’s best day (M06D06, 56.4% savings) focuses primarily on electrical consumption management due to
minimal thermal energy requirements. The most significant improvements occur during peak thermal stress peri-
ods (12:00-16:00) where baseline PMV values exceed 1.0 (indicating hot discomfort), while optimization suc-
cessfully maintains comfortable conditions around —0.25. The consistent electrical consumption reduction from
0.089 kWh to approximately 0.039 kWh throughout the day demonstrates effective cooling load management.

Autumn’s best day (M09D04, 56.2% savings) shows balanced optimization across both energy dimensions with smooth
PMV transitions. The algorithm effectively manages the transition from daytime cooling needs to evening heating require-
ments, maintaining comfort while achieving substantial energy savings. The PMV profile demonstrates sophisticated
thermal control with optimized values remaining stable around —0.25 while baseline conditions show significant variation.

4.5 Individual seasonal trade-off analysis

The individual seasonal 3D Pareto analyses provide detailed visualization of the multi-objective optimization
trade-offs achieved in each season, revealing distinct seasonal characteristics and optimization patterns.

4.5.1 Winter season analysis

Figure 9 illustrates winter optimization results with the best day (M01D0S5) achieving 55.9% electricity savings
and substantial thermal energy reductions from 248.21 kWh to 125.91 kWh. The baseline points (red circles)

Fig. 9 Winter season: 3D Winter Season: 3D Energy-Comfort Trade-offs
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cluster in high thermal energy regions (15-30 kWh/10 h) with poor comfort performance, while optimized points
(red circles) concentrate in the efficient zone with thermal consumption below 10 kWh/10 h. The clear optimiza-
tion path from baseline representative (red square) to optimal representative (black star) demonstrates the algo-
rithm’s capability to navigate complex winter heating requirements while maintaining comfort constraints. The
tight clustering of optimized points indicates consistent performance across different winter operating conditions.

4.5.2 Spring season analysis

Figure 10 demonstrates spring optimization characteristics with best day (M05D03) achieving 56.2% electricity
savings and thermal reduction from 66.95 kWh to 1.99 kWh. The spring optimization shows excellent clustering
of optimized points (green squares) in the low-energy, high-comfort region. The Pareto front analysis reveals
superior convergence with optimized solutions forming a distinct cluster separated from baseline performance.
The optimization path clearly indicates the algorithm’s success in managing transitional weather requirements
while achieving perfect comfort (10/10 h) compared to poor baseline performance (0/10 h).

4.5.3 Summer season analysis

Figure 11 presents unique summer optimization characteristics with best day (M06D06) achieving 56.4% elec-
tricity savings. The thermal energy dimension shows minimal values (near zero) reflecting cooling-dominated

Fig. 10 Spring season: 3D Spring Season: 3D Energy-Comfort Trade-offs
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Fig. 11 Summer season: 3D Summer Season: 3D Energy-Comfort Trade-offs
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operations where thermal energy consumption is negligible. Optimized points (orange triangles) cluster in the
minimal thermal energy region while achieving significant comfort improvements from 0.0% to 56.4% comfort
hours. The baseline thermal consumption shows "N/A" indicating virtually no thermal energy requirements dur-
ing summer cooling operations, validating the seasonal optimization strategy focus on electrical consumption.

4.5.4 Autumn season analysis

Figure 12 reveals autumn optimization results with best day (M09D04) achieving 56.2% electricity savings and
thermal reduction from 31.23 kWh to 1.91 kWh. The autumn optimization demonstrates balanced performance
across energy dimensions with optimized points (red diamonds) achieving superior clustering in the efficient
zone. The 93.9% thermal savings and 90.1% PMV improvement indicate excellent optimization effectiveness
during transitional autumn conditions. The clear separation between baseline and optimized regions confirms the
algorithm’s adaptability to mixed heating/cooling requirements.

4.6 Multi-seasonal comparative analysis
Figure 13 provides a comprehensive view of all seasonal optimization results in a single 3D space, enabling direct

comparison of seasonal characteristics and optimization effectiveness. The multi-seasonal clustering reveals dis-
tinct patterns: winter solutions (red circles) occupy high thermal energy regions (20-25 kWh/10 h) reflecting
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Fig. 12 Autumn season: 3D Autumn Season: 3D Energy-Comfort Trade-offs
energy-comfort trade-offs Best Day: M09D04 (Elec Savings: 56.2%)
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heating requirements, summer solutions (orange triangles) cluster near zero thermal energy confirming cool-
ing-dominated operations, while spring (green squares) and autumn (red diamonds) show intermediate thermal
energy levels consistent with mixed heating/cooling demands.

The comparative analysis demonstrates the genetic algorithm’s remarkable adaptability to diverse seasonal
conditions while maintaining consistent electricity savings performance across all seasons. Each season forms
distinct clusters in the 3D space, validating the seasonal optimization strategy and confirming that the algorithm
successfully identifies season-appropriate solutions. The comfort dimension improvements are evident across all
seasons, with each achieving substantial PMV enhancements compared to baseline operations.

This comprehensive seasonal analysis validates the effectiveness of the FPGA-accelerated genetic algorithm
approach for HVAC optimization across diverse operating conditions. The system demonstrates both consistency
in electricity savings (49.6—51.7%) and remarkable adaptability to seasonal requirements. Thermal energy opti-
mization shows appropriate seasonal variation, with substantial savings in heating-dominated periods and mini-
mal consumption during cooling-dominated summer operations. Comfort improvements are significant across
all seasons, with particularly impressive gains during challenging summer conditions. The 3D Pareto analyses
confirm the algorithm’s ability to navigate complex multi-objective trade-offs while maintaining operational con-
straints and achieving superior performance compared to baseline operations.
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Fig. 13 Multi-seasonal 3D 3D Pareto Analysis: Energy vs Comfort Trade-offs by Season
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5 Conclusion

This paper introduced FastML-GA, a novel FPGA-accelerated framework designed to optimize energy and
HVAC systems by integrating embedded machine learning with a genetic algorithm. Experimental evaluations
across multiple seasons demonstrated significant and consistent electricity savings, with an average reduction of
46.8% and up to 56% on the best-performing days, contributing to building decarbonization trajectories without
compromising comfort, highlighting the framework’s practical effectiveness.

The novelty of FastML-GA lies in its hybrid PS—PL architecture, where the random forest surrogate model is
implemented as a hardware accelerator on the FPGA’s programmable logic (PL), while the lightweight genetic
algorithm executes on the embedded ARM Cortex-A9 processors of the processing system (PS). This integra-
tion achieves inference throughput rates surpassing 1.67 million predictions per second and enables real-time,
fine-grained optimization at the edge, effectively addressing the latency and computational efficiency constraints
typical of embedded building management systems.

The importance of this research extends beyond technical novelty, offering a substantial practical contribu-
tion to the field of intelligent building management. By significantly improving energy efficiency and occupant
comfort simultaneously, the framework addresses key sustainability and operational challenges facing contem-
porary buildings and aligns with decarbonization targets through reduced operational energy use. Consequently,
FastML-GA represents a meaningful advancement towards more responsive, adaptive, and energy-conscious
building environments that balance occupant well-being with environmental conditions.

The FastML-GA framework demonstrates significant potential for enhancing HVAC efficiency in buildings
through embedded machine learning and optimization. The FPGA-accelerated random forest regressor (RFR)
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achieves sub-millisecond inference latency supporting up to 1.67 million predictions per second—enabling rapid
adaptation to dynamic environmental and occupancy conditions.

The current evaluation relies on datasets that provide controlled benchmarking. However, real-time build-
ing deployments introduce challenges such as sensor noise, occupant behavior variability, and environmental
uncertainties. To address sensor noise—which impacted Therm Eng Cons accuracy—we implemented hard-
ware-based Min-Max normalization, allowing a reduction in fixed-point precision from ap fixed<18,12>
to ap_fixed<16, 6> without sacrificing accuracy. This normalization mitigates sensor scale mismatches and
target range disparities, enabling efficient inference that supports sustained energy savings in practice.

In practical situations, implementing aggressive lower setpoints during unoccupied times is difficult due to
system delays and sensor uncertainties. However, FastML-GA facilitates quick adaptations to changes in occu-
pancy and the environment, making energy-saving strategies reactive and more efficacious thus reducing avoid-
able energy use consistent with these targets. Furthermore, the ensemble nature of the random forest regression
(RFR) boosts robustness to variability and noise, outperforming CPU-based reinforcement learning methods by
enabling rapid, low-power, edge-based control that prioritizes both comfort and energy performance.

Dynamic building characteristics such as weather variation, equipment degradation, and maintenance events
need to be considered to improve long-term adaptability. Evaluating deployment on diverse embedded platforms
will help characterize trade-offs between energy efficiency, prediction speed, and system complexity. Expanding
the surrogate model to include contextual features (e.g., occupancy schedules or user preferences) may further
enhance predictive accuracy and system responsiveness in service of occupant comfort and carbon reduction.

5.1 Limitations and future work

Our hybrid FastML-GA FPGA implementation employs a fixed random forest regressor; however, model retrain-
ing can be performed offline and redeployed to the FPGA as updated parameters or bitstreams. This approach
would allow the system to adapt over time to model drift caused by evolving occupancy patterns, equipment
degradation, or changing environmental conditions while remaining consistent with decarbonization ambitions
and occupant well-being. FastML-GA could be enhanced through integration with external predictive models,
such as occupancy forecasting systems or weather prediction APIs, to further improve control robustness and
energy savings without compromising comfort. In real deployments, sensors may drift, fail, or provide noisy
readings; therefore, future extensions should incorporate redundancy (e.g., multiple sensors per key variable),
anomaly detection, or fallback to safe default control strategies to ensure fault tolerance and uninterrupted com-
fort delivery. Since FastML-GA operates at the edge, sensitive data is processed locally, reducing exposure risks
associated with transmission to centralized clouds. Nevertheless, cybersecurity and privacy remain critical, par-
ticularly in protecting FPGA bitstreams, control data, and sensitive occupancy information; secure data handling,
authentication protocols, and encrypted FPGA configuration are therefore essential for resilient, trustworthy, and
sustainable building operation.

In addition to these considerations, this study demonstrates the feasibility and performance benefits of FPGA-
accelerated HVAC optimization under controlled simulation conditions. Future analyses should include vali-
dation using long-term, real-world building data with unpredictable occupancy patterns and sensor variability,
which is essential to fully assess practical effectiveness and sustained impact on decarbonization pathways.
Although the random forest predictor is inherently robust to moderate noise, lightweight preprocessing tech-
niques (e.g., moving average smoothing or Kalman-based filtering) and systematic noise sensitivity tests can
further reinforce reliability under real-world conditions. In practical deployments, additional resilience mecha-
nisms are required to manage sensor drift, bias, and intermittent failures. Such approaches could include integrat-
ing moving average, exponential, or Kalman-based filters within the processing system (PS) pipeline prior to
FPGA inference to smooth fluctuations, correct long-term drift, and reconstruct missing data. In addition, noise
sensitivity experiments could be performed by injecting Gaussian noise, bias offsets, and dropout scenarios into
the dataset, thereby quantifying how uncertainty propagates through the random forest surrogate and affects GA
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optimization outcomes. Redundancy strategies (e.g., fusing multiple sensors for temperature or occupancy) and
anomaly detection modules could further safeguard operation by detecting faulty measurements and reverting
to safe fallback strategies. Together, these methods would ensure stable optimization decisions, preserving both
occupant comfort and energy efficiency even under adverse sensing conditions. While the current design does
not support online model adaptation, retraining can be performed offline and redeployed to the FPGA as updated
parameters or bitstreams while incremental retraining strategies or dynamic partial reconfiguration may enable
more flexible adaptation. The random forest surrogate could be extended with additional contextual features
such as weather forecasts, occupancy schedules, or user preferences to enhance adaptability in situ. Finally, edge
deployment provides advantages in latency reduction and local data processing, and creates opportunities to
strengthen resilience through redundancy, fault detection, and secure data handling for supporting human-centric,
energy-efficient operation consistent with these targets.
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