GARDY ORCA - Online Research @
CARDY® Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/184354/

This is the author’s version of a work that was submitted to / accepted for publication.
Citation for final published version:

Corro Tapia, Diego 2026. Collapsing regular Riemannian foliations with flat leaves. Revista Matematica
Iberoamericana 10.4171/rmi/1606

Publishers page: https://doi.org/10.4171/rmi/1606

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published
source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made
available in ORCA are retained by the copyright holders.




COLLAPSING REGULAR RIEMANNIAN FOLIATIONS WITH FLAT
LEAVES

DIEGO CORRO*

ABSTRACT. In this manuscript we present how to collapse a manifold equipped with a
closed flat regular Riemannian foliation with leaves of positive dimension, while keeping
the sectional curvature uniformly bounded from above and below. From this deforma-
tion, we show that in the case when the manifold is compact and simply connected the
foliation is given by torus actions. This gives a geometric characterization of aspherical
regular Riemannian foliations given by torus actions.

1. INTRODUCTION

Effective actions by compact Lie groups are a classical example of symmetry in differ-
ential topology and differential geometry. In particular a lot of consideration has been
given to torus actions since they correspond to the abelian part of a Lie group. Recently
singular Riemannian foliations have been considered as a generalized form of symmetry.
These are smooth foliations with a Riemannian metric that is “bundle like”. The justifi-
cation for considering singular Riemannian foliations as a notion of symmetry comes from
the fact that Lie group actions by isometries and Riemannian submersions are examples
of such foliations.

In the setting of singular Riemannian foliations, Galaz-Garcia and Radeschi in [22]
introduced an analogous concept to torus actions via isometries by considering singular
Riemannian foliations whose leaves are closed and aspherical manifolds. These foliations
are called A-foliations and examples of such foliations include effective torus actions by
isometries. In general due to [22] and [8], on a simply-connected manifold the leaves of an
A-foliation are finitely covered by tori, and moreover, the leaves of highest dimension are
all homeomorphic to a torus. Thus in this way, A-foliations resemble torus actions. But
in [16] examples are given of A-foliations, on closed manifolds with a non-trivial finite
fundamental group, which are not given by torus actions. From this discussion, it follows
that it is natural to ask if we may characterize those A-foliations given by a torus action.

In [22] the authors also introduced the notion of a B-foliation. These are A-foliations
such that the leaves are homeomorphic to manifolds that admit a flat metric, i.e. they
are homeomorphic to Bieberbach manifolds. In [8, Theorem C] it was proven that for a
simply-connected manifold the leaves of any A-foliation are homeomorphic to Bieberbach
manifolds, except possibly for the singular leaves of dimension 4. Due to this observation,
it was proposed in [8] to redefine B-foliations as those A-foliations (M, F, g) such that for
any leaf L € F we have that the leaf (L, g|;) with the induced metric is a flat manifold
(in particular the leaves are Bieberbach manifolds).
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9 D. CORRO

In this work we show that on a simply-connected manifold under the updated definition,
such B-foliations with leaves of positive constant dimension are given by torus actions.

Theorem A. Consider (M,F,g) a regular B-foliation on a compact simply-connected
Riemannian manifold. Then the foliation F is induced by an isometric torus action.

To prove Theorem A we compare regular B-foliations to the so called F-structures
and N-structures introduced by Cheeger, Gromov and Fukaya in [6] and [5]. These are
other types of foliations, and were introduced when studying the notion of “collapse with
bounded curvature” onto metric spaces. We present now the definition of F-structures
(for the definition of N-structures see Section 2.7). We recall that an F-structure is given
by an open cover {U; }iey of M, together with a T*-action on a finite normal (or Galois)
cover m; U, — Uj; for each index, such that the torus actions satisfy certain compatibility
conditions when passing from one neighborhood to another, and they are compatible
with the action of the deck-transformation group of m; (see for example [20, Definition
19.2]). An F-structure induces a partition of M into submanifolds called the orbits of
the F-structure. We say that a sequence of Riemannian metrics {g, }neny on a compact
manifold M collapses with bounded curvature if there exist constants A < A € R such
that

A < Sec(gn) <A,

and for any p € M the injectivity radius of g, at p goes to 0 as n — oo (see for example
[41, p. 69]). By [6] and [7] we have that F-structures characterize collapse with bounded
curvature: A compact manifold collapses with bounded curvature if and only if it admits
an F-structure whose orbits have positive dimension.

For the proof of Theorem A, we prove that given a regular B-foliation (M, F,g) on
a compact manifold with leaves of positive dimension we may always collapse M with
bounded curvature and bounded diameter.

Theorem B. Consider (M,F,qg) a regular non-trivial A-foliation on a compact Rie-
mannian manifold, such that each leaf L € F with the induced Riemannian metric g|r,
1s flat, 1.e. a B-foliation. Then by shrinking the directions tangent to the leaves of F
we may collapse with bounded curvature and uniformly bounded diameter the manifold
(M, g).In particular we show there exists a family of Riemannian metrics {gs}1>s5>0 on
M such that A < Sec(gs) < A, Diam(gs) < D and Injrad(gs) — 0 as § — 0.

We recall that in the study of collapse with bounded curvature in [5], given such a
collapsing sequence the authors construct N-structures and highly symmetric N-invariant
Riemannian metrics which are bounded by the collapsing sequence (see Theorem 2.20).
When the manifold M has finite fundamental group an N-structure is given by an F-
structure (see Theorem 2.16). In the case when M has finite fundamental group we use
the relationship between N-structures and F-structures, the invariant metrics and the
explicit collapsing sequence given in the proof of Theorem B to show that the geometry
of (M, F,g) where F is a regular B-foliation with leaves of positive dimension is approx-
imated by geometries invariant under F-structures. We can also point to a relationship
between the tangent spaces of the leaves of the foliations and the tangent spaces of the
orbits of the F-structure.

Theorem C. Consider (M,F,g) a regular non trivial A-foliation on a compact m-
dimensional Riemannian manifold with finite fundamental group and m > 2, such that
each leaf L € F with the induced Riemannian metric g|; is flat, i.e. a B-foliation. Then
there exists a sequence of Riemannian metrics {g5 () }1>es0 with each metric invariant
under an F-structure, and such that as € — 0, we have that (M, g5 (€)) converges in the
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Gromov-Hausdorff sense to (M,g) as e — 0. Moreover, given p € M fized and taking
x € T,T* fized in the Lie algebra of the torus tracing the leaves of the F-structure around
p, we have that the action field X*(p) converges to a direction tangent to the leaf L,.

Remark 1.1. By Lemma 3.3 we also have that the Riemannian tensors In (e converge
uniformly to g.

We remark that by Theorem B, given a regular B-foliation on a compact manifold M
with leaves of positive dimension we have a continuous family gs; of Riemannian metrics
collapsing with bounded curvature to the leaf space. Combining this with [44, Theorem
0.4] we conclude that we have an upper bound for the minimum of the sectional curvature
of a compact manifold equipped with a B-foliation whose leaves have positive dimension.

Corollary D. Let (M, F,g) be a regular B-foliation on a compact manifold with leaves of
positive dimension. Then we have for \ equal to the minimum of the sectional curvature
of g, that A <0.

We recall that an F-structure is pure, if for any point p € M in the intersection of two
neighborhoods U; N U; given in definition of the F-structure, the images containing p of
the orbits of the torus actions under 7; and 7; coincide (see [20, p. 228]). By [6], pure
F-structures are examples of B-foliations as defined in this work. This fact motivated the
following question in [22]:

Question 1. How do the concepts of A-foliations and F-structures relate to each other?

Theorem A sheds some light on this question: Regular flat A-foliations (i.e. B-
foliations) on simply-connected manifolds are given by torus actions, and thus are F-
structures.

We highlight that on a simply-connected manifold, an F-structure is induced by a torus
action (see for example [47, Proposition 3.1, Lemma 3.2 and Lemma 4.1]). Thus it is a
pure F-structure, and therefore a B-foliation. Still such B-foliations may have singular
leaves. For example torus actions of cohomogeneity 2 can have singular leaves [40], [8].
Nonetheless, when M has finite fundamental group a regular A-foliation with flat leaves
is the limit of F-structures by Theorem C'.

We point out that not all regular A-foliations admit a Riemannian metric making it a
B-foliation. In [16] the authors construct manifolds of dimension m > 9 with non-trivial
finite fundamental group and each equipped with a regular A-foliation whose leaves are
homeomorphic to the (m — 4)-dimensional torus but not diffeomorphic to the (m — 4)-
dimensional torus. These foliations do not admit any Riemannian metric making them
into a B-foliation, since by [3] a flat manifold is homeomorphic to the torus if and only
if it is diffeomorphic to the torus.

It would be interesting to know if there exists an example of an A-foliation on a compact
simply-connected manifold whose leaves are exotic tori. Since torus actions induce B-
foliations, a more general question is if an A-foliation on a simply-connected manifold
can be made into a B-foliation by a change of the metric.

Question 2. Is there an A-foliation on a simply-connected manifold which is not given
by a torus action?

From our results, this is related to the following weaker question for foliations with
leaves of positive dimension: Given any A-foliation on a simply-connected manifold, is
there an other foliated Riemannian metric g on M making it into a B-foliation?

In [8, Theorem A] a negative answer to Question 2 is given for A-foliations of codi-
mension 2. Namely in [8], the author explored the problem of whether we can compare
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the diffeomorphism type of two compact simply-connected manifolds with A-foliations
via their leaf spaces equipped with local information of the foliation, focusing on the
case of A-foliations of codimension 2. The positive answer given in [8, Theorem C and
Lemma 5.11] to this comparison problem together with the classification of tours actions
of cohomogeneity 2 in [40], allows us to conclude that an A-foliation of codimension 2
on a compact simply-connected manifold is given up to a foliated homeomorphism by a
torus action. Then, by analyzing the local information of the foliation we are able to
improve the conclusion to a foliated diffeomorphism.

A crucial point in the proof of [8, Theorem A] is that for an A-foliation of codimension
2 on a compact simply-connected manifold the stratification of the leaf space is simple
and can be explicitly described. In general, even for singular Riemannian foliations on
vector spaces with finite dimension, it is not clear how to compare the foliations via their
leaf spaces (see [23, Question 1.2]). We point out that the proof presented in [8] is of
a topological nature and only uses the fact that the presence of a foliated Riemannian
metric guarantees a nice local structure of the foliation on tubular neighborhoods of
leaves (see [35]). Moreover, to be able to extend the ideas in [8] to higher dimensions, we
would require to impose extra topological conditions on M and on the leaf space of the
foliation. Thus, to the best of our knowledge, the approach presented in this manuscript
is a different approach for comparing foliated structures to what exists in the literature.

The present work was motivated by the need to give geometric conditions on A-
foliations that force them to be given by torus actions. Due to [5] and [47] it follows
that on simply-connected manifolds, torus actions with orbits of positive dimension are
characterized by the phenomenon of collapse with bounded curvature (see Theorem 2.20).
Thus, a natural approach to finding sufficient geometric conditions for an A-foliation to
be induced by a group action, is to find sufficient geometric conditions which let us col-
lapse with bounded curvature the manifold by shrinking the leaves of a given A-foliation
on a simply-connected manifold.

We highlight that to the best of our knowledge in the literature there are few references
on the subject of deforming foliations. In [14] the authors show that for a particular
class of 1-dimensional regular foliations, a portion of the manifold has a cover into “long
and thin” submanifolds extending the notions in [5] to the foliated setting. In [9] the
authors consider a parametrized family of Lie groupoids and give rigidity results for such
“deformations” of Lie groupoids. Lie groupoids are closely related to regular foliations
(see [37]), and also singular Riemannian foliations (see [2]). Applying these rigidity results
for Lie groupoids, the authors in [11] consider on a compact manifold a family of regular
foliations F; parametrized by a real parameter ¢ € [0, 1], each having compact leaves and
Hausdorff leaf space, and show that at ¢ = 0 the existence of a leaf L with H'(L,R) = 0 is
a sufficient condition for such a parametrization to be rigid, i.e. F; = F; for all ¢ € [0, 1].
This is an analogous result to the conclusions presented in [13] and in [29]: Consider
two regular foliations JF7, and F, with compact leaves on a fixed manifold M without
boundary, such that they are close to each other in an appropriate sense, and such that
the leaf spaces of the foliations are Hausdorff spaces. In the case that there exists a
leaf L in one of the foliations with H'(L,R) = 0, there exists a foliated diffeomorphism
between the foliated manifolds. For group actions there is a general rigidity result by
Grove and Karcher [26]: Given a compact Lie group G, a compact manifold M, and two
group actions p;: G — Diff (M) and pe: G — Diff (M), if the images p;(G) and ps(G)
are C' close enough in Diff (M), then the images are conjugated in Diff (M).

We point out that the proof of Theorem A is also a rigidity result for a deformation
procedure, since the proof consist of approximating our foliation by torus actions using
Theorem C', and showing that there exists a limit torus action whose orbits agree with
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the leaves of the foliation. Nonetheless, we point out that to the best of our knowledge
there are no general rigidity results for singular Riemannian foliations as those presented
in [11], [13], and [29]. Moreover, the rigidity result presented in Theorem A agree with
the conclusions in [26]. One can also compare Theorem A with [44, Proposition 0.8] and
comments after. In our work we also point to the existence of a fixed torus action on
M, but we do show that we can take our foliated metric as the limit of the perturbed
collapsing sequence.

Our article is organized as follows: In Section 2 we review the necessary preliminaries on
singular Riemannian foliations, as well as the concepts of A-foliations, B-foliations, and
N-structures. We also review Alexandrov spaces and equivariant convergence of metric
spaces. At the end of Section 2, we present the relevant theorems of collapse theory
used in our proofs. In Section 3 we give the proofs of our main theorems. We begin by
presenting the proof of Theorem B, and then proceed with the proof of Theorem C'. We
use then these results and their proofs to prove Theorem A.
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2. PRELIMINARIES

In this section we present the preliminaries necessary for our results. We begin by
presenting the definition of a singular Riemannian foliation, then present the notion of
the infinitesimal foliation and the holonomy of a leaf. We then present the notions of A-
and B-foliations. We also present the necessary results from the theories of convergence of
Riemannian manifolds with curvature bounds, equivariant convergence of metric spaces,
and metric spaces with a lower curvature bound.

2.1. Singular Riemannian foliations. A singular Riemannian foliation (M,F,g) on
a Riemannian manifold (M, g) is a partition F of M into connected injectively immersed
submanifolds L € F called leaves, such that the following hold:

(i) There exists a family of smooth vector fields {X,}aer € X(M) on M, such that
for each point p € M the vector fields span the tangent space at p of the leaf L,
containing p.

(ii) Given 7: [0,1] = M a geodesic perpendicular to L.y, then 7 is perpendicular to
Lv(t), for all t € [O, 1].

The first condition insures that the singular distribution A in TM given by A(p) =
T,L, is smooth. The second condition is equivalent to the leaves of F being locally
equidistant. When the leaves of the foliation are closed submanifolds, we say that the
foliation is closed. We point out that in this case the leaves are embedded submanifolds.

We define the leaves of maximal dimension to be regular leaves, and the ones that
do not have maximal dimension to be singular leaves. The codimension of the foliation
codim(F) is equal to the codimension of any regular leaf in M, and the dimension of F,
denoted as dim(F), to be the dimension of the regular leaves.



6 D. CORRO

For a closed singular Riemannian foliation (M, g, F) and 0 < ¢ < dim(F) we define
the /-dimensional stratum as

Y ={pe M |dim(L,) = {},

and point out that each connected component C' of ¥, is an embedded submanifold of
M (see [45]). We denote by P the connected component of ¥, containing p, where
¢ = dim(L,). The collection {37 | p € M} give the canonical stratification of M by F.
For the top dimension dim(F), the set Xqim(F) is open, dense and connected. We refer to
it as the reqular stratum, and denote it by M;es = Xgim(r). In the case when M,ee = M
we say that the foliation F is regular. We also remark that all other strata ¥, have
codimension at least 2 ([22, Section 2.3]).

We equip the quotient space M/F with the quotient topology, making the quotient
map w: M — M/F continuous. We refer to M /F equipped with the quotient topology
as the leaf space of F. When the foliation is closed and M is complete, the Riemannian
distance on M induces an inner metric, called the quotient metric on the leaf space, and
it induces the quotient topology. Moreover as pointed out in [27, p. 2943], for a closed
foliation on a complete manifold, the leaf space equipped with the quotient metric is
locally an Alexandrov space (see Section 2.5 for a definition of an Alexandrov space).

Given a singular Riemannian foliation F on a vector space V equipped with an inner
product g, we say that (V, F,g) is an infinitesimal foliation if for the origin 0 € V we
have Ly = {0}.

We now consider (M, F,g) a singular Riemannian foliation on a complete Riemann-
ian manifold, and fix p € M. We denote by v,(M,L,) = {v € T,M | g(p)(v,z) =
0 for any x € T,L,} the set of normal space to the leaf at p. Given € > 0 we consider
the closed normal disk of radius € defined as v5(M, L,) = {v € v,(M, Ly) | ||v]2 < €}.
Then by fixing € > 0 small enough (for example € smaller than the injectivity radius at
p), we may assume that exp,: v5(M, L,) — S, = exp,(v;(M, L,)) C M is a diffeomor-
phism. For v € v5(M, L,) we define £, C v;(M, L,) to be the connected component of
exp, ! (Lexp, () N Sp) containing v. In this way, we obtain a partition F,(¢) on v;(M, L,).
By [38, Lemma 6.2] the foliation F,(¢) is invariant under homotheties hy: v5(M, L,) —
vp°(M, Lp), with hy(v) = Av. From this we see that F(e) is independent of e, and
thus we can extend F,(¢) to a partition F, on v,(M, L,) in a unique way. Moreover,
38, Proposition 6.5] states that (v,(M, L), Fp,g;) is an infinitesimal foliation, where
gpL = 9(p)|v,(m,1,)- We refer to (v,(M, Lp),}"p,g}f) as the infinitesimal foliation of F at
P.

The following local description of the foliation is going to be of use later on:

Proposition 2.1 (Proposition 2.17 in [46]). Let (M,F,g) be a singular Riemannian
foliation on an m-dimensional manifold, and for any p € M we write k, = dim(L,). Then
for p € M fized there exists a coordinate system (W, @), with W C M and ¢: W — R™
such that:

(1) pe W, ¢(W) =UxV, where U C R¥ and V. C R™ % are open and bounded subsets
containing the origin with smooth boundary.

(2) 6(p) = (0,0) € U x V.

(3) ¢ (U x {0}) =W N L,

(4) For any g € W, U x projy(é(q)) C ¢(Lg "W).

(5) For fized (ug,vo) € U X V' the curve ¢(ug,tvy) is a geodesic of M perpendicular to
the leaves of F.
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2.2. Holonomy. In this section we present for (M, F, g) a singular Riemannian foliation
the notion of the holonomy of a closed leaf L, € F which we simply denote by L. We
denote by v(L) — L the normal bundle to L, and we have the following construction:

Theorem 2.2 (Corollary 1.5 in [35]). Let L be a closed leaf of (M,F,g) a singular
Riemannian foliation, and let v: [0,1] — L a piecewise smooth curve with v(0) = p.
Then there ezists a map G: [0, 1] x v,(M, L) — v(L) such that:
(i) G(t,v) € vy (M, L) for every (t,v) € [0,1] X v,(M, L).
(ii) For every t € [0,1], the restriction Gy: {t} x v,(M,L) — vyu)(M,L) is a linear
map; moreover with respect to the infinitesimal foliations the map

Gy: (VP(M7 L)? va g;_) - <V'Y(t)(M7 L)’ ‘F’Y(t)’ g#(t))
15 a foliated isometry.

Let O(v,(M, L,), F,) denote the group of foliated isometries of the infinitesimal fo-
liation. That is, a map f € O(vy(M, L,), F,) is an isometry f: (v,(M, Ly),g,) —
(vp(M, Lp), g,) such that for any leaf £ € F, we have f(L£) € F,. We denote by
O(F,) € O(vy (M, L,), F,) the subgroup of foliated isometries that leave the infinitesimal
foliation invariant, i.e. f € O(F,) if and only if f(L£) C L for all £ € F,. Observe that
for a closed piecewise loop 7: [0,1] — L, with start point p we have by Theorem 2.2
a map G,: v,(M,L,) = v,(M,L,) with G, € O(v,(M, L,),F,). Moreover, from |8,
Proposition 2.5] it follows that the coset G,O(F,) € O(v,(M, L,), F,)/O(F,) depends
only on the homotopy class of 7. Thus, we have a well defined map p: m(L,,p) —
O(vp(M, Ly), Fp) | O(Fp).

We define the holonomy of the leaf L, at p as the image

Hol(L,) = p(m1(Ly, p)) C O(vp(M, Ly), Fp,) /O(Fy).

Observe that if ¢ € L, is another point in L, and we fix a: I — L, a path from ¢ to p, then
we have that G,O(v,(M, L,), F,)G,' = O(v,(M, L), F,) and G,O(F,)G,t = O(F,).
Thus, the holonomy is defined up to conjugation in the group of isometries O(v,(M, L,))
of the normal space to the leaf.

A leaf L, is called principal if and only if it is regular and has trivial holonomy. Given
a closed singular Riemannian foliation (M, F,g), the collection of all principal leaves is
called the principal stratum of F and denoted by M,i,. We point out that M, C M is
an open and dense subset by [8, Proposition 2.8].

2.3. A- and B-foliations. We now consider closed singular Riemannian foliations whose
leaves are aspherical manifolds, i.e. such that for L € F we have mx(L) = 0, for k # 1.
These foliations are called A-foliations, and where introduced in [22] as a generalization
of torus actions by isometries. The authors showed that on a compact simply-connected
manifold M, the regular leaves of an A-foliation are homeomorphic to tori.

Theorem 2.3 (Theorem B in [22]). Let (M, F,g) be an A-foliation on a compact simply-
connected manifold, and let L € F be a reqular leaf. Then L is homeomorphic to a torus.

Remark 2.4. We recall that for n > 5 by [33], there exists n-manifolds which are
homeomorphic to the n-torus, but not diffeomorphic. These manifolds are known as
exotic tori. We recall that there are examples of A-foliations (M,F,g) on compact
manifolds whose leaves are exotic tori, but M is not simply connected (see [16]).

In [22] the authors also introduced the concept of B-foliations, which are A-foliations
whose leaves are homeomorphic to Bieberbach manifolds. Recall that an n-dimensional
Bieberbach manifold L is an aspherical manifold such that (L) is isomorphic to a
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discrete subgroup G of R™ x O(n) C Aff(n) which is torsion free, and such that R"/G
is compact. Such a group G is called a Bieberbach group. We recall that Bieberbach
manifolds are those homeomorphic to smooth manifolds that admit a flat Riemannian
metric, i.e. a Riemannian metric whose sectional curvature is equal to 0 for any 2-plane
in the tangent space at any point. By the following result, we conclude that the leaves of
A-foliations on compact simply-connected manifolds have fundamental group isomorphic
to a Bieberbach group, and except for leaves of dimension 4, they are homeomorphic to
Bieberbach manifolds.

Theorem 2.5 (Corollary 3.2 and Proposition 3.3 in [8]). Let (M, F,g) be an A-foliation
on a compact simply-connected manifold. Then the leaves with trivial holonomy are home-
omorphic to tori. Moreover, for any leaf L € F with non-trivial holonomy the funda-
mental group m (L, p), at p € L, is a Bieberbach group, and for dim(L) # 4 the leaf L is
homeomorphic to a Bieberbach manifold.

This implies that, except for the leaves of dimension 4, from a topological viewpoint A-
foliations and the B-foliations as defined in [22] are indistinguishable on compact simply-
connected manifolds. Thus in [8, Remark 3.4] the author proposed to define B-foliations
as those A-foliations (M, F,g) such that for any L € F we have that (L, g|;) is flat.
This definition immediately introduces some rigidity to the diffeomorphism type of the
foliation: Combining Theorem 2.3 with the work of Bieberbach [3] (and more generally
by [15, Theorem 3]) we obtain that for simply-connected manifolds the regular leaves
of an A-foliation (M, F,g) such that (L,g|.) is flat, i.e. B-foliation as defined in this
paragraph, are diffeomorphic to the standard torus.

Remark 2.6. We point out that a singular Riemannian foliation (M, F,g) induced by
an effective smooth torus action pu: T% x M — M by isometries is a B-foliation, in the
sense that the orbits with the induced Riemannian metric are flat. We sketch briefly the
proof of this fact. Fix p € M such that T*(p) is a principal orbit. Then for the isotropy
group at p we have T; = {e}, where e € T* is the identity element (see [48, Example
3.4.3]). This implies that the orbit T%(p) is equivariantly diffeomorphic to T* via the
map pu,: T% — T*(p) given by p,,(€) = p(&,p). Via this diffeomorphism the T*-invariant
induced metric g|px(, induces a left-invariant metric g, on T*. Since T* is abelian, by
[36, Corollary 1.3] we have that the sectional curvature of g, is non-negative. If it is
positive at some point (and thus positive anywhere), then by the Bonnet-Myers Theorem
([12, Chapter 9, 3.1 Theorem]) we have that 7" has finite fundamental group, which
is a contradiction. Thus, g, is flat, and consequently (T*(p), g|rw(y) is a flat manifold.
Consider now ¢ € M not in a principal orbit. We point out that a connected component
(T f)o of the identity element of the isotropy subgroup at ¢ is homeomorphic to a subtorus

of T*. Then there exists a finite cover T*(q) of T*(q) which is homeomorphic to a torus
of dimension equal to k — dim((7})°) (see [22, Example 2.4]). The metric gz, lifts to

a T"/(T7)°-invariant metric g, on T*(g). Observing that the metric g, induces a left-
invariant metric on the torus 7%/ (Tq’“)o, then by applying the same reasoning as for the

principal orbit case we conclude that the metric g, is flat. Since T%(q) is a finite cover
we conclude that g|rx(, is flat.

2.4. Compact flat metric spaces. For the sake of completeness, we give a short review
of the geometry of flat manifolds. We consider (M, g) to be a compact smooth Riemannian
m-~dimensional manifold, such that at every point p € M and any 2-dimensional plane
in T, M we have the sectional curvature equal to 0, i.e. a flat manifold. By the Cartan-

Hadamard theorem (see [12, Theorem 3.1]) it follows that the universal cover M of M is
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diffeomorphic to R™. We consider g = 7*(g) the pull back metric of g under the covering
map 7: M — M. Observe that by construction 7: (M,qg) — (M, g) is a local isometry,
and thus (M, g) is a flat manifold diffeomorphic to R™. By [12, Theorem 4.1] it follows

that (M,g) is isometric to (R™, o) where o denotes the Euclidean Riemannian metric.
Thus we have that there exists a covering map 7: (R™ o) — (M, g) which is a local
isometry, i.e. 7*(g) = o. By letting B be the group of deck transformations of 7, it
follows that B is a subgroup of the isometry group Isom(R™, ) which is torsion free, i.e.
B is a Bieberbach group. Thus (M, g) is isometric to the homogeneous Riemannian space

(R™/B,5), where  is the Riemannian metric induced by the Riemannian submersion
p: R™ — R™/B (see [25, Theorem 1.2.1]).

2.5. Alexandrov spaces. We now recall the definition of an Alexandrov space. Let
(X,dx) be a locally compact and locally complete inner metric space. A point = €
X is said to have curvature at least k, for some k € R, if there exist U, C X an
open neighborhood of z such that the following holds: Given any geodesic triangle A C
U, there exists a geodesic triangle A in the 2-dimensional surface of constant sectional
curvature k denoted by S2, with edges having the same lengths as the edges of A, and
such that given y € A a vertex and w any point in the opposing edge to y in A, for g
and @ the unique corresponding points in A to y and w respectively, then we have

A local Alexandrov space (X,dx) is a locally compact and locally complete inner metric
space such that for each point x € X there exist xk, € R so that x has curvature at least
K-

In the case when there exists k € R such that any point of X is a point with curvature at
least k, we say that (X, dx) is an Alexandrov space of curvature at least k, and we denote
it by curv(X) > k. We denote the collection of all Alexandrov spaces with curvature at
least k € R by Alex(k).

With respect to the Gromov-Hausdorff topology (see Section 2.6) we have the following
stability result for Alexandrov spaces:

Theorem 2.7 (Perelman’s stability Theorem in [43], [34]). Let (X,dx) be a compact
n-dimensional Alexandrov space of curv(X) > k. Then there exists an € = €(X) > 0 such
that for any n-dimensional Alexandrov space (Y, dy) of curv(Y) > k with deu(X,Y) <,
Y is homeomorphic to X.

An extremal subset E of an Alexandrov space (X, dy) is a closed subset subset which
is preserved under the gradient flow of dx(p,-) for all p € X (see [32]).

Example 2.8. Let H act effectively smoothly by isometries on a compact Riemannian
manifold (M, g), consider 7: M — M/H and equip M/H with the induced metric d*.
Then (M/H,d*) is an Alexandrov space. Let I' C H be a closed subgroup, and Fr be
the set of points fixed by I'. Then by [42, 4.2 Proposition] w(FT) is an extremal subset
of (M/H,d").

Remark 2.9. The homeomorphism in Theorem 2.7 can be taken so that it preserves the
stratification of X and Y by extremal subsets (see [34],[31, Theorem 4.3]).

2.6. Equivariant convergence. We denote by M the set of all isometry classes of
pointed metric spaces (X, dx, x) such that for each r > 0 the open ball B,.(x) is relatively
compact. We define the following notion of convergence on M:

We begin by considering first (X, dx) and (Y, dy ) metric spaces. We define the Gromov-
Hausdorff distance between (X, dx) and (Y, dy ), denoted by dou((X,dx), (Y,dy)), to be
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the infimum of all Hausdorff distances dg(f(X),g(Y)) for all metric spaces (Z,dz) and
all isometric embeddings f: X — Z and ¢g: Y — Z (see [4, Section 7.3]).

We say that a a pointed sequence {(X;, dx,, ;) }ien € M converges to (Y, dy,y) € M
if for each r > 0 and each € > 0 there exists N € N, such that for n > N there exists a
map f,: B.(x,) — X for which the following hold:

(i) f(zn) =y,
(i) the e-neighborhood of f,(B,(z,)) C Y contains the ball B,_.(y),

(i) disf,, = sup{|dy (fn(21), fu(22)) — dx, (21, 22)| | 21,22 € B,(w,)} <.

We call this notion of convergence on M, convergence in the pointed Gromov-Hausdorff
sense.

Remark 2.10. When (X;,dy,) and (Y, dy) are locally compact metric spaces, we have
that (X, dx,,z;) converges to (Y,dy,y) in the pointed Gromov-Hausdorff sense if and
only if for any R > 0 the open balls (Bg(x;), dx,) converge to (Bg(y),dy) in the Gromov-
Hausdorft sense.

Remark 2.11. When we consider a sequence of compact spaces (X;,dx,) and (Y, dy),
then convergence with respect to the Gromov-Hausdorff distance is equivalent to conver-
gence in the pointed Gromov-Hausdorff sense, in the following sense: in the case when
(Xi,dx,) converges in the Gromov-Hausdorff sense to (Y, dy), given y € Y there exists
a sequence {z; | x; € X;}ien such that (X;,dx,,z;) converges in the pointed-Gromov-
Hausdorff sense to (Y, dy,y) (see [4, Exercise 8.12]).

Moreover, for compact spaces we have a nice characterization of convergence in the
Gromov-Hausdorff sense. Recall that given € > 0, a subset S C X of a metric space is
an e-net if we have that dx(z,S) = inf{dx(z,s) | s € S} <e. Given X, Y two compact
metric spaces, and £,0 > 0, we say that X and Y are (¢, )-approzimations of each other
if there exists {z;}Y, C X, {y;}¥, C Y such that

(1) The sets {z;}X,, {y;}, are e-nets,
(2) |dx<l’i,$j) - dy(yi,yj)| < dforalli,je {17 ey N}

When ¢ = 9, we say that X and Y are e-approzimations of each other. With this we
can write the characterization of convergence in the Gromov-Hausdorff sense for compact
spaces.

Proposition 2.12 (Proposition 7.4.11 in [4]). Let X and Y be compact metric spaces.
Then we have

(1) If Y is an (g,0) approzimation of X, then deu(X,Y) < 2e +9.
(2) If deu(X,Y) < e, then Y is a be-approzimation of X .

We also consider tuples (X, dx, H,z), where (X,dx,x) € M and H C Isom(X,dx)
is a closed subgroup acting effectively on X. We say that (X,dx, H,z) is equivalent to
(Y,dy, H',y) if there exists f: (X,dx,z) — (Y,dy,y) an isometry with f(xz) = y, and
¢: H — H' a group isomorphism such that for any h € H and 2’ € X we have f(h-2') =
o(h) - f(z). We denote by M, the collection of all equivalent tuples (X, dx, H,z). For
(X,dx,H,z) € Meqand r >0 weset Hir) ={he€ H|h- -z € B,(z)}.

We define the following topology on M.,: Given (X,dx, H,z), (Y,dy,H',y) in M,
and € > 0, we define an e-equivariant pointed Gromov-Hausdorff approximation between
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X and Y to be a triple of functions (f, ¢, ),

[ Bie(z) =Y,
¢: H(l/e) — H'(1/e),
Y H'(1/e) — H(1/e),

such that
(1) we have f(z) =y.
2) The e-neighborhood of f(B1/-(x)) contains By . (y).

(2)
(3) For p,q € By/-(x) we have |dy (f(p), f(?')) — dx(p,p')| <e.
(4) Given h € H(1/e), p € Byje(x) with h-p € By/.(x) we have

dy (f(h-p),o(h) - f(p)) <e.
(5) For b/ € H’(l/g), pE B1/e($) with w(h/) pE Bl/s(flf), then

dy(f(¥(W)-p),h - f(p)) <e.

For (X,dx,H,x),(Y,dy,H',y) € Meq we define the equivariant pointed Gromov-Haus-
dorff distance, deqcu <(X, dx,H,x),(Y,dy, H', y)), to be the infimum of all numbers ¢ > 0

such that there exists an e-equivariant pointed Gromov-Hausdorff approximation from
(X,dx, H,x) to (Y,dy, H',y) and from (Y,dy, H',y) to (X,dx, H,z). This induces on
M the equivariant pointed Gromov-Hausdorff topology.

Given a sequence {(X;, dx,, H;, z;) }ien and (Y, dy, H',y) € Mg, we have the following
relation between convergence with respect to the equivariant pointed Gromov-Hausdorff
distance, and convergence in the pointed Gromov-Hausdorff sense of the pointed quotient
spaces, (X/H,d%,z*) and (Y/H' dy,y").

Theorem 2.13 (Theorem 2.1 in [17]). Let {(X;,dx,, Hi,xi)}ien C Meq have limit
(Y,dy, H',y) € M with respect to the equivariant pointed Gromov-Hausdorff distance.
Then we have that (Y/H', dy,,y*) is the limit of the sequence {(Xi/H;, dx,, z}) }ien in the
sense of pointed Gromov-Hausdorff convergence.

Moreover, we have then the following information on the limit of sequences in Mg,
with respect to the pointed Gromov-Hausdorff convergence:

Theorem 2.14 (Proposition 3.6 in [21]). Assume that for a sequence {(X;, dx,, H;, z;) }ien
in Meq we have that (Y,dy,y) € M is the limit of (X;,dx,,x;) in the pointed Gromouv-
Hausdorff sense. Then there exist H' C Isom(Y,dy) a closed subgroup acting effectively
onY, and a subsequence {(X;,, dx, . Hi, Ty, ) bken converging to (Y, dy, H',y) with respect
to the pointed equivariant Gromov-Hausdorff topology.

Moreover in the case of Alexandrov spaces of constant dimension we have the following
result:

Theorem 2.15 (Proposition 4.1 in [30]). Let
O ={(X,dx, H,p) € My | (X,dx) € Alex(r), dim(X) = n, H is compact} C Alex(k).

Let {(X;,dx,, Hi,x;) }ien C QO be a sequence, converging in the equivariant pointed
Gromov-Hausdorff topology to (Y,dy,H',y). Then for a sufficiently large index i € N,
the group H' contains an isomorphic image of H;.
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2.7. N- and F-structures. The concept of an F-structure (already defined in Section 1)
was introduced by Cheeger and Gromov in [6] generalizing the notion of torus actions on
manifolds. Moreover they proved that for given F-structure whose orbits have positive
dimension on a compact manifold we can find a family of Riemannian metrics {g, | 1 >
t > 0} on the manifold such that the manifold collapses with bounded curvature. That
is, the injectivity radius of (M, g;) goes to 0 as t — 0, and there exist A < A such that
A <Sec(g) <Aforall 0 <t <1.

In [18, 19] Fukaya studied the phenomena of collapse when the sequence {(M,g;)}
converges in the Gromov-Hausdorff sense to a Riemannian manifold, and then in [5] it
was proven that collapse is controlled by so called Nilpotent structures, or N-structures.
We now recall the definition of such a structure.

Given a Riemannian manifold (M, g) of dimension m we consider 7: F(M) — M to
be the O(m)-principal frame bundle of M. A pure N-structure on (M, g) is given by a
fibration 7: F(M) — B such that:

(i) The fiber is a nilmanifold isometric to (N/T', V"), where N is a simply-connected
nilpotent group and V" is the canonical connection on N making all left-invariant
vector fields parallel.

(ii) The structure group of 77: F(M) — B is contained in the group of affine automor-
phisms of the fiber.

(iii) The action of O(m) preserves the fibers and the structure group of the fibration 7.

A pure N-structure induces a partition & of M into submanifolds called orbits which are
the images of the 7-fibers under the projection 7: F(M) — M (observe that the “orbits”
of & are not orbits of a group action, but they are defined by orbits of the action of
N on F(M)). We refer to this decomposition of M as a pure N-structure on M. An
N-structure has positive rank if the orbits have positive dimension.

We observe that the centers of the fibers of a pure N-structure on F'(M) determine a
torus bundle on the nilpotent group N. This gives rise to a second O(m)-invariant fiber
bundle f: F(M) — Bj whose fiber is a torus, and has affine structure group. We call

f the canonical torus bundle of 7. We have the following relationship between 7 and f
when the fundamental group of M is finite.

Theorem 2.16 (Lemma 4.1 and Lemma 3.2 in [47]). An N-structure n: F(M) — B;
on M a manifold with finite fundamental group coincides with its canonical torus bundle
f: F(M) — Bj;. That is, B; = B and 1) = f. Moreover, when M is simply connected
then an N-structure on M 1is given by a torus action on M.

By [5], given an N-structure 7: F(M) — Bj there exists a sheaf of Lie algebras on
F(M) whose local sections restrict to local right invariant vector fields on the fibers of
7. We say that a Riemannian metric g on M is N-invariant with respect to 1 if these
local sections project under 7 to local Killing fields for the metric g. In particular, given
V C (M, g) a tubular neighborhood of an orbit of the N-structure there exists a normal
covering VoV admitting an isometric N-action.

In [5] the authors showed that a sufficiently collapsed manifold (M, g) admits an N-
structure. And moreover there exists an N-invariant Riemannian metric on M related to

g.

Theorem 2.17 (Theorems 1.3 and 1.7 in [5]). For m > 2 and D > 0 we denote by
M(m, D) the class of m-dimensional compact connected Riemannian manifolds (M, g)
with |Sec(g)| < 1, and Diam(M, g) < D.
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Given € > 0, there exists a constant v = v(m, D,e) > 0 such that given (M,g) €
M(m, D) with Vol(g) < v, then M admits a pure N-structure 1.: F(M) — B of positive
rank. Moreover,

(a) there is a smooth metric g¢ on M, which is N-invariant for the N-structure 7.,
(b) the fibers of 1. have diameter less than e with respect to g°,
(c) and

e g < g <eg.

Moreover, the metric ¢g° can be chosen so that the sectional curvatures are close to the
ones of g by the following theorem.

Theorem 2.18 (Theorem 2.1 in [47]). Let the assumptions be as in Theorem 2.17. Then
the nearby metric g° can be chosen to satisfy in addition

min Sec(g) — e < Sec(g®) < max Sec(g) + €.

In particular the metric g in Theorem 2.17 induces an inner metric dg. on the quotient
spaces M /0y of the N-structures making them into Alexandrov spaces of curvature at
least min Sec(g) — «.

Example 2.19. Given an effective smooth T%-action by isometries on a Riemannian
manifold (M, g), let T' C T* be an isotropy group of some point p € M. The orbit type
stratum Y5 C M/T* correspond to all the orbits in M/T* that have isotropy I. Observe
that the closure of ¥} corresponds to the set of all orbits whose isotropy group contains
I' (See Example 2.8).

Combining Example 2.19, Theorems 2.7, 2.16, 2.17, and 2.18 we obtain the following
result:

Theorem 2.20 (Theorem 1.3 in [44]). Assume that (M, g,) is a sequence of simply-
connected compact Riemannian m-manifolds with sectional curvature bounds
A < Sec(gn) < A and diameters Diam(g,) < D which collapses with bounded curva-
ture. Then, given any € > 0, for n sufficiently large the following holds:

(a) There exists a smooth global effective T* action on M, with empty fized-point set, all
of whose orbits have diameter less than ¢ with respect to g,.
(b) There exists on M, a T* invariant metric g5, which satisfies

e gn < gy <€gn, A—e<Sec(g;) <A+e.

(¢c) Moreover assume that (M,, g,) converges to an Alexandrov space X of dimension
(m — k) in the Gromov-Hausdorff topology. Then for the orbit space M, /T* equipped
with the metric induced by g:, we have that the Gromov-Hausdorff distance between
X and M, /T* is less than €.

(d) The orbit space M, /T* is homeomorphic to X, and moreover, this homeomorphism
preserves the stratification of M, /T* by orbit type.

3. PROOFS OF MAIN THEOREMS

In this section we give the proofs of some of our main results. We first present the
proof of Theorem B. We then present the proof of Theorem C'. With this we are able to
give the proof of Theorem A.
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3.1. Proof of Theorem B. We start by giving a proof of Theorem B. The strategy of
the proof is to explicitly define the sequence of collapsing metrics, and then verify that
they collapse with bounded curvature and diameter.

Proof of Theorem B. Consider (M, F,g) a regular B-foliation with leaves of positive di-
mension on a compact Riemannian manifold.

We denote by m the dimension of M, and we observe that since the leaves have positive
dimension for any ¢ € M, we can write g(q) = g(q) " +g(¢)* where g(q) " is the metric g(q)
restricted to T,L, C T,M, and g(q)* is the metric g(q) restricted to v,(M, L,) C T,M.
For § > 0 we consider the Riemannian metric gs defined at ¢ as:

95(q) = 6%g(q) " + gl@)™. (3.1)

We claim that the family gs is the desired collapsing sequence.
We fix p € M and set k = dim(F). We consider the chart (W, $) given by Proposi-
tion 2.1 around p. For p € L, N W observe that

Qb(]_?) = (ul(ﬁ% s 7uk<ﬁ)’vl(ﬁ)7 s ’Um—k(z_?)) = (Ul(ﬁ), cee 7uk<]_7)’07 cee 70)'

Observe that by construction we have that ¢~ (U x {(0,...,0)}) =L, N W.

By assuming that W is small enough so that the normal bundle v(M,L,) — L, is
trivial over W N L,, and thus we can consider a basis Ey,. .., E,_ € v(M, L,)|wnr, of
smooth vector fields on L, "W = ¢(U x {0}) normal to L,, such that for p € L, N W
we have g(p)(E;, Ej) = 6; ;. We take r > 0 small enough so that exp,: v"(M, L,) = M
is a diffeomorphism onto the open tubular neighborhood Tub"(L,) and set W =wn
Tub’(L,). For p € L, N W we set u(p) = (u1(p), ..., ur(p),0,...,0) as a local chart, and
observe that for ¢ € W there exists a unique p € W N L, and unique t;,...,t,— € R
such that

q = exp; (i tjEj@)> :

With these observations we define the Fermi-coordinates ¥ = (z,y): W — U x V C
R* x R™* with 2(q) = (¢1(q),...,¥r(q)) and y(q) = (Yr41(q),- .- ¥m(q)) given as

follows:

(expp (Zt E;(p )) =1, (expp (WLZ_: tjEj(]_o)>) = uy(P) fora=1,...,k,
(expp (mz )) (expp (ZtﬂEJ >) t; fori=k+1,...,m.

- o _ o 0 _ o
By [24, Lemma 2.4] we have that the restriction of T = o By = Fon 1O

L, W are orthonormal. Also we observe that %(q) = 811 (q) = %(q), fora=1,...,k
by construction. o
For (z,y) = ¢ € W we have the unique g-orthogonal decomposition -2 90 = =X, +V

where X; € T,L, and V; € v,(M, L,). We define matrices A(x,y), B(z,y), C(x,y), and
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D(z,y) as follows:

A 1< <
ab(x y (8% axb) = CL,b = ka
0
B = = —. X 1<a< 1< <
az( gﬂ:y ( a ) (‘T7y> (81’&7 1)7 _a’_k7k+ _Z_ma

Then we have the following local description of ¢ in the (x,y)-coordinates:

o A(I,y) B(:E7y)
g(‘r?y) - (B(:v,y) C(x,y) +D(x,y)) '

Observe that A(z,y), B(z,y), C(x,y) correspond to the components of the metric
9z, > which is a homogeneous flat metric on L, ) (see Section 2.4). From this it follows
that g| L(.,, does not depend on base point on L, ), and in particular it is independent
of the z-coordinate. To see this, observe that for ¢ = (x,y) we can lift metric g|;, to
the Euclidean Riemannian metric on the universal cover R* of L,, where k, = dim(L,,).
Thus locally the lifted metric does not depend on the base point, and thus the same holds
for g|z,-

The matrix D(z,y) corresponds to the geometry normal to L, at ¢ = (x,y) in M.
But since F is a closed regular Riemannian foliation, this geometry is independent of
the point in L,. In particular for (z/,y) = ¢’ € L, close enough to ¢ in L, we have
D(z,y) = D(2',y’). Thus the metric g in the local coordinates (x,y) is independent of
x. In this way for (x,y) = ¢ € W we can write

_ (Aly) B(y)
9la,y) = <B<y> Cly) + D<y>) '

In analogous fashion we have for the metric gs and the indices a,b = 1,...,k, i,j =
k+1,...,m the following identities:

g 0 g 0
gs (ZL’ y) (au aub) = 529($,y) (%78_%) = 52Aa,b(x7y)7

0 9\ _ 9 _ 9 v\ _sep
g5(x,y) (a—%, a—%) = gs(z,y) (aua’Xl> =6g(x,y) (8%,&) = 0°Bai(z,y),
gé(l'ay)(Xian) = 529<x7y)<Xi7Xj) = 62Ci7j(x?y)>
)

95(x,y)(Vi, V;) = g(@, y)(Vi, V;) = Dij(z,y).

Thus we have locally around p in the (z,y)-coordinates that

(82 A(y) 6*B(y)
gs(z,y) = (523(y) 52C(y) +D(y)> '

We now follow [6, Proof of Theorem 2.1}, and consider the change of coordinates z, = dx,,.
Thus we have 8‘2 =12 and we get the following local description of gs in the (Z,y)-

6 0xq’
coordinates:

[ Aly) 6B(y)
gé(xvy) - (5B(y) (520(:9) + D(y)) .
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Since this matrix does not depend on Z, we can define gs on RF x V. As 6 — 0, the
metric gs converges smoothly on R¥ x V to the metric

(Aéy) D(()y)> '

Moreover, A(y) induces a flat metric on R*. Observe that for 7 > 0 small enough so that
B,(0) C U, and for § small enough we have that gs(x,y) = gs(y) restricted to B,(0) x V

is isometric to ¢(Z,y) = g(y) restricted to Bs,.(0) x V. Now by hypothesis

A < Sec (g(:c, y)IB,.(a>Xv> <A,
and thus the same holds for g(Z,y)|p, §)x7- By the compactness of M we get that
A < Sec(gs) < A.

Moreover, observe that Diam(M, gs) < Diam(M, g), since we are “shrinking some tangent
directions” of M.

Given a leaf L,, we observe that since we are not changing the norm of the tangent
directions in T'M perpendicular to L,, we have that for » > 0 the tubular neighborhood
B, (L,, g) of L, with respect to g is the tubular neighborhood B, (L,, g5) of L, with respect
to gs. Moreover we have that B, (p,gs) C Br(Ly, 95) = B,(Ly,g), where B,(p, gs) is the
ball of radius § > 0 centered at p with respect to gs. But by construction we have that
Vol(B,(Ly, ), gs) goes to 0 as 6 — 0. Thus we conclude that

lim Vol(B,(p, gs)) = 0.
6—0

We assume now that there exists 79 > 0 such that Injrad(gs) > 9. By [10, Proposition
14], taking r9/2 > r > 0 we have that there exists a constant C'(m) > 0 depending only
on m the dimension of M such that for all §

Vol(B,(p, gs)) = C(n)r™ > 0.

But this is a contradiction to the fact that Vol(B,(p, gs)) decreases to 0. Thus we have
that

lim Injrad(gs) = 0.

0—0

Thus the metrics {gs}s~0 give a collapsing sequence of M with bounded curvature and
diameter. ]

3.2. Proof of Theorem C. In this subsection we present the proof of Theorem C'. The
idea of the proof consists in modifying the collapsing sequence from Theorem B to obtain
a new sequence of metrics converging to the original foliated metric g. Then we prove
that the g-perpendicular part of action fields to F vanishes.

Setup for the proof of Theorem C.
We give the necessary setup for the proof. We take (M, F, g) to be a regular B-foliation
on a compact m-dimensional manifold with finite fundamental group and m > 2.

We consider the collapsing sequence {gs}s~o given in (3.1) for the proof of Theorem B.
Next we fix p € M and we consider the (Z,y)-coordinates on a small neighborhood W
around p as given in the proof of Theorem B. We recall that in these coordinates we
have that

_ Aly) 0By )
z,y) = .
= (55t iy £ bl
Abusing notation, taking 6 = 1/n we now consider the sequence of Riemannian metrics
Gn = gim o0 M, and fix € > 0. Then, by Theorem 2.17 exists an N-structure 7. on M
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with orbits of positive dimension, and there exists N(¢) € N such that for n > N(e) we
have an 7.-invariant Riemannian metric g;, on M for which it holds:

€ gn<g,<eg, and A—e <Sec(g;) <A+e. (3.2)

Given X (p) € T,M, we consider the projections X+ (p) € v,(M, L,) and X " (p) € T,,L,.
Observe that for a vector field X € X(M) the vector fields X+ and X T are smooth vector
fields on M, since F is a smooth foliation.

We define a Riemannian metric In(e) On M as follows:

Ine(XY) =g (XY ) + N(e)gh (X, YT)
+ N(‘€>g]€V(s) (XTa YJ_) + N<€)2g]EV(5) (XT7 YT)
for X, Y € X(M).
We prove the first part of Theorem C'.

Lemma 3.1. For the metrics defined in (3.3) the spaces (M, gy,.)) converge to (M, g) in
the Gromov-Hausdorff sense as ¢ — 0.

Proof. For a given Z € X(M) we consider Z. = Z+ + N(g)Z". Then we have that by
definition gn()(Z:, Z:) = 9(Z,Z) and gy\(Z:, Z:) = Gy((Z. Z). Thus from (3.2) we
have
e—ag(Z’ Z) = 6_6gN(E)(Z€, Ze) < g]EV(g)(ZE; Ze) < eagN(s)(Zm Ze) = eag(Za Z)
Since gy (Ze, Z=) = Gy (o (Z, Z), this implies that for Z € T'M fixed we have
¢ °9(Z,2) < gn(Z,2) < e9(Z, 2). (3.4)

Fix p,q € M and consider c: [0,1] — M the minimizing geodesic from p to ¢ with
respect to g. Then we have that

e g, (p,9) < e UGy (o)(0) < Ug)(e) = dy(p, q)-

Now consider c.: [0,1] — M the minimizing geodesic from p to ¢ with respect to g5,
Then we have that

dgs, ., (0. 0) = UG (o) > e/2U(g)(cc) = 7 %dy(p, ).
That is we have
e~ 2dy(p,q) < dg, . (p,q) < ¢/?dy(p, ).

This implies that both Idy: (M, dy) — (M, dg, ) and Idy; : (M, dgs, ) — (M, dy) are
e*/?-Lipschitz.

Recall that the dilatation of a Lipschitz function f: (X,dx) — (Y,dy) is dil(f) =
sup{dy (f(z1), f(x2))/dx (x1,x2) | 1,22 € X}. Observe that given two different metrics
dy, dy on the same space X such that Idx: (X,d;) — (X,dy) and Idy': (X,dsy) —

(X, d,) are Lipschitz, we have that dil(Idx) is not necessarily equal to dil(Id") since this
quantities depend on the metrics. Then we have that

dil(Idy,) < /2, and dil(Id;}) < e/2,
Thus we conclude that for the Lipschitz distance we have

dp((M,d,), (M, dg. ) < /2.

IN(e)
This implies that (M, dﬁ?v(s>> converges Gromov-Hausdorff to (M, d,) as € goes to 0 (see
[4, Example 7.4.3]). O
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We recall from Theorem 2.16 that our N-structures 7). are given by torus fibrations
with fiber T* since M has finite fundamental group.

By assuming that the coordinate chart W is small enough, we may assume that for the
O(m)-principal bundle 7: F(M) — M we have a trivalization ¢: 7=(W) — W x O(m).
With this trivialization, given ¢ € W we take § = ¢ ~*(¢, Id) to be a lift of ¢, i.e. 7(§) = q.
We consider the fiber 7 (77.(p)) of the N-structure that contains ¢, and consider a fixed
vector z € T,T*. We now consider the action field X.(§) at ¢ of z on the fiber 7] =1 (0:(q))-
We set now X.(q) = m,(X.(q)); this vector field is well defined, since the fibration 7. is
O(m)-invariant.

We now proof the second part of Theorem C.

Lemma 3.2. The vector field X.(q) converges to a direction in T,(L,).

Proof. We denote by X_ the component tangent to F and by X+ the component per-
pendicular to L, with respect to g. Thus we have that

e (IXAI2, ) < e (X

Now we observe that || X||2 = HXLHQN o

less than € and =z is fixed, the norm || X, ||2 , goes to 0 as we make ¢ tend to 0. From this

together with the facts that [ X"||2 > 0 and ||XT|| > 0, we conclude that || X"||> — 0
as e — 0.

In the case when || X_"||2 — 0, we conclude that X, converges to the origin O € T, L,
Thus in this case the tangent space of the 7.-orbits converge to a subspace of the tangent
space to the orbits. O

2 o) <Xl

Since the orbits of 7j.-structure have diameter

9N (e)

We finish this section by proving that we have also uniform convergence of the Rie-
mannian metrics g;fv(g) to g.

Lemma 3.3. The Riemannian metrics gN defined in (3.3) converge uniformly to g.

Proof. As pointed out in the proof of Lemma 3.1, given Z € X(M) we have by (3.4) that
the norms ||ZH§]EV( | converge to 1Z]|% as e — 0.

For X,Y € TM, we use the polarization identities

. 1
oY) =7 (IX+ V1% —IX-YIE ),
to obtain

1 —& 3 =€ 3 —&
1 (EFIX +Yllg = X =Y5) < Gy (X, V) < 7 (CIX + Vg — eI X = YIlg).-

e

Since

: 1 —€ g
lim - (X + Y2 — X = V[2) = 2 (IX + Y2 = X —V]2) = g(X, )

A~ =

and
1, . . 1
lim -~ (eNIX+Y[2—e X -Y]2) = 2 (IX+Y[2 - 1X =Y|2) = g(X,Y),

we conclude that gi, ) (X,Y) = g(X,Y) as ¢ — 0 at the same rate, independently of the
base point p € M.

Consider now a local coordinate system (xy, ..., x,;,). Then we have that the coefficients
(gj‘f\,(s))ij (p) converge to g;;(p) with the same rate given by the rate of convergence of e®,
and e ¢ to 1 as € — 0, and thus it is independent of the choice of a base point p. Thus
(M, gy.)) converges with respect to the C-topology to (M, g). O
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3.3. Proof of Theorem A. We finish the manuscript by presenting the proof of Theo-
rem A. For manifolds of dimension bigger than 2, the proof consists of showing first that
the orbit spaces of the T*-actions induced by the N-structures converge in the Gromov-
Hausdorff sense to the quotient space M/F. Then by equivariant Gromov-Hausdorff
convergence theory for the T"-actions there exists a limit action by isometries by a Lie
group GG. Then we prove that the tangent distribution to the G-principal orbits agrees
with the tangent distribution of F. Lastly, we prove that the orbits of the G-action agree
with the orbits of the foliation and that G is a torus. The lower dimensional cases are
treated separately using existing classification results.

Setup for the Proof of Theorem A for dimensions > 2.
We present the necessary set up to prove Theorem A for the case when the dimension of
the manifold is > 2.

Let (M, F,g) be a compact simply-connected Riemannian manifold of dimension > 2
with a regular B-foliation.

In this case the hypothesis of Theorem B are satisfied, and thus there exists a collapsing
sequence of Riemannian metrics gs with bounded curvature defined in (3.1). Given ¢ > 0,
we consider the N-structure 7). given by Theorem 2.17. By Theorem 2.16 it follows that
the N-structure 7. is given by an effective torus actions p.: T% x M — M, and we denote
by T* C Diff(M) the image of T* under the map T% > & — pu.(¢,-) € Diff(M).

Moreover, by Theorem 2.17 for each € > 0 we have a Riemannian metric (M, gy ,))
which is p.-invariant. In the proof of Theorem C we modified these metrics In(e to
define in (3.3) a sequence of Riemannian metrics INE) which by Lemma 3.3 they converge
uniformly to the Riemannian metric g. We also highlight that by construction, the metrics
IN(e) are pe-invariant.

We have the following lemma:

Lemma 3.4. The sequence (M/TF, dge. )) converges to (M/F,d;) in the Gromov-Haus-
dorff sense as ¢ — 0.

Proof. Let A € R be the lower sectional curvature bound of (M, g). Given £ > 0, we have
by construction that (M, g5.)) has Sec(gy)) = A — . Thus the space (M/Tk d’e ))

e Ygs
is an Alexandrov space with curv > A\ — e. Therefore, given ¢y > 0, for 0 < ¢ S €0
we have that (M/F,d;) and (M/T?, d;%( )) are compact Alexandrov spaces with curv >

A —¢o. Moreover, they both have the same dimension, and by construction (M/TF, dge ))
converges to (M/F,d;) in the Gromov-Hausdorff sense.

We fix p* € M/F, and consider ¢* € M/F close enough to p* in M/F, such that
there is a unique geodesic v* in M/F joining p* to ¢*. By [28, Lemma 2.2] we can find
geodesics v* in (M/TF, d;]ev( )) starting at p* which converge uniformly to v*. We denote
by ¢ the other endpoint of the geodesic 7. Observe that by construction the sequence
q: converges to ¢* as € — 0.

We now consider lifts ¢. and . in M of ¢ for the projection map m.: M — M/TF
such that dge (p, q:) = d*g (p* ¢F) and dﬁ?\z(5> (p,q:) = d%v( (p*,¢¢). Thus, there exists

V. e, gN(E (M TF) and V. € gN(E)(M, T*) such that exp,” @ (V2) = ¢. and exppN(E (V) =
G- By construction there exists & € T, Ek such that £&.q. = @-.. We point out that & can
be factored as & = & - &, where & € (TF), and & & (T*),. In particular since T* is
abelian, we have that there exists an action field X* € T,T¥(p) (determined by £.) such
that V. = D,&.(V.) + X?. Since T* is compact, and the element X7 is determined by the
exponential map of 7%, we conclude that X converges in T),M, up to a subsequence, to
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a vector X. Moreover, by Theorem C the tangent spaces of the T -orbits converge to the
tangent space of the leaves of F, and thus we have that X is tangent to the leaf L,.
We also have that dg?v@ (p,q-) = dzﬁw )(p*, q:), which converges to d; (p*,q*) as ¢ goes

to 0. This implies that the sequence {¢.} C M is eventually contained in a tubular
neighborhood of L, with respect to g. In particular the sequence {¢.} is eventually
bounded with respect to g. This implies that there exists qo € M such that, up to a
subsequence, ¢. converges to gy with respect to g.

We consider V;, € T,,M to be the vector such that expg(VO) = ¢o. We observe that since
V. = D& (VZ) + X7, and both V. and X converge, up to a subsequence, then D,¢. (VL)
also converges, up to a subsequence, to some element V € T,M. Moreover we have that
V=V+X by construction.

Since expp N (#V,) projects to the geodesic v, we conclude that q6 converges to ¢j and

thus we have ¢§ = ¢*. Given that for any ¢ € [0, 1] we have that expp ©(tV.) converges to
expd(tV') with respect to g, the same argument as before shows that (expg(tV'))* converges
to 7*(t). This implies that the geodesic expg(tV) is a lift of 7*. From this it follows that
dy(p, qo) = di(p*, ¢*), and that |V = di(p*, ¢*).

Since V realizes the distance between L, and L, then V' is g-orthogonal to L,. But
we also have that V =V + X with X tangent to the leaf L, possibly equal to 0. This
implies that X = 0, and thus V = V.

Moreover, by construction we have that ||‘_/||25 o = ”D”&(VE)H?&(E) converges to

VI = V][5 But since |[Ve]|3.

verges to d(p*, q*).
Since ¢* is arbitrary, we conclude that for sufficiently small balls around p*, the same
holds. I.e. the function d%v( )(p*, —) approximates the function d;(p*, —). By the triangle

T = 9N( )(p q), we conclude that d%v(g) (p*, q*) con-

inequality, and the fact that the points ¢* converge to ¢ with respect to d%v() and dj
we have that the metrics d%v( , converge uniformly to dj over the sufficiently small balls
around p* in M/F. Since M /F is compact, we conclude that the metrics d%w , converge
uniformly to d}. Thus, we conclude that (M/TF, d%v(s)) converges to (M/F,d;) in the

Gromov-HausdorfT sense. O

We now use results from Section 2.6 to proof the following lemma.

Lemma 3.5. There exists a Lie group G acting by isometries on (M,g) such that
(M/G,d3) is isometric to (M/F,d;).

Proof. Since by Lemma 3.1 (M, dﬁ?wg)) converges in the Gromov-Hausdorff sense to

(M,d,), then we have by Remark 2.11 and Theorem 2.14 that there exists a closed
group G acting effectively on (M, d,) by distance preserving isometries. By the work of
Myers and Steenrod [39] it follows that G is a closed subgroup of Isom(M, g), the Lie
group of isometries of g. In particular GG is a Lie group.

Moreover by Theorem 2.13 we have that (M /TF, dge. )) converges to (M/G,d}) in the

Gromov-Hausdorff sense. By Lemma 3.4, we have by the uniqueness of the limit that

(M/G,d;) is isometric to (M/F, dy). O

For the group action from Lemma 3.5 we obtain the following conclusion.

Lemma 3.6. Quer the set of G-principal orbits, we have T,G(p) = T,L,.
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Proof. Since (M/F,d}) is an Alexandrov space with curv > A, then (M/G,d;) is an
Alexandrov space with the same lower curvature bound. Thus given gy > 0, foreg > & > 0
we have that (M/T, ;%v( )) and (M/G,d}) are Alexandrov spaces with curv > A — &.

We consider G(p) a principal orbit. Then there exists a sufficiently small ball around
G(p)in (M/T f%w )) consisting of only G-principal orbits. Let G(q) be an orbit sufficiently

close to G(p), and let 7, be the minimizing geodesic in the principal stratum of (M/G, d;)
joining G(p) to G(q). Then by [28, Lemma 2.2] there exists minimizing geodesics 7} in

the principal stratums of (M/TF, d; )) converging uniformly to .

Take § > 0 small enough so that the d-ball around p in (M, g) consists of only principal
orbits, and consider By (p) C (M, g) the set of all points z in M with d,(p, ) < & such
that there exists a unique minimizing geodesic v: [0, 1] — (M, g) with v(0) = p, 7(1) = z,
and +/(0) perpendicular to 7,G(p) with respect to g (for example we can take J smaller
than the injectivity radius of g at p). Observe that by the Slice Theorem for group
actions and how the metric d; is defined on M/G, the open ball B5(G(p)) C (M/G,d;)
is isometric to By (p) under the quotient map 7g: (M,dy) — (M/G,d;). Under this
identification, the lift v in Bj of 7 is completely determined by the lift p of G(p).

We also point out that since (M /TF, dge )) converges in the Gromov-Hausdorff sense

to (M/G,d;), by Remark 2.9 we may assume that p is contained in a 7, *_principal orbit.
Thus via the quotient map 7. : (M, dglsv(s)) — (M/TF, d:- ) the open ball B§(p*) is iso-

e Ygs
metric to B§*(p) C (M, dgiv@), the collection of all pomts in B(p) C M such that there
exist a minimizing geodesic a.: [0,1] — (M, g) starting at p, and « (0) perpendicular to

T,TF(p) with respect to ING) . We also point out that the lift ¢ to Ba of 4! is completely
determined by the lift p of p*.

Thus we have that for each geodesic vg: [0,1] — M contained in By (p) C (M,d,)
there exist geodesics 7. contained in B+ (p) C (M, dgfv@)) converging uniformly to 7¢.

As stated in the proof of Lemma 3.4, the sequence of vectors 7.(0) converges to a vector
V that is perpendicular to L, with respect to g. But V is the tangent vector of a lift of
the geodesic v* starting at p. Thus we have that +/(0) is a scalar multiple of V" and thus
perpendicular to L,. In other words, we have that v9(M,G(p)) C v4(M, L,).

Since M /G is homeomorphic to M /F, we conclude that

dim(v4(M, G(p)) = dim(M/G) = dim(M/F) = dim(vJ(M, L,)).
From this we conclude that vJ(M,G(p)) = vJ(M, L,), and thus T,G(p) = T,L,. O
We now prove the following auxiliary lemma.

Lemma 3.7. Let M be a smooth manifold, and let F' and F be smooth reqular foliations
of dimension k on M. Assume that F and F' agree on D C M a dense subset of M,
i.e. for p € D we have that L, = L), where L, € F and L, € F' are the respective leaves
through p of F and F'. Then F = F', that is the foliations agree everywhere.

Proof. We assume that m = dim(M) and for & = dim(F) = dim(F’) we consider
Gr(k,m) — M to be the fiber bundle over M whose fiber at ¢ € M is the Grass-
mannian Gr(k,T,M) of k-dimensional subspaces in 7,M. Observe that the total space
Gr(k, m) is a Hausdorff space.

We recall that the foliations F and F’ induce smooth distributions A and A’ respec-
tively, by setting A(q) = T,L, and A'(q) = T,L,. We point out that we can consider
these distributions as continuous functions A, A’: M — Gr(k, m). By hypothesis these
functions agree on a dense subset, and are continuous.
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We now show by contradiction that A and A’ agree everywhere. Assume that they
do not agree on some point ¢ € M, i.e. A(q) # A'(q). Since X is Hausdorff, there
exists open disjoint subsets U, V C X with A(q) € U and A’(q) € V. Now we consider
W = A"YU) N (A")~1(V) which is open and non-empty, since ¢ € W. We observe that
there exists p € D N W, by the fact that D is dense. Thus we have that A(p) = A'(p).
But this contradicts the fact that U and V are disjoint. Thus A(q) = A’(g) for all ¢ € M.

This in turn implies that for all ¢ € M we have T,L, = T,L;. But observe that
by construction we have that L, is an integral submanifold of A, and L is an integral

submanifold of A’. By the uniqueness of such integral submanifolds it follows that L, =
L. O
q

Lemma 3.8. For the group action of G on (M, qg) given by Lemma 3.5, we have that
L, = G(z) and G is a torus.

Proof. We begin by pointing out that since F is a regular Riemannian foliation, we have
that M/F is an orbifold. Given that M/G is isometric to M/F by Lemma 3.5, we
conclude that M /G is an orbifold. Now by the Slice Theorem (see [1, Theorem 3.57]), a
sufficiently small ball of G(z) € M/G in (M/G,d;) is homeomorphic to R™/G,. From
this and the fact that M/G is an orbifold, we conclude that G, is a finite subgroup. This
implies that the Riemannian foliation on M induced by the partition into the G-orbits
is a regular Riemannian foliation. Moreover by Lemma 3.6 the distributions 7,L, and
T,G(p) agree over the open dense set of principal G-orbits. Then by Lemma 3.7 we have
G(z) = L, for an arbitrary x € M.

To finish the proof we consider a fixed € M. Since we have that G(z) is homeo-
morphic to G/G,, and G, is finite, then G is a covering space of G(x). But G(z) is also
homeomorphic to L., which is a torus. This implies that G is a finite cover of a torus
and thus G it is aspherical with fundamental group isomorphic to 7;(L;). Thus G is a
torus. U

From the discussion above, we have proven the following lemma.

Lemma 3.9. Let (M, F,g) be a reqular B-foliation on a compact-simply connected Rie-
mannian manifold of dimension > 2. Then F s given by a torus action by isometries on

(M, g).

Proof of Theorem A. We consider (M, F, g) to be a compact simply-connected m-dimen-
sional manifold equipped with a closed non-trivial regular Riemannian foliation such that
for L € F we have that (L, g|;) is flat; i.e. F is a regular B-foliation.

By Lemma 3.9 we have proven Theorem A in the case when m > 2. We now prove the
missing lower dimensional cases.

In the case when m = 1 there are no such foliations: Assume that (M, F,g) is a regular
B-foliation on a compact simply-connected 1-dimensional manifold. Since the leaves have
positive dimension, we conclude that the foliation consists of only one leaf, i.e. F = {M},
which is a contradiction to F being non-trivial.

In the case of m = 2, we have several cases based on the codimension of the foliation.
In the case when the foliation has codimension 0, this implies that the foliation consists
of only one leaf, i.e. F = {M}, which is a contradiction to the non-triviality of F.
The case of codimension 2 is excluded, because this implies that a leaf has dimension 0,
contradicting the assumption that the leaves of F have positive dimension. In the case
when F has codimension 1, from [22, Theorem D] it follows that given an A-foliation of
codimension 1 on a 2-dimensional simply-connected manifold M, then M is diffeomorphic
to S? and F is given by a circle action. This is a foliation with singular leaves and
contradicts our assumption of regularity. O
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