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resistance of Ni-based reforming catalysts
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Ni-based catalysts are well established for industrial H2 production via methane steam reforming; however,

their susceptibility to sulfur poisoning necessitates expensive desulfurisation and limits the development of

low temperature processes using renewable feedstocks. Designing next-generation catalysts requires an

atomic-level understanding of the factors that affect the catalyst sulfur tolerance, but this is difficult to

obtain due to complex interactions between the Ni catalyst and non-inert metal oxide supports. In this

work, we investigate the atomic-level mechanisms driving the support-induced sulfur resistance of Ni

catalysts, emphasising the role of disorder in Ni-bound sulfur–oxygen adsorption complexes and support

defect chemistry in promoting catalyst regeneration. The thermodynamic driving force for oxygen-

mediated sulfur removal from a Ni(111) surface, which is indicative of the regenerative effects of support

oxygen buffering, is investigated using grand canonical Monte Carlo (GCMC) sampling of a lattice model

that is parameterised using density functional theory (DFT). The outcome is predictions of the equilibrium

surface coverage and composition of co-adsorbed S and O atoms on Ni(111) at length scales that are

inaccessible to DFT simulations. The GCMC predictions are validated using a fine-tuned machine learned

interatomic potential to reveal entropic contributions for catalyst regeneration at experimentally relevant

surface coverages, demonstrating an integrated approach for efficiently exploring the complex

combinatorial space of adsorption complexes with near ab initio accuracy. Simulations of the surface

chemistry of Ni(111) are complemented by predictions of the energetics of bulk defect formation in

prototypical metal oxide support materials to provide insights into the proclivity for oxygen release and

phase transformation during catalytic reactions. The computational modelling is correlated with

experimental characterisation and methane steam reforming activity tests for H2S-poisoned Ni nanoparticle

catalysts, allowing us to rationalise the experimentally observed differences in the catalyst sulfur tolerance

and establish strategies for future catalyst optimisation. The work demonstrates the integration of ab initio

computational modelling, statistical sampling and machine learning, in a combined framework that

complements experimental characterisation, to inform the rational design of catalyst support materials for

sustainable H2 production.

1 Introduction

Methane steam reforming (MSR) is an established industrial
process that produces ∼95% of the global H2 supply1 via the
conversion of natural gas (primarily CH4, with smaller
amounts of higher hydrocarbons) to syngas (mixtures of CO,
CO2 and H2), at high temperature and pressure, in the
presence of a catalyst. The commercial Ni-based catalysts are
highly susceptible to sulfur poisoning by impurities in the
feedstock, e.g., H2S, SO2, H2SO4 and/or COS, and therefore an

expensive feed desulfurisation process is necessary to achieve
sub-ppm sulfur concentrations.2 The additional cost and
complexity of feed desulfurisation also limits the
development of biogas reforming processes for scalable H2

production from renewable feedstocks, e.g., using solid oxide
fuel cells3 or via combined steam and dry reforming.4

Understanding the factors that affect the catalyst sulfur
tolerance is essential to enable the direct use of sulfur-
containing feedstocks; a challenge that is particularly
important for Ni-based catalysts as they are more
economically viable than those based on platinum group
metals (PGMs).

A number of strategies have been considered to enhance
the sulfur tolerance of Ni-based catalysts, such as alloying
with PGMs, including Au, Cu, Mn, Pd, Pt and Rh.5 Alloys are
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widely reported in the literature and are proposed to enhance
the catalyst sulfur tolerance via different mechanisms, e.g.,
promoting sulfur scavenging by secondary metallic active
phases,6 promoting sulfur oxidation and desorption at high
temperatures7,8 and suppressing the dissociative adsorption
of feedstock poisons like H2S.

9 The optimisation of metal
oxide supports is another effective strategy to enhance the
sulfur tolerance of supported Ni nanoparticles during
catalytic reforming reactions, with the mechanism widely
hypothesised to involve oxygen buffering from reducible
supports like CeO2 and Y2O3.

10,11 In these materials, lattice
oxygen is proposed to migrate from the support to the Ni
active phase under reducing conditions at high temperatures,
resulting in the oxidation and desorption of catalyst poisons
e.g., C → CO2 (ref. 12–16) and S → SO2.

17–20 Similarly, a
number of established chemical and electrochemical
regeneration methods have been shown to restore the activity
of poisoned Ni catalysts by modulating the transfer of oxygen
to the poisoned Ni active sites. Chemical regeneration of
sulfur-poisoned Ni catalysts can be achieved using exposure
in steam, H2 and/or O2 depending on the degree of sulfur
poisoning.21,22 Electrochemical regeneration can also be used
to control the O2− spillover from both aqueous environments
and Y2O3-stabilised ZrO2 (YSZ) supports, towards sulfur-
poisoned Pt and Ni species, enabling catalyst oxidative
regeneration using a negative electrode potential.23–25

Ab initio computational modelling methods, such as
density functional theory (DFT), provide an atomic-level
insight into the surface chemistry of sulfur-poisoned Ni
nanoparticles. Atomic sulfur is often used to represent H2S
poisoning at low/medium surface coverage (θS) due to the
predicted dissociative adsorption of H2S → S on Ni(111),
which does not cause surface reconstruction or sulfur
penetration into the Ni bulk as observed at high θS.

26–29 DFT
studies of oxygen-mediated sulfur removal from Ni(111) show
that both atomic O and molecular O2 (which adsorbs
dissociatively) can lead to the sequential oxidation of S → SO
→ SO2, which then desorbs at high temperatures.30,31 These
studies were limited to idealised adlayer representations of S,
with θS = 0.25 monolayer (ML) and 0.5 ML, and do not
account for variations in configurational entropy at
intermediate coverages; therefore, whether the formation of
SO2 is thermodynamically or kinetically driven at
experimentally relevant surface coverages remains
unresolved. Constructing more experimentally relevant
predictive models for S and O adsorption on Ni(111) requires
extensive sampling of the large configurational space of
adsorption complexes, which is computationally infeasible
with DFT alone. Statistical sampling algorithms, such as
grand canonical Monte Carlo (GCMC), must therefore be
considered as they are well suited for exploring the
configurational space of adsorption complexes on a lattice
model of the surface, where adsorbates occupy predefined
adsorption sites.32,33 In GCMC, the ground state of the
system is estimated by stochastically sampling a DFT-
parameterised Hamiltonian through adsorbate perturbations

such as adsorption, desorption or diffusion.34 The GCMC
approach allows the system to explore a wide range of
chemically relevant surface configurations, producing
extended models that are beyond the atomistic length scales
afforded by DFT, whilst ensuring all accessible states
contribute to the statistical ensemble when determining
surface properties at thermodynamic equilibrium.

Lattice models simplify the sampling of the
configurational space of adsorption complexes but neglect
off-lattice effects, such as many-body lateral interactions and
surface reconstruction, which can be non-negligible under
experimental reaction conditions. To account for off-lattice
effects, extended GCMC-predicted adlayers can be refined
using classical interatomic potentials (IPs) to perform
geometry optimisation and/or molecular dynamics
simulations.35–37 Classical simulations are a computationally
efficient approach for modelling materials at the length
scales unaffordable using DFT, but the accuracy of these
simulations is dependent on that of the underlying IP.
Modern machine learned interatomic potentials (MLIPs) offer
a promising approach for balancing accuracy and
computational efficiency by avoiding the predefined
functional forms used in traditional IPs, enabling MLIPs to
capture complex potential energy surfaces with greater
flexibility. Recent advancements in neural network (e.g.,
SchNet,38 PaiNN,39 M3GNet,40 CHGNet,41 and MACE42) and
Gaussian process-based (e.g., GAP43) MLIPs have enabled
more accurate modelling of chemical reactivity on transition
metal surfaces.44–46 Among these methods, the MACE42

architecture, based on message-passing neural networks
(MPNNs) and the Atomic Cluster Expansion (ACE),47 is
popular as it requires less training data compared to other
architectures; thus a MACE model provides a computationally
tractable means for simulating off-lattice effects in extended
surfaces with near ab initio accuracy.48

Accurate simulations of poisoning and reactivity of Ni-
based MSR catalysts are also very challenging to realise due
to the interplay between oxygen buffering (causing catalyst
regeneration) and phase transformations of the metal oxide
support (causing catalyst deactivation). For example, Ni/γ-
Al2O3 catalysts can undergo progressive Ni substitution for
Al, resulting in the in situ transformation of Ni/γ-Al2O3 to
spinel-type NiAl2O4.

49 Conflicting reports exist for the utility
of Ni-based spinel-type oxides and whether they deactivate
Ni-based catalysts50 or enhance catalytic activity51–56 and
tolerance to S and C poisons57 due to the facile formation of
oxygen vacancies. Accurate predictions of the energetics of
oxygen vacancy formation and substitutional doping for these
support materials are non-trivial using DFT, particularly for
reducible transition metal oxides (TMOs) e.g., TiO2, and rare-
earth metal oxides (REOs) e.g., CeO2, which are
experimentally reported to exhibit favourable oxygen
buffering capacities.58,59 The Coulomb self-interaction error
(SIE) of local and semi-local DFT, when simulating materials
with partially filled d or f orbitals, results in erroneous defect
formation energies in TMOs and REOs;60–62 therefore, it is
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necessary to use beyond-DFT methods with corrective
schemes to combat the SIE. Hubbard corrected density
functional theory (DFT+U) is a popular approach as it is
computationally tractable for large systems (e.g., defects in
large supercells) and involves an ad hoc energy correction
applied selectively to localised orbitals, e.g., Ti 3d orbitals in
TiO2 and Ce 4f orbitals in CeO2.

63 Despite the benefits of
DFT+U in computational efficiency, the determination of
appropriate simulation parameters, including the Hubbard U
value and projector, is non-trivial for simulating defects in
TMOs and REOs with accuracy that matches experimental
observations, and care is therefore necessary in
application.64,65

In this work, a combined computational and experimental
approach is adopted to investigate the enhanced sulfur
tolerance of Ni nanoparticles on reducible metal oxide
supports, with the aim of establishing strategies for future
catalyst optimisation. We investigate the thermodynamic
driving force for oxygen-mediated sulfur removal from
Ni(111), indicative of the regenerative effects of support
oxygen buffering, using GCMC sampling of a DFT-
parameterised lattice model. The GCMC-predicted adlayers
enable the prediction of the surface coverage and
composition of competitively adsorbed S and O atoms as a
function of temperature and the chemical potentials of S and
O across an extended Ni(111) surface. The GCMC-predicted
adlayers are validated using geometry optimisation
simulations with a fine-tuned MACE MLIP to reveal entropic
contributions and limitations to catalyst regeneration at
experimentally relevant surface coverages. Simulations of the
surface chemistry of Ni(111) are complemented by DFT+U
predictions of the energetics of bulk defect formation (oxygen
vacancies and Ni substitution) in prototypical metal oxide
support materials, providing insights into the proclivity for
oxygen release and phase transformation during catalytic
reactions. The computational modelling is correlated with
experimental characterisation (TPD-MS, XPS, ICP) and MSR
activity testing of H2S-poisoned Ni nanoparticle catalysts to
rationalise the experimentally observed differences in the
catalyst sulfur tolerance. The work demonstrates the
integration of ab initio computational modelling, statistical
sampling and machine learning to construct more realistic
models of complex catalytic materials, which further
complement experimental characterisation to inform future
strategies for catalyst rational design.

2 Methodology
2.1 Electronic structure calculations

2.1.1 DFT. All electronic structure calculations were
performed using the Fritz-Haber Institute ab initio materials
simulation (FHI-aims) software package,66 which uses an all
electron numerical atom-centred orbital (NAO) basis set,
interfaced with the Python-based Atomic Simulation
Environment (ASE).67 Periodic boundary conditions were
applied using converged k-point sampling with the standard

light basis set (2020), with equivalent accuracy to the TZVP
Gaussian-type orbital basis set,68 as decided after
benchmarking of the bulk Ni vacancy formation energy (see
the SI, section S1.1.1). Relativistic effects were accounted for
using the zeroth order regular approximation (ZORA)66 as a
scalar correction. The system charge and spin were set to
zero, given the reported quenching of Ni(111) surface
magnetic moments following oxygen adsorption69 and the
temperatures of MSR far exceeding the Curie temperature of
Ni (631 K), only below which long-range magnetic order is
observed.70 The mBEEF meta-GGA exchange correlation
density functional was used,71,72 as defined in Libxc,73

providing the best accuracy compared to other local and
semi-local functionals (see SI section S1.1.2). Dispersion
corrections were not explicitly included as sulfur and oxygen
bind strongly to Ni(111) through short-range chemisorption,
which are well described by the mBEEF density functional.71

For such systems, long-range van der Waals interactions
provide only minor contributions to adsorption energies,
whilst any van der Waals correction may also be detrimental
to the representation of the support material; therefore, no
further dispersion corrections are included. Self-consistent
field (SCF) optimisation of the electronic structure was
achieved using a convergence criteria of 1 × 10−6 eV for the
change in total energy, 1 × 10−4 eV for the change in the sum
of eigenvalues and 1 × 10−6 e a−30 for the change in charge
density. Unit cell equilibrium volumes (V0) were calculated by
fitting to the Birch–Murnaghan equation of state using
ASE.74 Geometry optimisation was performed using the
quasi-Newton BFGS algorithm75–78 with a force convergence
criteria of 0.01 eV Å−1. The pristine Ni(111) surface was
modelled using a six layer symmetric periodic slab, of which
the bottom three layers were frozen to mimic the system
bulk, resulting in a converged surface energy in line with
computational literature and experimental references (see SI
section S1.1.3). A 20 Å vacuum gap was used in the direction
perpendicular to the surface to eliminate artificial
interactions between periodic images. A dipole correction
was applied to compensate for the inhomogeneous electric
field arising from surface adsorption. Adsorption energies
were calculated as:

ΔEAds = E[Ni(111)+Ads] − ENi(111) + μAds (1)

where the chemical potential of the adsorbed species (μAds)
was calculated using the energies of isolated atomic S, atomic
O, molecular SO and molecular SO2.

2.1.2 DFT+U and defect calculations. All DFT+U
calculations were performed with FHI-aims, using the on-site
definition of the occupation matrix and the fully localised
limit (FLL) double counting correction.63 A Hubbard
correction was applied to treat the Coulomb self-interaction
of Ti 3d orbital electrons in tetragonal rutile TiO2 and Ce 4f
orbital electrons in cubic CeO2. No Hubbard correction was
applied for the Ni dopants or for γ-Al2O3. Hubbard U values
for Ti 3d and Ce 4f orbital electrons were chosen as UTi 3d =
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2.575 eV and UCe 4f = 2.653 eV, which are both valid with a
refined atomic-like Hubbard projector, as defined in the SI
section S1.2. Hubbard U values and projectors were
simultaneously determined using a machine learning-based
workflow, with the target of reproducing the bulk material
covalency as calculated using hybrid-DFT, which results in
numerically stable self-consistent simulations of point
defects.65 Defect calculations in γ-Al2O3, TiO2 and CeO2 were
performed using the supercell sizes listed in the SI section
S1.2, with suitable sizes to ensure a consistent defect
concentration across the three systems whilst also accurately
representing the dilute limit. Defect energies (ΔEDefect)
following substitution of a host metal atom (Al in γ-Al2O3, Ti
in TiO2 and Ce in CeO2) with a Ni atom were calculated as:

ΔEDefect = EDefective Bulk + μHost − EStoichiometric Bulk − μDopant (2)

where the chemical potentials μHost and μDopant were
calculated using the energy of bulk Ti (hexagonal close
packed) as well as Al, Ce and Ni (all face-centred cubic).
Oxygen vacancy formation energies (ΔEOV) were calculated as:

ΔEOV = EDefective Bulk + μO − EStoichiometric Bulk (3)

where the chemical potential μO was calculated using half
the energy of an isolated O2 molecule. Defect calculations in
TiO2 and CeO2 were performed using the occupation matrix
release (OMR) method to initialise Ti3+ and Ce3+ polarons at
nearest neighbour atoms to the defect. The DFT+U-predicted
total energy (EDFT+U) is pre-converged using fixed orbital
occupancies until ΔEDFT+U ≤ 0.001 eV, below which all orbital
occupancies are calculated self-consistently.63

2.2 Monte Carlo sampling

All lattice modelling and Monte Carlo sampling was
performed using the Surface Science Modeling and
Simulation Toolkit (SuSMoST) software package,34

considering adsorption complexes of S, O, SO and their pairs,
and the occupation of hollow HCP and hollow FCC active
sites on Ni(111) motivated by our results in section 3.1 and
3.2. Full DFT geometry optimisation was performed for 70
symmetrically inequivalent pairs of adsorption complexes on
either a 10 × 10 or 7 × 7 Ni(111) surface supercell within a 10
Å or 5 Å radial cutoff, respectively, as explained further in
section 3.2, before calculating the energy of lateral
interactions, ΔELateral, using:

ΔEs1;s2
lateral ¼ Es1;s2

x−x Pair −ENi 111ð Þ − Es1
x þ Es2

x

� �
(4)

where ENi(111) is the energy of the pristine surface, Es1;s2
x−x Pair is

the energy of a pair of adsorbates x at sites s1 and s2 for x ∈
{S, O} and s1, s2 ∈ {Hollow HCP, Hollow FCC}, Es1

x is the
energy of a single adsorbate x occupying site s1 and Es2

x is the
energy of a single adsorbate x occupying site s2. 35
adsorption complexes consisting of pairs of S–S, O–O and
S–O atoms, with |ΔELateral| ≥ 0.04 eV, were chosen for

parameterising a pairwise Hamiltonian () for subsequent
GCMC sampling, based on the generalised lattice-gas model
of adsorption monolayers by Akimenko et al.:79

 ¼
X
i∈L

ΔEAds σið Þ þ
X
i; j∈L

ΔElateral σi; σj; rij
� �

(5)

where L is a set of lattice sites, σi is an adsorption complex at
site i, ΔEAds(σi) is the adsorption energy of the adsorption
complex at site i in the zero coverage limit and ΔElateral(σi, σj,
rij) is the energy of lateral interactions between adsorption
complexes at sites i and j, given the distance rij between the
two sites. Geometry optimisation of S–O pairs with a short
interatomic separation of 1.45 Å, corresponding to adsorption
at neighbouring hollow HCP and hollow FCC active sites,
resulted in atomic diffusion to other active sites and
therefore these adsorption complexes were disregarded for
subsequent GCMC sampling. Similarly, molecularly adsorbed
SO was predicted to be less stable than individually adsorbed
S and O atoms at low surface coverage, and therefore was not
included in the GCMC sampling (see section 3.2).

GCMC sampling was performed on a hexagonal lattice of
30 × 30 centers with periodic boundary conditions, which
was large enough to avoid finite size effects. Each Monte
Carlo step involved 30 × 30 attempted moves, i.e., one
attempt for each active site per step to change the state of
the adsorbed layer through adsorption, desorption and
surface diffusion of atomic S and O. The acceptance or
rejection of a new configuration of the model adsorbed layer
of S and O was determined using the Metropolis algorithm,80

where a new configuration is accepted if the total energy ()
is less than that of the previous configuration (i.e., Δ ≤ 0
eV) or, if Δ > 0 eV, the new configuration is accepted with

the probability min 1; exp − Δ
RT

� �� �
. One million Monte

Carlo steps were used to reach thermodynamic equilibrium
and then the same number of steps were used to calculate
ensemble averages. The parallel tempering algorithm was
used to improve convergence to equilibrium and calculate
the temperature dependence of the predicted adlayer
coverage and composition, while also accounting for
variations in configurational entropy.81 The following
temperatures were used for parallel tempering replicas: 300,
400, 600, 800, 1000, 1200, 1500 and 1700 K. Each simulation
was performed with varying relative chemical potentials (μR)
of sulfur (μRS) and oxygen (μRO) between −1 and 1 eV, which
correspond to the adsorption energies of a single S or O atom
on Ni(111) in the zero coverage limit, before geometry
relaxation. Negative values of μR correspond to surfaces that
are less likely to adsorb atoms in the zero coverage limit,
whilst positive values of μR correspond to surfaces that are
more likely to adsorb atoms in the zero coverage limit. We
note that non-zero coverages are still possible for both
positive and negative values of μR after geometry relaxation,
due to entropic effects or attractive lateral interactions. To
enable direct comparison with experiment, the relative
chemical potentials used for GCMC sampling were mapped
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to gas phase partial pressures, corresponding to reservoirs of
O2 and H2S, using ideal gas thermodynamics at the same
temperature and a standard-state pressure of 1 bar:

μRS(T, p) = ΔES
Ads + [GH2S(T, p) − EH2S] − [GH2

(T, p) − EH2
] (6)

μRO T; pð Þ ¼ ΔEO
Ads þ

1
2
GO2 T; pð Þ −EO2½ � (7)

where ΔES
Ads (ΔEO

Ads) are the DFT-computed adsorption
energies for a S (O) atom on Ni(111) in the zero-coverage
limit; GH2S, GH2

and GO2
are the Gibbs free energies of the

isolated H2S, H2 and O2 molecules, respectively, obtained
from ideal gas thermochemistry using ASE; and EH2S, EH2

and
EO2

are the DFT-computed energies of the isolated H2S, H2

and O2 molecules, respectively.

2.3 Many-body tensor representations

To quantify the differences in the GCMC-predicted spatial
distribution of adsorbed S and O on Ni(111), the GCMC-
predicted adlayers were encoded into structural fingerprints
using many-body tensor representations (MBTRs),82 with the
DScribe Python library.83,84 Two-body MBTRs were used to
encode pairwise interatomic distances between adsorbed S
and O atoms as a smooth density distribution over a
continuous grid, which was then discretised into five MBTR
descriptors and reduced to a one-dimensional descriptor
using principal component analysis (PCA) with the Scikit-

learn Python library.85 The principal component output from
PCA (PCMBTR) captures the most significant trends in the
spatial disorder of co-adsorbed S and O in the GCMC-
predicted adlayers. All hyperparameters for evaluating the
MBTRs and PCMBTR are listed in the SI section S2.

2.4 Interatomic potential training and inferencing

The GCMC predictions were validated using geometry
optimisation calculations with a MACE (version 0.3.10)
MLIP,42 providing a computationally efficient means to relax
the high-coverage GCMC-predicted adlayers on the 30 × 30
Ni(111) surface (∼5800 atoms, surface area ∼50 nm2). The
MACE MLIP was trained using the diverse dataset of 5921
DFT-optimised structures collected in the work, including
isolated atoms and molecules (S, O, SO, SO2 and SO3),
Ni(111) periodic slab models of different thicknesses and
adsorption complexes involving S, O, SO and SO2 at both low
and high surface coverage on Ni(111). Training was
performed using multihead replay fine-tuning of the off-the-
shelf MACE-MPA-0 (medium) foundation model,46 trained on
approximately 146 000 unique materials in the Material
Project Trajectory (MPTrj) dataset86,87 and 3.2 million unique
materials in a subset of the Alexandria dataset.88 No
dispersion correction was used and the model precision was
set to float64. A randomly selected 4737 structures (80%)
were used for model training, with the remaining 1184
structures (20%) used for validation. The Adam optimiser89

Fig. 1 (a) Overview of the use of grand canonical Monte Carlo (GCMC) sampling and a fine-tuned MACE machine learned interatomic potential
for studying the co-adsorption of S and O atoms on Ni(111) at thermodynamic equilibrium. The MACE model is fine-tuned from the MACE-MPA-0
pre-trained foundation model for 24 epochs, which results in a reduction in the (b) energy and (c) force errors until both start to plateau. When
inferenced on the full dataset of DFT-optimised structures, the fine-tuned model yields a reduction in the RMSE in total energies and maximum
atomic forces of >99% vs. the pre-trained foundation model, as shown in the parity plots for (d) total energies and (e) maximum atomic forces.
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was used to minimise a cost function comprised of an
equally weighted average of energy and force errors, with the
learning rate set to 0.01. The MACE model consists of two
message-passing layers and employs a radial cutoff for
learning interatomic interactions of 6 Å, resulting in a total
receptive field of 12 Å, which is greater than the distance
when lateral interactions between surface adsorbed pairs of
S–S, O–O and S–O atoms decay to zero at low surface
coverage, as computed using DFT. Fine-tuning was performed
for 24 epochs, to balance cost and accuracy due to plateauing
of the energy and force errors (Fig. 1(b) and (c), respectively).
The fine-tuned model gave a training (validation) root mean
squared error (RMSE) of 14.4 (14.2) meV per atom in total
energies and 16.3 (17.2) meV Å−1 in atomic forces. When
inferenced on the full dataset, the pre-trained foundation
model gave a RMSE of 1.43 × 1010 meV in total energies and
10.7 eV Å−1 in maximum atomic forces, which were reduced
by >99% upon fine-tuning the model as shown in the parity
plots in Fig. 1(d) and (e).

The fine-tuned MACE model was then used as the ASE
calculator to run geometry optimisation calculations using
the BFGS algorithm75–78 with a force convergence criteria of
0.01 eV Å−1. Six GCMC-predicted adlayers of differing
coverages and intermixing of adsorbed S and O were
validated using MACE: for μRS = −1 eV, μRO = −1 eV, −0.7 eV and
−0.5 eV, and T = 600 K and 1200 K. The accuracy of the
GCMC-predicted adlayers were validated by computing the
root mean squared deviation (RMSD) of the S and O atomic
positions (x and y co-ordinates) between the initial GCMC-
predicted adlayers and the final MACE-optimised adlayers:

RMSDi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xMACE
i − xGCMC

i

� �2 þ yMACE
i − yGCMC

i

� �2q
(8)

where xGCMC
i and yGCMC

i are the x and y coordinates of atom i
(either S or O) in the initial GCMC-predicted adlayer and
xMACE
i and yMACE

i are the corresponding coordinates in the
final MACE-optimised adlayer.

2.5 Experimental characterisation

To investigate how support oxygen buffering affects the sulfur
tolerance of the Ni catalyst, we selected three model supports
spanning a range of reducibilities. γ-Al2O3 is chosen as a high
surface area, structurally robust support material with
negligible oxygen buffering behaviour.90 Rutile TiO2 is chosen
as a moderately reducible support material, which can form
oxygen vacancies and facilitate mild oxygen buffering at high
temperatures.59 CeO2 is chosen as the prototypical support
material for strong oxygen buffering under catalytic reaction
conditions due to the ease of switching between the Ce3+ and
Ce4+ oxidation states, and low oxygen vacancy formation
energy.58,90

The three supported catalysts of 10 wt% NiO on γ-Al2O3

(commercial, surface area = 140 m2 g−1), rutile TiO2

(commercial, surface area = 20 m2 g−1) and CeO2

(commercial, surface area = 20 m2 g−1) were synthesised
using the standard incipient wetness impregnation method,

where the support materials were first impregnated with a Ni
nitrate precursor solution, then dried and calcined at 773 K
for 2 hours to obtain the final catalyst samples.91 The
catalysts were pelletised to a size of 250–355 μm and
activated in a tube furnace, in a mixture of 10% H2 in N2 at
923 K for 10 hours. Scanning electron microscopy (SEM) was
used to visualise the morphology of the prepared catalysts
using a Zeiss Ultra 55 field emission electron microscope
equipped with in-lens secondary electron and backscattered
detectors. X-ray diffraction (XRD) was performed using a
Bruker D8 Advance Davinci design unit to measure the NiO
crystallite size in the prepared catalysts.

A 1 g portion of each catalyst was then saturated with H2S
at room temperature for 18 hours in a fixed bed reactor,
using a feed gas of 100 ppm of H2S in a mixture of 2.5% H2

in N2, with a relative humidity of 50% and a flowrate of 500
ml min−1. The total sulfur content following room
temperature saturation was quantified using inductively
coupled plasma (ICP) analysis. As the focus of this work is to
investigate the thermodynamic driving force for sulfur
removal and catalyst regeneration, rather than the kinetics of
sulfur adsorption under operating reaction conditions, the
room temperature sulfur loading protocol provides a
consistent baseline from which we assess the temperature-
dependent catalyst regeneration behaviour. We note that the
measured sulfur content for each catalyst is expected to be a
high (upper bound) estimate, with reduced adsorption at
higher temperatures. The surface speciation of the H2S-
poisoned catalysts, with a measurement depth of 5–10 nm,
was analysed using X-ray photoelectron spectroscopy (XPS).
Temperature programmed desorption-mass spectrometry
(TPD-MS), using a Micromeritics Autochem II Chemisorption
analyser linked with a MKS Cirrus 2 mass spectrometer, was
used to track the desorption of H2O, SO and SO2 from the
H2S-poisoned catalysts under a fixed temperature ramp of 10
K min−1, from room temperature to 1223 K, in N2.

MSR activity testing was carried out in a low-pressure rig
designed to flow dry gas mixtures of N2, CH4 (and higher
hydrocarbons) and H2 for catalyst pre-reduction. The dry gas
composition used was 68.4% CH4 and 3.6% C2H6, with a
balance of N2. The dry gas mixture is then combined with
steam (following prior heating and evaporation in an oven)
forming a reaction gas mixture that is flowed through a
packed catalyst bed, contained in a quartz tube, within a
furnace that is electrically heated up to 1223 K. The MSR
activity for each H2S-poisoned catalyst was evaluated at
steady state, at temperatures of 873, 973 and 1073 K, under
regulated outlet backpressures of 100, 120 and 150 mbar,
respectively. During the reaction, the dry gas is combined
with steam resulting in a steam to carbon ratio of 3 : 1, with a
total gas flowrate of 200 ml min−1. The quartz tube (diameter
0.4 cm) was loaded to a 1.5 cm bed length, equating to 0.097
g (0.094 cm3) of catalyst and 0.155 g (0.094 cm3) of SiC inert
dilutant. We note that the studied support materials are
chosen as model systems to investigate the key principles
driving the catalyst sulfur tolerance, but are not immediately
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compatible with existing industrial MSR processes due to
differences in the catalyst form (i.e., pellets vs. powders) and
thermal instability at very high temperatures over long
timescales.

3 Results and discussion
3.1 Atomic and molecular adsorption on Ni(111)

To ascertain the number of non-equivalent adsorption sites
on Ni(111), atomic S and O were adsorbed at the four initial
positions illustrated in Fig. 2(a): hollow HCP, hollow FCC,
atop and bridge sites. Geometry optimisation of atomic S
adsorbed at both atop and bridge sites resulted in S diffusion
to the hollow HCP site, whilst atomic O adsorbed at atop and
bridge sites diffused to hollow HCP and hollow FCC sites,
respectively. The hollow HCP sites in Fig. 2(b) and (d) and
the hollow FCC sites in Fig. 2(c) and (e) were therefore
determined to be the relevant non-equivalent sites for
adsorption.

Both atomic S and O strongly chemisorb on the Ni(111)
surface and display an energetic preference for adsorption at
hollow FCC sites, by 0.05 eV for S and 0.23 eV for O. The
trends in adsorption energies and site preferences are in
agreement with computational literature detailed in SI
section S1.1.4, although the absolute values of adsorption
energies are found to vary slightly with the choice of
exchange correlation density functional, as GGAs from the
literature tend to underbind,92 and the choice of Ni(111)
surface model parameters.29,93–95 The adsorption of
molecular SO was also considered, with both S and O directly
bonded to the surface. At both hollow HCP and FCC sites,

S-bound SO was calculated to be more energetically stable by
2.35 eV and 2.10 eV, respectively. Finally, we tested SO2

adsorption at the four initial positions in Fig. 2(a), from
which the non-equivalent adsorption sites were atop and
bridge sites in Fig. 2(h) and (i), respectively. SO2 is calculated
to be most stable when S occupies the bridge site of Ni(111),
as is reported experimentally,96 with the same preferential
stability as reported in the DFT study of Liu et al.95 All
calculated adsorption energies are reported in SI section
S1.1.4.

3.2 Pairwise and many-body lateral interactions on Ni(111)

The four non-equivalent adsorption complexes of atomic S
and O in Fig. 2(b)–(e), were used to construct new adsorption
complexes of S–S, O–O and S–O pairs at low surface coverage
on a 10 × 10 Ni(111) surface (for S–S and O–O pairs) and a 7
× 7 Ni(111) surface for S–O pairs (to reduce computational
cost at no detriment to accuracy). Following geometry
optimisation, the energies of adsorbed single atoms and
pairs were then used to compute lateral energies (Elateral,
defined in section 2.2, eqn (4)), which are plotted in
Fig. 3(a)–(c) for pairs of S–S, O–O and S–O, respectively.
Lateral interactions are repulsive for all pairs in Fig. 3(a)–(c),
indicating that the O-mediated removal of adsorbed S occurs
at high surface coverage and would require a large supply of
O atoms to the surface to overcome the repulsive lateral
interactions between adsorbed S and O, e.g., from a reducible
metal oxide support with a large oxygen buffering capacity or
using a high partial pressure of O2 gas during experimental
catalyst regeneration. All adsorption complexes

Fig. 2 (a) The four studied adsorption sites on the Ni(111) surface: (1) hollow HCP, (2) hollow FCC, (3) atop and (4) bridge. The unit cell boundaries
are denoted with black dashed lines. (b)–(i) The most stable single atom (S and O) and molecular (SO and SO2) adsorption complexes on a 1 × 1
Ni(111) surface, calculated using DFT with the mBEEF exchange correlation density functional, where (b) and (c) correspond to S adsorption, (d)
and (e) correspond to O adsorption, (f) and (g) correspond to SO adsorption and (h) and (i) correspond to SO2 adsorption. (a)–(i) are top down
views of the Ni(111) surface and the bottom row is a side view for adsorption complexes (f)–(i). The corresponding adsorption energies for the
adsorption complexes (b)–(i) are listed in the SI section S1.1.4.
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corresponding to |ELateral| ≥ 0.04 eV, i.e., green markers in
Fig. 3(a)–(c), were used to parameterise the pairwise
Hamiltonian (, defined in section 2.2, eqn (5)) for GCMC
sampling. Geometry optimisation of S–O pairs at low
surface coverage reveals the instability of short-range
interactions of ≤1.45 Å between adjacent hollow HCP and
hollow FCC sites, which results in atomic diffusion to
neighbouring sites in Fig. 3(d) and (e). We therefore do not
include short-range S–O interactions in the GCMC sampling
by assigning Elateral = ∞ eV within the lattice model for
both initial configurations in Fig. 3(d) and (e).

We investigate the validity of excluding short-range S–O
interactions from the GCMC sampling, which would create
the conditions necessary for the oxidation of S → SO, by
considering how the S and O surface coverages affect the
energetics of S oxidation. The geometry optimisation
simulations in Fig. 3(d) and (e) were repeated on a smaller
1 × 1 Ni(111) surface in Fig. 3(f) and (g), respectively,
corresponding to a higher surface coverage, before
evaluating the relative stability (ΔERelative) of an adsorbed
SO molecule at the most stable hollow-FCC site vs. atomic
S and O, using:

ΔERelative = En×n
SO/Ni(111) − En×n

S,O/Ni(111) (9)

where En×n
SO/Ni(111) is the energy of a geometry optimised SO

molecule adsorbed at a hollow-FCC site on an n × n Ni(111)
surface and En×n

S,O/Ni(111) is the energy of a geometry optimised
pair of S and O atoms adsorbed at an initial interatomic
separation of 1.45 Å on an n × n Ni(111) surface.

Comparing the relative energies in Fig. 3(d)–(g), there is a
significant site-dependence in the energetic feasibility of S
oxidation to SO, where relaxation of S adsorbed at hollow-
FCC sites and O adsorbed at hollow-HCP sites dramatically
reduces ΔERelative compared to relaxation of S adsorbed at
hollow-HCP sites and O adsorbed at hollow-FCC sites. This
observation is consistent with the spin-polarised DFT study
of Das and Saida, who calculated ΔERelative = 0.41 eV for S
adsorbed at a hollow-FCC site and O adsorbed at a hollow-
HCP site and ΔERelative = 2.98 eV for both atoms adsorbed at
hollow-FCC sites, on a 2 × 2 Ni(111) surface.97 Our results
further show a strong coverage-dependence for the feasibility
of S oxidation, as shown by the reduction in ΔERelative from
0.57 eV to 0.01 eV by increasing the surface coverage from
Fig. 3(e)–(g). The pairwise GCMC Hamiltonian, which
excludes short-range S–O interactions that are energetically
unfavourable at low surface coverage, is concluded to be valid
for simulated adlayers with low θS and θO only, shown as the
lighter regions in the GCMC-predicted isotherms in

Fig. 3 Lateral energies between adsorbed (a) S–S, (b) O–O and (c) S–O atomic pairs, at low surface coverage on Ni(111), calculated using DFT with
the mBEEF exchange correlation density functional. Green (red) markers correspond to adsorption complexes that are included (not included) in
the pairwise GCMC Hamiltonian. The marker shape corresponds to the type of active site occupied by each atom in the pairs. The initial (top row)
and final optimised geometries (bottom row) for DFT relaxations of short-range S–O interactions, where S occupies a hollow-HCP site and O
occupies a hollow-FCC site in (d) and (f), whilst S occupies a hollow-FCC site and O occupies a hollow-HCP site in (e) and (g). Adsorption
complexes (d) and (e) correspond to low surface coverage on a 7 × 7 Ni(111) surface, whilst complexes (f) and (g) correspond to high surface
coverage on a 1 × 1 Ni(111) surface. The relative energy for each adsorption complex (d)–(g), calculated using eqn (9), is listed underneath each
subfigure.
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Fig. 4(a) and (b), as well as regions of low intermixing
between S and O shown as the lighter regions in Fig. 4(c). In
these regions, strong adsorbate interactions with the Ni(111)
surface exceed any attractive lateral interactions between
adsorbed S and O as may be required for the formation of
oxidised sulfur species.

Under sulfur-rich conditions (μRS → −1 eV), the GCMC-
predicted isotherm in Fig. 4(a) predicts a large sulfur
coverage of up to 0.45 ML that is thermodynamically stable
even at extremely low H2S feed concentrations in a H2S/H2

mixture, on the order of parts per million. This reflects the
strong chemisorption of atomic S to Ni(111) relative to the
weak thermodynamic driving force for desorption into H2S.
In contrast, Fig. 4(b) shows that co-adsorbed oxygen can
reduce sulfur coverages on Ni(111) via site competition under
sufficiently oxygen-rich conditions (μRO → −1 eV); although
this does not occur under any realistic oxygen partial

pressures at 600 K. These results suggest that a high
temperature is essential for oxygen-assisted catalyst
regeneration via site competition between co-adsorbed S
and O.

To investigate the entropic contributions to catalyst
regeneration via oxidation of S → SO, we validated six GCMC-
predicted adlayers for μRS = −1 eV, μRO = −1 eV, −0.7 eV and
−0.5 eV, and T = 600 K and 1200 K, using geometry
optimisation simulations with the fine-tuned MACE model
(trained on both low coverage and high coverage DFT
relaxations). The mean and standard deviation of the RMSD
of adsorbate atomic displacements is shown in Fig. 4(d),
where the MACE relaxation trajectories do not lead to S
oxidation. In all cases in Fig. 4(d), the differences in the
GCMC-predicted and MACE-optimised adlayer structures are
driven by surface diffusion of some adsorbed S atoms to
nearest neighbour sites without any S oxidation to SO or SO2,

Fig. 4 GCMC-predicted surface coverages of (a) S and (b) O at 600 K for relative chemical potentials of S (μRS) and O (μRO) ranging between −1 eV
and 0.2 eV, as defined in section 2.2. (c) The principal component derived from two-body many-body tensor representations (PCMBTR, discussed in
the SI section S2), which encodes the pairwise interatomic distances between adsorbed S and O atoms across 10 GCMC-predicted adlayers for
441 combinations of μRS and μRO at 600 K. The secondary axes in (a), (b) and (c) show the equivalent gas phase thermodynamic control variables
corresponding to the relative chemical potentials, including the ratio of partial pressures (p) of H2S to H2 (for a fixed pH2

= 1 bar) and the partial
pressure of O2, which were obtained from ideal gas thermodynamics at the same temperature and a standard-state pressure of 1 bar. (d) The
root-mean-square deviation (RMSD) in S and O x and y atomic co-ordinates, between GCMC-predicted and MACE-reoptimised adlayers. Bars
represent the mean RMSD for each μRO value at T = 600 K and 1200 K. Error bars represent the standard deviation of the RMSD. All bars correspond
to μRS = −1 eV, thereby testing the validity of adlayers with varied intermixing of adsorbed S and O atoms on Ni(111), which increases for larger
values of μRO.

Catalysis Science & Technology Paper



Catal. Sci. Technol. This journal is © The Royal Society of Chemistry 2026

whilst the RMSD in atomic positions is consistently lower
for adsorbed O than S (discussed in the SI section S3). The
results suggest that combinations of μRS and μRO that lead to
higher coverages and intermixing of S and O, illustrated by
the dark blue regions in Fig. 4(c), create conditions that
are necessary but not sufficient alone for SO formation and
that thermal activation is essential for SO formation
irrespective of the degree of S and O co-adsorption. As a
result, the use of metal oxide support materials with a
large oxygen buffering capacity can aid the regeneration of
S-poisoned catalysts at high temperature, where the
formation and desorption of SO and SO2 is feasible.
However, tuning the support oxygen buffering capacity is
unlikely to improve the sulfur tolerance of low temperature
catalysts, which requires modification of the Ni catalyst to
reduce the high affinity of S, O, SO and SO2. These
findings are consistent with the kinetic modelling of S
oxidation on Ni(111) by Galea et al., who combined DFT
simulations with TPD experiments to investigate the
removal of adsorbed S atoms using gas-phase O2.

31 Their
TPD results showed no SO2 formation at temperatures
below 600 K for surfaces with low S coverage, indicating
that direct oxidation of S atoms is not thermally accessible
at these conditions. Instead, S removal was only observed
above 600 K and at sufficiently high O2 exposures, to
facilitate O-assisted S diffusion and oxidation. Their DFT

calculations similarly demonstrated a high activation
barrier (>1 eV) for SO formation from isolated S and O
atoms on Ni(111).

3.3 Reversible vs. irreversible catalyst deactivation

The results in section 3.2 can be used to rationalise the
outcomes of experimental MSR activity testing of fresh and
H2S-poisoned Ni nanoparticle catalysts in Fig. 5, which shows
methane conversion as a function of the reaction
temperature. For both H2S-poisoned Ni/TiO2 and H2S-
poisoned Ni/CeO2, catalyst regeneration and partial
restoration of activity (to ∼80% and ∼50% of that of fresh
Ni/TiO2 and Ni/CeO2, respectively) is achieved upon
increasing the temperature beyond 973 K. Although H2S-
poisoned Ni/TiO2 is restored to the highest absolute value of
catalytic activity in Fig. 5(a), ICP analysis indicates a total
uptake of H2S during room temperature saturation of 0.11
weight percentage of sulfur (%S wt), which is an order of
magnitude lower than that of Ni/γ-Al2O3 (2.14%S wt) and Ni/
CeO2 (2.53%S wt). The reduced sulfur loading on Ni/TiO2

likely stems from the reduced dispersion of Ni in the
experimentally prepared catalyst, as evident by the SEM
imaging in the SI section S4, which is consistent with the
much larger XRD-determined NiO crystallite size of 17.9 nm
on TiO2 vs. 12.1 nm on CeO2. As a result, Fig. 5(a) shows that

Fig. 5 (a) Temperature profile for MSR activity testing of fresh and H2S-poisoned Ni catalysts supported on (b) γ-Al2O3, (c) TiO2 and (d) CeO2. The
reduction in temperature from 1073 K to 873 K after t = 6 hours was only performed for the H2S-poisoned catalysts. All fresh catalysts were
subject to an additional pre-reduction in H2 at 923 K, prior to t = 0 hours. The H2S-poisoned catalysts contain 0.11%S wt, 2.14%S wt and 2.53%S wt

for Ni/TiO2, Ni/γ-Al2O3 and Ni/CeO2, respectively, as determined using ICP. As such, Ni/CeO2 is regenerated substantially more than Ni/TiO2

relative to its sulfur content.
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H2S-poisoned Ni/CeO2 is restored to a substantially greater
catalytic activity than H2S-poisoned Ni/TiO2, relative to its
sulfur-content, which is in line with our DFT+U calculated
oxygen vacancy formation energies of 3.44 eV for CeO2 and
5.35 eV for TiO2, i.e., oxygen from the CeO2 lattice facilitates
S oxidation. Both values are much lower than the DFT-
calculated oxygen vacancy formation energy of 7.00 eV for
γ-Al2O3, indicating support oxygen buffering may drive the
enhanced sulfur resistance of Ni/CeO2, although not in a
manner to reduce the temperature required for catalyst
regeneration, as discussed in section 3.2.

The H2S-poisoned Ni/γ-Al2O3 catalyst was found to
deactivate irreversibly in Fig. 5(b), with no restoration of
catalytic activity upon increasing temperature. Given the
measured activity of the fresh Ni/γ-Al2O3 catalyst, which is
subject to a pre-reduction in H2 at 923 K, the irreversible
deactivation of H2S-poisoned Ni/γ-Al2O3 is likely due to the
variation in the Ni oxidation state with respect to the
reducibility of the reaction environment. The observed
irreversible catalyst deactivation is consistent with the
experimentally reported in situ transformation of Ni/γ-Al2O3

to spinel-type NiAl2O4, i.e., switching the Ni oxidation
state from Ni0 in Ni2+ on the surface and in the bulk,
which is inactive for MSR.98–100 The suppression of Ni0

when Ni/γ-Al2O3 is exposed to oxidising atmospheres, e.g.,
when exposed to air in ambient conditions before
characterisation, is further supported by the Ni 2p3/2 XPS

spectra in Fig. 6(a), where the Ni surface speciation on
the different supports is distinctly different at ∼853 eV,
which corresponds to Ni0, whilst being similar at ∼856
eV, which corresponds to Ni2+.101 Given that the relative
intensity of the peak at ∼853 eV is lowest for H2S-
poisoned Ni/γ-Al2O3, this suggests that γ-Al2O3 suppresses
the formation of Ni0 in oxidising conditions.

To investigate the driving force for irreversible catalyst
deactivation further, we calculated the energetics of
substitutional defect formation in the support materials
using DFT and DFT+U, as outlined in section 2.1.2. As shown
in Fig. 6(c), the substitutional defect energy for Ni×Al in γ-Al2O3

is calculated as 6.08 eV, which is lower than Ni×Ti in TiO2

(6.67 eV) and Ni×Ce in CeO2 (13.61 eV), supporting a
hypothesis that the deactivating phase transformation is
more favourable for Ni/γ-Al2O3, whereas Ni/TiO2 and Ni/CeO2

are more resistant to forming bulk solid solutions. Fig. 6(c)
further shows that the increasing defect energies from Ni×Al to
Ni×Ce correlate inversely with the polarisation of the Ni 3d eg
orbitals, comprised of the 3dz2 and 3dx2−y2 orbitals that align
along the metal–oxygen bonds,102 which is characteristic of
complex oxides containing divalent ions such as Ni2+

resulting in stabilisation via Jahn–Teller distortions that
break the system symmetry.103,104 These results indicate an
energetic favourability for the initial stages of phase
transformation in γ-Al2O3, in agreement with the DFT+U-
parameterised Monte Carlo study of Elias et al., who

Fig. 6 Normalised XPS spectra for (a) Ni 2p3/2 and (b) S 2p for the three H2S-poisoned Ni catalysts following room temperature saturation with
H2S (before MSR activity testing). (c) Substitutional defect energies for Ni×Al in bulk γ-Al2O3 (DFT), Ni×Ti in bulk TiO2 (DFT+U) and Ni×Ce in bulk CeO2

(DFT+U), calculated using the mBEEF exchange correlation density functional and Hubbard parameters detailed in the SI section S1.2. The defect
energies are plot alongside the corresponding Ni 3d eg orbitals, including both 3dz2 and 3dx2−y2 orbitals. Large differences between 3dz2 and 3dx2−y2

orbital occupancies are reportedly characteristic of systems with stabilising Jahn–Teller distortions.103,104
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concluded the NiAl2O4 can be more stable than NiO and
γ-Al2O3 in Ni-rich conditions at high temperatures.49 The
predicted insolubility of Ni in CeO2 is in contrast with
literature-reported defect energies of ∼2–3 eV using DFT+U
in a planewave basis.105,106 Whilst the two sets of results are
not directly comparable due to differences in the employed
Hubbard projectors, our results align with previous work that
shows self-consistent DFT+U in a NAO framework can
successfully rationalise experimentally observed defect
chemistry in TMOs, e.g., the varying oxidation states of Nb
and W dopants in different TiO2 polymorphs64,65 and the

energetics of Mg doping in LiCoO2,
65 the results for which

can vary ambiguously in the plane-wave DFT+U
literature.107–110 The large defect energy for Ni×Ce is confirmed
as not an artifact of our chosen DFT+U parameters by
repetition of the calculation using standalone DFT, which
yields a defect formation energy of 13.81 eV.

3.4 Sulfur speciation and the role of water

To gain further insights into the mechanisms that drive
sulfur removal from the H2S-poisoned catalysts, TPD-MS was
performed in N2 to track the signals for H2O, SO and SO2,
which correspond to measurements from mass spectrometry
(Fig. 7). For H2S-poisoned Ni/CeO2, sulfur removal occurs
partially in a low temperature regime (between 423–573 K)
and also a high temperature regime (beyond 973 K), which
can be attributed to lattice and surface oxygen, respectively,
based on the thermogravimetric analysis of Zhu et al., who
studied pure and Ni-doped CeO2 nanorods showing surface
oxygen release between 423–593 K and lattice oxygen release
between 593–1073 K.111 Liu et al. similarly used TPD-MS to
investigate SO2 release from H2S-poisoned CeO2, concluding
that peaks between 473–673 K corresponded to the formation
of SO2 that could react with lattice oxygen above 673 K to
form Ce(SO4)2, and then this decomposes back to SO2 at 873
K.112 The role of oxygen in facilitating sulfur removal was
further supported by observations that SO2 TPD-MS signals
were greatest when the catalyst was pretreated in O2,
compared to inert Ar or reducing H2.

112

Fig. 7(b) and (c) show a greater TPD-MS signal for SO and
SO2 release from H2S-poisoned Ni/γ-Al2O3 at low
temperatures than H2S-poisoned Ni/CeO2. We attribute this
difference to the increased formation of surface NixAl1−xO2

solid solutions, based on our calculated bulk defect
formation energies in Section 3.3 and the H2 temperature
programmed reduction (TPR) study of Shan et al., which
correlated the bimodal distribution at low temperatures in
Fig. 7(b) and (c) to the existence of both Ni0 and Ni2+ on the
catalyst surface.113 To rationalise the differences between the
high temperature SO and SO2 desorption behaviour from Ni/
γ-Al2O3 and Ni/CeO2 in Fig. 7(b) and (c), the S 2p XPS spectra
in Fig. 6(b) is considered, where sulfates and sulfides (NiS)
were identified as the peaks at ∼169 eV and ∼162 eV,
respectively. Around 85% of all sulfur species in the three
H2S-poisoned catalysts were quantified to be sulfates using
curve fitting of the S 2p XPS spectra in Fig. 6(b).

The temperature-dependent oxidation (reduction) of SO2

to (from) sulfates is hypothesised to drive the differences in
the TPD-MS spectra of Ni/γ-Al2O3 and Ni/CeO2 in
Fig. 7(b) and (c). The hypothesis is supported by the study of
Hamzehlouyan et al., who combined TPD and diffuse
reflectance infrared Fourier transform spectroscopy (DRIFTS)
to investigate SO2 release from SO2-poisoned Pt/Al2O3

catalysts, concluding that SO2-TPD peaks at ∼509 K and
∼947 K correspond to the desorption of molecularly
adsorbed SO2 and the dissociation of aluminium sulfate,

Fig. 7 Temperature-programmed-desorption-mass spectrometry
(TPS-MS) spectra obtained using a fixed temperature ramp of 10 K
min−1 from room temperature to 1223 K in N2 for (a) H2O (mass = 18 g
mol−1) release from H2S-poisoned γ-Al2O3, TiO2 and CeO2, (b) SO
(mass = 48 g mol−1) release from H2S-poisoned γ-Al2O3 and CeO2, and
(c) SO2 (mass = 64 g mol−1) release from H2S-poisoned γ-Al2O3 and
CeO2. The TPD-MS spectra for SO and SO2 release from H2S-poisoned
Ni/TiO2 were negligible (due to the lower H2S loading as discussed in
section 3.3) and therefore are not shown. TPD-MS signals for H2S
(mass = 34 g mol−1) release from all catalysts were negligible,
indicating H2S desorption and/or dissociation before analysis. These
catalysts were not subject to a pre-reduction in H2 at 923 K, as
discussed for the fresh catalysts in section 3.3.
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respectively.114 Furthermore, Smirnov et al. used
temperature-resolved XPS to show that water vapour inhibits
SO2 oxidation to sulfates on an Al2O3 thin film but enhances
sulfate formation on a CeO2 thin film, due to a Ce3+ redox-
mediated mechanism of SO2 oxidation.115 Together with our
TPD-MS results in Fig. 7(a), which show orders of magnitude
greater water adsorption on Ni/γ-Al2O3 than Ni/CeO2 due to
the 7× greater surface area, the findings of Hamzehlouyan
et al. and Smirnov et al. support the hypothesis that SO and
SO2 desorb at lower temperatures from Ni/γ-Al2O3 as water
vapour inhibits the formation and retention of thermally
stable sulfates.

4 Conclusions

Understanding the atomic level mechanisms that govern the
sulfur tolerance of Ni-based catalysts is essential for
designing next-generation catalysts for industrial H2

production via MSR and low-temperature processes from
renewable feedstocks. In this study, a combined
computational and experimental approach is adopted to
investigate the enhanced sulfur tolerance of Ni nanoparticles
on reducible metal oxide supports, with the aim of
uncovering strategies for future catalyst optimisation.
Combining DFT, GCMC and a fine-tuned MACE MLIP, we
show that a high oxygen chemical potential provided via
support oxygen buffering is not sufficient alone for the
removal of adsorbed S from Ni(111), with thermal
activation being essential. The results support experimental
MSR activity tests showing that the catalytic activity of Ni
supported on reducible CeO2 can be readily restored from
a poisoned state at high temperatures, compared to Ni
supported on less reducible TiO2 and γ-Al2O3. The results
are further validated using DFT+U computed oxygen
vacancy formation energies for the bulk support materials,
which show the ease of oxygen vacancy formation in the
order CeO2 > TiO2 > γ-Al2O3. The MSR activity testing also
indicates the critical role of phase transformations into
catalytically inactive phases, which is widely reported to
occur for Ni/γ-Al2O3, and that agrees with our DFT+U
computed defect energies for substitutional Ni doping,
which indicate the initial stages of bulk phase
transformation are more favourable in the order γ-Al2O3 >

TiO2 > CeO2. TPD-MS and XPS highlight the critical role of
water in the formation of thermally stable sulfate species
that can increase the temperatures required for catalyst
regeneration.

Overall, the combined computational and experimental
investigation points to three critical aspects for the rational
design of metal oxide support materials for sulfur tolerant
catalysts: (1) the feasibility of bulk oxygen vacancy
formation in the support; (2) the resistance of the bulk
support to phase transformations into catalytically inactive
solid solutions; and (3) the support- and temperature-
dependent surface chemistry of SO2 to sulfates. The
integration of ab initio computational modelling, statistical

sampling and machine learning further demonstrates the
importance of advanced workflows for studying complex
catalytic materials in a manner that faithfully bridges
theory and experiment.
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