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We present the tightest cosmic microwave background (CMB) lensing constraints to date on the growth
of structure by combining CMB lensing measurements from the Atacama Cosmology Telescope (ACT),
the South Pole Telescope (SPT), and Planck. Each of these surveys individually provides lensing
measurements with similarly high statistical power, achieving signal-to-noise ratios of approximately 40.
The combined lensing band powers represent the most precise CMB lensing power spectrum
measurement to date with a signal-to-noise ratio of 61 and an amplitude of Arecon

lens ¼ 1.025� 0.017
with respect to the theory prediction from the best-fit CMB Planck-ACT cosmology. The band powers
from all three lensing datasets, analyzed jointly, yield a 1.6% measurement of the parameter combination
SCMBL
8 ≡ σ8ðΩm=0.3Þ0.25 ¼ 0.825þ0.015

−0.013 . Including dark energy spectroscopic instrument baryon acoustic
oscillation (BAO) data improves the constraint on the amplitude of matter fluctuations to σ8 ¼ 0.829�
0.009 (a 1.1% determination). When combining with uncalibrated supernovae from Pantheon+, we
present a 4% sound-horizon-independent estimate of H0 ¼ 66.4� 2.5 km s−1 Mpc−1. The joint lensing
constraints on structure growth and present-day Hubble rate are fully consistent with a ΛCDMmodel fit to
the primary CMB data from Planck and ACT. While the precise upper limit is sensitive to the choice of
data and underlying model assumptions, when varying the neutrino mass sum within the ΛCDM
cosmological model, the combination of primary CMB, BAO, and CMB lensing drives the probable upper
limit for the mass sum towards lower values, comparable to the minimum mass prior required by neutrino
oscillation experiments.

DOI: 10.1103/k5yr-3h6d

Introduction—Lensing of the cosmic microwave back-
ground (CMB), the deflection of CMB photon paths by
intervening large-scale structure, has emerged as a highly
robust probe of the mass distribution.
Building on lensing measurements from the satellite-

based missions Wilkinson Microwave Anisotropy Probe
(WMAP) [1] and Planck [2–4], and from ground-based
surveys such as Atacama cosmology telescope (ACT) [5,6]
and South Pole telescope (SPT) [7–11], the measurement of
CMB lensing has been advanced to the regime of precision
cosmology. Notably, direct structure growth measurements
via CMB lensing are consistent with the predictions of the
ΛCDM model conditioned on the primary CMB measure-
ments [12].
In this Letter, we combine the latest results from Planck

PR4 [18], ACT DR6 [19–21], and SPT-3G MUSE analysis
on the main-field-2-year polarization-only data [ [22], SPT-
3G M2PM]. These three analyses use data from succes-
sively narrower fields and with lower noise levels, yet they
achieve comparable lensing power spectrum signal-to-noise
ratios. The consistency between these independent mea-
surements, despite their distinct observational strategies,
makes their agreement, and consequently the joint con-
straints presented here, compelling.
We infer the amplitude of structure growth, specifically

via a parameter combination of linear matter power

fluctuation (σ8) and the fractional matter energy density
(Ωm), SCMBL

8 ≡ σ8ðΩm=0.3Þ0.25, which CMB lensing is
most sensitive to in the redshift range z ≈ 0.9–5 and the
physical wave number range k ≈ 0.05–0.3 Mpc−1. This
is complementary to the constraints from galaxy surveys
[23–31], which are sensitive to lower redshifts and larger k
values (smaller physical scales).
We then include baryon acoustic oscillation (BAO)

observations, which act as a probe of Ωm, thereby allowing
us to constrain σ8 separately. We also determine the Hubble
constant, H0, using two approaches: one relying on the
sound horizon scale to which BAO is sensitive, and one
based on the matter-radiation equality scale to which CMB
lensing is sensitive. Finally, we use the combination of the
ACTþ Planck primary CMB, BAO from DESI, and our
lensing measurements to revisit cosmological limits on the
neutrino mass sum.
Data—We briefly describe the datasets and the external

likelihoods used in this Letter.
CMB lensing spectra: We employ the CMB lensing

spectrum measurements from ACT DR6 [19–21], Planck
PR4 [32], and SPT-3G M2PM [22] with their respective
survey footprints shown in Fig. 1.
The ACT DR6 lensing reconstruction [19–21] (red in

Fig. 1) covers 23% of the sky and is signal-dominated on
lensing scales with multipoles L < 150. The lensing spec-
trum is measured with a signal-to-noise ratio of 43 using a
cross-correlation-based quadratic estimator that is insensi-
tive to the modeling of instrumental noise [34,35]. In this
analysis, we use the extended ACT DR6 multipole range
of 40 ≤ L ≤ 1300.
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The Planck PR4 lensing analysis [18] reconstructs
lensing with the quadratic estimator using the reprocessed
PR4 NPIPE CMB maps. It covers 67% of the sky (orange
in Fig. 1) and is signal-dominated below L ≈ 70. The
lensing spectrum is measured with a signal-to-noise ratio
of 42.
The SPT-3G M2PM lensing measurement [22] covers

3.5% of the sky (blue in Fig. 1). This analysis derives
lensing information from CMB polarization maps using
data collected with the SPT-3G camera during the 2019 and
2020 observing seasons. The analysis employs the mar-
ginal unbiased score expansion (MUSE) method [36,37] to
infer CMB lensing and unlensed EE power spectra jointly.
The lensing spectrum is signal-dominated for lensing
multipoles L < 240 and is measured with a signal-to-noise
ratio of 38.
BAO: We use the results from DESI data release

2 (DR2), consisting of BAO measured from more than
14 × 106 galaxies and quasars, as well as the DESI Lyman-
α BAO [38,39] as our baseline baryonic acoustic oscillation
combination. In the Supplemental Material [40], we show
that using alternative BAO datasets yields consistent results
with those obtained using DESI DR2 BAO.
Supernovae: For constraints on the Hubble constant

that do not rely on the sound horizon, we include
“uncalibrated” Type Ia supernovae from Pantheon+
[52] as our baseline sample, although we also compare
with UNION3 [53] and DESY5 [54]. Here, “uncalibrated”
indicates that only the relation between the apparent
magnitudes of Type Ia supernovae and their redshifts
is employed—without anchoring their absolute magni-
tudes—and hence using these data cannot yield a deter-
mination of H0.
Primary CMB: When constraining the neutrino mass

sum, we add the primary CMB power spectrum

measurement from Planck PR3 (including high-l
TTTEEE, lowl T and SRoll2 EE [55,56]) and ACT
DR6 [15–17] (hereafter P-ACT), following the procedure
in [16,17] to combine the two datasets. The comparisons of
our measurements to the primary CMB are also done with
respect to the P-ACT best-fit cosmology of [17] that we
henceforth denote as CMB.
Likelihood—We build a Gaussian likelihood [57] from

the CMB lensing bandpowers of ACT DR6 [19–21],
Planck PR4 [18], and SPT-3G M2PM [22]:

−2 lnL ∝
X

bb0

2
664

ΔĈκAκA
b

ΔĈκPκP
b

ΔĈκSκS
b

3
775C

−1
bb0

2
664

ΔĈκAκA
b0

ΔĈκPκP
b0

ΔĈκSκS
b0

3
775; ð1Þ

where ΔĈκiκi
b (i∈ ½A;P; S�) are the residuals between

observed and theory CMB lensing spectra for ACT DR6
(A), Planck PR4 (P), and SPT-3G M2PM (S). The covari-
ance matrix Cbb0 includes auto-covariances from simula-
tions and cross covariances between experiments (see
Supplemental Material [40]). Cross-correlations between
ACT-SPT (≲15%) and Planck-SPT (≲10%) are small due
to limited sky overlap and the different weighting of
temperature versus polarization in the reconstructions.
We infer cosmological parameters using MCMC with

Cobaya [58], evaluating fiducial lensing band powers
with the class_sz emulator [59,60] for ΛCDM (withP

mν ¼ 60 meV) and CAMB [61,62] for ΛCDMþ Σmν

models. Priors follow ACT DR6 [20] (Table I of the
Supplemental Material [40]).
Results—
SPT-3G lensing-only constraints on structure growth:

We present CMB lensing only constraints using SPT-3G
M2PM. In [22], the amplitudes of CMB lensing and
structure growth are derived simultaneously with CMB
lensing and unlensed CMB EE bandpowers. In this Letter,
since we aim to assess consistency across the three CMB
lensing datasets, in the following we first report the lensing-
only constraints from SPT-3G M2PM.
We estimate the lensing amplitude parameter Arecon

lens from
SPT-3G M2PM by fitting the SPT lensing bandpower
measurements to a theory lensing power spectrum based on
the best-fit ΛCDM model from CMB, allowing the ampli-
tude of this lensing power spectrum to be a free parameter
in our fit.
We find Arecon

lens ¼ 1.033� 0.026 (68% C.L.), in good
agreement with the CMB ΛCDM prediction (i.e.,
Arecon
lens ¼ 1), with a PTE χ2 of 17% [63].
Analyzing only the SPT lensing band powers, we obtain

a 1.9% constraint on structure growth given by

SCMBL
8 ¼0.827�0.016 ð68%C:L:; SPT-3GM2PMÞ: ð2Þ

FIG. 1. Mollweide projection showing the sky coverage of
ACT DR6 (red), Planck (orange), and SPT-3G M2PM (blue).
ACT DR6 covers 23% of the sky, SPT-3G M2PM covers 3.5%
and they overlap across 2.1% of the sky. Planck PR4 covers 67%
of the sky. The gray scale background is a Galactic dust map from
Planck [33].
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The high-precision small-scale lensing band powers
from SPT-3G M2PM are highly complementary to those
from ACT and Planck, which obtain higher precision on
larger scales. The combination of all three datasets enables
the tightest constraints on SCMBL

8 to date. With good
agreement on SCMBL

8 between SPT-3G M2PM, ACT
DR6, and Planck PR4 lensing (see Table I), we proceed
in the next section to obtain results from the likelihood-
level combination of the three CMB lensing measurements.
ACTþ SPTþ Planck (APS) joint constraints on

structure growth: In Fig. 2, we show the individual
lensing spectra from ACT DR6 (red), Planck PR4 (orange),
and SPT-3G M2PM (blue). The joint lensing band powers,
which are signal dominated at L≲ 240, are obtained by
performing an amplitude fit on the bins between the three
surveys against a theoretical lensing power spectrum
predicted from the CMB best-fit ΛCDMmodel, in a similar
way to a Bayesian linear regression [64].
The joint band powers have a lensing amplitude of

Arecon
lens ¼ 1.025� 0.017 ð68%C:L:;APSÞ; ð3Þ

with a signal-to-noise ratio of 61, making this the most
precise CMB lensing power spectrum measurement to date
and in excellent agreement with the primary CMB pre-
dictions within the ΛCDM model (we obtain similar
Arecon
lens ¼ 1.010� 0.016 when comparing to the Planck best

fit cosmology).
We measure SCMBL

8 , which is the parameter combination
best constrained by CMB lensing within the ΛCDMmodel,
to 1.6%:

SCMBL
8 ¼ 0.825þ0.015

−0.013 ð68%C:L:;APSÞ: ð4Þ

We can compare this result with the value expected from
an extrapolation of the CMB data constraints within a
ΛCDM cosmology, SCMBL

8 ¼ 0.823� 0.010; this is fully
consistent with our direct measurement [65].

These CMB lensing measurements provide information
about a three-dimensional volume comprising the ampli-
tude of matter fluctuations σ8, the matter density Ωm and
the Hubble constant H0. The inclusion of BAO data
provides additional background information on the expan-
sion history that helps break parameter degeneracies. This
enables comparisons of σ8 inferred from other probes such
as cosmic shear and the primary CMB. With the addition of
DESI BAO, we find

σ8 ¼ 0.829� 0.009 ð68%C:L:;APSþ BAOÞ: ð5Þ

This 1.1% measurement of σ8 is consistent within 1.2σ
with the value inferred from CMB, as can be seen in the
marginalized constraints in Fig. 3. We note that this
measurement is the most precise determination of σ8 from
either galaxy or CMB lensing to date. (See also Fig. 4 in
the Supplemental Material [40].) We also achieve a
competitive constraint on S8 ≡ σ8ðΩm=0.3Þ0.5, the param-
eter combination best measured by cosmic shear,
obtaining S8 ¼ 0.828� 0.012.
Our lensing measurements are robust to the assumptions

of the model—even in the presence of extensions that
impact structure growth. The lensing constraints are only
slightly weakened when we marginalize over neutrino
mass; in this case we obtain SCMBL

8 ¼ 0.818þ0.017
−0.013 , which

is comparable to the CMB constraint of SCMBL
8 ¼ 0.818�

0.015 under the same model with free
P

mν. This robust-
ness stems from the fact that the lensing measurement
originates from relatively low redshifts and hence requires
minimal extrapolation to z ¼ 0 (where SCMBL

8 is evaluated).
The same extrapolation effect and degeneracy breaking

TABLE I. Cosmological parameter measurements from the
various lensing experiment combinations. We use A, P, and S
as shorthands for CMB lensing with ACT DR6, Planck PR4 and
SPT-3G M2PM, respectively.

Experiment Slens8 σ8 Ωm

A 0.830� 0.020 � � � � � �
P 0.809� 0.022 � � � � � �
S 0.827� 0.016 � � � � � �
APS 0.825þ0.015

−0.013 � � � � � �
Aþ BAO 0.826� 0.015 0.827� 0.014 0.298� 0.008
Pþ BAO 0.808� 0.018 0.811� 0.016 0.295� 0.008
Sþ BAO 0.830� 0.012 0.831� 0.012 0.298� 0.008
APSþ BAO 0.829� 0.009 0.829� 0.009 0.300� 0.007

FIG. 2. We present the combined lensing band powers from the
three surveys in black. In the background we show the Planck
lensing band powers from PR4 NPIPE analysis in orange, the
ACT DR6 lensing potential power spectrum band powers in red,
and the lensing band powers from SPT-3G M2PM in blue. The
gray line shows the theory prediction from the best-fit cosmology
of the CMB likelihood. Note that we have applied an additional
L1=2 scaling over that usually used to display bandpowers to
enhance visually the small scales.
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when including BAO explains how our σ8 constraint with
BAO, σ8 ¼ 0.822� 0.012, becomes more competitive than
the CMB extrapolation of σ8 ¼ 0.808þ0.029

−0.040 as shown
in Fig. 4.
ACTþ SPTþ Planck joint constraints on the Hubble

constant: We use our joint CMB lensing measurements to
provide an independent constraint on the Hubble constant,
H0. While BAO observations, combined with a prior on
Ωbh2 [66], are sensitive to the expansion history, they
exhibit an extended degeneracy between H0 and Ωm.
In contrast, CMB lensing constrains a different degen-
eracy direction, making it complementary to BAO.
Combining the baryon-drag-scale (rd-)calibrated BAO
with CMB lensing, we break parameter degeneracies and
obtain tighter constraints on H0 than from BAO-only
measurements.
From the combination of the joint CMB lensing, galaxy

BAO and the Ωbh2 prior in Table I of the Supplemental
Material [40], we obtain a 0.8% constraint on H0:

H0 ¼ 68.77� 0.53 km s−1 Mpc−1

× ð68%C:L:;APSþ BAOÞ: ð6Þ

This result, shown in Fig. 5, is consistent with the results
from the CMB (H0 ¼ 67.62� 0.50 km s−1Mpc−1) and in
around 4σ tension with the SH0ES-inferred value of
73.17� 0.86 km s−1Mpc−1 [67].
Most of the constraints on H0 using BAO come

exclusively from the knowledge of the sound horizon scale

rd. Following the method suggested by [68], we proceed to
place sound-horizon-independent constraints on the
Hubble constant; these constraints arise instead from the
matter-radiation equality scale imprinted in the matter
power spectrum to which CMB lensing is sensitive [69].
Combining our data with uncalibrated supernovae to

break the degeneracy between H0 and Ωm, we find

H0 ¼ 66.4þ2.5
−2.8 km s−1 Mpc−1

× ð68%C:L:;APSþ PantheonþÞ: ð7Þ

FIG. 3. Marginalized posteriors in the σ8–Ωm plane for ACT
DR6 (red), Planck PR4 (orange), SPT-3G M2PM (blue), and
APS (black) CMB lensing measurements. Filled contours in the
background show lensing-only results, except for the black filled
contour which represents APSþ BAO. Nonfilled contours (out-
lined) show results when including BAO data, which further
breaks degeneracies in structure growth. The purple contours
show the CMB prediction for a ΛCDM model. Each dataset is
shown with their 68% and 95% confidence limits.

FIG. 4. Marginalized posteriors in the σ8–Ωm plane for APS
CMB lensingþ BAO (filled black) and the CMB prediction for a
ΛCDM model (purple). Allowing the sum of the neutrino masses
to vary results in the open contours. Each dataset is shown with
their 68% and 95% confidence limits.

FIG. 5. Hubble constant measurements for the combination of
CMB lensing and BAO are in filled black contours. The blue
open contours show constraints on H0 inferred from the matter-
radiation equality scale as opposed to the sound-horizon scale.
The H0 measurements with CMB lensing are consistent with the
low expansion rate inferred from the CMB in purple. We also
show the 68% bands of the Cepheid-calibrated direct inference in
gray and the TRGB-calibrated direct inference in yellow.
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We also compute sound-horizon-free measure-
ments using other supernova samples: H0 ¼
64.0þ2.9

−3.5 km s−1Mpc−1 with UNION3 and H0 ¼
64.2� 2.4 km s−1 Mpc−1 with DESY5; we note discussions
in [70] and [71] regarding the DESY5 sample. Our sound-
horizon-free measurements are consistent with the value of
H0 derived from the BAOþ APS and primary CMB data.
They are also in agreement with the direct distance ladder
measurements calibrated using the tip of the red giant
branch (TRGB) reported in [72] but differ from the SH0ES
measurement by 2.5σ [67].
Neutrino mass: Massive neutrinos affect structure

growth in the Universe after the neutrinos become non-
relativistic (e.g., [73]), leading to suppression of the
matter power spectrum at the percent level. Since CMB
lensing probes the distribution of mass in projection, it is a
sensitive probe of the neutrino mass sum. Our baseline
constraint uses CMB, BAO, and APS CMB lensing,
resulting in

Σmν < 0.062 eV ð95%C:L:;CMBþAPSþBAOÞ: ð8Þ

The upper limit [74] is relatively stable to the primary
CMB used (as also noted in [17]). Switching to Planck
NPIPE CamSpec, the upper limit becomes

P
mν <

0.061 eV (95% C.L.). While our results show a preference
for a lower

P
mν compared to neutrino oscillation experi-

ments, nominally disfavoring the inverted hierarchy at
3.3σ, alternative data combinations or modeling approaches
can relax this upper limit, as we will discuss below.
Our neutrino mass constraints present only modest

improvements over others in the literature,
P

mν <
0.082 eV (95% C.L.) with CMBþ AP lensing and
DESI DR1 BAO [17] and

P
mν < 0.064 eV (95% C.L.)

in the case of Planck CMBþ AP lensing and DESI DR2
BAO [38,39]. References [76,77] argue that such tight
constraints arise partly from differences in the inferred
matter density, with the matter density Ωmh2 inferred from
CMBþ BAO close to (or even lower) than the mass
densities of baryons and cold dark matter inferred from
CMB data [76,77], leaving little room for the neutrino mass
density. Reference [78] invokes a high lensing amplitude as
a key factor in providing unexpectedly tight constraints on
the neutrino mass sum.
Figure 6 summarizes some constraints on the neutrino

mass sum based on different dataset choices. Replacing
DESI DR2 BAO with BOSS BAO, one obtains

Σmν<0.112 eV ð95%C:L:;CMBþAPSþBOSSBAOÞ:
ð9Þ

Excluding BAO completely and instead using supernova
measurements relaxes the bounds further and results in

Σmν<0.193eV ð95%C:L:;CMBþAPSþPantheonþÞ;
ð10Þ

which is primarily driven by a higher Ωm preferred by the
Pantheon+ sample.
The neutrino mass sum is also degenerate with the

reionization optical depth τ [78,79]. We can test the
sensitivity of our constraints to our knowledge of reioniza-
tion by excluding Planck low-l EE, i.e., SRoll2, resulting
in a relaxed upper bound of

Σmν<0.150 eV ð95%C:L:;CMBþAPSþBAO;τ freeÞ:
ð11Þ

So far, all neutrino mass constraints are derived within
ΛCDMþP

mν. However, some models, such as ones that
allow the dark energy equation of state to change with time
[38,80], introduce parameters that are degenerate with
Ωmh2, opening up different ways to relax constraints onP

mν. We defer more exhaustive studies aimed at discern-
ing the impact of data and model choices on constraints of
the neutrino mass sum to future work.
Discussion—We have presented cosmological con-

straints from the first joint analysis of CMB lensing from
ACT DR6, Planck PR4, and SPT-3G M2PM. Building on
previous separate analyses of these datasets, we release a
joint lensing likelihood and provide tight constraints on the
amplitude of density fluctuations on mainly linear scales in

FIG. 6. 95% upper limits on the sum of the neutrino masses,P
mν, within the ΛCDM model. Reference [38] showed that this

distribution is broadened when relaxing the assumption of the
dark energy being a cosmological constant. The limits also
become more relaxed when replacing DESI DR2 BAO with
BOSS BAO (dashed black), Pantheon+ SNIa (blue) or when
not relying on the optical depth τ by removing Planck low-l EE
(orange). The vertical dashed lines and shaded regions indicate
the minimum allowed

P
mν values for the normal and inverted

mass-ordering scenarios.
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the redshift range z ≈ 0.9–5. In the ΛCDM framework, we
constrain SCMBL

8 to 1.6% and provide a 1.1% determination
of σ8 when combined with BAO.
The amplitudes of structure growth inferred from the

three different experiments are fully consistent with
each other, with each individual experiment constraining
SCMBL
8 at around the 2% level. Our results are in excellent

agreement with the model predictions from the ΛCDM fits
to the CMB of P-ACT and reinforce the conclusions
of [20–22,81] that structure growth follows ΛCDM
expectations over a broad range of scales and redshifts.
In addition, using BAO, we provide a 0.8% constraint on

the Hubble constant. We further measureH0 independently
of the sound horizon scale and BAO with 4% precision
using uncalibrated supernovae. Both methods are in agree-
ment with each other and in agreement with the constraints
derived from the primary CMB.
Finally, with the assumption that the cosmological model

is the ΛCDMþP
mν model, the combination of CMB,

BAO and CMB lensing results in an upper bound on the
neutrino mass sum Σmν < 0.062 eV (95% C.L.), compared
with the physical prior Σmν ≥ 0.059 eV from neutrino
oscillation experiments [82,83]. Although our results are
similar to previously reported constraints, understanding
the origin of this tight neutrino mass constraint, including
possible inconsistencies between different data types or
specific assumptions about the cosmological model,
remains important.
Combining multiple surveys probing the same observ-

able has significant potential to improve the constraints
of the cosmological parameters. We reached the highest
signal-to-noise CMB lensing measurement by combin-
ing the individual measurements from ACT DR6,
Planck PR4, and SPT-3G M2PM. This methodology
not only highlights the current advantages of such
synergistic approaches but also paves the way for even
greater improvements as new CMB lensing data from
ACT DR6+, SPT-3G [84], the Simons Observatory
(SO) [85], CMB-S4 [86], and CMB-HD [87] become
available.
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