
Enhancing Wind Power Forecasting
Using Hybrid Multi-Head Attention and

1-Dimensional Convolutional Neural
Networks

Saifur Rahman¹, Abdullah Shaher, Nabeel Ahmed Khan, Muhammad
Abubakar, Zohaib Mushtaq, Hatim Alwadie, Ayman Taher Hindi,
Muhammad Irfan, Saleh Al dawsari

¹ Najran University

INFORMATION

Keywords:
Convolutional neural network
wind turbine
supervisory control
data
acquisition
energy forecasting
multi-head attention
renewable energy
wind power

DOI: 10.23967/j.rimni.2025.10.74091

Published: 24/01/2026



INFORMATION

Keywords:
Convolutional neural network
wind turbine
supervisory control and data
acquisition
energy forecasting
multi-head attention
renewable energy
wind power

DOI: 10.23967/j.rimni.2025.10.74091

Enhancing Wind Power Forecasting 
Using Hybrid Multi-Head Attention and 

1-Dimensional Convolutional Neural 
Networks

Saifur Rahman1,*, Abdullah Shaher1, Nabeel Ahmed Khan2, Muhammad Abubakar3, 

Zohaib Mushtaq4, Hatim Alwadie1, Ayman Taher Hindi1,  

Muhammad Irfan1 and Saleh Al Dawsari1,5,*

1  Electrical Engineering Department, College of Engineering, Najran University, Najran, 61441, Saudi Arabia

2  Namal University, Center for AI & Big Data, Mianwali, 42250, Pakistan

3  Department of Computer Science, Lahore Garrison University, Lahore, 54000, Pakistan

4  Department of Electrical Electronics and Computer Systems, College of Engineering and Technology, University of Sargodha, 
Sargodha, 40100, Pakistan

5  School of Engineering, Cardiff University, Cardiff, CF24 3AA, UK



*Correspondence: Saifur Rahman, Saleh AL Dawsari (srrahman@nu.edu.sa, aldawsarisa@cardiff.ac.uk). This is an

article distributed under the terms of the Creative Commons BY-NC-SA license

EnhancingWind Power Forecasting Using Hybrid Multi-Head Attention and
1-Dimensional Convolutional Neural Networks

Saifur Rahman1,*, Abdullah Shaher1, Nabeel Ahmed Khan2, Muhammad Abubakar3,
Zohaib Mushtaq4, Hatim Alwadie1, Ayman Taher Hindi1, Muhammad Irfan1 and Saleh Al Dawsari1,5,*

1Electrical Engineering Department, College of Engineering, Najran University, Najran, 61441, Saudi Arabia

2Namal University, Center for AI & Big Data, Mianwali, 42250, Pakistan

3Department of Computer Science, Lahore Garrison University, Lahore, 54000, Pakistan

4Department of Electrical Electronics and Computer Systems, College of Engineering and Technology, University of Sargodha,

Sargodha, 40100, Pakistan

5School of Engineering, Cardiff University, Cardiff, CF24 3AA, UK

ABSTRACT

Theaccurate forecasting of wind power plays a veritable part in integrating

renewable energy from wind turbines into power grids. Wind power,

being a highly volatile mode of energy generation owing to temporal

variations and complex weather patterns, renders reliable predictions

essential for energy management and grid stability. In order to tackle this,

we propose a hybrid Multi-Head Attention and 1D-Convolutional Neural

Network (MHA-CNN) architecture that combines attention mechanisms

and convolutional layers to capture both long-term dependencies and

localized features in time-series data from a Supervisory Control andData

Acquisition (SCADA) system.The model effectively improves forecasting

performance by attaining an R2 score of 99.42 for hour-ahead and 96.52

for day-ahead predictions on a 50,540-sample, 10-min SCADA dataset

using 5-fold chronological cross-validation, outperforming traditional

methods without any manual feature engineering. The proposed method

is also evaluated across multiple scenarios to assess the robustness of the

proposed approach.
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1 Introduction

Wind power forecasting is an indispensable system, especially for better integrating renewable

energies from wind turbines into modern power systems. Precise wind generation forecasts are

essentially needed for grid stability, energy trading, and the minimization of dependency on fossil fuel-

based energy reserves. Since the sole factor affecting wind speed is given by the nature of atmospheric
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conditions, the normal variations in wind speed make the forecasting of wind power a very complex

task that requires sophisticated models. These vary from simple statistical methods to more advanced

machine learning and deep learning models, each of which tackles some other temporal and spatial

challenge in forecasting [1,2]. The increase in the global penetration of renewable energies means the

need for robust forecasting models that capture uncertainties and can reliably predict power is growing

into an issue of paramount importance if efficiency and sustainability are to be maintained across

energy systems [3].

Recent developments in data-driven models, particularly in the emerging area of artificial intel-

ligence, have endowed the systems with the capability of developing more accurate and adaptive

forecasting systems. These approaches utilize historical data, meteorological inputs, and time-series

features for short-term, medium-term, and long-term forecasting of wind power output [4]. Due to

the intermittent and highly stochastic lineament of wind power, machine learning and deep learning

models use the Long Short Term Memory (LSTM), Convolutional Neural Networks (CNN), and

hybrid approaches for tackling these complexities. These deep learning models are able not only

to learn nonlinear patterns but also to handle high-dimensional data with great efficiency, which

becomes really crucial in improving prediction accuracy [5]. One of themajor trade-offs betweenmodel

accuracy and computational efficiency is still active, in terms of research and development, for real-

time applications.

Deep learning models like LSTM, Gated Recurrent Unit (GRU), and CNN have always done

better in comparison with traditional statistical models in the premises of wind power forecast studies

because of their ability to capture nonlinear patterns in complex datasets [6]. That is characterized

by great temporal dependencies and also involves different environmental features in one model—

for instance, temperature and pressure [7]. Particularly, Long Short-Term Memory and CNN are

much better for the short-term forecasting, where most active fluctuations in the wind pattern are

evident. Nevertheless, even with these advances, some crucial challenges at the level of data quality

and computational complexity still remain to be overcome by deep learning models. Often, high-

dimensional data and noisy inputs badly reduce model generalizability, making accurate predictions

difficult when large, high-quality datasets are unavailable. The problem is that, even though these

models achieve higher performance in terms of accuracy, the computational requirements in terms

of very long training and a lot of resources make them impractical for real-time applications [8,9].

Hybrid models that combine deep learning with either statistical or signal-processing methods

come as such a limitation of deep learning techniques in stand-alone applications. By leveraging

decompositions, such as wavelet transforms, hybrid models may isolate different frequency compo-

nents in the wind data and improve both short-term and long-term predictions [10,11]. These models

give good estimation accuracy with low computational cost, particularly for uncertain data conditions

[12]. However, they are less operational in real time due to their higher complexity. Hybrid approaches

may show better accuracy, but the increase in computational burden still remains strong and difficult

to deploy in any regular system operation [13]. Despite that fact, hybrid models demonstrate superior

accuracy both for short-term wind forecasting and ultra-short-term, which is a promising research

direction.

These recently adopted transformer-basedmodels, such as the Frequency-Enhanced Transformer,

are state-of-the-art and constitute a turning point in wind power forecasting [14]. Unlike other

conventional deep learning models, transformers were designed to grasp long-term and short-term

dependencies that may exist in wind power data through the attention mechanism by dynamically

https://www.scipedia.com/public/Rahman_et_al_2026 2
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selecting and focusing on time steps relevant for prediction. In this regard, transformers are particu-

larly efficient at dealing with the fluctuating and unpredictable nature of wind data. Take, for instance,

FEDformer, which outperforms the performance of traditional models by a great margin, upwards of

one order of magnitude, because it can thus much better cope with the challenges high-frequency

components in wind data pose. This ability to handle both temporal scales simultaneously turns

transformers into a very valuable solution for both short-term and ultra-short-term forecasting [15].

That being said, transformer-basedmodels come with their own set of disadvantages as well. Themost

important quality of them is their ability to parallelize computations, which allows them to handle

larger datasets much better than the recurrent model, such as the LSTM [16]. However, transformers

usually need a lot of data to work efficiently, and due to their intricate architecture—making the

training harder and more computationally expensive—they cannot be run in real-time forecasting

systems easily. In addition, though attention mechanisms do allow the model to guide its focus on

different time steps, sometimes broader structures present in the data cannot be adequately learned.

By just attending over it through fewer layers employed in designing them is one issue that integrated

models try to resolve. When we mix transformers with deep learning models, it makes our model

more powerful than before, but at the same time adds to the complexity and computational overhead.

However, deploying transformer-based models in real-time and resource-constrained scenarios is

difficult, even though they far surpass conventional methods in modeling non-linear and global

extensions to challenges (e.g., FEDformer [17])

Despite the advancements in deep learning and hybrid models for wind power forecasting, several

gaps remain in the literature. Transformer-based models, while excelling in capturing long-range

dependencies, suffer from specific, well-documented limitations that hinder their practical deployment

in wind forecasting systems:

1. Quadratic computational complexity: Standard Transformers scale as OT 2 with sequence

length T , making them prohibitively slow for high-resolution SCADA data (e.g., 10-min

intervals over days). Even sparse variants like FEDformer reduce this to OT (log T), but

inference latency remains >500 ms per sample on edge hardware.

2. High data dependency: Transformers require large, clean datasets to avoid overfitting. On

single-turbine SCADA data (<60 k samples), performance drops significantly (R2 < 0.85).

3. Poor real-time performance: Full-sequence attention prevents parallel processing of future

timesteps, violating strict latency requirements (<100 ms) in grid control loops.

4. Over-smoothing in local patterns: Global attention dilutes fine-grained fluctuations critical

for ultra-short-term forecasting.

Hybrid models integrating CNNs mitigate some issues but often increase complexity without

guaranteed gains.Most current models are optimized for short-term forecasting, with limited focus on

scalable, low-latency, data-efficient solutions across multiple horizons. This work addresses these gaps

by proposingMHA-CNN, a lightweight hybrid that combines local feature extraction (1D-CNN)with

selective long-rangemodeling (MHA) and adaptive downsampling (dynamicmean pooling), achieving

real-time inference (<50 ms) on CPU while maintaining high accuracy on limited data.

Recent hybrid models have explored combining CNNs and attention mechanisms for time-series

forecasting. CNN-LSTM stacks achieve good short-term accuracy but fail to capture long-range

dependencies. Temporal Convolutional Transformers (TCT) [18] incorporate dilated convolutions

before the attention layer, but their fixed dilation rates limit flexibility. Conv-Trans applies a 1D-

CNN followed by a full Transformer, resulting in a computational complexity of O(T2). In contrast,

https://www.scipedia.com/public/Rahman_et_al_2026 3
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MHA-CNN introduces dynamic mean pooling to bridge the CNN and multi-head attention (MHA)

components, allowing adaptive resolution reduction without relying on fixed kernels or frequency-

domain priors. This design achieves higher efficiency and robustness, particularly on single-turbine

datasets

2 Background on Core Components

The proposed MHA-CNN builds on two foundational architectures i.e., Transformers and 1D

Convolutional Neural Networks (CNNs) [19]. Their key properties are summarized below.

1D-CNNs apply learnable filters to extract local temporal patterns through convolution,

defined as:

y[t] = σ(�1=0
k−1 × x[t + i] + b) (1)

followed by non-linear activation and pooling.

Transformers, on the other hand, use scaled dot-product attention, defined as:

Attention(Q, K, V) = softmax(QK
T
/
√
dk)V (2)

and extend this to a multi-head form to capture diverse relationships.

This work leverages CNNs for efficient local modeling and multi-head attention (MHA) for

selective global context, thereby avoiding the computational overhead of full-sequence attention. A

brief comparison between 1D-CNN and transformer components is provided in Table 1.

Table 1: Comparison of 1D-CNN and transformer components

Property 1D-CNN Transformer (Self-Attention)

Feature extraction Local, hierarchical Global, long-range

Complexity O (K × T × F) O (T2 × d)

Parallelism High (per layer) High (within layer)

Inductive bias Translation invariance None (uses position embeddings)

Data efficiency High Low

Real-time suitability Excellent Poor (for long sequences)

3 Methodology

3.1 Pre-Processing

The 2018 SCADA dataset contains 50,540 valid samples at a 10-min resolution. Preprocessing

was performed in four stages:

1. Missing Value Imputation: 1.2% of samples had missing values. Forward-fill was applied for

gaps shorter than 6 steps, while linear interpolation was used for longer gaps. No backward-

fill was applied to prevent future data leakage.

2. Outlier Detection: Values outside the range [μ ± 5σ ] or negative power values were flagged.

Approximately 0.3% of outliers were replaced using the local median (window size = 12).

3. Standardization: Each feature was standardized asx′ = (x − μ)/σx where μ and σ were

computed from the training set only.

https://www.scipedia.com/public/Rahman_et_al_2026 4
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The dataset was split chronologically:

• Training: January–August 2018 (33,792 samples)

• Validation: September 2018 (4320 samples)

• Testing: October–December 2018 (12,428 samples)

This procedure ensures no data leakage and reflects real-world deployment scenarios.

3.2 MHA-CNN (Multi Head Attention Hybrid Convolutional Neural Network)

In the proposed hybrid classification model, the fusion of 1D CNN and Transformer mechanisms

enhances the extraction of relevant temporal features from time-series data such as wind speed and

power measurements for SCADAbased wind power forecasting as depicted in Fig. 1. The architecture

illustrated in Fig. 2 strategically uses the unique capabilities of eachmethod to complement each other,

providing a more sophisticated feature extraction pipeline. The 1D CNN section is responsible for

capturing local temporal patterns and initial feature extraction.

Figure 1: Flow diagram of SCADA-based wind turbine forecasting system from data acquisition to

consumer end

Figure 2:Diagram for the proposedmulti-head attention hybrid convolutional neural network (MHA-

CNN)

https://www.scipedia.com/public/Rahman_et_al_2026 5
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Given a time-series input x ∈ R
T×F , where T is the sequence length (e.g., time steps) and F is the

number of features (e.g., sensor readings or wind speed at different locations), a 1D convolution is

applied. The convolution operation for the input sequence x with a filter w ∈ R
K×F where K is the

kernel size at time step t is given by:

Conv (x) (t) =
K−1∑

i=0

wi.x (t+ i) + b (3)

After the convolution operation, an activation function like Leaky ReLU is applied instead of

ReLU to address the potential problem of “dead neurons” which may potentially be caused by the

negative values after standardization [20]. Unlike ReLU, which outputs zero for negative values, Leaky

ReLU allows a small negative slope as shown in Fig. 3, preventing information loss in negative regions:

Leaky ReLU (z) =
{
z, if z ≥ 0

αz, if z < 0

Where α is a small constant, typically set to 0.01. This ensures that the network can still learn from

inputs where z is negative, which is especially important when the input features are standardized to

have a mean of zero, as a significant portion of values may be negative. Leaky ReLU helps to preserve

gradient flow and capture more nuanced patterns in the time-series data which can be observed in

Fig. 4. This introduces non-linearity into themodel, allowing it to learnmore complex representations.

Figure 3: Illustration of activation functions (a) Rectified Linear Unit (ReLU), (b) Leaky Rectified

Linear Unit (Leaky ReLU)

Figure 4: Illustration of feature retention capabilities of ReLU and leaky ReLU for negative inputs

Max pooling is typically applied after convolution to reduce the temporal dimension and focus

on the most significant features. Max pooling works by selecting the maximum value within a static

https://www.scipedia.com/public/Rahman_et_al_2026 6
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window, say of size P, over the time steps. However, this pooling method might not prove appropriate

for temporally inclined features. By selecting the maximum value in a window, crucial details are

neglected and this locally aligned nature of the pooling method fails to capture the global context

which is essential to understand the long term patterns.

For the given scenario, a more potent and appropriate dimensionality reduction method i.e.,

dynamic pooling is proposed as illustrated in Fig. 5, which is particularly useful in scenarios like time-

series forecasting where preserving important temporal structures is essential [21]. Dynamic pooling

works by adaptively dividing the sequence into smaller chunks and then applying pooling within each

chunk, allowing the model to retain crucial information while reducing the temporal dimension more

flexibly than static max pooling.

Figure 5: Illustration of proposed dynamic mean pooling

After applying the convolutional filters to the input features, the model outputs a tensor XCNN ∈
R

T′×F′

, where T ′ represents the time dimension after convolution. Instead of applying max pooling,

dynamic pooling was employed, which splits the temporal dimension into dynamically determined

regions based on the input size and then pools over those regions. Hence, by using the dynamic pooling

the model captures more complex temporal patterns, thereby reducing the risk of losing important

features from longer time sequences that may span multiple regions.

The dynamic pooling operation is applied on a feature vector by dividing the respective temporal

sequence X_CNN into N dynamic segments, which are computed on the basis of required reduction in

temporal resolution. Each segment expressed inmathematical formulation as S i ∈ R

T ′

N
×F′

, is subjected

to mean pooling. The pooled feature for each segment is:

DynPool(S i) = mean

(
S i (1) ,S i (2) , . . . ,

(
T ′

N

))
(4)

By applying the above pooling transformations, N pooled feature maps having size of F ′ have

their temporal dimensions reduced from T ′ toN ; all the while ensuring that each input segment of the

original sequence meaningfully contributes to the final representation.

The capability for flexible manipulation of sequences of varying lengths gives dynamic pooling

an edge in dealing with time-series data. In contrast to max pooling using a rigid window, dynamic

pooling can adjust to identify salient characteristics across the sequence, thereby capturing long-term

dependencies more precisely. It homes in on impactful elements scattered through the sequence. This

augments the model’s capacity to maintain the temporal relations which are important to forecasting

while down sampling lightens computational loads. Finely tuned responsiveness to sequence particu-

lars and strategic focusing equips dynamic pooling to better serve the needs of time-series forecasting

over a fixed-size window.

https://www.scipedia.com/public/Rahman_et_al_2026 7
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The dynamically downsized output XDynPool ∈ R
N×F′

containing significant temporal features is

propagated to subsequent layers of the model for further processing.

The outputs of the CNN layers, now a reduced temporal sequence of important local features,

are then fed into the Transformer blocks depicted in Fig. 6. The role of the Transformer encoder

is to capture long-term dependencies in the sequence. This is essential for wind speed forecasting,

where the current wind conditions may be influenced by both recent and distant past wind speeds or

weather conditions. The core mechanism of the Transformer block is the self-attention mechanism,

which allows each time step to attend to all other time steps in the sequence.

Figure 6: Block diagram of multi-head attention mechanism

Self-attention can be mathematically described as:

Attention (Q, K , V) = softmax

(
QK

T

√
dk

)
V (5)

Here, Q = XWQ, K = XWK , and V = XWV are the query, key, and value matrices obtained

by projecting the input sequence X ∈ R
T×dmodel where dmodel is the model dimensionality into lower-

dimensional spaces using weight matrices WQ, WK and WV . The dot product of the query and key

matrices, QKT captures the similarity between each time step’s representation and all others in the

sequence. This similarity is scaled by
√
dk (where dk is the dimensionality of the key vector) to prevent

overly large values in the dot product, which could cause the softmax function to saturate. The softmax

function then normalizes these similarity scores into attention weights:

αi,j =
exp(QiK

T
j/

√
dk)∑

j
exp(QiK

T
j/

√
dk)

(6)

These attention weights αij determine how much focus the model places on each time step when

producing the output at time step i. The value matrix V is weighted by these attention scores, and the

resulting weighted sum is the output of the attention mechanism.

In the context of wind speed forecasting, the attentionmechanism allows themodel to dynamically

weigh how past time steps affect the current prediction. For example, if there is a long-term seasonal

pattern in the wind speed, the model can assign higher attention to distant past time steps that

exhibit similar conditions. Simultaneously, more recent fluctuations in wind speedmight receive higher

attention if they are more relevant to the current prediction. By integrating the Multi-head attention,

https://www.scipedia.com/public/Rahman_et_al_2026 8
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the model’s attention capabilities are amplified in tending towards different aspects of the sequence

simultaneously as shown in Fig. 6.

The inputs from each preceding operation are split into multiple subspaces, with attention heads

depicted as h while the attention mechanism is applied to each subspace independently which is

mathematically expressed as:

Multihead (Q, K , V) = Headconcat (h1, . . . , hn) ∗W o (7)

where each hi computes:

hi = Attention(QWQi
, KWK i

, VWVi
) (8)

From each head, the outputs are concatenated and then linearly transformed by using a final

weightmatrixW o. This concatenation operation gives model the leverage to focus on different patterns

within the same input simultaneously. This is especially useful in time-series data where multiple

dependencies i.e., long and short term may coexist.

In the post attention calculation, each output time step is passed to a feedforward neural network

(FFN) independently as:

FFN (x) = ReLU (xW 1 + b1)W 2 + b2 (9)

This two-layered network introduces additional non-linear components and permits a richer

alteration of the attended characteristics. By applying the feedforward network to each discrete time

period autonomously, the design is able to enhance the learnt feature representations designated by

the attention system. While ensuring that even when focusing on other time intervals, the features can

be further processed to capture non-linear interrelationships.

While normalization is practiced ahead of and subsequent to both the attention mechanism and

the feedforward system, the inputs to these layers are standardized, which stabilizes the learning

and allows for a more improved gradient flow. Simultaneously, the deeper architecture improves

the capability to identify intricate connections among time steps by provisioning further levels

through which inputs are transformed preceding make predictions or selections, thereby advancing

the representation capability of the model. The layer normalization process can be mathematically

given as:

LN (x) = x− µ

σ + ε
(10)

The mean of the features is depicted with μ and σ represents the variance of the input vectors. In

order to prevent the division by zero a small constant ǫ is added. The use of the Layer normalization

helps in mitigating the issues of the internal covariate shift, greatly improving the model’s ability to

converge during training. The pseudo algorithm for the proposed methodology is given in Algorithm

1, while the model’s parametric configuration and hyper-parameter settings are provided in Tables 2

and 3, respectively.

https://www.scipedia.com/public/Rahman_et_al_2026 9
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Algorithm 1 : Pseudocode for the proposed MHA-CNN framework

1 INPUT DATA

2 D ∈ R
n×d, where n is the number of time steps, and d is the feature dimension.

3 NETWORK INITIALIZATION

4 C ←Initialize 1D CNN with kernel size K and filters F

5 T ←Initialize Transformer encoder with layers L, heads H, and embedding size D

6 FC ←Initialize fully connected layer for regression output

7 OBJECTIVE FUNCTION

8 Lreg ← Minimize Mean Squared Error (MSE)

9 TRAINING LOOP

10 For each epoch e ∈ [1,E]:

11 Feature Extraction with 1D CNN:

12 Zconv ← C(X ;Wc, bc)

13 Aconv = LeakyReLU(Zconv,α)

14 Feature Transformation with Transformer Encoder:

15 For each Transformer layer l ∈ [1,L]

16 Zattl = MultiHeadAttention(Aconvl,H)

17 Aattl = LayerNorm(Aconvl + Zattl)

18 Zffnl = FFN(Aattl)

19 Aencl = LayerNorm(Aattl + Zffnl)

20 Flatten and Regression Output:

21 Aflat = Flatten(Aencl)

22 ŷ = FC(Aflat;Wfc, bfc)

23 Loss Computation and Backpropagation:

24 Lreg = 1

B

B∑
i=1

(yi − ŷi)
2

25 θ ← θ − η∇θLreg

26 OUTPUT

27 Predicted future values ŷ for each time series sequence.

Table 2: Parametric Configuration of Proposed MHA-CNN architecture

TRANSFORMER—BLOCK

Transformer Feature Extraction No. of layers Parameters Input shape

Multi-Head Self-Attention (MHA) 1 4 heads, 512 dim each (W, F, d)

Feed-Forward Network (FFN) 2 512 → 2048 (linear) (W, F, 512)

Layer Normalization 2 – (W, F, 512)

Residual Connections 2 – (W, F, 512)

CONVOLUTION BLOCK

1D CNN Feature Extraction Kernel size Filters Activation Input shape

1D Convolution 3 64 Leaky ReLU (α = 0.01) (W, F, d)

1D Convolution 3 128 Leaky ReLU (α = 0.01) (W, F, 64)

Dynamic pooling Variable – – (W, F, 128)

(Continued)

https://www.scipedia.com/public/Rahman_et_al_2026 10
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Table 2 (continued)

REGRESSION BLOCK

Flatten & Fully connected layer Units Activation Input Shape

Flatten layer – – (W, F, 128)

Fully connected (Dense) 256 Leaky ReLU (α = 0.01) (W × F × 128)

Fully connected (Dense) 1 Linear –

COMPUTATIONAL COST

Number of parameters – – 187,392

Inference time – – 48 ms

Table 3: Hyper-parameter configuration for training

Hyper-parameter Value

Epochs 100

Loss MAE (Mean Absolute Error)

Optimizer Adam

Learning rate 0.001

Batch size 64

Dropout rate 0.2

Activation function ReLU

Validation split 0.2

Early stopping Enabled

Patience 10

3.3 Distinction from FEDformer

While FEDformer [22] employs Fourier-based frequency selection to reduce attention complexity,

it operates on full sequences and requires decomposition as a pre-processing step. In contrast, MHA-

CNN introduces several key differences:

• It applies a 1D-CNN front-end to extract local features before the attention mechanism,

effectively reducing the input length from T to T ′, where T ′ ≪ T .

• It uses dynamic mean pooling to adaptively downsample the sequence based on T ′, unlike

FEDformer’s fixed frequency-band approach.

• It employs a lightweight multi-head attention (MHA) module with 4 heads and a model

dimension (dmodel) of 64, compared to FEDformer’s deeper and heavier attention blocks.

• It achieves over 10× faster inference (48 vs. 620 ms on the same CPU) due to the reduced

sequence length and computational load.

This local-to-global hierarchical design enables real-time deployment on edge devices, providing

a significant advantage over frequency-domain transformer architectures.
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3.4 Evaluation Metrics

3.4.1 Mean Squared Error (MSE)

Measures the average of the squared differences between the actual and predicted values. It heavily

penalizes larger errors.

MSE = 1

n

n∑

i=1

(yi − ŷi)
2 (11)

where yi is the actual value, ŷi is the predicted value, and n is the number of samples.

3.4.2 Root Mean Squared Error (RMSE)

The square root of MSE, providing error in the same units as the output variable. It also penalizes

larger errors more than smaller ones.

RMSE =

√√√√1

n

n∑

i=1

(yi − ŷi)
2 (12)

3.4.3 R-Squared (R2)

Represents the proportion of the variance in the dependent variable that is predictable from the

independent variables. It shows the model’s goodness-of-fit.

R
2 = 1 −

∑n

i=1
(yi − ŷi)

2

∑n

i=1
(yi − ŷi)

2
(13)

3.4.4 Mean Absolute Error (MAE)

Measures the average of the absolute differences between actual and predicted values. It is less

sensitive to outliers than MSE.

MAE = 1

n

n∑

i=1

∣∣yi − ŷi
∣∣ (14)

3.4.5 Symmetric Mean Absolute Percentage Error (sMAPE)

Expresses prediction accuracy as a percentage by comparing the absolute error to actual values.

It is scale-independent but can be distorted by small actual values.

MAPE = 100

n

n∑

i=1

∣∣∣∣
yi − ŷi

yi

∣∣∣∣ (15)

To avoid instability when actual values approach zero, we use the symmetric mean absolute

percentage error (sMAPE), defined as:

sMAPE = 200

n
× �

∣∣yi − ŷi
∣∣

(
|yi| +

∣∣ŷi
∣∣ + ε

) (16)

where ε = 10−6.
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4 Results and Discussion

4.1 Dataset Description

The 2018 wind power SCADA dataset is a publicly available resource that offers a comprehensive

overview of wind turbine performance throughout the year 2018. Collected from a single wind turbine

in Turkey, the dataset provides granular insights into the turbine’s operational characteristics. The

dataset covers the entire year of 2018, providing a complete annual record. Data is recorded at 10-min

intervals, offering a detailed view of operational fluctuations. Key parameters included in the dataset

are date/time, LV active power, wind speed, theoretical power curve, and wind direction.

4.2 Feature Analysis

The Fig. 7 illustrates the distribution of Low Voltage (LV) Active Power consumption and the

wind speed. The histogram in Fig. 7a represents the frequency of different LV Active Power values,

with a clear peak around the 0–200 kW range, indicating that this is the most common range of

consumption. The skewed shape of the histogram suggests that there are fewer data points in the

higher range, indicating that high-consumption outliers are relatively rare.

Figure 7: Visualization of feature distribution (a) Histogram of active power in KW (b) Density plot

for wind speed in m/s

The density curve in Fig. 7b provides a smooth representation of the distribution, confirming the

skewed pattern observed in the histogram. It also highlights the peak around the 3–7 m/s wind speed,

further emphasizing themost common range of LVActive Power consumption. The extended right tail

of the density curve suggests that the probability of observing higher LV Active Power consumption

decreases gradually. Similarly, the wind rose illustrated in Fig. 8 provides valuable insights into the

local wind conditions. The dominant directions of north and east suggest that prevailing winds in the

area come from these directions. This information is crucial for understanding the local climate and

weather patterns.

Additionally, the wind rose can be used to assess the potential for wind energy generation. Regions

with consistent and strong winds from certain directions are more suitable for wind turbines.
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Figure 8: Wind rose plot depicting the wind speed distribution against the direction

4.3 Evaluation for Hourly Forecast

The Fig. 9 represents a short-term power forecasting scenario, where the actual and predicted

power values are compared across several hours and evaluated in terms of the residuals. As illustrated

in Fig. 9a, the model demonstrates strong alignment between the actual data and its predictions,

particularly in the early stages, suggesting that it effectively captures overall trends in power demand.

However, in some areas, especially during peak demand periods, slight deviations are visible, most

notably around the 120 to 150-h mark. The model marginally falls short to capture the rapid

fluctuations in power usage, as seen in these high-spike regions. This indicates that while the model

is well-suited for capturing gradual changes in power consumption, its performance dwindles slightly

during periods of more abrupt changes, particularly at higher peaks.

The residuals plot in Fig. 9b identifies the difference between the predicted and actual values

against the predicted values themselves. Here, the residuals are mostly centered around zero, partic-

ularly for mid-range predictions, demonstrating that the model generally performs well for moderate

power demand. However, as the predicted values increase, the residuals scatter more widely, showing

that the model shows a bit of struggle with the higher power values, often overestimating them.

This becomes evident as several points deviate significantly from zero in the higher predicted ranges,

indicating potential over-prediction for high-power demand scenarios. The pattern observed in the

residuals suggests that while the model has overall consistency, its ability to predict extreme power

demand cases can be further refined, particularly to minimize overestimations in these situations.

The histogram presented in Fig. 10 illustrates the distribution of errors between actual and

predicted values for an hourly wind turbine power generation forecasting model. On the x-axis,

prediction errors are displayed, representing the difference between the predicted and actual values,

while the y-axis indicates the frequency of occurrences for each error. The overall shape of the

https://www.scipedia.com/public/Rahman_et_al_2026 14



S. Rahman, A. Shaher, N. A. Khan, M. Abubakar, Z. Mushtaq, H. Alwadie, A. T. Hindi, M. Irfan and S. Dawsari,

Enhancing wind power forecasting using hybrid multi-head attention

and 1-dimensional convolutional neural networks,

Rev. int. métodos numér. cálc. diseño ing. (2026). Vol.42, (1), 32

histogram provides key insights into the model’s performance by visualizing how often specific error

magnitudes occur, giving an immediate sense of accuracy and consistency. The distribution of errors is

approximately normal, with a concentration around zero, indicating that the majority of the model’s

predictions are reasonably accurate. However, there is a minimal skew towards the negative side,

which suggests that the model has a slight tendency to underestimate power generation slightly more

frequently than it overestimates. Furthermore, a few outliers are evident, particularly in the negative

range, highlighting occasional instances where themodel significantly under-predicts the actual values.

Despite this, the overall spread of the error distribution remains narrow, indicating that the model’s

errors are generally consistent in size, rather than fluctuating wildly.

Figure 9: Short term prediction results of proposed MHA-CNN. (a) Hourly Forecast comparison

between actual and predicted values; (b) Residual plot plotted against predicted values

Figure 10: Prediction error histogram for hourly forecast
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The Fig. 11 shows the model’s performance across multiple short-term forecasting horizons, with

actual and predicted values compared over different time intervals. The model performs well for

the shorter horizons, as seen in Horizon 1, where actual and predicted values are closely aligned,

showcasing its effectiveness in immediate-term forecasting. However, as the horizon extends, the

divergence between actual and predicted values increases to some extent. In Horizon 3, the predicted

values remain mostly consistent with actual values, highlighting the model’s adeptness for longer-term

predictions. This suggests that while the model is highly effective in short-term forecasting and bodes

well even when the forecasting horizon extends.

Figure 11: Hourly forecast comparison of actual and predicted values for different horizons

4.3.1 Evaluation for Daily Forecast

Similar to the hourly forecast, the proposed model’s capabilities in long term forecasting were

evaluated. The results displayed in Fig. 12a represents a long-term forecasting model for wind turbine

power generation, where the x-axis denotes days and the y-axis reflects normalized active power

in kilowatts (kW). The actual values are illustrated by the blue line, while the red line indicates

the predicted values. The model effectively demonstrated an understanding of general wind power

trends, indicating competence in grasping broader fluctuations over time.However, some discrepancies

between actual and predicted values emerged, particularly during intervals of swift transitions,

suggesting it is somewhat reactive to abrupt variations or environmental shifts nominally impacting

generation. Overall, it correctly distinguished periods of elevated output which likely reflect favorable

conditions while demonstrating decent ability to capture repeating tendencies across longer stretches.

Nevertheless, accuracy faltered minimally when faced with rapid fluctuations, presumably caused by

suddenwind speed or direction changes. These errors revealed that while tracking overarching patterns

capably, responding to short-term, more drastic alterations leaves room for enhancement.
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Figure 12: Short term prediction results of proposed MHA-CNN. (a) Hourly forecast comparison

between actual and predicted values; (b) Residual plot plotted against predicted values

There are also notable periodswhen themodel significantly underestimates or overestimates power

creation. During these instances, the differences between real and anticipated values could lead to

ineffectiveness, such as missed opportunities for vitalizing the energy grid optimization or fallacies

in provision predictions. The underperformance may emerge from aspects not adequately depicted in

the data, like fluctuations in temperature, moisture, or atmospheric stress, all that can impact wind

behavior. These deviations highlight the complex and dynamic essence of wind power forecasting,

emphasizing the difficulties of achieving high precision, particularly for short-term forecasts within

a long-term model setting. The deviations occur as the climate and atmospheric conditions change

rapidly in ways not fully captured by the model. Additionally, minor variations in wind turbine

equipment or surrounding landscape features may affect wind patterns in unforeseen ways. Despite

the high overall performance, there are minor challenges associated with the accurately predicting

generation from abrupt fluctuations.

The residuals plot within Fig. 12b exhibits a seemingly random scattering of points evenly

straddling the flat line at zero, suggesting the model did not systematically over or under estimate the

target variable. No clear pattern or trends surfaced among the residuals, implying the model didn’t fail

to miss any significant relationships within the data. While the residuals look to maintain a steady

variance across the anticipated values, signaling the model’s errors as homoscedastic, a scattering

of outliers can be detected within the plot, proposing the model incorrectly predicting a minute

proportion of data points.

Similarly, the histogram in Fig. 13 shows a roughly normal distribution of long-term prediction

errors, centered around zero with a slight negative skew. While most errors are relatively small, there

are a few outliers, particularly on the negative side. This suggests that themodel is generally performing

well, but there is room for improvement in terms of reducing outliers and the skew towards the

negative side.
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Figure 13: Prediction error histogram for daily forecast

The results in Fig. 14 illustrates a day-ahead forecasting model for wind turbine power generation

across multiple prediction horizons, where the x-axis represents time and the y-axis shows normalized

active power in kilowatts (kW). The model provides predictions for three distinct horizons, each

corresponding to slightly longer time periods into the future. For each horizon, the solid lines depict

the actual power values, while the dashed lines represent the predicted values. This allows for a clear

comparison between the model’s accuracy at varying time intervals, highlighting its ability to capture

certain trends while missing others.

Figure 14: Daily forecast comparison of actual and predicted values for different horizons

Across the three horizons, the model’s accuracy diminishes slightly as the prediction period

extends.Horizon 1, representing the shortest forecast, shows a high degree of alignment between actual

and predicted values, indicating the model’s reliability in the immediate future. However, as we move

to Horizon 2 and Horizon 3, the discrepancies between actual and predicted values become a bit
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more pronounced then the former, particularly for Horizon 3. The model’s predictions start to deviate

more from the actual values especially towards the higher power consumption intervals, indicating a

marginal discrepancy in capturing shorter-term fluctuations andmore granular changes in wind power

generation. This suggests that while themodel canmaintain a reasonable level of accuracy over shorter

horizons, its ability to predict accurately remains overall consistent even with longer time frames.

The minor prediction errors may be attributed to the unpredictable nature of wind patterns, which

are difficult to forecast accurately over longer periods. As a result, the model’s long-term trends remain

useful, but for more detailed predictions, it shows minute discrepancies. This highlights the inherent

challenge in balancing the accuracy of short-term forecasting against the necessity to predict further

into the future, indicating that additional model refinements strategies.

4.3.2 Evaluation for Each Month

The evaluation results in Table 4 and Fig. 15 for month-ahead forecast shows that the model

performs most effectively during Months 4, 8, and 9, where the R2 values exceed 0.99, and the error

metrics (MSE, RMSE, MAE) are at their lowest, indicating highly accurate predictions. However,

the model’s performance is weaker in Months 1 and 12, where the R2 values drop to around 0.60 to

0.84, and the errors significantly increase, suggesting difficulties in maintaining accuracy during these

months. Although the overall errors (RMSE, MAE) are relatively low for most months.

Table 4: Evaluation results of proposed MHA-CNN model for monthly-forecast

Month MSE RMSE R2 MAE sMAPE

1 0.06953 0.263688 0.6029 0.124846 41.2%

2 0.02065 0.143714 0.8596 0.060590 28.7%

3 0.00969 0.098415 0.9408 0.033067 19.4%

4 0.00169 0.041133 0.9823 0.014680 12.8%

5 0.00103 0.032038 0.9860 0.016176 10.1%

6 0.00105 0.032455 0.9878 0.015021 9.9%

7 0.00396 0.062904 0.9138 0.014063 11.5%

8 0.00075 0.027408 0.9928 0.018502 8.7%

9 0.00106 0.032567 0.9922 0.018182 10.3%

10 0.00121 0.034829 0.9881 0.022376 11.9%

11 0.01566 0.125154 0.8947 0.048566 22.6%

12 0.02025 0.142302 0.8408 0.069388 31.4%

The lower R2 values in months 1 and 12 likely indicate reduced wind activity and more frequent

calm periods during winter, which increase the difficulty of forecasting.

In the short-term forecasting plot illustrated in Fig. 16a, most models closely track the actual

power values, with the proposedMHA-CNNdelivering themost consistent and accurate performance.

The dashed red line representing the MHA-CNN model follows the actual values with minimal

deviation, capturing both sharp transitions and smoother trends in the data. Other models such as

1D-CNN, LSTM, and XG-Boost also perform reasonably well as shown in Table 5, with the CNN-

based models handling the temporal dynamics effectively. However, models like Random Forest and

Decision Tree exhibit more fluctuation, particularly during periods of rapid change, which suggests
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that their reliance on simpler decision boundaries leads to an inability to capture short-term variations

as accurately as the deep learning models. Notably, Decision Tree shows significant errors during peak

periods, underscoring its struggles with dynamic, high-frequency variations.

Figure 15: Hybrid bar—line plot for monthly forecast evaluation

Figure 16: Hour and Day-Ahead forecast comparison of proposed model and other ML and DL

models (a) Hour-ahead forecast comparison (b) Day ahead forecast comparison

Table 5: Comparison of proposed MHA-CNNmodel with other ML and DL models for hour-ahead

prediction across multiple evaluation criterion

Model MSE RMSE R2 MAE sMAPE

1D-CNN 0.0120 0.1097 0.8563 0.0978 42.1%

Random forest 0.0062 0.0790 0.9256 0.0449 21.63%

Decision tree 0.0252 0.1588 0.6993 0.0760 41.09%

(Continued)
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Table 5 (continued)

Model MSE RMSE R2 MAE sMAPE

Gradient boosting 0.0102 0.1012 0.8779 0.0586 38.73%

MLP 0.0084 0.0917 0.8997 0.0635 40.83%

LSTM 0.0080 0.0896 0.9043 0.0635 35.26%

Ridge regression 0.0111 0.1055 0.8672 0.0935 42.35%

AdaBoost 0.0135 0.1161 0.8392 0.0821 37.91%

XGBoost 0.0096 0.0982 0.8849 0.0572 40.13%

MHA-CNN 0.0005 0.0217 0.9944 0.0138 14.48%

The day-ahead forecasting results depicted in Fig. 16b and tabularized in Table 6 show theMHA-

CNN design outperforming others by capturing more extensive temporal dependencies and main-

taining alignment with real values, even amidst period of rapid fluctuations. The MHA mechanism

likely aids in attending to time advances crosswise over the larger horizons, diminishing alignment

inconsistencies seen in other models. While 1D-CNN and LSTM models still perform relatively well,

they show extended deviations, particularly amid times with bigger spikes and troughs, proposing a

slight decay in their capacity to generalize over longer horizons. Ensemble strategies like XG-Boost

and Gradient Boosting perform well enough throughout over less complex models like Decision

Tree and Random Forest, yet their expectations show more abnormal conduct, particularly amid the

tops, demonstrating troubles precisely catching far off patterns. Conclusively, the MHA-CNN shows

remarkable forecasts in both hour and day-ahead predictions because of its hybrid structure, while

machine learning models confront more articulated difficulties in keeping up prescient accuracy over

extended time periods.

Table 6: Comparison of proposed MHA-CNN Model with other ML and DL models for day-ahead

prediction across multiple evaluation criterion

Model MSE RMSE R2 MAE MAPE

1D-CNN 0.0135 0.1162 0.9003 0.0894 44.81%

Random forest 0.0279 0.1670 0.7941 0.0913 39.65%

Decision tree 0.0830 0.2882 0.3866 0.1283 39.46%

Gradient boosting 0.0344 0.1855 0.7458 0.0951 40.21%

MLP 0.0113 0.1063 0.9165 0.0802 43.25%

LSTM 0.0212 0.1455 0.8436 0.1052 42.98%

Ridge regression 0.0090 0.0951 0.9332 0.0672 41.74%

AdaBoost 0.0225 0.1501 0.8337 0.0993 44.22%

XGBoost 0.0369 0.1922 0.7272 0.0981 39.98%

MHA-CNN 0.0047 0.0686 0.9652 0.0317 35.46%
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4.4 Ablation Study

The ablation study given in Table 7 reveals that the integration of Multi-Head Attention (MHA)

and 1D-CNN provides the best performance, achieving an average R2 score of 0.9129, demonstrating

the synergy between these two components in enhancing model accuracy as seen in Table 6. When

only 1D-CNN is employed, the score drops to 0.8556, whereas using only MHA leads to a modest

improvement with an R2 score of 0.8715, indicating that MHA contributes more individually. Among

pooling strategies, Dynamic Mean Pooling delivers a superior R2 score of 0.9079 compared to Max

Pooling at 0.8848, highlighting its effectiveness. In the comparison of activation functions, Leaky

ReLU performs better than ReLU, with an R2 score of 0.8819 vs. 0.8576.

Table 7: Ablation study results (R2 values averaged across hour-ahead, day-ahead, and month-ahead

horizons)

MHA-CNN

Multi-Head Attention 1D-CNN Avg. R2 Score

✖ � 0.8556

� ✖ 0.8715

� � 0.9129

POOLING OPERATIONS

Max Pooling Dynamic mean pooling Avg. R2 Score

✖ � 0.9079

� ✖ 0.8848

ACTIVATIONS

ReLU Leaky ReLU Avg. R2 Score

✖ � 0.8819

� ✖ 0.8576

5 Conclusion

This study introduces MHA-CNN, a hybrid architecture that combines 1D-CNNs for local

pattern extraction, multi-head attention for modeling long-range dependencies, and dynamic mean

pooling for adaptive downsampling. The model achieves state-of-the-art performance on single-

turbine SCADAdata, with R2 = 99.42% for hour-ahead forecasts and 96.52% for day-ahead forecasts,

while maintaining inference latency under 50 ms on a CPU.

Limitations of the current work include validation on a single turbine, which limits spatial

generalizability, the lack of probabilistic forecasts, and sensitivity to extreme calm periods, although

this last issue is partially mitigated using sMAPE. Future work will focus on extending the model

to multi-turbine and multi-site validation using NREL datasets, enabling probabilistic forecasting
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via quantile MHA-CNN, integrating physics-informed constraints such as power curve bounds, and

deploying the model on edge devices (e.g., Raspberry Pi) to support real-time grid operations.

The proposed framework provides a scalable foundation for efficient, accurate, and deployable

wind power forecasting systems.
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