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Abstract

Despite the rapid progress in Generative Adversarial Networks (GANs), several
fundamental challenges remain under-explored, including reliable latent sampling,
scalable evaluation, and fairness in generation.

In this work, we propose a unified framework based on hubness sampling, a
principle derived from the observation that high-dimensional latent spaces exhibit
hub latents. We show that these hub latents are better trained and contribute more
to the synthesis of high-quality images. Leveraging this insight, we develop an a
priori latent sampling method that outperforms traditional approaches such as the
empirical truncation trick, both in efficiency and image quality.

Building on this foundation, we address the computational bottlenecks in eval-
uating generative models on large datasets. We introduce efficient precision and
recall (eP&R) metrics that retain fidelity to the original metrics while significantly
reducing computation through hubness-aware sampling and approximate nearest
neighbor techniques.

Finally, we extend hubness sampling to promote fairness and diversity in GAN
training. Without requiring labels or additional supervision, hubness sampling
improves representation across sensitive attributes such as ethnicity, gender, and
age, applied to various state-of-the-art GAN architectures, including StyleGAN,
Diffusion-GAN, and GANFormer.

In conclusion, this work demonstrates that hubness sampling offers a versatile
and powerful toolset for improving image quality, evaluation efficiency, and fairness
in generative modeling, while also highlighting opportunities for further optimization
in its computational cost.
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Chapter 1

Introduction

Since the 1990s, computation in high-dimensional spaces has posed significant chal-

lenges in machine learning and knowledge retrieval [4, 10, 47, 86]. As dimensionality

increases, data points become sparse, leading to the well-known “curse of dimension-

ality”, where traditional indexing and algorithmic techniques suffer from reduced

efficiency and effectiveness [29, 77]. This sparsity impacts various tasks, including

nearest-neighbor search, clustering, and classification, necessitating the development

of novel strategies to manage and exploit high-dimensional data structures effectively.

By applying advanced machine learning techniques, such as deep neural networks,

probabilistic modeling, and self-supervised learning, generative AI can synthesize

highly realistic text, images, music, and even intricate designs. This unprecedented

level of creativity and adaptability has propelled its adoption across a diverse range

of fields, from natural language processing and digital art to scientific research

and automated content generation. Models like GPT, Stable Diffusion, and music-

generating AI have demonstrated the potential to create human-like outputs with

minimal supervision, bridging the gap between artificial intelligence and human

cognition. However, despite these advances, generative models still face numerous

challenges related to controllability and reliability. Issues such as mode collapse,

unintended biases, and a lack of interpretability hinder their practical deployment

across critical applications. Moreover, ensuring unbiased and diversity in generated

content remains a significant research challenge.

Since the latent vectors in generative models reside in high-dimensional spaces,
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this thesis explores the impact of the “curse of dimensionality” within generative

spaces. By using high-dimensional theory, we aim to enhance the quality of generated

images, mitigate dataset bias, and reduce redundancy in precision and recall metrics

for assessing generative models. Through a deeper understanding of high-dimensional

sampling and its effects, this research provides novel insights into optimizing genera-

tive processes and improving model evaluation efficiency.

1.1 Background

Today, generative Artificial Intelligence (AI) has undergone remarkable advance-

ments, leading to its widespread application across numerous domains, including

linguistics, graphics, image synthesis, and video generation. These developments have

fundamentally transformed the way humans interact with technology, enabling more

sophisticated and creative AI-driven solutions. For image generation, cutting-edge

models like Stable Diffusion [112] and Style-GAN[65, 66, 68, 126] have redefined

content creation by enabling the generation of highly detailed and realistic images.

This capability has broad implications for industries such as marketing, fashion,

entertainment, and game development, where high-quality visual assets are essential.

Generative models operate in high-dimensional latent spaces, where each data

sample (e.g. latent code and feature of generative image) is represented as a high-

dimensional vector. While this allows for expressive and complex representations, it

also introduces several computational and theoretical challenges. One of the most

significant issues is the curse of dimensionality, which refers to the phenomenon

where data points become increasingly sparse as the number of dimensions grows [15].

This sparsity affects various machine learning tasks, including clustering, similarity

search, and nearest-neighbour computations.

In generative modeling, the high-dimensional nature of latent spaces impacts sam-

pling efficiency, training stability, and evaluation metrics. For example, traditional

distance-based methods, such as k-nearest neighbours (k-NN), become less reliable

in high-dimensional settings because of the concentration of distances, where the dis-

tances between most points become nearly indistinguishable, reducing the reliability
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of neighbour ranking [37, 76, 130]. Moreover, data distributions in high-dimensional

spaces often exhibit hubness, a phenomenon where certain points (hubs) appear more

frequently as nearest neighbors than others [107]. Understanding and leveraging

these properties is crucial for improving generative model training, evaluation, and

sampling strategies.

This thesis explores the interaction between generative models and high-dimensional

space, particularly focusing on the hubness phenomenon and contributes to the

broader understanding of high-dimensional generative modeling, offering new insights

into optimizing generative processes and improving model robustness.

1.2 Motivation

Generative Adversarial Networks (GANs) have achieved remarkable success in gener-

ating high-quality images by learning a structured latent space. However, sampling

meaningful and high-quality latent vectors remains a persistent challenge. Many

existing approaches rely on heuristics, such as the truncation trick, which restricts

the latent space to a high-density region to enhance sample quality, or simplistic

strategies like the “cherry-pick”. While effective in practice, these methods lack a

strong theoretical foundation and may inadvertently discard diverse yet high-quality

samples, limiting the full potential of the generative model.

In addition to improving sampling strategies, evaluating generative models also

presents computational challenges. Precision and Recall (P&R) metrics, commonly

used to assess generative performance, rely on distance computations in feature

space, often using methods like k-nearest neighbors (k-NN). Both the latent space

and the feature space in generative modeling are high-dimensional (typically with

dimensions d > 100). According to research on the hubness phenomenon [107],

high-dimensional vector spaces exhibit an inherent structural property where certain

data points, termed hubs, disproportionately appear as nearest neighbors and we

claim that this phenomenon may create computation redundancy.

Given these challenges, our work aims to explore and leverage the structural properties

of high-dimensional spaces, specifically the hubness phenomenon, in the context
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of generative modeling. By understanding how hubness influences both latent

space sampling and generative model evaluation, we seek to develop more efficient,

theoretically grounded approaches to improve the quality, diversity, and assessment

of generated samples.

1.3 Research questions

As discussed earlier, the primary objective of this thesis is to investigate the “curse

of dimensionality” in the latent space of generative models and develop a novel

algorithm to generate high-quality synthetic images while enhancing the efficiency of

computing precision and recall metrics for model evaluation. To achieve this, the

following research questions will be addressed:

• The hubness latents are in the high density area of the latent space, so are the

hubness latents mapping to the high-quality generated images?

• Can leveraging hubness features enhance the computational efficiency of preci-

sion and recall metrics for generative model evaluation?

• Can hubness sampling techniques improve generative diversity and mitigate

dataset biases?

A detailed examination based on a literature review, experiments, and analysis will

be conducted for each one of the questions above. These questions answers hold the

potential to provide helpful information about the benefits and limitations of using

affordances for generative models.

1.4 Aim and Objectives

This thesis aims to investigate the hubness phenomenon widely existing in the latent

space of generative models and the hubness not always to be the negative component

in the image synthesis, also having much improvement in different targets. To achieve

this aim, the following objectives are pursued:
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• Analyzing the Relationship Between Hubness and Generative Image Quality,

GANs map latent vectors to images in a high-dimensional space, where some

latents (termed hubs) occur frequently as nearest neighbors because of the hub-

ness phenomenon, investigating how hubness latent vectors map to generated

images and assess their impact on output quality.

• Due to the presence of hubness in high-dimensional feature spaces, certain data

points frequently appear in neighbor sets and the computation of precision and

recall for the evaluation of generative models using k-NN, therefore, we aim to

analyze whether this redundancy affects computational efficiency and whether

alternative hubness-aware approaches can improve the reliability of precision

and recall metrics by optimizing the computation for generative models.

• These hub latents are often better trained and result in higher-quality image

generation. we want to design and implement hubness-aware sampling methods

for training GANs, assessing their impact on training dynamics, image quality,

and model diversity, investigating whether leveraging hub latents can enhance

model stability and improve convergence efficiency.

By pursuing these objectives, this thesis aims to contribute to discovering the

relationship between the generative models and the hubness phenomenon and to

proving that the hubness phenomenon, ‘dimensional curve’, is not always the negative

effect for the deep learning.

1.5 Outline

This outline presents a concise summary of the thesis’ content comprised of six

chapters, aiming to provide a clear overview of the research presented in the following

chapters.

Chapter 2 provides a comprehensive review of the relevant literature on various deep

generative models, along with their associated evaluation metrics. It also explores the

hubness phenomenon and discusses existing reduction techniques. Furthermore, the
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chapter introduces different sampling strategies for generative models, highlighting

their significance in improving generation quality and efficiency.

Chapter 3 explores the hubness phenomenon in the latent space of pretrained GAN

models, focusing on leveraging hubness priors for high-quality latent sampling. This

chapter introduces, for the first time, a formal definition of the hubness value in the

latent space and investigates its correlation with the quality of synthesized images.

Furthermore, it examines the potential relationship between the truncation trick and

hubness points, suggesting that truncation may inherently align with hubness-aware

sampling strategies.

Chapter 4 investigates the redundancy in precision and recall metrics assessments

for generative models, highlighting how feature vectors with high hubness values

can be leveraged to reduce redundancy and enhance computational efficiency. This

chapter also presents extensive experiments across various models and datasets,

demonstrating the effectiveness and applicability of the proposed approach.

Chapter 5 introduces the hubness-aware sampling method, which aims to enhance

the diversity of GAN-generated outputs while mitigating class imbalance within the

dataset. By leveraging hubness samplings, this approach helps reduce bias across

different classes, leading to a more balanced and representative generative model.

Chapter 6 concludes the thesis by summarising the main contributions and achieve-

ments of this research work. In addition, the limitations and challenges of the

approaches developed in this thesis are discussed, and propose future research direc-

tions.

Overall, this thesis aims to contribute to the ongoing efforts to enhance the under-

standing and utilization of the hubness phenomenon in generative models, particularly

in GANs. By investigating its impact on image quality, model diversity, and evalua-

tion efficiency, this work provides valuable insights that can inform future advances
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in generative AI and high-dimensional data analysis.
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Chapter 2

Literature review

2.1 Overview

This chapter begins by introducing the fundamental concepts of deep generative

models, highlighting some of the most significant models and their applications. The

primary objective of generative models is to learn the patterns and distribution of

a given dataset (training set) in order to generate new data that is similar to the

original data.

Generative models can generally be categorized into four types: Generative Adver-

sarial Networks (GANs), Likelihood-based Models, Energy-based Models and Hybrid

Models. These models allow for the generation of different images by manipulating

latent vectors, providing versatility in creative and analytical applications.

The evaluation metrics for generative models differ from those used for discriminative

models, which typically focus on accuracy with respect to labels. Instead, generative

model metrics assess the quality of generated data by measuring the distributional

distance between the generated images and real images. Key metrics include:

1)Fréchet Inception Distance (FID) and Inception Score (IS) 2)Kernel Inception

Distance (KID) 3)Precision and Recall (P&R) In addition to discussing these metrics,

this chapter will introduce the concept of hubness, a phenomenon that commonly

occurs in high-dimensional spaces [107, 135, 136, 137]. Hubness has been shown to

affect real data classification, particularly in areas such as gene expression, time-series

data, and electroencephalography.
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Figure 2.1: Overview of deep generative models, including generative adversarial networks
(GAN), energy-based models, variational autoencoder (VAE), flow-based models, and
diffusion models.

This thesis will specifically focus on the application of generative models in image

generation, discussing the most state-of-the-art and widely used models in this

domain.

2.2 Deep Generative Models

Generative models are a class of machine learning algorithms that focus on generating

new data points from an underlying distribution. These models learn to understand

the distribution of the input data and can generate new samples that are similar to

the training data. Deep generative models have achieved impressive results in image-

generation tasks. As discussed before, Major models include four types, Generative

Adversarial Networks (GANs), Likelihood-based Models, Energy-based Models, and

Hybrid Models, which will be reviewed below respectively and the structures of these

models are shown in the Fig. 2.1.

2.2.1 Generative Adversarial Networks (GANs).

GANs [42] train two neural networks concurrently: a generator network that produces

synthetic outputs, and a discriminator network that distinguishes real from synthetic
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data. The two networks are pitted against each other in a minimax adversarial

game, where the generator tries to fool the discriminator and the discriminator

tries to identify fakes. This creates a constant evolutionary pressure that enables

GANs to produce increasingly realistic outputs. A core innovation of GANs is

using the discriminator not just for evaluation, but directly in the training loop

to guide the generator. GANs can produce sharp and photorealistic images, but

are notoriously difficult to train due to mode collapse, optimization instability, and

other challenges. This has led to significant efforts to stabilize GAN training [7,

46, 97, 105, 164]. Along with these efforts, researchers have extended the synthesis

capabilities of GANs to a variety of image generation tasks, including unconditional

image synthesis [62, 65, 66, 68, 120], conditional image synthesis [18, 96, 97], image-

to-image translation [58, 103, 165, 166], image editing [1, 2], etc.

2.2.2 Energy-based Models

Different with the likelihood-based models, the core component of Energy-based

models is the energy function, E(x), where x is the input, which associate the

measured compatibility, i.e. energy value, to each configuration of the variables [81,

131]. The foundation of the early energy-based models is Hopfield Network [55, 56]

and Boltzmann Machine [3], discussing the idea of an energy function applied on model

training. The modern generative Energy-based Models have evolved to handle more

complex data and larger datasets, often using deep neural networks to parameterize

the energy function, e.g. EBM [36], DDGM [72], f -EBM [155] and GEBM [44].

Despite their potential, generative EBMs face several challenges. 1)Computational

Complexity is the primary challenge in training, because of partition function,

normalizing the energy function into the probability distribution [155, 163]. 2)

Sampling Efficiency: Generating samples from a trained EBM can be computationally

expensive due to the need for MCMC methods, which may require many iterations

to converge to low-energy states [5, 53, 100].

2.2.3 Likelihood-based Models
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Likelihood-based models are to learn the probability distribution of the training data,

p(x), where x represents a data instance (e.g., an image or a sentence). They aim

to maximize the likelihood of the observed data. Autoregressive models (ARMs),

variational autoencoders (VAEs), normalizing flows, and diffusion models are the

four main types of likelihood-based generative models.

Variational Autoencoders (VAEs).

VAEs use variational inference to approximate posterior inference, training an encoder

network to map inputs to a latent space z and a decoder network to reconstruct

the inputs from the latents [74]. Mathematicly, the VAEs should encourage the

latent distribution to possess distributions (q(z)) closed to the prior distribution

(p(z|x)); hence it can be write as KL(p(z|x)||q(z)), where KL is Kullback-Leibler(KL)

divergence. Despite their elegant theory, images generated by early VAEs are usually

blurry, which was improved by incorporating latent quantization to produce models

like VQ-VAE [142] and VQ-VAE2 [109] that can synthesize sharp and high-resolution

images.

Normalizing Flows

Normalizing flows are trained on factorized distributions [32, 102, 110], enabling

efficient and exact evaluation of both sampling and density estimation. These models

effectively transform a simple normal distribution into a complex distribution that

closely approximates the real data distribution. To enhance and optimize these mod-

els, REALNVP [33] introduced non-volume preserving transformations, improving

the compatibility with unsupervised learning tasks such as sampling and log-density

estimation. GLOW [75] further advanced this framework by applying invertible 1x1

convolutions to replace fixed permutations, thereby enhancing the model’s learning

capabilities without increasing computational time. However, training flow models

often requires managing the constraints imposed by the Jacobian determinant, ne-

cessitating deeper models to achieve desired performance levels. To address this,

Self-Normalizing Flows were proposed, reducing computational complexity while

optimizing the model to achieve comparable data likelihood values [71].
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Diffusion Models.

Diffusion models [31, 54, 127] train a neural network to reverse a stochastic diffusion

process. They start with a data sample x and apply a diffusion process that gradually

adds Gaussian noise over multiple timesteps to arrive at a noisy sample xt, and then

it is trained to predict the noise added at each timestep during the forward process,

enabling the reconstruction of the original image x from its noisy versions xt. By

training the model to denoise the diffused samples, it learns to generate high-quality

samples. Diffusion models avoid problematic generator-discriminator training and

provide exact log-likelihoods. However, sampling requires running the full diffusion

process in reverse, which is computationally expensive. Extensions like DDIM [128]

have made diffusion models more efficient. Thanks to their training stability, diffusion

models have been widely used in text-to-image synthesis and editing tasks, including

the Latent Diffusion model [112] that inspired Stable Diffusion, DALLE-2 [108],

Imagen [115], DreamBooth [114], MUSE [23].

Recent advancements in diffusion models, when combined with language models,

have introduced the concept of the prompt space, enabling text-driven synthesis and

editing of images [51, 143]. This approach demonstrates the existence of concept

subspaces within the text embedding space of diffusion models. Diffusion models

have seen widespread application across various domains, including super-resolution

(SR) [41, 82, 158], image restoration [89, 90, 149, 167], image editing [28, 51, 69, 152,

162], and image recognition [12, 24, 48, 153].

Autoregressive Models (ARMs)

Generative Autoregressive models (GARMs), grounded in Bayesian networks, gener-

ate each data point by conditioning on preceding ones, and they have been widely

applied in the generation of images, text, and video. In [140, 141], the introduction

of PixelCNN and PixelRNN demonstrated the feasibility of generating complex

natural images one pixel and one color channel at a time, necessitating thousands of

predictions per image [139]. This sequential generation process introduces significant

limitations, including slow inference and exposure bias, where errors can accumulate

over time. Furthermore, because GARMs predict the next element as a single best
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guess, they may constrain model diversity, reduce the exploration of alternative

possibilities in the output sequence, and struggle with capturing multimodal data

distributions.

2.2.4 Hybrid Models

These combine elements of different types of generative models, such as VAEs with

GANs (VAE-GANs) [80, 95, 157], Energy-based GANs [30, 104, 163], Energy-based

Diffusion [35, 40] and Diffusion with GANs [145, 150], to leverage the strengths of

both approaches.These models have become increasingly popular for their ability

to generate high-quality data and capture complex data distributions. Generative

hybrid models represent a significant advancement in the field of machine learning by

integrating the strengths of various generative approaches, demonstrating their ability

to generate high-quality, realistic data while capturing complex data distributions.

2.3 Metrics for Assessing Deep Generative Models

Metrics serve as essential tools for evaluating the performance and quality of deep

models, playing a crucial role in validating their effectiveness. This section will focus

on the metrics used specifically for assessing generative models. Unlike traditional

models, where accuracy is a primary measure, generative models are evaluated based

on the distance between the distributions of the real dataset and the generated

dataset. The discussion will cover four of the most widely used metrics: Fréchet

Inception Distance (FID), Inception Score (IS), Kernel Inception Distance (KID),

and Precision & Recall.

2.3.1 Fréchet Inception Distance (FID)

The FID metric, introduced by [52], computes the Fréchet distance between features

of the real and generated images extracted by an Inception-V3 feature extractor.

A lower FID score indicates a higher similarity between the distributions of real

and generated images, implying better image quality and diversity in the generated
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samples. Thus, the computation of FID consumes O(n) time and space as the feature

extraction takes O(n) time and space while the Fréchet distance computation also

takes linear time O(n) when using a fixed Inception-V3 network.

2.3.2 Inception Score (IS)

The IS metric, proposed by [117], uses a pre-trained Inception-v3 classification model

to compute the conditional label distribution p(y|x) for each generated image x.

IS measures two main aspects: i) the diversity of generated images, indicated by

the entropy of p(y|x), and the precision of generated images, indicated by the KL

divergence between the marginal distribution p(y) and the conditional distribution

p(y|x) for each x. A higher IS generally indicates the model can generate more

realistic and diverse images. Similar to that of FID, the computation of IS consumes

O(n) time and space as the feature extraction takes O(n) time and space while the

computation of IS metric takes linear time O(n).

The FID and IS metrics were improved by [27] to FID∞ and IS∞, which apply

Quasi-Monte Carlo integration to reduce bias and improve reliability of them for

finite samples.

2.3.3 Kernel Inception Distance (KID)

KID is also a widely used metric for generative models, computing the maximum

mean discrepancy (MMD) of the real distriution and generative distribution with

kernel function [6, 17]. MMD is an integral probability metric to compare the

difference between X and Y using Ex∼p[f(x)] and Ey∼q[f(y)] (x ∈ X, y ∈ Y ) to

denote expectations with respect to p and q, where x ∼ p indicates x has distribution

p and y ∼ q indicates y has distribution q [45]. As demonstrated in [14], the empirical

Wasserstein distance, commonly used in FID, can introduce bias in the gradients,

particularly with finite sample sizes, which negatively impacts stochastic gradient

descent and expectation estimation. Consequently, when FID is computed on small

sample sizes, this bias can become significant. To address this issue, KID utilizes

MMD by mapping inputs into Reproducing Kernel Hilbert Spaces (RKHS) with unit
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Figure 2.2: The precision and recall for traditional model and generative mod-
els.(a)(b): The traditional precision and recall computing with the labels to compute
the precision = #TP

#(TP+FP) and the recall = #TP
#(TP+FN) , where TP: True Positive, FP: False

Positive and FN: False Negative. (c)(d): The illustration of the precision and recall for
assessing generative models.
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balls, thereby ensuring that, unlike FID, KID remains unbiased even with smaller

sample sizes.

2.3.4 Precision and Recall (P&R).

Despite their effectiveness, FID and IS metrics are single scores and thus cannot

differentiate between specific failure modes, e.g., mode dropping or collapsing [88],

or provide insights into the underlying causes of poor performance. The P&R

metrics were employed to address this issue [78, 116, 124]. In short, precision

measures the percentage of generated samples that are considered high-quality and

indistinguishable from real data, indicating the quality of generated samples; recall

measures the percentage of all potential high-quality samples that the generator

was able to produce, indicating the diversity of generated samples, as shown in the

Fig. 2.2.

Specifically, [116] formulated P&R through relative probabilistic densities between

the distributions of real and generated images, which are non-trivial to estimate.

Addressing this issue, they proposed a practical algorithm based on the maximal

achievable values of an alternative definition of P&R. Their method was generalized

by [124] to accommodate arbitrary distributions and link P&R to type I and type

II errors of likelihood ratio classifiers. Observing that the P&R implementation

proposed by [116] relies on relative densities and thus cannot correctly identify mode

collapse/truncation, [78] propose to model the real and generated image manifolds

directly using the k-nearest neighbors of samples, which is the state-of-the-art

(SOTA) version of P&R for assessing generative models. Although more accurate,

their method is computationally expensive as k-NN consumes O(n2) time and space,

making their metrics infeasible to compute using commodity hardware on the large

datasets used by modern deep generative models.

2.4 Hubness Phenomenon

Hubness is a widely recognized phenomenon of nearest neighbors search in high-

dimensional spaces that arises from the well-known “curse of dimensionality” [107].
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Figure 2.3: Hubness Phenomenon in random samplings (x ⊆ Rd). Nk(x) is the number
of vectors from x that have x ∈ x included in their list of k nearest neighbors [107], also
called hubs value, and the more detail you can see in Fig 2.4 and in this figure, we assume
the k to be 3. In the low-dimension samplings, (a) and (b), the distribution of the Nk(x) is
not obviously skewed. In the high-dimension sampings, (c) and (d), the distribution skews
to the right and there are some example with large Nk(x)
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m: hubs

K- NN

m = 7

m=4

m: hubs value

Figure 2.4: The example to explain the hubness phenomenon, we first randomly sample n
latents from the latent distribution and perform k-nearest neighbour on them. Then, we
compute the hubs value m of a given latent as how many times it is among the k-nearest
neighbours of other latents. For example, the hubs value of the red latent is 4 and that of
the green point is 7.

It pertains to the inherent characteristics of data distributions in high-dimensional

spaces and reveals a counter-intuitive fact: even with uniform distributions, high

dimensionality gives rise to the emergence of “popular” nearest neighbors [98, 99, 107],

as Fig 2.3 shown, i.e., points that are significantly more likely to be among the

k-nearest neighbors of other points within a given sample set, denoted as hubs points.

In other words, the hub points are those that are much more likely to be among

the k-nearest neighbours of other points in a sample set. This fact poses challenges

for algorithms that rely on nearest neighbor search. Addressing such challenges,

hubness-aware methods were proposed and applied in various areas, e.g. gene

expression classification [20, 21], time-series classification [135], electroencephalograph

classification [22] and few/zero-shot learning [34, 122, 160].

2.4.1 Hubness Reduction Method

Hubness phenomenon is described as a kind of the impact of the notorious “curse of

dimensionality”, appearing disproportionately often as nearest neighbors, skewing

learning algorithms and causing performance issues in tasks like classification or
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Figure 2.5: The illustration of the truncation trick which truncates randomly sampled
latents to their mean with a scaling parameter ϕ. The smaller ϕ will make the latents
closer to the mean and get the higher quality of generative images; in versa, the latent will
far away to the center and the generative quality will decrease.

clustering. Several methods have been proposed to mitigate the effects of hubness,

e.g.Mutual Proximity (MP) measure, Local Scaling (LS) measure, Shared-Neighbors

(SN) measures, Two dissimilarity (DSL) measures, Hubness-aware k-Nearest Neighbor

(H-kNN) and Z-Score (ZS) Normalization. The main idea to mitigate the hubness, it

is to balance the two points (x, y) distance dx,y and the related surrounding points,

which can flatten the the density gradient which is expressed as a crucial reason to

cause the hubness [49].

However, instead of mitigation, recent works have demonstrated that depending on

the task, the hubness phenomenon can be very useful. This thesis will show that the

hubness phenomenon can be used as a prior to identify high-quality latents in GAN

latent spaces. Following the same philosophy, this work introduces a new method

to improve the computational efficiency of P&R metrics and the diversity of the

GAN-series models’ manifold by incorporating hubness-aware sampling.

2.5 GAN Latent Sampling.
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To avoid the issue of unstable image generation without curation, “cherry-picking”,

and obtain high-quality synthesized images, three workaround solutions were pro-

posed: i) the truncation trick [18, 66, 93] as shown in Fig. 2.5 ii) Importance

Sampling [19, 84] and iii) Interpolating in Latent Space [147]. Between them, the

first approach is a naive solution as one can always “cherry-pick” high-quality ones

from a set of synthesized images in an a posteriori manner with visual inspection.

Obviously, this method is inefficient as it requires intensive human labor and is

not applicable for large-scale image synthesis tasks. Unlike “cherry-picking”, the

truncation trick is an automatic method that can synthesize high-quality images

by normalizing sampled latents to be close to their mean. However, it is a purely

empirical method with few insights. Importance sampling is employed to enhance

the efficiency of the sampling process, particularly in regions of the latent space that

are more likely to yield high-quality samples. Additionally, interpolating between

points in the latent space facilitates the generation of smooth transitions between

samples, which is valuable for investigating the continuity and underlying structure

of the latent space. In this thesis, it proposes a novel latent sampling method for

GANs based on the observation of hubness phenomenon in their high dimensional

latent spaces, which is efficient with solid theoretical insights and also shows that

the truncation trick is a naive approximation of our method due to the “central

clustering effect” of hub latents.

2.6 Fairness in Generative Models

Fairness in training is a widely studied topic in classification tasks, aiming to reduce

biases in input data, ensure independent decision-making, and promote equitable pre-

dictions across different groups, even when those groups exhibit distinct characteristics

or historical disparities. In contrast, the objective of fairness in generative models

is to achieve balanced training, also known as equal representation, which refers to

generating samples that follow a uniform distribution across categories [118, 134, 151].

Recent research suggests that the fairness of GAN models can be enhanced by pre-

learning the feature distribution through approaches such as weak supervision and
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transfer learning [25, 134].

Meanwhile, fairness research is also crucial in text-to-image diffusion models,

where the objective is to ensure that outputs neither favor nor exclude specific

groups based on various attributes. In [38], a fair diffusion model is introduced

by integrating fair instructions and fair guidance with a text encoder to promote

equitable generation. Furthermore, methods for optimizing inclusive prompts and

cross-attention maps are proposed in [134, 148, 159] to mitigate dataset bias and

improve fairness in diffusion models. To address training set bias, weakly supervised

learning is employed through density ratio estimation. However, this approach is

prone to estimation errors due to the density-chasm problem. Recent work [73]

proposes a time-dependent density ratio estimation method to alleviate this issue.

Additionally, [132] introduces a fairness metric for generative models using statis-

tical methods, offering a quantitative framework for evaluating fairness in generated

outputs. In recent advancements, the AI-Face benchmark [87] has been developed to

facilitate the training, evaluation, and analysis of fairness in generative face models.

2.7 Summary

The literature review provides a comprehensive overview of deep generative models,

focusing on their theory, key types, applications, and the metrics used for their

evaluation. It begins by introducing the concept of generative models, which are

designed to learn patterns and distributions from datasets to generate new, similar

data.

The review categorizes generative models into four main types: Generative Adversarial

Networks (GANs), Likelihood-based Models, Energy-based Models, and Hybrid

Models. GANs involve a generator and a discriminator in a competitive training

process, which has proven effective in producing high-quality, realistic images, despite

challenges like mode collapse and optimization instability. Likelihood-based models,

including Autoregressive Models, Variational Autoencoders (VAEs), Normalizing

Flows, and Diffusion Models, offer different approaches to generating data, each

with its own strengths and limitations in terms of complexity, training stability, and
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output quality. Energy-based models, which utilize an energy function to measure the

compatibility of different data configurations, are also discussed. These models, while

promising, face challenges such as computational complexity and sampling efficiency.

Hybrid models, which combine elements of different generative approaches, represent

an advanced strategy to leverage the strengths of multiple methods, enhancing the

quality and diversity of generated data.

The review also touches on the “hubness” phenomenon in high-dimensional spaces,

which impacts data classification and is a focus of this thesis in relation to GANs.

In addition, it covers key datasets used in training deep generative models, such as

LSUN, AFHQ, CelebA-HQ and FFHQ.

Finally, the review discusses metrics for assessing the quality of generative models.

Unlike traditional discrimination models that are evaluated based on accuracy,

generative models are assessed by measuring the distributional distance between

generated and real data. Metrics such as Fréchet Inception Distance (FID), Inception

Score (IS), Kernel Inception Distance (KID), and Precision & Recall are highlighted

as the most popular methods for evaluating the performance of deep generative

models. These tools are crucial for ensuring the effectiveness of the models and

guiding further improvements.
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Chapter 3

Hubness Sampling for High-Quality

GAN Latent Sampling

Despite the extensive studies on Generative Adversarial Networks (GANs), how

to reliably sample high-quality images from their latent spaces remains an under-

explored topic. In this section, we propose a novel GAN latent sampling method by

exploring and exploiting the hubness priors of GAN latent distributions. Our key

insight is that the high dimensionality of the GAN latent space will inevitably lead to

the emergence of hub latents that usually have much larger sampling densities than

other latents in the latent space. As a result, these hub latents are better trained and

thus contribute more to the synthesis of high-quality images. Unlike the a posteriori

“cherry-picking”, our method is highly efficient as it is an a priori method that

identifies high-quality latents before the synthesis of images. Furthermore, we show

that the well-known but purely empirical truncation trick is a naive approximation

of the central clustering effect of hub latents, which not only uncovers the rationale

of the truncation trick, but also indicates the superiority and fundamentality of

our method. Extensive experimental results demonstrate the effectiveness of the

proposed method.
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(a) Randomly Sampled 
Latents

(c) Hub Latents

(b) Truncated Latents

Latents
Mean

-NN

Figure 3.1: Our method vs. random latent sampling and the truncation trick [18, 66, 93].
All images are generated using StyleGAN2 [67]. (a) Random latent sampling yields
both high-quality (green box) and low-quality (red box) images; (b) The truncation trick
improves the quality of synthesized images by empirically truncating randomly sampled
latents according to a scaling parameter ψ (e.g. ψ = 0.7), which is a naive approximation
of the “central clustering effect” of our hub latents; (c) Our method identifies high-quality
latents as the hub latents that are more likely to be among the k-nearest neighbors of other
latents [107]. The blue and orange rings illustrate the high-dimensional Gaussian (latent)
distribution [94] and their truncated version respectively.

3.1 Introduction

Generative adversarial networks (GANs) are a type of deep generative models

that have revolutionized a variety of applications in computer vision and computer

graphics, e.g. image synthesis [66, 103, 166], image editing [1, 2, 138], image-to-image

translation [58, 111, 165]. Among them, novel image synthesis via random latent

sampling is the most fundamental. It not only generates novel instances from the

data distribution, but also measures how close the learned distribution is to the data

distribution. Through the lens of the quality of synthesized images, we have witnessed

significant progress in GANs over the past several years. Specifically, starting from

the groundbreaking vanilla GAN [43], DCGAN [106] laid the foundation for GAN

architectures as deep convolutional neural networks; ProGAN [63] showed that GANs
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can generate high-quality images at high resolutions; BigGAN [18] addressed the

problem of class-conditional image synthesis; the StyleGAN series [64, 66, 67] further

boosted the quality and controllability of synthesized images with their style-based

generator architectures and several novel techniques.

Nevertheless, with such improvements, the quality variance among images gen-

erated by randomly sampled latents has become increasingly striking (Fig. 3.1).

Without curation, the quality of GAN synthesized images can occasionally be very

low, which hinders the deployment of GANs in real-world applications. As a naive

solution, “cherry-picking” is commonly used to select high-quality images from those

synthesized with randomly sampled latents in an a posteriori manner. However, in the

absence of reliable quantitative measures of the quality of a single GAN-synthesized

image1, existing “cherry-picking” methods are barely manual, thereby being tedious

and unscalable. Addressing this issue, the well-known “truncation trick” [18, 66, 93]

was proposed, which “truncates” randomly sampled GAN latents towards their mean

based on the observation that the images synthesized from close-to-mean latents

are usually of higher quality. Although effective, the truncation trick is a purely

empirical “trick” that brings few new insights to the community.

In this chapter, we propose a novel latent sampling method for GANs by exploring

and exploiting the hubness phenomenon [107] in their latent spaces, which facilitates

their synthesis of high-quality images in an a priori manner. Specifically, our key

insights include: i) the high dimensionality of the GAN latent space will inevitably

lead to the emergence of hub latents that are much more likely to be among the

nearest neighbors of other latents in the latent space, i.e. the hubness phenomenon;

ii) in general, the quality of a GAN synthesized image is positively correlated with

the hub value of its corresponding latent, i.e. the number of times a latent becomes

a k-nearest neighbor (k-NN) of other latents in a given latent sample set. We

believe that this positive correlation originates from the well-known close relationship

between k-NN and density estimation. In other words, a higher hub value usually

indicates a higher sampling density, which has a positive effect on the training and

1Existing quantitative measures like FID and Inception scores are all statistical ones that are
only applicable to distributions.
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thus the quality of synthesized images. Therefore, we formulate the above insights

as the proposed hubness priors and propose a corresponding method to sample

high-quality GAN latents that yield high-quality synthesized images. Compared to

“cherry-picking”, our method is highly efficient as it is a priori (i.e. our high-quality

latents are determined before the synthesis of images) and automatic (i.e. with little

human-intervention). Furthermore, we show that the well-known truncation trick

is a naive approximation of the “central clustering effect” of our hub latents [107].

This not only uncovers the rationale of the truncation trick, but also indicates

that our method is superior and more fundamental. Extensive experimental results

demonstrate the effectiveness of the proposed method.

In summary, our contributions include:

• We uncover the existence of hubness phenomenon in the GAN latent space,

which has a significant correlation with the quality of GAN synthesized images,

i.e. the proposed hubness priors.

• We propose a novel GAN latent sampling algorithm that identifies high-quality

hub latents based on our hubness priors, which allows efficient and high-quality

image synthesis for GANs.

• We show that the well-known truncation trick is a naive approximation of

the “central clustering effect” of our hub latents. This not only uncovers the

rationale of the truncation trick, but also indicates that our method is superior

and more fundamental.

3.2 Hubness Priors for GAN Latent Sampling

In this section, we first explore the hubness of GAN latents (Section 3.2.1) and then

exploit the insights obtained as priors to develop a novel algorithm for the sampling

of high-quality latents for GANs (Section 3.2.2).
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(a) Baseline (b) Our method (c) LQ (Alg. 2)

Figure 3.4: (a) and (b): Effectiveness of our method (hubness priors) against the baseline
(random latent sampling). We use n = 10000, k = 5 and hub value threshold t = 50 in
our method. The StyleGAN2 [67] images generated using our method are almost always
of high quality while those generated using the baseline contain both high-quality and
low-quality (red boxes) results. (c): Low-quality (LQ) StyleGAN2 [67] images generated
using the reversed version of our method, i.e. Algorithm 2, where n = 10000, k = 5 and
hub value threshold tlq = 1. Almost all images are of low quality.

3.2.1 Exploring Hubness of GAN Latents

Inspired by previous studies on the hubness phenomenon of data distributions in

high dimensional space [107], let Z

subseteqRd be a d-dimensional GAN latent space, S = {z1, z2, ..., zn}, zi ∈ Z be a

set of latents sampled from a d-dimensional standard normal distribution N (0, I), k

be the parameter of the k-nearest neighbor algorithm, we define m-hub latents as:

Definition 3.2.1. Latent code zi (1 ≤ i ≤ n) is an m-hub latent if zi is among the

k-nearest neighbors of m (m < n) sampled latents in S, where m is the hub value of

zi.

With the above definition, we explore the hubness of GAN latents by investigating

the distributions of m-hub latents in the latent spaces of state-of-the-art GANs [18,

63, 64, 66, 67]. As Fig. 3.2 and 3.3 shows, it can be observed that the distributions

of m-hub latents are highly tailed to the right. Thus, we argue that the samples

of GAN latents are not uniformly distributed and that a small portion of them are

much more likely to be close to other latents in the latent space, i.e., with large

m. Therefore, these latents tend to have larger sampling densities and are thus

better trained than other latents during GAN training. Based on the heuristics that
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well-trained latents are more likely to yield high-quality images, we conjecture that

the hubness phenomenon can be used as priors to identify GAN latents that generate

high-quality results:

Conjecture 3.2.2. (Hubness Priors) The quality of GAN synthesized images and

the hub values m of their corresponding latents are positively correlated.

Please see Section 3.3.2 for an empirical justification of our conjecture.

Algorithm 1 GAN Latent Sampling with Hubness Priors

Input: a set of GAN latents S = {z1, z2, ..., zn} randomly sampled from a standard
normal distribution N (0, I), a hyper-parameter k, a threshold t
Output: Shq

# Step 1
m1,2,...,n ← 0
for i← 1 to n do
{idx1, idx2, ...idxk} ← k-NN(zi)
for j ← 1 to k do
midxj ← midxj + 1

end for
end for
# Step 2
Shq ← ∅
for i← 1 to n do
if mi ≥ t then
Shq ← Shq ∪ zi

end if
end for

Remark on Random Latent Sampling Previously, it was widely believed that

GAN latents are unbiased as they are sampled from a simple but well-behaved noise

distribution, i.e., the standard normal distribution N (0, I). In high-dimensional

spaces, the concentration of measure phenomenon causes the mass of this distribution

to concentrate on a thin hyperspherical shell [94]. Since the distribution is isotropic,

this geometry implies that all sampled latents effectively approximate a uniform

distribution across the shell’s surface; they possess similar norms2 and should theo-

retically contribute to the sampling process in an equivalent manner. While in this

chapter, we counter this popular belief by showing that GAN latents are actually

2In latest implementations [64, 66, 67], the latents are explicitly normalized to be of the same
norm.
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biased from the observation of hubness phenomenon in GAN latent spaces. Among

all latents, the hub ones tend to have higher sampling densities and are thus better

trained by GANs, thereby generating higher quality images.

3.2.2 Exploiting Hubness Priors for High-quality GAN La-

tent Sampling

As Conjecture 3.2.2 states, the identification of high-quality GAN latents relies on

their hub values m. Thus, given a set of GAN latents S = {z1, z2, ..., zn} randomly

sampled from a standard normal distribution N (0, I), a hyper-parameter k, and a

threshold t, we utilize the proposed hubness priors and design a simple two-step

GAN latent sampling algorithm: First, we compute the hub value mi for each latent

zi ∈ S using a standard k-NN (k-nearest neighbor) algorithm; Second, we identify

zi as a high-quality latent if mi is larger than a user-defined threshold t, and add

zi into a set Shq. The set Shq is the output of our algorithm, which contains all the

high-quality latents identified. Algorithm 1 shows the pseudocode of our algorithm.

Note that our algorithm is fundamental and widely applicable to different types

of GANs as long as they sample latents from a standard normal distribution, e.g.

conditional GANs [18].

Relationship to Truncation Trick. To our knowledge, the truncation trick

[18, 66, 93] is the only a priori method to sample high-quality GAN latents before our

work, which is based on a heuristic that high-quality latents are those close to their

mean. However, such a heuristic is purely empirical with few insights. Surprisingly,

the proposed hubness priors have revealed the rationale of the truncation trick: the

hub latents obtained by our method tend to cluster towards their mean [107]. Thus,

we argue that the well-known truncation trick is a naive approximation of our method

as it only captures near-mean hub latents but overlooks those that are relatively far

from the mean. Please see Section 3.3.6 for an empirical justification of our claims.
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(a) ProGAN-HQ (b) ProGAN-LQ

(c) BigGAN-HQ (d) BigGAN-LQ

(e) StyleGAN3-HQ (f) StyleGAN3-LQ

Figure 3.5: Performance of our method on ProGAN [63], BigGAN [18] and StyleGAN3 [64].
It can be observed that our method works well on all GAN architectures. (a) and (b), (c)
and (d), (e) and (f) are images synthesized using high-quality (HQ) and low-quality (LQ)
latents obtained by our method with ProGAN, BigGAN and StyleGAN3 respectively. We
use Algorithm 1 to obtain HQ latents and Algorithm 2 to obtain LQ latents respectively.
We use n = 10000, k = 5, t = 50 and tlq = 1.
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(a) StyleGAN-Car-HQ (b) StyleGAN-Car-LQ

(c) StyleGAN-Cat-HQ (d) StyleGAN-Cat-LQ

(e) StyleGAN-Horse-HQ (f) StyleGAN-Horse-LQ

Figure 3.6: Performance of our method on StyleGAN2 pretrained on different image
domains. It can be observed that our method works well on all domains. (a) and (b),
(c) and (d) are images synthesized from high-quality (HQ) and low-quality (LQ) latents
obtained by our method using a StyleGAN2 pretrained on the cars domain and the cats
domain, respectively. We use Algorithm 1 to obtain HQ latents and Algorithm 2 to obtain
LQ latents respectively. We use n = 10000, k = 5, t = 50 and tlq = 1.



34 3.3 Experimental Results

(a) StyleGAN-Z-HQ (b) StyleGAN-Z-LQ

Figure 3.7: Performance of our method on StyleGAN2’s Z-space. We use n = 10000, k = 5,
t = 50 and tlq = 1.

3.3 Experimental Results

3.3.1 Experimental Setup

Due to its a priori nature, our method allows for the sampling of high-quality GAN

latents before the synthesis of images. Thus, for the sampling of StyleGAN’s Z-space

and other GANs’ latents, we use an Intel(R) Core(TM) i7-10875H CPU; for the

sampling of StyleGAN’s W -space latents, we use a GeForce RTX 2080 Ti GPU as

the computation involves passing Z-space latents through a fully-connected mapping

network [64, 66, 67]. For the synthesis of high-quality images, we use publicly-

released Github codes of StyleGANs3 [64, 66, 67], BigGAN4 [18], ProGAN5 [63] with

a GeForce RTX 2080 Ti GPU. Unless specified, all results are generated with the

W -space of StyleGAN2 [67]. All quantitative results are averaged over three runs.

Note that JPEG is applied to compress the synthesized images to meet

the size limit.

3StyleGAN2,3: https://github.com/NVlabs/stylegan2, https://github.com/NVlabs/

stylegan3.
4https://github.com/ajbrock/BigGAN-PyTorch
5https://github.com/tkarras/progressive_growing_of_gans

https://github.com/NVlabs/stylegan2
https://github.com/NVlabs/stylegan3
https://github.com/NVlabs/stylegan3
https://github.com/ajbrock/BigGAN-PyTorch
https://github.com/tkarras/progressive_growing_of_gans


3.3 Experimental Results 35

3.3.2 Effectiveness of Hubs Priors

As Figs. 3.4 (a) and (b) show, we compare the images generated by StyleGAN2 [67]

using our method with those generated using the baseline, i.e. random latent

sampling. It can be observed that our method consistently yields high-quality

images while the baseline generates both high-quality and low-quality images, which

demonstrates the effectiveness of the proposed hubness priors. Quantitatively, we

observed better FID scores of images generated using our method than those by the

baseline (Table 3.3).

Low-quality Latents. As Conjecture 3.2.2 implies, the proposed hubness priors

can also be used to identify low-quality latents that yield unrealistic synthesized

images. Thus, as a complement to high-quality latent sampling, we implement low-

quality GAN latent sampling by reversing the thresholding scheme in Algorithm 1

to mi ≤ tlq and have Algorithm 2. The pseudocode of our low-quality GAN latent

sampling algorithm (Algorithm 2) is a simple inverse of Algorithm 1, using a different

thresholding scheme. Generative adversarial networks (GANs) are a type of deep

generative models that have revolutionized a variety of applications in computer vision

and computer graphics, e.g. image synthesis [66, 103, 166], image editing [1, 2, 138],

image-to-image translation [58, 111, 165]. As Fig. 3.4 (c) shows, almost all synthesized

images are of low quality, which justifies the effectiveness of the proposed hubness

priors.

In fact, our hubness priors can be used to sort all sampled latents into a hubness

spectrum according to their hub values m in Fig. 3.8, where the quality of images

changes from high to low from left to right with decreasing m.

3.3.3 Versatility

To demonstrate the versatility of our method, we show that it generalizes across

different GAN architectures, different image domains and different latent spaces of

the StyleGAN series [64, 66, 67].

Different GAN Architectures. As Fig. 3.5 shows, to justify that our method

works across different GAN architectures, we show that our method also works on
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Algorithm 2 Low-quality GAN Latent Sampling with Hubness Priors

Input: a set of GAN latents S = {z1, z2, ..., zn} sampled from a standard normal
distribution N (0, I), a hyper-parameter k, a threshold tlq
Output: Slq

# Step 1
m1,2,...,n ← 0
for i← 1 to n do
{idx1, idx2, ...idxk} ← k-NN(zi)
for j ← 1 to k do
midxj ← midxj + 1

end for
end for
# Step 2
Slq ← ∅
for i← 1 to n do
if mi ≤ tlq then
Slq ← Slq ∪ zi

end if
end for

three other state-of-the-art GAN architectures, i.e. ProGAN [63], BigGAN [18], and

the recent StyleGAN3 [64].

Different Image Domains. As Fig. 3.6 shows, to justify that our method works

across different image domains, we show that our method also works on StyleGAN2

models pretrained on other images domains6: cars, cats and horses.

StyleGAN’s Z-space. As Fig. 3.7 shows, our method also works for the Z-space

of StyleGAN2 [67]. However, we observed that the quality variance of synthesized

images is slightly lower when using the W -space. Thus, we propose to use the

W -space for StyleGAN2.

3.3.4 Justification of Algorithmic Choices

Threshold t. In our method, given a fixed latent sample set S, the threshold t

determines the trade-off7 between image quality and number of output latents: the

larger t, the higher image quality, but the fewer output images. However, as Fig. 3.9

6All pre-trained networks are available at: https://github.com/NVlabs/stylegan2.
7Note that this trade-off only applies to a fixed S. Our method can generate an infinite number

of high-quality samples by simply using multiple latent sets S1, S2, ..., SN or a larger S.

https://github.com/NVlabs/stylegan2
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Table 3.1: FID scores of StyleGAN2 images synthesized using our method with different
choices of k, t and n, whose default values are k = 5, t = 50 and n = 10000. We sample
2,000 images to compute the FIDs, whose rationale is discussed in Sec. 3.3.6.

k FID↓ t FID↓ n FID↓

3 22.793 60 20.749 10000 22.782
5 22.782 50 22.782 20000 22.021
7 22.720 40 24.517 30000 21.679

10 22.560 35 25.412 40000 19.124

and Table 3.1 show, we observed that the image quality remains high for various

choices of t. Since the image quality is not sensitive to the choice of t in a relatively

large range, we suggest using t = 50 as the default value for the case when n = 10000,

k = 5. Note that we can easily extend our algorithm to output a user-specified

number of images (denoted as n′) by using a revised scheme: if there are enough

images in S, we first sort all images in the descending order of hub value m, and

keep the top n′ latents; otherwise, we successively draw more latent sets Si and keep

all m > t images from them until we get n′ images.

Hyper-parameter k. We tested the performance of our algorithm with various

choices of k = 1, 3, 5, 7, 10 in the k-NN algorithm. Apart from the case when no hub

latents can be found (k = 1), we show the results of k = 3, 5, 7, 10 in Fig. 3.10 and

Table 3.1. It can be observed that the image quality is not sensitive to the choice of

k. Nevertheless, we noticed that using a larger k yields more output hub latents for

a given latent set S and threshold t, but at the cost of slightly longer computation

(Sec. 3.3.5). To achieve a balance, we suggest using k = 5 as a default value when

n = 10000, t = 50.

Size of Latent Sample Set n. As Table 3.1 shows, we also test the performance

of the proposed method against various sizes n = 10000, 20000, 30000, 40000 of latent

sample set S and Fig. 3.1 for qualitative results. Similar to above, we observed that

(i) although the FID scores get slightly better with increasing n, the image quality is

not sensitive to the choice of n; (ii) using a larger n yields more output hub latents

but at the cost of longer computation (Sec. 3.3.5). To achieve a balance, we suggest

using n = 10000 as a default value when k = 5, t = 50.
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Table 3.2: Running time of our method using the StyleGAN2 W -space with different
choices of k and n. The default parameter values are k = 5, t = 50 and n = 10000.

k Time(s) n Time(s)

3 163s 10000 167s
5 167s 20000 647s
7 176s 30000 1272s

10 185s 40000 2554s

3.3.5 Running Time

Table 3.2 shows the running time of our method with different choices of k and n. It

can be observed that the running time increases mildly with k but significantly with

n.

3.3.6 Relationship with Truncation Trick

The truncation trick [18, 66, 93] has been widely used in state-of-the-art GANs.

Specifically, it truncates randomly sampled latents w to w′ = w̄ + ψ(w − w̄) to

obtain high-quality latents that yield high-quality synthesized images, where w̄ is the

mean of a large number of randomly sampled latents, ψ is a scaling parameter. As

discussed in Section 3.2.2, we argue that it is a naive approximation of our method.

Distance to the Means of Hub and All Latents. To justify our claim, we first

investigate the distances of our hub latents to their mean and their distances to the

mean of all sampled latents. As Fig. 3.12 shows, it can be observed that: i) Our

hub latents are closer to both the hub mean and the all latent mean than randomly

sampled latents, which justifies the “central clustering effect” of our hub latents [107].

ii) Surprisingly, the distances of most hub latents are around 6.0 to 7.0 for both cases,

which is roughly the same as the distances of randomly sampled latents truncated

with a parameter ψ = 0.7, i.e. the StyleGAN-recommended [66] parameter value

for the truncation trick. However, StyleGAN obtained the value ψ = 0.7 empirically

via try-and-error while we obtain it as a byproduct of our method, which justifies

the superiority and fundamentality of our approach. iii) A small portion of our hub

latents are of larger distances (e.g. around 7.5 and 8.0) to the means, which will be

overlooked by the truncation trick with ψ = 0.7. In addition, applying the truncation
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Table 3.3: Comparison of FID scores of StyleGAN2 synthesized images using our method
and the truncation trick. FFHQ-1 and FFHQ-2: real images sampled from the FFHQ
dataset [66]; Hubs (50): our method with t = 50; Truncated (0.7): truncation trick with
ψ = 0.7; Random: random sampling. We sample 2000 latents/images for all methods
compared. The FID scores between i) FFHQ-1 and FFHQ-2; and ii) Random and FFHQ-
1,FFHQ-2 are used as baselines. Dist2Mean: distances of sampled latents to the all latent
mean.

Methods
FID↓

Dist2Mean
FFHQ-1 FFHQ-2

FFHQ-2 16.505 —- —-
Hubs (50) 21.955 23.609 6.247
Truncated (0.7) 25.097 25.127 6.893
Random 35.455 35.598 9.847

trick with ψ = 0.8 are prone to get low-quality latents that yield low-quality images

while our “distant” hub latents are still of high quality (Fig. 3.13). This further

justifies the superiority of our method against the truncation trick.

The truncation trick is an effective but naive geometric solution that exploits the

high-dimensional structure revealed by the hubness phenomenon: the trick works

because it acts as a rigid, distance-based filter that shrinks the latent distribution

toward the mean (w′ = w̄ + ψ(w − w̄)), thereby successfully isolating the desirable,

high-quality non-hub samples which exhibit the central clustering effect. This is

necessary because the statistically problematic, low-quality samples are the hub

samples that are inevitably clustered at the periphery of the high-dimensional space

due to the concentration of measure effect. By cutting off the peripheral region based

on an empirically derived threshold like ψ = 0.7, the truncation trick effectively

eliminates these artifact-prone hub latents , although it remains limited as a pure

geometric heuristic, imperfectly discarding some high-quality samples that naturally

reside just beyond that arbitrary cutoff.

FID Scores. As Table 3.3 shows, we also justify the superiority of our method by

comparing the FID scores [52] of images generated by StyleGAN2 using both the

truncation trick, ψ = 0.7 [66] and our method. Specifically, we compute the FID

scores between images generated by i) real images sampled from the FFHQ datasets,

i.e. FFHQ-1 and FFHQ-2 in Table 3.3; ii) our hub latents and FFHQ-1, FFHQ-2; iii)

truncated latents (ψ = 0.7) and FFHQ-1, FFHQ-2; iv) randomly sampled latents and
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FFHQ-1, FFHQ-2. It can be observed that i) both our method and the truncation

trick outperform random sampling; ii) our method achieves better FID scores than

the truncation trick. Note that we intentionally used a small number of images

(i.e. 2,000) to compute FID to avoid covering the entire distribution and thus suffer

less from the restriction of latent spaces. In comparison with the results in [60]

and the bias-free FID∞ [26] computed with 10K images (Table 3.4), our FID scores

of “Truncated (0.7)” images are better than “Random”, which is consistent with

human perception. Note that our method outperforms Truncated (0.7) in both cases.

Examples of StyleGAN2 synthesized images after the truncation trick (ψ = 0.7) are

shown in Fig. 3.15 Nevertheless, even using a small number of images, FID may still

not be a good evaluation metric for our task. Therefore, we resort to the precision

and recall metrics [79] that make more sense.

Table 3.4: FID∞ scores [26] computed with 10K images, which are ineffective as they
capture the entire distribution and thus suffer from the restriction of latent spaces. Red:
random sampling has the best score, which contradicts human perception as the images
sampled with it are of the lowest quality.

Method Hubs (50) Truncated (0.7) Random

FID∞ ↓ 15.398 15.761 2.923

Precision and Recall [79]. As Table 3.5 shows, our method achieves a high

precision comparable to Truncated (0.3) which sacrifices the synthesis diversity (i.e.

low recall) while retaining a very high recall comparable to Random which includes

many low-quality results (i.e. low precision). This further justifies the superiority of

our method.

Table 3.5: Comparison of precision and recall [79] of StyleGAN2 synthesized images using
our method and the truncation trick.

Method Precision↑ Recall↑

Hubs (50) 0.890 0.324
Truncated (0.3) 0.892 0.015
Truncated (0.7) 0.811 0.223
Random 0.720 0.393

As Table 3.6 shows, our method outperforms Truncated (0.7) with the BigGAN [18]
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architecture pretrained on the 1000-class ImageNet ILSVRC 2012 dataset on precision

and recall [79], which further justifies the superiority of our method.

Table 3.6: Quantitative results with BigGAN (ImageNet).

Method Precision↑ Recall↑

Hubs (50) 0.147 0.311
Truncated (0.7) 0.131 0.264

3.3.7 Impact on Class Balance

We further investigate how our method affects the class balance of unconditional

GANs pre-trained on multi-class datasets. As Fig. 3.14 shows, we evaluate the class

balance of a StyleGAN2 model pretrained on the CIFAR10 dataset with i) random

sampling8 (i.e. Random), ii) truncation trick (ψ = 0.7) and iii) our hubness-based

sampling method. Specifically, we sample 50,000 images each and use a pretrained

CIFAR10 classifier9 to estimate their class distributions. Note that although a “larger”

difference can be observed visually, our method actually preserves the class balance

better as it has a smaller Wasserstein distance to the distribution of Random than

the truncation trick. In addition, as Table 3.7 shows, our method achieves a better

Inception Score [117] that favours balanced and high-confidence classifications, which

further justifies the superiority of our method in preserving class balance.

Table 3.7: Evaluation of class balance with Inception Scores (IS) [117] of StyleGAN2
pretrained on the CIFAR10 dataset using our hubness-based sampling (t = 50), the
truncation trick (ψ = 0.7), and the random sampling methods.

Method Hubs (50) Truncated (0.7) Random

IS 6.212 6.059 7.080

8https://github.com/POSTECH-CVLab/PyTorch-StudioGAN
9https://github.com/open-mmlab/mmclassification, ResNet50

https://github.com/POSTECH-CVLab/PyTorch-StudioGAN
https://github.com/open-mmlab/mmclassification
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3.4 Limitation and Future Work

Although our method allows for the sampling of high-quality latents, the quality

of synthesized images is bounded by the performance of the pre-trained GANs

used to synthesize them. Also, we observed that the proposed hubness priors may

overlook some relatively high-quality images with small hub values m (Fig. 3.16). We

conjecture that the reason might be that the limited sizes of latent sample sets (e.g.

n = 10000, 20000, ...) cannot capture all hub latents. This is partially verified by our

experiment on the choice of n. However, it is difficult to test larger n due to the

O(n2) time complexity to compute the hub values m for all points in a latent sample

set. We hope to investigate this issue in future work. We also hope to apply our

insights on the hubness phenomenon in GAN latent space to improve the training of

GANs and make GANs unbiased for all latents. The acceleration of our algorithm is

also a very interesting direction for future work.

3.5 Conclusions

In this chapter, we address the quality variance of GAN synthesized images by

investigating the sampling of GAN latents. Specifically, we first show that GAN

latents are not uniformly distributed in the latent space due to the hubness phe-

nomenon of data distributions in high dimensional space. In addition, there exist hub

latents that are much more likely to be nearest neighbors of others and contribute

more to the synthesis of high-quality images. Then, we formulate the above as the

hubness priors and propose a novel GAN latent sampling algorithm, which allows

for efficient and high-quality image synthesis for GANs. Furthermore, we show that

the well-known truncation trick is a naive approximation of our method that utilizes

the “central clustering effect” of hub latents, which not only uncovers the rationale

of the truncation trick, but also indicates that our method is superior and more

fundamental.
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(a) t = 60 (b) t = 50

(c) t = 40 (d) t = 35

Figure 3.9: Performance of our method with different choices of threshold t = 60, 50, 40, 35.
We use n = 10000, k = 5.
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(a) k = 3 (b) k = 5

(c) k = 7 (d) k = 10

Figure 3.10: Performance of our method with different choices of hyper-parameter k =
3, 5, 7, 10. We use t = 50, n = 10000.
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(a) n = 20000 (b) n = 30000 (c) n = 40000

Figure 3.11: Performance of our method with different sizes n = 20000, 30000, 40000 of
sample set S. We use k = 5, t = 50.
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Figure 3.12: The distances of our hub latents to (a) the mean of all sampled latents and
(b) the mean of hub latents. Random: the average distance of randomly sampled latents;
Truncated (ψ0): the average distance of latents after truncation trick (ψ = ψ0).

(a) Hub latents (distant)

(b) Truncated latents (ψ = 0.8)
Figure 3.13: StyleGAN2 images synthesized from (a) distant hub latents far from their
mean; (b) truncated latents (ψ = 0.8).
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Figure 3.15: Examples of StyleGAN2 synthesized images after the truncation trick (ψ =
0.7).
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Figure 3.16: Relatively high-quality StyleGAN2 [67] synthesized images with small hub
values m. However, there are still small artifacts in these images (e.g. background and
facial details).
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Chapter 4

Efficient Precision and Recall for

Assessing Generative Models with

Hubness Sampling

Despite impressive results, deep generative models require massive datasets for

training. As dataset size increases, effective evaluation metrics like precision and

recall (P&R) become computationally infeasible on commodity hardware. In this

chapter, we address this challenge by proposing efficient P&R (eP&R) metrics that

give almost identical results as the original P&R but with much lower computational

costs. Specifically, we identify two redundancies in the original P&R: i) redundancy

in ratio computation and ii) redundancy in manifold inside/outside identification.

We find both can be effectively removed via hubness-aware sampling, which extracts

representative elements from synthetic/real image samples based on their hubness

values, i.e., the number of times a sample becomes a k-nearest neighbor to others in

the feature space. Thanks to the insensitivity of hubness-aware sampling to exact

k-nearest neighbor (k-NN) results, we further improve the efficiency of our eP&R

metrics by using approximate k-NN methods. Extensive experiments show that our

eP&R matches the original P&R but is far more efficient in time and space.
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4.1 Introduction

Deep generative models have achieved great success by combining deep learning

with generative modeling. However, they have also inherited the data-hungry nature

of deep learning, requiring massive datasets for training. For instance, the FFHQ

dataset used to train StyleGAN contains 70 thousand images [66], while the Latent

Diffusion model leveraged LAION-400M’s 400 million text-image pairs [112]. Stable

Diffusion pushed this even further, training its models on LAION-5B’s 5 billion

pairs [121]. Despite their impressive results, the massive scale of datasets used to

train modern deep generative models presents challenges for evaluation. As dataset

size increases, some of the most effective evaluation metrics [52, 78, 116, 117, 124],

which compare generated and real image distributions, may become computationally

infeasible for commodity GPUs and ordinary research institutions. To continue

advancing the state of the art (SOTA), developing more efficient evaluation metrics

becomes critical.

Among the most effective evaluation metrics, Fréchet Inception Distance (FID) [52]

and Inception Score (IS) [117] are relatively computationally efficient. Let n be the

number of samples, they have linear time and space complexity of O(n), as they rely

on simple statistics of extracted features. Specifically, the feature extraction takes

O(n) time and space while the statistics (e.g., mean) computation also takes linear

time O(n) for a given feature extractor like Inception v3 [129] with fixed feature

dimensions. However, both FID and IS are single scores that cannot distinguish

between different failure modes. Addressing this issue, the precision and recall (P&R)

metrics [78, 116, 124] were employed. Intuitively, precision measures the quality of

synthesized images while recall measures their diversity. Although effective, the

SOTA version of P&R [78] requires costly pairwise distance calculations (e.g., in

k-nearest neighbor algorithm) between extracted features of samples and sorting,

consuming O(n2logn) time and space, thus becoming computationally infeasible

when evaluating deep generative models trained on large-scale datasets.

In this work, we address the high computational costs of precision and recall (P&R)

metrics with a novel solution based on hubness-aware sampling. Specifically, we
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have identified two important types of redundancies in the computation of P&R:

i) redundancy in the P&R ratio computation and ii) redundancy in identifying

whether a sample is within or outside of a manifold (e.g., synthetic or real image

manifold). Interestingly, we find that both these redundancies can be effectively

removed by hubness-aware sampling. In a nutshell, hubness-aware sampling extracts

a small number of m representative elements from the real/synthetic samples based

on their hubness values, defined as the number of times a sample becomes a k-

nearest neighbor (k-NN) to others in the feature space [85, 107]. We denote such

representative elements as “hubs”, which have higher hubness values than their peers.

We conjecture that the validity of our approach comes from the fact that hubness

values are effective importance identifiers for samples with respect to the k-NN results

on which P&R [78] relies. In addition, utilizing the fact that the identification of

hubness points relies on their relatively higher hubness values rather than exact k-NN

results, we further improve the efficiency of our eP&R metrics using approximate

k-NN methods, a brief introduction of which can be found in the Sec. 4.4. Extensive

experimental results demonstrate that the P&R calculated using such representative

elements is almost identical to the original P&R, but consumes much less time and

space. Our contributions include:

• We propose efficient precision and recall (eP&R) metrics for assessing generative

models, which give almost identical results as the original P&R [78] but consume

much less time and space. Theoretically, our eP&R run in O(mn log n) time

and consume O(mn) space (m is the number of of hubs samples and m < n),

which are much more efficient than the original P&R metrics that run in

O(n2 log n) time and consumes O(n2) space.

• We identify two important types of redundancies in the original P&R metrics

and uncover that both of them can be effectively removed by hubness-aware

sampling [85, 107]. In addition, the insensitivity of hubness-aware sampling to

exact k-nearest neighbor (k-NN) results allows for further efficiency improve-

ment by using approximate k-NN methods.

• Extensive experimental results demonstrate the effectiveness of eP&R metrics.
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(b) 70k images generated by StyleGAN2

Figure 4.1: Samples with similar hubness values are effective representative samples in
terms of P&R ratio calculation. (a) Left: Histogram of sample occurrences (log scale) vs.
hubness value (FFHQ). The samples are grouped into different colors based on similar
hubness values. Right: Pie chart showing that all three groups share similar ratios of
samples identified as 1 vs. 0 (green vs. light green) using Eq. 4.3 for recall calculation. (b)
The same experiment as (a) but on StyleGAN-generated samples for precision calculation.
Following [78], we use VGG-16 as a feature extractor and StyleGAN2 trained on the FFHQ
dataset as the generative model to be assessed. Please see Section. 4.6.9 for the validation
of insensitivity of the choice of group split points. Hub.: Hubness; B.S.: binary score.
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(b) 70k images generated by StyleGAN2

Figure 4.2: Most samples ϕ with f(ϕ,Φ) = 1 (Eq. 4.3) are included in the k-NN hypersphere
of at least one hubs sample (t = 3) of the other distribution. (a) Left: Histogram of sample
occurrences (log scale) vs. the times a sample is included in the k-NN hypersphere of a
sample of the other distribution, i.e., valid ϕ′ (FFHQ). Please see Sec. 4.3 for an intuitive
illustration. The samples are grouped into different colors based on similar numbers of valid
ϕ′. Right: Pie chart showing the ratio of samples within the k-NN hypersphere of hubness
vs. non-hubness samples from the other distribution, to the total number of samples ϕ
with f(ϕ,Φ) = 1 in each group. Hubness: points with hub values above a threshold t ≥ 3;
Non-hubness: t < 3. (b) The same experiment as (a) but on StyleGAN-generated samples.
Following [78], we use VGG-16 as a feature extractor and StyleGAN2 trained on the FFHQ
dataset as the generative model to be assessed. Please see Section. 4.6.9 for the validation
of insensitivity of the choice of group split points.
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4.2 Preliminaries

As proposed by [78], the precision and recall (P&R) metrics for assessing generative

models are defined as:

precision(Φr,Φg) =
1

|Φg|
∑

ϕg∈Φg

f(ϕg,Φr), (4.1)

recall(Φr,Φg) =
1

|Φr|
∑

ϕr∈Φr

f(ϕr,Φg) (4.2)

where Φg and Φr are the sets of feature vectors corresponding to the generated and

real image samples, respectively; |Φ| denotes the number of samples in set Φ and

|Φg| = |Φr|; f(ϕ,Φ) is a binary function determining whether a sample ϕ lies on a

manifold represented by Φ:

f(ϕ,Φ) =

 1, if ∥ϕ− ϕ′∥2 ≤ ∥ϕ′ − NNk(ϕ′,Φ)∥2 for at least one ϕ′ ∈ Φ

0, otherwise,

(4.3)

where NNk(ϕ
′,Φ) denotes the kth nearest neighbour of ϕ′ in Φ. Intuitively, their

precision and recall metrics estimate the generative and real image manifolds with a

collection of hyperspheres, respectively, with each feature vector sample as the center

and the distance between it and its kth nearest neighbor as the radius. A sample ϕ

is determined to lie on a manifold if it lies within the hyperspheres of that manifold

and vice versa.

4.3 Illustration figure and relevant discussions for

valid ϕ′

As Fig. 4.3 shows, by “the times a sample is included in the k-NN hypersphere of

a sample of the other distribution, i.e., valid ϕ′”, we count the number of times ϕ

(yellow cube) is within the k-NN hypersphere of ϕ′ ∈ Φ (red rhombuses).
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Figure 4.3: Illustration of valid ϕ′. ϕ is represented by a yellow cube and ϕ′ ∈ Φ set are
represented by red rhombuses.

4.4 A Brief Introduction to Approximate k-NN

algorithm

The k-nearest neighbors (k-NN) algorithm is a popular machine learning method for

classification and regression. Given a new data point, it finds the k closest training

examples based on a distance metric like Euclidean distance. A major limitation

of k-NN is that it requires computing the distance between the new point and all

points in the training set, which can be slow for large datasets.

Approximate k-NN algorithms are techniques that try to speed up neighbor

search by sacrificing some accuracy. The key idea is to avoid exhaustively calculating

distances to all points. Some common approaches include:

• Tree-based data structures like kd-trees [16] that allow efficient searching of

nearest points without checking all data.

• Hashing techniques [13, 91] that map similar points to the same buckets,

narrowing the search.

• Dimensionality reduction methods like random projections [146] that can
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compress data while preserving relative distances.

• Graph-based algorithms [39, 50, 83, 92] that connect neighboring points then

traverse the graph instead of computing all distances.

• Sampling/filtering [11, 59, 101, 161] methods that find candidates in subsections

of data.

The tradeoff is between accuracy and speed. Approximate methods may miss

some true nearest neighbors, but can query large datasets much more efficiently.

Performance gains allow k-NN to scale better to big data. Appropriate techniques

depend on factors like data size, dimension, and desired accuracy. We refer interested

audiences to [8, 83, 123, 144] for more details.

4.4.1 The accuracy to get the hubness vectors

The table 4.3 compares the performance of various Approximate Nearest Neighbor

(ANN) algorithms in retrieving hubness points, measured by Accuracy (%) and

search Time (s). A key distinction across the columns is the hardware acceleration

capability: the methods on the left side (IVF [59, 61], IVF-PQ [59, 61], IVF-SQ) are

typically designed with GPU acceleration support, allowing for highly parallel and fast

computations. In contrast, the algorithms on the right side (LSH [13, 91], HNSW [92],

ScaNN [9]), while often optimized for speed on CPUs, are not universally or easily

accelerated by GPUs in standard configurations (their primary implementations are

CPU-based). The table serves as powerful evidence that ANN algorithms provide a

highly effective solution, enabling near-production-quality accuracy (mostly ≥ 90%)

at a fraction of the computational cost and time required by exhaustive search

methods to get the hubness points.

4.5 Efficient Precision and Recall

Although effective, Eqs. 4.2 and 4.3 are computationally expensive due to the

calculation of pairwise distances between samples and the sorting required by k-NN,

which grows quasi-quadratically with the number of samples. This prevents them
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Table 4.3: The accuracy of the different ANN to get the hubness points. The methods on
the left side (IVF [59, 61], IVF-PQ [59, 61], IVF-SQ) are typically designed with GPU. In
contrast, the algorithms on the right side (LSH [13, 91], HNSW [92], ScaNN [9]), while
often optimized for speed on CPUs, are not universally or easily accelerated by GPU.

IVF IVF-PQ IVF-SQ LSH HNSW ScaNN
Accuracy(%) 99.731 90.061 71.903 94.644 98.642 98.691

Time(s) 1.085 1.062 7.323 4.329 3.075 18.277

Table 4.4: Ablation study. Alg. Variations: variants of our metrics. Time (P): parallel
implementation using CUDA. P&R: original P&R metrics [78]. Ob. 4.5.1: we replace the
Φg in precision calculation and Φr in recall calculation with their hubs versions Φhub

g and

Φhub
r respectively (Eq. 4.2). Ob. 4.5.2: we replace the Φr in precision calculation and

Φg in recall calculation with their hubs versions Φhub
r and Φhub

g respectively (Eq. 4.2).
eP&R: our efficient P&R metrics, which uses Ob. 4.5.1, 4.5.2 and “Efficient Hubs Sample
Identification” (approximate k-NN) together. ∗: when used alone, (2)(3) cannot save time
and space as they still require the full distance matrices.

Alg. Variations Precision Recall Time (P) Memory
(1) P&R (Original) 0.716±0.001 0.493±0.001 144s 19.90 GB
(2) P&R + Ob. 4.5.1 0.715±0.005 0.497±0.004 138s∗ 19.32∗ GB
(3) P&R + Ob. 4.5.2 0.708±0.005 0.501±0.005 140s∗ 19.31∗ GB
(4) P&R + Ob. 4.5.1, 4.5.2 0.719±0.002 0.494±0.001 104s 15.84 GB
(5) eP&R (Ours) 0.719±0.002 0.501±0.001 75s 14.21 GB

from being computed on large datasets with commodity GPUs and hampers the

progress of the field. To improve the computational efficiency of precision and

recall (P&R) metrics, we identify two important types of redundancies in Eqs. 4.2

and 4.3 (Sec. 4.5.1) and propose to address them using hubness-aware sampling,

whose insensitivity to exact k-NN results allows for further efficiency improvement

(Sec. 4.5.2). We also conduct a computational complexity analysis (Sec. 4.5.3) to

demonstrate the high computational efficiency of our method.

4.5.1 Redundancies in Precision and Recall Calculations

As mentioned above, we have identified two important types of redundancies in P&R

calculations: i) redundancy in the P&R ratio computation and ii) redundancy in

identifying whether a sample is within or outside of a manifold (e.g., synthetic or

real image manifold) as follows:

Observation 4.5.1. [Redundancy in Ratio Estimation] As Eq. 4.2 shows, the
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P&R metrics are essentially ratios of the number of samples in a set Φ that lie on a

given manifold to the number of all samples in Φ. Thus, we can obtain similar P&R

ratios by using representative samples of Φ with the rest as redundant.

Observation 4.5.2. [Redundancy in Inside/Outside Manifold Identification]

As shown in Eq. 4.3, f(ϕ,Φ) is 1 as long as ϕ is within the k-NN hypersphere of at

least one sample ϕ′ ∈ Φ. This means that we only need to find one valid ϕ′ for each

ϕ and all the other ϕ′s are redundant.

4.5.2 Redundancy Reduction using Hubness-aware Sampling

Interestingly, we find hubness-aware sampling to be an effective solution for both

redundancies. Specifically, for Observation 4.5.1, we find that samples with similar

hubness values are effective representative samples of set Φ in terms of P&R ratios

as they share similar ratios of samples identified as 1 vs. 0 by Eq. 4.3 (Fig. 4.1),

indicating that we can use a small number of hubs samples to approximate P&R; for

Observation 4.5.2, we find that most ϕ with f(ϕ,Φ) = 1 (Eq. 4.3) are included in

the k-NN hypersphere of at least one ϕ′ with high hubness values, i.e., hubs samples

(Fig. 4.2), indicating that we can obtain similar outputs of Eq. 4.3 using a small

number of hubs samples. Thus, our efficient P&R metrics can be defined as:

precisionhub(Φr,Φg) =
1

|Φhub
g |

∑
ϕhub
g ∈Φhub

g

f(ϕhub
g ,Φhub

r ) (4.4)

recallhub(Φr,Φg) =
1

|Φhub
r |

∑
ϕhub
r ∈Φhub

r

f(ϕhub
r ,Φhub

g ) (4.5)

where Φhub
g and Φhub

r are the sets of feature vectors with hubness values m > t

corresponding to the generated and real image samples, respectively; t is a threshold

hyper-parameter.

Efficient Hubs Sample Identification. Despite their effectiveness, the identifi-

cation of hub samples is also based on the O(n2) k-NN algorithm which is expensive

in both time and space. Fortunately, such identification is insensitive to exact k-NN

results as it only relies on a rough threshold t of the hubness values. Thus, we can



4.5 Efficient Precision and Recall 63

use an approximate k-NN algorithm for the identification of hub samples that further

improves the efficiency of our metrics.

4.5.3 Computational Complexity Analysis

To provide a clear demonstration of the computational efficiency of our metrics, we

conduct a computational complexity analysis as follows. Given two sets Φr and Φg

(|Φr| = |Φg| = n), the calculation of the original P&R [78] can be divided into five

stages:

1. [Distance Matrices of Φr and Φg] Calculating pairwise distances for samples

in Φr and Φg respectively, which consumes O(n2) time and space for each set.

2. [Sorting] Sorting the distance matrices as required by the k-NN algorithm, which

consumes O(n2 log n) time and no extra space.

3. [Radii] Recording the distance from each sample to its kth nearest neighbour as

the radius of its hypersphere, taking O(n) time and space.

4. [Distance Matrix between Φr and Φg] Calculating pairwise distances between

samples of Φr and Φg, which consumes O(n2) time and space.

5. [P&R] Calculating P&R ratios, taking O(n2) time and no extra space for each

metric.

In contrast, the calculation of our efficient P&R metrics can be divided into seven

stages:

1. [Subspace Construction for Φr and Φg] Constructing subspaces of samples

for Φr and Φg as required by the approximate k-NN algorithm IVF/PQ [59, 61]

and HNSW [92], taking O(logn) time and O(n) space for each set.

2. [Approx. Hubs Identification for Φr and Φg] Computing the approximate

hubness value for each sample in Φr and Φg using the approximate k-NN algorithm

and extracting hubs set Φhub
r and Φhub

g with mr and mg (mr < n, mg < n) hubs

samples respectively using a user-specified threshold t, taking O(mr), O(mg) time

and space for each set, respectively.
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3. [Efficient Distance Matrices] Calculating pairwise distances for samples be-

tween Φhub
r and Φr, and Φhub

g and Φg, which consumes O(mrn) and O(mgn) time

and space, respectively. Please see Sec. 4.6.10 for an empirical justification of its

effectiveness.

4. [Efficient Sorting] Sorting the distance matrices as required by the k-NN

algorithm, which consumes O(mrn log n) and O(mgn log n) time respectively and

no extra space.

5. [Radii] Recording the distance from each sample to its kth nearest neighbour as

the radius of its hypersphere, taking O(mr) and O(mg) time and space, respec-

tively.

6. [Efficient Distance Matrix between Φhub
r and Φhub

g ] Calculating pairwise

distances between samples of Φhub
r and Φhub

g , which consumes O(mrmg) time and

space.

7. [Efficient P&R] Calculating P&R ratios, taking O(m2
g) and O(m2

r) time and no

extra space for each metric.

Theoretically, the proposed eP&R metrics run in max(O(mrn log n), O(mgn log n))

time and consumes max(O(mrn), O(mgn)) space while the original P&R metrics run

in O(n2 log n) time and consumes O(n2) space. Since mr < n, mg < n, the proposed

eP&R metrics are far more efficient than the original P&R metrics.

4.6 Experiments

4.6.1 Experimental Setup

Hardware. We use a PC with an Intel(R) Core(TM) i7-10875H CPU, an NVIDIA

RTX 4090 24GB GPU for small datasets and a GPU node with 2 NVIDIA V100

32GB GPUs for large datasets.

Datasets. We use the FFHQ [70] dataset containing 70k portrait images, and the

LSUN (Car, Church, Cat, and Horse) dataset [154] containing 550k, 120k, 1.5m and

1.5m images of corresponding categories respectively in our experiments.
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Table 4.6: The eP&R scores with different threshold t. Error(%): relative error ϵ = |x−x̂|
|x|

Hubness Error(%)
t Percent(%) Precision Recall Precision Recall Mean
1 72.50±0.01 0.718±0.001 0.494±0.002 0.3 0.0 0.1
2 52.24±0.04 0.718±0.001 0.494±0.002 0.3 0.0 0.1
3 38.21±0.04 0.719±0.002 0.494±0.001 0.4 0.2 0.3
4 28.48±0.04 0.726±0.002 0.496±0.001 1.6 0.6 1.1
5 21.65±0.04 0.730±0.001 0.496±0.002 1.9 0.6 1.3
6 16.64±0.02 0.732±0.002 0.497±0.003 2.2 0.6 1.4
7 12.99±0.02 0.739±0.002 0.498±0.003 3.2 2.6 2.8
8 10.22±0.01 0.747±0.002 0.509±0.003 4.3 4.3 4.3
9 8.15±0.03 0.747±0.003 0.509±0.004 5.5 8.1 6.8
10 6.55±0.01 0.748±0.004 0.517±0.003 9.9 8.4 9.2
B.L. — 0.716±0.001 0.493±0.001 — — —

Generative Models. Following [78], we test our eP&R metrics with StyleGAN2

[68] trained on the FFHQ and LSUN-Car, LSUN-Cat, LSUN-Church and LSUN-

Horse datasets mentioned above. To demonstrate the generalizability of our metrics,

we further test them with the other members of the StyleGAN family, including

StyleGAN3 [65], Projected-GAN [119], VQ-VAE-2 [109] and the Latent Diffusion

model [113] trained on the FFHQ dataset.

Hyper-parameters. Unless specified, we follow the original P&R [78] and use k = 3

in (approximate) k-NN algorithms for all P&R, eP&R calculations and hubness-aware

sampling, and t = 3 as the threshold to extract hubs samples, and the FFHQ dataset

and a StyleGAN2 model trained on it in our experiments.

4.6.2 Efficient vs. Original Precision and Recall

Approximation Error. Our eP&R is an approximation of the original P&R [78],

which inevitably introduces errors. To demonstrate the validity of our approximation,

we record the relative errors ϵ = |x−x̂|
|x| in Table 4.1, where x is the original P&R

result and x̂ is our approximation. It can be observed that our eP&R metrics share

almost identical results to the original P&R with very small relative errors around

1%. Please see sec. 4.6.7 for a comparison with reduced sampling of the original

P&R, which further justifies the effectiveness of our metrics.
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Time and Memory Consumption. We profile the running time and memory

consumption to compare the computational efficiency of our eP&R and the original

P&R metrics. As Table 4.2 shows, our eP&R metrics run significantly faster and

consume much less memory than the baseline, which justifies our complexity analysis

in Sec. 4.5.3.

4.6.3 Ablation Study

As mentioned in Secs. 4.5.1 and 4.5.2, the proposed eP&R metrics consist of three

components addressing Observation 4.5.1, Observation 4.5.2, and “Efficient Hubs

Sample Identification” (approx. k-NN) respectively. To show their effectiveness, we

conduct an ablation study as shown in Table 4.4. It can be observed that each of

the proposed components contributes to the success of our eP&R metrics.

4.6.4 Choice of Hyperparameters

The proposed eP&R metrics have two hyperparameters: i) k used by the (approxi-

mate) k-NN algorithm; and ii) threshold t used to identify hubs samples.

Choice of number of nearest neighours k. As Table 4.5 shows, it can be

observed that improvements of our eP&R metrics are stable under different choices

of k. Therefore, without loss of generality, we use k = 3 following [78].

Choice of threshold t. As Table 4.6 shows, our eP&R metrics introduce a trade-off

between error and efficiency with t: the higher t, the more efficient our metrics but

at the cost of higher errors. Thus, in our experiments, we strike a balance by using

t = 3 for (FFHQ, StyleGAN2) combination.

Table 4.8: Time costs when matrix tiling is used. The experiments are conducted using
the FFHQ dataset and a StyleGAN2 model trained on it.

# of Tiles 1 (no tiling) 2 5 10 50 100
Time (P) 144s 146s 148s 150s 174s 192s

4.6.5 Robustness against the Truncation Trick

Our eP&R metrics are also robust against the truncation trick, a widely used
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technique that improves GAN sample quality by truncating the latent vector z [68].

The truncation trick is a widely used technique that improves GAN sample quality

by truncating the latent vector z fed into the generator [18, 66, 68]. As Table 4.9

shows, our eP&R metrics are robust against the truncation trick with ϕ = 0.5, 0.7,

where ϕ = 0.7 is the recommended value.

Table 4.9: Robustness against the truncation trick [66]. We calculate the metrics using
StyleGAN2 trained on the FFHQ dataset and t = 4. Please note that ϕ = 0.7 is the
recommended value [66, 68] for the truncation trick and ϕ = 1.0 means no truncation is
applied at all. B.L.: the original P&R metrics as the baseline [78]. eP&R: our efficient
P&R metrics. We did not include Time and Memory costs are the truncation trick does
not affect the number of samples, hence consuming the same amount of time and memory.

ϕ = 0.5 ϕ = 0.7 ϕ = 1.0
Precision Recall Precision Recall Precision Recall

eP&R 0.932±0.002 0.089±0.002 0.890±0.002 0.297±0.002 0.714±0.002 0.493±0.001
B.L. 0.935±0.001 0.101±0.001 0.885±0.001 0.308±0.001 0.716±0.001 0.493±0.001

Table 4.10: Time and space consumption of our eP&R metrics compared to the original
P&R metrics using StyleGAN2 trained on the LSUN-Horse dataset. B.L.: the original
P&R metrics as the baseline [78]. eP&R: our efficient P&R metrics. Time (S): serial
implementation. Time (P): parallel implementation using CUDA. The profiling items are
in one-to-one correspondence with the stages listed in Sec. 4.5.3.

Profiling
B.L.

Profiling
eP&R

Time (S) Time (P) Time (S) Time (P)

DMs (Φr, Φg)
Subspace (Φr, Φg) 8min 3min

12h02min 54min A. hubs (Φhub
r , Φhub

g ) 2min 1min
eDMs 5h56min 26min

Sorting 2h56min 22min eSorting 1h20min 11min
Radii 1min 1min Radii 50s 50s
DM (Φr ↔ Φg) 6h30min 34min eDM (Φhub

r ↔ Φhub
g ) 1h27min 8min

P&R 2h12min 17min eP&R 56min 4min
Total 23h45min 2h10min Total 9h50min 64min

4.6.6 P&R Curves

We follow [78] and include the original P&R (baseline) and our eP&R curves against

the parameter of the truncation trick in Fig. 4.4. The results show that our method

approximates the original P&R curves well on both FFHQ and LSUN-Church

datasets.
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Figure 4.4: Original P&R (baseline) and our eP&R curves on the FFHQ and LSUN-Church
datasets.

4.6.7 Comparison with Reduced Sampling

To further demonstrate the superiority of our eP&R metrics, we compare them

with another baseline of reduced sampling, i.e., instead of using the full dataset, we

randomly sample a subset from it and use a reduced number of generated samples

to calculate P&R accordingly. As Table 4.7 shows, our method provides much

more accurate P&R results given the same number of samples, demonstrating the

superiority of our metrics.

4.6.8 Time and Space Consumption for large datasets

Due to hardware limitations, we have to perform matrix tiling when calculating

P&R and eP&R on large datasets which splits a given matrix into tiles (submatrices)

that can fit into GPU memory. However, this introduces additional overheads and is

not desirable (Table 4.8), which further justifies our motivation to design efficient

evaluation metrics for generative models. Nevertheless, we show the results of our
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eP&R metrics on the LSUN-Horse dataset containing 1.5m images in Table 4.10. It

can be observed that our metrics still save a lot of time when matrix tiling is used.

4.6.9 Insensitivity to Group Split Points

As shown in Table 4.11, the ratios of binary scores are similar for each hubness value

on the FFHQ dataset, which validates the insensitivity of the choice of group split

points for Observation 4.5.1 and Fig. 4.1.

Similarly, as shown in Table 4.12, the ratios of hubness samples increase quickly

to 1 with the increase of |ϕ′| on the FFHQ dataset, which validates the insensitivity

of the choice of group split points for Observation 4.5.2 and Fig. 4.2.

We show the same conclusions hold on the LSUN-Church dataset as well (Ta-

ble 4.13 and Table 4.14).

4.6.10 Justification of pairwise distance calculation between

Φhub
r and Φr

As Table 4.15 shows, we calculate the pairwise distances between Φhub
r and Φr as it

provides lower approximation errors than calculating pairwise distances for samples

in Φhub
r . We conjecture the reason is that Φhub

r is much sparser than Φr and thus

the pairwise distances for samples in it will be much larger than those of the original

P&R, resulting in much larger k-NN hyperspheres that increase the approximation

error. The same conclusion holds for Φhub
g and Φg.

4.7 t-SNE visualization of the hubness set and the

original set

As shown in Fig. 4.5, we included the t-SNE results of:

• (a) Hubness set vs. original set (FFHQ dataset, Φr) with thresholds t of 3, 5, 7.

• (b) Hubness set vs. original set (StyleGAN trained on the FFHQ dataset, Φg)

with thresholds t of 3, 5, 7.
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• (c) Hubness set vs. original set (LSUN-Church dataset, Φr) with thresholds t

of 3, 5, 7.

• (d) Hubness set vs. original set (StyleGAN trained on the LSUN-Church

dataset, Φg) with thresholds t of 3, 5, 7.

It can be observed that the hubness set approximates the original set well when

the threshold t = 3, which not only justifies the effectiveness of our approach but

also our choice of hyperparameter t = 3.

4.8 Conclusion

In conclusion, we have proposed efficient precision and recall (eP&R) metrics that

provide almost identical results as the original P&R metrics but with much lower

computational costs. By identifying and removing redundancies in P&R computation

through hubness-aware sampling and approximate k-NN methods, we have developed

a highly efficient yet accurate approach to evaluating generative models. Extensive

experiments demonstrate the effectiveness of our eP&R metrics. Going forward,

eP&R provides an important step towards feasible and insightful assessment of

state-of-the-art generative models trained on massive datasets. We believe eP&R

can enable more rapid progress in this exciting field.

Limitations and Future Work. Although effective and efficient, the proposed

eP&R metrics are not fully optimized. One area for improvement is in Stage 3

(Efficient Distance Matrices), which currently calculates pairwise distances between

hub samples of one set and all samples of the other set to compute radii. A significant

amount of time is spent on this step. We could optimize this by utilizing the subspace

constructed by the approximate k-NN algorithms. Instead of comparing hubs to the

full set, we would only need to calculate distances between hubs and samples within

the relevant subspace of the other set. This would allow us to find radii much more

quickly. While the current metrics are fast and accurate, optimizations like these

could push the efficiency even higher without sacrificing effectiveness. We therefore

see continued refinement of the eP&R metrics represents an exciting opportunity for

future work.
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Table 4.11: Insensitivity to group split points for Observation 4.5.1 and Fig. 4.1 (FFHQ).
Hub. Value: hubness value, B.S.: binary score.

(a) All 70k images in the FFHQ dataset

Hub. Value 1 2 3 4 5 6 7 8
B.S. = 1 9038 7489 5795 4579 3525 2741 2188 1842
All Samples 13382 11292 8615 6815 5250 4158 3235 2664
Ratio 0.675 0.663 0.673 0.672 0.671 0.659 0.676 0.691

Hub. Value 9 10 11 12 13 14 15 16
B.S. = 1 1474 1244 931 818 679 593 508 425
All Samples 2190 1791 1389 1231 1046 883 776 640
Ratio 0.673 0.695 0.67 0.665 0.649 0.672 0.655 0.664

Hub. Value 17 18 19 20 21 22 23 24
B.S. = 1 361 305 272 246 200 177 153 160
All Samples 543 469 409 361 291 264 232 230
Ratio 0.665 0.65 0.665 0.681 0.687 0.67 0.659 0.696

(b) 70k images generated by StyleGAN2

Hub. Value 1 2 3 4 5 6 7 8
B.S.e = 1 10030 9150 7375 5858 4555 3664 2952 2266
All Samples 12083 10988 8833 7015 5452 4402 3561 2743
Ratio 0.83 0.833 0.835 0.835 0.835 0.832 0.829 0.826

Hub. Value 9 10 11 12 13 14 15 16
B.S.e = 1 1848 1515 1358 1120 911 800 646 522
All Samples 2237 1835 1624 1344 1117 992 762 635
Ratio 0.826 0.826 0.836 0.833 0.816 0.806 0.848 0.822

Hub. Value 17 18 19 20 21 22 23 24
B.S.e = 1 456 374 350 306 261 228 187 178
All Samples 539 467 420 379 317 277 217 208
Ratio 0.846 0.801 0.833 0.807 0.823 0.823 0.862 0.856
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Table 4.12: Insensitivity to group split points for Observation 4.5.2 and Fig. 4.2 (FFHQ).

(a) All 70k images in the FFHQ dataset

ϕ′ 0 1 2 3 4 5 ≥6
Hubness 11922 8625 6290 4540 3516 2741 10818
Non-hubness 13254 9089 6519 4598 3537 2749 10818
Ratio 0.9 0.949 0.965 0.987 0.994 0.997 1.000

(b) 70k images generated by StyleGAN2

ϕ′ 0 1 2 3 4 ≥5
Hubness 11792 6596 4136 2745 1860 5531
Non-hubness 13482 7210 4328 2788 1874 5531
Ratio 0.875 0.915 0.956 0.985 0.992 1.000

Table 4.13: Insensitivity to group split points for Observation 4.5.1 and Fig. 4.1 (LSUN-
Church). Hub. Value: hubness value, B.S.: binary score.

(a) All 120k images in the LSUN-Church dataset

Hubness Value 1 2 3 4 5 6 7 8 9
Binary Score = 1 51045 17414 6653 2906 1413 658 355 202 108
All Samples 75650 25836 9866 4296 2074 1006 562 291 153
Ratio 0.675 0.674 0.674 0.676 0.681 0.654 0.631 0.694 0.708

(b) 100k images generated by StyleGAN2

Hubness Value 1 2 3 4 5 6 7 8 9 10
Binary Score = 1 24459 4658 1081 405 161 71 35 19 9 6
All Samples 55401 10564 2385 957 371 154 81 38 21 12
Ratio 0.441 0.441 0.453 0.423 0.434 0.461 0.432 0.5 0.429 0.5

Table 4.14: Insensitivity to group split points for Observation 4.5.2 and Fig. 4.2 (LSUN-
Church).

(a) All 120k images in the LSUN-Church dataset

ϕ′ 0 1 2 3 4 5 ≥6
Hubness 29986 18482 12819 9106 6749 5037 20441
Non-hubness 32669 19615 13346 9213 6773 5040 20441
Ratio 0.918 0.942 0.961 0.988 0.996 0.999 1

(b) 100k images generated by StyleGAN2

ϕ′ 0 1 2 3 4 5 6 ≥7
Hubness 15731 7063 3984 2405 1505 963 728 2007

Non-hubness 17590 7821 4158 2443 1513 965 729 2007
Ratio 0.894 0.903 0.958 0.984 0.995 0.998 0.999 1
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Table 4.15: Justification of pairwise distance calculation between Φhub
r and Φr. P: Precision;

R: Recall. Error(%): relative error ϵ = |x−x̂|
|x| , where x denotes the baseline precision 0.716

and recall 0.493 of the original P&R metric.

t
Pairwise distance between Φhub

r , Φhub
r Pairwise distance between Φhub

r , Φr

P R P Error(%) R Error(%) P R P Error(%) R Error(%)
1 0.713 0.484 0.4 1.8 0.717 0.500 0.3 0.0
2 0.723 0.506 1.0 2.6 0.718 0.501 0.3 0.0
3 0.746 0.534 4.2 8.3 0.719 0.501 0.4 0.2
4 0.768 0.562 7.3 14.0 0.726 0.507 1.6 0.6
5 0.787 0.588 9.9 19.3 0.730 0.515 1.9 0.6
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(a) Hubness set vs. original (FFHQ dataset, Φr). Threshold t of hubness set from left to
right is 3, 5, 7.

(b) Hubness set vs. original (StyleGAN trained on FFHQ dataset, Φg). Threshold t of
hubness set from left to right is 3, 5, 7.

(c) Hubness set vs. original (LSUN-Church dataset, Φr). Threshold t of hubness set from
left to right is 3, 5, 7.

(d) Hubness set vs. original (StyleGAN trained on LSUN-Church dataset, Φg). Threshold t
of hubness set from left to right is 3, 5, 7.

Figure 4.5: t-SNE visualization of the hubness set and the original set.
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Chapter 5

Hubness Sampling to Train GAN

Models for Mitigating Dataset Bias

This Chapter addresses the critical issue of dataset bias and synthetic fairness in

generative models, focusing on achieving balanced training and equal representation

across various categories. Recent advancements in GANs have highlighted the need

for methodologies that enhance fairness without extensive labeling and computational

resources. This study introduces hubness sampling as an unsupervised, pre-training-

free approach to training fair generative models. Statistical analyses reveal that the

likelihood of latents with high hubness values mapping to minority classes is initially

low but significantly improved with hubness sampling. Furthermore, the method

shows substantial improvements in fairness across different categories, including

ethnicity, gender, make-up, and age. This chapter applies hubness sampling to

train several state-of-the-art GAN models, including StyleGAN, Diffusion-GAN,

and GANFormer, and evaluates the quality and diversity of synthetic images using

established metrics such as Precision & Recall and FID. Experimental results demon-

strate that hubness sampling significantly enhances both balance and diversity in

generated outputs, effectively mitigating dataset-induced bias. Overall, the hubness

sampling method presents a novel approach to improving diversity and fairness in

GAN training, reducing bias, and enhancing minor class representation.
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5.1 Introduction

In recent years, substantial efforts have been made to address dataset bias and

enhance synthetic fairness, a topic that remains central to ongoing research. The

objective of fairness in generative models is to achieve balanced training, also known

as equal representation, which entails generating samples that adhere to a uniform

distribution across categories [118, 134, 151]. Recent research indicates that the

fairness of GAN models can be enhanced by pre-learning the feature distribution

through methodologies such as weak supervision and transfer learning [25, 134].

However, these methods necessitate substantial effort to label diverse datasets,

identify minor and major features, and develop a new balanced supervised model

with weak supervision or adapt to a class-balanced set of the real images after

pre-trained with the full dataset, resulting in significant time and computational

resource expenditure. In this chapter, we present the first study to investigate the

potential of hubness sampling as an unsupervised and pre-training-free approach for

training fair generative models. Our method aims to reduce computational overhead

and resource waste while promoting equitable representation in the generated output.

As shown in Table 5.1, the statistic reveals a clear imbalance in the ethnic

distribution within the FFHQ dataset, where the proportion of white individuals

is significantly higher than that of other ethnic groups. This disparity may lead to

biased representations and performance inconsistencies in generative models trained

on such datasets. To address this issue, we explore the use of hubness sampling as a

strategic data selection method during the training process. In this chapter, we apply

hubness sampling to train several popular and representative Generative Adversarial

Network (GAN) models, including StyleGAN, Diffusion-GAN, and GANFormer.

These state-of-the-art GAN architectures are recognized for their robust and stable

training behavior across diverse image datasets, which minimizes the influence of

incidental factors that often hinder training outcomes. By integrating hubness-aware

sampling with these models, we aim to promote more balanced data utilization,

enhance the fairness of the generated outputs, and provide a principled approach

to mitigating dataset-induced bias in generative image modeling. In addition, we
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Ethnicity East-asian Black White Other
ratio(%) 17.943 5.911 56.190 19.956

Table 5.1: The ethnicity statistic analysis for the FFHQ dataset. The highest ratio, white,
exhibits the highest degree of feature concentration.

will employ established generative model evaluation metrics, Precision & Recall and

Fréchet Inception Distance (FID), to quantitatively assess the quality and diversity

of the synthetic images produced.

Our main contributions can be summarized as follows:

1. We introduce a hubness-aware sampling method for training GAN-based models,

demonstrating its effectiveness in enhancing both balance and diversity in the

generated outputs.

2. Comprehensive experimental evaluations across multiple GAN architectures

and datasets validate the effectiveness and robustness of our proposed sampling

method.

5.2 Balance affected with batch size

The selection of batch size in unconditional generative modeling introduces a cru-

cial empirical trade-off between gradient stability and optimal feature distribution

balance [18]. Larger batch sizes typically increase statistical precision and reduce

gradient variance, and our experimental analysis demonstrates that this high vari-

ance severely hinders overall feature balance, particularly for complex and subtle

distributions (e.g., Age). As shown in the tables 5.2, the moderately larger batch

(Batch = 48) consistently provides sufficient statistical precision to capture the

feature manifold more comprehensively, resulting in a better balance across Ethnicity,

Gender, and Age distributions. The Batch = 48 setting achieves superior FDo values

(as low as 0.034 for Ethnicity and 0.036 for Age), confirming that a critical level of

statistical stability is necessary to avoid mode collapse and capture underrepresented

features effectively. This observation confirms that the choice of batch size profoundly

impacts the optimization path, directly determining the model’s capacity to achieve
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Table 5.2: The balance illustration in training StyleGAN-2 across attributes such as
ethnicity, gender and age with different batch size. The fairness discrepancy (FD) metric
measures the difference between the expected classifier output and a fairness probability,
with FDf set to a uniform distribution and FDo set to the original ratio of attributes,
ensuring a structured evaluation of fairness in generative models.

(a) Ethnicity

East-asian Black South-asian Lat-hisp Mid-easten White FDo ↓ FDf ↓
Original 17.943% 5.911% 3.050% 10.741% 6.164% 56.190% — 0.448

Batch(4) 20.555% 3.110% 1.415% 9.410% 5.200% 60.310% 0.061 0.502
Batch(48) 18.960% 4.985% 2.569% 9.466% 5.204% 58.815% 0.034 0.480

(b) Gender and Age

Female Male FDo ↓ FDf ↓ (0-18) (19-36) (36-54) (54+) FDo ↓ FDf ↓
Original 55.263% 44.737% — 0.074 18.134% 50.167% 23.321% 8.377% — 0.310

Batch(4) 61.025% 38.975% 0.081 0.156 1.665% 74.750% 22.410% 1.185% 0.304 0.599
Batch(48) 58.793% 41.207% 0.067 0.141 17.007% 53.161% 23.898% 6.925% 0.036 0.344

feature distribution balance and influencing the fairness of generated samples. The

results confirm that prioritizing statistical precision, as demonstrated by the superior

performance of Batch = 48, is crucial for avoiding collapse into majority modes and

ensuring robust representativeness.

To overcome the instability of small-batch stochasticity while maintaining compre-

hensive mode coverage, Hubness sampling offers a systematic solution. This approach

targets the geometric bias in the feature space where majority features form stable

hubs and minority features reside in sparse, underrepresented regions. The model’s

natural tendency is to reinforce the hubs, leading to feature imbalance. Hubness

sampling addresses this by implementing a sampling strategy that actively identifies

and increases the sampling probability of data points located in these sparse regions

(i.e., points rarely selected as nearest neighbors). By intentionally exposing the

Discriminator to these underrepresented feature modes, hubness sampling compels

the Generator to synthesize diverse samples. This method replaces unreliable random

stochasticity with controlled, targeted sampling, thereby effectively stabilizing the

optimization process and significantly improving feature distribution balance across

the entire manifold.

5.3 Hubness Sampling Method
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Algorithm 3 Latent Hubness Sampling for GAN training

Input: a set of GAN latents S = {z1, z2, ..., zn} sampled from a standard normal
distribution N (0, I), a hyper-parameter k, the batch size x
Output: discriminator D and generator G

# Step 1
m1,2,...,n ←HubnessValue(S)
# Step 2
Rank(m1,2,...,n) mapping S
Zh = S1→x

# Step 3
X = G(Zh)
minmax logD(X) + log(1−D(G(Zh)))

The hubness sampling algorithm for training GAN models, to be different with the

previous hub algorithm (Alg 1), has been updated to ensure that a fixed number of

top hub-value latents are selected from a pool of random samples. This adjustment

helps maintain consistency in the batch size during GAN training, which is crucial

for stable model performance and effective optimization. The updated approach is

outlined in detail in Alg 3.

Instead of applying a threshold to select samples, which may lead to an unpredictable

batch size, we rank the hubness values from high to low and select the top-x latents,

where x corresponds to the batch size. This ensures that the batch size remains fixed

throughout training.

Moreover, high hub-value latents represent regions of the latent space with higher

sampling density, which are more likely to contribute to the generation of high-quality

images. The hypothesis here is that training GANs with latent inputs that have higher

hubness scores could provide more informative gradients during back-propagation,

thereby improving the model’s ability to approximate the real data distribution.

5.4 Experiment

In our experiments, we investigate how different latent sampling strategies influence

GAN training. In particular, we evaluate a hubness-aware sampling method, and

compare it against Gaussian and normalization-based sampling baselines. The

experiment focuses primarily on the training of Diffusion-GAN [145], Style-GAN2 [68]
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and GANFormer [57] recent state-of-the-art generative models, using the FFHQ [66],

LSUN (Bedroom, Church, Cat and Horse)[154], and Landscape[125] datasets.

In this section, we will examine how training latents using the hubness sampling

method enhances the fairness of GANs based on the FFHQ dataset and we apply

random latents as inference to generate images after training. The performance of the

models is evaluated using metrics such as Precision & Recall and the Fréchet Inception

Distance (FID) to assess the quality and diversity of generated images. Additionally,

we employ the CLEAM score [132] and the Fairness Discrepancy (FD) [133] to

measure the fairness of the GANs. Our proposed method demonstrates significant

improvements in both the diversity and fairness of GAN-generated content.

In this study, the hubness sampling method is also compared with Gaussian and

normalization sampling strategies to evaluate its effectiveness in improving GAN

training outcomes and normalization sampling is established as the baseline. Note

that we apply the different sampling methods to train the GANs, but the latents to

test are applied with random samplings. But we also discuss GANs trained with the

hubness sampling to test with the hubness latents.

The experiments are conducted on a PC equipped with an Intel(R) Core(TM)

i7-10875H CPU and an NVIDIA RTX 4090 GPU with 24GB of VRAM, ensuring

sufficient computational resources for training the models effectively.

5.4.1 Hubness Fairness statistic

In this section, we will present the statistical results for different categories based on

ethnicity, gender, make-up, and age using Diffusion-GAN, StyleGAN-2, and GAN-

Former. These models were trained with Gaussian sampling latents, normalization

sampling latents, and hubness sampling latents. From these results, it can be argued

that our method significantly mitigates dataset bias and enhances fairness.

Moreover, the research by [156] addresses the issue of bias in generative models,

which arises due to imbalances in training datasets, leading to under-representation

of minority groups, highlighting the problem of data coverage.
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Table 5.3: The balance illustration in training Diffusion-GAN, StyleGAN-2, and GAN-
Former across attributes such as ethnicity, age, gender, and makeup. Highlight how hubness
sampling effectively enhances tail data for study. The fairness discrepancy (FD) metric
measures the difference between the expected classifier output and a fairness probability,
with FDf set to a uniform distribution and FDo set to the original ratio of attributes,
ensuring a structured evaluation of fairness in generative models.

Ethnicity East-asian Black South-asian Lat-hisp Mid-easten White FDo ↓ FDf ↓
Original 17.943% 5.911% 3.050% 10.741% 6.164% 56.190% — 0.448

Diffusion-GAN
Hubness 17.379% 7.405% 3.173% 10.920% 6.786% 54.336% 0.025 0.426

Gaussian 19.014% 5.891% 2.883% 8.562% 5.657% 57.992% 0.031 0.470
Normal 19.009% 5.973% 2.670% 8.546% 5.762% 58.041% 0.031 0.470

StyleGAN-2
Hubness 17.621% 6.885% 3.329% 10.920% 6.341% 54.903% 0.017 0.433

Gaussian 18.689% 4.935% 2.963% 9.682% 5.146% 58.585% 0.031 0.476
Normal 18.960% 4.985% 2.569% 9.466% 5.204% 58.815% 0.034 0.480

GANFormer
Hubness 17.249% 6.726% 3.721% 11.338% 6.857% 54.113% 0.026 0.423

Gaussian 18.617% 5.689% 2.972% 10.239% 4.291% 58.192% 0.029 0.472
Normal 19.098% 5.693% 2.909% 10.766% 4.025% 57.509% 0.028 0.467

Gender Female Male FDo ↓ FDf ↓ Make-Up Yes No FDo ↓ FDf ↓
Original 55.263% 44.737% — 0.074 Original 54.503% 45.497% — 0.064

Diffusion-GAN
Hubness 55.476% 44.524% 0.003 0.077 Hubness 50.467% 49.533% 0.057 0.007

Gaussian 57.375% 42.625% 0.030 0.104 Gaussian 59.625% 40.375% 0.072 0.136
Normal 58.121% 41.879% 0.040 0.115 Normal 59.504% 40.496% 0.071 0.134

StyleGAN-2
Hubness 55.476% 44.524% 0.003 0.077 Hubness 54.622% 45.378% 0.002 0.456

Gaussian 59.803% 40.198% 0.064 0.139 Gaussian 59.504% 41.496% 0.064 0.128
Normal 59.973% 40.027% 0.067 0.141 Gaussian 59.504% 41.496% 0.064 0.128

GANFormer
Hubness 55.527% 44.473% 0.004 0.078 Hubness 54.563% 45.437% 0.001 0.065

Gaussian 57.375% 42.625% 0.030 0.104 Gaussian 57.408% 42.592% 0.041 0.105
Normal 57.121% 42.879% 0.026 0.101 Normal 57.427% 42.573% 0.041 0.105

Age (0-18) (19-36) (36-54) (54+) FDo ↓ FDf ↓
Original 18.134% 50.167% 23.321% 8.377% — 0.310

Diffusion-GAN
Hubness 18.032% 50.147% 23.382% 8.439% 0.001 0.309

Gaussian 16.756% 52.423% 24.094% 6.727% 0.032 0.340
Normal 16.316% 53.161% 24.098% 6.425% 0.041 0.348

StyleGAN-2
Hubness 18.034% 50.146% 23.381% 8.439% 0.001 0.309

Gaussian 16.276% 53.090% 23.929% 6.705% 0.039 0.347
Normal 17.007% 53.161% 23.898% 6.925% 0.036 0.344

GANFormer
Hubness 18.017% 50.200% 23.173% 8.610% 0.003 0.309

Gaussian 18.276% 51.403% 24.094% 6.227% 0.026 0.331
Normal 17.507% 51.699% 24.398% 6.396% 0.028 0.334
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Table 5.4: The radium of features with different samplings. Explore that the hubness
sampling can make the space fairness to have the similar radium and the random sampling
(gaussian and normal) will lead to the bias, because of the dataset non-fairness.

(a) The latents radium in different Ethnicity

Ethnicity East-asian Black South-asian Lat-Hisp Mid-East White
Hubness 25.155 25.076 25.264 25.181 25.345 25.404

Gaussian 25.293 24.541 24.424 24.308 24.450 25.954
Normal 25.063 24.451 24.477 24.557 24.554 25.881

(b) The latents radium in make-up and gender

Make-up Yes No Gender Yes No
Hubness 25.404 25.361 Hubness 25.587 25.474

Gaussian 25.317 25.956 Gaussian 25.768 25.577
Normal 25.378 25.586 Normal 25.678 25.400

(c) The latents radium in different age periods

Age (0-18) (19-36) (36-54) (54+)
Hubness 25.228 25.396 25.271 25.051

Gaussian 24.519 25.955 24.979 24.403
Normal 25.074 25.479 25.573 24.208

Table 5.5: Diffusion-GAN with hubness sampling, gaussian sampling and normalization
sampling trained on FFHQ, LSUN-(Church, Cat, Horse, Bedroom) and Landscape. The
hubness sampling, having the best recall score, can be helpful to improve the diversity of
the model. (1), (2) and (3) are the models trained with different sampling, (1) Norm. (2)
Gauss. (3) Hubness. (4) is model trained with hubness samplings and test with hubness
latents.

FFHQ LSUN-Church LSUN-Cat
Precision Recall FID Precision Recall FID Precision Recall FID

(1) 0.708 0.419 3.280 0.603 0.357 3.950 0.574 0.251 8.746
(2) 0.698 0.430 3.661 0.606 0.393 4.031 0.571 0.234 9.306
(3) 0.683 0.440 3.539 0.604 0.400 3.659 0.576 0.265 8.720
(4) 0.693 0.427 3.623 0.627 0.388 3.828 0.634 0.236 9.232

LSUN-Horse LSUN-Bedroom Landscape
Precision Recall FID Precision Recall FID Precision Recall FID

(1) 0.644 0.357 3.145 0.585 0.240 4.649 0.748 0.478 2.872
(2) 0.641 0.352 3.342 0.578 0.130 5.669 0.747 0.473 2.918
(3) 0.644 0.367 3.292 0.587 0.254 4.113 0.742 0.485 2.894
(4) 0.656 0.359 3.871 0.615 0.243 4.362 0.785 0.406 4.001



84 5.4 Experiment

Table 5.6: StyleGan-2 and GANFormer with hubness sampling, gaussian sampling and
normalization sampling trained on FFHQ, and LSUN-(Church, Bedroom). The hubness
sampling, having the best recall score, can be helpful to improve the diversity of the model.
(1), (2) and (3) are the models trained with different sampling, (1) Norm. (2) Gauss. (3)
Hubness. (4) is model trained with hubness samplings and test with hubness latents.

(a) StyleGAN-2.

FFHQ LSUN-Church LSUN-Bedroom
Precision Recall FID Precision Recall FID Precision Recall FID

(1) 0.680 0.439 3.583 0.594 0.467 2.680 0.565 0.368 2.813
(2) 0.685 0.437 3.587 0.595 0.480 2.502 0.565 0.353 2.836
(3) 0.668 0.464 3.570 0.595 0.497 2.626 0.563 0.373 2.755
(4) 0.683 0.457 3.578 0.612 0.484 2.726 0.578 0.361 3.008

(b) GANFormer.

FFHQ LSUN-Church LSUN-Bedroom
Precision Recall FID Precision Recall FID Precision Recall FID

(1) 0.616 0.245 9.484 0.354 0.192 12.771 0.502 0.225 5.256
(2) 0.689 0.272 6.184 0.495 0.223 7.334 0.530 0.218 5.072
(3) 0.691 0.307 5.055 0.610 0.293 4.040 0.532 0.254 5.021
(4) 0.685 0.285 4.867 0.602 0.274 4.095 0.514 0.224 5.651

Balance training with hubness samplings

As presented in Table 5.4 and Table 5.3, we analyze the coverage of various classes

within the FFHQ image dataset, which highlight the coverage of real images by

generative models. The results demonstrate that our hubness sampling method

effectively mitigates convergence issues caused by class imbalance in large-scale

datasets. This approach helps maintain a more consistent distribution of feature

radii within the latent space. Furthermore, from the statistics shown in Table 5.3,

it is evident that the ratio of minority (tailed) classes increases significantly, while

the dominance of majority classes decreases. These findings strongly indicate that

hubness sampling enhances the fairness of model training.

Hubness sampling may also enhance the discriminator’s ability to distinguish between

real and generated samples. By providing a more concentrated and representative

set of latent variables, hubness sampling allows the generator to focus on the dis-

criminator’s ”hard” regions—those that closely resemble real data. This targeted

learning helps the generator better approximate the real data manifold, ultimately

improving its performance in generating realistic samples.
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(a) Gaussian Sampling

  

(b) Normal. Sampling

  

(c) Hubness Sampling

  

(d) Gaussian Sampling

  

(e) Normal. Sampling

  

(f) Hubness Sampling

  

(g) Gaussian Sampling

  

(h) Normal. Sampling

  

(i) Hubness Sampling

Figure 5.1: The example results of trained on Gaussian sampling, Normalization sampling
and Hubness sampling with FFHQ (a,b,c), Lsun-bedroom (d,e,f) and Landscape (g,h,i)
datasets. The input latents of these trained models are random, where the red box is to
mark the low quality generative images.
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(a) Diffusion-GAN trained with FFHQ
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(b) Diffusion-GAN trained with Landscape

Figure 5.2: The examples show Diffusion-GAN trained on the FFHQ and Landscape
datasets. As demonstrated in the images, the FID scores are comparable across Hubness
sampling, Gaussian sampling, and Normalization sampling. However, Hubness sampling
consistently outperforms the other two methods in terms of Recall scores, particularly in
the tail regions.

5.4.2 Test with different dataset.

Evaluating the quality of GANs generated images is essential, as precision, recall,

and FID are frequently used metrics to quantify GAN output. As shown in Ta-

ble 5.5, Diffusion-GAN [145] was trained on various datasets, including FFHQ,

LSUN (Church, Cat, Horse, Bedroom), and Landscape. The results indicate that

the proposed sampling method achieves higher recall and improved image quality

compared to random sampling. Furthermore, our method demonstrates superior

performance, particularly when training on the LSUN-Church, Cat, and Bedroom

datasets. These findings suggest that hubness sampling may enhance the diversity

of generated images while maintaining a quality level comparable to the baseline
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normalization sampling approach.

As shown in Table 5.6a and Table 5.6b, we evaluate the performance of different

sampling methods on StyleGAN2 [68] and GANFormer [57] using the FFHQ and

LSUN datasets (Church and Bedroom). The results indicate that StyleGAN2 achieves

similar outcomes to Diffusion-GAN, with hubness sampling yielding the highest recall.

Additionally, GANFormer demonstrates improved diversity with hubness sampling,

along with better precision and FID scores, signifying that this sampling method

enhances both the quality and diversity of the generated images.

We also evaluate the hubness latents in three GANs trained using hubness

sampling. It can be observed that the hubness sampling used for training and testing

with hubness latents differs from the random sampling used for training and testing

with random latents. Moreover, training and testing with hubness latents through

hubness sampling results in higher precision and lower recall. This aligns with the

previously established trend: while hubness latents produce high-quality images,

they come at the cost of reduced diversity.

5.4.3 Example results from the different dataset

As Fig. 5.1 shows, example training results from the FFHQ, LSUN-Bedroom, and

Landscape datasets are displayed, with low-quality images highlighted by red boxes.

Additionally, in the case of the Landscape dataset, models trained with Gaussian

sampling occasionally generate blank images, also indicated by red boxes. This

further underscores the advantage of hubness sampling in generating more reliable

and higher-quality outputs.

5.4.4 Evaluating on fairness measurement

To evaluate the fairness of generative models, this study employs the CLEAM

score [132] and the Fairness Discrepancy (FD) [133]. The CLEAM score, a Boolean-

fairness metric designed for binary demographic attributes (e.g.male/female, young/not

young), quantifies fairness on a scale where values approaching 0.5 indicate greater

parity. The Fairness Discrepancy (FD) metric assesses the deviation between a prede-
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(a) StyleGAN2 trained with FFHQ

 

       

 

  

  

 

 

 

 

       

 

 

 

 

 

 

 

 

 

 

(b) StyleGAN2 trained with LSUN-Church

Figure 5.3: The examples show StyleGAN2 trained on the FFHQ and Landscape datasets.
As demonstrated in the images, the FID scores are comparable across Hubness sampling,
Gaussian sampling, and Normalization sampling. However, Hubness sampling consistently
outperforms the other two methods in terms of Recall scores, particularly in the tail regions.

fined fairness probability and the expected output of an attribute classifier. Formally,

FD = ∥p̂− Ex∼q[C(x)]∥2, where for an observed instance x sampled from the data

distribution q, the attribute classifier C yields a probabilistic output p(x) = C(x),

and p̂ represents the fairness probability vector for the binary feature, typically set

as p̂ = [1
2
, 1
2
]. Table 5.7 and 5.8 present the CLEAM scores and FD values for

StyleGAN-2, DiffusionGAN, and GANFormer with respect to gender (male/female)

and age (young/not young). The reported results suggest that the application of

hubness sampling leads to CLEAM scores closer to the ideal value of 0.5 and achieves

the lowest FD, thereby indicating that hubness sampling contributes to improved

fairness and a reduction in dataset bias.
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Table 5.7: CLEAM score and FD for StyleGAN-2, DiffusionGAN, FormerGAN trained on
FFHQ based on gender (male/female).

(a) StyleGAN-2

CLEAM FD ↓
Norm. 0.471 0.041
Gauss. 0.478 0.031
Hubness 0.487 0.018

(b) DiffusionGAN

CLEAM FD ↓
Norm. 0.486 0.020
Gauss. 0.480 0.028
Hubness 0.492 0.011

(c) FormerGAN

CLEAM FD ↓
Norm. 0.473 0.038
Gauss. 0.463 0.052
Hubness 0.478 0.031

Table 5.8: CLEAM score and FD for StyleGAN-2, DiffusionGAN, FormerGAN trained on
FFHQ based on age (young/not young).

(a) StyleGAN2

CLEAM FD ↓
Norm. 0.889 0.550
Gauss. 0.887 0.547
Hubness 0.873 0.527

(b) DiffusionGAN

CLEAM FD ↓
Norm. 0.885 0.544
Gauss. 0.881 0.539
Hubness 0.880 0.537

(c) FormerGAN

CLEAM FD ↓
Norm. 0.885 0.544
Gauss. 0.882 0.540
Hubness 0.880 0.537

5.4.5 Models with truncation trick

The truncation trick is a widely adopted technique in high-quality GAN image

generation. Consequently, we will dedicate further discussion to its application and

impact on GANs trained using our method. As shown in Tables 5.9, 5.11 and 5.10,

our sampling method follows the previously established truncation trick. Specifically,

as the truncation threshold decreases, diversity decreases while quality improves.

Notably, our method achieves the highest diversity (as indicated by the highest recall)

across various threshold levels. Meanwhile, Tables 5.9b, 5.11a and 5.10c reveal

that our method does not achieve the best FID score with random latents. However,

once the truncation threshold reaches 0.9, our method attains the best FID scores.

Following that result, it demonstrates that our method enables training with a better

balance between diversity and quality.

5.5 Conclusion and Limitation

In conclusion, we present a novel hubness latent sampling method to train the GAN-

series models, replacing the traditional Gaussian samplings and the normalization

samplings. Under our method, it is significant to improve the diversity of the GAN
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Table 5.9: Recall and FID for different truncation trick (1.0, 0.9, 0.7, 0.5) and different
dataset on StyleGAN-2. The hubness sampling is helpful to improve the diversity on the
different level of the truncation with pre-trained StyleGAN-2 on FFHQ, LSUN-Church
and LSUN-Bedroom.

(a) StyleGAN-2 trained with FFHQ testing on the truncation level to be 1.0, 0.9, 0.7, 0.5.

FFHQ-1.0 FFHQ-0.9 FFHQ-0.7 FFHQ-0.5
Recall FID Recall FID Recall FID Recall FID

Norm. 0.439 3.583 0.358 5.740 0.203 19.874 0.052 54.013
Gauss. 0.437 3.587 0.375 5.458 0.200 20.408 0.041 53.077
Hubness 0.470 3.568 0.415 4.456 0.245 17.588 0.063 50.998

(b) StyleGAN-2 trained with Lsun-Church testing on the truncation level to be
1.0, 0.9, 0.7, 0.5.

Church-1.0 Church-0.9 Church-0.7 Church-0.5
Recall FID Recall FID Recall FID Recall FID

Norm. 0.467 2.680 0.390 3.601 0.191 9.939 0.034 22.206
Gauss. 0.480 2.502 0.411 3.625 0.229 10.880 0.029 24.409
Hubness 0.497 2.626 0.425 3.406 0.236 9.769 0.038 22.016

(c) StyleGAN-2 trained with Lsun-Bedroom testing on the truncation level to be
1.0, 0.9, 0.7, 0.5.

Bedroom-1.0 Bedroom-0.9 Bedroom-0.7 Bedroom-0.5
Recall FID Recall FID Recall FID Recall FID

Norm. 0.368 2.813 0.327 3.639 0.173 12.059 0.031 31.701
Gauss. 0.353 2.836 0.298 3.896 0.151 12.039 0.024 27.645
Hubness 0.373 2.755 0.332 3.308 0.190 9.952 0.032 24.479

space and enhance the tail classes to study. To claim the reliability of our method,

we did the statistic of the feature-studies situation based on FFHQ and tested

our method on different models and dataset, all of the results show hubness latent

sampling method can notably decrease the bias to study the feature of the minors.

Although our method effectively enhances minor classes and reduces bias during

training, it comes with the drawback of requiring considerable computational time to

identify hubness samples. As table 5.12 shown, this limitation highlights the need for

further improvements in efficiency. In future work, a more computationally effective

approach should be explored to accurately and efficiently capture latent hubness

while maintaining the benefits of bias reduction and class enhancement.



5.5 Conclusion and Limitation 91

Table 5.10: Recall and FID for different truncation trick (1.0, 0.9, 0.7, 0.5) and different
dataset (FFHQ, LSUN-Church and LSUN-Bedroom) on FormerGAN. The hubness sampling
is helpful to improve the diversity on the different level of the truncation with pretrained
FormerGAN on FFHQ, LSUN-Church and LSUN-Bedroom.

(a) FormerGAN trained with FFHQ testing on the truncation level to be 1.0, 0.9, 0.7, 0.5.

FFHQ-1.0 FFHQ-0.9 FFHQ-0.7 FFHQ-0.5
Recall FID Recall FID Recall FID Recall FID

Norm. 0.245 9.484 0.196 10.622 0.136 21.101 0.062 53.009
Gauss. 0.272 6.184 0.234 6.455 0.172 12.796 0.078 28.753
Hubness 0.307 5.055 0.257 5.667 0.187 11.995 0.097 27.457

(b) FormerGAN trained with Lsun-Church testing on the truncation level to be
1.0, 0.9, 0.7, 0.5.

Church-1.0 Church-0.9 Church-0.7 Church-0.5
Recall FID Recall FID Recall FID Recall FID

Norm. 0.192 12.771 0.154 13.092 0.103 14.000 0.054 22.718
Gauss. 0.223 7.334 0.182 8.319 0.137 9.588 0.080 18.350
Hubness 0.293 4.040 0.250 4.289 0.182 7.729 0.104 15.667

(c) FormerGAN trained with Lsun-Bedroom testing on the truncation level to be
1.0, 0.9, 0.7, 0.5.

Bedroom-1.0 Bedroom-0.9 Bedroom-0.7 Bedroom-0.5
Recall FID Recall FID Recall FID Recall FID

Norm. 0.225 4.656 0.185 5.721 0.120 8.230 0.056 16.398
Gauss. 0.221 5.072 0.179 5.603 0.115 8.216 0.061 16.120
Hubness 0.254 5.021 0.197 5.544 0.125 7.756 0.087 14.873
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Table 5.11: Recall and FID for different truncation trick (1.0, 0.9, 0.7, 0.5) and different
dataset (FFHQ, LSUN-Church and LSUN-Bedroom) on Diffusion-GAN. The hubness
sampling is helpful to improve the diversity on the different level of the truncation with
pretrained Diffusion-GAN on FFHQ, LSUN-Church and LSUN-Bedroom.

(a) Diffusion-GAN trained with FFHQ testing on the truncation level to be
1.0, 0.9, 0.70.5.

FFHQ-1.0 FFHQ-0.9 FFHQ-0.7 FFHQ-0.5
Recall FID Recall FID Recall FID Recall FID

Norm. 0.419 3.280 0.360 5.430 0.189 20.986 0.048 55.503
Gauss. 0.430 3.661 0.389 5.114 0.272 16.726 0.112 48.015
Hubness 0.440 3.539 0.399 3.891 0.285 11.012 0.133 31.651

(b) Diffusion-GAN trained with Lsun-Church testing on the truncation level to be
1.0, 0.9, 0.70.5.

Church-1.0 Church-0.9 Church-0.7 Church-0.5
Recall FID Recall FID Recall FID Recall FID

Norm. 0.357 3.950 0.278 5.306 0.111 13.023 0.018 28.079
Gauss. 0.393 4.031 0.316 5.601 0.139 13.616 0.024 30.334
Hubness 0.400 3.659 0.326 4.814 0.150 11.697 0.028 23.794

(c) Diffusion-GAN trained with Lsun-Bedroom testing on the truncation level to be
1.0, 0.9, 0.70.5.

Bedroom-1.0 Bedroom-0.9 Bedroom-0.7 Bedroom-0.5
Recall FID Recall FID Recall FID Recall FID

Norm. 0.240 4.649 0.042 13.721 0.020 21.030 0.001 34.710
Gauss. 0.130 5.669 0.098 6.595 0.036 14.076 0.006 26.951
Hubness 0.254 4.113 0.211 4.847 0.098 13.089 0.017 24.130

Table 5.12: Hubness sampling was performed by selecting the top 10%, 15%, 20%, 25%, 30%
of latent vectors based on their hubness values. According to Algorithm 3, the number
of latent vectors used for training was held constant. Consequently, the original latent
space needed to contain x

10% ,
x

15% ,
x

20% ,
x

25% ,
x

30% latent vectors, respectively, to yield the
fixed training batch set size x after hubness-based selection.

Top-10% Top-15% Top-20% Top-25% Top-30% Random
Time (CUDA) 5.820s 3.144s 2.215s 1.415s 1.406s > 10ms
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Chapter 6

Conclusions, and future work

This concluding chapter synthesizes the results of the present study, focusing on the

theoretical understanding and practical implementation of the hubness phenomenon in

the context of generative modeling, particularly within the architecture of Generative

Adversarial Networks (GANs). The findings and key takeaways are presented in

Section 6.1. Section 6.2 focuses on highlighting the main contributions of this thesis,

while recommendations for future research directions are discussed in Section 6.3.

6.1 Summary

This thesis aims to deepen the understanding of the hubness phenomenon in the

latent space of generative models, with a focus on improving generative diversity

and image quality. In Section 3, we explore how hubness latents can be explored

to generate high-quality synthetic images and investigate the relationship between

hubness and the truncation trick, offering potential explanations for its effectiveness.

In Section 4, we extend the hubness phenomenon to the non-random feature space

and demonstrate its application in the precision and recall metrics for generative

model assessment, aiming to enhance evaluation efficiency. Finally, we apply hubness

sampling to train state-of-the-art GAN models. The training results reveal an

intriguing finding: the hubness sampling method not only improves the diversity of

GAN-generated outputs but also helps reduce the bias inherent in the dataset. This

work offers valuable insights into the use of hubness to optimize the performance of



94 6.2 Contributions

generative models in various tasks.

Overall, this work makes a significant contribution to understanding and leveraging

the hubness phenomenon in GANs, offering a novel perspective on high-dimensional

latent space properties and their implications for generative model performance.

6.2 Contributions

In this thesis, there are three main contributions, investigating the presence of

the hubness phenomenon in generative latent spaces and synthesizing high-quality

images by hubness-aware latents; applying hubness vectors improve the efficiency

of evaluation metrics in feature spaces; and exploiting hubness-aware sampling

techniques to improve generative diversity while mitigating dataset bias, leading to

more balanced and robust generative models.

For the hubness phenomenon in generative latent spaces, we analyze the hubness

phenomenon with the high-dimensional vectors by hubness value and discuss the

possible effect for the generative spaces, and the contributions of this area are

summarised as:

• We uncover the existence of hubness phenomenon in the GAN latent space,

which has a significant correlation with the quality of GAN synthesized images,

i.e. the proposed hubness priors and propose a novel GAN latent sampling

algorithm that identifies high-quality hub latents based on our hubness priors,

which allows efficient and high-quality image synthesis for GANs.

For improving the efficiency of precision and recall using hubness features, we analyze

redundancy in the computation algorithm and uncover the relationship between the

hubness phenomenon and redundancy. The key aspect of this area is:

• We propose efficient precision and recall (eP&R) metrics for assessing generative

models, which give almost identical results as the original P&R [78] but consume

much less time and space. Theoretically, our eP&R run in O(mn log n) time

and consume O(mn) space (m is the number of of hubs samples and m < n),
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which are much more efficient than the original P&R metrics that run in

O(n2 log n) time and consumes O(n2) space.

To enhance generative diversity, building upon previous research [84] on distribution-

aware sampling for improving GAN training, we propose a novel hubness-aware

sampling method. This approach suggests hubness sampling latents can improve the

diversity of GAN-generated outputs while mitigating dataset bias. By incorporating

hubness-aware sampling into the training process, we aim to achieve a more balanced

and representative generative model, ultimately enhancing both the quality and

variability of the generated data, as shown in the following.

• We introduce a hubness-aware sampling method for training GAN-based models,

demonstrating its effectiveness in enhancing both balance and diversity in the

generated outputs and emphasize the crucial role of sampling strategies in

GAN training, particularly their impact on latent space density and model

performance.

6.3 Future work

The research presented in this thesis has provided valuable insights into the role

of the hubness phenomenon in GANs, shedding light on its potential to enhance

generative model performance. However, it is still a main challenge to solve the

diversity estimation and distribution fitting in high dimensinal space and there are

also several works remain in this area, warranting further investigation. Future

research directions include:

• Going a step further and investigating the distribution problem in higher

dimensional spaces and how this adoption of density imbalances can be used

to improve existing models.

• Conducting user studies to assess human preferences for generated images,

complementing metric-based evaluations with subjective quality assessmen

• Exploring more effective and efficient methods for identifying true hubness

vectors, optimizing their selection for improved generative outcomes.
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• Expanding the study of hubness beyond GANs to explore its applicability

in other generative models, such as Variational Autoencoders (VAEs) and

diffusion models, to further enhance their quality, diversity, and efficiency.
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[61] Hervé Jégou, Romain Tavenard, Matthijs Douze, and Laurent Amsaleg. Search-

ing in one billion vectors: Re-rank with source coding. In 2011 IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing (ICASSP), pages

861–864, 2011.

[62] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive

growing of gans for improved quality, stability, and variation. arXiv preprint

arXiv:1710.10196, 2017.

[63] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive

growing of GANs for improved quality, stability, and variation. In International

Conference on Learning Representations, 2018.

[64] Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten,

Jaakko Lehtinen, and Timo Aila. Alias-free generative adversarial networks.

Advances in Neural Information Processing Systems, 34, 2021.

[65] Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten,

Jaakko Lehtinen, and Timo Aila. Alias-free generative adversarial networks.

In Proc. NeurIPS, 2021.

[66] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architec-

ture for generative adversarial networks. In Proceedings of the IEEE/CVF



BIBLIOGRAPHY 105

Conference on Computer Vision and Pattern Recognition, pages 4401–4410,

2019.

[67] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen,

and Timo Aila. Analyzing and improving the image quality of StyleGAN. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 8110–8119, 2020.

[68] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen,

and Timo Aila. Analyzing and improving the image quality of StyleGAN. In

Proc. CVPR, 2020.

[69] Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen Chang, Tali Dekel,

Inbar Mosseri, and Michal Irani. Imagic: Text-based real image editing with

diffusion models. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 6007–6017, 2023.

[70] Vahid Kazemi and Josephine Sullivan. One millisecond face alignment with

an ensemble of regression trees. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 1867–1874, 2014.

[71] Thomas A Keller, Jorn WT Peters, Priyank Jaini, Emiel Hoogeboom, Patrick
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