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Abstract

Despite the rapid progress in Generative Adversarial Networks (GANs), several
fundamental challenges remain under-explored, including reliable latent sampling,
scalable evaluation, and fairness in generation.

In this work, we propose a unified framework based on hubness sampling, a
principle derived from the observation that high-dimensional latent spaces exhibit
hub latents. We show that these hub latents are better trained and contribute more
to the synthesis of high-quality images. Leveraging this insight, we develop an a
priori latent sampling method that outperforms traditional approaches such as the
empirical truncation trick, both in efficiency and image quality.

Building on this foundation, we address the computational bottlenecks in eval-
uating generative models on large datasets. We introduce efficient precision and
recall (eP&R) metrics that retain fidelity to the original metrics while significantly
reducing computation through hubness-aware sampling and approximate nearest
neighbor techniques.

Finally, we extend hubness sampling to promote fairness and diversity in GAN
training. Without requiring labels or additional supervision, hubness sampling
improves representation across sensitive attributes such as ethnicity, gender, and
age, applied to various state-of-the-art GAN architectures, including StyleGAN,
Diffusion-GAN, and GANFormer.

In conclusion, this work demonstrates that hubness sampling offers a versatile
and powerful toolset for improving image quality, evaluation efficiency, and fairness
in generative modeling, while also highlighting opportunities for further optimization
in its computational cost.
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Chapter 1

Introduction

Since the 1990s, computation in high-dimensional spaces has posed significant chal-
lenges in machine learning and knowledge retrieval [4, 10, 47, 86]. As dimensionality
increases, data points become sparse, leading to the well-known “curse of dimension-
ality”, where traditional indexing and algorithmic techniques suffer from reduced
efficiency and effectiveness [29, 77]. This sparsity impacts various tasks, including
nearest-neighbor search, clustering, and classification, necessitating the development
of novel strategies to manage and exploit high-dimensional data structures effectively.

By applying advanced machine learning techniques, such as deep neural networks,
probabilistic modeling, and self-supervised learning, generative Al can synthesize
highly realistic text, images, music, and even intricate designs. This unprecedented
level of creativity and adaptability has propelled its adoption across a diverse range
of fields, from natural language processing and digital art to scientific research
and automated content generation. Models like GPT, Stable Diffusion, and music-
generating Al have demonstrated the potential to create human-like outputs with
minimal supervision, bridging the gap between artificial intelligence and human
cognition. However, despite these advances, generative models still face numerous
challenges related to controllability and reliability. Issues such as mode collapse,
unintended biases, and a lack of interpretability hinder their practical deployment
across critical applications. Moreover, ensuring unbiased and diversity in generated
content remains a significant research challenge.

Since the latent vectors in generative models reside in high-dimensional spaces,
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this thesis explores the impact of the “curse of dimensionality” within generative
spaces. By using high-dimensional theory, we aim to enhance the quality of generated
images, mitigate dataset bias, and reduce redundancy in precision and recall metrics
for assessing generative models. Through a deeper understanding of high-dimensional
sampling and its effects, this research provides novel insights into optimizing genera-

tive processes and improving model evaluation efficiency.

1.1 Background

Today, generative Artificial Intelligence (AI) has undergone remarkable advance-
ments, leading to its widespread application across numerous domains, including
linguistics, graphics, image synthesis, and video generation. These developments have
fundamentally transformed the way humans interact with technology, enabling more
sophisticated and creative Al-driven solutions. For image generation, cutting-edge
models like Stable Diffusion [112] and Style-GANI[65, 66, 68, 126] have redefined
content creation by enabling the generation of highly detailed and realistic images.
This capability has broad implications for industries such as marketing, fashion,
entertainment, and game development, where high-quality visual assets are essential.

Generative models operate in high-dimensional latent spaces, where each data
sample (e.g. latent code and feature of generative image) is represented as a high-
dimensional vector. While this allows for expressive and complex representations, it
also introduces several computational and theoretical challenges. One of the most
significant issues is the curse of dimensionality, which refers to the phenomenon
where data points become increasingly sparse as the number of dimensions grows [15].
This sparsity affects various machine learning tasks, including clustering, similarity
search, and nearest-neighbour computations.

In generative modeling, the high-dimensional nature of latent spaces impacts sam-
pling efficiency, training stability, and evaluation metrics. For example, traditional
distance-based methods, such as k-nearest neighbours (k-NN), become less reliable
in high-dimensional settings because of the concentration of distances, where the dis-

tances between most points become nearly indistinguishable, reducing the reliability
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of neighbour ranking [37, 76, 130]. Moreover, data distributions in high-dimensional
spaces often exhibit hubness, a phenomenon where certain points (hubs) appear more
frequently as nearest neighbors than others [107]. Understanding and leveraging
these properties is crucial for improving generative model training, evaluation, and
sampling strategies.
This thesis explores the interaction between generative models and high-dimensional

space, particularly focusing on the hubness phenomenon and contributes to the
broader understanding of high-dimensional generative modeling, offering new insights

into optimizing generative processes and improving model robustness.

1.2 Motivation

Generative Adversarial Networks (GANs) have achieved remarkable success in gener-
ating high-quality images by learning a structured latent space. However, sampling
meaningful and high-quality latent vectors remains a persistent challenge. Many
existing approaches rely on heuristics, such as the truncation trick, which restricts
the latent space to a high-density region to enhance sample quality, or simplistic
strategies like the “cherry-pick”. While effective in practice, these methods lack a
strong theoretical foundation and may inadvertently discard diverse yet high-quality
samples, limiting the full potential of the generative model.

In addition to improving sampling strategies, evaluating generative models also
presents computational challenges. Precision and Recall (P&R) metrics, commonly
used to assess generative performance, rely on distance computations in feature
space, often using methods like k-nearest neighbors (k-NN). Both the latent space
and the feature space in generative modeling are high-dimensional (typically with
dimensions d > 100). According to research on the hubness phenomenon [107],
high-dimensional vector spaces exhibit an inherent structural property where certain
data points, termed hubs, disproportionately appear as nearest neighbors and we
claim that this phenomenon may create computation redundancy.

Given these challenges, our work aims to explore and leverage the structural properties

of high-dimensional spaces, specifically the hubness phenomenon, in the context



4 1.4 Aim and Objectives

of generative modeling. By understanding how hubness influences both latent
space sampling and generative model evaluation, we seek to develop more efficient,
theoretically grounded approaches to improve the quality, diversity, and assessment

of generated samples.

1.3 Research questions

As discussed earlier, the primary objective of this thesis is to investigate the “curse
of dimensionality” in the latent space of generative models and develop a novel
algorithm to generate high-quality synthetic images while enhancing the efficiency of
computing precision and recall metrics for model evaluation. To achieve this, the

following research questions will be addressed:

e The hubness latents are in the high density area of the latent space, so are the

hubness latents mapping to the high-quality generated images?

e (Can leveraging hubness features enhance the computational efficiency of preci-

sion and recall metrics for generative model evaluation?

e Can hubness sampling techniques improve generative diversity and mitigate

dataset biases?

A detailed examination based on a literature review, experiments, and analysis will
be conducted for each one of the questions above. These questions answers hold the
potential to provide helpful information about the benefits and limitations of using

affordances for generative models.

1.4 Aim and Objectives

This thesis aims to investigate the hubness phenomenon widely existing in the latent
space of generative models and the hubness not always to be the negative component
in the image synthesis, also having much improvement in different targets. To achieve

this aim, the following objectives are pursued:
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e Analyzing the Relationship Between Hubness and Generative Image Quality,
GANs map latent vectors to images in a high-dimensional space, where some
latents (termed hubs) occur frequently as nearest neighbors because of the hub-
ness phenomenon, investigating how hubness latent vectors map to generated

images and assess their impact on output quality.

e Due to the presence of hubness in high-dimensional feature spaces, certain data
points frequently appear in neighbor sets and the computation of precision and
recall for the evaluation of generative models using k-NN, therefore, we aim to
analyze whether this redundancy affects computational efficiency and whether
alternative hubness-aware approaches can improve the reliability of precision

and recall metrics by optimizing the computation for generative models.

e These hub latents are often better trained and result in higher-quality image
generation. we want to design and implement hubness-aware sampling methods
for training GANs, assessing their impact on training dynamics, image quality,
and model diversity, investigating whether leveraging hub latents can enhance

model stability and improve convergence efficiency.

By pursuing these objectives, this thesis aims to contribute to discovering the
relationship between the generative models and the hubness phenomenon and to
proving that the hubness phenomenon, ‘dimensional curve’, is not always the negative

effect for the deep learning.

1.5 Outline

This outline presents a concise summary of the thesis’ content comprised of six
chapters, aiming to provide a clear overview of the research presented in the following

chapters.

Chapter 2 provides a comprehensive review of the relevant literature on various deep
generative models, along with their associated evaluation metrics. It also explores the

hubness phenomenon and discusses existing reduction techniques. Furthermore, the
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chapter introduces different sampling strategies for generative models, highlighting

their significance in improving generation quality and efficiency.

Chapter 3 explores the hubness phenomenon in the latent space of pretrained GAN
models, focusing on leveraging hubness priors for high-quality latent sampling. This
chapter introduces, for the first time, a formal definition of the hubness value in the
latent space and investigates its correlation with the quality of synthesized images.
Furthermore, it examines the potential relationship between the truncation trick and
hubness points, suggesting that truncation may inherently align with hubness-aware

sampling strategies.

Chapter 4 investigates the redundancy in precision and recall metrics assessments
for generative models, highlighting how feature vectors with high hubness values
can be leveraged to reduce redundancy and enhance computational efficiency. This
chapter also presents extensive experiments across various models and datasets,

demonstrating the effectiveness and applicability of the proposed approach.

Chapter 5 introduces the hubness-aware sampling method, which aims to enhance
the diversity of GAN-generated outputs while mitigating class imbalance within the
dataset. By leveraging hubness samplings, this approach helps reduce bias across

different classes, leading to a more balanced and representative generative model.

Chapter 6 concludes the thesis by summarising the main contributions and achieve-
ments of this research work. In addition, the limitations and challenges of the
approaches developed in this thesis are discussed, and propose future research direc-

tions.

Overall, this thesis aims to contribute to the ongoing efforts to enhance the under-
standing and utilization of the hubness phenomenon in generative models, particularly
in GANs. By investigating its impact on image quality, model diversity, and evalua-

tion efficiency, this work provides valuable insights that can inform future advances
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in generative Al and high-dimensional data analysis.



Chapter 2

Literature review

2.1 Overview

This chapter begins by introducing the fundamental concepts of deep generative
models, highlighting some of the most significant models and their applications. The
primary objective of generative models is to learn the patterns and distribution of
a given dataset (training set) in order to generate new data that is similar to the
original data.

Generative models can generally be categorized into four types: Generative Adver-
sarial Networks (GANs), Likelihood-based Models, Energy-based Models and Hybrid
Models. These models allow for the generation of different images by manipulating
latent vectors, providing versatility in creative and analytical applications.

The evaluation metrics for generative models differ from those used for discriminative
models, which typically focus on accuracy with respect to labels. Instead, generative
model metrics assess the quality of generated data by measuring the distributional
distance between the generated images and real images. Key metrics include:
1)Fréchet Inception Distance (FID) and Inception Score (IS) 2)Kernel Inception
Distance (KID) 3)Precision and Recall (P&R) In addition to discussing these metrics,
this chapter will introduce the concept of hubness, a phenomenon that commonly
occurs in high-dimensional spaces [107, 135, 136, 137]. Hubness has been shown to
affect real data classification, particularly in areas such as gene expression, time-series

data, and electroencephalography.
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Figure 2.1: Overview of deep generative models, including generative adversarial networks
(GAN), energy-based models, variational autoencoder (VAE), flow-based models, and
diffusion models.

This thesis will specifically focus on the application of generative models in image
generation, discussing the most state-of-the-art and widely used models in this

domain.

2.2 Deep Generative Models

Generative models are a class of machine learning algorithms that focus on generating
new data points from an underlying distribution. These models learn to understand
the distribution of the input data and can generate new samples that are similar to
the training data. Deep generative models have achieved impressive results in image-
generation tasks. As discussed before, Major models include four types, Generative
Adversarial Networks (GANs), Likelihood-based Models, Energy-based Models, and
Hybrid Models, which will be reviewed below respectively and the structures of these

models are shown in the Fig. 2.1.

2.2.1 Generative Adversarial Networks (GANs).

GANSs [42] train two neural networks concurrently: a generator network that produces

synthetic outputs, and a discriminator network that distinguishes real from synthetic
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data. The two networks are pitted against each other in a minimax adversarial
game, where the generator tries to fool the discriminator and the discriminator
tries to identify fakes. This creates a constant evolutionary pressure that enables
GANSs to produce increasingly realistic outputs. A core innovation of GANs is
using the discriminator not just for evaluation, but directly in the training loop
to guide the generator. GANs can produce sharp and photorealistic images, but
are notoriously difficult to train due to mode collapse, optimization instability, and
other challenges. This has led to significant efforts to stabilize GAN training [7,
46, 97, 105, 164]. Along with these efforts, researchers have extended the synthesis
capabilities of GANs to a variety of image generation tasks, including unconditional
image synthesis [62, 65, 66, 68, 120], conditional image synthesis [18, 96, 97], image-
to-image translation [58, 103, 165, 166], image editing [1, 2], etc.

2.2.2 Energy-based Models

Different with the likelihood-based models, the core component of Energy-based
models is the energy function, E(z), where x is the input, which associate the
measured compatibility, i.e. energy value, to each configuration of the variables [81,
131]. The foundation of the early energy-based models is Hopfield Network [55, 56]
and Boltzmann Machine [3], discussing the idea of an energy function applied on model
training. The modern generative Energy-based Models have evolved to handle more
complex data and larger datasets, often using deep neural networks to parameterize
the energy function, e.g. EBM [36], DDGM [72], f-EBM [155] and GEBM [44].
Despite their potential, generative EBMs face several challenges. 1)Computational
Complexity is the primary challenge in training, because of partition function,
normalizing the energy function into the probability distribution [155, 163]. 2)
Sampling Efficiency: Generating samples from a trained EBM can be computationally
expensive due to the need for MCMC methods, which may require many iterations

to converge to low-energy states [5, 53, 100].

2.2.3 Likelihood-based Models
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Likelihood-based models are to learn the probability distribution of the training data,
p(z), where x represents a data instance (e.g., an image or a sentence). They aim
to maximize the likelihood of the observed data. Autoregressive models (ARMs),
variational autoencoders (VAEs), normalizing flows, and diffusion models are the

four main types of likelihood-based generative models.

Variational Autoencoders (VAEs).

VAESs use variational inference to approximate posterior inference, training an encoder
network to map inputs to a latent space z and a decoder network to reconstruct
the inputs from the latents [74]. Mathematicly, the VAEs should encourage the
latent distribution to possess distributions (¢(z)) closed to the prior distribution
(p(z|x)); hence it can be write as KL(p(z|x)||g(2)), where KL is Kullback-Leibler(KL)
divergence. Despite their elegant theory, images generated by early VAEs are usually
blurry, which was improved by incorporating latent quantization to produce models
like VQ-VAE [142] and VQ-VAE2 [109] that can synthesize sharp and high-resolution

images.

Normalizing Flows

Normalizing flows are trained on factorized distributions [32, 102, 110], enabling
efficient and exact evaluation of both sampling and density estimation. These models
effectively transform a simple normal distribution into a complex distribution that
closely approximates the real data distribution. To enhance and optimize these mod-
els, REALNVP [33] introduced non-volume preserving transformations, improving
the compatibility with unsupervised learning tasks such as sampling and log-density
estimation. GLOW [75] further advanced this framework by applying invertible 1x1
convolutions to replace fixed permutations, thereby enhancing the model’s learning
capabilities without increasing computational time. However, training flow models
often requires managing the constraints imposed by the Jacobian determinant, ne-
cessitating deeper models to achieve desired performance levels. To address this,
Self-Normalizing Flows were proposed, reducing computational complexity while

optimizing the model to achieve comparable data likelihood values [71].
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Diffusion Models.

Diffusion models [31, 54, 127] train a neural network to reverse a stochastic diffusion
process. They start with a data sample x and apply a diffusion process that gradually
adds Gaussian noise over multiple timesteps to arrive at a noisy sample z;, and then
it is trained to predict the noise added at each timestep during the forward process,
enabling the reconstruction of the original image x from its noisy versions x;. By
training the model to denoise the diffused samples, it learns to generate high-quality
samples. Diffusion models avoid problematic generator-discriminator training and
provide exact log-likelihoods. However, sampling requires running the full diffusion
process in reverse, which is computationally expensive. Extensions like DDIM [128]
have made diffusion models more efficient. Thanks to their training stability, diffusion
models have been widely used in text-to-image synthesis and editing tasks, including
the Latent Diffusion model [112] that inspired Stable Diffusion, DALLE-2 [108],
Imagen [115], DreamBooth [114], MUSE [23].

Recent advancements in diffusion models, when combined with language models,
have introduced the concept of the prompt space, enabling text-driven synthesis and
editing of images [51, 143]. This approach demonstrates the existence of concept
subspaces within the text embedding space of diffusion models. Diffusion models
have seen widespread application across various domains, including super-resolution
(SR) [41, 82, 158], image restoration [89, 90, 149, 167], image editing [28, 51, 69, 152,
162], and image recognition [12, 24, 48, 153].

Autoregressive Models (ARMs)

Generative Autoregressive models (GARMs), grounded in Bayesian networks, gener-
ate each data point by conditioning on preceding ones, and they have been widely
applied in the generation of images, text, and video. In [140, 141], the introduction
of Pixel CNN and PixelRNN demonstrated the feasibility of generating complex
natural images one pixel and one color channel at a time, necessitating thousands of
predictions per image [139]. This sequential generation process introduces significant
limitations, including slow inference and exposure bias, where errors can accumulate

over time. Furthermore, because GARMSs predict the next element as a single best
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guess, they may constrain model diversity, reduce the exploration of alternative
possibilities in the output sequence, and struggle with capturing multimodal data

distributions.

2.2.4 Hybrid Models

These combine elements of different types of generative models, such as VAEs with
GANs (VAE-GANS) [80, 95, 157], Energy-based GANs [30, 104, 163], Energy-based
Diffusion [35, 40] and Diffusion with GANs [145, 150], to leverage the strengths of
both approaches.These models have become increasingly popular for their ability
to generate high-quality data and capture complex data distributions. Generative
hybrid models represent a significant advancement in the field of machine learning by
integrating the strengths of various generative approaches, demonstrating their ability

to generate high-quality, realistic data while capturing complex data distributions.

2.3 DMetrics for Assessing Deep Generative Models

Metrics serve as essential tools for evaluating the performance and quality of deep
models, playing a crucial role in validating their effectiveness. This section will focus
on the metrics used specifically for assessing generative models. Unlike traditional
models, where accuracy is a primary measure, generative models are evaluated based
on the distance between the distributions of the real dataset and the generated
dataset. The discussion will cover four of the most widely used metrics: Fréchet
Inception Distance (FID), Inception Score (IS), Kernel Inception Distance (KID),

and Precision & Recall.

2.3.1 Fréchet Inception Distance (FID)

The FID metric, introduced by [52], computes the Fréchet distance between features
of the real and generated images extracted by an Inception-V3 feature extractor.
A lower FID score indicates a higher similarity between the distributions of real

and generated images, implying better image quality and diversity in the generated
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samples. Thus, the computation of FID consumes O(n) time and space as the feature
extraction takes O(n) time and space while the Fréchet distance computation also

takes linear time O(n) when using a fixed Inception-V3 network.

2.3.2 Inception Score (IS)

The IS metric, proposed by [117], uses a pre-trained Inception-v3 classification model
to compute the conditional label distribution p(y|z) for each generated image x.
IS measures two main aspects: i) the diversity of generated images, indicated by
the entropy of p(y|x), and the precision of generated images, indicated by the KL
divergence between the marginal distribution p(y) and the conditional distribution
p(y|z) for each x. A higher IS generally indicates the model can generate more
realistic and diverse images. Similar to that of FID, the computation of IS consumes
O(n) time and space as the feature extraction takes O(n) time and space while the
computation of IS metric takes linear time O(n).

The FID and IS metrics were improved by [27] to FID., and IS, which apply
Quasi-Monte Carlo integration to reduce bias and improve reliability of them for

finite samples.

2.3.3 Kernel Inception Distance (KID)

KID is also a widely used metric for generative models, computing the maximum
mean discrepancy (MMD) of the real distriution and generative distribution with
kernel function [6, 17]. MMD is an integral probability metric to compare the
difference between X and Y using E,.,[f(2)] and E,,[f(y)] (z € X, y € Y) to
denote expectations with respect to p and ¢, where  ~ p indicates x has distribution
p and y ~ ¢ indicates y has distribution ¢ [45]. As demonstrated in [14], the empirical
Wasserstein distance, commonly used in FID, can introduce bias in the gradients,
particularly with finite sample sizes, which negatively impacts stochastic gradient
descent and expectation estimation. Consequently, when FID is computed on small
sample sizes, this bias can become significant. To address this issue, KID utilizes

MMD by mapping inputs into Reproducing Kernel Hilbert Spaces (RKHS) with unit
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els.(a)(b): The traditional precision and recall computing with the labels to compute
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Positive and FN: False Negative. (c)(d): The illustration of the precision and recall for
assessing generative models.
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balls, thereby ensuring that, unlike FID, KID remains unbiased even with smaller

sample sizes.

2.3.4 Precision and Recall (P&R).

Despite their effectiveness, FID and IS metrics are single scores and thus cannot
differentiate between specific failure modes, e.g., mode dropping or collapsing [88],
or provide insights into the underlying causes of poor performance. The P&R
metrics were employed to address this issue [78, 116, 124]. In short, precision
measures the percentage of generated samples that are considered high-quality and
indistinguishable from real data, indicating the quality of generated samples; recall
measures the percentage of all potential high-quality samples that the generator
was able to produce, indicating the diversity of generated samples, as shown in the
Fig. 2.2.

Specifically, [116] formulated P&R through relative probabilistic densities between
the distributions of real and generated images, which are non-trivial to estimate.
Addressing this issue, they proposed a practical algorithm based on the maximal
achievable values of an alternative definition of P&R. Their method was generalized
by [124] to accommodate arbitrary distributions and link P&R to type I and type
IT errors of likelihood ratio classifiers. Observing that the P&R implementation
proposed by [116] relies on relative densities and thus cannot correctly identify mode
collapse/truncation, [78] propose to model the real and generated image manifolds
directly using the k-nearest neighbors of samples, which is the state-of-the-art
(SOTA) version of P&R for assessing generative models. Although more accurate,
their method is computationally expensive as k-NN consumes O(n?) time and space,
making their metrics infeasible to compute using commodity hardware on the large

datasets used by modern deep generative models.

2.4 Hubness Phenomenon

Hubness is a widely recognized phenomenon of nearest neighbors search in high-

dimensional spaces that arises from the well-known “curse of dimensionality” [107].
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Figure 2.3: Hubness Phenomenon in random samplings (x € R%). Ny(x) is the number
of vectors from x that have = € x included in their list of k nearest neighbors [107], also
called hubs value, and the more detail you can see in Fig 2.4 and in this figure, we assume
the k to be 3. In the low-dimension samplings, (a) and (b), the distribution of the N (x) is
not obviously skewed. In the high-dimension sampings, (c¢) and (d), the distribution skews
to the right and there are some example with large Ny (x)
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m=4

m: hubs value

Figure 2.4: The example to explain the hubness phenomenon, we first randomly sample n
latents from the latent distribution and perform k-nearest neighbour on them. Then, we
compute the hubs value m of a given latent as how many times it is among the k-nearest
neighbours of other latents. For example, the hubs value of the red latent is 4 and that of
the green point is 7.

It pertains to the inherent characteristics of data distributions in high-dimensional
spaces and reveals a counter-intuitive fact: even with uniform distributions, high
dimensionality gives rise to the emergence of “popular” nearest neighbors [98, 99, 107],
as Fig 2.3 shown, i.e., points that are significantly more likely to be among the
k-nearest neighbors of other points within a given sample set, denoted as hubs points.
In other words, the hub points are those that are much more likely to be among
the k-nearest neighbours of other points in a sample set. This fact poses challenges
for algorithms that rely on nearest neighbor search. Addressing such challenges,
hubness-aware methods were proposed and applied in various areas, e.g. gene
expression classification [20, 21], time-series classification [135], electroencephalograph

classification [22] and few/zero-shot learning [34, 122, 160].

2.4.1 Hubness Reduction Method

Hubness phenomenon is described as a kind of the impact of the notorious “curse of
dimensionality”, appearing disproportionately often as nearest neighbors, skewing

learning algorithms and causing performance issues in tasks like classification or
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Figure 2.5: The illustration of the truncation trick which truncates randomly sampled
latents to their mean with a scaling parameter ¢. The smaller ¢ will make the latents
closer to the mean and get the higher quality of generative images; in versa, the latent will
far away to the center and the generative quality will decrease.

clustering. Several methods have been proposed to mitigate the effects of hubness,
e.g.Mutual Proximity (MP) measure, Local Scaling (LS) measure, Shared-Neighbors
(SN) measures, Two dissimilarity (DSL) measures, Hubness-aware k-Nearest Neighbor
(H-kNN) and Z-Score (ZS) Normalization. The main idea to mitigate the hubness, it
is to balance the two points (z,y) distance d,, and the related surrounding points,
which can flatten the the density gradient which is expressed as a crucial reason to
cause the hubness [49].

However, instead of mitigation, recent works have demonstrated that depending on
the task, the hubness phenomenon can be very useful. This thesis will show that the
hubness phenomenon can be used as a prior to identify high-quality latents in GAN
latent spaces. Following the same philosophy, this work introduces a new method
to improve the computational efficiency of P&R metrics and the diversity of the

GAN-series models’ manifold by incorporating hubness-aware sampling.

2.5 GAN Latent Sampling.
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To avoid the issue of unstable image generation without curation, “cherry-picking”,
and obtain high-quality synthesized images, three workaround solutions were pro-
posed: i) the truncation trick [18, 66, 93] as shown in Fig. 2.5 ii) Importance
Sampling [19, 84| and iii) Interpolating in Latent Space [147]. Between them, the
first approach is a naive solution as one can always “cherry-pick” high-quality ones
from a set of synthesized images in an a posteriori manner with visual inspection.
Obviously, this method is inefficient as it requires intensive human labor and is
not applicable for large-scale image synthesis tasks. Unlike “cherry-picking”, the
truncation trick is an automatic method that can synthesize high-quality images
by normalizing sampled latents to be close to their mean. However, it is a purely
empirical method with few insights. Importance sampling is employed to enhance
the efficiency of the sampling process, particularly in regions of the latent space that
are more likely to yield high-quality samples. Additionally, interpolating between
points in the latent space facilitates the generation of smooth transitions between
samples, which is valuable for investigating the continuity and underlying structure
of the latent space. In this thesis, it proposes a novel latent sampling method for
GANSs based on the observation of hubness phenomenon in their high dimensional
latent spaces, which is efficient with solid theoretical insights and also shows that
the truncation trick is a naive approximation of our method due to the “central

clustering effect” of hub latents.

2.6 Fairness in Generative Models

Fairness in training is a widely studied topic in classification tasks, aiming to reduce
biases in input data, ensure independent decision-making, and promote equitable pre-
dictions across different groups, even when those groups exhibit distinct characteristics
or historical disparities. In contrast, the objective of fairness in generative models
is to achieve balanced training, also known as equal representation, which refers to
generating samples that follow a uniform distribution across categories [118, 134, 151].
Recent research suggests that the fairness of GAN models can be enhanced by pre-

learning the feature distribution through approaches such as weak supervision and
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transfer learning [25, 134].

Meanwhile, fairness research is also crucial in text-to-image diffusion models,
where the objective is to ensure that outputs neither favor nor exclude specific
groups based on various attributes. In [38], a fair diffusion model is introduced
by integrating fair instructions and fair guidance with a text encoder to promote
equitable generation. Furthermore, methods for optimizing inclusive prompts and
cross-attention maps are proposed in [134, 148, 159] to mitigate dataset bias and
improve fairness in diffusion models. To address training set bias, weakly supervised
learning is employed through density ratio estimation. However, this approach is
prone to estimation errors due to the density-chasm problem. Recent work [73]
proposes a time-dependent density ratio estimation method to alleviate this issue.

Additionally, [132] introduces a fairness metric for generative models using statis-
tical methods, offering a quantitative framework for evaluating fairness in generated
outputs. In recent advancements, the Al-Face benchmark [87] has been developed to

facilitate the training, evaluation, and analysis of fairness in generative face models.

2.7 Summary

The literature review provides a comprehensive overview of deep generative models,
focusing on their theory, key types, applications, and the metrics used for their
evaluation. It begins by introducing the concept of generative models, which are
designed to learn patterns and distributions from datasets to generate new, similar
data.

The review categorizes generative models into four main types: Generative Adversarial
Networks (GANs), Likelihood-based Models, Energy-based Models, and Hybrid
Models. GANs involve a generator and a discriminator in a competitive training
process, which has proven effective in producing high-quality, realistic images, despite
challenges like mode collapse and optimization instability. Likelihood-based models,
including Autoregressive Models, Variational Autoencoders (VAEs), Normalizing
Flows, and Diffusion Models, offer different approaches to generating data, each

with its own strengths and limitations in terms of complexity, training stability, and
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output quality. Energy-based models, which utilize an energy function to measure the
compatibility of different data configurations, are also discussed. These models, while
promising, face challenges such as computational complexity and sampling efficiency.
Hybrid models, which combine elements of different generative approaches, represent
an advanced strategy to leverage the strengths of multiple methods, enhancing the
quality and diversity of generated data.

The review also touches on the “hubness” phenomenon in high-dimensional spaces,
which impacts data classification and is a focus of this thesis in relation to GANs.
In addition, it covers key datasets used in training deep generative models, such as
LSUN, AFHQ, CelebA-HQ and FFHQ.

Finally, the review discusses metrics for assessing the quality of generative models.
Unlike traditional discrimination models that are evaluated based on accuracy,
generative models are assessed by measuring the distributional distance between
generated and real data. Metrics such as Fréchet Inception Distance (FID), Inception
Score (IS), Kernel Inception Distance (KID), and Precision & Recall are highlighted
as the most popular methods for evaluating the performance of deep generative
models. These tools are crucial for ensuring the effectiveness of the models and

guiding further improvements.
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Chapter 3

Hubness Sampling for High-Quality
GAN Latent Sampling

Despite the extensive studies on Generative Adversarial Networks (GANs), how
to reliably sample high-quality images from their latent spaces remains an under-
explored topic. In this section, we propose a novel GAN latent sampling method by
exploring and exploiting the hubness priors of GAN latent distributions. Our key
insight is that the high dimensionality of the GAN latent space will inevitably lead to
the emergence of hub latents that usually have much larger sampling densities than
other latents in the latent space. As a result, these hub latents are better trained and
thus contribute more to the synthesis of high-quality images. Unlike the a posteriori
“cherry-picking”, our method is highly efficient as it is an a priori method that
identifies high-quality latents before the synthesis of images. Furthermore, we show
that the well-known but purely empirical truncation trick is a naive approximation
of the central clustering effect of hub latents, which not only uncovers the rationale
of the truncation trick, but also indicates the superiority and fundamentality of
our method. Extensive experimental results demonstrate the effectiveness of the

proposed method.
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Figure 3.1: Our method vs. random latent sampling and the truncation trick [18, 66, 93].
All images are generated using StyleGAN2 [67]. (a) Random latent sampling yields
both high-quality (green box) and low-quality (red box) images; (b) The truncation trick
improves the quality of synthesized images by empirically truncating randomly sampled
latents according to a scaling parameter ¢ (e.g. 1» = 0.7), which is a naive approximation
of the “central clustering effect” of our hub latents; (¢) Our method identifies high-quality
latents as the hub latents that are more likely to be among the k-nearest neighbors of other
latents [107]. The blue and orange rings illustrate the high-dimensional Gaussian (latent)
distribution [94] and their truncated version respectively.

3.1 Introduction

Generative adversarial networks (GANs) are a type of deep generative models
that have revolutionized a variety of applications in computer vision and computer
graphics, e.g. image synthesis [66, 103, 166], image editing [1, 2, 138], image-to-image
translation [58, 111, 165]. Among them, novel image synthesis via random latent
sampling is the most fundamental. It not only generates novel instances from the
data distribution, but also measures how close the learned distribution is to the data
distribution. Through the lens of the quality of synthesized images, we have witnessed
significant progress in GANs over the past several years. Specifically, starting from
the groundbreaking vanilla GAN [43], DCGAN [106] laid the foundation for GAN
architectures as deep convolutional neural networks; ProGAN [63] showed that GANs
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can generate high-quality images at high resolutions; BigGAN [18] addressed the
problem of class-conditional image synthesis; the StyleGAN series [64, 66, 67] further
boosted the quality and controllability of synthesized images with their style-based

generator architectures and several novel techniques.

Nevertheless, with such improvements, the quality variance among images gen-
erated by randomly sampled latents has become increasingly striking (Fig. 3.1).
Without curation, the quality of GAN synthesized images can occasionally be very
low, which hinders the deployment of GANs in real-world applications. As a naive
solution, “cherry-picking” is commonly used to select high-quality images from those
synthesized with randomly sampled latents in an a posteriori manner. However, in the
absence of reliable quantitative measures of the quality of a single GAN-synthesized
image!, existing “cherry-picking” methods are barely manual, thereby being tedious
and unscalable. Addressing this issue, the well-known “truncation trick” [18, 66, 93]
was proposed, which “truncates” randomly sampled GAN latents towards their mean
based on the observation that the images synthesized from close-to-mean latents
are usually of higher quality. Although effective, the truncation trick is a purely

empirical “trick” that brings few new insights to the community.

In this chapter, we propose a novel latent sampling method for GANs by exploring
and exploiting the hubness phenomenon [107] in their latent spaces, which facilitates
their synthesis of high-quality images in an a priori manner. Specifically, our key
insights include: i) the high dimensionality of the GAN latent space will inevitably
lead to the emergence of hub latents that are much more likely to be among the
nearest neighbors of other latents in the latent space, .e. the hubness phenomenon;
ii) in general, the quality of a GAN synthesized image is positively correlated with
the hub value of its corresponding latent, i.e. the number of times a latent becomes
a k-nearest neighbor (k-NN) of other latents in a given latent sample set. We
believe that this positive correlation originates from the well-known close relationship
between £-NN and density estimation. In other words, a higher hub value usually

indicates a higher sampling density, which has a positive effect on the training and

IExisting quantitative measures like FID and Inception scores are all statistical ones that are
only applicable to distributions.
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thus the quality of synthesized images. Therefore, we formulate the above insights
as the proposed hubness priors and propose a corresponding method to sample
high-quality GAN latents that yield high-quality synthesized images. Compared to
“cherry-picking”, our method is highly efficient as it is a priori (i.e. our high-quality
latents are determined before the synthesis of images) and automatic (i.e. with little
human-intervention). Furthermore, we show that the well-known truncation trick
is a naive approximation of the “central clustering effect” of our hub latents [107].
This not only uncovers the rationale of the truncation trick, but also indicates
that our method is superior and more fundamental. Extensive experimental results

demonstrate the effectiveness of the proposed method.

In summary, our contributions include:

e We uncover the existence of hubness phenomenon in the GAN latent space,
which has a significant correlation with the quality of GAN synthesized images,

1.e. the proposed hubness priors.

e We propose a novel GAN latent sampling algorithm that identifies high-quality
hub latents based on our hubness priors, which allows efficient and high-quality

image synthesis for GANs.

e We show that the well-known truncation trick is a naive approximation of
the “central clustering effect” of our hub latents. This not only uncovers the
rationale of the truncation trick, but also indicates that our method is superior

and more fundamental.

3.2 Hubness Priors for GAN Latent Sampling

In this section, we first explore the hubness of GAN latents (Section 3.2.1) and then
exploit the insights obtained as priors to develop a novel algorithm for the sampling

of high-quality latents for GANs (Section 3.2.2).
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Figure 3.3: Distributions of m-hub latents for state-of-the-art GANs, k = 5,7,10 (the k-NN algorithm) and n = 10000 (size of latent sample set
S). *: Although both are 512-dimensional, the ProGAN [63] latents are sampled directly from N(0, I) while the StyleGAN latents further
normalized the sampled latents to be of the same norm [66]. All distributions are highly tailed to the right, which demonstrates the existence
of hubness phenomenon [107] in GAN latent spaces.
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g

(a) Baseline | (b) Our method

Figure 3.4: (a) and (b): Effectiveness of our method (hubness priors) against the baseline
(random latent sampling). We use n = 10000, £ = 5 and hub value threshold ¢ = 50 in
our method. The StyleGAN2 [67] images generated using our method are almost always
of high quality while those generated using the baseline contain both high-quality and
low-quality (red boxes) results. (c): Low-quality (LQ) StyleGAN2 [67] images generated
using the reversed version of our method, i.e. Algorithm 2, where n = 10000, k = 5 and
hub value threshold t;, = 1. Almost all images are of low quality.

3.2.1 Exploring Hubness of GAN Latents

Inspired by previous studies on the hubness phenomenon of data distributions in
high dimensional space [107], let Z

subseteqR? be a d-dimensional GAN latent space, S = {21, 29,..., 2.}, z; € Z be a
set of latents sampled from a d-dimensional standard normal distribution N (0, I), k

be the parameter of the k-nearest neighbor algorithm, we define m-hub latents as:

Definition 3.2.1. Latent code z; (1 < ¢ < n) is an m-hub latent if z; is among the
k-nearest neighbors of m (m < n) sampled latents in S, where m is the hub value of

Zi-

With the above definition, we explore the hubness of GAN latents by investigating
the distributions of m-hub latents in the latent spaces of state-of-the-art GANs [18,
63, 64, 66, 67]. As Fig. 3.2 and 3.3 shows, it can be observed that the distributions
of m-hub latents are highly tailed to the right. Thus, we argue that the samples
of GAN latents are not uniformly distributed and that a small portion of them are
much more likely to be close to other latents in the latent space, i.e., with large
m. Therefore, these latents tend to have larger sampling densities and are thus

better trained than other latents during GAN training. Based on the heuristics that
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well-trained latents are more likely to yield high-quality images, we conjecture that
the hubness phenomenon can be used as priors to identify GAN latents that generate

high-quality results:

Conjecture 3.2.2. (Hubness Priors) The quality of GAN synthesized images and

the hub values m of their corresponding latents are positively correlated.

Please see Section 3.3.2 for an empirical justification of our conjecture.

Algorithm 1 GAN Latent Sampling with Hubness Priors
Input: a set of GAN latents S = {21, 22, ..., 2, } randomly sampled from a standard
normal distribution N(0, I), a hyper-parameter k, a threshold ¢
Output: S,
# Step 1
mio,..n < 0
for : < 1ton do
{idxy,idxs, ...idxx } < k-NN(z)
for j < 1to k do
Midx; — Midx; +1
end for
end for
# Step 2
Shq < @
for i < 1 ton do
if m; >t then
Shq — Shq U z;
end if
end for

Remark on Random Latent Sampling Previously, it was widely believed that
GAN latents are unbiased as they are sampled from a simple but well-behaved noise
distribution, i.e., the standard normal distribution N (0, 7). In high-dimensional
spaces, the concentration of measure phenomenon causes the mass of this distribution
to concentrate on a thin hyperspherical shell [94]. Since the distribution is isotropic,
this geometry implies that all sampled latents effectively approximate a uniform
distribution across the shell’s surface; they possess similar norms? and should theo-
retically contribute to the sampling process in an equivalent manner. While in this

chapter, we counter this popular belief by showing that GAN latents are actually

2In latest implementations [64, 66, 67], the latents are explicitly normalized to be of the same
norm.
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biased from the observation of hubness phenomenon in GAN latent spaces. Among
all latents, the hub ones tend to have higher sampling densities and are thus better

trained by GANs, thereby generating higher quality images.

3.2.2 Exploiting Hubness Priors for High-quality GAN La-

tent Sampling

As Conjecture 3.2.2 states, the identification of high-quality GAN latents relies on
their hub values m. Thus, given a set of GAN latents S = {z1, 2, ..., 2, } randomly
sampled from a standard normal distribution N(0, I), a hyper-parameter k, and a
threshold ¢, we utilize the proposed hubness priors and design a simple two-step
GAN latent sampling algorithm: First, we compute the hub value m; for each latent
z; € S using a standard k-NN (k-nearest neighbor) algorithm; Second, we identify
z; as a high-quality latent if m; is larger than a user-defined threshold ¢, and add
z; into a set Spy. The set Sy, is the output of our algorithm, which contains all the
high-quality latents identified. Algorithm 1 shows the pseudocode of our algorithm.
Note that our algorithm is fundamental and widely applicable to different types
of GANs as long as they sample latents from a standard normal distribution, e.g.

conditional GANs [18].

Relationship to Truncation Trick. To our knowledge, the truncation trick
[18, 66, 93] is the only a priori method to sample high-quality GAN latents before our
work, which is based on a heuristic that high-quality latents are those close to their
mean. However, such a heuristic is purely empirical with few insights. Surprisingly,
the proposed hubness priors have revealed the rationale of the truncation trick: the
hub latents obtained by our method tend to cluster towards their mean [107]. Thus,
we argue that the well-known truncation trick is a naive approximation of our method
as it only captures near-mean hub latents but overlooks those that are relatively far

from the mean. Please see Section 3.3.6 for an empirical justification of our claims.
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N

(e) StyleGAN3-HQ (f) StyleGAN3-LQ

Figure 3.5: Performance of our method on ProGAN [63], BigGAN [18] and StyleGAN3 [64].
It can be observed that our method works well on all GAN architectures. (a) and (b), (c)
and (d), (e) and (f) are images synthesized using high-quality (HQ) and low-quality (LQ)
latents obtained by our method with ProGAN, BigGAN and StyleGAN3 respectively. We
use Algorithm 1 to obtain HQ latents and Algorithm 2 to obtain LQ latents respectively.
We use n = 10000, £ = 5, t = 50 and #;, = 1.
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(e) StyleGAN-Horse-HQ (f) StyleGAN-Horse-LQ

Figure 3.6: Performance of our method on StyleGAN2 pretrained on different image
domains. It can be observed that our method works well on all domains. (a) and (b),
(c) and (d) are images synthesized from high-quality (HQ) and low-quality (LQ) latents
obtained by our method using a StyleGAN2 pretrained on the cars domain and the cats
domain, respectively. We use Algorithm 1 to obtain HQ latents and Algorithm 2 to obtain
LQ latents respectively. We use n = 10000, k = 5, t = 50 and t;, = 1.
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tyleGAN-Z-LQ
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Figure 3.7: Performance of our method on StyleGAN2’s Z-space. We use n = 10000, k = 5,
t =50 and #;, = 1.

3.3 Experimental Results

3.3.1 Experimental Setup

Due to its a priori nature, our method allows for the sampling of high-quality GAN
latents before the synthesis of images. Thus, for the sampling of StyleGAN’s Z-space
and other GANSs’ latents, we use an Intel(R) Core(TM) i7-10875H CPU; for the
sampling of StyleGAN’s W-space latents, we use a GeForce RTX 2080 Ti GPU as
the computation involves passing Z-space latents through a fully-connected mapping
network [64, 66, 67]. For the synthesis of high-quality images, we use publicly-
released Github codes of StyleGANs?® [64, 66, 67], BigGAN* [18], ProGAN® [63] with
a GeForce RTX 2080 Ti GPU. Unless specified, all results are generated with the
W-space of StyleGAN2 [67]. All quantitative results are averaged over three runs.
Note that JPEG is applied to compress the synthesized images to meet

the size limit.

3StyleGAN2,3:  https://github.com/NVlabs/stylegan2, https://github.com/NVlabs/
stylegan3.

“https://github.com/ajbrock/BigGAN-PyTorch

Shttps://github.com/tkarras/progressive_growing_of_gans


https://github.com/NVlabs/stylegan2
https://github.com/NVlabs/stylegan3
https://github.com/NVlabs/stylegan3
https://github.com/ajbrock/BigGAN-PyTorch
https://github.com/tkarras/progressive_growing_of_gans
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3.3.2 Effectiveness of Hubs Priors

As Figs. 3.4 (a) and (b) show, we compare the images generated by StyleGAN2 [67]
using our method with those generated using the baseline, 7.e. random latent
sampling. It can be observed that our method consistently yields high-quality
images while the baseline generates both high-quality and low-quality images, which
demonstrates the effectiveness of the proposed hubness priors. Quantitatively, we

observed better FID scores of images generated using our method than those by the

baseline (Table 3.3).

Low-quality Latents. As Conjecture 3.2.2 implies, the proposed hubness priors
can also be used to identify low-quality latents that yield unrealistic synthesized
images. Thus, as a complement to high-quality latent sampling, we implement low-
quality GAN latent sampling by reversing the thresholding scheme in Algorithm 1
to m; < t;, and have Algorithm 2. The pseudocode of our low-quality GAN latent
sampling algorithm (Algorithm 2) is a simple inverse of Algorithm 1, using a different
thresholding scheme. Generative adversarial networks (GANs) are a type of deep
generative models that have revolutionized a variety of applications in computer vision
and computer graphics, e.g. image synthesis [66, 103, 166], image editing [1, 2, 138],
image-to-image translation [58, 111, 165]. As Fig. 3.4 (c) shows, almost all synthesized
images are of low quality, which justifies the effectiveness of the proposed hubness
PTILOTS.

In fact, our hubness priors can be used to sort all sampled latents into a hubness
spectrum according to their hub values m in Fig. 3.8, where the quality of images

changes from high to low from left to right with decreasing m.

3.3.3 Versatility

To demonstrate the versatility of our method, we show that it generalizes across
different GAN architectures, different image domains and different latent spaces of

the StyleGAN series [64, 66, 67].

Different GAN Architectures. As Fig. 3.5 shows, to justify that our method

works across different GAN architectures, we show that our method also works on
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m =40

Figure 3.8: The hubness spectrum of StyleGAN2 [67] synthesized images ranked according to their hub values m. We use n = 10000, k = 5.
Note that the spectrum is highly tailed to the left and thus there are few images in the range m = (70, 110).



3.3 Experimental Results 37

Algorithm 2 Low-quality GAN Latent Sampling with Hubness Priors
Input: a set of GAN latents S = {21, 29, ..., 2, } sampled from a standard normal
distribution N(0, I), a hyper-parameter k, a threshold ¢,
Output: 5,
# Step 1
My, 0
for : < 1 ton do
{idxy,idxs, ...idxx } + k-NN(z;)
for j < 1 to k do
Midx; = Midx; + 1
end for
end for
# Step 2
Slq — @
for i + 1 ton do
if m; <t;, then
Slq — Slq U z;
end if
end for

three other state-of-the-art GAN architectures, i.e. ProGAN [63], BigGAN [18], and
the recent StyleGAN3 [64].

Different Image Domains. As Fig. 3.6 shows, to justify that our method works
across different image domains, we show that our method also works on StyleGAN2

6

models pretrained on other images domains®: cars, cats and horses.

StyleGAN’s Z-space. As Fig. 3.7 shows, our method also works for the Z-space
of StyleGAN?2 [67]. However, we observed that the quality variance of synthesized
images is slightly lower when using the W-space. Thus, we propose to use the

W-space for StyleGAN2.

3.3.4 Justification of Algorithmic Choices

Threshold . In our method, given a fixed latent sample set S, the threshold ¢
determines the trade-off” between image quality and number of output latents: the

larger t, the higher image quality, but the fewer output images. However, as Fig. 3.9

6All pre-trained networks are available at: https://github.com/NVlabs/stylegan2.
"Note that this trade-off only applies to a fixed S. Our method can generate an infinite number
of high-quality samples by simply using multiple latent sets S1, Ss, ..., Sy or a larger S.


https://github.com/NVlabs/stylegan2

38 3.3 Experimental Results

Table 3.1: FID scores of StyleGAN2 images synthesized using our method with different
choices of k, t and n, whose default values are k = 5, t = 50 and n = 10000. We sample
2,000 images to compute the FIDs, whose rationale is discussed in Sec. 3.3.6.

FID|| ¢ FID),| =n FID|

k

3 22793 | 60 20.749 | 10000 22.782
5 22.782 | 50 22.782 | 20000 22.021
7
0

22.720 | 40 24.517 | 30000 21.679

10 22560 | 35 25.412 | 40000 19.124

and Table 3.1 show, we observed that the image quality remains high for various
choices of t. Since the image quality is not sensitive to the choice of ¢ in a relatively
large range, we suggest using t = 50 as the default value for the case when n = 10000,
k = 5. Note that we can easily extend our algorithm to output a user-specified
number of images (denoted as n’) by using a revised scheme: if there are enough
images in .S, we first sort all images in the descending order of hub value m, and
keep the top n' latents; otherwise, we successively draw more latent sets S; and keep

all m > t images from them until we get n’ images.

Hyper-parameter k. We tested the performance of our algorithm with various
choices of k =1,3,5,7,10 in the k-NN algorithm. Apart from the case when no hub
latents can be found (k = 1), we show the results of £k = 3,5,7,10 in Fig. 3.10 and
Table 3.1. It can be observed that the image quality is not sensitive to the choice of
k. Nevertheless, we noticed that using a larger k yields more output hub latents for
a given latent set S and threshold ¢, but at the cost of slightly longer computation
(Sec. 3.3.5). To achieve a balance, we suggest using k = 5 as a default value when

n = 10000, t = 50.

Size of Latent Sample Set n. As Table 3.1 shows, we also test the performance
of the proposed method against various sizes n = 10000, 20000, 30000, 40000 of latent
sample set S and Fig. 3.1 for qualitative results. Similar to above, we observed that
(i) although the FID scores get slightly better with increasing n, the image quality is
not sensitive to the choice of n; (ii) using a larger n yields more output hub latents
but at the cost of longer computation (Sec. 3.3.5). To achieve a balance, we suggest

using n = 10000 as a default value when k = 5, t = 50.
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Table 3.2: Running time of our method using the StyleGAN2 W-space with different
choices of k and n. The default parameter values are k =5, t = 50 and n = 10000.

k Time(s) | n  Time(s)

3 163s | 10000 167s
5 167s | 20000 647s
7 176s | 30000 1272s
10 185s | 40000 2554s

3.3.5 Running Time

Table 3.2 shows the running time of our method with different choices of k and n. It
can be observed that the running time increases mildly with & but significantly with

n.

3.3.6 Relationship with Truncation Trick

The truncation trick [18, 66, 93] has been widely used in state-of-the-art GANs.
Specifically, it truncates randomly sampled latents w to w' = W + ¢¥(w — W) to
obtain high-quality latents that yield high-quality synthesized images, where w is the
mean of a large number of randomly sampled latents, 1) is a scaling parameter. As
discussed in Section 3.2.2, we argue that it is a naive approximation of our method.
Distance to the Means of Hub and All Latents. To justify our claim, we first
investigate the distances of our hub latents to their mean and their distances to the
mean of all sampled latents. As Fig. 3.12 shows, it can be observed that: i) Our
hub latents are closer to both the hub mean and the all latent mean than randomly
sampled latents, which justifies the “central clustering effect” of our hub latents [107].
ii) Surprisingly, the distances of most hub latents are around 6.0 to 7.0 for both cases,
which is roughly the same as the distances of randomly sampled latents truncated
with a parameter ¢ = 0.7, i.e. the StyleGAN-recommended [66] parameter value
for the truncation trick. However, StyleGAN obtained the value ¢ = 0.7 empirically
via try-and-error while we obtain it as a byproduct of our method, which justifies
the superiority and fundamentality of our approach. iii) A small portion of our hub
latents are of larger distances (e.g. around 7.5 and 8.0) to the means, which will be

overlooked by the truncation trick with ¢» = 0.7. In addition, applying the truncation
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Table 3.3: Comparison of FID scores of StyleGAN2 synthesized images using our method
and the truncation trick. FFHQ-1 and FFHQ-2: real images sampled from the FFHQ
dataset [66]; Hubs (50): our method with ¢t = 50; Truncated (0.7): truncation trick with
1 = 0.7; Random: random sampling. We sample 2000 latents/images for all methods
compared. The FID scores between i) FFHQ-1 and FFHQ-2; and ii) Random and FFHQ-
1,FFHQ-2 are used as baselines. Dist2Mean: distances of sampled latents to the all latent
mean.

Methods FFH Q-PIIDliFH Q-2 Dist2Mean
FFHQ-2 16.505 — —
Hubs (50) 21.955 23.609 6.247
Truncated (0.7) 25.097 25.127 6.893
Random 35.455 35.598 9.847

trick with ¢ = 0.8 are prone to get low-quality latents that yield low-quality images
while our “distant” hub latents are still of high quality (Fig. 3.13). This further
justifies the superiority of our method against the truncation trick.

The truncation trick is an effective but naive geometric solution that exploits the
high-dimensional structure revealed by the hubness phenomenon: the trick works
because it acts as a rigid, distance-based filter that shrinks the latent distribution
toward the mean (W = w + ¢)(w — W)), thereby successfully isolating the desirable,
high-quality non-hub samples which exhibit the central clustering effect. This is
necessary because the statistically problematic, low-quality samples are the hub
samples that are inevitably clustered at the periphery of the high-dimensional space
due to the concentration of measure effect. By cutting off the peripheral region based
on an empirically derived threshold like 1) = 0.7, the truncation trick effectively
eliminates these artifact-prone hub latents , although it remains limited as a pure
geometric heuristic, imperfectly discarding some high-quality samples that naturally

reside just beyond that arbitrary cutoff.

FID Scores. As Table 3.3 shows, we also justify the superiority of our method by
comparing the FID scores [52] of images generated by StyleGAN2 using both the
truncation trick, ¢ = 0.7 [66] and our method. Specifically, we compute the FID
scores between images generated by i) real images sampled from the FFHQ datasets,
i.e. FFHQ-1 and FFHQ-2 in Table 3.3; ii) our hub latents and FFHQ-1, FFHQ-2; iii)
truncated latents (¢ = 0.7) and FFHQ-1, FFHQ-2; iv) randomly sampled latents and
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FFHQ-1, FFHQ-2. It can be observed that i) both our method and the truncation
trick outperform random sampling; ii) our method achieves better FID scores than
the truncation trick. Note that we intentionally used a small number of images
(i.e. 2,000) to compute FID to avoid covering the entire distribution and thus suffer
less from the restriction of latent spaces. In comparison with the results in [60]
and the bias-free FID,, [26] computed with 10K images (Table 3.4), our FID scores
of “Truncated (0.7)” images are better than “Random”, which is consistent with
human perception. Note that our method outperforms Truncated (0.7) in both cases.
Examples of StyleGAN2 synthesized images after the truncation trick (¢ = 0.7) are
shown in Fig. 3.15 Nevertheless, even using a small number of images, FID may still
not be a good evaluation metric for our task. Therefore, we resort to the precision

and recall metrics [79] that make more sense.

Table 3.4: FIDo, scores [26] computed with 10K images, which are ineffective as they
capture the entire distribution and thus suffer from the restriction of latent spaces. Red:
random sampling has the best score, which contradicts human perception as the images
sampled with it are of the lowest quality.

Method | Hubs (50) Truncated (0.7) Random
FID, | | 15.398 15.761 2.923

Precision and Recall [79]. As Table 3.5 shows, our method achieves a high
precision comparable to Truncated (0.3) which sacrifices the synthesis diversity (i.e.
low recall) while retaining a very high recall comparable to Random which includes
many low-quality results (i.e. low precision). This further justifies the superiority of

our method.

Table 3.5: Comparison of precision and recall [79] of StyleGAN2 synthesized images using
our method and the truncation trick.

Method ‘ Precision? ‘ Recallt ‘
Hubs (50) 0.890 0.324
Truncated (0.3) 0.892 0.015
Truncated (0.7) 0.811 | 0.223
Random 0.720 | 0.393

As Table 3.6 shows, our method outperforms Truncated (0.7) with the BigGAN [18]
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architecture pretrained on the 1000-class ImageNet ILSVRC 2012 dataset on precision

and recall [79], which further justifies the superiority of our method.

Table 3.6: Quantitative results with BigGAN (ImageNet).

Method ‘ Precisiont ‘ Recallt

Hubs (50) 0.147 | 0.311
Truncated (0.7) 0.131 0.264

3.3.7 Impact on Class Balance

We further investigate how our method affects the class balance of unconditional
GANSs pre-trained on multi-class datasets. As Fig. 3.14 shows, we evaluate the class
balance of a StyleGAN2 model pretrained on the CIFAR10 dataset with i) random
sampling® (i.e. Random), ii) truncation trick (¢ = 0.7) and iii) our hubness-based
sampling method. Specifically, we sample 50,000 images each and use a pretrained
CIFARI10 classifier? to estimate their class distributions. Note that although a “larger”
difference can be observed visually, our method actually preserves the class balance
better as it has a smaller Wasserstein distance to the distribution of Random than
the truncation trick. In addition, as Table 3.7 shows, our method achieves a better
Inception Score [117] that favours balanced and high-confidence classifications, which

further justifies the superiority of our method in preserving class balance.

Table 3.7: Evaluation of class balance with Inception Scores (IS) [117] of StyleGAN2
pretrained on the CIFAR10 dataset using our hubness-based sampling (¢ = 50), the
truncation trick (¢ = 0.7), and the random sampling methods.

Method ‘ Hubs (50) Truncated (0.7) Random
IS ‘ 6.212 6.059 7.080

Shttps://github.com/POSTECH-CVLab/PyTorch-StudioGAN
Yhttps://github.com/open-mmlab/mmclassification, ResNet50


https://github.com/POSTECH-CVLab/PyTorch-StudioGAN
https://github.com/open-mmlab/mmclassification

3.5 Conclusions 43

3.4 Limitation and Future Work

Although our method allows for the sampling of high-quality latents, the quality
of synthesized images is bounded by the performance of the pre-trained GANs
used to synthesize them. Also, we observed that the proposed hubness priors may
overlook some relatively high-quality images with small hub values m (Fig. 3.16). We
conjecture that the reason might be that the limited sizes of latent sample sets (e.g.
n = 10000, 20000, ...) cannot capture all hub latents. This is partially verified by our
experiment on the choice of n. However, it is difficult to test larger n due to the
O(n?) time complexity to compute the hub values m for all points in a latent sample
set. We hope to investigate this issue in future work. We also hope to apply our
insights on the hubness phenomenon in GAN latent space to improve the training of
GANs and make GANs unbiased for all latents. The acceleration of our algorithm is

also a very interesting direction for future work.

3.5 Conclusions

In this chapter, we address the quality variance of GAN synthesized images by
investigating the sampling of GAN latents. Specifically, we first show that GAN
latents are not uniformly distributed in the latent space due to the hubness phe-
nomenon of data distributions in high dimensional space. In addition, there exist hub
latents that are much more likely to be nearest neighbors of others and contribute
more to the synthesis of high-quality images. Then, we formulate the above as the
hubness priors and propose a novel GAN latent sampling algorithm, which allows
for efficient and high-quality image synthesis for GANs. Furthermore, we show that
the well-known truncation trick is a naive approximation of our method that utilizes
the “central clustering effect” of hub latents, which not only uncovers the rationale
of the truncation trick, but also indicates that our method is superior and more

fundamental.
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Figure 3.9: Performance of our method with different choices of threshold ¢ = 60, 50, 40, 35.
We use n = 10000, k = 5.



45

3.5 Conclusions

Oon
<}

| >

Figure 3.10: Performance of our method with different choices of hyper-parameter k

3

n = 10000.

)

=50

10. We use t

)

7

)

)

Y



46 3.5 Conclusions

(a) n = 20000 (b) n = 30000 (c) n = 40000

Figure 3.11: Performance of our method with different sizes n = 20000, 30000, 40000 of
sample set S. We use k = 5, t = 50.
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(a) Dist. to the mean of all sampled latents ~ (b) Dist. to the mean of hub latents

Figure 3.12: The distances of our hub latents to (a) the mean of all sampled latents and
(b) the mean of hub latents. Random: the average distance of randomly sampled latents;
Truncated (¢p): the average distance of latents after truncation trick (¢ = vy).

(b) Truncated latents (1) = 0.8)
Figure 3.13: StyleGAN2 images synthesized from (a) distant hub latents far from their
mean; (b) truncated latents (¢ = 0.8).
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Figure 3.15: Examples of StyleGAN2 synthesized images after the truncation trick (¢ =
0.7).
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Figure 3.16: Relatively high-quality StyleGAN2 [67] synthesized images with small hub
values m. However, there are still small artifacts in these images (e.g. background and
facial details).
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Chapter 4

Efficient Precision and Recall for
Assessing Generative Models with

Hubness Sampling

Despite impressive results, deep generative models require massive datasets for
training. As dataset size increases, effective evaluation metrics like precision and
recall (P&R) become computationally infeasible on commodity hardware. In this
chapter, we address this challenge by proposing efficient P&R, (eP&R) metrics that
give almost identical results as the original P&R but with much lower computational
costs. Specifically, we identify two redundancies in the original P&R: i) redundancy
in ratio computation and ii) redundancy in manifold inside/outside identification.
We find both can be effectively removed via hubness-aware sampling, which extracts
representative elements from synthetic/real image samples based on their hubness
values, i.e., the number of times a sample becomes a k-nearest neighbor to others in
the feature space. Thanks to the insensitivity of hubness-aware sampling to exact
k-nearest neighbor (k-NN) results, we further improve the efficiency of our eP&R
metrics by using approximate £-NN methods. Extensive experiments show that our

eP&R matches the original P&R but is far more efficient in time and space.
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4.1 Introduction

Deep generative models have achieved great success by combining deep learning
with generative modeling. However, they have also inherited the data-hungry nature
of deep learning, requiring massive datasets for training. For instance, the FFHQ
dataset used to train StyleGAN contains 70 thousand images [66], while the Latent
Diffusion model leveraged LAION-400M’s 400 million text-image pairs [112]. Stable
Diffusion pushed this even further, training its models on LAION-5B’s 5 billion
pairs [121]. Despite their impressive results, the massive scale of datasets used to
train modern deep generative models presents challenges for evaluation. As dataset
size increases, some of the most effective evaluation metrics [52, 78, 116, 117, 124],
which compare generated and real image distributions, may become computationally
infeasible for commodity GPUs and ordinary research institutions. To continue
advancing the state of the art (SOTA), developing more efficient evaluation metrics

becomes critical.

Among the most effective evaluation metrics, Fréchet Inception Distance (FID) [52]
and Inception Score (IS) [117] are relatively computationally efficient. Let n be the
number of samples, they have linear time and space complexity of O(n), as they rely
on simple statistics of extracted features. Specifically, the feature extraction takes
O(n) time and space while the statistics (e.g., mean) computation also takes linear
time O(n) for a given feature extractor like Inception v3 [129] with fixed feature
dimensions. However, both FID and IS are single scores that cannot distinguish
between different failure modes. Addressing this issue, the precision and recall (P&R)
metrics [78, 116, 124] were employed. Intuitively, precision measures the quality of
synthesized images while recall measures their diversity. Although effective, the
SOTA version of P&R [78] requires costly pairwise distance calculations (e.g., in
k-nearest neighbor algorithm) between extracted features of samples and sorting,
consuming O(n?logn) time and space, thus becoming computationally infeasible

when evaluating deep generative models trained on large-scale datasets.

In this work, we address the high computational costs of precision and recall (P&R)

metrics with a novel solution based on hubness-aware sampling. Specifically, we
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have identified two important types of redundancies in the computation of P&R:
i) redundancy in the P&R ratio computation and ii) redundancy in identifying
whether a sample is within or outside of a manifold (e.g., synthetic or real image
manifold). Interestingly, we find that both these redundancies can be effectively
removed by hubness-aware sampling. In a nutshell, hubness-aware sampling extracts
a small number of m representative elements from the real/synthetic samples based
on their hubness values, defined as the number of times a sample becomes a k-
nearest neighbor (k-NN) to others in the feature space [85, 107]. We denote such
representative elements as “hubs”, which have higher hubness values than their peers.
We conjecture that the validity of our approach comes from the fact that hubness
values are effective importance identifiers for samples with respect to the k-NN results
on which P&R [78] relies. In addition, utilizing the fact that the identification of
hubness points relies on their relatively higher hubness values rather than exact k-NN
results, we further improve the efficiency of our eP&R metrics using approximate
k-NN methods, a brief introduction of which can be found in the Sec. 4.4. Extensive
experimental results demonstrate that the P&R calculated using such representative
elements is almost identical to the original P&R, but consumes much less time and

space. Our contributions include:

e We propose efficient precision and recall (eP&R) metrics for assessing generative
models, which give almost identical results as the original P&R [78] but consume
much less time and space. Theoretically, our eP&R run in O(mnlogn) time
and consume O(mn) space (m is the number of of hubs samples and m < n),
which are much more efficient than the original P&R metrics that run in

O(n?logn) time and consumes O(n?) space.

e We identify two important types of redundancies in the original P&R metrics
and uncover that both of them can be effectively removed by hubness-aware
sampling [85, 107]. In addition, the insensitivity of hubness-aware sampling to
exact k-nearest neighbor (k-NN) results allows for further efficiency improve-

ment by using approximate k-NN methods.

e Extensive experimental results demonstrate the effectiveness of eP&R metrics.
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Figure 4.1: Samples with similar hubness values are effective representative samples in
terms of P&R ratio calculation. (a) Left: Histogram of sample occurrences (log scale) wvs.
hubness value (FFHQ). The samples are grouped into different colors based on similar
hubness values. Right: Pie chart showing that all three groups share similar ratios of
samples identified as 1 vs. 0 (green vs. light green) using Eq. 4.3 for recall calculation. (b)
The same experiment as (a) but on StyleGAN-generated samples for precision calculation.
Following [78], we use VGG-16 as a feature extractor and StyleGAN2 trained on the FFHQ
dataset as the generative model to be assessed. Please see Section. 4.6.9 for the validation
of insensitivity of the choice of group split points. Hub.: Hubness; B.S.: binary score.
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Figure 4.2: Most samples ¢ with f(¢, ®) = 1 (Eq. 4.3) are included in the k-NN hypersphere
of at least one hubs sample (¢ = 3) of the other distribution. (a) Left: Histogram of sample
occurrences (log scale) vs. the times a sample is included in the k-NN hypersphere of a
sample of the other distribution, i.e., valid ¢/ (FFHQ). Please see Sec. 4.3 for an intuitive
illustration. The samples are grouped into different colors based on similar numbers of valid
¢'. Right: Pie chart showing the ratio of samples within the k-NN hypersphere of hubness
vs. non-hubness samples from the other distribution, to the total number of samples ¢
with f(¢, ®) =1 in each group. Hubness: points with hub values above a threshold t > 3;
Non-hubness: ¢ < 3. (b) The same experiment as (a) but on StyleGAN-generated samples.
Following [78], we use VGG-16 as a feature extractor and StyleGAN2 trained on the FFHQ
dataset as the generative model to be assessed. Please see Section. 4.6.9 for the validation
of insensitivity of the choice of group split points.
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4.2 Preliminaries

As proposed by [78], the precision and recall (P&R) metrics for assessing generative

models are defined as:

precision(®,, ®,) = ﬁ Z f(¢g, @), (4.1)
I pgedy
1
recall(®,, ®,) = X > for, ®y) (4.2)
" gre@,

where ®, and ®, are the sets of feature vectors corresponding to the generated and
real image samples, respectively; |®| denotes the number of samples in set ® and
|®,| = |®.|; f(¢,®) is a binary function determining whether a sample ¢ lies on a

manifold represented by ®:

L if ¢ — @2 < ||¢' — NNg(¢/, @)||2 for at least one ¢’ € ®
f(¢, ®) =

0, otherwise,
(4.3)

where NN (¢, ®) denotes the kth nearest neighbour of ¢’ in ®. Intuitively, their
precision and recall metrics estimate the generative and real image manifolds with a
collection of hyperspheres, respectively, with each feature vector sample as the center
and the distance between it and its kth nearest neighbor as the radius. A sample ¢
is determined to lie on a manifold if it lies within the hyperspheres of that manifold

and vice versa.

4.3 Illustration figure and relevant discussions for

valid ¢'

As Fig. 4.3 shows, by “the times a sample is included in the k-NN hypersphere of
a sample of the other distribution, i.e., valid ¢, we count the number of times ¢

( ) is within the k-NN hypersphere of ¢’ € ® (red rhombuses).



Table 4.1: Approximation errors compared to the original Precision and Recall (P&R) metrics. B.L.: the original P&R metrics as the

baseline [78]. eP&R: our efficient P&R metrics. Error(%): relative error e = _Jw_a | where z is the B.L. result and # is our eP&R result.

(a) Approximation errors of eP&R computed using StyleGAN2 trained on different datasets.
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FFHQ LSUN-Car LSUN-Church LSUN-Cat LSUN-Horse
Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall
eP&R | 0.7194£0.002 0.501+£0.002 | 0.732+0.001 0.42240.002 | 0.608+0.002 0.39240.003 | 0.7584+0.001 0.40840.003 | 0.6934+0.001 0.416=+0.003
B.L. 0.71640.001 0.49340.001 | 0.72540.001 0.42640.001 | 0.59240.001 0.38940.002 | 0.76640.001 0.40140.002 | 0.68240.001 0.41340.002
Error | 0.4% 1.6% | 0.9% 0.9% | 1.9% 0.7% | 1.0% L7% | 1.5% 0.7%
(b) Approximation errors of eP&R calculated using different generative models and the FFHQ dataset.
StyleGAN3 Projected-GAN VQ-VAE-2 Latent Diffusion
Precision Recall Precision Recall Precision Recall Precision Recall
eP&R | 0.684+0.002 0.55940.001 | 0.707+0.001 0.46240.001 | 0.71940.001 0.16340.004 | 0.70440.001 0.471+0.002
B.L. 0.680+0.001 0.553+£0.001 | 0.6984+0.001 0.46040.001 | 0.716£0.001 0.162+0.002 | 0.7114+0.001 0.46040.001
Error 0.6% 1.0% 1.2% 0.4% 0.4% 0.6% 1.0% 2.3%
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*

Figure 4.3: Illustration of valid ¢’. ¢ is represented by a and ¢’ € ® set are
represented by red rhombuses.

4.4 A Brief Introduction to Approximate k-NIN

algorithm

The k-nearest neighbors (k-NN) algorithm is a popular machine learning method for
classification and regression. Given a new data point, it finds the k£ closest training
examples based on a distance metric like Euclidean distance. A major limitation
of k-NN is that it requires computing the distance between the new point and all
points in the training set, which can be slow for large datasets.

Approximate k-NN algorithms are techniques that try to speed up neighbor
search by sacrificing some accuracy. The key idea is to avoid exhaustively calculating

distances to all points. Some common approaches include:

e Tree-based data structures like kd-trees [16] that allow efficient searching of

nearest points without checking all data.

e Hashing techniques [13, 91] that map similar points to the same buckets,

narrowing the search.

e Dimensionality reduction methods like random projections [146] that can
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compress data while preserving relative distances.

e Graph-based algorithms [39, 50, 83, 92] that connect neighboring points then

traverse the graph instead of computing all distances.

e Sampling/filtering [11, 59, 101, 161] methods that find candidates in subsections
of data.

The tradeoff is between accuracy and speed. Approximate methods may miss
some true nearest neighbors, but can query large datasets much more efficiently.
Performance gains allow k-NN to scale better to big data. Appropriate techniques
depend on factors like data size, dimension, and desired accuracy. We refer interested

audiences to [8, 83, 123, 144] for more details.

4.4.1 The accuracy to get the hubness vectors

The table 4.3 compares the performance of various Approximate Nearest Neighbor
(ANN) algorithms in retrieving hubness points, measured by Accuracy (%) and
search Time (s). A key distinction across the columns is the hardware acceleration
capability: the methods on the left side (IVF [59, 61], IVF-PQ [59, 61], IVF-SQ) are
typically designed with GPU acceleration support, allowing for highly parallel and fast
computations. In contrast, the algorithms on the right side (LSH [13, 91], HNSW [92],
ScaNN [9]), while often optimized for speed on CPUs, are not universally or easily
accelerated by GPUs in standard configurations (their primary implementations are
CPU-based). The table serves as powerful evidence that ANN algorithms provide a
highly effective solution, enabling near-production-quality accuracy (mostly > 90%)
at a fraction of the computational cost and time required by exhaustive search

methods to get the hubness points.

4.5 Effcient Precision and Recall

Although effective, Eqs. 4.2 and 4.3 are computationally expensive due to the
calculation of pairwise distances between samples and the sorting required by k-NN;,

which grows quasi-quadratically with the number of samples. This prevents them
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Table 4.3: The accuracy of the different ANN to get the hubness points. The methods on
the left side (IVF [59, 61], IVF-PQ [59, 61], IVF-SQ) are typically designed with GPU. In
contrast, the algorithms on the right side (LSH [13, 91], HNSW [92], ScaNN [9]), while
often optimized for speed on CPUs, are not universally or easily accelerated by GPU.

| IVF  IVF-PQ IVF-SQ || LSH  HNSW ScaNN
Accuracy(%) | 99.731 90.061  71.903 || 94.644 98.642 98.691
Time(s) | 1.085  1.062  7.323 | 4329 3.075  18.277

Table 4.4: Ablation study. Alg. Variations: variants of our metrics. Time (P): parallel
implementation using CUDA. P&R: original P&R metrics [78]. Ob. 4.5.1: we replace the
®, in precision calculation and ®, in recall calculation with their hubs versions @Z“b and
&/ respectively (Eq. 4.2). Ob. 4.5.2: we replace the @, in precision calculation and
®, in recall calculation with their hubs versions ®7* and <I>Z“b respectively (Eq. 4.2).
eP&R: our efficient P&R metrics, which uses Ob. 4.5.1, 4.5.2 and “Efficient Hubs Sample
Identification” (approximate k-NN) together. *: when used alone, (2)(3) cannot save time
and space as they still require the full distance matrices.

Alg. Variations Precision Recall | Time (P) Memory
(1) P&R (Original) 0.716£0.001 0.493£0.001 144s  19.90 GB
(2) P&R + Ob. 4.5.1 0.715£0.005 0.497£0.004 138s*  19.32* GB
(3) P&R + Ob. 4.5.2 0.708+0.005 0.501+£0.005 140s* 19.31* GB
(4) P&R + Ob. 4.5.1, 4.5.2 | 0.719£0.002 0.4944-0.001 104s  15.84 GB
(5) eP&R (Ours) 0.71940.002  0.501%0.001 755 14.21 GB

from being computed on large datasets with commodity GPUs and hampers the
progress of the field. To improve the computational efficiency of precision and
recall (P&R) metrics, we identify two important types of redundancies in Eqs. 4.2
and 4.3 (Sec. 4.5.1) and propose to address them using hubness-aware sampling,
whose insensitivity to exact k-NN results allows for further efficiency improvement
(Sec. 4.5.2). We also conduct a computational complexity analysis (Sec. 4.5.3) to

demonstrate the high computational efficiency of our method.

4.5.1 Redundancies in Precision and Recall Calculations

As mentioned above, we have identified two important types of redundancies in P&R
calculations: i) redundancy in the P&R ratio computation and ii) redundancy in
identifying whether a sample is within or outside of a manifold (e.g., synthetic or

real image manifold) as follows:

Observation 4.5.1. [Redundancy in Ratio Estimation] As Eq. 4.2 shows, the
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P&R metrics are essentially ratios of the number of samples in a set ® that lie on a
given manifold to the number of all samples in ®. Thus, we can obtain similar P&R

ratios by using representative samples of ® with the rest as redundant.

Observation 4.5.2. [Redundancy in Inside/Outside Manifold Identification]
As shown in Eq. 4.3, f(¢, ®) is 1 as long as ¢ is within the k-NN hypersphere of at
least one sample ¢’ € ®. This means that we only need to find one valid ¢’ for each

¢ and all the other ¢'s are redundant.

4.5.2 Redundancy Reduction using Hubness-aware Sampling

Interestingly, we find hubness-aware sampling to be an effective solution for both
redundancies. Specifically, for Observation 4.5.1, we find that samples with similar
hubness values are effective representative samples of set ® in terms of P&R ratios
as they share similar ratios of samples identified as 1 vs. 0 by Eq. 4.3 (Fig. 4.1),
indicating that we can use a small number of hubs samples to approximate P&R; for
Observation 4.5.2, we find that most ¢ with f(¢, ®) = 1 (Eq. 4.3) are included in
the k-NN hypersphere of at least one ¢’ with high hubness values, i.e., hubs samples
(Fig. 4.2), indicating that we can obtain similar outputs of Eq. 4.3 using a small

number of hubs samples. Thus, our efficient P&R metrics can be defined as:

1

precision*(®,, ®,) = @] Z f(gb’;“b, b (4.4)
g ¢Ig’bube<1>§:,ub
U 1 U U
recall (@, B) = ragr > S0 25") (4.5)
r ¢Tl}ube<1>¢bub

where ®"* and ®!"* are the sets of feature vectors with hubness values m > t
corresponding to the generated and real image samples, respectively; t is a threshold

hyper-parameter.

Efficient Hubs Sample Identification. Despite their effectiveness, the identifi-
cation of hub samples is also based on the O(n?) k-NN algorithm which is expensive
in both time and space. Fortunately, such identification is insensitive to exact k-NN

results as it only relies on a rough threshold ¢ of the hubness values. Thus, we can
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use an approximate k-NN algorithm for the identification of hub samples that further

improves the efficiency of our metrics.

4.5.3 Computational Complexity Analysis

To provide a clear demonstration of the computational efficiency of our metrics, we
conduct a computational complexity analysis as follows. Given two sets ®, and ®,
(|®,| = |®,4] = n), the calculation of the original P&R [78] can be divided into five

stages:

1. [Distance Matrices of ®, and ®,] Calculating pairwise distances for samples

in ®, and ®, respectively, which consumes O(n?) time and space for each set.

2. [Sorting] Sorting the distance matrices as required by the k-NN algorithm, which

consumes O(n?logn) time and no extra space.

3. [Radii] Recording the distance from each sample to its kth nearest neighbour as

the radius of its hypersphere, taking O(n) time and space.

4. [Distance Matrix between ®, and ®,] Calculating pairwise distances between

samples of ®, and ®,, which consumes O(n?) time and space.

5. [P&R] Calculating P&R ratios, taking O(n?) time and no extra space for each

metric.

In contrast, the calculation of our efficient P&R metrics can be divided into seven

stages:

1. [Subspace Construction for ®, and ®,] Constructing subspaces of samples
for @, and ®, as required by the approximate k-NN algorithm IVF/PQ [59, 61]
and HNSW [92], taking O(logn) time and O(n) space for each set.

2. [Approx. Hubs Identification for ®, and ®,] Computing the approximate
hubness value for each sample in ®, and ®, using the approximate £-NN algorithm
and extracting hubs set ®** and ®»** with m, and mg (m, < n, my < n) hubs
samples respectively using a user-specified threshold ¢, taking O(m,), O(my) time

and space for each set, respectively.
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3. [Efficient Distance Matrices] Calculating pairwise distances for samples be-
tween " and ®,, and ®»** and P, which consumes O(m,n) and O(myn) time
and space, respectively. Please see Sec. 4.6.10 for an empirical justification of its

effectiveness.

4. [Efficient Sorting] Sorting the distance matrices as required by the k-NN
algorithm, which consumes O(m,nlogn) and O(mynlogn) time respectively and

no extra space.

5. [Radii] Recording the distance from each sample to its kth nearest neighbour as
the radius of its hypersphere, taking O(m,) and O(m,) time and space, respec-
tively.

6. [Efficient Distance Matrix between ®"* and @;‘“b] Calculating pairwise
distances between samples of ®** and ®"**, which consumes O(m,my) time and

space.

7. [Efficient P&R] Calculating P&R ratios, taking O(m?) and O(m?) time and no

extra space for each metric.

Theoretically, the proposed eP&R metrics run in max(O(m,nlogn), O(mgynlogn))
time and consumes max(O(m,n), O(myn)) space while the original P&R metrics run
in O(n?logn) time and consumes O(n?) space. Since m, < n, m, < n, the proposed

eP&R metrics are far more efficient than the original P&R metrics.

4.6 Experiments

4.6.1 Experimental Setup

Hardware. We use a PC with an Intel(R) Core(TM) i7-10875H CPU, an NVIDIA
RTX 4090 24GB GPU for small datasets and a GPU node with 2 NVIDIA V100
32GB GPUs for large datasets.

Datasets. We use the FFHQ [70] dataset containing 70k portrait images, and the
LSUN (Car, Church, Cat, and Horse) dataset [154] containing 550k, 120k, 1.5m and

1.5m images of corresponding categories respectively in our experiments.
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Table 4.6: The eP&R scores with different threshold ¢. Error(%): relative error € = |x‘;|x |
Hubness Error(%)
t Percent(%) Precision Recall | Precision Recall Mean
1 72.50£0.01 0.71840.001 0.494+£0.002 0.3 0.0 0.1
2 52.24+0.04 0.71840.001 0.494+£0.002 0.3 0.0 0.1
3 38.21+£0.04 0.719£0.002  0.494+0.001 0.4 0.2 0.3
4 28.48+0.04 0.726+0.002 0.496+0.001 1.6 0.6 1.1
5 21.65+0.04 0.730£0.001 0.496=£0.002 1.9 0.6 1.3
6 16.64+0.02  0.732+0.002 0.49740.003 2.2 0.6 1.4
7 12.9940.02 0.739+£0.002  0.49840.003 3.2 2.6 2.8
8 10.2240.01  0.747+£0.002  0.50940.003 4.3 4.3 4.3
9 8.15+0.03 0.747£0.003 0.509+0.004 5.5 8.1 6.8
10 6.55+£0.01 0.748+0.004 0.517+£0.003 9.9 8.4 9.2
B. — 0.71640.001  0.493+£0.001 — — —

Generative Models. Following [78], we test our eP&R metrics with StyleGAN2
[68] trained on the FFHQ and LSUN-Car, LSUN-Cat, LSUN-Church and LSUN-
Horse datasets mentioned above. To demonstrate the generalizability of our metrics,
we further test them with the other members of the StyleGAN family, including
StyleGAN3 [65], Projected-GAN [119], VQ-VAE-2 [109] and the Latent Diffusion
model [113] trained on the FFH(Q) dataset.

Hyper-parameters. Unless specified, we follow the original P&R [78] and use k = 3
in (approximate) k-NN algorithms for all P&R, eP&R calculations and hubness-aware
sampling, and ¢ = 3 as the threshold to extract hubs samples, and the FFHQ dataset

and a StyleGAN2 model trained on it in our experiments.

4.6.2 Efficient vs. Original Precision and Recall

Approximation Error. Our eP&R is an approximation of the original P&R [78],
which inevitably introduces errors. To demonstrate the validity of our approximation,
we record the relative errors e = |"’3‘;|:” L in Table 4.1, where x is the original P&R
result and Z is our approximation. It can be observed that our eP&R metrics share

almost identical results to the original P&R with very small relative errors around
1%. Please see sec. 4.6.7 for a comparison with reduced sampling of the original

P&R, which further justifies the effectiveness of our metrics.
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Table 4.7: Comparison with reduced sampling. # of Spls: number of samples. R.S.: reduced sampling, i.e., instead of using the full dataset, we
randomly sample a subset from it and use a reduced number of generated samples to calculate P&R accordingly. eP&R: our efficient P&R
metrics. Time (S): serial implementation. Time (P): parallel implementation using CUDA. The last row shows the results of the original P&R
as a reference.

66

# of Spls (%) N s N ePER

Precision Recall | Time (P)  Memory Precision Recall | Time (P)  Memory
72.50 0.724£0.002 0.511£0.002 108s  13.12 GB | 0.717£0.001  0.50040.002 116s  16.34 GB
02.24 0.730£0.002 0.522£0.002 73s 12.23 GB | 0.718+0.001  0.501+0.002 95s 15.27 GB
38.21 0.734£0.005 0.533£0.005 49s  8.47 GB | 0.71940.002 0.501£0.001 75s 14.21 GB
28.48 0.742£0.005 0.540£0.005 34s  6.22 GB | 0.726£0.002 0.507+£0.001 68s 13.10 GB
21.65 0.743+0.005 0.551£0.006 258 5.01 GB | 0.730£0.001 0.515£0.002 63s 12.28 GB
P&R (70k) 0.716£0.001 0.493£0.001 144s  19.90GB - - - -
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Time and Memory Consumption. We profile the running time and memory
consumption to compare the computational efficiency of our eP&R and the original
P&R metrics. As Table 4.2 shows, our eP&R metrics run significantly faster and
consume much less memory than the baseline, which justifies our complexity analysis

in Sec. 4.5.3.

4.6.3 Ablation Study

As mentioned in Secs. 4.5.1 and 4.5.2, the proposed eP&R metrics consist of three
components addressing Observation 4.5.1, Observation 4.5.2, and “Efficient Hubs
Sample Identification” (approx. k-NN) respectively. To show their effectiveness, we
conduct an ablation study as shown in Table 4.4. It can be observed that each of

the proposed components contributes to the success of our eP&R metrics.

4.6.4 Choice of Hyperparameters

The proposed eP&R metrics have two hyperparameters: i) k used by the (approxi-
mate) k-NN algorithm; and ii) threshold ¢ used to identify hubs samples.

Choice of number of nearest neighours k. As Table 4.5 shows, it can be
observed that improvements of our eP&R metrics are stable under different choices
of k. Therefore, without loss of generality, we use k = 3 following [78].

Choice of threshold ¢. As Table 4.6 shows, our eP&R metrics introduce a trade-off
between error and efficiency with ¢: the higher ¢, the more efficient our metrics but

at the cost of higher errors. Thus, in our experiments, we strike a balance by using

t = 3 for (FFHQ, StyleGAN2) combination.

Table 4.8: Time costs when matrix tiling is used. The experiments are conducted using
the FFHQ dataset and a StyleGAN2 model trained on it.

# of Tiles | 1 (no tiling) 2 5 10 50 100
Time (P) | 144s 146s 148s 150s 174s 192s

4.6.5 Robustness against the Truncation Trick

Our eP&R metrics are also robust against the truncation trick, a widely used
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technique that improves GAN sample quality by truncating the latent vector z [68].
The truncation trick is a widely used technique that improves GAN sample quality
by truncating the latent vector z fed into the generator [18, 66, 68]. As Table 4.9
shows, our eP&R metrics are robust against the truncation trick with ¢ = 0.5,0.7,
where ¢ = 0.7 is the recommended value.

Table 4.9: Robustness against the truncation trick [66]. We calculate the metrics using
StyleGAN2 trained on the FFHQ dataset and ¢ = 4. Please note that ¢ = 0.7 is the
recommended value [66, 68] for the truncation trick and ¢ = 1.0 means no truncation is
applied at all. B.L.: the original P&R metrics as the baseline [78]. eP&R: our efficient

P&R metrics. We did not include Time and Memory costs are the truncation trick does
not affect the number of samples, hence consuming the same amount of time and memory.

¢=0.5 6 =07 ¢=1.0
Precision Recall Precision Recall Precision Recall
eP&R | 0.93240.002 0.08940.002 | 0.890+0.002 0.297+0.002 | 0.7144+0.002 0.493+0.001

B.L. 0.935£0.001 0.101+£0.001 | 0.885£0.001 0.308%0.001 | 0.716+0.001 0.493+0.001

Table 4.10: Time and space consumption of our eP&R metrics compared to the original
P&R metrics using StyleGAN2 trained on the LSUN-Horse dataset. B.L.: the original
P&R metrics as the baseline [78]. eP&R: our efficient P&R metrics. Time (S): serial
implementation. Time (P): parallel implementation using CUDA. The profiling items are
in one-to-one correspondence with the stages listed in Sec. 4.5.3.

: B.L. . eP&R

Profiling Time (S) Time (P) | * rOfng Time (S) Time (P)

Subspace (®,., ®,) 8min 3min
DMs (®,, ®,) | 12h02min 54min | A. hubs (@}, ®h) 2min lmin

eDMs 5h56min 26min
Sorting 2h56min 22min | eSorting 1h20min 11min
Radii Imin Imin | Radii 50s 50s
DM (®, +» ®,) | 6h30min 34min | eDM (@1 < ®)"*) | 1h27min 8min
P&R 2h12min 17min | eP&R 56min 4min
Total 23h45min  2h10min | Total 9h50min 64min

4.6.6 P&R Curves

We follow [78] and include the original P&R (baseline) and our eP&R curves against
the parameter of the truncation trick in Fig. 4.4. The results show that our method
approximates the original P&R curves well on both FFHQ and LSUN-Church

datasets.
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Figure 4.4: Original P&R (baseline) and our eP&R curves on the FFHQ and LSUN-Church
datasets.

4.6.7 Comparison with Reduced Sampling

To further demonstrate the superiority of our eP&R metrics, we compare them
with another baseline of reduced sampling, i.e., instead of using the full dataset, we
randomly sample a subset from it and use a reduced number of generated samples
to calculate P&R accordingly. As Table 4.7 shows, our method provides much
more accurate P&R results given the same number of samples, demonstrating the

superiority of our metrics.

4.6.8 Time and Space Consumption for large datasets

Due to hardware limitations, we have to perform matrix tiling when calculating
P&R and eP&R on large datasets which splits a given matrix into tiles (submatrices)
that can fit into GPU memory. However, this introduces additional overheads and is
not desirable (Table 4.8), which further justifies our motivation to design efficient

evaluation metrics for generative models. Nevertheless, we show the results of our
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eP&R metrics on the LSUN-Horse dataset containing 1.5m images in Table 4.10. It

can be observed that our metrics still save a lot of time when matrix tiling is used.

4.6.9 Insensitivity to Group Split Points

As shown in Table 4.11, the ratios of binary scores are similar for each hubness value
on the FFHQ dataset, which validates the insensitivity of the choice of group split
points for Observation 4.5.1 and Fig. 4.1.

Similarly, as shown in Table 4.12, the ratios of hubness samples increase quickly
to 1 with the increase of |¢'| on the FFHQ dataset, which validates the insensitivity
of the choice of group split points for Observation 4.5.2 and Fig. 4.2.

We show the same conclusions hold on the LSUN-Church dataset as well (Ta-
ble 4.13 and Table 4.14).

4.6.10 Justification of pairwise distance calculation between

&b and P,

As Table 4.15 shows, we calculate the pairwise distances between ®** and ®, as it
provides lower approximation errors than calculating pairwise distances for samples
in ®"P We conjecture the reason is that ®"* is much sparser than ®, and thus
the pairwise distances for samples in it will be much larger than those of the original
P&R, resulting in much larger £-NN hyperspheres that increase the approximation

error. The same conclusion holds for @Zub and ®,.

4.7 t-SNE visualization of the hubness set and the
original set
As shown in Fig. 4.5, we included the t-SNE results of:
e (a) Hubness set vs. original set (FFHQ dataset, ®,) with thresholds ¢ of 3, 5, 7.

e (b) Hubness set vs. original set (StyleGAN trained on the FFHQ dataset, ®,)
with thresholds ¢ of 3, 5, 7.
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e (c) Hubness set vs. original set (LSUN-Church dataset, ®,) with thresholds ¢
of 3,5, 7.

e (d) Hubness set vs. original set (StyleGAN trained on the LSUN-Church
dataset, ®,) with thresholds ¢ of 3, 5, 7.

It can be observed that the hubness set approximates the original set well when
the threshold ¢ = 3, which not only justifies the effectiveness of our approach but

also our choice of hyperparameter ¢ = 3.

4.8 Conclusion

In conclusion, we have proposed efficient precision and recall (eP&R) metrics that
provide almost identical results as the original P&R metrics but with much lower
computational costs. By identifying and removing redundancies in P&R computation
through hubness-aware sampling and approximate £-NN methods, we have developed
a highly efficient yet accurate approach to evaluating generative models. Extensive
experiments demonstrate the effectiveness of our eP&R metrics. Going forward,
eP&R provides an important step towards feasible and insightful assessment of
state-of-the-art generative models trained on massive datasets. We believe eP&R
can enable more rapid progress in this exciting field.

Limitations and Future Work. Although effective and efficient, the proposed
eP&R metrics are not fully optimized. One area for improvement is in Stage 3
(Efficient Distance Matrices), which currently calculates pairwise distances between
hub samples of one set and all samples of the other set to compute radii. A significant
amount of time is spent on this step. We could optimize this by utilizing the subspace
constructed by the approximate k£-NN algorithms. Instead of comparing hubs to the
full set, we would only need to calculate distances between hubs and samples within
the relevant subspace of the other set. This would allow us to find radii much more
quickly. While the current metrics are fast and accurate, optimizations like these
could push the efficiency even higher without sacrificing effectiveness. We therefore
see continued refinement of the eP&R metrics represents an exciting opportunity for

future work.
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Table 4.11: Insensitivity to group split points for Observation 4.5.1 and Fig. 4.1 (FFHQ).
Hub. Value: hubness value, B.S.: binary score.

(a) All 70k images in the FFHQ dataset

Hub. Value 1 2 3 4 ) 6 7 8
BS. =1 9038 7489 5795 4579 3525 2741 2188 1842
All Samples | 13382 11292 8615 6815 5250 4158 3235 2664
Ratio 0.675 0.663 0.673 0.672 0.671 0.659 0.676 0.691
Hub. Value 9 10 11 12 13 14 15 16
BS. =1 1474 1244 931 818 679 593 508 425
All Samples | 2190 1791 1389 1231 1046 883 776 640
Ratio 0.673 0.695 0.67 0.665 0.649 0.672 0.655 0.664
Hub. Value 17 18 19 20 21 22 23 24
BS. =1 361 305 272 246 200 177 153 160
All Samples 543 469 409 361 291 264 232 230
Ratio 0.665  0.65 0.665 0.681 0.687 0.67 0.659 0.696

(b) 70k images generated by StyleGAN2

Hub. Value 1 2 3 4 5 6 7 8
BSe=1 10030 9150 7375 5858 4555 3664 2952 2266
All Samples | 12083 10988 8833 7015 5452 4402 3561 2743
Ratio 0.83 0.833 0.835 0.835 0.835 0.832 0.829 0.826

Hub. Value 9 10 11 12 13 14 15 16
BSe=1 1848 1515 1358 1120 911 800 646 522
All Samples | 2237 1835 1624 1344 1117 992 762 635

Ratio 0.826 0.826 0.836 0.833 0.816 0.806 0.848 0.822
Hub. Value 17 18 19 20 21 22 23 24
BSe=1 456 374 350 306 261 228 187 178

All Samples 239 467 420 379 317 277 217 208
Ratio 0.846 0.801 0.833 0.807 0.823 0.823 0.862 0.856
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Table 4.12: Insensitivity to group split points for Observation 4.5.2 and Fig. 4.2 (FFHQ).

(a) All 70k images in the FFHQ dataset

¢/ | 0 1 2 3 4 5 >0
Hubness 11922 8625 6290 4540 3516 2741 10818
Non-hubness | 13254 9089 6519 4598 3537 2749 10818
Ratio 0.9 0.949 0.965 0.987 0.994 0.997 1.000

(b) 70k images generated by StyleGAN2

& | 0 1 2 3 4 >5
Hubness 11792 6596 4136 2745 1860 5531
Non-hubness | 13482 7210 4328 2788 1874 5531
Ratio 0.875 0.915 0.956 0.985 0.992 1.000

Table 4.13: Insensitivity to group split points for Observation 4.5.1 and Fig. 4.1 (LSUN-
Church). Hub. Value: hubness value, B.S.: binary score.

(a) All 120k images in the LSUN-Church dataset
Hubness Value ‘ 1 2 3 4 5 6 7 8 9

Binary Score =1 | 51045 17414 6653 2906 1413 658 355 202 108
All Samples 75650 25836 9866 4296 2074 1006 562 291 153
Ratio 0.675 0.674 0.674 0.676 0.681 0.654 0.631 0.694 0.708
(b) 100k images generated by StyleGAN2
Hubness Value ‘ 1 2 3 4 ) 6 7T 8 9 10
Binary Score = 1 | 24459 4658 1081 405 161 71 35 19 9 6
All Samples 55401 10564 2385 957 371 154 81 38 21 12
Ratio 0.441 0.441 0.453 0.423 0.434 0.461 0432 0.5 0.429 0.5

Table 4.14: Insensitivity to group split points for Observation 4.5.2 and Fig. 4.2 (LSUN-
Church).

(a) All 120k images in the LSUN-Church dataset

& | 0 1 2 3 4 5 >6
Hubness 29986 18482 12819 9106 6749 5037 20441
Non-hubness | 32669 19615 13346 9213 6773 5040 20441
Ratio 0.918 0.942 0.961 0.988 0.996 0.999 1
(b) 100k images generated by StyleGAN2
¢ |0 1 2 3 4 5 6 >7
Hubness | 15731 7063 3984 2405 1505 963 728 2007
Non-hubness | 17590 7821 4158 2443 1513 965 729 2007
Ratio | 0.894 0.903 0.958 0.984 0.995 0.998 0.999 1
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Table 4.15: Justification of pairwise distance calculation between @ﬁ“b and ®,.. P: Precision;

R: Recall. Error(%): relative error € =

|z—2|
|z|

and recall 0.493 of the original P&R metric.

where z denotes the baseline precision 0.716

. Pairwise distance between @0 @hub Pairwise distance between ®"° &,

p R | P Error(%) R Error(%) p R | P Error(%) R Error(%)
110713 0.484 0.4 1.8 1 0.717 0.500 0.3 0.0
21 0.723 0.506 1.0 2.6 | 0.718 0.501 0.3 0.0
310.746 0.534 4.2 8.3 0.719 0.501 0.4 0.2
410.768 0.562 7.3 14.0 | 0.726  0.507 1.6 0.6
51 0.787 0.588 9.9 19.3 | 0.730 0.515 1.9 0.6
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Figure 4.5: t-SNE visualization of the hubness set and the original set.
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Chapter 5

Hubness Sampling to Train GAN
Models for Mitigating Dataset Bias

This Chapter addresses the critical issue of dataset bias and synthetic fairness in
generative models, focusing on achieving balanced training and equal representation
across various categories. Recent advancements in GANs have highlighted the need
for methodologies that enhance fairness without extensive labeling and computational
resources. This study introduces hubness sampling as an unsupervised, pre-training-
free approach to training fair generative models. Statistical analyses reveal that the
likelihood of latents with high hubness values mapping to minority classes is initially
low but significantly improved with hubness sampling. Furthermore, the method
shows substantial improvements in fairness across different categories, including
ethnicity, gender, make-up, and age. This chapter applies hubness sampling to
train several state-of-the-art GAN models, including StyleGAN, Diffusion-GAN,
and GANFormer, and evaluates the quality and diversity of synthetic images using
established metrics such as Precision & Recall and FID. Experimental results demon-
strate that hubness sampling significantly enhances both balance and diversity in
generated outputs, effectively mitigating dataset-induced bias. Overall, the hubness
sampling method presents a novel approach to improving diversity and fairness in

GAN training, reducing bias, and enhancing minor class representation.



5.1 Introduction 77

5.1 Introduction

In recent years, substantial efforts have been made to address dataset bias and
enhance synthetic fairness, a topic that remains central to ongoing research. The
objective of fairness in generative models is to achieve balanced training, also known
as equal representation, which entails generating samples that adhere to a uniform
distribution across categories [118, 134, 151]. Recent research indicates that the
fairness of GAN models can be enhanced by pre-learning the feature distribution
through methodologies such as weak supervision and transfer learning [25, 134].
However, these methods necessitate substantial effort to label diverse datasets,
identify minor and major features, and develop a new balanced supervised model
with weak supervision or adapt to a class-balanced set of the real images after
pre-trained with the full dataset, resulting in significant time and computational
resource expenditure. In this chapter, we present the first study to investigate the
potential of hubness sampling as an unsupervised and pre-training-free approach for
training fair generative models. Our method aims to reduce computational overhead

and resource waste while promoting equitable representation in the generated output.

As shown in Table 5.1, the statistic reveals a clear imbalance in the ethnic
distribution within the FFH(Q dataset, where the proportion of white individuals
is significantly higher than that of other ethnic groups. This disparity may lead to
biased representations and performance inconsistencies in generative models trained
on such datasets. To address this issue, we explore the use of hubness sampling as a
strategic data selection method during the training process. In this chapter, we apply
hubness sampling to train several popular and representative Generative Adversarial
Network (GAN) models, including StyleGAN, Diffusion-GAN, and GANFormer.
These state-of-the-art GAN architectures are recognized for their robust and stable
training behavior across diverse image datasets, which minimizes the influence of
incidental factors that often hinder training outcomes. By integrating hubness-aware
sampling with these models, we aim to promote more balanced data utilization,
enhance the fairness of the generated outputs, and provide a principled approach

to mitigating dataset-induced bias in generative image modeling. In addition, we
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Ethnicity ‘ East-asian Black White Other
ratio(%) \ 17.943 5911 56.190 19.956

Table 5.1: The ethnicity statistic analysis for the FFHQ dataset. The highest ratio, white,
exhibits the highest degree of feature concentration.

will employ established generative model evaluation metrics, Precision & Recall and
Fréchet Inception Distance (FID), to quantitatively assess the quality and diversity
of the synthetic images produced.

Our main contributions can be summarized as follows:

1. We introduce a hubness-aware sampling method for training GAN-based models,
demonstrating its effectiveness in enhancing both balance and diversity in the

generated outputs.

2. Comprehensive experimental evaluations across multiple GAN architectures
and datasets validate the effectiveness and robustness of our proposed sampling

method.

5.2 Balance affected with batch size

The selection of batch size in unconditional generative modeling introduces a cru-
cial empirical trade-off between gradient stability and optimal feature distribution
balance [18]. Larger batch sizes typically increase statistical precision and reduce
gradient variance, and our experimental analysis demonstrates that this high vari-
ance severely hinders overall feature balance, particularly for complex and subtle
distributions (e.g., Age). As shown in the tables 5.2, the moderately larger batch
(Batch = 48) consistently provides sufficient statistical precision to capture the
feature manifold more comprehensively, resulting in a better balance across Ethnicity,
Gender, and Age distributions. The Batch = 48 setting achieves superior FD, values
(as low as 0.034 for Ethnicity and 0.036 for Age), confirming that a critical level of
statistical stability is necessary to avoid mode collapse and capture underrepresented
features effectively. This observation confirms that the choice of batch size profoundly

impacts the optimization path, directly determining the model’s capacity to achieve
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Table 5.2: The balance illustration in training StyleGAN-2 across attributes such as
ethnicity, gender and age with different batch size. The fairness discrepancy (FD) metric
measures the difference between the expected classifier output and a fairness probability,
with FD set to a uniform distribution and FD, set to the original ratio of attributes,
ensuring a structured evaluation of fairness in generative models.

(a) Ethnicity

East-asian Black  South-asian Lat-hisp Mid-easten White FD, | FDy |
Original | 17.943% 5.911% 3.050% 10.741% 6.164% 56.190% | — 0.448
Batch(4) | 20.555% 3.110% 1.415% 9.410%  5.200% 60.310% | 0.061  0.502
Batch(48) | 18.960% 4.985% 2.569% 9.466%  5.204% 58.815% | 0.034  0.480

(b) Gender and Age

Female  Male FD, | FD; || (0-18) (19-36)  (36-54) (54+) |FD, | FD; |
Original | 55.263% 44.737% | — 0.074 18.134% 50.167% 23.321% 8.377% | — 0.310
Batch(4) | 61.025% 38.975% | 0.081  0.156 1.665%  74.750% 22.410% 1.185% | 0.304  0.599

Batch(48) | 58.793% 41.207% | 0.067  0.141 17.007% 53.161% 23.898% 6.925% | 0.036  0.344

feature distribution balance and influencing the fairness of generated samples. The
results confirm that prioritizing statistical precision, as demonstrated by the superior
performance of Batch = 48, is crucial for avoiding collapse into majority modes and
ensuring robust representativeness.

To overcome the instability of small-batch stochasticity while maintaining compre-
hensive mode coverage, Hubness sampling offers a systematic solution. This approach
targets the geometric bias in the feature space where majority features form stable
hubs and minority features reside in sparse, underrepresented regions. The model’s
natural tendency is to reinforce the hubs, leading to feature imbalance. Hubness
sampling addresses this by implementing a sampling strategy that actively identifies
and increases the sampling probability of data points located in these sparse regions
(i.e., points rarely selected as nearest neighbors). By intentionally exposing the
Discriminator to these underrepresented feature modes, hubness sampling compels
the Generator to synthesize diverse samples. This method replaces unreliable random
stochasticity with controlled, targeted sampling, thereby effectively stabilizing the
optimization process and significantly improving feature distribution balance across

the entire manifold.

5.3 Hubness Sampling Method
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Algorithm 3 Latent Hubness Sampling for GAN training
Input: a set of GAN latents S = {21, 29, ..., 2, } sampled from a standard normal
distribution N (0, I), a hyper-parameter k, the batch size x
Output: discriminator D and generator G
# Step 1
M. <—HubnessValue(S)
# Step 2

n) Mapping S

-----

minmax log D(X) + log(1 — D(G(Z)))

The hubness sampling algorithm for training GAN models, to be different with the
previous hub algorithm (Alg 1), has been updated to ensure that a fixed number of
top hub-value latents are selected from a pool of random samples. This adjustment
helps maintain consistency in the batch size during GAN training, which is crucial
for stable model performance and effective optimization. The updated approach is
outlined in detail in Alg 3.

Instead of applying a threshold to select samples, which may lead to an unpredictable
batch size, we rank the hubness values from high to low and select the top-z latents,
where x corresponds to the batch size. This ensures that the batch size remains fixed
throughout training.

Moreover, high hub-value latents represent regions of the latent space with higher
sampling density, which are more likely to contribute to the generation of high-quality
images. The hypothesis here is that training GANs with latent inputs that have higher
hubness scores could provide more informative gradients during back-propagation,

thereby improving the model’s ability to approximate the real data distribution.

5.4 Experiment

In our experiments, we investigate how different latent sampling strategies influence
GAN training. In particular, we evaluate a hubness-aware sampling method, and
compare it against Gaussian and normalization-based sampling baselines. The

experiment focuses primarily on the training of Diffusion-GAN [145], Style-GAN2 [68]
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and GANFormer [57] recent state-of-the-art generative models, using the FFHQ [66],
LSUN (Bedroom, Church, Cat and Horse)[154], and Landscape[125] datasets.

In this section, we will examine how training latents using the hubness sampling
method enhances the fairness of GANs based on the FFH(Q dataset and we apply
random latents as inference to generate images after training. The performance of the
models is evaluated using metrics such as Precision & Recall and the Fréchet Inception
Distance (FID) to assess the quality and diversity of generated images. Additionally,
we employ the CLEAM score [132] and the Fairness Discrepancy (FD) [133] to
measure the fairness of the GANs. Our proposed method demonstrates significant

improvements in both the diversity and fairness of GAN-generated content.

In this study, the hubness sampling method is also compared with Gaussian and
normalization sampling strategies to evaluate its effectiveness in improving GAN
training outcomes and normalization sampling is established as the baseline. Note
that we apply the different sampling methods to train the GANs, but the latents to
test are applied with random samplings. But we also discuss GANs trained with the

hubness sampling to test with the hubness latents.

The experiments are conducted on a PC equipped with an Intel(R) Core(TM)
i7-10875H CPU and an NVIDIA RTX 4090 GPU with 24GB of VRAM, ensuring

sufficient computational resources for training the models effectively.

5.4.1 Hubness Fairness statistic

In this section, we will present the statistical results for different categories based on
ethnicity, gender, make-up, and age using Diffusion-GAN, StyleGAN-2, and GAN-
Former. These models were trained with Gaussian sampling latents, normalization
sampling latents, and hubness sampling latents. From these results, it can be argued

that our method significantly mitigates dataset bias and enhances fairness.

Moreover, the research by [156] addresses the issue of bias in generative models,
which arises due to imbalances in training datasets, leading to under-representation

of minority groups, highlighting the problem of data coverage.
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Table 5.3: The balance illustration in training Diffusion-GAN, StyleGAN-2, and GAN-
Former across attributes such as ethnicity, age, gender, and makeup. Highlight how hubness
sampling effectively enhances tail data for study. The fairness discrepancy (FD) metric
measures the difference between the expected classifier output and a fairness probability,
with FD set to a uniform distribution and FD, set to the original ratio of attributes,
ensuring a structured evaluation of fairness in generative models.

Ethnicity | East-asian Black  South-asian Lat-hisp Mid-easten White FD, | FDs |
Original | 17.943% 5.911% 3.050% 10.741% 6.164% 56.190% | — 0.448
Diffusion-GAN
Hubness | 17.379% 7.405% 3.173% 10.920% 6.786% 54.336% | 0.025 0.426
Gaussian | 19.014% 5.891% 2.883% 8.562%  5.657% 57.992% | 0.031  0.470
Normal | 19.009% 5.973% 2.670% 8.546%  5.762% 58.041% | 0.031  0.470
StyleGAN-2
Hubness | 17.621% 6.885% 3.329% 10.920% 6.341% 54.903% | 0.017 0.433
Gaussian | 18.689% 4.935% 2.963% 9.682%  5.146% 58.585% | 0.031  0.476
Normal | 18.960% 4.985% 2.569% 9.466%  5.204% 58.815% | 0.034  0.480
GANFormer
Hubness | 17.249% 6.726% 3.721% 11.338% 6.857% 54.113% | 0.026  0.423
Gaussian | 18.617% 5.689% 2.972% 10.239% 4.291% 58.192% | 0.029  0.472
Normal | 19.098% 5.693% 2.909% 10.766% 4.025% 57.509% | 0.028  0.467
Gender | Female  Male FD, | FD; | || Make-Up | Yes No FD, | FD; |
Original | 55.263% 44.737% | — 0.074 Original | 54.503% 45.497% | — 0.064
Diffusion-GAN
Hubness | 55.476% 44.524% | 0.003  0.077 Hubness | 50.467% 49.533% | 0.057 0.007
Gaussian | 57.375% 42.625% | 0.030  0.104 Gaussian | 59.625% 40.375% | 0.072  0.136
Normal | 58.121% 41.879% | 0.040  0.115 Normal | 59.504% 40.496% | 0.071  0.134
StyleGAN-2
Hubness | 55.476% 44.524% | 0.003  0.077 Hubness | 54.622% 45.378% | 0.002 0.456
Gaussian | 59.803% 40.198% | 0.064  0.139 Gaussian | 59.504% 41.496% | 0.064  0.128
Normal | 59.973% 40.027% | 0.067  0.141 Gaussian | 59.504% 41.496% | 0.064  0.128
GANTFormer
Hubness | 55.527% 44.473% | 0.004 0.078 Hubness | 54.563% 45.437% | 0.001 0.065
Gaussian | 57.375% 42.625% | 0.030 0.104 Gaussian | 57.408% 42.592% | 0.041 0.105
Normal | 57.121% 42.879% | 0.026  0.101 Normal | 57.427% 42.573% | 0.041  0.105

Age | (0-18)  (19-36) (36-54) (54+) |FD, | FD; |
Original | 18.134% 50.167% 23.321% 8.377% | — 0.310
Diffusion-GAN
Hubness | 18.032% 50.147% 23.382% 8.439% | 0.001 0.309
Gaussian | 16.756% 52.423% 24.094% 6.727% | 0.032 0.340
Normal | 16.316% 53.161% 24.098% 6.425% | 0.041 0.348
StyleGAN-2
Hubness | 18.034% 50.146% 23.381% 8.439% | 0.001 0.309
Gaussian | 16.276% 53.090% 23.929% 6.705% | 0.039 0.347
Normal | 17.007% 53.161% 23.898% 6.925% | 0.036 0.344
GANFormer
Hubness | 18.017% 50.200% 23.173% 8.610% | 0.003 0.309
Gaussian | 18.276% 51.403% 24.094% 6.227% | 0.026 0.331
Normal | 17.507% 51.699% 24.398% 6.396% | 0.028 0.334
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Table 5.4: The radium of features with different samplings. Explore that the hubness
sampling can make the space fairness to have the similar radium and the random sampling
(gaussian and normal) will lead to the bias, because of the dataset non-fairness.

(a) The latents radium in different Ethnicity

Ethnicity ‘ East-asian Black

South-asian Lat-Hisp Mid-East White

Hubness | 25.155 25.076  25.264 25.181 25.345 25.404
Gaussian | 25.293 24.541 24.424 24.308 24.450 25.954
Normal | 25.063 24.451 24.477 24.557 24.554 25.881

(b) The latents radium in make-up and gender

Make-up ‘ Yes No H Gender ‘ Yes No

Hubness | 25.404 25.361 Hubness | 25.587 25.474
Gaussian | 25.317 25.956 || Gaussian | 25.768 25.577
Normal | 25.378 25.586 Normal | 25.678 25.400

(c) The latents radium in different age periods

Age | (0-18) (19-36) (36-54) (54+)
Hubness | 25.228 25.396 25.271  25.051
Gaussian | 24.519 25.955 24.979  24.403
Normal | 25.074 25.479 25.573  24.208

Table 5.5: Diffusion-GAN with hubness sampling, gaussian sampling and normalization
sampling trained on FFHQ, LSUN-(Church, Cat, Horse, Bedroom) and Landscape. The
hubness sampling, having the best recall score, can be helpful to improve the diversity of
the model. (1), (2) and (3) are the models trained with different sampling, (1) Norm. (2)
Gauss. (3) Hubness. (4) is model trained with hubness samplings and test with hubness

latents.

FFHQ
Precision Recall FID

LSUN-Church
Precision Recall FID

LSUN-Cat
Precision Recall FID

0.708 0.419 3.280
0.698  0.430 3.661

0.603  0.357  3.950
0.606 0.393 4.031
0.604 0.400 3.659

0.574 0.251 8.746
0.571 0.234 9.306
0.576 0.265 8.720

(1)
(2)
(3) 0.683 0.440 3.539
(4) 0.693 0427 3.623

0.627 0.388  3.828

0.634 0.236 9.232

LSUN-Horse
Precision Recall FID

LSUN-Bedroom
Precision Recall FID

Landscape
Precision Recall FID

0.644 0.357 3.145

0.644 0.367 3.292

0.585 0.240 4.649
0.578 0.130 5.669
0.587 0.254 4.113

0.748 0478 2.872
0.747 0473 2918
0.742 0.485 2.894

)
) 0.641 0.352 3.342
)
)

0.656 0.359 3.871

0.615 0.243 4.362

0.785 0.406 4.001
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Table 5.6: StyleGan-2 and GANFormer with hubness sampling, gaussian sampling and
normalization sampling trained on FFHQ, and LSUN-(Church, Bedroom). The hubness
sampling, having the best recall score, can be helpful to improve the diversity of the model.
(1), (2) and (3) are the models trained with different sampling, (1) Norm. (2) Gauss. (3)
Hubness. (4) is model trained with hubness samplings and test with hubness latents.

(a) StyleGAN-2.

FFHQ LSUN-Church LSUN-Bedroom
Precision Recall FID | Precision Recall FID | Precision Recall FID
(1) 0.680 0.439 3.583 0.594 0.467 2.680 0.565 0.368 2.813
(2) 0.685 0.437 3.587 0.595 0.480 2.502 0.565 0.353 2.836
(3) 0.668 0.464 3.570 0.595 0.497 2.626 0.563 0.373 2.755
(4) 0.683 0.457 3.578 0.612 0.484 2.726 0.578 0.361  3.008

(b) GANFormer.

FFHQ LSUN-Church LSUN-Bedroom
Precision Recall FID | Precision Recall FID | Precision Recall FID
(1) 0.616 0.245 9.484 0.354 0.192 12.771 0.502 0.225 5.256
(2) 0.689 0.272 6.184 0.495 0223 7.334 0.530 0.218 5.072
(3) 0.691 0.307 5.055 0.610 0.293 4.040 0.532 0.254 5.021
(4) 0.685 0.285 4.867 0.602 0.274 4.095 0.514 0.224 5.651

Balance training with hubness samplings

As presented in Table 5.4 and Table 5.3, we analyze the coverage of various classes
within the FFHQ image dataset, which highlight the coverage of real images by
generative models. The results demonstrate that our hubness sampling method
effectively mitigates convergence issues caused by class imbalance in large-scale
datasets. This approach helps maintain a more consistent distribution of feature
radii within the latent space. Furthermore, from the statistics shown in Table 5.3,
it is evident that the ratio of minority (tailed) classes increases significantly, while
the dominance of majority classes decreases. These findings strongly indicate that
hubness sampling enhances the fairness of model training.

Hubness sampling may also enhance the discriminator’s ability to distinguish between
real and generated samples. By providing a more concentrated and representative
set of latent variables, hubness sampling allows the generator to focus on the dis-
criminator’s "hard” regions—those that closely resemble real data. This targeted
learning helps the generator better approximate the real data manifold, ultimately

improving its performance in generating realistic samples.
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i - -

(c) Hubness Sampling

(g) Gaussian Sampling (h) Normal. Sampling (i) Hubness Sampling

Figure 5.1: The example results of trained on Gaussian sampling, Normalization sampling
and Hubness sampling with FFHQ (a,b,c), Lsun-bedroom (d,e,f) and Landscape (g,h,i)
datasets. The input latents of these trained models are random, where the red box is to
mark the low quality generative images.
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(b) Diffusion-GAN trained with Landscape

Figure 5.2: The examples show Diffusion-GAN trained on the FFHQ and Landscape
datasets. As demonstrated in the images, the FID scores are comparable across Hubness
sampling, Gaussian sampling, and Normalization sampling. However, Hubness sampling
consistently outperforms the other two methods in terms of Recall scores, particularly in
the tail regions.

5.4.2 Test with different dataset.

Evaluating the quality of GANs generated images is essential, as precision, recall,
and FID are frequently used metrics to quantify GAN output. As shown in Ta-
ble 5.5, Diffusion-GAN [145] was trained on various datasets, including FFHQ),
LSUN (Church, Cat, Horse, Bedroom), and Landscape. The results indicate that
the proposed sampling method achieves higher recall and improved image quality
compared to random sampling. Furthermore, our method demonstrates superior
performance, particularly when training on the LSUN-Church, Cat, and Bedroom
datasets. These findings suggest that hubness sampling may enhance the diversity

of generated images while maintaining a quality level comparable to the baseline
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normalization sampling approach.

As shown in Table 5.6a and Table 5.6b, we evaluate the performance of different
sampling methods on StyleGAN2 [68] and GANFormer [57] using the FFHQ and
LSUN datasets (Church and Bedroom). The results indicate that StyleGAN2 achieves
similar outcomes to Diffusion-GAN, with hubness sampling yielding the highest recall.
Additionally, GANFormer demonstrates improved diversity with hubness sampling,
along with better precision and FID scores, signifying that this sampling method
enhances both the quality and diversity of the generated images.

We also evaluate the hubness latents in three GANs trained using hubness
sampling. It can be observed that the hubness sampling used for training and testing
with hubness latents differs from the random sampling used for training and testing
with random latents. Moreover, training and testing with hubness latents through
hubness sampling results in higher precision and lower recall. This aligns with the
previously established trend: while hubness latents produce high-quality images,

they come at the cost of reduced diversity.

5.4.3 Example results from the different dataset

As Fig. 5.1 shows, example training results from the FFHQ, LSUN-Bedroom, and
Landscape datasets are displayed, with low-quality images highlighted by red boxes.
Additionally, in the case of the Landscape dataset, models trained with Gaussian
sampling occasionally generate blank images, also indicated by red boxes. This
further underscores the advantage of hubness sampling in generating more reliable

and higher-quality outputs.

5.4.4 Evaluating on fairness measurement

To evaluate the fairness of generative models, this study employs the CLEAM
score [132] and the Fairness Discrepancy (FD) [133]. The CLEAM score, a Boolean-
fairness metric designed for binary demographic attributes (e.g.male/female, young/not
young), quantifies fairness on a scale where values approaching 0.5 indicate greater

parity. The Fairness Discrepancy (FD) metric assesses the deviation between a prede-
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(b) StyleGAN2 trained with LSUN-Church

Figure 5.3: The examples show StyleGAN2 trained on the FFHQ and Landscape datasets.
As demonstrated in the images, the FID scores are comparable across Hubness sampling,
Gaussian sampling, and Normalization sampling. However, Hubness sampling consistently
outperforms the other two methods in terms of Recall scores, particularly in the tail regions.

fined fairness probability and the expected output of an attribute classifier. Formally,
ED = ||p — E;q[C(2)]||2, where for an observed instance x sampled from the data
distribution ¢, the attribute classifier C' yields a probabilistic output p(z) = C(x),
and p represents the fairness probability vector for the binary feature, typically set
as p = [%, 5]. Table 5.7 and 5.8 present the CLEAM scores and FD values for
StyleGAN-2, DiffusionGAN, and GANFormer with respect to gender (male/female)
and age (young/not young). The reported results suggest that the application of
hubness sampling leads to CLEAM scores closer to the ideal value of 0.5 and achieves
the lowest FD, thereby indicating that hubness sampling contributes to improved

fairness and a reduction in dataset bias.
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Table 5.7: CLEAM score and FD for StyleGAN-2, DiffusionGAN, FormerGAN trained on
FFHQ based on gender (male/female).

(a) StyleGAN-2 (b) DiffusionGAN (c) FormerGAN
‘ CLEAM | FD | ‘ CLEAM | FD | ‘ CLEAM ‘ FD |
Norm. 0.471 | 0.041 Norm. 0.486 | 0.020 Norm. 0.473 | 0.038
Gauss. 0.478 | 0.031 Gauss. 0.480 | 0.028 Gauss. 0.463 | 0.052
Hubness 0.487 | 0.018 Hubness 0.492 | 0.011 Hubness 0.478 | 0.031

Table 5.8: CLEAM score and FD for StyleGAN-2, DiffusionGAN, FormerGAN trained on
FFHQ based on age (young/not young).

(a) StyleGAN2 (b) DiffusionGAN (c) FormerGAN
| CLEAM | FD | | CLEAM | FD | | CLEAM | FD |
Norm. 0.889 | 0.550 Norm. 0.885 | 0.544 Norm. 0.885 | 0.544
Gauss. 0.887 | 0.547 Gauss. 0.881 | 0.539 Gauss. 0.882 | 0.540
Hubness 0.873 | 0.527 Hubness 0.880 | 0.537 Hubness 0.880 | 0.537

5.4.5 Models with truncation trick

The truncation trick is a widely adopted technique in high-quality GAN image
generation. Consequently, we will dedicate further discussion to its application and
impact on GANs trained using our method. As shown in Tables 5.9, 5.11 and 5.10,
our sampling method follows the previously established truncation trick. Specifically,
as the truncation threshold decreases, diversity decreases while quality improves.
Notably, our method achieves the highest diversity (as indicated by the highest recall)
across various threshold levels. Meanwhile, Tables 5.9b, 5.11a and 5.10c reveal
that our method does not achieve the best FID score with random latents. However,
once the truncation threshold reaches 0.9, our method attains the best FID scores.
Following that result, it demonstrates that our method enables training with a better

balance between diversity and quality.

5.5 Conclusion and Limitation

In conclusion, we present a novel hubness latent sampling method to train the GAN-
series models, replacing the traditional Gaussian samplings and the normalization

samplings. Under our method, it is significant to improve the diversity of the GAN



90 5.5 Conclusion and Limitation

Table 5.9: Recall and FID for different truncation trick (1.0,0.9,0.7,0.5) and different
dataset on StyleGAN-2. The hubness sampling is helpful to improve the diversity on the
different level of the truncation with pre-trained StyleGAN-2 on FFHQ, LSUN-Church
and LSUN-Bedroom.

(a) StyleGAN-2 trained with FFHQ testing on the truncation level to be 1.0,0.9,0.7,0.5.

FFHQ-1.0 FFHQ-0.9 FFHQ-0.7 FFHQ-0.5
Recall FID | Recall FID | Recall FID | Recall FID
Norm. 0.439 3.583 | 0.358 5.740 | 0.203 19.874 | 0.052 54.013
Gauss. 0.437 3.587 | 0.375 5.458 | 0.200 20.408 | 0.041 53.077
Hubness | 0.470 3.568 | 0.415 4.456 | 0.245 17.588 | 0.063 50.998

(b) StyleGAN-2 trained with Lsun-Church testing on the truncation level to be
1.0,0.9,0.7,0.5.

Church-1.0 Church-0.9 Church-0.7 Church-0.5
Recall FID | Recall FID | Recall FID | Recall FID
Norm. 0.467 2.680 | 0.390 3.601 | 0.191 9.939 | 0.034 22.206
Gauss. 0.480 2.502 | 0.411 3.625 | 0.229 10.880 | 0.029 24.409
Hubness | 0.497 2.626 | 0.425 3.406 | 0.236 9.769 | 0.038 22.016

(c) StyleGAN-2 trained with Lsun-Bedroom testing on the truncation level to be
1.0,0.9,0.7,0.5.

Bedroom-1.0 Bedroom-0.9 Bedroom-0.7 Bedroom-0.5
Recall FID | Recall FID | Recall FID | Recall FID
Norm. 0.368 2.813 | 0.327 3.639 | 0.173 12.059 | 0.031 31.701
Gauss. 0.353 2.836 | 0.298 3.896 | 0.151 12.039 | 0.024 27.645
Hubness | 0.373 2.755 | 0.332 3.308 | 0.190 9.952 | 0.032 24.479

space and enhance the tail classes to study. To claim the reliability of our method,
we did the statistic of the feature-studies situation based on FFHQ and tested
our method on different models and dataset, all of the results show hubness latent
sampling method can notably decrease the bias to study the feature of the minors.

Although our method effectively enhances minor classes and reduces bias during
training, it comes with the drawback of requiring considerable computational time to
identify hubness samples. As table 5.12 shown, this limitation highlights the need for
further improvements in efficiency. In future work, a more computationally effective
approach should be explored to accurately and efficiently capture latent hubness

while maintaining the benefits of bias reduction and class enhancement.
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Table 5.10: Recall and FID for different truncation trick (1.0,0.9,0.7,0.5) and different
dataset (FFHQ, LSUN-Church and LSUN-Bedroom) on FormerGAN. The hubness sampling
is helpful to improve the diversity on the different level of the truncation with pretrained
FormerGAN on FFHQ, LSUN-Church and LSUN-Bedroom.

(a) FormerGAN trained with FFHQ testing on the truncation level to be 1.0,0.9,0.7,0.5.

FFHQ-1.0 FFHQ-0.9 FFHQ-0.7 FFHQ-0.5
Recall FID | Recall FID | Recall FID | Recall FID
Norm. 0.245 9.484 | 0.196 10.622 | 0.136 21.101 | 0.062 53.009
Gauss. 0.272 6.184 | 0.234 6.455 | 0.172 12.796 | 0.078 28.753
Hubness | 0.307 5.055 | 0.257 5.667 | 0.187 11.995 | 0.097 27.457

(b) FormerGAN trained with Lsun-Church testing on the truncation level to be
1.0,0.9,0.7,0.5.

Church-1.0 Church-0.9 Church-0.7 Church-0.5
Recall FID | Recall FID | Recall FID | Recall FID
Norm. 0.192 12.771 | 0.154 13.092 | 0.103 14.000 | 0.054 22.718
Gauss. 0.223 7.334| 0.182 8319 | 0.137 9.588 | 0.080 18.350
Hubness | 0.293 4.040 | 0.250 4.289 | 0.182 7.729 | 0.104 15.667

(c) FormerGAN trained with Lsun-Bedroom testing on the truncation level to be
1.0,0.9,0.7,0.5.

Bedroom-1.0 Bedroom-0.9 Bedroom-0.7 Bedroom-0.5
Recall FID | Recall FID | Recall FID | Recall FID
Norm. 0.225 4.656 | 0.185 5.721 | 0.120 8.230 | 0.056 16.398
Gauss. 0.221 5.072 | 0.179 5.603 | 0.115 &8.216| 0.061 16.120
Hubness | 0.254 5.021 | 0.197 5.544 | 0.125 7.756 | 0.087 14.873
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Table 5.11: Recall and FID for different truncation trick (1.0,0.9,0.7,0.5) and different
dataset (FFHQ, LSUN-Church and LSUN-Bedroom) on Diffusion-GAN. The hubness
sampling is helpful to improve the diversity on the different level of the truncation with
pretrained Diffusion-GAN on FFHQ, LSUN-Church and LSUN-Bedroom.

(a) Diffusion-GAN trained with FFHQ testing on the truncation level to be
1.0,0.9,0.70.5.

FFHQ-1.0 FFHQ-0.9 FFHQ-0.7 FFHQ-0.5
Recall FID | Recall FID | Recall FID | Recall FID
Norm. 0.419 3.280 | 0.360 5.430 | 0.189 20.986 | 0.048 55.503
Gauss. 0.430 3.661 | 0.389 5.114 | 0.272 16.726 | 0.112 48.015
Hubness | 0.440 3.539 | 0.399 3.891 | 0.285 11.012 | 0.133 31.651

(b) Diffusion-GAN trained with Lsun-Church testing on the truncation level to be
1.0,0.9,0.70.5.

Church-1.0 Church-0.9 Church-0.7 Church-0.5
Recall FID | Recall FID | Recall FID | Recall FID
Norm. 0.357 3.950 | 0.278 5.306 | 0.111 13.023 | 0.018 28.079
Gauss. 0.393 4.031 | 0.316 5.601 | 0.139 13.616 | 0.024 30.334
Hubness | 0.400 3.659 | 0.326 4.814 | 0.150 11.697 | 0.028 23.794

(c) Diffusion-GAN trained with Lsun-Bedroom testing on the truncation level to be
1.0,0.9,0.70.5.

Bedroom-1.0 Bedroom-0.9 Bedroom-0.7 Bedroom-0.5
Recall FID | Recall FID | Recall FID | Recall FID
Norm. 0.240 4.649 | 0.042 13.721 | 0.020 21.030 | 0.001 34.710
Gauss. 0.130 5.669 | 0.098 6.595 | 0.036 14.076 | 0.006 26.951
Hubness | 0.254 4.113 | 0.211 4.847 | 0.098 13.089 | 0.017 24.130

Table 5.12: Hubness sampling was performed by selecting the top 10%, 15%, 20%, 25%, 30%
of latent vectors based on their hubness values. According to Algorithm 3, the number
of latent vectors used for training was held constant. Consequently, the original latent
space needed to contain L sh, e, mapr latent vectors, respectively, to yield the

ed 0% 6% 20% 5% 0% .
fixed training batch set size x after hubness-based selection.

‘Top—lO% Top-15% Top-20% Top-25% Top-30% ‘ Random
Time (CUDA) |  5.820s 3.144s 2.215s 1.415s 1.406s | > 10ms
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Chapter 6

Conclusions, and future work

This concluding chapter synthesizes the results of the present study, focusing on the
theoretical understanding and practical implementation of the hubness phenomenon in
the context of generative modeling, particularly within the architecture of Generative
Adversarial Networks (GANs). The findings and key takeaways are presented in
Section 6.1. Section 6.2 focuses on highlighting the main contributions of this thesis,

while recommendations for future research directions are discussed in Section 6.3.

6.1 Summary

This thesis aims to deepen the understanding of the hubness phenomenon in the
latent space of generative models, with a focus on improving generative diversity
and image quality. In Section 3, we explore how hubness latents can be explored
to generate high-quality synthetic images and investigate the relationship between
hubness and the truncation trick, offering potential explanations for its effectiveness.
In Section 4, we extend the hubness phenomenon to the non-random feature space
and demonstrate its application in the precision and recall metrics for generative
model assessment, aiming to enhance evaluation efficiency. Finally, we apply hubness
sampling to train state-of-the-art GAN models. The training results reveal an
intriguing finding: the hubness sampling method not only improves the diversity of
GAN-generated outputs but also helps reduce the bias inherent in the dataset. This

work offers valuable insights into the use of hubness to optimize the performance of
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generative models in various tasks.
Overall, this work makes a significant contribution to understanding and leveraging
the hubness phenomenon in GANs, offering a novel perspective on high-dimensional

latent space properties and their implications for generative model performance.

6.2 Contributions

In this thesis, there are three main contributions, investigating the presence of
the hubness phenomenon in generative latent spaces and synthesizing high-quality
images by hubness-aware latents; applying hubness vectors improve the efficiency
of evaluation metrics in feature spaces; and exploiting hubness-aware sampling
techniques to improve generative diversity while mitigating dataset bias, leading to
more balanced and robust generative models.

For the hubness phenomenon in generative latent spaces, we analyze the hubness
phenomenon with the high-dimensional vectors by hubness value and discuss the
possible effect for the generative spaces, and the contributions of this area are

summarised as:

e We uncover the existence of hubness phenomenon in the GAN latent space,
which has a significant correlation with the quality of GAN synthesized images,
i.e. the proposed hubness priors and propose a novel GAN latent sampling
algorithm that identifies high-quality hub latents based on our hubness priors,
which allows efficient and high-quality image synthesis for GANs.

For improving the efficiency of precision and recall using hubness features, we analyze
redundancy in the computation algorithm and uncover the relationship between the

hubness phenomenon and redundancy. The key aspect of this area is:

e We propose efficient precision and recall (eP&R) metrics for assessing generative
models, which give almost identical results as the original P&R [78] but consume
much less time and space. Theoretically, our eP&R run in O(mnlogn) time

and consume O(mn) space (m is the number of of hubs samples and m < n),
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which are much more efficient than the original P&R metrics that run in

O(n?logn) time and consumes O(n?) space.

To enhance generative diversity, building upon previous research [84] on distribution-
aware sampling for improving GAN training, we propose a novel hubness-aware
sampling method. This approach suggests hubness sampling latents can improve the
diversity of GAN-generated outputs while mitigating dataset bias. By incorporating
hubness-aware sampling into the training process, we aim to achieve a more balanced
and representative generative model, ultimately enhancing both the quality and

variability of the generated data, as shown in the following.

e We introduce a hubness-aware sampling method for training GAN-based models,
demonstrating its effectiveness in enhancing both balance and diversity in the
generated outputs and emphasize the crucial role of sampling strategies in
GAN training, particularly their impact on latent space density and model

performance.

6.3 Future work

The research presented in this thesis has provided valuable insights into the role
of the hubness phenomenon in GANs, shedding light on its potential to enhance
generative model performance. However, it is still a main challenge to solve the
diversity estimation and distribution fitting in high dimensinal space and there are
also several works remain in this area, warranting further investigation. Future

research directions include:

e Going a step further and investigating the distribution problem in higher
dimensional spaces and how this adoption of density imbalances can be used

to improve existing models.

e Conducting user studies to assess human preferences for generated images,

complementing metric-based evaluations with subjective quality assessmen

e Exploring more effective and efficient methods for identifying true hubness

vectors, optimizing their selection for improved generative outcomes.
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e Expanding the study of hubness beyond GANs to explore its applicability
in other generative models, such as Variational Autoencoders (VAEs) and

diffusion models, to further enhance their quality, diversity, and efficiency.
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