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Ultrasonic guided waves hold significant potential for non-intrusive monitoring of progressive6

damage in composite structures, contingent on the efficacy of the onboard monitoring system to7

reliably acquire, process signals. By mapping the extracted signal features with parameterized8

damage metrics, it is possible to realize an automated framework for the assessment of structural9

integrity. It is well established that fundamental ultrasonic guided wave modes are sensitive to10

damage in laminated composite structures and can serve as robust damage identifiers when11

properly characterized. But there is a gap in understanding of the modified behavior in12

waveguide dispersion properties due to the presence of damages or deterioration of waveguide13

properties. Therefore, it is vital to establish a generic, extendable and reproducible wave14

mode reconstruction methodology so that the fundamental ultrasonic guided wave modes15

can be investigated for damage signatures. Towards this, The fundamental 𝑆0 and 𝐴0 modal16

amplitudes and dispersion characteristics were calibrated using a physics-informed harmonic17

wave propagation model. This process generated individual mode realizations that were then18

superimposed to produce accurate reconstructions of experimental signals acquired from a19

sparse array of piezoelectric transducers. A regularized residual error function was formulated20

to account for discrepancies from measurement noise, unmodeled higher-order modes, and other21

sources of error. A probabilistic Bayesian joint parameter estimation approach was employed to22

minimize this error and calibrate the wave mode characteristics. The calibrated parameters were23

subsequently used to investigate progressive structural degradation arising from displacement-24

controlled compressive fatigue loading. A probabilistic Bayesian joint parameter estimation25

framework effectively captured direction–specific signatures and quantified uncertainty in26

parameter estimation, revealing distinct directional and modal sensitivities to fatigue damage.27

This achievement underscores the efficacy and reliability of the calibrated ultrasonic guided wave28

modes as reliable identifiers of damage with potential for further description, characterization,29

and sentencing.30

I. Nomenclature31

SHM = Structural health monitoring
UGW = Ultrasonic guided wave
SAFE = Semi-analytical finite element
CFRC = Carbon fiber reinforced composite
RREF = Regularized residual error function
ToF = Time of flight
PSD = Power spectral density
R = Pearson correlation coefficient to quantitatively demonstrate experimental and reconstructed signal concordance.
𝑆0 = Symmetric fundamental ultrasonic guided wave mode.
𝐴0 = Antisymmetric fundamental ultrasonic guided wave mode.
𝑆𝐻0 = Shear–horizontal fundamental ultrasonic guided wave mode.
𝜃𝑝 = Direction of guided wave propagation
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r = Position vector from actuating transducer to sensing transducer, distance 𝑟 (m), for a given 𝜃 (◦)
𝑡 = time (s)
𝜔 = Circular frequency (rad/s)
𝑛𝑠 = Number of sensing transducers bonded to the test structure.
𝑛𝜔 = Number of harmonic components of signal within a chosen frequency window.
𝑔(𝜔) = The complex frequency response of the actuation signal and the system transfer function.
𝑈𝑚 (𝑟, 𝑡)

��
𝜃𝑝

= Lamb wave propagating in a plate like structure as a function of 𝑟 and 𝑡 along 𝜃𝑝

𝑈𝑆0 = Symmetric 𝑆0 guided wave mode amplitude
𝑈𝐴0 = Antisymmetric 𝐴0 guided wave mode amplitude
®𝑘𝑆0, 𝜃𝑝 = 𝑆0 mode wave number along 𝜃𝑝 direction (𝑚−1)
®𝑘𝐴0, 𝜃𝑝 = 𝐴0 mode wave number along 𝜃𝑝 direction (𝑚−1)
𝑉𝑃S0

= Phase velocity of 𝑆0 mode, given by 𝜔
𝒌S0

(m/sec)
𝑉𝑃A0

= Phase velocity of 𝐴0 mode, given by 𝜔
𝒌A0

(m/sec)
𝑉𝐺S0

= Group velocity of 𝑆0 mode, given by 𝜕𝜔
𝜕𝒌S0

(m/sec)
𝑉𝐺A0

= Group velocity of 𝐴0 mode, given by 𝜕𝜔
𝜕𝒌A0

(m/sec)
Θ = Wave mode parameters calibrated in this study [𝑈𝑆0 ,𝑈𝐴0 , 𝑉𝑃S0

, 𝑉𝑃A0
, 𝑉𝐺S0

, 𝑉𝐺A0
]

𝐻 (𝑥) (𝑡) = Hilbert envelope of the experimental structural-acoustic response.
𝐻 (𝑥𝑀 ) (𝑡) = Hilbert envelope of the reconstructed signal.
𝜀𝐻 = Euclidean norm of the difference between the experimental and calibrated Hilbert analytic envelopes
𝜀𝑉𝑃

= Euclidean norm of the difference between the semi-analytical and calibrated phase velocities
𝜀𝑉𝐺

= Euclidean norm of the difference between the semi-analytical and calibrated group velocities

II. Introduction32

Modern aerospace and automotive systems increasingly rely on multilayered composite materials to achieve optimal33

strength-to-weight ratios and performance under varying environmental and loading conditions. Throughout their34

lifecycle, these structures are susceptible to progressive degradation mechanisms such as interlaminar delaminations, [1],35

interfacial debonding [2] and fibre-breakage [3] amongst others. The damage may be initiated at the manufacturing stage36

due to imperfections such as porosity, impurities and fiber-misalignment [4, 5] or in service due to the action of tension,37

compression, torsion, impact and fatigue. Unlike isotropic materials, CFRCs exhibit complex damage progression38

patterns [6–10] that often evade conventional inspection methods, posing significant challenges for early damage onset39

detection and reliability assessment in safety critical engineering applications[11, 12]. Predictive maintenance holds40

great promise to operate within data-rich environments created by continuous monitoring regimes. However, the41

acquired dataset is not useful unless the essential features are extracted and mapped to certain behavioural patterns of42

the structure which may vary due to degradation. The identification and selection of these key features play a vital role43

in optimizing efficiency, improving detection performance and enabling practical predictive maintenance [13].44

Most essential signal features can be divided into two groups – overall guided wave signal features and guided wave45

mode-specific features. The overall guided wave signal features provide damage indication while the guided wave46

mode–specific features provide damage information. Because the overall summary statistics are related to aggregated47

signal properties, there is usually a significant difficulty in relating these features to the underlying physics of the damage48

influencing the guided wave propagation behaviour. Furthermore, the uncertainty associated with these aggregated49

signal features and their changes makes it difficult to reproduce the proposed changes in a consistent fashion to the50

damage metrics. A list of the commonly used damage sensitive features for lamb waves [14] in structural health51

monitoring (SHM) is given in Table 2.52

Studies have found that various wave modes have different interactions with various types of composite damage53

[15, 16]. For example, the 𝑆0 mode was found to be sensitive to impact damage but not sensitive to the delamination54

simulated by the Teflon insert. On the other hand, the 𝑆𝐻0 mode was sensitive to both simulated delamination and55

impact damage [17]. The 𝑆0 mode which is dominant at higher frequencies, caused mode conversions when interacting56

with the defects whereas 𝐴0 mode, dominant at lower frequencies, mainly caused a change in phase and amplitude upon57

interaction with defects [18]. Consistent findings across studies showed amplitude reductions due to damage presence.58

Specifically, impact damage caused a strong amplitude decrease for the 𝑆0 mode because impact damage, in the form59

of matrix cracking, fiber breakage, or interlaminar delamination, significantly reduced local material stiffness [19].60
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In addition to wave mode sensitivity to specific types of damage, studies demonstrated that guided wave modes can61

effectively detect and monitor fatigue damage evolution in composite structures. Specifically, the ToF, amplitude and62

PSD of the guided waves were sensitive to fatigue induced matrix cracks and delaminations [20].63

Therefore, it can be inferred that amongst the commonly extracted essential signal features, most of them have64

direct and strong dependence on the knowledge of fundamental ultrasonic guided wave modes within the acquired65

ultrasonic responses. This makes the identification and isolation of fundamental ultrasonic guided wave modes the most66

crucial feature extraction operation that can be performed on the acquired structural ultrasonic responses. Reported67

methodologies for guided wave mode isolation can be primarily classified into pre–acquisition and post–acquisition68

paradigms, each presenting their own constraints. The first paradigm relies on hardware-based strategies applied before69

data acquisition, such as employing specialized transducers, prescribing specific actuation frequencies, or controlling70

actuator–sensor distances to preferentially excite a single mode. Although effective, these methods are experimentally71

rigid and the mode of interest must be selected a priori. Post–acquisition techniques operate by extracting wave packets72

based on time–of–arrival of their peaks. However, these methods are fundamentally heuristic and fail in identifying73

these peaks when wave modes overlap in the time and time-frequency domains [33–36]. Additionally, the principal74

shortcoming of these methods is their physics-agnostic nature; they treat the signal as raw data without incorporating75

the dispersion characteristics embodied in phase and group velocity curves that govern guided wave propagation.76

There exists a lack of a robust, streamlined and reproducible physics–informed methodology for isolating guided77

wave modes to capture damage signatures. This study directly addresses this issue by calibrating and reconstructing78

experimental guided wave modes to establish them as reliable criteria for damage signature identification. The concept79

of physics-informed robust one-dimensional calibration of guided wave mode characteristics was first introduced in80

previous work [37], where the fundamental 𝑆0 and 𝐴0 modes were calibrated to generate accurate reconstructions of81

signals acquired using a linear transducer array along a single propagation direction on a thin-walled CFRC structure. In82

this paper, a two-dimensional calibration of 𝑆0 and 𝐴0 modes along different radial propagation directions, enabling83

accurate signal reconstruction at any angular position 𝜃 and distance 𝑟 . Furthermore, the calibrated guided wave mode84

characteristics were utilized to capture structural degradation in the CFRC panel resulting from cyclic displacement–85

controlled compressive fatigue loading. This achievement underscores the reliability of the the reconstructed ultrasonic86

guided wave modes as digital damage identifiers for damage detection, characterization, and quantification. It is87

important to note that the results presented in this study showcase the efficacy of the calibrated wave mode characteristics88

in capturing progressive structural degradation. Mapping the captured signatures to parameterized damage metrics is89

the future scope of this research.90

The remainder of this paper is structured as follows. section III outlines the experimental setup, data acquisition91

procedure, and wave mode calibration methodology employed to capture progressive structural degradation in a92

12–layered CFRC panel under cyclic displacement-controlled compressive fatigue. section IV delineates the results93

obtained from the probabilistic Bayesian joint parameter estimation methodology, demonstrating how progressive94

degradation manifests in the calibrated wave mode characteristics and compares them with experimental measurements.95

Finally, section V summarizes the conclusions and highlights future directions.96
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Guided Wave Mode-Specific Features
Essential Signal Feature Remarks
Time-of-Flight (ToF) [21, 22] When lamb waves interact with damage, mode

conversion can occur consequently altering the
propagation velocity and hence the ToF.

Peak-to-Peak Amplitude [23, 24] The interaction of fundamental Lamb wave modes
with the structural features or damage can also lead
to mode-specific changes in amplitude. This can
result in mode-dependent peak–to–peak amplitude
variations that are useful for damage detection and
characterization.

Attenuation [25, 26] Mode-dependent (e.g., in plates, 𝐴0 attenuates
faster than 𝑆0). Requires separation of modes to
quantify accurately.

Scattering Coefficients [27, 28] Governed by mode interaction with defects (e.g.,
symmetric vs. antisymmetric mode scattering pat-
terns).

Wave Energy [25, 29] Sum of individual modal energies. Reconstruc-
tion helps to isolate contributions from individual
modes.

FFT Coefficients [30] Peaks correspond to mode resonances, but overlap-
ping modes complicate interpretation.

Power Spectral Density (PSD) [14] Frequency-domain representation of signal energy;
requires mode separation for accurate damage as-
sessment.

Wavelet Coefficients [31, 32] Provide a sensitive and robust method for captur-
ing multiple aspects of damage-wave interactions
across fundamental Lamb wave modes.

Overall Guided Wave Signal Features
Essential Signal Feature Remarks
Root Mean Square Lumped metric with no mode-specific information.
Skewness Sensitive to overall signal shape but agnostic to

underlying modes.
Kurtosis Compares the tailedness/peakedness of signal dis-

tribution relative to the normal distribution; not
directly linked to wave modes.

Magnitude Lumped metric with no mode-specific information.
Table 2 Commonly used essential signal features for damage description and their dependence on guided wave
modes. The overall guided wave signal features provide damage indication while the guided wave mode–specific
features provide damage information (location, severity etc.).
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III. Materials and methods97

This section begins by detailing the mechanical and geometric properties of the composite panel, the compressive98

fatigue test rig along with the loading parameters and the autonomous, ready-to-deploy, smart edge computing signal99

generation/reception framework utilized to acquire the ultrasonic responses from the CFRC panel in section III.A.100

Subsequently, the key components of the physics–informed calibration encompassing the harmonic wave propagation101

function (M), the regularized residual error formulation (𝜀) and the probabilistic Bayesian joint parameter estimation102

regime are outlined in section III.B, section III.C and section III.D respectively.103

A. Experimental section104

The experimental setup consisted of a symmetric 12–layered CFRC panel of dimension 410 × 380 × 2.5 mm, with a105

layup configuration of [+453/−453]𝑆 equipped with NANO30 transducers positioned in a semi-circular orientation106

of radius 100mm at angular positions of 0◦, 45◦, 90◦, 135◦, 180◦, as depicted in figure 1. A threshold-free ultrasonic107

guided wave–based active inspection framework termed CyberSHM was employed to acquire and process ultrasonic108

data collected form thin-walled plate-like structures in real-time. A smart–edge node, comprising a sparse array of109

NANO30 transducers and a daisy–chained edge computing device, excites thin–walled structures with user–defined110

frequency–swept actuation signals. The system acquires and processes ultrasonic structural responses using customized111

open-source Python scripts. Programmable edge-based tasks include file manipulation, signal feature extraction,112

classification, and data transmission to a digital layer for subsequent analysis. These integrated capabilities enable113

real–time, inspection of thin–walled plate–like structures using ultrasonic guided waves.

Fig. 1 Experimental setup: compressive fatigue testing apparatus, CFRC panel equipped with a semi-circular
array of actuator 𝐴 and five transducers used to acquire ultrasonic responses (actuator–transducer distance
100mm)

114

The smart–edge–node in this study incorporated three edge devices interconnected in a daisy-chain configuration,115

establishing a six-channel signal generation and reception system. The device excited the panel with a 10–cycle116

Hanning-windowed toneburst signal at 2V peak–to–peak amplitude coupled with a 100–factor gain while simultaneously117

acquiring guided wave responses. An in-line classification algorithm processed the captured time–domain signals in118

real–time, distinguishing between relevant acoustic–event–representative signatures and non–essential signals. Only119

waveforms identified as containing meaningful structural information were retained for subsequent wave mode calibration.120

The data acquisition and in–line classification capabilities of the smart–edge–node, were previously conceptualized,121

developed, and experimentally validated in our publication [38]. The digital layer incorporates a semi–analytical model122

that analyzes elastic wave dispersion in laminated composite waveguides, accurately capturing fundamental guided123

wave characteristics and simulating dispersion phenomena in composite materials.124

The compressive test rig, shown in figure 1 , was designed to provide simple supports to all four sides of the125

specimens whilst facilitating the application of a uni–axial in–plane compressive load. The construction and assembly126

of the test rig are described in [39], where the rig was utilized to study buckling and failure in CFRCs for acoustic127

emission structural health monitoring.128
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Fig. 2 Displacement control fatigue loading with gradual increments in the applied compressive strain.

In this study, the CFRC being investigated was subjected to displacement control compressive fatigue loading with129

the aim of capturing the progressive degradation in the calibrated wave mode characteristics. A total of 175, 000 cycles130

of fatigue were performed, acquiring the structural ultrasonic responses after every 25, 000 cycles and increasing the131

applied compressive strain in accordance with figure 2. Subsequently, the fundamental 𝑆0 and 𝐴0 mode characteristics132

were calibrated and accurate reconstructions of the acquired ultrasonic signals were generated.133

B. Direction dependent harmonic wave propagation function (M)134

This concept was first formulated as a one–dimensional harmonic wave propagation function to calibrate wave135

modes along a single propagation direction [37]. However, the directional dependence of specific wave modes on the136

fibre orientation in the composite layup is crucial to achieve accurate reconstructions of experimental signals. Therefore,137

the modal amplitudes, direction dependent phase velocities and group velocities were chosen as parameters to calibrate.138

Θ = {𝑈𝑆0 ,𝑈𝐴0 , 𝑉𝑃S0
, 𝑉𝑃A0

, 𝑉𝐺S0
, 𝑉𝐺A0

}

and hence, the direction dependent harmonic wave propagation function at a given frequency 𝜔 was formulated as,139

𝑈𝑚 (𝒓, 𝑡;𝜔) = 𝑈𝑆0𝑒
𝑗

(
𝒌⊤

S0
𝒓−𝜔𝑡

)
+𝑈𝐴0𝑒

𝑗

(
𝒌⊤

A0
𝒓−𝜔𝑡

)
+ 𝜀 (1)

In equation 1, 𝒓 denotes the position vector from the actuating transducer to the sensor, 𝜃𝑝 is the direction of propagation140

with respect to 𝑋–axis, 𝜔 is the angular frequency, 𝑡 is the time, 𝑈𝑆0 and 𝑈𝐴0 are the amplitudes and 𝒌S0 (𝜔, 𝜃𝑝) and141

𝒌A0 (𝜔, 𝜃𝑝) are the frequency and direction–dependent wavenumber vectors of the 𝑆0 and 𝐴0 modes respectively. Here142

𝜀 denotes the residual error to account for measurement and prediction discrepancies. The two fundamental ultrasonic143

guided wave modes were modelled using the phase and group velocity values obtained from a semi-analytical model.144

Although the CFRC panel is excited by a toneburst sinusoidal ultrasonic signal at a specific center frequency 𝜔 = 𝜔0,145

the signal propagating through the material contains a distribution of frequencies within a bandwidth 𝜔 ± Δ𝜔. This146

spectral broadening arises from interactions between ultrasonic guided wave modes and the multilayered composite147

architecture. Consequently, the signal measured along a given propagation direction 𝜃𝑝 represents a superposition of148

wave components, modeled by the summation of equation 1 across the effective frequency band.149

𝑈𝑚 (𝑟, 𝑡)
��
𝜃𝑝

=
1

2Δ𝜔

∫ 𝜔+Δ𝜔

𝜔−Δ𝜔

[
𝑈𝑆0𝑒

𝑗𝑘𝑆0, 𝜃𝑝
𝑟
𝑔(𝜔)𝑒− 𝑗𝜔𝑡 +𝑈𝐴0𝑒

𝑗𝑘𝐴0, 𝜃𝑝
𝑟
𝑔(𝜔)𝑒− 𝑗𝜔𝑡

]
d𝜔 (2)
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(a) (b)

Fig. 3 (a) 2𝑉𝑝𝑝, 10 period, Hanning-windowed toneburst actuation signal (b) Frequency response of the
actuation signal

Evaluating the integrals as a discrete summation over frequency step size 𝛿𝜔𝑖 , we have150

𝑈𝑆0 (𝑟, 𝑡)
��
𝜃𝑝

=
𝑈𝑆0

2Δ𝜔

∑︁
𝑖

𝑔(𝜔𝑖)𝑒
𝑗 ®𝑘𝑆0, 𝜃𝑝

𝑟−𝜔0𝑡
𝑒
𝑗𝑛𝛿𝜔𝑖

(
𝑟

𝑉𝐺S0
−𝑡

)
𝛿𝜔𝑖 (3)

Considering there are 𝑛𝜔 harmonic components within a chosen frequency window, Δ𝜔 = 𝑛𝜔𝛿𝜔. After certain151

algebraic manipulations, we arrive at the individual mathematical realizations of the 𝑆0 and 𝐴0 modes as follows:152

𝑈𝑆0 (𝑟, 𝑡)
��
𝜃𝑝

=
𝑈𝑆0

2𝑛𝜔
𝑒
𝑗𝜔0

(
𝑟

𝑉𝑃S0
−𝑡

) 
𝑛𝜔∑︁
𝑛=0

𝑔(𝜔 + 𝑛𝛿𝜔)𝑒
𝑗𝑛𝛿𝜔

(
𝑟

𝑉𝐺S0
−𝑡

) (4)

𝑈𝐴0 (𝑟, 𝑡)
��
𝜃𝑝

=
𝑈𝐴0

2𝑛𝜔
𝑒
𝑗𝜔0

(
𝑟

𝑉𝑃A0
−𝑡

) 
𝑛𝜔∑︁
𝑛=0

𝑔(𝜔 + 𝑛𝛿𝜔)𝑒
𝑗𝑛𝛿𝜔

(
𝑟

𝑉𝐺A0
−𝑡

) (5)

The individual reconstrutions of the symmetric 𝑆0 and the antisymmetric 𝐴0 modes were superimposed to obtain the153

full–length reconstructed signal 𝑈𝑚 (𝑟, 𝑡) along a given propagation direction 𝜃𝑝 .154

𝑈𝑚 (𝑟, 𝑡)
��
𝜃𝑝

= 𝑈𝑆0 (𝑟, 𝑡)
��
𝜃𝑝

+𝑈𝐴0 (𝑟, 𝑡)
��
𝜃𝑝

+ 𝜀(𝑟, 𝑡)
��
𝜃𝑝

(6)

The term 𝜀(r, 𝑡)
��
𝜃𝑝

denotes the direction-dependent residual error between experimental measurements and the155

superimposed 𝑆0 and 𝐴0 mode reconstructions. Its mathematical formulation and physical significance are detailed in156

the following section.157

C. Regularized residual error formulation for reconstructed wave parameter estimation158

The 𝑆0 and 𝐴0 amplitudes were determined by minimizing the regularized residual error function (RREF). This159

function was formulated by computing three distinct Euclidean norms.160

1) 𝜀𝐻 : Euclidean norm of the difference between the calibrated and experimental Hilbert envelopes [40].161

2) 𝜀𝑉𝑃
: Euclidean norm of the difference between the calibrated and semi–analytical phase velocities.162

3) 𝜀𝑉𝐺
: Euclidean norm of the difference between the calibrated and semi–analytical group velocities.163

The residual error associated with the Hilbert envelope mismatch is given as164

𝜀𝐻 (𝑟, 𝑡)
��
𝜃𝑝

=

𝑁∑︁
𝑘=1




𝐻 (
𝑥𝑀

)
(𝑡;Θ) − 𝐻 (𝑥𝑒) (𝑡)





2

(7)
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Here, 𝑁 represents the length of the signal in samples, 𝐻 (𝑥𝑒) (𝑡) represents the Hilbert analytic envelope of the165

experimentally measured signal data 𝑥𝑒 (𝑡), while 𝐻
(
𝑥𝑀

)
(𝑡;Θ) represents the Hilbert analytic envelope of the166

reconstructed ultrasonic signal 𝑥𝑀 (𝑡) which depends on the parameter set Θ. Also, we introduce the regularization167

terms168

𝜀𝑉𝑃
(𝑟, 𝑡) =



𝑉 SAFE
𝑃 −𝑉𝑀

𝑃




2 and 𝜀𝑉𝐺

(𝑟, 𝑡) =


𝑉 SAFE

𝐺 −𝑉𝑀
𝐺




2 (8)

The 𝐿2 norm in equation 8 highlights the vector-valued phase and group velocities of the fundamental 𝑆0 and 𝐴0 modes,169

but can be easily generalised to include higher order modes. Therefore, combining equations 7 and 8, we get the170

expression for the RREF at a specific propagation direction 𝜃𝑃 as171

𝜀 (𝑟, 𝑡)
��
𝜃𝑝

= 𝜀𝐻 (𝑟, 𝑡)
��
𝜃𝑝

+ 𝝀⊤𝜺𝑉 where 𝝀 =
{
𝜆𝑉𝑃

, 𝜆𝑉𝐺

}
, 𝜺𝑉 =

{
𝜀𝑉𝑃

, 𝜀𝑉𝐺

}
. (9)

The penalty term 𝝀⊤𝜺𝑉 helps to regularize the identification of dispersion parameter values while minimizing the172

error 𝜀 (𝑟, 𝑡). The 𝜆𝑉𝑃
, 𝜆𝑉𝐺

are the weights attached to the phase and group velocity penalty terms respectively. This173

helped to estimate the 𝑆0 and 𝐴0 modal amplitudes and dispersion characteristics to generate accurate full-length final174

reconstructions of the experimental signals along multiple propagation directions.175

D. Probabilistic Bayesian joint parameter estimation176

This section presents a probabilistic–Bayesian joint parameter estimation framework to jointly identify the modal177

amplitudes and dispersion characteristics, and quantify uncertainties inherent in the identification process. Experimental178

measurements contain aleatoric uncertainties arising from various noise sources, including measurement noise, human179

error, amongst others. On the other hand, the semi–analytical dispersion parameters suffer from model form uncertainty180

due to the idealized assumptions introduced into the model for the sake of keeping the model tractable and the181

computational overhead manageable. The proposed probabilistic Bayesian approach leverages this complimentary182

nature by accounting for both the aleatoric uncertainty inherent in the acquired experimental data and the epistemic183

uncertainty associated with the semi-analytical model predictions. The probabilistic joint parameter estimation considers184

the parameter set Θ = [𝑈𝑆0 ,𝑈𝐴0 , 𝑉𝑃S0
, 𝑉𝑃A0

, 𝑉𝐺S0
, 𝑉𝐺A0

]. The prior means for the modal amplitudes 𝑈𝑆0 and 𝑈𝐴0 are185

initialized using fixed guess values, while the phase velocities (𝑉𝑃S0
, 𝑉𝑃A0

) and group velocities (𝑉𝐺S0
, 𝑉𝐺A0

) derive186

their priors from semi-analytical model predictions. The likelihood function is based on the direction dependent error187

function, RREF defined in equation 9 which was minimized along all the propagation directions individually to jointly188

estimate the parameter set Θ. The Bayesian posterior probabilistic estimate of the modal parameters Θ is given in189

𝜋
(
Θ
��𝐻 (𝑥𝑒) (𝑡),M, dSAFE

)
, which is the joint probabilistic parameter estimate on Θ, conditional on the dispersion data190

dSAFE and the harmonic wave propagation model M. From Bayes’ theorem,191

𝜋
(
Θ
��𝐻 (𝑥𝑒) (𝑡),M, dSAFE

)
∝ L

(
𝐻 (𝑥𝑒) (𝑡)

��Θ,M)
𝜋
(
Θ
�� dSAFE

)
(10)

A probabilistic (𝜋) prior is assigned to the dispersion parameter set Θ, expressed as 𝜋(Θ
�� dSAFE), conditional on dSAFE,192

which is the composite waveguide dispersion data from the semi–analytical finite element model for the structure under193

investigation. Additional regularization of the inverse problem can be achieved by incorporating data from alternative194

dispersion models or historical datasets. L
(
𝐻 (𝑥𝑒) (𝑡)

��Θ,M)
is the likelihood of observing the Hilbert envelope of the195

experimental data 𝑥𝑒 (𝑡), conditional on Θ and M. The posterior distribution, estimated as per Equation 10, helps to196

quantify the uncertainty around the identified parameter values with probabilistic estimates and indicates the robustness197

of the identified modal parameter values.198

IV. Results and discussions199

The calibrated wave mode characteristics were used to generate accurate reconstructions of the experimental signals200

acquired after every 25, 000 cycles of displacement–control compressive fatigue loading. In this section, results from201

wave mode calibration performed on signals acquired prior to fatigue loading, after 75, 000 cycles, after 125, 000 cycles202

and after 175, 000 cycles along (0◦, 45◦, 90◦) propagation directions are presented. Damage was first visible to the naked203

eye at the top left corner of the sample after approximately 125, 000 cycles of fatigue. At this stage, the fatigue test was204

resumed to progress the damage further. The progression of damage is shown in figure 4. As an initial assessment of the205

structure’s health, the magnitudes of the acquired signals were calculated and shown in figure 5. Along the 0◦ propagation206

direction, the loss in magnitude was observed between 230kHz–250kHz, with the magnitude largely fluctuating ±1.5%207
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Fig. 4 Damage visible from approx. 125, 000 cycles of displacement–control compressive fatigue and its progress
to approx. 175, 000 cycles.

(a) (b) (c)

Fig. 5 A comparison of overall experimental signal energy characteristics in the frequency range 200kHz-250kHz
along (0◦, 45◦ and 90◦) directions at various recorded stages of fatigue.

about the pristine baseline after 75, 000 and 125, 000 cycles and 8.56% reduction after 175, 000 cycles. Conversely,208

along the 90◦ direction, the loss occurred between 200 kHz and 220 kHz, with a reduction of approximately 5% after209

75, 000 and 125, 000 cycles, and 17.59% after 175, 000 cycles. A more pronounced degradation was observed along210

the 45◦ fiber direction across the frequency band, with magnitude drops of about 10.55%, 12.01%, and a significant211

41.64% after 75, 000, 125, 000, and 175, 000 cycles, respectively. To better understand the contributing factors behind212

the loss in experimental signal magnitudes, the influence of progressive fatigue damage on the fundamental 𝑆0 and 𝐴0213

modal characteristics must be investigated, given their established sensitivity to composite damage. This requires first214

estimating these modal parameters.215

An adaptive Metropolis-Hastings Markov Chain Monte Carlo (MH-MCMC) method was implemented to sample216

from the posterior distribution 𝜋
(
Θ
��𝐻 (𝑥𝑒) (𝑡),M, dSAFE

)
of the parameters Θ of observing the experimental data 𝑥𝑒 (𝑡),217

conditional on the modal parameters. The MH-MCMC algorithm generated 10, 000 sets of Θ that fit the posterior.218

These parameters were used to construct 10, 000 calibrated Hilbert analytic envelopes. The mean posterior Hilbert219

analytic envelopes and their 90% confidence intervals were overlaid on the experimental signals and presented alongside220

their corresponding Pearson correlation coefficients (𝑅) and residual errors 𝜀 in figure 6. The Pearson coefficient 𝑅221

quantifies the temporal alignment between the recorded and reconstructed signals and the residual error 𝜀 measures the222
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absolute magnitude of their discrepancy, together providing a quantitative representation of the reconstruction accuracy.223

The posterior predictive probabilistic envelopes–corresponding to signals acquired pre–fatigue (pristine baseline), after224

75, 000 cycles, 125, 000 cycles, and 175, 000 cycles–demonstrated close agreement with their experimental counterparts225

across the examined frequency bandwidth as demonstrated by high 𝑅 and low 𝜀 values. The calibrated 𝑆0 and 𝐴0 modal226

energies with 90% confidence intervals are shown in figure 7 and the calibrated phase and group velocities with 90%227

confidence intervals are shown in figure 8 and figure 9 respectively.228

An interesting feature can be observed in the probabilistic group velocity characteristics–first, consider the estimates229

between 200kHz–220kHz along 0◦ and 90◦ propagation directions. The calibrated 𝑆0 and 𝐴0 group velocities exhibit230

comparable values with a few instances of coinciding values as well. This observation suggests that the 𝐴0 mode is231

predominant at this frequency while the 𝑆0 mode amplitude is very low (potentially close to the noise floor). This232

statement is further reinforced by the waterfall plots that reveal a single wave packet or a low amplitude first wave packet.233

Considering the estimates between 200kHz–220kHz along the 45◦ direction, the 𝑆0 probabilistic group velocity exhibits234

a higher value distinctly separating itself from the 𝐴0 group velocity values consistently across the frequency band.235

Furthermore, the waterfall plots exhibit two distinct wave packets across the frequency band, clearly establishing that236

the 𝑆0 mode emerges at a relatively lower frequency of 200kHz along 45◦. This trend can be attributed to the laminate’s237

axial stiffness being maximized along the 45◦ fibre direction, naturally concentrating the guided wave energy along238

paths of highest effective modulus and least resistance. This leads to higher wave velocities and amplitudes [41], which239

ultimately causes the emergence of the 𝑆0 mode at a relatively lower frequency in these directions [42].240

The probabilistic calibration approach also presents the set of parameters that numerically the most plausible,241

statistically well–founded and realistically the most likely explanation for the observed data, called the maximum242

likelihood estimate (MLE). The MLE is the measure of how accurately the probabilistic model can explain the observed243

experimental signal conditional on M and Θ. The signals reconstructed using the MLE parameters and their 90%244

confidence intervals were overlaid on the experimental signals and presented alongside their corresponding Pearson245

correlation coefficients (𝑅) and residual errors 𝜀 in figure 10. Examining the MLE 𝑆0 and 𝐴0 modal energies shown in246

figure 11 the following observations can be made:247

1) As the degradation became more severe, the effects of the damage on both the 𝑆0 and 𝐴0 modes became more248

pronounced as evidenced by the significant modal energy drop after 175, 000 cycles.249

2) Progressive degradation was clearly captured by the 𝑆0 and 𝐴0 modal energies along the 45◦ fiber direction250

consistently across the chosen frequency band.251

3) Along the 0◦ direction, progressive degradation was captured by both the fundamental modes between 230kHz–252

250kHz. Conversely along 90◦, degradation was only captured by the 𝐴0 mode between 200kHz–220kHz.253

To elucidate the individual contributions of guided wave modes to the overall signal characteristics, it is important to254

examine the trends observed in the individual guided wave mode energies alongside the overall experimental signal255

energies. For clear visualization, overall signal energy characteristics are displayed together with the individual modal256

energy characteristics in figure 11. Firstly, consider the 0◦ propagation direction where the experimental signal energies257

decreased between 230kHz–250kHz as shown in figure 11a. Within this band, the 𝑆0 modal energy dropped by258

approximately 42.86%, 66.67%, and 90.48% from the pristine baseline after 75, 000, 125, 000, and 175, 000 fatigue259

cycles, respectively. The 𝐴0 modal energy exhibited a comparable 40% drop from the pristine baseline after 75, 000 and260

125, 000 cycles and approximately 50% drop after 175, 000 cycles. Although both modes exhibit energy reduction due261

to damage, the 𝑆0 mode more distinctly resolves the progression of fatigue degradation, indicating its greater sensitivity262

compared to the 𝐴0 mode in the 230–250 kHz band along 0◦. This behavior is consistent with the increasing dominance263

of the 𝑆0 mode at higher frequencies.264

Along the 90◦ propagation direction, the experimental signal energies exhibited a drop between 200kHz–220kHz as265

shown in figure 11c unlike the trends observed along the 0◦ propagation direction. The 𝑆0 modal energies only captured266

the drop after 175, 000 cycles of fatigue. On the other hand, the 𝐴0 mode captured a comparable yet a clear drop of267

8.82% from the pristine baseline after 75, 000 and 125, 000 cycles and 32.35% after 175, 000 cycles, approximately.268

This can be attributed to the 𝑆0 mode being less sensitive in this frequency band compared to the 𝐴0 mode. This suggests269

that the drop observed in the experimental signal energy is largely contributed by the 𝐴0 modal energy characteristics.270

This is understandable, as the 𝐴0 mode is known to be dominant at lower frequencies in the frequency band considered.271

Unlike the trends observed along the 0◦ and 90◦ propagation directions, the experimental signal energies exhibited a272

drop across the entire frequency band along the 45◦ propagation direction, as shown in figure 11b. The 𝑆0 modal energy273

characteristics captured the progressive fatigue degradation between 230kHz–250kHz with an approximate 6.5% drop274

from the pristine baseline after 75, 000 cycles, 23.61% after 125, 000 cycles and 69.96% after 175, 000 cycles of fatigue275

loading. The 𝐴0 modal energy characteristics were able to capture the distinct stages of fatigue degradation across the276
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6 Physics–informed experimental signal reconstructions derived from probabilistic Bayesian optimization
performed along (0◦, 45◦ and 90◦) directions at various recorded stages of fatigue. 𝑅 quantifies the temporal
alignment and phase coherence between signals and 𝜀 measures the absolute magnitude of their discrepancy,
providing a quantitative representation of reconstruction accuracy.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 7 Semi-analytical model informed and experimental data driven reconstruction of the 𝑆0 and 𝐴0 ultrasonic
guided wave modes derived from probabilistic Bayesian optimization performed along 0◦ 45◦, 90◦ propagation
directions

entire frequency band under consideration with 24.34% drop from the pristine baseline after 75, 000 cycles, 55.96%277

after 125, 000 cycles and 97.97% drop after 175, 000 cycles of fatigue loading. This suggests that the 𝐴0 mode is more278

sensitive to damage along the 45◦ propagation direction and the major contributing factor behind the energy losses279

exhibited by the experimental signal energy characteristics.280

The probabilistic Bayesian framework has effectively quantified the uncertainty in guided wave parameter estimation,281

revealing distinct directional and modal sensitivities to various recorded stages of fatigue degradation. The captured282

individual modal energy characteristics directly explain the trends in the overall experimental signal energy. This283

establishes the method’s capability to not only provide reliable parameter estimates with quantified uncertainty but also284

to resolve the individual contributions of each guided wave mode to the overall structural response, identifying the most285

sensitive damage indicators for a given propagation path. Using the proposed methodology, one can286

1) Accurately reconstruct the acquired experimental signals at any propagation distance 𝑟 and angle 𝜃.287

2) Capture progressive structural degradation within the individual 𝑆0 and 𝐴0 guided wave modes.288

3) Quantify the epistemic and aleatoric uncertainties associated with the parameter estimates.289

4) Identify the most probable parameter values that explain the observed data, ensuring the solution remains290

informed by guided wave physics and grounded in experimental reality.291
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 8 Semi-analytical and probabilistically calibrated phase velocity values in the frequency range 200kHz-
250kHz along (0◦, 45◦ and 90◦) directions at various recorded stages of fatigue. (Note: Discrepancies between
semi–analytical and calibrated values may exist as the calibrated values combine experimental measurements
with semi–analytical predictions to provide an informed estimate of dispersion characteristics)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 9 Semi-analytical and probabilistically calibrated group velocity values in the frequency range 200kHz-
250kHz along (0◦, 45◦ and 90◦) directions at various recorded stages of fatigue. (Note: Discrepancies between
semi–analytical and calibrated values may exist as the calibrated values combine experimental measurements
with semi–analytical predictions to provide an informed estimate of dispersion characteristics)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 10 Maximum likelihood experimental signal reconstructions derived from probabilistic Bayesian optimiza-
tion performed along 0◦ 45◦, 90◦ propagation directions at various recorded stages of compressive fatigue. 𝑅

quantifies the temporal alignment and phase coherence between signals and 𝜀 measures the absolute magnitude
of their discrepancy, providing a quantitative representation of reconstruction accuracy.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 11 (figures 11a–11c) are the experimental signal energies re–displayed to be visualized in conjunction
with the calibrated maximum likelihood 𝑆0 and 𝐴0 modal energies (figures 11d–11i) derived from probabilistic
Bayesian calibration of experimental signals.

16



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 12 Semi-analytical and maximum likelihood phase velocity values in the frequency range 200kHz-250kHz
along (0◦, 45◦ and 90◦) directions at various recorded stages of fatigue. (Note: Discrepancies between semi–
analytical and calibrated values may exist as the calibrated values combine experimental measurements with
semi–analytical predictions to provide an informed estimate of dispersion characteristics).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 13 Semi-analytical and maximum likelihood group velocity values in the frequency range 200kHz-250kHz
along (0◦, 45◦ and 90◦) directions at various recorded stages of fatigue. (Note: Discrepancies between semi–
analytical and calibrated values may exist as the calibrated values combine experimental measurements with
semi–analytical predictions to provide an informed estimate of dispersion characteristics).
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The proposed physics–informed calibration methodology holds significant potential for practical structural health292

monitoring by identifying specific monotonic frequencies and propagation directions where particular guided wave293

modes exhibit peak sensitivity to damage. This capability provides a crucial practical advantage: it allows users to294

strategically select the most effective combination of actuation frequency/frequency band, propagation direction, and295

wave mode for a given transducer network to extract essential signal features to capture damage signatures consistently.296

It is important to note that the results demonstrate the efficacy of the proposed methodology in capturing progressive297

structural degradation from fatigue loading through calibrated wave mode characteristics, rather than focussing specific298

damage types. Given the observed sensitivity of specific modal parameters to fatigue-induced damage, future work will299

introduce controlled damage scenarios such as simulated delaminations, holes, and other stress raisers with known and300

varying dimensions to establish robust correlations between the captured signatures and parameterized damage metrics.301

V. Conclusion302

This paper presents a robust, streamlined and reproducible methodology to capture signatures of progressive structural303

degradation from acquired ultrasonic responses by accurately reconstructing experimental signals at any distance 𝑟 from304

the actuator and propagation direction 𝜃𝑝 on thin–walled CFRC structures. Towards this, a parameter set defined by the305

fundamental 𝑆0 and 𝐴0 mode amplitudes, phase velocities and group velocities was calibrated using a harmonic wave306

propagation model to generate individual 𝑆0 and 𝐴0 mode realizations and eventually superimposed to produce accurate307

reconstructions of experimental signals acquired using a semi–circular array of NANO30 piezoelectric transducers. The308

harmonic wave propagation model is informed by the guided wave physics derived from a semi–analytical composite309

waveguide and driven by experimental data acquired by a smart edge–computing framework. A regularized residual310

error function was established to account for discrepancies arising from measurement noise, human error and higher311

order guided wave modes amongst others. A probabilistic Bayesian methodology was employed to minimize the error312

and calibrate the wave mode characteristics. The probabilistic Bayesian approach enhanced the reliability of calibration313

by quantifying the uncertainties associated with the estimates of the individual modal parameters.314

The calibrated guided wave mode characteristics successfully captured structural degradation at the various recorded315

stages of displacement–controlled compressive fatigue loading. The probabilistic Bayesian framework effectively316

quantified uncertainty in parameter estimation, revealing distinct directional and modal sensitivities to fatigue damage.317

As the degradation became more severe, the effects of the damage on both modes became more pronounced ,evidenced318

by severe energy drops emerging after 175, 000 cycles. Progressive degradation was most consistently captured along319

the 45◦ fiber direction across the entire frequency band. In other directions, sensitivity was highly mode-dependent:320

both fundamental modes responded to damage along 0◦ between 230–250 kHz, whereas only the 𝐴0 mode was effective321

along 90◦ between 200–220 kHz. This methodology captures progressive structural degradation within individual322

guided wave modes at any propagation distance 𝑟 from the actuator and propagation angle 𝜃𝑝 , and quantifies epistemic323

and aleatoric uncertainties associated with these estimates. This achievement underscores the efficacy and reliability of324

the calibrated ultrasonic guided wave modes as reliable identifiers of damage with potential for further description,325

characterization, and sentencing.326

Python scripts containing data acquisition and processing algorithms can be deployed on the CyberSHM smart–edge327

computing framework employed in this study to enable seamless, single–click functionality to excite any thin–walled328

structure with user–defined actuation pulses across a specified frequency bandwidth, perform threshold free data329

acquisition, and wave mode calibration. It is important to note that the results presented in this study showcase the330

efficacy of the calibrated wave mode characteristics in capturing progressive structural degradation. Future work331

will focus on extending this methodology by mapping the captured damage signatures to specific damage types and332

quantitative metrics, while accounting for complex wave interactions such as edge reflections, scattering, and other333

dissipative mechanisms. Further development includes incorporating additional guided wave modes into the harmonic334

wave propagation model and validating the calibration framework on complex operational structures beyond simple335

rectangular panels.336
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