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Physics—informed guided wave modes as robust identifiers of
progressive structural degradation in thin—walled composite
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Ultrasonic guided waves hold significant potential for non-intrusive monitoring of progressive
damage in composite structures, contingent on the efficacy of the onboard monitoring system to
reliably acquire, process signals. By mapping the extracted signal features with parameterized
damage metrics, it is possible to realize an automated framework for the assessment of structural
integrity. It is well established that fundamental ultrasonic guided wave modes are sensitive to
damage in laminated composite structures and can serve as robust damage identifiers when
properly characterized. But there is a gap in understanding of the modified behavior in
waveguide dispersion properties due to the presence of damages or deterioration of waveguide
properties. Therefore, it is vital to establish a generic, extendable and reproducible wave
mode reconstruction methodology so that the fundamental ultrasonic guided wave modes
can be investigated for damage signatures. Towards this, The fundamental Sy and Ay modal
amplitudes and dispersion characteristics were calibrated using a physics-informed harmonic
wave propagation model. This process generated individual mode realizations that were then
superimposed to produce accurate reconstructions of experimental signals acquired from a
sparse array of piezoelectric transducers. A regularized residual error function was formulated
to account for discrepancies from measurement noise, unmodeled higher-order modes, and other
sources of error. A probabilistic Bayesian joint parameter estimation approach was employed to
minimize this error and calibrate the wave mode characteristics. The calibrated parameters were
subsequently used to investigate progressive structural degradation arising from displacement-
controlled compressive fatigue loading. A probabilistic Bayesian joint parameter estimation
framework effectively captured direction—specific signatures and quantified uncertainty in
parameter estimation, revealing distinct directional and modal sensitivities to fatigue damage.
This achievement underscores the efficacy and reliability of the calibrated ultrasonic guided wave
modes as reliable identifiers of damage with potential for further description, characterization,
and sentencing.

I. Nomenclature

= Structural health monitoring
= Ultrasonic guided wave
= Semi-analytical finite element
= Carbon fiber reinforced composite
= Regularized residual error function
= Time of flight

Power spectral density

= Pearson correlation coefficient to quantitatively demonstrate experimental and reconstructed signal concordance.

= Symmetric fundamental ultrasonic guided wave mode.

= Antisymmetric fundamental ultrasonic guided wave mode.
Shear-horizontal fundamental ultrasonic guided wave mode.
Direction of guided wave propagation
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r = Position vector from actuating transducer to sensing transducer, distance r (m), for a given 6(°)
t = time (s)

w = Circular frequency (rad/s)
N = Number of sensing transducers bonded to the test structure.
Ny = Number of harmonic components of signal within a chosen frequency window.
g(w) = The complex frequency response of the actuation signal and the system transfer function.
Upn(r, t)| g. = Lamb wave propagating in a plate like structure as a function of r and ¢ along 6,
Us, = Symmetric Sy guided wave mode amplitude
Ua, = Antisymmetric Ag guided wave mode amplitude
ks, o = §p mode wave number along 6,, direction (m=1H
k Ao.ep = Ao mode wave number along 6, direction (m=bH
Vi, = Phase velocity of Sy mode, given by ﬁ (m/sec)

0
VPAO = Phase velocity of Ay mode, given by ﬁ (m/sec)

0
Vas, = Group velocity of Sy mode, given by ;k—‘;’ (m/sec)

0
VGa, = Group velocity of Ag mode, given by 6‘2—‘: (m/sec)
0

0 = Wave mode parameters calibrated in this study [Us,, Ua,, Ve, Ve, Vas, Ve,
H(x)(1) = Hilbert envelope of the experimental structural-acoustic response.
H(xM)(t) = Hilbert envelope of the reconstructed signal.
el = Euclidean norm of the difference between the experimental and calibrated Hilbert analytic envelopes
EVp = FEuclidean norm of the difference between the semi-analytical and calibrated phase velocities
&vg = FEuclidean norm of the difference between the semi-analytical and calibrated group velocities

II. Introduction

odern aerospace and automotive systems increasingly rely on multilayered composite materials to achieve optimal
Mstrength-to-weight ratios and performance under varying environmental and loading conditions. Throughout their
lifecycle, these structures are susceptible to progressive degradation mechanisms such as interlaminar delaminations, [1]],
interfacial debonding [2]] and fibre-breakage [3]] amongst others. The damage may be initiated at the manufacturing stage
due to imperfections such as porosity, impurities and fiber-misalignment [4} 5] or in service due to the action of tension,
compression, torsion, impact and fatigue. Unlike isotropic materials, CFRCs exhibit complex damage progression
patterns [6H10] that often evade conventional inspection methods, posing significant challenges for early damage onset
detection and reliability assessment in safety critical engineering applications[11}[12]. Predictive maintenance holds
great promise to operate within data-rich environments created by continuous monitoring regimes. However, the
acquired dataset is not useful unless the essential features are extracted and mapped to certain behavioural patterns of
the structure which may vary due to degradation. The identification and selection of these key features play a vital role
in optimizing efficiency, improving detection performance and enabling practical predictive maintenance [13].

Most essential signal features can be divided into two groups — overall guided wave signal features and guided wave
mode-specific features. The overall guided wave signal features provide damage indication while the guided wave
mode—specific features provide damage information. Because the overall summary statistics are related to aggregated
signal properties, there is usually a significant difficulty in relating these features to the underlying physics of the damage
influencing the guided wave propagation behaviour. Furthermore, the uncertainty associated with these aggregated
signal features and their changes makes it difficult to reproduce the proposed changes in a consistent fashion to the
damage metrics. A list of the commonly used damage sensitive features for lamb waves [[14] in structural health
monitoring (SHM) is given in[Table 2]

Studies have found that various wave modes have different interactions with various types of composite damage
[15,[16]. For example, the Sy mode was found to be sensitive to impact damage but not sensitive to the delamination
simulated by the Teflon insert. On the other hand, the SHy mode was sensitive to both simulated delamination and
impact damage [17]. The Sy mode which is dominant at higher frequencies, caused mode conversions when interacting
with the defects whereas Ay mode, dominant at lower frequencies, mainly caused a change in phase and amplitude upon
interaction with defects [[18]. Consistent findings across studies showed amplitude reductions due to damage presence.
Specifically, impact damage caused a strong amplitude decrease for the So mode because impact damage, in the form
of matrix cracking, fiber breakage, or interlaminar delamination, significantly reduced local material stiffness [19].
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In addition to wave mode sensitivity to specific types of damage, studies demonstrated that guided wave modes can
effectively detect and monitor fatigue damage evolution in composite structures. Specifically, the ToF, amplitude and
PSD of the guided waves were sensitive to fatigue induced matrix cracks and delaminations [20].

Therefore, it can be inferred that amongst the commonly extracted essential signal features, most of them have
direct and strong dependence on the knowledge of fundamental ultrasonic guided wave modes within the acquired
ultrasonic responses. This makes the identification and isolation of fundamental ultrasonic guided wave modes the most
crucial feature extraction operation that can be performed on the acquired structural ultrasonic responses. Reported
methodologies for guided wave mode isolation can be primarily classified into pre—acquisition and post—acquisition
paradigms, each presenting their own constraints. The first paradigm relies on hardware-based strategies applied before
data acquisition, such as employing specialized transducers, prescribing specific actuation frequencies, or controlling
actuator—sensor distances to preferentially excite a single mode. Although effective, these methods are experimentally
rigid and the mode of interest must be selected a priori. Post—acquisition techniques operate by extracting wave packets
based on time—of—arrival of their peaks. However, these methods are fundamentally heuristic and fail in identifying
these peaks when wave modes overlap in the time and time-frequency domains [33-36]]. Additionally, the principal
shortcoming of these methods is their physics-agnostic nature; they treat the signal as raw data without incorporating
the dispersion characteristics embodied in phase and group velocity curves that govern guided wave propagation.

There exists a lack of a robust, streamlined and reproducible physics—informed methodology for isolating guided
wave modes to capture damage signatures. This study directly addresses this issue by calibrating and reconstructing
experimental guided wave modes to establish them as reliable criteria for damage signature identification. The concept
of physics-informed robust one-dimensional calibration of guided wave mode characteristics was first introduced in
previous work [37], where the fundamental Sy and Ay modes were calibrated to generate accurate reconstructions of
signals acquired using a linear transducer array along a single propagation direction on a thin-walled CFRC structure. In
this paper, a two-dimensional calibration of Sg and Ay modes along different radial propagation directions, enabling
accurate signal reconstruction at any angular position € and distance r. Furthermore, the calibrated guided wave mode
characteristics were utilized to capture structural degradation in the CFRC panel resulting from cyclic displacement—
controlled compressive fatigue loading. This achievement underscores the reliability of the the reconstructed ultrasonic
guided wave modes as digital damage identifiers for damage detection, characterization, and quantification. It is
important to note that the results presented in this study showcase the efficacy of the calibrated wave mode characteristics
in capturing progressive structural degradation. Mapping the captured signatures to parameterized damage metrics is
the future scope of this research.

The remainder of this paper is structured as follows. [section III| outlines the experimental setup, data acquisition
procedure, and wave mode calibration methodology employed to capture progressive structural degradation in a
12-layered CFRC panel under cyclic displacement-controlled compressive fatigue. delineates the results
obtained from the probabilistic Bayesian joint parameter estimation methodology, demonstrating how progressive
degradation manifests in the calibrated wave mode characteristics and compares them with experimental measurements.
Finally, summarizes the conclusions and highlights future directions.



Guided Wave Mode-Specific Features

Essential Signal Feature

Remarks

Time-of-Flight (ToF) [21 22]

When lamb waves interact with damage, mode
conversion can occur consequently altering the
propagation velocity and hence the ToF.

Peak-to-Peak Amplitude [23]24]

The interaction of fundamental Lamb wave modes
with the structural features or damage can also lead
to mode-specific changes in amplitude. This can
result in mode-dependent peak—to—peak amplitude
variations that are useful for damage detection and
characterization.

Attenuation [25) 26]

Mode-dependent (e.g., in plates, Ao attenuates
faster than Sp). Requires separation of modes to
quantify accurately.

Scattering Coeflicients [27, 28]

Governed by mode interaction with defects (e.g.,
symmetric vs. antisymmetric mode scattering pat-
terns).

Wave Energy [25}129]

Sum of individual modal energies. Reconstruc-
tion helps to isolate contributions from individual
modes.

FFT Coefficients [30]

Peaks correspond to mode resonances, but overlap-
ping modes complicate interpretation.

Power Spectral Density (PSD) [14]]

Frequency-domain representation of signal energy;
requires mode separation for accurate damage as-
sessment.

Wavelet Coefficients [31) 132

Provide a sensitive and robust method for captur-
ing multiple aspects of damage-wave interactions
across fundamental Lamb wave modes.

Overall Guided Wave Signal Features

Essential Signal Feature

Remarks

Root Mean Square

Lumped metric with no mode-specific information.

Skewness Sensitive to overall signal shape but agnostic to
underlying modes.

Kurtosis Compares the tailedness/peakedness of signal dis-
tribution relative to the normal distribution; not
directly linked to wave modes.

Magnitude Lumped metric with no mode-specific information.

Table 2 Commonly used essential signal features for damage description and their dependence on guided wave
modes. The overall guided wave signal features provide damage indication while the guided wave mode-specific
features provide damage information (location, severity etc.).
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ITI. Materials and methods
This section begins by detailing the mechanical and geometric properties of the composite panel, the compressive
fatigue test rig along with the loading parameters and the autonomous, ready-to-deploy, smart edge computing signal
generation/reception framework utilized to acquire the ultrasonic responses from the CFRC panel in
Subsequently, the key components of the physics—informed calibration encompassing the harmonic wave propagation
function (M), the regularized residual error formulation (&) and the probabilistic Bayesian joint parameter estimation
regime are outlined in|section III.B| [section III.C|and [section III.D|respectively.

A. Experimental section

The experimental setup consisted of a symmetric 12-layered CFRC panel of dimension 410 x 380 X 2.5 mm, with a
layup configuration of [+4535/-453]s equipped with NANO3O0 transducers positioned in a semi-circular orientation
of radius 100mm at angular positions of 0°,45°,90°, 135°, 180°, as depicted in A threshold-free ultrasonic
guided wave—based active inspection framework termed CyberSHM was employed to acquire and process ultrasonic
data collected form thin-walled plate-like structures in real-time. A smart—edge node, comprising a sparse array of
NANO30 transducers and a daisy—chained edge computing device, excites thin—walled structures with user—defined
frequency—swept actuation signals. The system acquires and processes ultrasonic structural responses using customized
open-source Python scripts. Programmable edge-based tasks include file manipulation, signal feature extraction,
classification, and data transmission to a digital layer for subsequent analysis. These integrated capabilities enable
real-time, inspection of thin—walled plate—like structures using ultrasonic guided waves.

Compression test rig
direction

Interactive device

Router

6-Channel edge device

Fig.1 Experimental setup: compressive fatigue testing apparatus, CFRC panel equipped with a semi-circular
array of actuator A and five transducers used to acquire ultrasonic responses (actuator—transducer distance
100mm)

The smart—edge—node in this study incorporated three edge devices interconnected in a daisy-chain configuration,
establishing a six-channel signal generation and reception system. The device excited the panel with a 10—cycle
Hanning-windowed toneburst signal at 2V peak—to—peak amplitude coupled with a 100—factor gain while simultaneously
acquiring guided wave responses. An in-line classification algorithm processed the captured time—domain signals in
real-time, distinguishing between relevant acoustic—event—representative signatures and non—essential signals. Only
waveforms identified as containing meaningful structural information were retained for subsequent wave mode calibration.
The data acquisition and in-line classification capabilities of the smart—edge—node, were previously conceptualized,
developed, and experimentally validated in our publication [38]. The digital layer incorporates a semi—analytical model
that analyzes elastic wave dispersion in laminated composite waveguides, accurately capturing fundamental guided
wave characteristics and simulating dispersion phenomena in composite materials.

The compressive test rig, shown in [figure 1|, was designed to provide simple supports to all four sides of the
specimens whilst facilitating the application of a uni—axial in—plane compressive load. The construction and assembly
of the test rig are described in [39], where the rig was utilized to study buckling and failure in CFRCs for acoustic
emission structural health monitoring.
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6] captured in signals

4-5mm
4 3.5-4.5mm

2-3mm
2-1.5-2.5mm

Applied compressive strain (mm)

i

25,000 50,000 75,000 100,000 125,000 150,000 175,000

Number of fatigue cycles

Fig. 2 Displacement control fatigue loading with gradual increments in the applied compressive strain.

In this study, the CFRC being investigated was subjected to displacement control compressive fatigue loading with
the aim of capturing the progressive degradation in the calibrated wave mode characteristics. A total of 175, 000 cycles
of fatigue were performed, acquiring the structural ultrasonic responses after every 25, 000 cycles and increasing the
applied compressive strain in accordance with Subsequently, the fundamental Sy and Ay mode characteristics
were calibrated and accurate reconstructions of the acquired ultrasonic signals were generated.

B. Direction dependent harmonic wave propagation function (M)

This concept was first formulated as a one—dimensional harmonic wave propagation function to calibrate wave
modes along a single propagation direction [37]]. However, the directional dependence of specific wave modes on the
fibre orientation in the composite layup is crucial to achieve accurate reconstructions of experimental signals. Therefore,
the modal amplitudes, direction dependent phase velocities and group velocities were chosen as parameters to calibrate.

0= {US()’ UA09 VPSO 5 VPAO s VGS() 5 VGA() }
and hence, the direction dependent harmonic wave propagation function at a given frequency w was formulated as,

Un (13 ) = Usye 097 ) 4 0 e =) o 1)
In r denotes the position vector from the actuating transducer to the sensor, 6, is the direction of propagation
with respect to X—axis, w is the angular frequency, ¢ is the time, Usg, and Uy, are the amplitudes and ks, (w, 8,,) and
ka,(w,08,) are the frequency and direction—dependent wavenumber vectors of the Sy and Ay modes respectively. Here
€ denotes the residual error to account for measurement and prediction discrepancies. The two fundamental ultrasonic
guided wave modes were modelled using the phase and group velocity values obtained from a semi-analytical model.
Although the CFRC panel is excited by a toneburst sinusoidal ultrasonic signal at a specific center frequency w = wy,
the signal propagating through the material contains a distribution of frequencies within a bandwidth w = Aw. This
spectral broadening arises from interactions between ultrasonic guided wave modes and the multilayered composite
architecture. Consequently, the signal measured along a given propagation direction 6, represents a superposition of
wave components, modeled by the summation of across the effective frequency band.

1 wHAw . - . . , .
Um(l’,t)|9p = m‘/ [Usoejkso,ep g(w)e—jwt+UAoejkAo,gp g(w)e—jwt dw )
w-Aw
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Fig. 3 (a) 2V},p, 10 period, Hanning-windowed toneburst actuation signal (b) Frequency response of the
actuation signal

Evaluating the integrals as a discrete summation over frequency step size dw;, we have

_ U T o jn&wi( . —t)
Us,(r, t)|6’,, = ﬁ Z g(u)i)e/kso,y,, wot VGs, Sw; 3)
i

Considering there are n,, harmonic components within a chosen frequency window, Aw = n,d0w. After certain
algebraic manipulations, we arrive at the individual mathematical realizations of the Sy and Ayp modes as follows:

_ Uc Jjow (L—z) o jnéw(Lft)

Us, (r, t)|0p = ZnSo e 75, Z g(w+néw)e VGs, )
@ n=0

_ Us. jw (sz) o jn&w( r —z)

Ua,(r, l)|9p = _ZnAO e\ Z g(w + néw)e VG (5)
w n=0

The individual reconstrutions of the symmetric Sy and the antisymmetric Ap modes were superimposed to obtain the
full-length reconstructed signal U,,(r, t) along a given propagation direction 6,,.

Upn(r, t)|9p = Uso(r, t)|9p + ﬁAO (r, t)|9,, +&(r, t)|9,, (6)

The term &(r, t)|‘9 denotes the direction-dependent residual error between experimental measurements and the
P

superimposed Sy and Ag mode reconstructions. Its mathematical formulation and physical significance are detailed in
the following section.

C. Regularized residual error formulation for reconstructed wave parameter estimation

The Sy and Ay amplitudes were determined by minimizing the regularized residual error function (RREF). This
function was formulated by computing three distinct Euclidean norms.

1) ep : Euclidean norm of the difference between the calibrated and experimental Hilbert envelopes [40].

2) ey, : Euclidean norm of the difference between the calibrated and semi—analytical phase velocities.

3) ey, : Euclidean norm of the difference between the calibrated and semi—analytical group velocities.
The residual error associated with the Hilbert envelope mismatch is given as

)]y =3 | () s 0) - HE) 0, ™
k=1
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Here, N represents the length of the signal in samples, H(x¢)(¢) represents the Hilbert analytic envelope of the
experimentally measured signal data x°(¢), while H (xM ) (1;0) represents the Hilbert analytic envelope of the
reconstructed ultrasonic signal x™ () which depends on the parameter set ®. Also, we introduce the regularization
terms

evp (r,1) = ||prAFE - V;ﬁ”“2 and ey, (r,1) = ||V2;AFE - V(A;/IH2 (®)

The L? norm inhighlights the vector-valued phase and group velocities of the fundamental Sy and Ap modes,
but can be easily generalised to include higher order modes. Therefore, combining and [§] we get the
expression for the RREF at a specific propagation direction 6p as

e (r,t) |9p =gy (r,t) |9p + /lTSV where A= {/lVP,/lvc} , &y = {SVP,SVG} . )

The penalty term A" ey helps to regularize the identification of dispersion parameter values while minimizing the
error £ (r,t). The Ay, , dy,, are the weights attached to the phase and group velocity penalty terms respectively. This
helped to estimate the Sy and Ag modal amplitudes and dispersion characteristics to generate accurate full-length final
reconstructions of the experimental signals along multiple propagation directions.

D. Probabilistic Bayesian joint parameter estimation

This section presents a probabilistic—Bayesian joint parameter estimation framework to jointly identify the modal
amplitudes and dispersion characteristics, and quantify uncertainties inherent in the identification process. Experimental
measurements contain aleatoric uncertainties arising from various noise sources, including measurement noise, human
error, amongst others. On the other hand, the semi—analytical dispersion parameters suffer from model form uncertainty
due to the idealized assumptions introduced into the model for the sake of keeping the model tractable and the
computational overhead manageable. The proposed probabilistic Bayesian approach leverages this complimentary
nature by accounting for both the aleatoric uncertainty inherent in the acquired experimental data and the epistemic
uncertainty associated with the semi-analytical model predictions. The probabilistic joint parameter estimation considers
the parameter set © = [Us,, Ua,, VPSO, VPAO, VGSO’ Ve AO]. The prior means for the modal amplitudes Us, and Uy, are
initialized using fixed guess values, while the phase velocities (VPSO, VpAO) and group velocities (VGSO, Vo AO) derive
their priors from semi-analytical model predictions. The likelihood function is based on the direction dependent error
function, RREF defined inequation 9| which was minimized along all the propagation directions individually to jointly
estimate the parameter set ®. The Bayesian posterior probabilistic estimate of the modal parameters ® is given in
n(® | H(x)(t), M, dsue), which is the joint probabilistic parameter estimate on ©, conditional on the dispersion data
dsare and the harmonic wave propagation model M. From Bayes’ theorem,

7 (O] H(x®) (), M, dspee) o< .2 (H(x°)(2) | ©, M) 70 (© | dyure) (10)

A probabilistic () prior is assigned to the dispersion parameter set ®, expressed as (0 | dsare ), conditional on dgyp,
which is the composite waveguide dispersion data from the semi—analytical finite element model for the structure under
investigation. Additional regularization of the inverse problem can be achieved by incorporating data from alternative
dispersion models or historical datasets. . (H(x¢)(z) | 0, M) is the likelihood of observing the Hilbert envelope of the
experimental data x¢ (), conditional on ® and M. The posterior distribution, estimated as per [Equation 10] helps to
quantify the uncertainty around the identified parameter values with probabilistic estimates and indicates the robustness
of the identified modal parameter values.

IV. Results and discussions

The calibrated wave mode characteristics were used to generate accurate reconstructions of the experimental signals
acquired after every 25, 000 cycles of displacement—control compressive fatigue loading. In this section, results from
wave mode calibration performed on signals acquired prior to fatigue loading, after 75, 000 cycles, after 125, 000 cycles
and after 175, 000 cycles along (0°,45°, 90°) propagation directions are presented. Damage was first visible to the naked
eye at the top left corner of the sample after approximately 125, 000 cycles of fatigue. At this stage, the fatigue test was
resumed to progress the damage further. The progression of damage is shown in As an initial assessment of the
structure’s health, the magnitudes of the acquired signals were calculated and shown inffigure 5] Along the 0° propagation
direction, the loss in magnitude was observed between 230kHz-250kHz, with the magnitude largely fluctuating +1.5%
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Fig.5 A comparison of overall experimental signal energy characteristics in the frequency range 200kHz-250kHz
along (0°, 45° and 90°) directions at various recorded stages of fatigue.

about the pristine baseline after 75, 000 and 125, 000 cycles and 8.56% reduction after 175, 000 cycles. Conversely,
along the 90° direction, the loss occurred between 200 kHz and 220 kHz, with a reduction of approximately 5% after
75,000 and 125, 000 cycles, and 17.59% after 175, 000 cycles. A more pronounced degradation was observed along
the 45° fiber direction across the frequency band, with magnitude drops of about 10.55%, 12.01%, and a significant
41.64% after 75,000, 125, 000, and 175, 000 cycles, respectively. To better understand the contributing factors behind
the loss in experimental signal magnitudes, the influence of progressive fatigue damage on the fundamental Sy and A
modal characteristics must be investigated, given their established sensitivity to composite damage. This requires first
estimating these modal parameters.

An adaptive Metropolis-Hastings Markov Chain Monte Carlo (MH-MCMC) method was implemented to sample
from the posterior distribution 7 (© | H(x¢) (1), M, dgsee) of the parameters © of observing the experimental data x° (1),
conditional on the modal parameters. The MH-MCMC algorithm generated 10, 000 sets of © that fit the posterior.
These parameters were used to construct 10, 000 calibrated Hilbert analytic envelopes. The mean posterior Hilbert
analytic envelopes and their 90% confidence intervals were overlaid on the experimental signals and presented alongside
their corresponding Pearson correlation coeflicients (R) and residual errors ¢ in[figure 6] The Pearson coeflicient R
quantifies the temporal alignment between the recorded and reconstructed signals and the residual error £ measures the
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absolute magnitude of their discrepancy, together providing a quantitative representation of the reconstruction accuracy.
The posterior predictive probabilistic envelopes—corresponding to signals acquired pre—fatigue (pristine baseline), after
75,000 cycles, 125, 000 cycles, and 175, 000 cycles—demonstrated close agreement with their experimental counterparts
across the examined frequency bandwidth as demonstrated by high R and low & values. The calibrated Sp and Ay modal
energies with 90% confidence intervals are shown in and the calibrated phase and group velocities with 90%
confidence intervals are shown in [figure 8|and [figure 9|respectively.

An interesting feature can be observed in the probabilistic group velocity characteristics—first, consider the estimates
between 200kHz—220kHz along 0° and 90° propagation directions. The calibrated Sy and A group velocities exhibit
comparable values with a few instances of coinciding values as well. This observation suggests that the Ayp mode is
predominant at this frequency while the Sp mode amplitude is very low (potentially close to the noise floor). This
statement is further reinforced by the waterfall plots that reveal a single wave packet or a low amplitude first wave packet.
Considering the estimates between 200kHz—220kHz along the 45° direction, the S¢ probabilistic group velocity exhibits
a higher value distinctly separating itself from the Ay group velocity values consistently across the frequency band.
Furthermore, the waterfall plots exhibit two distinct wave packets across the frequency band, clearly establishing that
the Sp mode emerges at a relatively lower frequency of 200kHz along 45°. This trend can be attributed to the laminate’s
axial stiffness being maximized along the 45° fibre direction, naturally concentrating the guided wave energy along
paths of highest effective modulus and least resistance. This leads to higher wave velocities and amplitudes [41]], which
ultimately causes the emergence of the Sy mode at a relatively lower frequency in these directions [42].

The probabilistic calibration approach also presents the set of parameters that numerically the most plausible,
statistically well-founded and realistically the most likely explanation for the observed data, called the maximum
likelihood estimate (MLE). The MLE is the measure of how accurately the probabilistic model can explain the observed
experimental signal conditional on M and ©. The signals reconstructed using the MLE parameters and their 90%
confidence intervals were overlaid on the experimental signals and presented alongside their corresponding Pearson
correlation coeflicients (R) and residual errors & in Examining the MLE Sy and Ay modal energies shown in
the following observations can be made:

1) As the degradation became more severe, the effects of the damage on both the Sy and Ay modes became more

pronounced as evidenced by the significant modal energy drop after 175, 000 cycles.

2) Progressive degradation was clearly captured by the Sy and Ap modal energies along the 45° fiber direction

consistently across the chosen frequency band.

3) Along the 0° direction, progressive degradation was captured by both the fundamental modes between 230kHz—

250kHz. Conversely along 90°, degradation was only captured by the Ap mode between 200kHz—220kHz.

To elucidate the individual contributions of guided wave modes to the overall signal characteristics, it is important to
examine the trends observed in the individual guided wave mode energies alongside the overall experimental signal
energies. For clear visualization, overall signal energy characteristics are displayed together with the individual modal
energy characteristics in Firstly, consider the 0° propagation direction where the experimental signal energies
decreased between 230kHz-250kHz as shown in Within this band, the Sy modal energy dropped by
approximately 42.86%, 66.67%, and 90.48% from the pristine baseline after 75, 000, 125, 000, and 175, 000 fatigue
cycles, respectively. The Ayp modal energy exhibited a comparable 40% drop from the pristine baseline after 75, 000 and
125,000 cycles and approximately 50% drop after 175, 000 cycles. Although both modes exhibit energy reduction due
to damage, the Sy mode more distinctly resolves the progression of fatigue degradation, indicating its greater sensitivity
compared to the Ag mode in the 230-250 kHz band along 0°. This behavior is consistent with the increasing dominance
of the Sy mode at higher frequencies.

Along the 90° propagation direction, the experimental signal energies exhibited a drop between 200kHz—220kHz as
shown in [figure TTc|unlike the trends observed along the 0° propagation direction. The Sy modal energies only captured
the drop after 175, 000 cycles of fatigue. On the other hand, the Ay mode captured a comparable yet a clear drop of
8.82% from the pristine baseline after 75,000 and 125, 000 cycles and 32.35% after 175, 000 cycles, approximately.
This can be attributed to the Sp mode being less sensitive in this frequency band compared to the Ao mode. This suggests
that the drop observed in the experimental signal energy is largely contributed by the Ayg modal energy characteristics.
This is understandable, as the Ap mode is known to be dominant at lower frequencies in the frequency band considered.

Unlike the trends observed along the 0° and 90° propagation directions, the experimental signal energies exhibited a
drop across the entire frequency band along the 45° propagation direction, as shown in[figure TTb] The So modal energy
characteristics captured the progressive fatigue degradation between 230kHz—250kHz with an approximate 6.5% drop
from the pristine baseline after 75, 000 cycles, 23.61% after 125, 000 cycles and 69.96% after 175, 000 cycles of fatigue
loading. The Ap modal energy characteristics were able to capture the distinct stages of fatigue degradation across the
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Fig. 6 Physics—informed experimental signal reconstructions derived from probabilistic Bayesian optimization
performed along (0°, 45° and 90°) directions at various recorded stages of fatigue. R quantifies the temporal
alignment and phase coherence between signals and £ measures the absolute magnitude of their discrepancy,
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providing a quantitative representation of reconstruction accuracy.
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Fig.7 Semi-analytical model informed and experimental data driven reconstruction of the Sy and A ultrasonic
guided wave modes derived from probabilistic Bayesian optimization performed along 0° 45°, 90° propagation
directions

entire frequency band under consideration with 24.34% drop from the pristine baseline after 75, 000 cycles, 55.96%
after 125, 000 cycles and 97.97% drop after 175, 000 cycles of fatigue loading. This suggests that the Ay mode is more
sensitive to damage along the 45° propagation direction and the major contributing factor behind the energy losses
exhibited by the experimental signal energy characteristics.

The probabilistic Bayesian framework has effectively quantified the uncertainty in guided wave parameter estimation,
revealing distinct directional and modal sensitivities to various recorded stages of fatigue degradation. The captured
individual modal energy characteristics directly explain the trends in the overall experimental signal energy. This
establishes the method’s capability to not only provide reliable parameter estimates with quantified uncertainty but also
to resolve the individual contributions of each guided wave mode to the overall structural response, identifying the most
sensitive damage indicators for a given propagation path. Using the proposed methodology, one can

1) Accurately reconstruct the acquired experimental signals at any propagation distance » and angle 6.

2) Capture progressive structural degradation within the individual Sy and Ao guided wave modes.

3) Quantify the epistemic and aleatoric uncertainties associated with the parameter estimates.

4) Identify the most probable parameter values that explain the observed data, ensuring the solution remains

informed by guided wave physics and grounded in experimental reality.
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Fig. 8 Semi-analytical and probabilistically calibrated phase velocity values in the frequency range 200kHz-
250kHz along (0°, 45° and 90°) directions at various recorded stages of fatigue. (Note: Discrepancies between
semi—analytical and calibrated values may exist as the calibrated values combine experimental measurements
with semi-analytical predictions to provide an informed estimate of dispersion characteristics)
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Fig. 9 Semi-analytical and probabilistically calibrated group velocity values in the frequency range 200kHz-
250kHz along (0°, 45° and 90°) directions at various recorded stages of fatigue. (Note: Discrepancies between
semi—analytical and calibrated values may exist as the calibrated values combine experimental measurements
with semi-analytical predictions to provide an informed estimate of dispersion characteristics)
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tion performed along 0° 45°, 90° propagation directions at various recorded stages of compressive fatigue. R
quantifies the temporal alignment and phase coherence between signals and £ measures the absolute magnitude
of their discrepancy, providing a quantitative representation of reconstruction accuracy.

15



Direction: 0

Direction: 45

Direction: 90°

=0 0 0
) ) [
= =2 2
B 5 B
2 2 2
5-10 - 5-10 5-10
= 4 © = = £
g 20 Y g 20 Ts) 20 M\/fr
S Y S 3
=25 =25 -25
200 210 220 230 240 250 200 210 220 230 240 250 200 210 220 230 240 250
Frequency (kHz) Frequency (kHz) Frequency (kHz)
[——Pristine 75K 125K —— 175K Pristine 75K 125K —— 175K [ Pristine 75K 125K —— 175K
(@ (b) (©)
Direction: 0° Direction: 45° Direction: 90°
-10 -10 -10
%-20 g 20 g 20
5 30 530 £-30
T -40 T -40 T -40
3 2 | 3 —
B 50 g 50 3 -0 D
= = =
5 -60 5 -60 5 -60
-70 =70 -70
230 240 250 200 210 220 230 240 250 200 210 220
Frequency (kHz) Frequency (kHz) Frequency (kHz)
Pristine 75K 125K 175K] [ Pristine 75K 125K 175K [ Pristine 75K 125K 175K
(@ (e) ®
Direction: 0° Direction: 45° Direction: 90°
-10 -10 -10
% 220 ,@ -20 % 20
£ -30 g3 -30 EE 30
g g 3
g 40 L g 40 g 40
E I = 50 =
E 50 3 g 50
=1 2 60 =i . - ©
< -60 < < -60
< < 70 <
70 70
230 240 250 200 210 220 230 240 250 200 210 220
Frequency (kHz) Frequency (kHz) Frequency (kHz)
[ Pristine 75K 125K 175K] [ Pristine 75K 125K ——175K] [ Pristine 75K 125K 175K
(2 (h) @
Fig. 11 (figures 11aH11c) are the experimental signal energies re—displayed to be visualized in conjunction
with the calibrated maximum likelihood Sy and Ay modal energies (figures 11dHI1i) derived from probabilistic

Bayesian calibration of experimental signals.
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Fig. 12 Semi-analytical and maximum likelihood phase velocity values in the frequency range 200kHz-250kHz
along (0°, 45° and 90°) directions at various recorded stages of fatigue. (Note: Discrepancies between semi—
analytical and calibrated values may exist as the calibrated values combine experimental measurements with
semi-analytical predictions to provide an informed estimate of dispersion characteristics).
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Fig. 13 Semi-analytical and maximum likelihood group velocity values in the frequency range 200kHz-250kHz
along (0°, 45° and 90°) directions at various recorded stages of fatigue. (Note: Discrepancies between semi—
analytical and calibrated values may exist as the calibrated values combine experimental measurements with
semi-analytical predictions to provide an informed estimate of dispersion characteristics).
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The proposed physics—informed calibration methodology holds significant potential for practical structural health
monitoring by identifying specific monotonic frequencies and propagation directions where particular guided wave
modes exhibit peak sensitivity to damage. This capability provides a crucial practical advantage: it allows users to
strategically select the most effective combination of actuation frequency/frequency band, propagation direction, and
wave mode for a given transducer network to extract essential signal features to capture damage signatures consistently.
It is important to note that the results demonstrate the efficacy of the proposed methodology in capturing progressive
structural degradation from fatigue loading through calibrated wave mode characteristics, rather than focussing specific
damage types. Given the observed sensitivity of specific modal parameters to fatigue-induced damage, future work will
introduce controlled damage scenarios such as simulated delaminations, holes, and other stress raisers with known and
varying dimensions to establish robust correlations between the captured signatures and parameterized damage metrics.

V. Conclusion

This paper presents a robust, streamlined and reproducible methodology to capture signatures of progressive structural
degradation from acquired ultrasonic responses by accurately reconstructing experimental signals at any distance r from
the actuator and propagation direction 6, on thin-walled CFRC structures. Towards this, a parameter set defined by the
fundamental Sy and Ay mode amplitudes, phase velocities and group velocities was calibrated using a harmonic wave
propagation model to generate individual So and Ap mode realizations and eventually superimposed to produce accurate
reconstructions of experimental signals acquired using a semi—circular array of NANO30 piezoelectric transducers. The
harmonic wave propagation model is informed by the guided wave physics derived from a semi—analytical composite
waveguide and driven by experimental data acquired by a smart edge—computing framework. A regularized residual
error function was established to account for discrepancies arising from measurement noise, human error and higher
order guided wave modes amongst others. A probabilistic Bayesian methodology was employed to minimize the error
and calibrate the wave mode characteristics. The probabilistic Bayesian approach enhanced the reliability of calibration
by quantifying the uncertainties associated with the estimates of the individual modal parameters.

The calibrated guided wave mode characteristics successfully captured structural degradation at the various recorded
stages of displacement—controlled compressive fatigue loading. The probabilistic Bayesian framework effectively
quantified uncertainty in parameter estimation, revealing distinct directional and modal sensitivities to fatigue damage.
As the degradation became more severe, the effects of the damage on both modes became more pronounced ,evidenced
by severe energy drops emerging after 175, 000 cycles. Progressive degradation was most consistently captured along
the 45° fiber direction across the entire frequency band. In other directions, sensitivity was highly mode-dependent:
both fundamental modes responded to damage along 0° between 230-250 kHz, whereas only the Ap mode was effective
along 90° between 200-220 kHz. This methodology captures progressive structural degradation within individual
guided wave modes at any propagation distance r from the actuator and propagation angle 6, and quantifies epistemic
and aleatoric uncertainties associated with these estimates. This achievement underscores the efficacy and reliability of
the calibrated ultrasonic guided wave modes as reliable identifiers of damage with potential for further description,
characterization, and sentencing.

Python scripts containing data acquisition and processing algorithms can be deployed on the CyberSHM smart—edge
computing framework employed in this study to enable seamless, single—click functionality to excite any thin—walled
structure with user—defined actuation pulses across a specified frequency bandwidth, perform threshold free data
acquisition, and wave mode calibration. It is important to note that the results presented in this study showcase the
efficacy of the calibrated wave mode characteristics in capturing progressive structural degradation. Future work
will focus on extending this methodology by mapping the captured damage signatures to specific damage types and
quantitative metrics, while accounting for complex wave interactions such as edge reflections, scattering, and other
dissipative mechanisms. Further development includes incorporating additional guided wave modes into the harmonic
wave propagation model and validating the calibration framework on complex operational structures beyond simple
rectangular panels.
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