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MIQANet: A Novel Dual-Branch Deep Learning Framework
for MRI Image Quality Assessment

Yueran Ma, Huasheng Wang, Yingying Wu, Jean-Yves Tanguy, Richard White, Phillip Wardle,
Elizabeth Krupinski, Padraig Corcoran, and Hantao Liu

Abstract—Image quality assessment (IQA) algorithms have
significantly advanced over the past two decades, primarily
focusing on natural images. However, applying these methods
directly to medical imaging often yields suboptimal performance
due to inherent differences such as the structural complexity
of medical images and the limited availability of annotated
databases. In this study, we conduct a comprehensive evaluation
of state-of-the-art IQA methods, including 29 traditional full-
reference (FR), 4 traditional no-reference (NR), and 9 deep
learning-based approaches, to assess their effectiveness in the
context of medical imaging. Our evaluation is performed on a
recently developed MRI image quality assessment benchmark,
revealing critical performance gaps in existing methods. Building
on these findings, we propose a novel dual-branch deep learning
framework specifically designed for medical IQA (MIQANet).
The proposed approach effectively combines global contextual
information with local structural details, enhancing the model’s
ability to capture subtle degradations and structural incon-
sistencies in MRI scans. Experiential results demonstrate the
superiority of our approach over existing methods, providing
valuable theoretical and practical insights for enhancing quality
assessment of medical images.

Index Terms—Image quality assessment, medical image, deep
learning, artifacts, MRIL.

I. INTRODUCTION

Image quality assessment (IQA) plays a fundamental role
in computer vision and image processing, encompassing both
subjective and objective quality assessment methods. Subjec-
tive IQA involves human observers evaluating the perceived
quality of images, typically quantified through the mean
opinion score (MOS) [1]. Although subjective assessment is
considered the most reliable method due to its alignment with
human perception, it is inherently time-consuming, expen-
sive, and impractical for real-time applications. To overcome
these limitations, objective IQA methods are developed to
automatically predict image quality in a manner that closely
approximates human visual perception [2].

Over the past two decades, substantial progress has been
made in objective IQA, resulting in the development of meth-
ods of three primary categories: full-reference (FR), reduced-
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reference (RR), and no-reference (NR) IQA [3]. FR methods
require full access to the original reference image to evaluate
the quality of a distorted image, RR methods rely on partial
reference features, and NR methods assess the quality of a
distorted image without any reference.

Recently, researchers have recognised the limitations of
applying general-purpose IQA models across diverse image
domains. To address this, domain-specific datasets and metrics
have been developed to better capture the unique degradation
patterns and perceptual characteristics of specialised imag-
ing scenarios. Representative examples include benchmark
datasets and metrics for underwater image enhancement [4],
[5], single image super-resolution [6], HDR tone mapping [7],
and underwater IQA with degradation-aware models [8]. In
parallel, perception-driven approaches that explicitly model
human visual sensitivity have gained attention [9]. These
efforts highlight the growing trend of developing domain-
specific IQA frameworks, further motivating our investigation
into medical image quality assessment.

In medical imaging, an increasing number of domain-
specific IQA methods have been developed for individual
modalities or quality degradation types, such as CT noise
estimation, ultrasound speckle suppression, and endoscopic
image clarity grading, as summarised in recent reviews in
[10], [11]. These surveys highlight a growing body of research
dedicated to medical IQA, ranging from traditional approaches
based on handcrafted features or rule-based heuristics to more
recent deep learning-based frameworks. Representative exam-
ples include CNN-based models for MRI quality classification
[12], motion artifact detection [13], and multi-level artifact
grading [14], as well as retinal fundus quality assessment using
CNN-guided local features [15] and HVS-inspired hybrid net-
works [16]. While these studies demonstrate the rapid progress
in modality-specific IQA, most existing methods focus on
classification rather than perceptual quality prediction (e.g.,
MOS) and remain limited in scalability, generalisability, and
benchmark availability. This indicates the need for a unified
benchmark and a generalisable no-reference IQA framework
specifically tailored for medical imaging — a domain that
remains critically important yet comparatively underexplored.

Despite significant advances in IQA for natural images,
applying these techniques to medical imaging remains chal-
lenging [17], [18]. Medical images differ fundamentally from
natural images not only in their visual characteristics and
content but also in how their quality is perceived [10], [11].
Natural images typically exhibit rich colours and diverse
textures; degradations such as blur, noise, compression ar-
tifacts, or colour shifts primarily affect perceived aesthetics



and semantic clarity. In contrast, medical images, such as
MRI scans, are often monochromatic, characterised by sub-
tle grayscale variations, blurred anatomical boundaries, low-
contrast structures, and motion artifacts. These degradations
increase structural complexity and reduce visual clarity, but
more importantly, they directly affect diagnostic utility [19]. In
diagnostic imaging, “quality” extends beyond visual appeal to
encompass clinical interpretability. Even subtle degradations
can severely compromise diagnostic accuracy, particularly
when they alter tissue contrast, boundaries, or small struc-
tures. For example, a slightly blurry photograph may remain
understandable, whereas a similarly degraded MRI scan could
obscure a small lesion or lead to an incorrect diagnosis. Conse-
quently, natural image IQA methods, which rely on detecting
prominent features such as edges and colours, may fail to
capture the fine-grained texture variations and subtle anomalies
critical in medical imaging. Furthermore, medical imaging
modalities such as MRI, CT, and ultrasound introduce addi-
tional complexities due to variations in acquisition techniques,
resolution, and noise characteristics [20]. These differences
pose significant challenges for existing IQA methods, which
are often tailored to statistical properties of natural images
rather than the structural and anatomical features inherent in
medical images. The direct application of IQA techniques
developed for natural images to medical imaging often results
in suboptimal performance. Therefore, there is a need to
systematically evaluate existing IQA techniques in the context
of medical imaging and develop tailored solutions to address
its unique challenges.

In this paper, we focus on MRI image quality assessment.
Full-reference (FR) approaches are commonly applied in com-
pressed transmission or reconstruction quality evaluation, such
as when assessing the impact of compression, denoising, or
super-resolution algorithms on fidelity relative to the original
data [21]. However, in most practical scenarios, there is
typically no pristine reference image available due to factors
such as patient motion, hardware limitations, noise, or other
acquisition related artifacts. As a result, quality assessment
methods must rely solely on the acquired data, making no-
reference (NR) approaches the standard choice in clinical
imaging [11]. The contributions of this study are as follows:

1) Comprehensive Evaluation of IQA Methods for
Medical Imaging: We conduct a thorough evaluation
of 29 traditional FR methods, 4 NR methods, and 9
deep learning-based methods, systematically analysing
their performance and applicability for medical imaging
applications.

2) Development of a Novel Deep Learning Framework
for Medical IQA: Based on our evaluation results, we
propose a novel deep learning framework specifically
designed to optimise medical image quality assessment
by addressing domain-specific challenges.

3) Extensive Experimental Validation: We perform rigor-
ous experiments to validate the effectiveness and relia-
bility of the proposed IQA method against existing meth-
ods, and ablation studies to assess the impact of different
architectural components in the proposed framework.

(9)

Fig. 1. Reference MRI images used in our RAD-IQMRI database. The images
are referred to (a) Brain_T1, (b) Brain_T2, (c) Liver, (d) Breast, (e) Fetus, (f)
Hip, (g) Knee, and (h) Spine.

II. MATERIALS AND EVALUATION FRAMEWORK
A. Database

The RAD-IQMRI database [22] was developed to tackle
the challenges associated with MRI image quality assessment,
with a focus on the presence of visual artifacts that can impact
diagnostic accuracy. The dataset comprises eight original high-
quality MRI images, representing various anatomical regions,
including the brain, liver, breast, fetus, hip, knee and spine,
acquired using a Philips Achieva 1.5T MRI system. Figure 1
illustrates representative samples of these source images. To
generate a diverse set of distorted images, common MRI
artifacts were systematically simulated and introduced to the
source images, including ghosting and noise, across multiple
severity/energy levels. These simulated artifacts closely reflect
real-world challenges frequently encountered in clinical MRI
scans, ensuring the dataset’s relevance for evaluating IQA
algorithms. A total of 112 distorted MRI images were gener-
ated. A fully controlled perception experiment was conducted
to obtain reliable image quality ratings for the MRI images
contained in the RAD-IQMRI database. Thirteen radiologists
participated in the psychovisual test, rating image quality using
a standard simultaneous double-stimulus IQA method [X] as
the interface illustrated in Figure 2. The radiologists’ ratings
were then used to compute the mean opinion score (MOS)
for each image, establishing a benchmark for evaluating the
performance of IQA models on MRI images.

B. Implementation Details

All experiments were conducted on a workstation equipped
with an NVIDIA GeForce RTX 3060 GPU, using PyTorch
1.10.0 and CUDA 11.7. For traditional IQA models, publicly
available implementations were used directly when available;
otherwise, the methods were implemented from scratch. Fol-
lowing conventional practice, the performance is measured
by applying an IQA model to the entire database. For deep
learning-based IQA models, due to the limited size of the
RAD-IQMRI dataset [22], we adopted a k-fold (k=8 in our
study) cross-validation approach for critical evaluation. The
dataset was divided into eight non-overlapping partitions,
where in each iteration, seven partitions were used for training
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Fig. 2. Tllustration of the scoring interface used in the psychovisual experi-
ment. The interface presents two stimuli side-by-side, with the reference image
on the left and the test image on the right.

and the remaining partition was used for testing. This process
was repeated eight times, ensuring each fold serves as the test
set once, and the final performance was averaged across all
test results.

For all deep learning-based models, the backbone networks
were initialized with ImageNet pre-trained parameters [23].
Hyperparameters such as learning rates, batch sizes, and opti-
mizer settings were adjusted based on preliminary experiments
to achieve optimal performance during training. Additionally,
we employed learning rate scheduling to dynamically adjust
the learning rate during training, which facilitated better model
convergence.

C. Evaluation Criteria

The performance of IQA models is evaluated using two
metrics, i.e., Pearson Linear Correlation Coefficient (PLCC)
and Spearman’s Rank-order Correlation Coefficient (SROCC).
These metrics are widely used to measure the accuracy and
consistency of model’s predictive ability in relation to subjec-
tive judgments.

Since objective IQA scores often exhibit a non-linear rela-
tionship with subjective ratings, a non-linear regression, i.e., a
five-parameter modified logistic function [X] is often applied
prior to computing PLCC. The PLCC is calculated as follows:
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where s; and $; denote the subjective and predicted quality
scores for the i-th image, and 5 and § are their corresponding
means. N is the total number of images in the evaluation set.

The SROCC metric assesses the monotonic relationship

between the rankings of predicted and subjective scores, which
is calculated as:
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where d; represents the difference between the ranks assigned
to the i-th image in the predicted and subjective scores.

Both PLCC and SROCC take absolute values in the range
[0, 1], where values closer to 1 indicate a stronger correlation
with subjective assessments, reflecting more accurate and
reliable predictions of an IQA model.

IIT. COMPARATIVE ANALYSIS OF IQA ALGORITHMS FOR
MEDICAL IMAGING

IQA methods have been extensively developed for natu-
ral images; however, their applicability to medical imaging
remains under-explored. This study systematically evaluates
the effectiveness of established IQA methods from the natural
image domain in medical imaging. We assess 29 traditional FR
methods, 4 traditional NR methods, and 9 deep learning-based
methods, using open-source implementations where available
and reproducing others (based on the original publications) as
needed. Evaluation is conducted on the RAD-IQMRI database.
Table I summarises the IQA methods.

A. IQA Methods

1) Traditional FR IQA: FR IQA based on “Pixel Statis-
tics”: The simplest method is to calculate the pixel differences
between the reference and distorted images and then fuse
these differences to an image quality score. The most common
methods are the Mean Square Error (MSE) and Signal-to-
Noise Ratio (SNR)/Peak Signal-to-Noise Ratio (PSNR) [X].
These metrics are of low computational complexity; however,
they do not consider the properties of the human visual
system (HVS) [51], and therefore, they often do not correlate
with subjective IQA. Many methods have been proposed to
improve the MSE/PSNR metrics, integrating vision models
such as the contrast sensitivity function (CSF). The improved
models include WSNR [24], NQM [24], PSNR-HVS [25],
PSNR-HVS-M [26], PSNR-HA [27], PSNR-HMA [27], IW-
PSNR [28]. Some methods are calculated in the discrete
wavelet domain, including PSNR-DWT and AD-DWT [29].
FR IQA based on “Structural Information”: Based on the
observation that the HVS has the ability to extract image
structure information, the Structural Similarity (SSIM) index is
proposed in [21], which is a modified version of the Universal
image Quality Index (UQI). A series of improved models
of SSIM have been proposed, including MSSSIM [30], TW-
SSIM [28], WSSI [31], SSIM-DWT [29]. In addition, some
models are built based on the structural similarity framework,
including RFSIM ([32], FSIM [33], SR-SIM [34]. In GMSD
[35], a gradient similarity method is proposed. In MCSD [36],
a multiscale contrast similarity method is proposed. In DSS
[37], a DCT subbands similarity method is proposed. FR IQA
based on “Information Theory”: Information theory-based
methods quantify mutual information between the reference
and distorted images, including IFC [38], VIF [39], VIFP
[39], DWT-VIF [40], and VIF-DWT [29]. FR IQA based on
“Mixed Strategy”: Some mixed strategy-based methods have
been proposed. For example, MAD [41] considers that HVS
has a different emphasis under different conditions of image
quality and applies different modelling strategies for image of
high and low quality.



TABLE I
SUMMARY OF IMAGE QUALITY ASSESSMENT (IQA) CATEGORIES AND METHODS EVALUATED IN THIS STUDY

Category Method

Pixel Statistics - SNR, PSNR, WSNR [24], NQM [24], PSNR-HVS [25], PSNR-HVS-M [26],
PSNR-HA [27], PSNR-HMA [27], IW-PSNR [28], PSNR-DWT [29], AD-DWT [29]

Traditional FR IQA

Structural Information - UQI, SSIM [21], MSSSIM [30], IW-SSIM [28], WSSI [31], SSIM-
DWT [29], RFSIM [32], FSIM [33], SR-SIM [34], GMSD [35], MCSD [36], DSS [37]

Information Theory - IFC [38], VIF [39], VIFP [39], DWT-VIF [40], VIF-DWT [29]

Mixed Strategy - MAD [41]

Traditional NR IQA

BRISQUE [42], NIQE [43], ILNIQE [44], dipIQ [45]

Deep Learning-Based NR IQA

SimpleCNN [46], DBCNN [47], HyperIQA [48], CLIP-IQA [49], MANIQA [50]

2) Traditional NR IQA: Traditional NR IQA methods eval-
uate the quality of distorted images by analysing natural
scene statistics (NSS) or using hand-crafted features relevant
to visual distortions, including BRISQUE [42], NIQE [43],
ILNIQE [44]. The Digital Image Pairs Inferred Quality Index
(dipIQ) [45] method uses features from FR IQA methods and
a learning-to-rank approach to create the quality index.

3) Deep Learning-Based NR IQA: The deep learning-
based NR IQA methods exploit the convolutional neural
networks (CNNs) to directly extract discriminative features
from images, demonstrating superior performance over tradi-
tional approaches [46], [52]-[54]. A CNN-based metric (Sim-
pleCNN) is proposed in [46] that integrates feature learning
and regression into a unified end-to-end optimisation process.
Additionally, the backbone network can be substituted with
architectures such as LeNet [55], VGG19 [56], ResNetl8
[57], or ResNet34 [57] to develop alternative NR-IQA meth-
ods. Other popular deep learning-based approaches include
DBCNN [47]: a deep bilinear CNN model designed to capture
both local and global image quality features; HyperIQA [48]:
a model that adapts to varying perceptual rules by leveraging
a self-adaptive hyper network; CLIP-IQA [49]: a model that
utilises the visual-language understanding capabilities of CLIP
to assess perceived quality of images, and MANIQA [50]:
A multi-dimension attention network that combines Vision
Transformer features, transposed attention blocks, and scale
swin transformer blocks.

B. Comparative Analysis

1) Comparison of Different Model Genres: Table II outlines
the performance (measured by PLCC and SROCC) of exist-
ing IQA methods as mentioned above, including traditional
full-reference (T-FR), traditional no-reference (T-NR), deep
learning with no-finetuning (DL-NFT), and deep learning with
finetuning (DL-FT) IQA. The results reveal that state-of-the-
art (SOTA) T-FR IQA models can achieve strong perfor-
mance by directly applying to medical imaging, e.g. IWSSIM,
MCSD, GMSD, and MAD produce PLCC/SROCC values
exceeding 0.85. This can be attributed to their reliance on
a reference. However, FR IQA methods are impractical in
medical imaging, as reference images are often unavailable
in many clinical scenarios.

T-NR models, on the other hand, perform poorly, suggesting
that traditional no-reference approaches do not transfer well
from natural images to medical imaging. Deep learning-based

IQA models show more promising results, particularly when
finetuned on medical image data. Notably, most existing IQA
models are typically pre-trained on natural images, which
differ significantly from medical images in terms of strucure
and noise characteristics. Without finetuning, these models
fail to capture domain-specific features, such as anatomical
structures and modality-specific noise patterns; finetuning on
medical image data allows the model to adapt to these unique
features, leading to improved performance. In particular, the
SOTA deep learning-based IQA model, MANIQA, which is
the top-performing model for natural images, achieves the best
results on medical imaging after finetuning. Therefore, the
following of the paper will focus on the deep learning-based
NR IQA.

2) Comparison of Different Transfer Learning Methods:
Transfer learning has become increasingly important in med-
ical imaging due to the limited availability of large-scale an-
notated datasets - a common challenge in this domain. Lever-
aging knowledge from models pre-trained on large natural
image datasets can improve performance on medical imaging
tasks where labeled data is scarce. In this study, we adopt a
three-step strategy to assess the impact of transfer learning on
IQA in medical imaging. Train_LIVE Training on natural
IQA dataset without finetuning: Models are initially trained
on the LIVE database [X] (widely used natural IQA database)
without finetuning and directly tested on the RAD-IQMRI
database for medical imaging. Train_ImageNet LIVE Pre-
training on ImageNet and finetuning on LIVE: Models are pre-
trained on ImageNet, a large-scale natural image classification
dataset, and then finetuned on LIVE before being tested RAD-
IQMRI. Finetune_RADIQMRI Pre-training on ImageNet,
finetuning on LIVE, and further finetuning on RAD-IQMRI:
Models are pre-trained on ImageNet, and finetuned on LIVE,
and subsequently further finetuned on RAD-IQMRI to evaluate
their performance.

Figure 3 illustrate the performance (measured by PLCC)
of different deep learning-based IQA models under each
training strategy. The Train_LIVE strategy result in the lowest
PLCC values across all models. The Train_ImageNet_LIVE
strategy significantly improves model performance, yielding
higher PLCC values in all methods compared to Train_LIVE.
Notably, the Finetune RADIQMRI strategy lead to fur-
ther improvements. Particularly for transformer-based ap-
proaches i.e., ClipIQA and MANIQA, the models signifi-
cantly benefit from finetuning on medical data. For CNN-



TABLE II
PERFORMANCE COMPARISON OF IMAGE QUALITY ASSESSMENT (IQA) METHODS

Type  Methods PLCC SROCC | Type Methods PLCC SROCC
UQI 0.1835  0.2247 diplQ 0.0231  0.0484
AD_DWT 0.2796  0.1912 T-NR BRISQUE 0.2694  0.0879
PSNR 0.4999  0.4687 IL-NIQE 0.3021  0.2819
SNR 0.4999  0.4687 NIQE 04305 0.2154
PSNR_HVSM  0.5052  0.4626
PSNR_DWT 0.5119  0.5363
PSNR_HVS 0.6307 0.5610 ClipIQA (no finetuning) 0.1068  0.0939
IW_PSNR 0.6611  0.6665 HyperIQA (no finetuning) 0.2040  0.1890
IFC 0.7033  0.7060 SimpleCNN (no finetuning)  0.2253  0.3148
PSNR_HMA 0.7051  0.6819 MANIQA (no finetuning) 0.3163  0.3208
VIFP 0.7201  0.7264 DL-NFT DBCNN (no finetuning) 0.3556  0.2392
DWT_VIF 0.7716  0.7764 LeNet5 (no finetuning) 0.4496  0.3478
RFSIM 0.7743  0.7643 ResNet34 (no finetuning) 0.5224  0.3280

T-FR VIF 0.7908  0.7857 ResNet18 (no finetuning) 0.5325  0.4088
PSNR_HA 0.7935  0.7582 VGGI19 (no finetuning) 0.5758  0.4544
SRSIM 0.7951  0.8676
VIF_DWT 0.7995  0.7907 SimpleCNN 0.5979  0.5494
SSIM_DWT 0.8015  0.8346 LeNet5 0.6181  0.6207
SSIM 0.8089  0.8648 HyperlQA 0.6233  0.6455
WSSI 0.8122  0.8319 DBCNN 0.6289  0.6609
FSIM 0.8321  0.8797 DL-FT ClipIQA 0.6501  0.6870
DSS 0.8361  0.8527 VGGI19 0.6909  0.6820
MSSSIM 0.8465  0.8659 ResNet18 0.6923  0.6513
IWSSIM 0.8613  0.8896 ResNet34 0.7048  0.7549
MCSD 0.8739  0.8769 MANIQA 0.9147  0.9012
GMSD 0.8838  0.8731
MAD 0.8863  0.8808

Note: T-FR represents Traditional Full-Reference methods, T-NR represents Traditional No-Reference methods, DL-NFT represents Deep Learning-based
methods without finetuning, and DL-FT represents Deep Learning-based methods with finetuning.

based methods like ResNet34, ResNetl8, and VGG19, both
Train_ImageNet_LIVE and Finetune_ RADIQMRI produce
comparable results, though Finetune_ RADIQMRI consis-
tently achieves the best overall performance.

These findings suggest that transfer learning, especially
finetuning on task-specific medical datasets like RAD-IQMRI,
is highly effective in improving IQA performance in medical
imaging. This is particularly evident in transformer-based
models, where finetuning provides significantly improved gen-
eralisation to medical images.

IV. PROPOSED METHOD

In natural image processing, CNNs and Transformers have
demonstrated strong capabilities, each with distinct advan-
tages and limitations. CNNs excel in capturing local features
through their hierarchical spatial hierarchies, making them
particularly effective for analysing fine details in medical
images. However, their reliance on local receptive fields can
limit their ability to model global image context. In contrast,
Transformers leverage self-attention mechanisms to capture
long-range dependencies, providing a broader perspective on
image content and enhancing contextual understanding.

In natural image IQA, both local and global features con-
tribute to perceived quality, but their influence on overall

perception is relatively less content- or task-sensitive [9].
In contrast, medical image (e.g., MRI) quality perception is
strongly shaped by diagnostic tasks and clinically relevant
content, making the balance between local detail and global
anatomical structure particularly critical [58], [59]. For in-
stance, subtle local degradations can obscure fine details such
as lesions or vessel boundaries, while global degradations
may compromise the overall visibility of anatomical context
and organ morphology [60]. Both aspects jointly determine
whether an image is clinically useful, as radiologists rely on
fine local details for detection tasks and on global coherence
for orientation and diagnosis [61]. Our model design is there-
fore motivated by the need to explicitly capture this dual nature
of medical image quality.

To address these MRI-specific challenges, we propose a
dual-branch model for medical image IQA (MIQANet), as
shown in Figure 4. The design reflects the perceptual needs
of radiologists, who rely on both local and global cues when
assessing MRI quality. The local branch focuses on extracting
fine-grained features that are sensitive to subtle degradations
in diagnostically critical regions, while the global branch cap-
tures holistic structural information and contextual consistency
across the entire image. By combining these complementary
representations, MIQANet provides a more comprehensive
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’C’ represents concatenation operations, while "H’ denotes Hadamard product.

assessment of medical image quality than either branch could
achieve independently. This architecture explicitly integrates
the fine-grained local analysis capabilities of CNNs with the
global context modelling efficiency of Swin Transformers
[62]. Notably, the Swin Transformer’s hierarchical design
facilitates scalable and computationally efficient processing of
high-resolution medical images, while its shifted windowing

scheme further enhances global information integration with-
out incurring the computational overhead of standard Trans-
formers. Our proposed method is specifically designed for no-
reference image quality assessment (NR-IQA), as reference-
quality MRI images are generally unavailable in practical
clinical environments.

The architecture of combining CNN and Transformer has



been widely explored in radiological image analysis, as thor-
oughly reviewed in [63]. Some recently proposed dual-branch
architectures such as TransUNet [64] and SwinUNet [65] have
demonstrated the consistent performance improvements over
purely CNN- or Transformer-based baselines. However, most
of these studies have focused on classification and segmenta-
tion tasks. To the best of our knowledge, no prior work has
explicitly applied a CNN-Transformer hybrid architecture to
medical IQA. Inspired by this design philosophy, our proposed
MIQANet adopts a similar dual-branch strategy, but tailored
for the distinct challenges of no-reference medical IQA, in-
cluding several novel components: (1) adaptive deformable
convolution module for aligning local features with the global
attention context; (2) learnable weighting parameter to dy-
namically balance the contribution of CNN and Transformer
branches; and (3) dual-branch decoder with patch-wise scoring
and spatial attention fusion to provide perceptually consistent
quality predictions.

A. CNN-Based Branch

The CNN-based branch of our proposed MIQANet model
features a flexible backbone, enabling compatibility with vari-
ous architectures to enhance adaptability across different IQA
tasks. For our analysis, we have utilised models including
simpleCNN, VGG, ResNet, and LeNet to demonstrate the
branch’s versatility and capability. Additionally, this backbone
can be easily replaced with alternative CNN architectures,
allowing for continuous adaptation and optimisation across
a wide range of imaging conditions and assessment require-
ments.

B. Transformer-Based Branch

The Transformer-based branch of our proposed MIQANet
model is structured for IQA using a hierarchical approach
that processes images at multiple scales, known as the Swin
Transformer [62]. The Swin Transformer operates by dividing
the input image into non-overlapping local windows, within
which self-attention is computed, enabling efficient and scal-
able feature extraction.

1) Local Window Attention: The input image is divided into
fixed-size patches, forming non-overlapping local windows.
Self-attention is then computed independently within each
window, enabling the model to capture fine-grained local fea-
tures. When computing self-attention within a local window,
the standard self-attention mechanism can be represented by
the following equation:

Attention(Q, K, V') = softmax (QKT) \% 3)
s en
where @), K, and V are the query, key, and value matrices,
respectively, and dj, is the dimension of the key vectors.

2) Shifted Window Mechanism: The windows are shifted at
each subsequent layer. This shift allows for cross-window con-
nections, ensuring that information flows between neighboring
patches without the need for global self-attention across the
entire image:

Shifted Window (¢, j) = W, ; = Witai j+a; “)

where W; ; represents the original window position at indices
(,7), and Ai and Aj are the shifts applied to the window in
the horizontal and vertical directions, respectively.

3) Hierarchical Representation: The Swin Transformer
constructs a hierarchical representation of the image by pro-
gressively reducing the resolution at each stage. The reduction
is achieved through patch merging operations, which combine
patches from the previous stage to form a coarser representa-
tion:

Pys1 = Merge(Py,) 5)

where P, represents the patches at level m, and Merge(-)
denotes the operation that combines multiple patches into a
single one, effectively reducing the resolution and increasing
the receptive field.

C. Feature Fusion

The Transformer-based branch is employed to learn an
offset map, which is used to apply deformable convolution on
the CNN feature maps. This allows the CNN’s local features
to be adjusted and aligned with the global context provided
by the Transformer. Additionally, we introduce an adaptive
parameter (AP) that determines the relative contribution of
each branch to the overall prediction task, ensuring that the
combined output reflects the optimal balance between the two
branches.

D. Patch-wise Prediction
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Fig. 5. Dual-branch structure of the patch-wise prediction module with CNN-
tailored and Transformer-tailored decoding pathways.

The Patch-wise Prediction module is designed to overcome
the limitations of traditional spatial pooling methods, which
often result in the loss of critical information by neglecting
the relationships between different image patches. Instead
of relying on max-pooling or average-pooling to produce a
single IQA score, this module utilises a dual-branch structure
consisting of a scoring branch and a spatial attention branch.

In this module, each pixel in the deep feature map - corre-
sponding to a specific patch of the input image - is individually



assessed. The scoring branch computes a quality score for each
pixel, while the spatial attention branch generates an attention
map that reflects the significance of each corresponding score.
These two outputs are combined through a weighted summa-
tion, where the attention map serves as the weight for the
patch scores. This weighted sum operation allows the model
to account for the varying importance of different regions,
simulating the human visual system’s selective focus on areas
of interest.

To enhance the adaptability and efficacy of the IQA decoder
across different backbone encoder architectures, our MIQANet
model features two specialised decoding pathways: one tai-
lored for CNNs and another for Transformers, as illustrated in
Figure 5. Each pathway is designed to optimise the interpre-
tation of features according to the specific characteristics of
the encoder used, ensuring the patch-wise perception of image
quality is maximally accurate. The final predicted IQA score
sy for the entire image is calculated as:

S* W

Sf = ZW

where s represents the score map, w denotes the corresponding
attention map, and * signifies the Hadamard product.

To further refine the predictions, the module generates
both weight and score projections from the feature map F
through two independent linear transformations. The final IQA
score is derived by multiplying the patch scores with their
corresponding weights and summing across all patches. This
design introduces a balancing mechanism between the scoring
and weighting branches, mitigating overfitting and ensuring
that the final score reflects a balanced consideration of both
patch scores and their relative importance.

(6)

E. Performance Evaluation

TABLE III
PERFORMANCE COMPARISON AND STATISTICAL SIGNIFICANCE RESULTS

Method PLCC SROCC  Significance (vs MIQANet)
SimpleCNN 0.5979 0.5494 1-1
LeNet5 0.6181 0.6207 1-1
HyperIQA 0.6233 0.6455 1-1
DBCNN 0.6289 0.6609 1-1
ClipIQA 0.6501 0.6870 1-1
VGG19 0.6909 0.6820 1-1
ResNet18 0.6923 0.6513 1-1
ResNet34 0.7048 0.7549 1-1
MANIQA 0.9147 0.9012 1-1
MIQANet (Ours) 0.9320  0.9289 -

Note: Statistical significance testing consists of two methods: (1) hypothesis
testing following ITU-T Rec. P.1401, which performs a pairwise comparison
of RMSE values between each SOTA model and our MIQANet model; and
(2) hypothesis testing based on residuals between each SOTA model and
MIQANet. The test results indicate whether the performance difference is
statistically significant, where “1” represents significance and “0” represents
non-significance.

1) Overall Performance and Statistical Significance: Ta-
ble III illustrates the performance of our proposed MIQANet
model compared to SOTA learning-based NR IQA models. To
ensure a fair comparison, all models have undergone the same

TABLE IV
ABLATION STUDY ASSESSING THREE KEY COMPONENTS: THE CNN
BRANCH WITH INTERCHANGEABLE BACKBONE NETWORKS, THE SWIN
TRANSFORMER BRANCH, AND THE ADAPTIVE PARAMETER (AP).
PERFORMANCE OF DIFFERENT MODEL CONFIGURATIONS, WHERE v’
INDICATES THAT THE COMPONENT WAS USED IN THE MODEL.

CNN
simpleCNN ~ VGG19  ResNet34 Swin-T AP PLCC  SROCC
v - - - - 0.5979  0.54%4
- v - - - 0.6909  0.6820
- - v - - 0.7048  0.7549
- - - v - 0.9014  0.8885
v - - v - 0.8794  0.8964
- v - v - 0.9056 09178
- - v v - 09166 09178
v - - v v 09208  0.9294
- v - v v 09233 0.9206
- - v v v 09320  0.9289

training strategy (i.e., the “Finetune_RADIQMRI” method)
and k-fold cross-validation as detailed in section III. The
results show that that MIQANet outperforms SOTA models,
achieving a Pearson PLCC value of 0.9320 and a SROCC
value of 0.9289.

To determine whether the observed performance improve-
ment is statistically significant, we conduct hypothesis testing.
However, it should be noted that statistical evaluation is inher-
ently challenging, as conclusions depend on assumptions made
about data distribution and the choice of statistical methods.
To enhance the robustness of our findings, we adopt two
well-established significance testing approaches widely used
in the IQA literature: P1401 Hypothesis Testing (HT_P1401):
Assuming a normal distribution of the compared data, we
follow the methodology outlined in ITU-T Rec. P.1401 [66].
This test is performed through pairwise comparison of RMSE
values between MIQANet and each SOTA model. Residual-
Based Hypothesis Testing (HT _Res): HT_Res [67] evaluates
residuals between each SOTA model and MIQANet. We
first assess the normality of the residual distributions (i.e.,
[MOS —NR IQA| and |[MOS — MIQANet|). If the residuals
are normally distributed, an independent samples t-test is
performed; otherwise, we employ the non-parametric Mann-
Whitney U test. These complementary methods help ensure
the reliability of our statistical analysis. As shown in Table III,
both HT_P1401 and HT_Res confirm that the performance im-
provements achieved by MIQANet are statistically significant
compared to all SOTA models.

2) Ablation Study: To evaluate the effectiveness of the
proposed MIQANet model, we conducted an ablation study
assessing three key components: the CNN branch with inter-
changeable backbone networks, the Swin Transformer branch,
and the adaptive parameter (AP) that learns the contribution
of each branch. Table IV shows the performance of different
model configurations measured by the PLCC and SROCC.

First, we evaluate three CNN backbones - SimpleCNN,
VGG19, and ResNet34 - individually, without the Swin Trans-
former branch or the adaptive parameter (AP). As shown in
Table IV, SimpleCNN achieves a PLCC of 0.5979, VGGI19
improves upon this with a PLCC of 0.6909, and ResNet34 out-



performs both with a PLCC of 0.7048. These results suggest
that deeper network architectures like ResNet34 extract more
relevant features for IQA tasks compared to shallower/simpler
architectures such as SimpleCNN.

Next, integrating the Swin Transformer branch yields sub-
stantial performance gains. When combined with ResNet34,
the PLCC increases to 0.9166, demonstrating the benefits of
using both local features from the CNN branch and global
contextual information captured by the Swin Transformer.
Similar improvements are observed when combining Swin
Transformer with SimpleCNN and VGG19, resulting in PLCC
values rising to 0.8794 and 0.9056, respectively.

Finally, incorporating the adaptive parameter (AP) further
enhances performance by dynamically learning the optimal
weight distribution between the CNN and Swin Transformer
branches. The best-performing model, ResNet34 + Swin-T +
AP, achieves a PLCC of 0.9320, demonstrating that adaptive
weighting allows the model to better leverage the strengths
of both branches. Similarly, VGG19 + Swin-T + AP and
SimpleCNN + Swin-T + AP achieves PLCC values of 0.9233
and 0.9208, respectively, confirming the overall benefit of
incorporating adaptive parameter (AP) in refining the model’s
predictions.

This ablation study clearly shows the complementary con-
tributions of each component - CNN backbone, Swin Trans-
former, and adaptive parameter - with the highest IQA perfor-
mance achieved through their integration.

3) Complexity Analysis and Real-Time Feasibility: We
evaluate the training efficiency and parameter budget of
MIQANet to determine whether its superior performance
results from architectural design rather than increased model
complexity. Table V repots the training time per epoch and
parameter count of MIQANet compared with MANIQA, the
best-performing baseline. The two models exhibit comparable
computational costs, indicating that MIQANet achieves higher
accuracy without sacrificing efficiency.

To further isolate the effect of architectural design, we con-
struct two single-branch model variants with comparable pa-
rameter sizes: a CNN-only model (ResNet152 backbone) and a
Transformer-only model (Swin-L backbone). Both variants are
trained under identical settings on the RAD-IQMRI dataset.
As shown in Table VI, these model variants achieve lower
performance than MIQANet, despite having similar parameter
budgets. These results demonstrate that the performance gain
of MIQANet primarily arises from the proposed dual-branch
architecture with adaptive weighting, rather than from higher
model capacity (parameter count).

In terms of practical feasibility, MIQANet’s inference time
is on the order of tens of milliseconds per MRI slice on a
modern GPU, which is well within real-time requirements
for clinical quality monitoring scenarios. Furthermore, as the
method is fully feedforward at inference time, it can be
further optimized for deployment using standard acceleration
frameworks such as TensorRT or ONNX, ensuring efficient
integration into practical clinical workflows.

4) Discussion: The generalisation capability of MIQANet
is currently constrained by the limited availability of annotated
medical IQA datasets. Most existing studies rely on private

TABLE V
COMPARISON OF TRAINING EFFICIENCY AND MODEL SIZE.

Model Time / epoch | Param count

MANIQA 34 mins 135.62M

MIQANet (ours) 35 mins 137.65M
TABLE VI

COMPARISON OF MODEL PERFORMANCE UNDER MATCHED PARAMETER
BUDGETS (/137M PARAMETERS).

Model PLCC 1 | Time / epoch | Param count
CNN-only (ResNet152) 0.7332 26 mins 137.28M
Transformer-only (Swin-L) 0.9188 38 mins 137.51M
MIQANet (ours) 0.9320 35 mins 137.65M

data, and to the best of our knowledge, none of the medical
IQA databases reported in literature are fully public. Neverthe-
less, we acknowledge that validation on an independent dataset
is essential and plan to evaluate MIQANet on other emerging
datasets [10], [11], once they become publicly accessible. To
mitigate potential overfitting under limited data conditions, we
adopted a multi-stage transfer learning strategy — pre-training
on ImageNet, fine-tuning on LIVE, and further fine-tuning
on RAD-IQMRI (as detailed in Section III) — combined with
k-fold cross-validation to ensure consistent evaluation across
disjoint subsets. These procedures enhance model robustness
and promote reliable generalisation despite the modest dataset
size. Finally, our RAD-IQMRI dataset is planned for public
release and will be expanded into a larger-scale resource to
support future validation and benchmarking studies.

V. CONCLUSION

In this study, we systematically evaluated a broad spectrum
of image quality assessment (IQA) techniques within the
context of medical imaging, with a particular focus on MRI
data. Our analysis revealed the limitations of existing IQA
models when applied to medical images, and the need for
domain-specific approaches. To bridge this gap, we proposed
MIQANet, a novel deep learning-based model tailored for
medical IQA, which demonstrated superior performance and
potential as a new benchmark in the field.

These findings emphasise the importance of developing
specialised IQA techniques that account for the unique charac-
teristics of medical images. Future research involves refining
our proposed MIQANet model, extending its application to
other medical imaging modalities, and exploiting larger and
more diverse datasets to enhance the generalisability and
robustness of medical IQA models.

While MIQANet achieves strong performance, several limi-
tations remain. First, the current model is trained and evaluated
on simulated MRI artifacts from a single curated dataset; fu-
ture work should explore its generalisability across real-world
clinical data and multiple scanner types. Second, the model
currently relies on supervised learning using subjective scores,
which may introduce bias. Incorporating semi-supervised or
self-supervised strategies could mitigate this limitation. Fi-
nally, expanding the framework to handle dynamic sequences



and integrating uncertainty quantification are promising future
directions.
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