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ABSTRACT

Understanding the relationship between knee joint mechanics and disease is
essential for improving the prevention and treatment of conditions such as
osteoarthritis (OA). This work developed a comprehensive framework to investigate
tibiofemoral (TF) joint contact mechanics by integrating accurate in-vivo biplane
videoradiography (BVR) kinematics with musculoskeletal (MSM) and finite element
(FEM) modelling. By combining the complementary strengths of these techniques,
the framework provides a more comprehensive understanding of knee
biomechanics, capturing joint kinematics, loading, and internal tissue mechanics

during dynamic functional activities.

A protocol was established for the simultaneous acquisition and processing of BVR
and marker-based motion capture data, enabling accurate calculation of 6 degree of
freedom TF kinematics during gait, stair ascent, and lunging tasks. These datasets
were used to evaluate MSM predictions of TF kinematics and contact pressures,
comparing models with generic and MRI-derived personalised contact geometries.
Incorporating subject-specific bone and cartilage geometries improved MSM
estimates during gait, particularly in the anterior-posterior direction, however the

limitations of the modelling approach for higher flexion activities were highlighted.

The BVR-derived kinematics were then used to drive a fully kinematically driven
FEM of the knee, enabling investigation of articular cartilage contact pressures,
stresses, and strains during the stance phase of gait. The model produced loading
patterns consistent with previous literature, with peak contact pressures, stresses
and strains coinciding with the loading peaks during gait. The model demonstrated
the feasibility and value of combining high-fidelity imaging with FEM to explore

in-vivo internal cartilage mechanics.

Overall, this research presents a novel, integrated approach for studying in-vivo knee
biomechanics. The framework delivers both methodological and practical advances,
providing a foundation for future work investigating pathological cohorts, surgical
interventions, and the biomechanical mechanisms underlying disease onset and

progression.
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CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW

1.1 INTRODUCTION

The knee is the largest joint in the human body. It plays a key role in controlling the
body’s centre of mass and posture during activities of daily living, facilitating
movement through a large range of motion (ROM) and its ability to withstand high
forces (Standring 2021). As a weight-bearing joint, it provides both mobility and
stability, enabling efficient and controlled movement. The knee consists of two
articulating joints, the tibiofemoral (TF) and patellofemoral (PF) joints, which together
form a complex synovial structure essential for locomotion. Because it is involved in
many daily activities, sustains high mechanical loads, and is inherently unstable, the
knee is particularly susceptible to injury and disease, both of which are commonly
associated with pain. Although the relationships between mechanical factors, altered
joint biomechanics, and pain have been explored (Wyndow et al. 2016; Seeley et al.
2022; Hutchison et al. 2023), they remain poorly understood. Knee pain accounts for
around 5% of general practice consultations (Frese et al. 2013), highlighting its
widespread impact and the need for a deeper understanding of the biomechanical

mechanisms linked to pain.

Osteoarthritis (OA) is the most common chronic joint disease (Mukherjee et al.
2020). 60% of all OA cases affect the knee, making it the most frequently affected
joint (Prieto-Alnambra et al. 2014; Long et al. 2022). OA is a degenerative disease of
the whole joint, causing loss of articular cartilage and abnormal remodelling of bone
(Arden and Nevitt 2006; Mukherjee et al. 2020), resulting in symptoms of pain,
reduced mobility and joint instability (Hunter and Bierma-Zeinstra 2019). As with
knee pain more broadly, alterations in joint loading, such as increased medial
loading and higher knee adduction moments, have been linked to the development
and progression of OA (Baliunas et al. 2002; Miyazaki et al. 2002; Andriacchi and
Mundermann 2006), with uneven load distribution accelerating structural joint
deterioration (Sharma et al. 2001). Factors such as malalignment, previous injury,
and altered neuromuscular control also contribute to abnormal joint mechanics and
accelerate cartilage degeneration (Griffin and Guilak 2005; Felson 2013). With knee
OA affecting around 16% of the global population (= 16 years old) (Cui et al. 2020), it

is important to understand the altered biomechanics that can lead to disease
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progression, as OA cannot currently be prevented effectively (Mukherjee et al.
2020).

Although radiographic changes are commonly used to diagnose OA, the relationship
between structural damage and symptoms is weak (Bensalma et al. 2022).
Increasing evidence shows that mechanical factors such as altered joint loading,
malalignment, and dynamic instability are more closely related to pain and functional
impairment than static radiographic images (Bensalma et al. 2022; Hutchison et al.
2022). For example, greater medial knee loading and the presence of varus thrust
have been linked to higher pain levels and disease progression (Hutchison et al.
2022), but limited knee flexion during loading is associated with poorer function
(Bensalma et al. 2022). These findings highlight the importance of considering joint
mechanics in both research and clinical management, as understanding how
biomechanical alterations relate to pain may help identify modifiable targets for
intervention (Allen et al. 2025). Assessing both healthy and pathological joints is
therefore essential to understanding the altered biomechanics associated with
musculoskeletal disease, injury, and interventions (Postolka et al. 2020; Ulbricht et
al. 2020).

To fully understand these changes, all aspects of knee biomechanics must be
considered. Combining information about bone kinematics from accurate imaging,
with joint contact pressures, loading, soft tissue stresses and strains from
personalised models, provides a comprehensive picture of in-vivo knee
biomechanics. Using complementary imaging and modelling techniques brings
together the strengths of multiple methodologies to enhance insight, providing a
deeper understanding of an individual’s joint behaviour during functional activities.
Analysing in-vivo knee kinematics and loading in this way can provide better insight
into OA characteristics, including how it progresses, ultimately aiming to improve

prevention and treatment strategies for those suffering from this disease.

The remainder of Chapter 1 provides an overview of existing methods in literature for
measuring in-vivo joint kinematics, with particular focus on biplane videoradiography
(BVR) and its application to quantifying knee motion during dynamic activities.
Current approaches to musculoskeletal modelling (MSM) and finite element

modelling (FEM) of the knee are also reviewed, with emphasis on their use in



investigating cartilage mechanics. Together, this literature is used to identify
limitations and gaps in current methodologies, providing the rationale for the
approaches taken in this thesis, particularly the incorporation of BVR-derived

kinematics in knee modelling.

1.2 MEASURING IN-VIVO JOINT KINEMATICS

In-vivo assessments form an important part of human motion analysis which aims to
assist with identification, prevention and rehabilitation of musculoskeletal diseases,
disabilities and injuries by investigating altered movement patterns (Hausdorff et al.
2000; Salarian et al. 2004; Astephen et al. 2008; Heesen et al. 2008; Sawacha et al.
2012; Pavao et al. 2013; Franklyn-Miller et al. 2017; Wade et al. 2022).

For the knee in particular, in-vivo imaging is key to understanding the small changes
in TF kinematics caused by diseases like OA (Mills et al. 2013; Farrokhi et al. 2014;
Yamagata et al. 2021), injury (Moglo and Shirazi-Adl 2005; Ali et al. 2017) or
interventions (Schwechter and Fitz 2012; Clary et al. 2013b; Heyse et al. 2017).
Accurately determining in-vivo knee joint kinematics, including all six degrees of
freedom (DOFs) including rotations and translations (Figure 1-1), is necessary to
understand complex joint movement in both healthy and pathological cohorts
(Astephen et al. 2008; Giphart et al. 2012).



Anterior-Posterior (AP) Medial-Lateral (ML) Compression-Distraction (CD)

Abduction-Adduction (AA) Flexion-Extension (FE) Internal-External (IE)

Figure 1-1 — The six DOFs of the TF joint with the three translational DOFs in
the top row and the three rotational DOFs in the bottom row.
Image from Standring (2021).

Multiple methods for calculating in-vivo kinematics exist, which capture the 6 DOFs
of the both the TF and PF joints to varying levels of accuracy, a few of which are

described in the following sections.

1.2.1 MARKER-BASED MOTION CAPTURE

Marker-based motion capture is the established standard for quantifying human joint
motion (Hume et al. 2018). This typically involves a set of infrared cameras which
are used to identify the positions of retro-reflective markers in three-dimensional (3D)
space (Figure 1-2). These markers are placed on specific locations on the body,
including palpated anatomical landmarks and marker clusters, and are used for joint

4



definitions and tracking body segment motion. The identified markers are then used
to define body segment position and orientation and calculate relative joint
kinematics (Taylor et al. 1982; Kadaba et al. 1990).

Figure 1-2 — Identified markers overlayed on a single camera view (left) reconstructed in
3D from all camera views (right).

This technique can quantify whole body kinematics, providing high repeatability in
the sagittal plane for the lower limb (Mackey et al. 2005). However, it has insufficient
accuracy in the other planes (Ramsey and Wretenberg 1999) as it suffers from
errors caused by inaccurate marker placement on anatomical landmarks, as well as
soft tissue artefact (STA) (Ramsey and Wretenberg 1999; Gorton et al. 2009;
Akbarshahi et al. 2010). The quantification of the accuracy of this technique is
discussed in more detail in Section 1.4.2.

1.2.2 FLUOROSCOPY AND BIPLANE VIDEORADIOGRAPHY

Another technique used for measuring in-vivo joint kinematics is X-ray fluoroscopy,
also known as videoradiography. Fluoroscopy is the process of real-time dynamic
imaging using X-rays (Cowen et al. 2008) and has been used to image joints in-vivo
since the 1970s (Gray et al. 2018). An X-ray source-detector pair is used to sample
images of the human body as it passes through the X-ray beam, producing a series
radiographs containing the bone poses (the six DOF rotations and translations) of
the desired joint at each point in time. Model-based image registration is then
performed, matching a 3D geometry (Section 1.3.2) to the outline of the bone on a

radiograph to define the pose at each frame.
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Originally, fluoroscopy was performed using a single plane system, sampling
radiographs from a continuous X-ray beam. Single-plane fluoroscopy has limited
accuracy as it is difficult to determine any motion out-of-plane due to having only the
perspective of a single 2D image at each timepoint (Fregly et al. 2005; Lin et al.
2014).

To overcome this, Biplane Videoradiography (BVR) systems were introduced, using
two synchronised source-detector pairs to obtain simultaneous images at each frame
from two different orientations to allow for more accurate 3D reconstruction of bone
positions (Gray et al. 2018). Another advancement of BVR was utilising pulsed
X-rays instead of a continuous beam, which reduces the radiation dose to the
participant by emitting a series of short pulses, reducing the total X-ray exposure
time (Mahesh 2001); this also reduces blur, improving output image quality (Williams
2018).

BVR is currently the gold-standard for accurately measuring in-vivo kinematics
during physiological loading (Li et al. 2012; Gray et al. 2018; Setliff and Anderst
2024). Unlike marker-based motion capture, BVR has been shown to produce highly
accurate 3D arthrokinematics of the knee joint in all planes (Li et al. 2008; Anderst et
al. 2009; Guan et al. 2016; Gray et al. 2017; Pitcairn et al. 2018) (Section 1.4.1). It is
not affected by STA or marker misplacement as it does not require placement of
external devices or markers which may interfere with natural movement (Kozanek et
al. 2009; Setliff and Anderst 2024).

However, a limitation of BVR is that there is only a relatively small capture volume
when compared to other imaging modalities. This means it is very difficult to capture
the entire motion path of the knee through the whole of an activity, so capture is
limited to certain sections of the movement (e.g., stance phase) (Kozanek et al.
2009). For this reason, BVR may be captured simultaneously with alternative
imaging methods (e.g. marker-based motion capture) to provide (less accurate)

whole body motion, along with highly accurate kinematics of the joint(s) of interest.

1.2.3 INTRACORTICAL BONE PINS

Although BVR is highly accurate, greater accuracy can be achieved by rigidly
attaching a trackable object directly to the bone. This ensures only bone motion is



recorded and is not affected by inaccuracies in the model segmentation and
registration.

Levens et al. (1948) were the first to use intracortical bone pins to investigate in-vivo
human motion by surgically implanting threaded stainless-steel pins into bony
landmarks on the lower limb with attached retroreflective markers to track body
segment motion. This approach allowed for accurate joint kinematic calculations
since, unlike skin-mounted markers (Section 1.2.1), those fixed to bone pins did not
move relative to the underlying bone they were tracking. This technique has
subsequently been used by other researchers to investigate knee joint kinematics
(McClay 1990; Koh et al. 1992; Lafortune et al. 1992b; Lafortune et al. 1994,
Reinschmidt et al. 1997b; Ramsey and Wretenberg 1999; Benoit et al. 2006).

Despite the highly accuracy of this technique, the involvement of invasive surgical
methods makes it unsuitable for larger scale studies due to the complexity, risks and
ethical considerations associated with surgical implantation of the rods.
Complications can also arise with the pins and their insertion sites, including the pins
vibrating, bending, or loosening during data collection, as well as the potential for

impingement of soft tissues (Levens et al. 1948; Ramsey et al. 2003).

1.2.4 ROENTGEN STEREOPHOTOGRAMMETRIC ANALYSIS

An alternative method for determining bone motion with high accuracy is roentgen
stereophotogrammetric analysis (RSA) (Karrholm et al. 1997; Valstar et al. 2005;
Bragdon et al. 2006). RSA involves the surgical implantation of small tantalum beads
into the desired bone, with at least three beads per bone to allow for 3D pose
reconstruction. The radiopaque beads are then visible when imaged using
videoradiography, enabling tracking of the bead centroids across a dynamic activity.
These data, along with the 3D relationship between the bead positions and the bone
anatomical coordinate system (ACS), enable accurate calculation of TF kinematics
(Nilsson et al. 1990; Anderst et al. 2009; Tranberg et al. 2011; Cardinale et al. 2020).

Similarly to intracortical bone pins (Section 1.2.3), RSA requires invasive surgery,
which limits its use to small-scale cohorts, usually as part of an already planned
procedure (e.g. total knee replacement, TKR, or anterior cruciate ligament, ACL,

repair).



Whereas model-based image registration can be affected by inaccuracies in the
model geometry or unclear bone edges on the radiographs (Anderst et al. 2009),
bead positions can be defined more precisely, providing greater accuracy despite
using the same imaging techniques (Section 1.2.2). For these reasons, RSA is often
used to determine the accuracy of a standard model-based BVR pipeline (Setliff and
Anderst 2024) as the two methods can be directly compared using the same images.

1.3 BIPLANE VIDEORADIOGRAPHY

1.3.1 BVR SYSTEM AT CARDIFF

The bespoke BVR system at Cardiff (Figure 1-3) was designed for easy and
consistent positioning of the two source-detectors pairs, both relative to each other
and to the global coordinate system (GCS) of the laboratory (Williams 2018). This
was achieved by a custom-built ceiling-mounted pair of mechanical arms, which are
fixed to ensure each source and corresponding detector are always aligned on the
horizontal plane. This, along with 16 controllable axes, enables quick, repeatable
positioning of the system to ensure X-ray quality. With ten of the 16 axes computer-
controlled, this again speeds up equipment positioning, allowing multiple setups
within a single data collection session; a capability most BVR systems lack due to
requiring manual setup of separate source and detector equipment. The ease of the
Cardiff BVR system repositioning allows for a wider range of movements to be
captured in one session, as different activities require adjustment to the X-ray arm
positioning, for example, in height or angle, to optimise for bone tracking. The
specific definition and controls of these axes, along with their positions for the
activities included in the pilot protocol and created as part of the initial development

of the system, are discussed in more detail in Section 2.3.1.



.

- 'Figu're 1 -3/: Eespbke BVR system at Cardiff University.
An important feature of the BVR system at Cardiff is the capacity for both continuous
(at up to 1000 fps) and pulsed X-ray imaging (up to 125 fps). As discussed in
Section 1.2.2, the use of pulsed X-rays contributes to minimising the ionising
radiation dose. The source-detector pairs are synchronised to capture images of
short X-ray pulses, instead of sampling images from a continuous X-ray beam, thus

reducing the overall time the X-ray beam is firing during a given movement.

1.3.2 3D BONE MODEL GENERATION

To calculate kinematics from two-dimensional (2D) BVR images, 3D models of bone
geometry are matched with radiograph pairs during image registration (Kim et al.
2011). There are two main imaging modalities used for generating 3D geometries for

this application: computed tomography (CT) and magnetic resonance imaging (MRI).

CT is the gold standard for generating 3D bone models (Moro-oka et al. 2007; Lee et
al. 2008; Rathnayaka et al. 2012) because it produces clear, defined bone
boundaries. However, as CT requires increasing the ionising radiation dose,
alternative imaging modalities, e.g., MRI, may be more appropriate, particularly when

imaging healthy volunteers. Studies have shown that 3T MRI provides sufficient



accuracy for model-based image registration, making it a viable alternative to CT
(Neubert et al. 2017; Williams 2018). Additionally, MRI can image soft-tissue joint
structures, such as the articular cartilage and menisci, which are not visible on CT
scans without a contrast agent. Inclusion of soft tissue imaging enables further
analysis of joint contact, including cartilage contact areas or ligament elongation,
when combined with BVR image registration outputs, (Setliff and Anderst 2024).

The specific structures of interest can then be segmented from the 3D imaging to
create 3D geometries which are used to generate the digitally reconstructed

radiographs (DRRs) required for image registration (Section 2.4.2).

1.3.3 DEFINING TIBIOFEMORAL KINEMATICS

6 DOF kinematics of the tibiofemoral joint, calculated for the bone pose maps
generated from model-based image registration, fully define the position and
orientation of the bone ACS at each frame. The most common approach for
calculating these kinematics is the method proposed by Grood and Suntay (1983)
(Figure 1-4), as recommended by the International Society of Biomechanics (ISB)
(Wu et al. 2002).

This describes the three rotations of the knee as follows: flexion around the fixed
body of the femur (medial-lateral, ML, axis through the femoral condyles), external
rotation around the fixed body axis of the tibia (superior-inferior, Sl, axis,
perpendicular to the tibial plateau), and adduction around the floating axis (the cross-
product of the two fixed body axes). These conventions can also be used to define
TF joint translations, but their magnitudes are highly dependent on the positioning of

the bone origins chosen (Grood and Suntay 1983).
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Adduction (+)
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Abduction (-)
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1
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ot

Figure 1-4 — Joint coordinate system angle definitions,
recreated from Grood and Suntay (1983).

One limitation of comparing TF translations across a cohort using these conventions
is that knee size affects translation magnitude, making it difficult to average results
across a cohort. For example, in Sl axis translations, the offset in distraction
magnitude is highly dependent on knee size because larger bones result in greater
separation between bone origins, making it challenging to detect variations in
movement over large offsets. For this reason, alternative approaches have been
used, such as defining only compression-distraction (CD) or all three knee joint

translations relative to an initial coincident origin (usually the femoral origin located
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between the condyles) (Kefala et al. 2017; Gray et al. 2019; Thomeer et al. 2021;
Kour et al. 2022) or expressing the translations of one bone in the coordinate system
of the other (Tashman et al. 2004; Li et al. 2012). Using a single, coincident origin
also has the benefit of being consistent with the typical joint definition in marker-
based motion capture kinematics, for example, in an OpenSim model (Lenhart et al.
2015), allowing for direct comparison between translation outputs.

1.3.4 PREVIOUS BVR STUDIES

A number of previous studies have used BVR to obtain in-vivo kinematics for a
variety of joints, including up to six DOFs of the TF and PF joints. A scoping review
by Setliff and Anderst (2024), that investigated the usage of BVR for in-vivo human
skeletal kinematics, found that nearly half of all in-vivo BVR studies (180/379 studies

included) looked at knee kinematics.

Setliff and Anderst (2024 ) also found that the average in-vivo BVR study cohort size
(across all joints, not just the knee) was small (mean = 16, median = 11). This
reflects the time required to process BVR data (which they estimated at 40-80 hrs

per data collection), as well as the high cost associated with this technique.

BVR has been used to study knee kinematics across various dynamic activities.
Table 1-1 provides examples of movements investigated in literature, illustrating the

range of activities studied, although this is not an exhaustive list.

Table 1-1 — Examples of the activities used with BVR to investigate knee motion.

Activity Studies

Level gait (overground) (Myers et al. 2012; Guan et al. 2016; Guan et al.
2017; Kefala et al. 2017; Pitcairn et al. 2018; Gray
et al. 2019; Gray et al. 2020; Gray et al. 2021;
Thomeer et al. 2021; Ganapam et al. 2022;
Hamilton et al. 2022; Kour et al. 2022; Thomeer et
al. 2022; Hamilton et al. 2023; Guan et al. 2024)

Treadmill level gait (Kozanek et al. 2009; Liu et al. 2010; Barre et al.
2013; Guan et al. 2016; Guan et al. 2017; Yang et
al. 2018; Gale and Anderst 2019; Koo and Koo
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2019; Nagai et al. 2019; Gale and Anderst 2020;
Byrapogu et al. 2022)

Downhill gait (overground or

treadmill)

(Farrokhi et al. 2014; Gustafson et al. 2015; Gray et
al. 2021; Gustafson et al. 2021; Thomeer et al.
2021; Ganapam et al. 2022; Thomeer et al. 2022)

Running (treadmill)

(Li et al. 2012; Nagai et al. 2019; Tanaka et al.
2023)

Downhill running (treadmill)

(Tashman et al. 2004; Tashman et al. 2007; Anderst
et al. 2009; Hoshino and Tashman 2012; Hoshino et
al. 2013; Nagai et al. 2018; Yang et al. 2018)

Stair ascent/step up

(Li et al. 2012; Suzuki et al. 2012; Li et al. 2013;
Pitcairn et al. 2018; Gray et al. 2021; Thomeer et al.
2021; Byrapogu et al. 2022; Kour et al. 2022;
Thomeer et al. 2022; Guan et al. 2024)

Stair decent/step down

(Kefala et al. 2017; Gray et al. 2021; Thomeer et al.
2021; Byrapogu et al. 2022; Kour et al. 2022;
Thomeer et al. 2022; Guan et al. 2024)

Non-weightbearing flexion

(or extension)

(Myers et al. 2011; Myers et al. 2012; Kefala et al.
2017; Shih et al. 2020; Gray et al. 2021; Thomeer et
al. 2021; Thomeer et al. 2022; Hamilton et al. 2023)

Continuous lunge (dynamic,

weightbearing)

(Kernkamp et al. 2019; Hamilton et al. 2022)

Quasi-static lunge

(Defrate et al. 2006; Bingham et al. 2008; Nha et al.

(weightbearing) 2008; Van de Velde et al. 2009a; Van de Velde et al.
2009b; Hosseini et al. 2012; Kobayashi et al. 2013;
Qi et al. 2013; Van de Velde et al. 2016)

Sit-to-stand (Shih et al. 2020; Byrapogu et al. 2022; Kour et al.
2022; Guan et al. 2024)

Stand-to-sit (Kour et al. 2022; Guan et al. 2024)

Drop landing (Myers et al. 2011; Torry et al. 2011a; Torry et al.

2011b; Myers et al. 2012; Tanaka et al. 2023)

Pivot (90° direction change)

(Kefala et al. 2017)
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Due to variations in BVR equipment, different configurations are often used for the
same activity. Physical limitations in the arrangement of the X-ray source-detector
pairs may prevent them from being positioned in certain configurations. For example,
with the Cardiff BVR system, with source-detector pairs mounted on machine arms,
it is not possible to stack the detectors directly on top of one another, and there will
always be a slight offset. Currently, no standard exists for collecting data across
activities, leaving BVR protocol design up to user discretion. This lack of
standardisation makes it challenging to compare results across research studies
(Setliff and Anderst 2024).

BVR has been used to investigate many clinically relevant questions, highlighting its
ability to provide accurate, useful in-vivo data. It has not only been utilised to
investigate changes in joint kinematics due to diseases, such as OA (Farrokhi et al.
2014; Gustafson et al. 2015; Gustafson et al. 2021), but also the efficacy of
interventions for such diseases, including TKR (Barre et al. 2013; Guan et al. 2016;
Guan et al. 2017; Gray et al. 2020; Shih et al. 2020; Kour et al. 2022; Guan et al.
2024), UKA (Byrapogu et al. 2022), and ACL injury and subsequent repairs (Defrate
et al. 2006; Tashman et al. 2007; Van de Velde et al. 2009a; Hosseini et al. 2012;
Van de Velde et al. 2016; Nagai et al. 2018; Pitcairn et al. 2018; Ganapam et al.
2022).

As well as studying six DOF kinematics, BVR has also been used to investigate
cartilage deformation (Liu et al. 2010; Thomeer et al. 2022) and contact location (Liu
et al. 2010; Hamai et al. 2013; Gray et al. 2019; Thomeer et al. 2021; Thomeer et al.
2022), as well as TF centre of rotation location changes (Gray et al. 2019; Postolka

et al. 2020) and joint space distances (Byrapogu et al. 2022).

1.4 DATA COLLECTION TECHNIQUE ACCURACY

1.4.1 ACCURACY OF BIPLANE VIDEORADIOGRAPHY

The accuracy of BVR for calculating in-vivo bone motion and kinematics has been
quantified across a range of joints, with studies typically reporting an accuracy of
around 1-2° or better for rotational DOFs, and 0.5-1.0 mm or better for translational
DOFs (Bey et al. 2006; Anderst et al. 2009; Anderst et al. 2011; Pitcairn et al. 2018;
Akhbari et al. 2019; Pitcairn et al. 2020).
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RSA is typically used as the benchmark for BVR accuracy (Setliff and Anderst 2024)
as the implanted beads can be tracked from the same X-ray images used in
standard model-based image registration. The accuracy of BVR is dependent on
several factors, including the joint of interest, source-detector equipment and
configuration, X-ray generator settings, and type of dynamic activity being imaged.
Therefore, the accuracy of a specific protocol must be determined individually.

Anderst et al. (2009) investigated BVR accuracy during in-vivo treadmill running

(2.5 m/s) in three ACL-reconstruction patients who had three tantalum beads
implanted into their ACL-intact leg during the reconstruction surgery. They found
femur and tibia tracking precision to be similar, with no significant bias in model-
based tracking compared to bead-based tracking. The rotations were shown to be
generally well predicted by the model-based image registration with root mean
squared (RMS) errors of 1.75° (FE), 1.44° (IE) and 0.54° (AA). The translations were
also calculated accurately, with ML and CD both having RMS errors of 0.69 mm. AP
translation had the highest RMS error of the TF translations (1.54 mm), suggested to
be due to the orientation of the source-detectors relative to the direction of travel,
reinforcing the dependence of BVR accuracy on equipment configuration.

Another study looking at BVR TF tracking accuracy was Guan et al. (2016) who
investigated the accuracy of their mobile biplane X-ray imaging system during
simulated walking of an intact human cadaveric knee compared to a TKR implanted
into sawbones. Again, they compared model-based tracking to the ‘gold-standard’
bead-based tracking. They found greater accuracy for the TKR knee measurements,
likely because the implant edges were more clearly defined in the X-ray images and
the precisely known TKR component geometry facilitated more accurate model-
matching. The RMS errors for the intact knee ranged from 0.30-0.77° for the
rotations and 0.35-0.78 mm for the translations. The highest errors were found in the
IE rotation and ML translation and were attributed to the inter-axis angle of the X-ray
setup (60°) and their position relative to the imaged knee.

Li et al. (2008) also investigated the accuracy of their (static) BVR system using
human cadavers, comparing model-based image registration-derived to RSA-derived

kinematics. The mean difference between RSA and model-based TF rotations during
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dynamic flexion-extension (of the full knee ROM) were found to be between -0.16-
0.37°, and the translations were found to be between -0.13-0.24 mm.

These studies show that BVR is an accurate method for determining in-vivo
kinematics of the TF joint during dynamic movements, although specific protocol and

equipment accuracy can vary.

1.4.2 MARKER-BASED MOTION CAPTURE ACCURACY

As discussed briefly in Section 1.2.1, marker-based motion capture is widely used for
assessing joint kinematics, but its accuracy is affected by several factors, including
anatomical landmark identification, STA, and movement dynamics. Various studies
have evaluated these limitations across different activities to understand their effects

on TF joint kinematics.

STA is one of the main contributing factors to marker-based motion capture errors.
To investigate this, several studies have employed single-plane fluoroscopy to
assess STA during various dynamic tasks, including Stagni et al. (2005) who used
retroreflective, radiopaque markers to compare skin-marker motion capture with
single-plane fluoroscopy in TKR patients. The skin markers moved significantly
relative to the underlying implant components (and therefore bones), with deviations
reaching 31 mm for the thigh and 21 mm for the shank, with the largest errors (up to
42 mm) occurring in the distal thigh. AA and IE rotations were found to be most
affected, indicating that STA could substantially compromise kinematic interpretation,

particularly in clinical gait analysis.

Akbarshahi et al. (2010) investigated STA across multiple activities, including open-
chain knee flexion, hip axial rotation, walking, and step-ups, by comparing marker-
based motion capture results with single-plane fluoroscopy. Their results highlighted
the subject-, task-, and location-dependent nature of STA magnitudes. They also
showed greater STA for the thigh than the shank, with marker movement RMS errors
reaching 29.3 mm and kinematic errors peaking in open-chain flexion (FE: 24.3°, IE:
17.9°, AA: 14.5°). Using a similar method, Tsai et al. (2011) examined STA during
stair ascent, again finding greater soft tissue movement in the thigh than the shank.
They also found knee joint centre translations to be significantly larger from motion-
capture data. Earlier work by Sati et al. (1996) also explored skin-bone movement

using single-plane fluoroscopy and skin-mounted radio-opaque markers, during
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dynamic knee flexion, revealing substantial variability in marker displacement over
the medial and lateral femoral condyles (2.5-17 mm RMS), with maximum marker
movement reaching 44 mm. Collectively, these studies support the current belief that
STA is a major source of error in marker-based TF kinematics, particularly in

dynamic and high-flexion tasks.

Reinschmidt et al. (1997b) presented similar findings when comparing skin-marker
motion capture with intracortical bone pin data (Section 1.2.3) during running,
attributing the main differences between external and skeletal motion to thigh STA.
These differences resulted in FE errors that averaged 21% of the ROM during
stance, while IE and AA errors were much larger, at 63% and 70% of the ROM,
respectively. Joint angles were consistently overestimated, with errors varying
considerably between subjects.

Ramsey and Wretenberg (1999) also utilised intracortical bone pins to investigate
marker-based motion capture accuracy. They found skin-mounted marker kinematics
exhibited translational errors of 2-15 mm and rotational errors of 2-10° compared to

bone pin measurements, again stating STA as the primary source of error.

STA errors lead to incorrectly calculated bone axes positions as demonstrated by
Miranda et al. (2013), who explored motion capture errors during a dynamic jump-cut
manoeuvre. Discrepancies in femoral ACS axes rotation and translation peaked at
18.18° and 33.70 mm, respectively; tibial ACS axes errors were similarly high, at
13.43° and 29.11 mm. These axes errors had a subsequent effect on the calculated
six DOF kinematics with maximum rotational differences of 9.28° in FE, 11.80° in AA,
and 14.76° in IE. Translations were found to be poorly predicted with maximum
errors of 16.84 mm in the ML direction, 21.62 mm for AP, and 27.60 mm for CD.
Notably, the secondary rotational and translational errors often exceeded 100% of
the measurement magnitude. The largest errors occurred post-ground contact,

where soft tissue and muscle oscillations amplified motion capture errors.

Hume et al. (2018) compared motion capture-derived kinematics to BVR using both
a standard three DOF Visual3D (V3D, HAS-Motion, Canada) pipeline and a six DOF
OpenSim MSM across a range of activities — including seated knee extension, gait,
step-down, and pivot turns. For the V3D results, large errors in translation were seen

in all three planes, consistent with the findings from Miranda et al. (2013). The
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largest error was found in the AP (20.9 mm), followed by CD (19.7 mm) and ML (7.0
mm) directions, highlighting why translations are rarely reported from marker-based
V3D pipelines. Rotational errors were smaller but still reached 5.9° for AA and 7.0°
for IE rotation. Hume et al. (2018) also found that the differences between the V3D
and BVR secondary kinematics increased as knee flexion increased. An alternative
approach, using the OpenSim MSM with spline functions to relate secondary
kinematics to flexion produced improved kinematic prediction accuracy but did not

fully resolve subject-specific discrepancies (Hume et al. 2018).

Marker-based motion capture derived kinematics have also been compared to the
more accurate method, RSA (Section 1.2.4). Using RSA as the comparator,
Tranberg et al. (2011) found relatively good agreement of flexion during active knee
extension, but motion capture slightly overestimated flexion, with errors increasing
from 2° at full extension to 5° at higher flexion angles. IE rotation was found to be
reasonably accurate at lower flexion angles but diverged significantly at higher
flexion (up to 11° at 50°). AA displayed systematic mean differences of 2-4° across
all flexion angles. These results highlight that while FE data derived from motion-
capture is likely reliable, errors in secondary kinematics are more pronounced, due

to STA and the small true motion in these planes.

As well as STA, marker placement variability also contributes to kinematic errors.
Della Croce et al. (1999) examined intra- and inter-examiner reliability in anatomical
landmark identification, reporting root mean square (RMS) errors of 6-21 mm for
intra-examiner assessments and 13-25 mm for inter-examiner comparisons. These

variations affect bone ACS definitions, introducing systematic inaccuracies.

Together, these studies illustrate the challenges of using marker-based motion
capture for precise kinematic analysis. The main sources of error include marker
placement variation and STA, with inaccuracies worsening at higher flexion angles

and during dynamic tasks.

18



1.5 BIPLANE VIDEORADIOGRAPHY HEALTHY IN-VIVO
TIBIOFEMORAL KINEMATICS FROM LITERATURE

From literature, a description of the 6 DOF kinematics of the TF joint for healthy
volunteers participating in in-vivo BVR studies is summarised below for the three
activities in the protocol described in Chapter 2 (Section 2.3.6). These activities were
chosen for a pilot study protocol. They were created as part of the Cardiff BVR
system development (Section 1.3.1) to provide data on a range of functional knee
movements, for everyday activities (level gait and stair ascent) and high flexion
(lunge) to give a picture of healthy TF joint motion.

1.5.1 LEVEL GAIT

As shown in Table 1-1 in Section 1.3.4, level gait is the most studied activity when
using BVR to investigate TF kinematics. This key activity of daily living is often used
as an indicator of knee joint health (Minns 2005; Kumar et al. 2013; Mills et al. 2013),
hence why it is an important activity to study.

The TF joint was found to have little flexion at heel-strike (HS); some studies
reported small degrees of flexion at HS (Gray et al. 2019; Gale and Anderst 2020),
whereas others reported slight extension (Kozanek et al. 2009; Thomeer et al. 2021).
After HS, the knee then began to flex, reaching its first flexion peak during early
stance. The knee then extended again until approximately 70% stance, where it
rapidly flexed until toe-off (TO), reaching its maximum value for stance phase. There
was some disagreement regarding the value of the maximum flexion peak at TO.
Some studies predicting a lower peak, around 15° (Gray et al. 2019), while others
predicted up to around 50° (Thomeer et al. 2020). Although all studies described a
similar flexion pattern, this difference arose from the timing of the second flexion
peak in the entire gait cycle, which was predicted to occur close to TO. This timing

difference also explains the variations in the ROM observed across the studies.

Little AA rotation was found during stance phase (Kefala et al. 2017; Gray et al.
2019; Gale and Anderst 2020; Thomeer et al. 2021), with it having the smallest ROM
of the three rotations (Kozanek et al. 2009; Myers et al. 2012; Kefala et al. 2017;
Gale and Anderst 2020; Hamilton et al. 2023). Most studies found the average knee
adduction angle to remain positive throughout stance phase (Kefala et al. 2017; Gray
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et al. 2019; Gale and Anderst 2020; Thomeer et al. 2021), however, some studies
found the knee to be abducted instead (Kozanek et al. 2009; Myers et al. 2012).
There was also disagreement over whether the abduction angle correlates with
flexion; Kozanek et al. (2009) found adduction to be moderately correlated with
flexion, whereas Thomeer et al. (2021) and Gray et al. (2019) found weak

correlation.

Most studies found the tibia was found to be externally rotated at HS, then internally
rotated throughout the maijority of the rest of stance phase, with this internal rotation
overall increasing in value throughout stance phase until reaching peak internal
rotation at terminal stance (Kozanek et al. 2009; Kefala et al. 2017; Gray et al. 2019;
Thomeer et al. 2020; Thomeer et al. 2021). However, one study found the mean
angle remained externally rotated throughout the majority of stance phase (Gale and
Anderst 2020), although it found a similar rotation pattern to the other studies.
External rotation was found to be moderately correlated with flexion (Kozanek et al.
2009; Thomeer et al. 2021).

The largest translational ROM during stance phase was AP (Kozanek et al. 2009;
Gale and Anderst 2020; Hamilton et al. 2023). Most studies found the tibia to be
anteriorly translated relative to the femur during the whole of stance phase (Kozanek
et al. 2009; Gray et al. 2019; Gale and Anderst 2020; Thomeer et al. 2021). Some
studies found a peak anterior translation around the point of contralateral TO, then a
decrease in anterior translation, followed by a final increase to maximum anterior
translation during the latter portion of stance phase (Gray et al. 2019; Thomeer et al.
2020; Thomeer et al. 2021). Increased anterior translation was found to be linked
with flexion (Kozanek et al. 2009; Gray et al. 2019; Thomeer et al. 2021).

Overall, the knee was found to begin stance phase laterally translated, with minimal
change until the latter part of stance, where the knee shifted medially reaching its
peak medial translation at TO (Gray et al. 2019; Thomeer et al. 2020; Thomeer et al.
2021). The differences in pattern found in other studies (Kozanek et al. 2009; Gale
and Anderst 2020) can be attributed to the different methods used to define the
translations. Medial shift was found to be correlated with increasing flexion (Gray et
al. 2019; Thomeer et al. 2021).
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CD was found to have the smallest translational ROM, with minimal change during
stance, often with a non-descript profile (Kozanek et al. 2009; Thomeer et al. 2020;
Thomeer et al. 2021; Hamilton et al. 2023). The TF joint was found to be in
compression throughout stance (Gray et al. 2019; Thomeer et al. 2020; Thomeer et
al. 2021). It was also found to be coupled with flexion (Gray et al. 2019; Thomeer et
al. 2021).

1.5.2 STAIR ASCENT

Stair ascent (or an equivalent step-up activity) was included in fewer BVR studies
than level gait (Section 1.3.4), with only a handful of studies presenting TF
kinematics in healthy individuals (Suzuki et al. 2012; Li et al. 2013; Thomeer et al.
2021). Suzuki et al. (2012) and Li et al. (2013) only presented TF flexion out of the
six DOFs, as they looked at PF kinematics and TF joint contact location,
respectively. Therefore, to better understand the expected kinematic profiles in
healthy knees for this activity, studies using single-plane fluoroscopy (Tsai et al.
2011) and involving intact knees — compared to an injured contralateral limb — (Li et

al. 2012) were also included.

The flexion profiles of the stance phase of stair ascent all began at a high degree of
flexion (ranging from ~50-70°), increasing slightly to peak flexion (at around 10-20%
stance phase), before steadily decreasing to reach minimum flexion (Tsai et al.
2011; Li et al. 2012; Suzuki et al. 2012; Li et al. 2013; Thomeer et al. 2021). The end
of stance phase differed between studies, with some finding the mean flexion angle
to increase again in the last ~10% stance phase after reaching its minimum (Tsai et
al. 2011; Thomeer et al. 2021), whereas others only found a steady decrease,
reaching slight joint extension at the end of stance (Suzuki et al. 2012; Li et al.
2013). This may be due to these studies using a single step-up activity, as opposed
to a multiple-step stair ascent, so stance ends with both feet on the floor in a neutral

standing position, rather than the participant continuing on to the next stair.

The knee displayed a small ROM of a few degrees throughout stance phase (Tsai et
al. 2011; Li et al. 2012; Thomeer et al. 2021). Thomeer et al. (2021) found the mean

knee adduction to remain around 4-5° throughout all of stance phase. Li et al. (2012)
similarly found the knee to be slightly adducted (between 0-2° adduction) throughout,
with an overall slight trend of increasing adduction through to the end of the recorded
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period of the activity (0.3s from HS). Unlike the other two, Tsai et al. (2011) found the
knee to be abducted during stance phase, finding the largest abduction angles

toward the start and end of the activity, with it tending to 0° at around 50% stance.

All three studies found the knee to be internally rotated by ~10-18° at the start of
stance, followed by a decrease reaching a minimum of approximately 4-8° at the end
of stance phase (Tsai et al. 2011; Li et al. 2012; Thomeer et al. 2021). Tsai et al.
(2011) and Thomeer et al. (2021) found a similar |IE rotation ROM, with a similar
profile of a steeper decrease at the start, followed by a short period of minimal

change around 60% stance, then another period of decrease.

AP was found to have the largest ROM out of the three translations (Tsai et al. 2011;
Thomeer et al. 2021). Thomeer et al. (2021) found the tibia to be translated anteriorly
throughout the whole of stance phase, with initial increasing anterior motion at HS,
peaking early in stance phase (approximately 7 mm at around 15-20% stance),
followed by decreasing anterior drawer. Tsai et al. (2011) found a similar initial peak
of anterior motion (at around 20-30% stance), then the tibia moved posteriorly,
reaching slight posterior translation during 80-90% stance (the end of recorded
motion). Li et al. (2012), however, reported posterior translation of the knee at HS
(starting at around 20 mm), with a slight anterior movement for the rest of the
recorded period (reaching around 10mm posterior translation). The overall
magnitude of translation reported by Li et al. (2012) appears comparable to that of
the other two studies, though in the opposite direction. As the authors did not specify
the sign convention used in their graphs (labelled only as ‘AP translation’), negative

values were assumed to represent posterior translation.

There was little ML translation ROM during the stance phase of stair ascent, with all
studies showing this translation to fluctuate around 0 mm (Tsai et al. 2011; Li et al.
2012; Thomeer et al. 2021). Tsai et al. (2011) and Thomeer et al. (2021) found a
similar profile of a small lateral peak in the first half of stance, followed by the tibia
moving medially, reaching an overall medial translation in the second half of stance,
whereas Li et al. (2012) found the tibia to be translated laterally by less than 1 mm

throughout, with little variation.

Tsai et al. (2011) predicted very little change in CD translation during stance phase

of stair ascent, with slight proximal translation in the first half, followed be even
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smaller distal translation in the second half, all fluctuating around 0 mm translation.
Thomeer et al. (2021) also found a small ROM, but the tibia was proximally
translated (around 2 mm) all through stance. Li et al. (2012) found larger distal
translation of the knee of around 15-25 mm, likely due to the joint definition offset,

and found a trend of increasing distal translation from HS onwards.

Only Thomeer et al. (2021) reported on correlation between flexion angle and the
other five secondary TF DOFs during stair ascent. Coupling was found between
flexion and abduction, external rotation, and lateral shift (r> = 0.76, 0.80, and 0.83,
respectively). Moderate correlation was found between flexion and the other two

rotations.

Due to the limited number of studies investigating stair ascent TF kinematics using
BVR, it is difficult to know the extent of the range of variation expected across

participants when completing this activity.

1.5.3 LUNGE

A dynamic weightbearing lunge was included in the pilot study protocol to investigate
knee kinematics during deeper knee flexion. As there is demand for deep flexion
amongst OA and TKR patients to allow them to perform a range of daily activities
such as kneeling, squatting, gardening, yoga and getting into a bath (Weiss et al.
2002; Huddleston et al. 2009; Galvin et al. 2018). Understanding healthy TF
kinematics during deeper flexion becomes necessary to bring patients closer to

‘typical’ movement, improving knee ROM in all six DOFs, not just FE.

As only one study presented healthy TF kinematics during a dynamic, weightbearing
lunge using BVR (Hamilton et al. 2022), studies that used single-plane radiography
(Leszko et al. 2011; Hamai et al. 2013), a quasi-static lunge (Qi et al. 2013), or a
non-weightbearing flexion-extension activity (Myers et al. 2012; Kefala et al. 2017;
Thomeer et al. 2021) are also used to describe kinematic profiles of the TF joint
during a high-flexion activity.

A large variation was found in the flexion ROM between activities. Some studies only
measured kinematics from 0° flexion (Myers et al. 2012; Thomeer et al. 2021),
whereas others measured from full joint extension (Leszko et al. 2011; Qi et al.

2013). The range of peak flexion was large as some studies stopped the knee flexing
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at 90° (Myers et al. 2012), whereas others altered the activity to increase the
maximum flexion angle; for example, Leszko et al. (2011) got their participants to
lean forward at the peak lunge, and Hamai et al. (2013) made participants lunge onto

a 25 cm step, reaching 150° knee flexion.

The tibia was consistently reported as adducted relative to the femur during flexion
activities (Leszko et al. 2011; Hamai et al. 2013; Qi et al. 2013; Kefala et al. 2017;
Thomeer et al. 2021; Hamilton et al. 2022). Some studies also showed an overall
trend of increasing adduction as flexion increased (Leszko et al. 2011; Hamai et al.

2013; Qi et al. 2013), however this was not observed consistently across studies.

For IE rotation, a consistent trend of increasing internal rotation of the tibia relative to
the femur was observed in multiple studies, reaching around ~20° internal rotation at
100° flexion (Leszko et al. 2011; Hamai et al. 2013; Kefala et al. 2017; Hamilton et
al. 2022). Generally, the knee was found to remain internally rotated throughout
(Hamai et al. 2013; Kefala et al. 2017; Thomeer et al. 2021; Hamilton et al. 2022),
however some recorded slight external rotation at very low flexion angles (into joint
extension) (Leszko et al. 2011; Qi et al. 2013) which was attributed to the screw-
home mechanism (Barnett 1953; Hallen and Lindahl 1966).

For the translations, increasing knee flexion angle resulted in increasing anterior
translation of the tibia relative to the femur (Qi et al. 2013; Kefala et al. 2017;
Thomeer et al. 2021; Hamilton et al. 2022). ML translation was presented with less
consistency, with some studies presenting a lateral to medial shift of the tibia as
flexion increased (Thomeer et al. 2021; Hamilton et al. 2022). In contrast, Qi et al.
(2013) showed higher lateral translations (6-8 mm) at higher and lower flexion
angles, with a lower lateral translation between 30-120° flexion (3.0-4.5 mm). Kefala
et al. (2017) found variation in the magnitude of ML translation between participants,
with some showing medial translation and others showing lateral translation. CD was
not presented by many studies, but Thomeer et al. (2021) found the joint to be in
compression throughout, beginning at around 1 mm of compression with minimal
change during early flexion, then increasing to reach a peak compression of around
4 mm at peak flexion and Hamilton et al. (2022) presented CD translation that

decreased as flexion increased (with an average ROM of 4.5 mm).
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Thomeer et al. (2021) found all five secondary DOFs to be coupled with flexion
angle, with r? values ranging from 0.81 to 0.99. This shows the value of activities that
achieve high flexion angles in understanding the relationship between flexion and the
other TF DOFs.

1.6 MUSCULOSKELETAL MODELLING

Musculoskeletal modelling (MSM) is used to investigate parameters that are unable
to be measured directly from in-vivo methods, such as musculo-tendon and joint
contact forces during movement (Erdemir et al. 2007; Pandy and Andriacchi 2010;
Cheze et al. 2015; Moissenet et al. 2017). By modelling the skeleton as a series of
rigid bodies connected by joints and actuated by muscle and ligament forces, MSM
allows for non-invasive estimations of in-vivo joint kinematics, muscle activation
patterns and joint forces during dynamic motion. This makes it a useful tool for both

research and clinical applications (Cardona and Garcia Cena 2019; Luis et al. 2022).

MSM provides a method for quantifying muscle forces, joint torques, and tissue
loading during movement, providing a tool to investigate pathologies affecting
neuromuscular control, such as stroke (Lin and Yan 2011; Giarmatzis et al. 2022;
Wang et al. 2022), or joint specific pathologies, such as OA (Kumar et al. 2013;
Dzialo et al. 2019; Price et al. 2020; Ghazwan et al. 2022; Bowd et al. 2023).

MSMs designed to focus on knee movement typically represent the lower limb joints
with varying DOFs of movement depending on the specific joint and the complexity
required to replicate joint movement. The upper body can also be included to model

full body movement.

The MSM bones and joints are articulated using spring bundles, representing the
muscles and ligaments, to replicate body positions. The equations of motion are then
solved to match input marker trajectories and ground reaction forces (GRFs),
typically from marker-based motion capture, as frequently used inputs (Sylvester et
al. 2021). Together, the ligament and muscle forces are balanced, through the
process of inverse dynamics, to solve the resultant forces required to generate
movement of the model that matches the measured in-vivo body movements from
motion-capture. This then allows further analysis of muscle coordination strategies or

joint contact throughout a dynamic motion.
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The most widely used muscle model for MSM is the Hill-type muscle model (Miller
2018; Andersen 2021; Yeo et al. 2023). It made up of three elements (Figure 1-5): a
contractile element that accounts for activation dynamics (including force-length-
velocity relationships), a series elastic element representing tendon elasticity and
energy storage, and a parallel elastic element modelling passive tissue stiffness at
extreme lengths (Zajec 1989; Scovil and Ronsky 2006; Miller 2018; Cardona and
Garcia Cena 2019; Luis et al. 2022; Zhao et al. 2022). Although the Hill-type model
suffers from numerical instabilities, it is still widely used due to its computational

simplicity and suitability for large-scale simulations (Yeo et al. 2023).
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Figure 1-5 — Hill-type muscle model diagram showing the three model
elements.

Ligaments are usually modelled as nonlinear springs that act in a straight line
between defined bony insertion points. This has the benefit of a low computational
cost and easy integration, but neglects the anisotropy and viscoelasticity of the

tissue (Kiapour et al. 2014Db).

One open-source platform used for MSM is OpenSim (Delp et al. 2007). It is widely
used for dynamic simulations and biomechanical analysis as it is flexible, powerful
and freely available. It provides tools for creating subject-specific models, importing
experimental data, conducting inverse and forward dynamics analyses, and
generating muscle-driven simulations, as well as allowing customisable workflows
through a scripting interface (Hicks 2013). This makes it suitable for investigating
muscle function, movement dynamics, and designing medical interventions. It has
been used extensively for a range of applications including rehabilitation,

orthopaedics, ergonomics, performance and robotics (Petrucci 2024).
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1.6.1 JOINT CONTACT MODELLING

As well as joint kinematics and muscle forces, MSMs can also be used to investigate
joint contact mechanics, including predicting tissue loading and cartilage wear,
during movement. Understanding healthy and pathological knee contact mechanics
is important as abnormalities in TF contact pressure distributions have been
correlated with cartilage degeneration and subchondral bone remodelling in
osteoarthritic knees (Khot and Guttal 2021; Mohout et al. 2023). As well as native
knee contact analysis, these techniques can also be expanded to investigate
surgical interventions by simulating how implants distribute joint loading (Eskinazi
and Fregly 2016).

There are several approaches to investigating joint contact mechanics using MSMs,
including Hertzian contact models, elastic foundation models, surrogate contact
models and hybrid MSM-FE workflows.

Hertzian contact theory is used to calculate the deformation and pressure distribution
between two contacting non-congruent, elastic surfaces (Johnson 1985). While this
approach can be used to approximate knee contact mechanics, it is ideally suited for
quasistatic normal loads, frictionless surfaces and small deformations — assumptions
which are not always true of real joints (Zdero et al. 2023). However, Hertzian
contact has been used to model TKR joint contact forces (Dao and Pouletaut 2015)
as implants have smoother, stiffer, and more congruent surfaces, making them

better suited to this theory than the natural knee.

An elastic foundation model provides a better representation of articular cartilage
properties and contact behaviour than Hertzian contact theory, as it can account for
cartilage thickness variations and non-uniform pressure distributions. Elastic
foundation models, also known as rigid body spring models or discrete element
analysis, consider the contact of each element in a surface mesh independently of
one another, calculating contact pressure based on local penetration depth (Johnson
1985). This can be used to model the articular cartilage in the knee as a “bed of
springs” forming an elastic layer of known thickness to calculate contact pressure
distribution across the joint surface (Li et al. 1997; Fregly et al. 2003; Segal et al.
2009; Henak et al. 2013).
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Another approach to joint contact modelling in MSM pipelines is to use a surrogate
contact model. These models employ machine learning from previous contact
simulations to replicate more computationally expensive contact models (such as

elastic foundation or FE models) (Eskinazi and Fregly 2016).

MSMs can also be integrated with FE models (Section 1.7) of specific joints to create
a hybrid approach to perform contact analysis (Besier et al. 2005; Shu et al. 2018;
Navacchia et al. 2019; Ali et al. 2020; Kainz et al. 2020; Esrafilian et al. 2022;
Mohout et al. 2023). In this method, muscle forces and joint kinematics are first
computed using an MSM pipeline. The resulting loads are then applied to a more
detailed FE model, typically incorporating subject-specific geometries, to calculate
cartilage deformation, stresses, and strains, as in a standard FE analysis. This
approach has the benefit of capturing internal tissue mechanics (e.g. stress and
strain) as well as allowing for subject specific accuracy. However, it requires a
complex setup (typically with two separate models) which is computationally

expensive.

1.6.2 OPENSIM-JAM

OpenSim-Joint Articular Mechanics (JAM) (https://github.com/clnsmith/opensim-
jam/) is an open-source framework designed to estimate joint kinematics, muscle
activations, and joint contact forces, including pressure distributions within the knee
(Smith et al. 2016). It provides more detailed joint mechanics predictions by
incorporating specialised articular contact representations (Lenhart et al. 2015)
(Figure 1-6). A key concept in OpenSim-JAM is the distinction between measurable
and unmeasurable kinematics from motion capture (Smith et al. 2016). Knee flexion
is considered to be directly measurable from motion capture, whereas the secondary
DOFs have greater uncertainty and are therefore constrained as functions of flexion

using predefined splines.
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Figure 1-6 — Model developed by Lenhart et al. (2015)
used in the standard OpenSim-JAM pipeline.

Like a conventional MSM pipeline, OpenSim-JAM begins by calculating inverse
kinematics from experimental motion data. However, instead of allowing all
kinematics to vary freely, it constrains secondary kinematics to be functions of knee
flexion angle. The standard OpenSim-JAM workflow then uses the Concurrent
Optimisation of Muscle Activations and Kinematics (COMAK) algorithm to refine
these predictions. COMAK simultaneously optimises muscle activations and
secondary kinematics while ensuring consistency with physics-based constraints.
This approach aims to improve the accuracy of secondary kinematic predictions,
which is particularly important given the strong dependence of joint contact
mechanics on kinematic inputs (Anderson et al. 2008a; Henak et al. 2013; Bolcos et
al. 2018). Once the kinematics have been optimised using COMAK, contact pressure
distributions are computed using the specialised contact geometries (Lenhart et al.
2015) and an elastic foundation model (Bei and Fregly 2004; Smith et al. 2018)
(Section 1.6.1).

Because of the ability of the OpenSim-JAM framework to estimate joint loading and

contact pressure distributions, this approach has been utilised across a range of
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applications. For example, it has been utilised in the study of knee joint contact force
changes due to OA (Meireles et al. 2017; Di Raimondo et al. 2023), as well as linking
cartilage strains to OA disease progression biomarkers (Mohout et al. 2023). It has
also been used to investigate the effects of surgical interventions on knee joint
loading, for example, pre- and post- high tibial osteotomy (Bowd et al. 2023) and the
influence of TKR posterior tibial slope (Guo et al. 2024). Beyond applications to OA
and its interventions, OpenSim-JAM has been used to investigate how articular
contact geometry influences knee kinematics and contact mechanics (Clouthier et al.
2019) and how patella alta affects crouch gait in children (Brandon et al. 2017). It
has also been used to contribute to future rehabilitation guidelines by investigating
knee joint loading during a range of functional activities including squatting, lunging,
hopping, stair climbing and gait (van Rossom et al. 2018). The variety of applications
for the framework shown through these studies highlights the value of OpenSim-
JAM’s outputs, its estimations of muscle activations, joint kinematics and loading, for

clinically-driven research.

1.6.3 VALIDATION OF MUSCULOSKELETAL MODEL ACCURACY

Validation of MSMs ensures computational model predictions are consistent with
reality via comparison with experimental results (Henak et al. 2013). For joint contact
analysis, there are three main validation checks: kinematics, contact patterns, and

contact pressure and area magnitudes (Henak et al. 2013).

Joint contact mechanics have been investigated in-vitro using pressure sensitive
films (Bachus et al. 2006; Kim et al. 2009; Chen et al. 2016a; Zdero et al. 2016;
Imani Nejad et al. 2020). This is the most common in-vitro method for studying joint
contact mechanics (Zdero et al. 2023). It produces outputs proportional to the
mechanical loads applied which can be used to understand joint contact pressure
magnitudes and distribution in a directly measurable way. However, the physical film

inserted into the joint can disturb the joint’s ordinary articulation (Zdero et al. 2023).

In-vitro comparisons of kinematics have also been performed to help validate MSM
predictions (Farshidfar et al. 2023). This helps define how accurately the MSM
recreates knee joint motion but is still not representative of true in-vivo movement as

the knee motion is artificially generated.
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In-vivo data can also be used to investigate MSM accuracy; this is often done by
investigating output force distributions using instrumented implants (Chen et al.
2016b; Ding et al. 2016). For example, a common dataset used to validate models is
from the “Grand challenge competition to predict in-vivo knee loads” (Fregly et al.
2012) which provides open-source knee kinematics and contact dynamics from
instrumented implants. This dataset has been used to validate model kinematics
(Shu et al. 2021), contact force predictions (Kinney et al. 2013), and compare
accuracy between models (Curreli et al. 2021) as it provides in-vivo data with real
loading conditions in the knee. However, the data is limited to TKR only and is,
therefore, not representative of healthy joint mechanics. It also requires invasive

surgery and is only appropriate where a TKR is already necessary.

Investigating the validity of results from an intact knee is more limited as joint contact
pressures cannot be directly measured. Therefore, validation of measurable
quantities is required to help ensure the model is physiologically reasonable. As BVR
can be used to accurately determine knee joint kinematics (Section 1.4.1), model-
predicted joint kinematics can be compared to these data to asses model accuracy
(Ali et al. 2020).

By confirming the accuracy of these measurable parameters, i.e., joint kinematics,
and checking joint contact output magnitudes are consistent with instrumented
implant or in-vitro film measurements, the model outputs can be determined as

representative of intact knee mechanics.

During their development of the standard model used in the OpenSim-JAM
framework, Lenhart et al. (2015) used dynamic MRI to validate the secondary
kinematics of the knee during passive flexion. The knee was cyclically flexed through
a limited ROM of 36° (due to the MRI bore size) and the six DOF kinematics were
compared to the model-predicted values during the passive flexion simulation. The
secondary kinematics were generally found to be consistent between the two, with
the MRI-measured results falling within the simulated uncertainty range (Lenhart et
al. 2015).

Output contact load predictions from the OpenSim-JAM framework were compared
to the knee “Grand challenge” results to assess the accuracy of the simulation

(Smith 2017). A single model was created for one of the “Grand challenge”
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participants with the generic contact geometries swapped for the implant geometries.
During a standard gait trial, the OpenSim-JAM results were shown to have RMS
errors of 0.33 BW, which is comparable to other proposed methods for calculating
knee joint forces (Kinney et al. 2013; Thelen et al. 2014; Marra et al. 2015).

The output kinematics from the COMAK algorithm were also compared generally
with in-vivo measurements (Smith 2017), showing a similar trend to bone pins of
internal tibial rotation during stance phase (Lafortune et al. 1992a) and greater
anterior tibial centre of pressure (COP) translation on the medial plateau compared
to the lateral plateau which matched MRI-BVR kinematics (Kozanek et al. 2009; Liu
et al. 2010). Although this confirms overall trends match in-vivo kinematics, further
analysis is needed to validate the framework’s predictions on an individual level.
Smith (2017) acknowledged in his thesis that “in the future, subject-specific model
predictions should be compared against in-vivo subject-specific kinematics
measured during functional movement to accurately quantify the true predictive

capacity.”

1.6.4 PERSONALISED MUSCULOSKELETAL MODELS

To improve model prediction accuracy, MSMs are usually personalised to some
degree to better represent in-vivo participant motion. This can range from a simple
linear scaling of a generic model, to a highly personalised MSM using subject-
specific data. This personalisation can include adding subject-specific bone and joint
geometries (Zhang et al. 2014; Fernandez et al. 2016; Modenese and Renault 2021;
Davico et al. 2022), as well as personalising contact surfaces and joint mechanisms
(Marra 2019; Davico et al. 2022; Killen et al. 2024) to better represent an individual’s
kinematics and kinetics. It could also involve adjusting muscle attachment sites,
muscle pathways or wrapping surfaces to better reflect an individual’'s anatomy
(Killen et al. 2020; Davico et al. 2022). EMG data can also be used to tailor muscle
activation patterns for personalised movement patterns (Lloyd and Besier 2003;
Davico et al. 2022; Esrafilian et al. 2022); this is particularly useful in pathological

populations with altered neuromuscular control.

Generic models, while convenient, often fail to capture anatomical variability,
especially in pathological or atypical populations (Fernandez et al. 2023). The
addition of personalised joint geometries (including bone and cartilage), can lead to
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notable differences in kinematics, kinetics and muscle forces (Marra 2019; Kainz et
al. 2021; Davico et al. 2022; Fernandez et al. 2023; Killen et al. 2024) due to the
models being highly sensitive to joint geometries (Cleather and Bull 2012). Generic
models may also underestimate or misrepresent joint loading patterns, potentially
leading to inaccurate predictions, thus inclusion of subject-specific geometries allows
for more reliable results for clinical assessments and intervention planning
(Fernandez et al. 2016).

Recent frameworks have been developed to allow for automation of personalised
model creation to streamline the complicated process, reducing operator time and
increasing reproducibility so they can be more widely utilised (Modenese and
Renault 2021). One such pipeline, recently developed by Killen et al. (2024), allows
for generation of a personalised model compatible with the OpenSim-JAM
framework (Section 1.6.2) to model TF joint contact pressures. This involves
swapping ‘generic’ bone and cartilage meshes for subject-specific segmentations,
updating the muscle and ligament pathways, and calibrating soft tissue parameters

to maintain physiological behaviour.

To evaluate the benefit of these personalisation pipelines, it is important to test them
against high-quality in-vivo data. Such benchmark datasets are essential to assess
whether personalised models provide meaningful improvements over generic
alternatives (Lloyd et al. 2023). Ensuring that model outputs accurately reflect joint
kinematics and mechanics is essential for producing meaningful results thus
comparing the outputs to in-vivo gold-standard data is a key step in validating any
new modelling approach.

1.7 FINITE ELEMENT MODELLING

Finite element modelling (FEM) offers an alternative technique for modelling joint
contacts. As with MSM, it can be used to calculate unmeasurable parameters, such
as joint contact forces and pressure distributions (Rullkoetter et al. 2017). However,
unlike MSMs, where joint contact geometries are typically simplified into 2D
surfaces, FEMs use meshes of 3D elements, allowing for calculation of internal

tissue mechanics, e.g., stress and strain, as well as surface-level contact.
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One platform specifically designed for finite element analysis of biomechanics is
FEBIio (Maas et al. 2012). This open-source platform specialises in representations
of biological tissue interactions, providing a useful tool for modelling joint contact
mechanics and has been used previously to model the knee joint for a wide variety
of applications (Cooper et al. 2019; Mukherjee et al. 2020; Yan et al. 2024).

1.7.1 FINITE ELEMENT MODELLING OF KNEE OSTEOARTHRITIS

Publications on knee modelling have become increasingly prevalent in the last
decade (2015 to 2025), with the number of papers focusing on knee modelling or
simulation reaching up to 1000 per year (Erdemir et al. 2019). This reflects the
usefulness of these techniques to investigate a range of biomechanical applications
in the knee. However, the large number of studies also highlights the need for

tailored models to suit specific applications application.

FEMs have been developed to understand joint loading and contact mechanics in
articular cartilage (Fernandez et al. 2008; Meng et al. 2014; Gu and Pandy 2020),
investigate ligament internal mechanics and repairs (Mootanah et al. 2014; Ali et al.
2017; Yanez et al. 2024), influence pre-operative planning or implant designs (Kwon
et al. 2014; Rullkoetter et al. 2017; Shu et al. 2021), study disease progression
(Bolcos et al. 2020; Mukherjee et al. 2020; Lampen et al. 2023), and analyse injury
mechanisms (Mo et al. 2012; Kiapour et al. 2014a).

As discussed in the introduction (Section 1.1), OA is a disease of the whole joint and
it is associated with altered joint loading (Griffin and Guilak 2005; Kumar et al. 2013;
van Tunen et al. 2018). FEM is a useful tool for understanding the internal tissue
mechanical changes, i.e., excessive tissue stresses and strains, that have been
suggested as being a key driver for the onset and progression of OA (Mukherjee et
al. 2020).

Articular cartilage is one of the primary load-bearing structures within the knee that
becomes damaged through the excessive mechanical loading, which can lead to OA
(Mukherjee et al. 2020). Weakening of the mechanical properties of articular
cartilage is a common indicator of OA and is a significant factor in the loss of joint
function (Sinusas 2012; Katz et al. 2021; Mohout et al. 2023). For this reason, it is
important to understand the internal tissue mechanics of the articular cartilage under

typical joint loading in both healthy and diseased knees.
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Knee FEMs have investigated various mechanical changes in the knee resulting
from OA, including how altered joint loading affects the articular cartilage and
meniscus (Tarnita et al. 2014; Thienkarochanakul et al. 2020; Daszkiewicz and
Luczkiewicz 2021) as well as understanding OA disease indicators and progression
(Arjmand et al. 2018; Mohout et al. 2023).

The most commonly analysed parameters for quantifying altered knee mechanics
due to OA included stress (Bolcos et al. 2020; Lampen et al. 2023; Mononen et al.
2023), most commonly von Mises stress (Tarnita et al. 2014; Trad et al. 2017,
Arjmand et al. 2018; Peters et al. 2018), strain (Arjmand et al. 2018; Peters et al.
2018; Bolcos et al. 2020; Lampen et al. 2023), load distribution between the medial
and lateral compartments (Trad et al. 2017; Arjmand et al. 2018; Mononen et al.
2023), and contact pressures (Trad et al. 2017; Mononen et al. 2023).

Overall, these results showed that knee OA is associated with increased medial
compartment loading (Trad et al. 2017; Arjmand et al. 2018; Mononen et al. 2023)
resulting in an increase in both joint stress and strain (Tarnita et al. 2014; Arjmand et
al. 2018; Bolcos et al. 2022; Lampen et al. 2023).

The outputs from any new model should be compared with previously reported
output magnitudes to assess consistency and reliability of any results. Stress, strain
and contact pressure articular cartilage outputs from FEMs of healthy knees in

literature are presented in Table 1-2, Table 1-3 and Table 1-4, respectively.
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Table 1-2 — Articular cartilage stress findings from FEMSs of healthy knees in

force applied to femoral
head)

literature.

Reference Model setup/loading Main stress findings
Yang et al. In-vivo gait data (motion | Max normal stress: 17 MPa (FC),16
(2010) capture) and GRFs. MPa (lat TC),13 MPa (med TC)
Halonen et al. | Simulated gait cycle Max principal stress: 30-40 MPa (at
(2013) driven using 25% stance)

force/kinematics Max von Mises stress: 10 MPa (at

combination 20% stance)
Tarnita et al. Loading of 800 N Max von Mises Stress: 2.17 MPa (TC
(2014) &1500 N (compression 800N), 3.22 MPa (TC 1500N), 2.41

MPa (FC 800N) and 4.53 MPa (FC
1500N)

Mononen et al.
(2015)

Treadmill walking data
(motion capture) and
GRFs.

Max principal stress: 35.2 MPa (med
at 20% stance), 16.1 MPa (lat at 80%

stance)

Table abbreviations: max = maximum, FC = femoral cartilage, TC = tibial cartilage,
med = medial, lat = lateral, GRFs = ground reaction forces

As summarised from Table 1-2, studies generally report higher maximum stresses in

the femoral cartilage compared to the tibial cartilage (Yang et al. 2010; Tarnita et al.

2014). Within the tibial cartilage, the medial compartment was shown to experience

greater stress magnitudes than the lateral compartment (Mononen et al. 2015). Peak

stresses were shown to occur at around 20-25% stance, consistent with a peak in

joint loading (Halonen et al. 2013; Mononen et al. 2015).
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Table 1-3 — Articular cartilage strain findings from FE models of healthy knees in

force/kinematics

combination

literature.

Reference Model setup/loading Main strain findings
Yang et al. In-vivo gait data (motion | Max axial strain: 17.01% (med TC)
(2010) capture) and GRFs. and 20.67% (FC)
Adouni et al. Mean reported in-vivo Max principal strain: 20% (lat TC at
(2012) gait data (motion capture) | 25% stance)

and GRFs.
Halonen et al. | Simulated gait cycle Max principal strain: 7.5-8.5% (at
(2013) driven using 25% stance)

Max axial strain: 6% (at 25% stance)

Mononen et al.
(2015)

Treadmill walking data
(motion capture) and
GREFs.

Max principal strain: 8% (med TC at
25% stance), 5% (lat TC at 75%
stance)

Max axial strain: 20% (med TC), 10%
(lat TC)

Fu et al. Stance phase of gait. Max principal strain: 21.20% (med

(2022) TC at 25% stance), 24.35% (lat TC at
75% stance), 29.68% (FC at 25%
stance)

Mohout et al. In-vivo gait data (motion | Max shear strain: <25% (throughout

(2023) capture) and GRFs. gait cycle)

Table abbreviations: max = maximum, FC = femoral cartilage, TC = tibial cartilage,
med = medial, lat = lateral, GRFs = ground reaction forces

As with stress, the peak strains (Table 1-3) in the medial compartment of the tibial

cartilage were typically found at 20-25% stance, consistent with peak joint loading
(Adouni et al. 2012; Halonen et al. 2013; Mononen et al. 2015; Fu et al. 2022).

Maximum lateral compartment strains were typically found later (at 75% stance)

corresponding with the second joint loading peak (Mononen et al. 2015; Fu et al.

2022). Studies disagreed on which half of the tibial cartilage the maximum strain

occurred, with some finding the medial tibial cartilage to experience higher strains

(Yang et al. 2010; Mononen et al. 2015), whereas others found the lateral to present
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higher values (Adouni et al. 2012; Fu et al. 2022). The femoral cartilage was found to
experience higher strains than the tibial cartilage (Yang et al. 2010; Fu et al. 2022)

Table 1-4 - Articular cartilage contact pressure findings from FE models of healthy
knees in literature.

Reference Model setup/loading | Main contact pressure findings

Haut Donahue et | 1200N and 0° flexion Peak contact pressure: 3.69 MPa

al. (2003) (lat), 3.44 MPa (med)
Adouni et al. Mean reported in-vivo | Peak contact pressure: 8.1 MPa
(2012) gait data (motion (med TC at 25% stance)
capture) and GRFs.
Halonen et al. Simulated gait cycle Peak contact pressure: 14-17 MPa
(2013) driven using (med at 25% stance)
force/kinematics
combination
Mononen et al. Treadmill walking data | Peak contact pressure: 14 MPa (med
(2015) (motion capture) and at 25% stance), 12 MPa (lat at 80%
GRFs. stance)
Daszkiewicz and | Stance phase of gait Peak contact pressure: 8.0 MPa
Luczkiewicz (focussed on (med TC at 75% stance), 5.5 MPa
(2021) meniscus) (lat TC at 25% stance)

Fu et al. (2022) Stance phase of gait. Peak contact pressure: 17.07 MPa
(med TC at 75% stance), 14.7 MPa
(lat TC at 75% stance), 15.58 MPa
(FC at 25% stance)

Table abbreviations: max = maximum, FC = femoral cartilage, TC = tibial cartilage,
med = medial, lat = lateral, GRFs = ground reaction forces

Peak contact pressure (Table 1-4) was found to be associated with the two peaks of
force during stance phase of gait (25% and 75% stance) (Adouni et al. 2012;
Halonen et al. 2013; Mononen et al. 2015; Daszkiewicz and Luczkiewicz 2021; Fu et
al. 2022). Peak medial tibial cartilage contact pressure was consistently found to be
higher than the peak in the lateral compartment (Haut Donahue et al. 2003; Adouni
et al. 2012; Halonen et al. 2013; Mononen et al. 2015; Daszkiewicz and Luczkiewicz
2021; Fu et al. 2022).
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1.7.2 REPRESENTATION OF KEY STRUCTURES OF THE KNEE

Choosing how to represent key knee structures (Figure 1-7) in an FEM requires
balancing the model complexity, computational efficiency and numerical stability with
the model requirements and application. More complex material models can capture
important tissue behaviours (such as nonlinearity, anisotropy, or viscoelasticity) but
they are often more complex and less stable, making them less suitable for large-
scale or population-based simulations (Weiss and Gardiner 2001; Pefa et al. 2006).
However, simpler models, although more efficient, may not capture important tissue
mechanical behaviours. All material models are based on specific assumptions
which affect their behaviour, so it is important to understand the benefits and
limitations of each model in relation to specific study aims.

Femur

Posterior Cruciate
Ligament (PCL)

Anterior Cruciate
Articular cartilage Ligament (ACL)

Lateral Collateral _—"" — ‘ié— Meniscus

Ligament (LCL) \Medial Collateral

Fibula | Ligament (MCL)

Patella —

Tibia

Figure 1-7 — Key structures of the knee. The four main ligaments of the knee are
labelled in blue. Created with Biorender.com.

In this section, the key mechanical characteristics of the major tissues in the knee
are discussed, focussing on which aspects of their function have been modelled in
literature, rather than an exhaustive review of all mathematical models used. The
material models described in more detail in the following sections were used in the
development of the FEM for this study (Chapter 4). The chosen material models and
parameter values were taken from literature due to the time constraints and
difficulties associated with generating personalised material parameters from in-vivo
data (Cooper et al. 2019).
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Bones

In knee FEMSs, on a joint level scale, the bones are most often modelled using rigid
bodies, due to the much greater Young’s modulus and density when compared to
the surrounding soft tissues (Donahue et al. 2002; Adouni et al. 2012; Liu et al. 2022;
Steineman et al. 2022; Uzuner et al. 2022; Yan et al. 2024). This approach has the
advantage of being less computationally expensive as each element in the body is
treated as mathematically identical. For kinematically-driven models, modelling the
bones as rigid bodies also allows for kinematics to be applied directly, using them to

drive the model.

In some cases, a linear elastic material may be used to study internal bone
mechanics (Shirazi and Shirazi-Adl 2009; Guess et al. 2010; Mootanah et al. 2014;
Benos et al. 2020). A deformable model is typically used when the model is
investigating internal bone mechanics (e.g. in the subchondral bone) or for studies

involving complex loads (Yan et al. 2024).

Articular cartilage

Articular cartilage is an inhomogeneous, anisotropic soft tissue that exhibits strong
creep and stress relaxation behaviour (Mow et al. 1989). Although models have
been developed to capture the poroelasticity (Donahue et al. 2002; Wilson et al.
2003; Vaziri et al. 2008), hyperelasticity (Anderson et al. 2008b) and anisotropy
(Wilson et al. 2003; Vaziri et al. 2008), cartilage is often simplified to a
homogeneous, isotropic, linearly elastic material (Pefia et al. 2007; Klets et al. 2016).
This simplification reduces the complexity of the model, reducing the computational
demand, whilst capturing the general behaviour of articular cartilage under loading in

a manner suitable for joint-level modelling (Chokhandre et al. 2023a).

The articular cartilage was modelled as an isotropic, linear elastic, nearly
incompressible material (Donahue et al. 2002; Chokhandre et al. 2023a) represented
using a Neo-Hookean model. The Neo-Hookean model (Treloar 1943a,b) provides a
mathematically simplistic representation of the non-linear deformation of a rubber-

like material (Holzapfel 2000), making it suitable for a simplified cartilage model.

To achieve the Neo-Hookean representation, a Mooney-Rivlin material model
(Equation 1-1) (Mooney 1940; Rivlin 1948,1949b,a) was used with the constant c2
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set to 0 to avoid element locking associated with incompressible elements (FEBio
2022c).

,“IU = Cl(ll - 3) + Cz([z - 3) (Eq 1'1)
Where ¥ = strain energy function, 11/l = strain invariants and c1/ c2 = constants
defined as:
¢, = and ¢, = (Eq. 1-2)

Where the shear modulus u = 1 - pe.
This Mooney-Rivlin model was reduced to an uncoupled Neo-Hookean model by

setting the constant c2to 0 (FEBio 2022a), giving the following equation:

W =c, (I, —3) (Eq. 1-3)

Where W = strain energy function, |1 = strain invariant and c1 = a constant based on
the shear modulus (Equation 1-2).

In a review of tissue material properties of the TF joint by Peters et al. (2018), the
range of elastic modulus used to model the articular cartilage varied from 5 MPa
(Pena et al. 2006) to 67.6 MPa (Potocnik et al. 2008) where only a single value was
used, with 12 MPa being the most common; the Poisson’s ratios presented ranged
from 0.3 (Potocnik et al. 2008) to 0.46 (Pefia et al. 2006), with the majority of models

using a value of 0.45.

Articular cartilage in the knee has also been previously modelled as a Neo-Hookean
material with an elastic modulus of 15 MPa and Poisson’s ratio of 0.475 (Donahue et
al. 2002; Zielinska and Donahue 2006; Guess et al. 2010; Kiapour et al. 2014b); the
corresponding Mooney-Rivlin model parameters for these material properties are
given in Table 1-5 (Chokhandre et al. 2023b).

Table 1-5 — Articular cartilage Mooney-Rivlin material parameters to achieve a
Neo-Hookean response (Chokhandre et al. 2023b).

Parameter Definition Value

Coefficient of the first invariant term (associated with
C1 2.54 MPa
shear stress)

Coefficient of the second invariant term (reduces the
C2 0 MPa
model to Neo-Hookean when set to 0).

K Bulk modulus (resistance to volume change). 100 MPa
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Meniscus and meniscal horns

As the meniscus plays a key role in stabilisation, load bearing and stress distribution
within the knee (Walker and Erkiuan 1975; Messner and Gao 1998; Peia et al.
2006; Athanasiou and Sanchez-Adams 2009; Imeni et al. 2020), it is an important

structure often included in FE knee models.

The meniscus has a complicated architecture, including a circumferential
arrangement of collagen fibres in the main body of the meniscus (Petersen and
Tillmann 1998; Mow and Huiskes 2005) which provides greater stiffness and
strength to resist hoop stresses (LeRoux and Setton 2002; Li et al. 2005; Peloquin et
al. 2016; Morejon et al. 2023). To capture this structure, the meniscus is often
modelled using transversely isotropic (Donahue et al. 2002; Yao et al. 2006;
Zielinska and Donahue 2006; Yang et al. 2010; Klets et al. 2016) or fibril-reinforced
materials (Bendjaballah et al. 1995; Jilani et al. 1997; Moglo and Shirazi-Adl 2003;
Mononen et al. 2011), although isotropic linear elastic materials (Périé and Hobatho
1998; Beillas et al. 2004; Pefia et al. 2008; Beidokhti et al. 2016; Li et al. 2020) and
spring-elements (Li et al. 1999) have been used as simpler, less computationally

expensive alternatives.

Along with its anisotropic behaviour, the meniscus also exhibits hyperelasticity due to
its complex structure. Various hyperelastic materials have been used to capture this
aspect of meniscal behaviour (Haemer et al. 2012; Kazemi and Li 2014; Khoshgoftar

et al. 2015; Shriram et al. 2017), adding realism but further complexity to the model.

The time dependent mechanical response of the meniscus — resulting from fluid flow
and the intrinsic viscoelasticity of the collagen fibres (Imeni et al. 2020) — has also
been captured using more complex material models (Kazemi et al. 2011; Mononen
et al. 2011; Haemer et al. 2012; Kazemi and Li 2014; Halonen et al. 2017). This
poroelastic behaviour is typically neglected in full knee models as the length of a
typical functional activity modelled (e.g. stance phase of level gait) is significantly

smaller than the viscoelastic time of the meniscus (Imeni et al. 2020).

Various combinations of the anisotropic, hyper-poro-elastic properties of the
meniscus have been used in different models depending on the application and
resources available. Despite the variation in complexity of meniscus material models,

it has been shown that geometry has a greater effect on meniscal kinematics and
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knee contact mechanics than the material parameters chosen (Yao et al. 2024). This
suggests that for a subject-specific model, an emphasis should be placed on using
personalised geometries to increase accuracy, whereas generic material properties

may be sufficient (Yao et al. 2024).

In the review of knee material parameters for FEM by Peters et al. (2018), the elastic
modulus of the meniscus was shown to vary greatly with magnitudes varying from

8 MPa (Bendjaballah et al. 1995) to 250 MPa (Beillas et al. 2004), with some models
even using a modulus of 0 MPa (Kazemi and Li 2014). The Poisson’s ratio was also
shown to vary from 0.2 (Yang et al. 2010; Mootanah et al. 2014) to 0.49 (Pefa et al.
2006). Another review of meniscus modelling by Imeni et al. (2020) found that for
transversely isotropic material, the Young’s modulus was found to be 120-150 MPa
and 20 MPa in the circumferential and radial directions, respectively.

In the most recent OpenKnee(s) model cohort (Chokhandre et al. 2023b), the
meniscus was represented by a nearly incompressible, transversely isotropic

hyperelastic material using the parameters given in Table 1-6.

These values correspond to a Young’s modulus of around ~45 MPa in the
circumferential direction and ~27 MPa in the radial direction, as well as a Poisson’s
ratio of ~0.45 in both directions. This was achieved using the in-built fibre generator
tool in FEBio (FEBio 2021b) to generate circumferential fibres (described in more
detail in Chapter 4, Section 0) to capture the anisotropic stiffness that largely dictates
meniscus behaviour and its capacity for sustaining compressive loading
(Chokhandre et al. 2023a).

Like with the articular cartilage model, the meniscus model utilised a Mooney-Rivlin
(Equation 1-1) ground substance, converted to a Neo-Hookean material by setting
the constant c2to 0 (Equation 1-3), again to avoid element locking of nearly

incompressible elements (FEBio 2022c).
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Table 1-6 — Meniscus transversely isotropic Mooney-Rivlin material parameters
taken from Chokhandre et al. (2023a)

Parameter | Definition Value

Coefficient of the first invariant term (associated with
C1 4.61 MPa
shear stress)

Coefficient of the second invariant term (reduces the
C2 0 MPa
model to Neo-Hookean when set to 0).

K Bulk modulus (resistance to volume change). 92.16 MPa
C3 Exponential stress coefficient 0.1197 MPa
C4 Fibre uncrimping coefficient 150

C5 Modulus of straightened fibres 400 MPa
Am Fibre stretch for straightened fibres 1.019

The meniscal horn attachments, ligamentous structures connecting the meniscal
bodies to the tibial subchondral bone (Messner and Gao 1998), can either be
represented by linear elastic solids (Donahue et al. 2002; Dhaher et al. 2010) or
spring elements (Donahue et al. 2002; Yao et al. 2006; Gu and Pandy 2020). Spring
elements are more commonly used (Imeni et al. 2020) as this reduces model
complexity compared to adding more 3D structures as they require more elements

as well as additional contacts with the surrounding structures.

The review by Imeni et al. (2020) found the most commonly used material properties
for modelling the meniscal horns to be linear elastic, with Young’s moduli typically
ranging from about 90 to 600 MPa, and stiffness values between roughly 200 and
2000 N/mm depending on the horn and study.

Knee ligaments

The ligaments in the knee also exhibit a complex material behaviour due to the
water-rich ground substance reinforced with crimped collagen fibres (Diamant et al.
1972; Comninou and Yannas 1976; Daniel et al. 1990). This results in a force-strain
relationship with two distinct regions: the non-linear toe-region as the crimping
progressively disappears and the fibrils become aligned with the loading direction,
then an almost-linear, higher stiffness region corresponding with the stretching of the
fibrils (Trent et al. 1976; Weiss and Gardiner 2001; Galbusera et al. 2014). This
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tissue structure also causes the ligaments to be anisotropic, incompressible,
hyperelastic and viscoelastic (Yan et al. 2024).

Another complex element of ligament behaviour is reference strain (&r), also known
as pre-strain. This is the strain within the ligament in full knee extension (the
reference position) as, in-vivo, the ligament will always be sustaining a tensile load
(Daniel et al. 1990; Galbusera et al. 2014). When modelling, consideration of this
initial reference strain before dynamic motion can be implemented to better

represent true material behaviour.

One-dimensional (1D) line elements are the most common representation of
ligaments in FE models of the knee joint (Blankevoort et al. 1991; Li et al. 1999;
Donahue et al. 2002; Beillas et al. 2004; Mesfar and Shirazi-Adl 2006; Checa et al.
2008; Amiri and Wilson 2012; Bloemker et al. 2012; Guess and Stylianou 2012;
Mohout et al. 2023). Although single elements have been used (Yu et al. 2001),
more frequently they are represented by bundles of multiple springs covering the
insertion sites (Galbusera et al. 2014). Using non-linear 1D springs allows for easy
implementation and replication of the force-strain curves from experimental tests,
along with the pre-strain, at a low computational cost. However, it only provides
information in the fibre direction and requires special techniques for incorporating
ligament wrapping. Despite these limitations, 1D spring models are still
recommended for simulation of global knee behaviour where the ligament itself is not

the focus of the model (Galbusera et al. 2014).

Alternatively, ligaments can also be modelled as 3D structures (Pefia et al. 2006;
Kazemi and Li 2014; Uzuner et al. 2022; Chokhandre et al. 2023b), segmented from
MRI, which inherently accounts for ligament wrapping and provides a more accurate
anatomical, personalised structure representation. Recommended for when the
ligament or its interaction with surrounding tissues is the focus (Galbusera et al.
2014), it provides information about internal tissues mechanics (such as ligament
strain) that cannot be determined from a 1D model. The disadvantages of the high
computational cost and difficulty in validation associated with the more complex 3D
models make 3D structures unsuitable for all applications. As ligaments are strongly

anisotropic and not able to sustain compression, they are difficult to model using 3D
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materials, and this can result in oversimplified constitutive models being used
instead (Galbusera et al. 2014).

As a compromise, ligaments have also been modelled using 2D shells or
membranes reinforced with line elements to capture both the anisotropy and pre-
strain material behaviours (Halloran et al. 2005; Baldwin et al. 2009; Clary et al.
2013a; Zelle et al. 2014).

When looking at the material properties used to model ligaments in literature, a
review by Galbusera et al. (2014) found their values exhibited considerable variability
across studies, particularly for reference strain. For example, the reference strain
was shown to vary from 0 to 0.16 for the ACL and -0.169 to 0.24 for the PCL
(Galbusera et al. 2014).

One of the most common 1D spring ligament models is the Blankevoort model. The

force-strain relationship is split into three distinct regions (Equation 1-4), including no
force below 0 strain, a quadratic toe-region up to the linear strain limit (&;) of 0.03

(Butler et al. 1986), and a linear relationship above that threshold (Blankevoort and

Huiskes 1991). A visualisation of this force-strain relationship is given in Figure 1-8.

0 e<0
1 2
f = Zkle /El 0<e< 28[ (Eq 1-4)
k(e — &) > 2¢
Where f = tensile force in each ligament element, k; = ligament stiffness,

& = linear strain limit, ¢ = current ligament strain.

46



Blankevoort Ligament Force-Strain Relationship
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Figure 1-8 — Blankevoort Ligament model force-strain relationship.
The strain is then calculated at any time point using Equation 1-5 and the
corresponding force determined from the Blankevoort relationship (Equation 1-4,
Figure 1-8) with the parameters given in Table 1-7.

-l
Lo

(Eq. 1-5)

Where ¢ = current ligament strain, L = current ligament length and L, = ligament zero

load length.

Table 1-7 — Material parameters for the force-strain relationship of each ligament
taken from Blankevoort et al. (1991).

Ligament | Total stiffness/k; | Reference strain/er
[kN] [%]
ACL 10 8
PCL 18 -13.5
LCL 6 -7.33
MCL 8.25 3.66

For each ligament, an individual zero-load length (Lo) is needed to calculate the

strain. This represents the length of the ligament in a completely unloaded state (with
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no pre-strain). However, as this parameter is un-measurable in-vivo, it is calculated
using the reference length (Lr) and reference strain (&r) parameters determined when
the knee is in its ‘reference position’ in full extension (Equation 1-6) (Blankevoort et
al. 1991).

Lo=1L, /(e +1) (Eq. 1-6)
Where L, = ligament zero-load length, L, = the ligament reference length,

and &, = the reference strain.

1.7.3 KINEMATIC DRIVEN FINITE ELEMENT MODELLING OF THE KNEE

Models are typically force-driven due to the sensitivity of FEMs to kinematics (Fregly

et al. 2008) and the lack of accurate input kinematics.

A few studies (summarised in Table 1-8) have created models of the knee that are
fully or partially driven by kinematics. Typically these models have utilised more
accurate inputs kinematics derived from X-ray imaging, with bead-based imaging
(such as RSA, Section 1.2.4) (Beillas et al. 2004; Gu and Pandy 2020) or BVR
(Fernandez et al. 2008; Halonen et al. 2013; Carey et al. 2014; Xiao et al. 2021)
being commonly used. However, some models did use motion-capture or MSM to

derive the input kinematics instead (Halonen et al. 2016; Bolcos et al. 2018).

Despite more accurate inputs, a hybrid force-kinematic approach was often used to
drive the FEM to account for potential errors in the input kinematics. One approach
taken was to prescribe up to five TF DOFs, leaving a translation (typically CD/SI)
free to settle based off external forces (Halonen et al. 2013; Carey et al. 2014; Gu
and Pandy 2020). Other models only prescribed one or two kinematic DOFs (Kwon
et al. 2014; Bolcos et al. 2018), whereas others prescribed the TF kinematics to

model PF movement.
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Table 1-8 — Kinematically-driven FE knee models from literature.

Study Kinematics Application for model
Prescribed DOFs | Activity modelled
Beillas et Femur kinematics | One participant Development of a
al. (2004) | prescribed, tibia performed a single-leg | framework to apply
motion driven by hop and was imaged subject-specific
the knee and ankle | using RSA. kinematics to a generic
joints and muscle low limb model.
actions (EMG).
Fernandez | TF six DOF One healthy participant | Investigating PF joint
et al. kinematics was imaged during a function — including joint
(2008) prescribed (patella | step-up activity using contact stresses.
motion predicted BVR.
by the model).
Halonen et | TF FE, IE, AP and | One healthy participant | Used to investigate the
al. (2013) | ML prescribed (AA | with simulated gait and | importance of cartilage
and CD assumed loaded standing (using | proteoglycan and
to be left free). BVR as input data). collagen distributions on
stresses and strains.
Carey et Five DOFs One participant intact | Comparison of MRI
al. (2014) | constrained, SlI VS menisectomised (supine) and BVR
translation left free. | knee. BVR collected (standing) kinematically
during standing. constrained models.
Kwon et al. | FE and IE One healthy participant | Compared the contact
(2014) rotations with a virtual UKA pressures and stresses
prescribed. performed. Simulated | in two UKA designs.

gait cycle.
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Halonen et | TF six DOFs One participant’s gait Comparison of FE
al. (2016) | constrained but AA | kinematics derived modelling with and
and IE from motion capture without the patella and
implemented as and MSM. quadriceps to
moments not investigate their
rotations. importance.
Bolcos et FE and IE One participant had Comparison of four
al. (2018) | rotations three gait trials models with varying
prescribed in some | averaged. Kinematics | complexity,
models. (All other | during the stance implementing
DOFs force-driven | phase of level gait kinematics to simplify
or left free). were calculated using | the model.
MSM.
Gu and Five DOFs Three cadaveric knees | Validate model
Pandy constrained, Sl simulated flexion (15- | predictions of contact
(2020) translation left free. | 60°) with a load pressure, contact area
applied. Kinematics and contact force.
derived using BVR and
implanted beads.
Xiao et al. | All six DOFs. One healthy participant | Estimate forces and
(2021) performed a lunge. strains in a single-
Kinematics from in- bundle ACL
vivo BVR. reconstruction

Out of all the models in Table 1-8, only Xiao et al. (2021) and Fernandez et al.
(2008) prescribed all six DOFs of the TF joint, both using BVR-derived kinematics.
Fernandez et al. (2008) used their model to investigate PF kinematics and Xiao et al.

(2021) used their model to investigate forces and stresses on ACL reconstruction

grafts, so the only soft tissue structure included was the ACL. These models provide

examples of a fully kinematic-driven simulations that utilise accurate BVR kinematics

to investigate clinically relevant questions. However, neither model investigated the

internal mechanics of the articular cartilage in the TF joint and so there is scope to

developing a new model, expanding the soft tissues included.
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1.8 RESEARCH AIMS

As discussed in the introduction (Section 1.1), a clear understanding of knee joint
biomechanics is fundamental to identifying and explaining changes associated with
diseases such as OA. OA is strongly linked to altered joint loading and kinematics
(Mills et al. 2013; Farrokhi et al. 2014; Yamagata et al. 2021), which disrupt the
normal distribution of mechanical stresses across the knee. Mechanical factors,
including malalignment, injury, and changes in neuromuscular control, are primary
drivers of cartilage degeneration and disease progression (Griffin and Guilak 2005;
Felson 2013). Accurate quantification of these biomechanical changes is therefore
essential. Longitudinal studies have shown that elevated medial knee loading,
reflected by increased knee adduction moments during gait, predicts both the onset
and progression of medial TF OA (Baliunas et al. 2002; Miyazaki et al. 2002;
Andriacchi and Mandermann 2006). Imaging and alignment analyses further
demonstrate that abnormal load distribution accelerates structural deterioration of
the joint (Sharma et al. 2001). The combination of high precision in-vivo imaging
techniques, such as BVR, with personalised modelling pipelines provides a robust
and detailed characterisation of individual knee loading during dynamic functional
activities, enabling a mechanistic understanding of OA development and progression
(Andriacchi et al. 2009; Gustafson et al. 2021; Mononen et al. 2023).

The primary aim of this research thesis was to develop a framework that integrates
accurate six DOF TF kinematics, obtained from the BVR system at Cardiff
University, into MSM and FEM pipelines. Access to the BVR system provided the
opportunity to generate and leverage a high-quality dataset of precise in-vivo
measurements of knee bone motion, enabling a more detailed understanding of joint
mechanics. By integrating these measurements into MSM and FEM pipelines, the
research aimed to establish a robust methodology for quantifying and predicting

knee joint behaviour under physiologically relevant conditions.

BVR (Chapter 2): As this was the first study of the knee using the new BVR system
at Cardiff, the initial focus of the work was to establish a robust protocol for the
simultaneous acquisition of BVR and marker-based motion capture data during
multiple dynamic knee activities. The study also developed a dedicated processing

pipeline to compute six DOF TF joint kinematics from BVR data, using MRI-
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segmented bone models and image registration techniques. The complete data
acquisition and processing framework was then implemented and evaluated for the

first time in a cohort of healthy participants.

MSM (Chapter 3): Following this, the marker-based motion capture data were
processed through a musculoskeletal modelling (MSM) pipeline (OpenSim-JAM) to
estimate TF kinematics and contact pressures during the imaged movements. This
stage included the first comparison between MSM-derived outputs and BVR-
measured kinematics to evaluate the general accuracy of the MSM in typical

applications, providing valuable insight for other users of the pipeline.

In particular, the work investigated the potential benefits of model personalisation by
addressing the question: does incorporating personalised contact geometries
improve MSM predictions of TF kinematics and loading? Using a new framework for
generating MSMs with subject-specific knee joint geometries (Killen et al. 2024), the
study examined potential improvements in model predictions to better understand
the advantages of personalised modelling approaches.

FEM (Chapter 4): The final stage of the framework development aimed to generate
the first fully kinematically driven FEM of the knee for investigating articular cartilage
mechanics. In this work, the BVR-derived kinematics were utilised in a novel way by
driving the model using TF bone poses. To demonstrate the potential of this
modelling approach, variations in cartilage contact pressures, stresses, and strains

were examined during the stance phase of level gait.

Each component of the framework provided distinct yet complementary outputs:
kinematics from the BVR, contact pressures and muscle forces from the MSM, and
internal tissue mechanics from the FEM. By integrating these techniques and
capitalising on the strengths of each, the framework combines BVR, MSM, and FEM
approaches to deliver a more comprehensive understanding of knee biomechanics
during functional joint loading using highly personalised models. This integration
aims to not only demonstrate the potential modelling applications of accurate BVR-
derived kinematics but also provide valuable insights for researchers without access
to such data, highlighting the respective benefits and limitations of the different
methods employed. Although highly personalised models and precise kinematic data

are not always feasible or available, they can inform broader modelling strategies;
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therefore, the development of detailed pipelines remains essential for advancing
understanding of knee joint health.

This thesis aims to demonstrate the feasibility of developing tools capable of
enhancing the accuracy, personalisation, and clinical relevance of computational
models of the knee. Whether applied as individual components or as an integrated
system, the framework can be extended to include pathological knees to address
clinically relevant questions and to deepen understanding of the relationships
between knee biomechanics, pathology, and pain. Ultimately, the tools and
framework developed in this research are designed to be applied in translational
settings, supporting clinicians and researchers in developing personalised, data-
driven approaches to diagnosing, monitoring, and treating knee joint pathologies
such as OA.
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CHAPTER 2: QUANTIFYING TIBIOFEMORAL KINEMATICS
USING BIPLANE VIDEORADIOGRAPHY

2.1 INTRODUCTION

2.1.1 BACKGROUND

Accurately determining in-vivo tibiofemoral (TF) kinematics in all six degrees of
freedom (DOF) is necessary to understand joint movement in both healthy and
pathological cohorts (Giphart et al. 2012). It allows for better quantification of altered
biomechanics due to diseases such as osteoarthritis, injury, and various
interventions (Postolka et al. 2020; Ulbricht et al. 2020).

Marker-based motion capture is the current research gold-standard technique for
measuring three-dimensional (3D) in-vivo kinematics and provides high repeatability
in the sagittal plane for the knee (Mackey et al. 2005), but insufficient accuracy in the
other planes (Ramsey and Wretenberg 1999). This technique can provide whole
body kinematics, however, it suffers from errors caused by inaccurate marker
placement on anatomical landmarks (Tranberg et al. 2011), as well as soft tissue
artefact (Ramsey and Wretenberg 1999; Akbarshahi et al. 2010; Miranda et al.
2013).

Biplane Videoradiography (BVR) is currently the most accurate technique for
measuring in-vivo skeletal kinematics noninvasively (Gray et al. 2017; Gray et al.
2018), and has emerged as the new gold standard for in-vivo kinematics during
physiological loading (Setliff and Anderst 2024). For BVR, two X-ray source-detector
pairs fire from different perspectives to produce image pairs that can be used to
determine 3D information about the bones within the knee (Gray et al. 2018). Unlike
traditional motion capture, BVR has been shown to produce highly accurate 3D
arthrokinematics of the knee joint in all planes (Li et al. 2008; Anderst et al. 2009;
Miranda et al. 2011; Guan et al. 2016) and is not affected by soft tissue artefact or
marker misplacement. However, BVR does suffer from a limited imaging volume and
occlusion by the contralateral limb (Gray et al. 2018). Different X-ray source-detector
pairs configurations are required for different activities to minimise these limitations
(Gray et al. 2017; Gray et al. 2018). BVR has typically only been used on studies

with small cohorts (with a mean of 11 participants per study) due to the high costs
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and significant amount of time required to process the results (Setliff and Anderst
2024).

Although BVR is the more accurate technique, marker-based motion capture
remains widely used due to its accessibility and lack of ionising radiation. Comparing
joint kinematics from marker-based motion capture to those obtained using BVR
leads to better understanding of its inaccuracies and limitations. This understanding
enables motion capture users to interpret their data with greater nuance and
additionally highlights potential areas for improvement in the data collection and

processing methods.

Simultaneous capture of accurate joint-specific kinematics using BVR alongside
whole body marker-based motion capture, not only facilitates direct comparison
between the two methods, but also enables further analysis of the links between
whole body and joint specific biomechanics. As BVR is limited by capture volume
and duration (to minimise ionising radiation exposure), there is a need for an
integrated approach to investigate whole body responses alongside detailed joint-
level mechanics (Li et al. 2012). Developing successfully integrated approaches for
data collection is important for understanding altered joint mechanics due to

pathologies and their broader effects on other joints in the body.

2.1.2 AIM & OBJECTIVES

As explained in Section 1.8, the overall aim of this chapter was to develop and define
a robust protocol for collecting and processing simultaneous BVR and marker-based
motion capture data, along with 3D magnetic resonance imaging (MRI) sequences.
This protocol was designed to investigate TF joint kinematics across multiple
dynamic functional movements and was to be applied for the first time to a cohort of
healthy participants.

This was further broken down into the following objectives:

e To use the defined X-ray data collection and processing pipeline to calculate
healthy TF kinematics for multiple participants during multiple activities to

demonstrate its potential for use in future studies.
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e To compare the resulting X-ray derived kinematics to those found in literature
to assess the validity of the pipeline outputs by assessing their similarity and
consistency with previous studies.

e To compare equivalent marker-based motion capture rotations — derived
using Visual3D (V3D, HAS-Motion, Canada) — to those calculated from the
‘gold standard’ BVR data, to better understand the accuracy and limitations of

this more commonly used technique.

2.2 DATA COLLECTION: MAGNETIC RESONANCE IMAGING

Each healthy volunteer took part in two separate data collection sessions. The first
involved a series of MRI scans to obtain 3D joint geometry, and the second captured
simultaneous BVR, marker-based motion capture and electromyography (EMG)

during dynamic movements.

Ethical approval was granted by the Wales Research Ethics Committee 3 (Ref:
10/MREQ09/28) and written informed consent was obtained before each data

collection session.

For the first session, the MRI scans were carried out at the Cardiff University Brain
Research Imaging Centre (CUBRIC, Cardiff University) in a 3T Magnetom Prisma
MRI scanner (Siemens Healthcare GmbH, Germany). Sequences were based off

previously defined imaging protocols (Williams 2018), with key details and

associated parameters recorded in Table 2-1.
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Table 2-1 — MRI sequence parameters

Sequence MPRAGE CISS-3D DESS-3D T1-VIBE
(Long leg)

Repetition Time 2200 5.84 14.84 11.7

(TR, ms)

Echo Time (TE, ms) 2.18 2.92 5.04 5.46

Flip Angle (°) 8 50 25 10

Echo train length 1 1 2 1

Pixel Spacing (mm) 0.78125 x 0.6445 x 0.6328 x | 0.59x0.59

0.78125 0.6445 0.6328

Slice Thickness (mm) 5 0.64 0.63 0.60

Field of View 328 x 500 165 x 165 162 x 162 150 x 150

(FOV, mm)

Matrix 320 x 210 256 x 256 256 x 256 | 256 x 256

Total Acquisition Time 4:37 per 7:10 5:28 6:26

(minutes:seconds) section

Orientation Transverse Sagittal Sagittal Sagittal

Before scanning, informed consent was given by each participant and a safety

screening form was completed. The participants were then asked to change into

appropriate clothing and remove all metallic items.

Participants were positioned in the scanner feet-first supine with their legs in a

neutral position and the scanner bed was roughly aligned to the palpated location of

the greater trochanter.

Firstly, a whole-leg scan was obtained using the body radio frequency (RF) coil. A

'FastView’ scan was performed to ensure the whole leg was visible (from hip to

ankle) in the imaging volume, and to determine which sections of the body RF coil

were required. Then the leg was scanned in sections using a series of

Magnetisation-Prepared Rapid Acquisition Gradient Echo (MPRAGE) scan

sequences. The number of scans required to image the whole leg depended on the

height of the participant but was typically around 3-4 scans.




A series of higher resolution scans were then captured using a Tx/Rx Knee 15 Flare
Coil. A short 10-15 second localiser scan sequence was used to align the imaging
volume around the centre of the TF joint. This ensured all structures of interest were

captured in subsequent scan sequences.

A 3D Constructive Interference in Steady State (CISS-3D) scan sequence was
obtained as it provides high contrast between cortical and cancellous bone (Figure
2-1). The CISS-3D scan sequence was used as an equivalent to the FIESTA-C
sequence in the original protocol (Hingwala et al. 2011; Williams 2018).

- e e R ¥ // 5

Figure 2-1 — CISS-3D scan of the TF joint visualised in all 3 planes.

A 3D Dual Echo Steady State (DESS-3D) scan sequence was also performed as it
provided high contrast between the articular cartilage and its surrounding tissue
(including the subchondral bone interface) (Thakkar et al. 2011). As the cartilage
was well defined in the DESS-3D scan, this sequence was used to segment the

articular cartilage and meniscus (Section 2.4.1).
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For the last two participants, a T1-weighted Volume-Interpolated Breath hold
Examination (VIBE) was added to the MRI collection protocol. This sequence has
been shown to provide similar results to the DESS-3D sequence when imaging
cartilage (Zink et al. 2015). The higher visual contrast between bone and the soft
tissues in the T1-VIBE scan made it easier to utilise segmentation tools (such as
thresholding tools) and see the boundary between certain tissues (e.g. femoral and
tibial cartilage) reducing the time required for each segmentation (Figure 2-2).
Therefore, for these two participants, the T1-VIBE scan was used to segment the

articular cartilage and meniscus instead of the DESS-3D scan (Section 2.4.1).

Figure 2-2 — A DESS-3D compared to a T1-VIBE scan sequence in all three planes.
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2.3 DATA COLLECTION: COMBINED BIPLANE
VIDEORADIOGRAPHY, MARKER-BASED MOTION CAPTURE AND
ELECTROMYOGRAPHY PROTOCOL

The second data collection session took place at the Musculoskeletal Biomechanics
Research Facility (MSKBRF, School of Engineering, Cardiff University), and involved
capturing BVR, marker-based motion capture data, force plate data, EMG, and video
footage. An existing pilot study protocol, established in Cardiff as part of the initial
development of the BVR system, was used for this study. It involved imaging the
knee during three functional activities: level overground gait, a stair ascent, and a
dynamic, weightbearing lunge. As part of this work, some modifications were made
to the protocol to improve the quality of data collected; for example, camera positions

were well-defined to allow for repeatability in the setup (Section 2.3.2).

2.3.1 BIPLANE VIDEORADIOGRAPHY EQUIPMENT POSITIONING AND
CALIBRATION IMAGES

Custom-built BVR equipment (Williams 2018) was used to collect BVR imaging for
this study. The BVR system has 16 adjustable axes to allow for flexible positioning of
the machine (Figure 2-3). Using these axes, the equipment can be manipulated into
many orientations, including its location within the room, the position of each
individual source and detector on their respective arms, and the angle of the source-
detector pairs within the room and in relation to each other (Figure 2-4). As ten of the
axes are computer-controlled, re-positioning of the machine was quick and
consistent. This allowed for easy changeover of equipment setup during the data
collection session, where a new configuration was needed for each activity. Key
parameters for the three X-ray equipment configurations for each activity can be

found in Table 2-2 — with additional information in Appendix A.
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: Axis ID | Description
ES - x* Longitudinal axis along direction
T a8, ‘_ of walking
= T~ |l vy=* Lateral axis perpendicular to X
- H - @ Rotate Axis —set A
: QF__: : A-DT _ |Tilt Axis — set A detector
E g ~ A-ST |Tilt Axis —set A x-ray source
| ™| A-DR* |Radial Axis - set A detector
| Lf A-SR* | Radial Axis - set A x-ray source
I : A-DZ* [Vertical Axis —set A detector
| | A-SZ* |Vertical Axis — set A x-ray source
- DBF Rotate Axis —set B
o B-DT |Tilt Axis — set B detector
;ﬁ B-ST |Tilt Axis —set B x-ray source
B-DR* |Radial Axis - set B detector
B-SR* | Radial Axis - set B x-ray source
B-DZ* |Vertical Axis —set B detector
B-SZ* |Vertical Axis —set B x-ray source

Figure 2-3- Diagram detailing the 16 controllable axes of the BVR equipment. " denotes
computer-controlled axes; the remaining axes require manual manipulation by aligning the
angles with permanently attached protractors.

Figure 2-4 — Birdseye view of the two source-detector pairs showing 6, the
angle between the two systems, and SDD, source-to-detector distance
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Table 2-2 — Key BVR equipment setup parameters for each of the three activities, as
depicted in the diagram in Figure 2-4

Parameter * Level Gait Lunge Stair Ascent
Voltage (kV) 80 70 80
Current (mA) 160 125 160
Source-to-Detector 1785 1350 1700
Distance (SDD) (mm)

Source-tilt (°) 0 0 0
Detector-tilt (°) 0 0 0
Angle 6 (°) 61 150 130

*All parameters are the same for both System A and System B, except Angle 6 which
is the angle between the two systems.

The only difference in X-ray equipment positioning between participants was the
height of the source-detector pairs from the ground. For each activity, the participant
placed their foot on the location of the central laser point (projecting downwards from
where the two arms meet at the centre of the ceiling mount), and the source-detector
pairs were adjusted vertically until the lasers from each source were aligned with the
participant’s knee joint. This ensured the knee was centred in the X-ray volume

during the trials.

For each configuration, four pairs of BVR calibration images were collected (Figure
2-5). A ‘white’ image — with nothing in the X-ray volume — was captured for non-
uniformity correction (Figure 2-5a). To correct for image distortion, uniform grids with
circular holes of known dimension and spacing were X-rayed (Figure 2-5b). A cube
constructed of LEGO® bricks containing a grid of 64 radio-opaque beads was
imaged to allow for calculation of the 3D configuration of the X-ray hardware
(Knorlein et al. 2016). The cube was carefully placed in the X-ray volume to ensure
the beads filled the majority of both 2D X-ray images, with minimal overlap of beads,

to provide the largest number of visible beads for the calculation (Figure 2-5c).

Finally, a cone with six radio-opaque beads, each covered with a retroreflective
surface, was imaged simultaneously with the BVR and marker-based motion capture
systems to allow the two to be registered together by calculating the positions of the
beads in both coordinate systems, allowing for the calculation of the transformation

between the two global coordinate systems (GCSs) (Figure 2-5d). The results from
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one system can then be expressed in the coordinate system of the other, facilitating
direct comparison of the collected data, which is useful for visualising the BVR knee

bone poses relative to the measured marker motion.

Figure 2-5 — Set of four X-ray calibration images taken at the
beginning and end of every setup.

Section 2.4.3 contains more details on how these images were used to calibrate and
process all collected X-ray images. Since they were critical to the processing
pipeline, the four pairs of calibration images were collected at both the start and end

of each activity, providing a spare set for redundancy.
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All the other equipment used in this data collection session were time synchronised
with the transistor-transistor logic (TTL) pulse from one of the BVR high-speed
cameras (60 Hz) to allow for simultaneous data capture from multiple sources. This
enabled direct comparison and integration of different datasets, offering a more

complete representation of a participant’'s movement.

2.3.2 MARKER-BASED MOTION CAPTURE SETUP

A ring of 12 Oqus 700+ marker-based motion capture cameras (Qualysis, Sweden)
and six Miqus Video Cameras (Qualysis, Sweden) were centred around five Bertec
force plates (Bertec Corporation, Ohio, USA) embedded in the floor in the centre of
the room (Figure 2-6).

Figure 2-6 — Screen shots from Qualysis Track Manager (QTM, Qualysis, Sweden) of
the laboratory camera configuration relative to the force plate and instrumented
Staircase placement (above), with an annotated, enlarged image of the force plates
and stairs with the L-frame markers in position (below).

In the process of developing the data collection protocol, the positions of the
cameras were trialled and optimised to reduce marker drop out during the dynamic

trials, as this was identified as an issue with early participants.
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To remove the need for recalibrating the motion capture cameras during the data
collection session, a single camera configuration was used for all three activities. As
the BVR equipment obscured the views of different cameras during different
activities, it was important to trial all different activity X-ray and motion capture
equipment configurations when deciding the final camera positions. Each camera
was reviewed individually to check its view across the three configurations, as well

as collectively, to check that marker coverage was sufficient for all activities.

Another aim of the final camera setup was to maximise the number of wall-mounted
cameras. Wall-mounted cameras were quicker and easier to reposition than tripods,
as they were attached to rails on the walls, requiring only their location on a fixed rail
for positioning. This reduced the floor space occupied by tripods, minimising trip
hazards, as well as allowing for ease of movement of equipment (such as the
instrumented staircase and the BVR system) during the session. In the final camera
configuration (Figure 2-6), nine cameras were wall-mounted and only three were on

tripods.

Once the camera configuration was finalised, the camera angle on its mount and its
settings in Qualisys Track Manager (QTM, Qualisys, Sweden) were recorded. For
each wall-mounted camera, the rail it was attached to and its distance from a
specified end of the rail were noted. For tripod-mounted cameras, detailed
information about the tripod and its position in the laboratory was recorded, including
the tripod’s centre position, the location of each leg relative to a fixed point on the

laboratory floor, the height of each tripod section, and the length of each leg.

The camera positions used in this study were documented in the data collection
protocol (Appendix A). Recording this information ensured a repeatable camera
setup for each data collection session, maintaining consistency in camera coverage

and, therefore, reliable marker trajectory identification across participants.

Before each data collection session, the motion capture cameras were calibrated to
account for any shifts in position and to establish the laboratory’s GCS. This process
determined the relative positions of each camera and force plate within the GCS.

Calibration involved placing an L-frame, consisting of a long and short arm with
different numbers of markers, around the selected force plate (FP2 in Figure 2-6),
with the long arm aligned to the direction of travel. The L-frame’s corner was placed
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on the force plate’s corner, aligning its arms with the plate’s edges. The marker at
the join of the arms defined the global origin (0,0,0), with the long arm defining the
x-axis, the short arm the y-axis, and the z-axis calculated as their cross product,
pointing vertically upwards. All 3D marker locations throughout the session were

recorded as X, Y, and Z distances from this GCS.

The cameras positions were then calibrated relative to the GCS using a calibration
wand. This consisted of two markers at either end of a T-shaped wand which were a
known distance apart. This wand was passed through the volume to be calibrated
which covered the area the dynamic activities would be performed in. This included
above each step of the staircase and directly above the five force plates embedded
in the floor. For calibration, the laboratory was set up for the stair ascent activity (the
first activity). With the X-ray equipment positioned for the stair ascent activity, the
volume it occupied could not be calibrated. However, since the participant never
moved through this area during any activity (even after the equipment was

repositioned), it remained a suitable and repeatable location for the initial calibration.

From the 2D marker positions of the wand markers and L-frame markers seen by
each camera, the relative 3D positions of each camera to each other and the GCS
were calculated and reconstructed in QTM (Qualisys, Sweden) (Figure 2-6). The
average residual error between the detected and expected marker positions across
all cameras and calibration points was calculated for each motion capture camera.
The calibration was repeated if the average residual error was >1 mm for any

camera to ensure marker tracking quality.
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After camera calibration, every force plate was located by placing a single marker on
its each of its four corners. A marker-mounted plate, designed to slot down the sides
of the force plate (Figure 2-7), ensured consistent marker placement. Similarly, the
location of each step of the staircase was also found by placing a single marker on

each of the corners.

sk %

Figure 2-7 — Force plate 6ofﬁéf mar'k-e'.r mount ?Ieft),
and in-situ on the 4 corners (right)

A modified Cleveland Clinic marker set involving 54 individual retroreflective markers
was used (Kinney et al. 2013; Whatling et al. 2020) (Figure 2-8). Anatomical
markers, used to calculate body reference frames, were located by palpating bony
landmarks. Four individual tracking markers were used for each segment, as at least
three are required to calculate 3D segment motion, with the fourth marker allowing
for possible marker dropout due to obstruction (e.g. by equipment or clothing).This
marker set was chosen as it had been used for previous studies at Cardiff (Whatling
et al. 2020; Bowd et al. 2023), so this new data collected could extend the existing

dataset as it would be directly comparable.
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Figure 2-8 — Modified Cleveland Clinic marker set.
Marker trajectories were captured at 120 Hz as the motion capture cameras were
synchronised to the TTL signal from one of the BVR high-speed cameras (60 Hz)
with a two-times frequency multiplier applied. The trajectories were recorded
alongside the EMG and force plate data using QTM (Qualisys, Sweden).

2.3.3 ELECTROMYOGRAPHY

A total of 14 EMG sensors (Delsys Inc, Massachusetts, USA) were used to record
the electrical activity of 7 muscle targets per leg (Figure 2-9). This configuration of
EMG sensors was chosen similarly to the motion capture marker set, due to its prior
use in studies within the research group at Cardiff (Khatib 2018). The sensor
placements were based on a modified version of the Surface Electromyography for
the Non-invasive Assessment of Muscle (SENIAM) Guidelines (Hermens and Freriks
1997) with the specific targets selected based on previous recommendations to
minimise crosstalk between lower limb surface signals during gait (Hermens et al.
2000).
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Figure 2-9 - Electromyography electrode placement protocol.
Numbers represent electrode labels. Rectus femoris (2, 10); Vastus lateralis (3, 11);
Vastus medialis (4, 12); Biceps femoris (5, 13); Semitendinosus (6, 14);
Gastrocnemius lateral (7, 15); Gastrocnemius medial (8, 16).

The muscle bellies were located by asking the participant to tense specific muscle
groups via a series of activities (e.g. standing on tiptoes) allowing for visual
inspection and palpation of the muscle region by the researcher to locate the largest
part of the muscles. The muscle belly sensor locations were then marked using an
eye liner pencil to indicate the areas that required skin preparation. The placement
areas were shaved to remove hair and exfoliated to remove dry skin, improving the
contact between the skin and EMG sensors. An electro-gel was applied to the
electrodes on the back of each sensor to improve the conductivity of muscle signals.
The EMG sensors were attached to the participant using double-sided stickers and

further secured using an elastin tubing (Tubigrip, MéInlycke Health Care, Sweden).

EMG was collected as part of this protocol to allow for future analysis of muscle
activity patterns, although it was outside the scope of this research to process the

EMG signals due to time constraints.
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2.3.4 DEMOGRAPHIC DATA, ANTHROPOMETRIC DATA, AND
QUESTIONNAIRES

Basic demographic data was collected at the start of each session, including date of

birth, height and weight. The demographics for each participant are given in
Table 2-3.

Table 2-3 — Participant demographics

Participant ID | Sex Age (years) | Height (cm) | Weight (kg)
HV001 M 28 185.0 85.0
HV002 F 57 169.5 62.4
HVO003 M 54 182.0 87.5
HV004 M 52 176.5 67.1
HV005 F 47 158.5 51.0

Each participant was asked to fill out a series of questionnaires during the BVR data
collection session to ascertain details about their perceived general knee health.
These were the Knee Outcome Survey (KOS) (Irrgang et al. 1998), the Knee injury
and Osteoarthritis Outcome Score (KOOS) (Roos et al. 1998), the Oxford Knee
Score (OKS) (Dawson et al. 1998), the Pain Audit Collection System (PACS)
proforma assessment form, and the Western Ontario and McMaster Universities
Osteoarthritis Index (WOMAC) (Bellamy et al. 1988). The mean cohort questionnaire
results, along with the score that deviated the most from the healthy reference score,
are presented in Table 2-4.

Table 2-4 — Cohort questionnaire results

Questionnaire Healthy reference Mean Worst observed
score score*
KOS 85 84.5 83
KOOS 100% 99.0% 97.6%
OKS 48 47.3 46
PACS 0 0 0
WOMAC 0% 0.260% 1.04%

*The participant score that deviated the most from the healthy reference score
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The small amount of cohort deviation from the healthy reference score for each
questionnaire was reflective of the average age of the participants, with slight

deviations being expected with aging and not necessarily indicative of disease.

A copy of the questionnaires can be found in Appendix B. These specific
questionnaires were chosen as they were part of previous studies completed at
Cardiff (Williams 2018; Bowd 2022) so this would allow for possible future

comparison amongst a wider cohort.

2.3.5 STATIC TRIALS

Static trials were obtained at the start of each activity with the participant standing in
a neutral position, arms by their sides. The first static trial captured was motion
capture only, and the resulting trajectories were checked carefully to ensure all
markers were visible in the calibrated motion-capture volume. A static trial with all
markers visible was required for scaling both the V3D models and musculoskeletal

models (MSMs), so this static trial was repeated until all markers were visible.

Static trials, including BVR, were then performed to determine bone poses in a
neutral knee position. BVR static recordings were performed for the gait and lunge
configurations, with participants standing perpendicular to the normal direction of
travel. This ensured their imaged (right) knee remained within the X-ray volume while
the contralateral knee was out of both views. Initially, static trials were collected for
all three activities, but the stair ascent static trial was later removed as, in this setup,
participants stood with one leg on the ground and the other on the first step with a

bent knee, meaning the position was not neutral.

2.3.6 DYNAMIC TRIALS

Each participant performed multiple repeats of the following three dynamic activities:
stair ascent, level gait, and lunge. Before collecting X-ray trials, several practice
repeats were conducted using only motion capture, EMG, force plates, and video
cameras (without BVR). The number of practice trial repeats varied by participant
and activity, depending on participant and researcher confidence in performing the

movement correctly under X-ray conditions.

Once confident with the practice trials, up to five repeats of each activity were
captured with X-rays firing. The number of X-ray trials collected was carefully
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controlled to ensure the radiation exposure remained within the 0.154 mSV limit (per
session) defined under the study ethics.

The first activity consisted of a stair ascent starting with both feet on the floor,
ascending three instrumented steps, and finishing with both feet on the platform at
the top of the staircase. For this activity, the BVR equipment was located around the

first step of the stairs (Figure 2-10).

Figure 2-10 — Collection setup for the stair ascent activity.
The next activity was level overground gait performed at a self-selected speed
across a 7 m walkway. Force plates were located in the central portion of the
walkway, with the BVR equipment centred around FP2 (Figure 2-11) (for context with
motion capture setup see Figure 2-6). To allow the participant to walk with their
natural gait pattern, avoiding force plate targeting, the participants were unaware of
the locations of the force plates. The participant’s starting location was adjusted until
they achieved clean force plate hits (defined as all of the foot stepping within the

boundary of the force plate).

Figure 2-11 — Level gait equipment conguration with target area
marked using masking tape.
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For the earlier participants in the study, blinding to the force plate locations was
maintained throughout the whole activity. However, when carrying out the X-ray
trials, participants were often inconsistent with their heel-strike placement on the
X-ray force plate (FP2, Figure 2-6) which meant that their knee was not always
central in the X-ray imaging volume. Due to the amount of joint movement through
the imaging volume during gait, this activity only captured a small number of frames
of motion, which was decreased further by inaccurate foot placement on the force

plate.

The area of the heel-strike location to ensure good knee placement in the imaging
volume (approximately 0.06 m?) was significantly smaller than the size of the force
plate (0.24 m?) (Figure 2-12). This made it harder to ensure correct foot placement
solely through adjustments to the participant’s starting location. For this reason, once
they had completed their trial repeats with no X-rays (blinded), the later participants
in the study were asked to aim for a marker area on the second force plate for the
X-ray trials (Figure 2-11). This improved consistency of the portion of stance phase

collected during the X-ray trials.
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Figure 2-12 — Diagram of target region (outlined in red) on FP2 for foot
placement during level gait (left) relative to the global coordinate
system (GCS) of the motion-capture laboratory (right).

The ‘X’ denotes the centre of the X-ray volume relative to the FP.

The third activity was a weightbearing, dynamic lunge onto a single force plate where
the participant performed a single continuous movement from an upright standing
position, to a self-selected lunge length and flexion angle, then back to standing
(Figure 2-13).
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Figure 2-13 — Participant carrying out a
dynamic, weightbearing lunge

2.4 DATA PROCESSING

2.4.1 IMAGE SEGMENTATION

The MRI images (Section 2.2) were segmented using Simpleware Scan IP
(Synopsis, United States) to produce 3D models of the structures within the joint. For
the process of model-based image registration (Section 0), models of the cortical
and cancellous bone of the distal femur and proximal tibia were required as part of
the BVR kinematics calculation pipeline.

Firstly, cortical bone masks were created by manually segmenting the desired region
from the high-resolution CISS-3D scan (Figure 2-14). The initial segmented models
were then dilated isotropically by one pixel, smoothed using a recursive Gaussian

filter, and eroded by one pixel to preserve their overall shape.

The recursive Gaussian filter achieved smoothing by modifying each voxel based on
surrounding voxels, with weightings defined by a Gaussian distribution and a
specified standard deviation (o) (Synopsys 2024). An isotropic Gaussian o value of
1.5 was chosen as it reduced the surface noise whilst preserving bony details

needed for image registration.
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Figure 2-14 — 3D femur and tibia models (with recursive Gaussian
smoothing applied) segmented from a CISS-3D scan.

To generate the cancellous bone models, a mask was created using the threshold
tool to select all pixels in the image that were above a defined value, removing pixels
representing cortical bone (Figure 2-15). The cortical bone shows up as darker pixels
than the cancellous bone in the CISS-3D scan due to its lower water content,

allowing for thresholding.

A Boolean operation was then performed to produce a mask only containing pixels
from the thresholding result that intersected with the cortical bone mask. Finally, a
visual inspection was performed of the result of the Boolean operation to ensure that
the cancellous bone mask was fully encased by the cortical mask as a watertight
model was needed to generate the DRR (Section 2.4.2) for image registration
(Section 0). If any of the cancellous pixels were visible through the cortical mask, the

cancellous mask was eroded by the minimum amount required to fully conceal it.
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Figure 2-15 — Threshold applied to CISS-3D pixels to
select only those above a given value.

The bone meshes were exported from Simpleware as .stl files, then converted into
.obj files using MeshLab (Cignoni et al. 2008) for import into the DSX Suite
(HAS-motion, Canada).

Additionally, full bone models for both the femur and tibia were segmented from the
long leg scan for each participant. These were used to define the anatomical

coordinate systems (ACSs) for each bone (Section 2.4.3).

The DESS-3D (or T1-VIBE scan for later participants) was used to segment soft
tissue structures, such as the articular cartilage, to be used for subject-specific
musculoskeletal and finite element modelling in subsequent chapters. More details of
how these structures were segmented and utilised can be found in Chapter 3 and
Chapter 4.

2.4.2 ‘SIMULATED CT' GENERATION

Model-based image registration (Section 0) requires a Digitally Reconstructed
Radiograph (DRR) created from a 3D imaging scan, typically computed tomography
(CT), which is then matched to each X-ray image pair (Gray et al. 2018). DRRs are
synthetic X-ray images generated by tracing rays from each X-ray source to its
corresponding imaging plane through a floating 3D bone model, casting a 2D

radiographic projection. Each pixel in the 2D DRR represents the total accumulated
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CT values along the ray’s path from the X-ray source to the imaging plane
(Russakoff et al. 2005).

When using a CT scan for model based image registration, the segmented models
are exported as partial volumes with voxel radiographic properties that inherently
differ between cortical and cancellous bone (Welte et al. 2022). However, since this
dataset was acquired using MR, ‘simulated CT’ data were generated using the
‘Image Data Generator’ tool (Orient3D, DSX Suite, HAS-Motion, Canada). This tool
constructs an artificial partial CT volume from user-defined voxel size, generic
cortical and cancellous bone density properties, and input masks representing the
inner and outer cortical bone surfaces (Section 2.4.1). This simulated CT was then

used to generate DRR projections during image registration (Section 0).

2.4.3 ANATOMICAL COORDINATE SYSTEM DEFINITION

As well as generating the ‘simulated CT’, Orient3D was also used to apply ACSs to
the segmented bone models using automated algorithms (Miranda et al. 2010)
(Figure 2-16).

Figure 2-16 — Anatomical Coordinate Systems (ACSs) applied to the
femur (left) and tibia (right).

Manually defined landmarks (including an anterior point, as well as proximal and
distal points on the bone shaft) were used to assist the algorithm in determining bone

orientation and isolating specific regions of the bone model.

The algorithm developed by Miranda et al. (2010) generates an ACS for the femur by
first fitting a cylinder to the femoral condyles, with the cylinder’s central vector
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defining the medial-lateral (ML) axis. The inertial axis is then calculated through the
femoral diaphysis, and the anterior-posterior (AP) axis was defined as the cross
product of the inertial and ML axes. Finally, the long axis (compression-distraction,
CD) is determined by recrossing the AP and ML axes. For the tibia, the ACS is
established by isolating the tibial plateau using the inertial axes and positioning a
plane at the largest cross-sectional area (Miranda et al. 2010). In both cases,

defining the ACS relied on correctly calculating the inertial axis.

The automated approach was chosen to ensure consistency across participants,
reducing human error and processing time. However, when applied to partial bone
models, despite the use of additional manual landmarks, the algorithm often
struggled to correctly determine the inertial axes. This led to errors in ACS
orientation, as inaccuracies in isolating the femoral diaphysis or tibial plateau
interfered with the calculation of the axes. These orientation errors affected the

subsequent six DOF kinematics calculations due to crosstalk between axes.

Although Miranda et al. (2010) developed their algorithm for partial distal femur and
proximal tibia 3D geometries, without the traditional use of hip and ankle joint
centres, it was found to perform better and more consistently when these landmarks
could be identified by inputting the full bone geometry into the algorithm

(Figure 2-17). This was likely due to the automated algorithm requiring the femoral
diaphysis length to be at least 55 mm (Miranda et al. 2010), with some bone models

being close to that threshold.
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FEMUR TIBIA
OLDACS NEW ACS OLD ACS NEW ACS

Figure 2-17 — Anatomical Coordinate Systems (ACSs) generated using the automated
algorithms (Miranda et al. 2010) for the femur and tibia. The ‘old’ ACSs were generated
using the partial bone models only and the ‘new’ ACSs were generated using the full
bone models.

Therefore, to ensure physiologically meaningful axes were generated, the full femur
and tibia models, segmented from the long leg scan (Section 2.4.1), were aligned
with the high-resolution partial bone models (MeshMixer, Autodesk, USA), and the
ACSs were recalculated using the full bone geometries. In most cases, the algorithm
successfully identified the inertial axes using only the full bone models. However, for
some femurs, an additional hip joint centre landmark was needed to accurately
define the ACS. For these cases, the centre of the femoral head was identified by
fitting a sphere to the full bone model (Rhino, Robert McNeel & Associates, USA).

This process is summarised in Figure 2-18.
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Figure 2-18 — Showing the process of generating full bone models to calculate bone
ACSs. (1) Full bone models segmented from the long leg scan in Simpleware Scan
IP (Synopsis, United States). (2) Full bone models were aligned with the partial bone
models and exported in their new positions. (3) Hip joint centre (HJC) landmark was
identified by fitting a sphere to the femoral head when the algorithm did not apply
correctly to just the full femur model (Rhino, Robert McNeel & Associates, USA).
(4) ACSs applied to the full bone models ready to be applied to the partial bone
models.

2.4.4 X-RAY CALIBRATION

Before image registration, all X-ray images were calibrated using the corresponding
set of calibration images for each configuration (Section 2.3).

The X-ray images were captured using Photron FASTCAM Mini WX100 high-speed
cameras (Tech Imaging Services, Massachusetts, USA) controlled through Photron
FASTCAM Viewer 4 (PFV4, Tech Imaging Services, Massachusetts, USA). The
images were originally saved in the ‘MRAW’ format when collected and then were
converted into multipage ‘. TIFF’ files for image registration. Each X-ray also had to
be rotated 90 degrees because the cameras were mounted sideways in the detector
units. They were also down sampled from 2048 x 2024 pixels to 1024 x 1024 pixels

to reduce image noise and produce stronger edge contrast (Williams et al. 2026) to
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improve the clarity of the edge detection algorithm results (Section 0), making image

registration easier as the bone edges were clearer.

Once converted, the intensity (or ‘white’) image for each detector was used to correct
for inherent discrepancies in the pixel intensities recorded across the detector. The
‘white threshold’ parameter value for each view was adjusted to remove any pixels
outside the view of the image detector (Figure 2-19). The pixel values of each X-ray
were taken away from the remaining ‘white’ image pixels of the relevant detector
(inverting the image) to perform uniformity correction for all X-ray trials (HAS-Motion
2024a).

Figure 2-19 — Uniformity correction ‘white’ image, with red exclusion zone defining
the circular capture region of the X-ray detector.

Subsequently, the X-rays were corrected for image distortion using the ‘grid’ images
(Figure 2-20). Two main types of distortion need to be corrected: ‘pincushion’
distortion, which occurs due to the curved X-ray photocathode projecting onto a flat
image intensifier, and ‘S-curve’ distortion due to the Earth’s magnetic field affecting
the emitted electrons (Rudin et al. 1991; Cowen et al. 2008). The grids each
contained a uniform pattern of holes so the distortion of each region of this pattern
could be calculated and corrected for. Partial grid holes, which were too small to give
an accurate representation of where the centre of the hole was, were removed by
adjusting the ‘grid centroid size range’ until only the complete grid holes were
selected as valid. Using the centroid locations of all valid grid holes, a displacement
map was calculated and used to move each pixel to its proper location (HAS-Motion
2024a).
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Figure 2-20 — Image distortion correction example, with ‘valid’, full grid holes in blue
and patrtial grid holes round the edges of the images in red.

The 3D configuration of the X-ray source-detector pairs within the X-ray GCS was
determined using images of the LEGO® cube (Knérlein et al. 2016). As well as an
equally spaced array of 64 radio-opaque beads, the cube also contained four wire
shapes (square, circle, triangle, cross) whose centres were identified by the user
(Figure 2-21). The shape centre landmarks helped the software to identify the
centroid location of each bead (numbered 1 to 64). However, as the shape centres
may not have been accurately positioned, they were removed before calculating the

3D configuration of the system from the digitised bead positions.
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Figure 2-21 - X-ray images of the LEGO® cube containing a 3D grid of radio-opaque
beads in the DSX Suite (HAS-motion, USA). The four wire shapes were manually
identified (above) and the beads were automatically numbered using those shape

locations (below).

The residual error between the predicted and identified centroid location of each
bead was then calculated, along with the total residual error across all beads. High
residual errors were seen when centroid locations were difficult to predict, such as
when beads overlapped in one or both X-ray views. These bead centroids were
removed, and the 3D configuration was recalculated. This was repeated iteratively

until only beads with low residuals (<0.4 mm) remained.
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The X-ray images of the pylon and its corresponding motion capture were used to
register the BVR and motion-capture systems together to allow their data to be
viewed in the same coordinate space (Figure 2-22). The beads were identified in the
same order from the same trial image in both QTM (Qualisys, Sweden) and
SlicerAutoscoperM (Akhbari et al. 2019). The positions of the beads were then co-
registered using MATLAB code provided by Dr Michael Rainbow from Queens
University and the transform between the motion-capture GCS and the BVR GCS
was calculated to allow for conversion between the two. This works by calculating
the optimal rotation matrix between the centroid of the six beads in the BVR
coordinate system and the motion capture coordinate system using singular value
decomposition (Soéderkvist and Wedin 1993; Challis 1995), then calculating the
translation between the centroid locations after rotating (Jacobs and van de Bogert
[no date]).
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Markers visualised in motion capture space
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Figure 2-22 — Labelled pylon marker positions from motion capture and BVR co-
registered to calculate the transformation matrix between the two systems.
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2.4.5 MODEL-BASED IMAGE REGISTRATION

Model-based image registration generated pose maps containing the XYZ rotations
and translations required to fully describe the 3D position and orientation of each
bone within the X-ray GCS at each frame. The model-based image registration
processing pipeline was carried out using the DSX Suite (HAS-Motion, USA) on
Windows 10 with an Intel® Core i7 processor, 32.0 GB RAM, and a Nvidia RTX 2080
graphics card.

The DRR from the ‘simulated CT’ (Section 2.4.2) was projected onto each X-ray view
and matched to both views at once for every frame of motion (Figure 2-23). For the
first frame of each new trial, image registration was performed by manually
manipulating the six DOFs of the floating bone model in the 3D view to roughly
position and orientate the DRR, before using finer keyboard controls to precisely

match the bone outlines to both views simultaneously (Figure 2-24).

Figure 2-23 — Screenshot of the 3D view (DSX suite, HAS-motion, Canada) showing the
matched DRRs projected onto a pair of images from a single frame of a level gait trial. The
green and red dots in the foreground represent the location of each X-ray source with a
ray traced to the centre of the detector image to show the configuration of the BVR
equipment.
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View 1 View 2 3D view

1. DRRs loaded in
with the bone ACSs
centred around the X-ray
GCS origin.

2. Rough initial image
registration

DRRs moved to their
rough positions and
orientations within the 3D
view.

3. Precise image
registration

Final bone poses were
defined using fine controls
to make small
adjustments.

Figure 2-24 — Image registration process for the first frame of a new trial. A single frame from a lunge is given here as an example.
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To make image registration of the DRR easier, a Sobel edge detection algorithm
(built into the DSX Suite) was applied to both the X-ray images and the projected
DRR to enhance the edges of the bones (HAS-Motion 2024c) (Figure 2-25). The 3D
bone pose was then added to the pose map defining the XYZ translations and XYZ
Euler angles from the X-ray GCS to the bone’s ACS. This was repeated for every

frame where both the femur and tibia were visible in the trial.

Figure 2-25 — X-ray images with (below) and without (above) the Sobel
edge detection algorithm applied.

For each trial, initially bone poses were generated at approximately every five frames
through the motion by manually adjusting the bone’s position and orientation. Then,
using spline generated poses as an initial starting point for manual matching, the
remaining frames were added to the pose map. When all poses were recorded, each
DOF was adjusted using the graph widget to smooth the unrealistic changes in

DOFs values between frames.
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For the activities where both knees passed through the imaging volume, the
contralateral limb occluded part, or all, of the target limb during some stages of the
activity. When this occurred, the bone outlines became obscured, and the edge
detection algorithm made the image noisier (Figure 2-26). This made image
registration more difficult during those frames. To minimise these effects, the frames
either side of the occlusion were manually matched, and the resulting splines were

used to help inform the poses for the remaining frames affected by occlusion.

Edge detection algorithm applied when  Same image but with no filter applied.
the contralateral limb is obscuring the
imaged knee

Figure 2-26 — Extreme example of occlusion by the contralateral limb.
The final matched bone poses were visualised as a continuous motion using FEBIio’s
‘Kinemat’ tool (Maas et al. 2012) to see if the movements produced looked
physiologically reasonable. This was particularly valuable during sections of motion
where the contralateral limb obscured the bone being matched in one or both X-ray

views, as this was where it was hardest to perform image registration.

2.4.6 TRIAL SELECTION CRITERIA

Due to the substantial amount of time required to complete image registration for a
single trial, only one trial per activity was processed for each participant. To
qualitatively assess the X-ray trials to pick the “best” trial repeat for image

registration, the following set of criteria were defined:
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e Discount any trials where the activity was not performed correctly (e.g. the
participant did not follow the instructions correctly/there was no clean hit of the
‘X-ray’ force plate).

e Discount trials where the X-ray images didn’t fully capture the participant
moving through the volume.

e Select the trial with the greatest number of “trackable frames” (frames where a
substantial proportion of the outline of all bones to be tracked are clearly
visible). The number of trackable frames can be calculated by total frames of
movement (count from first trackable frame to the last trackable frame) minus
the number of frames with contralateral limb obscuring one/both bones, or the
bones going out of shot (e.g. at peak lunge).

e |f two or more trials for a particular activity have a similar number of “trackable
frames” consider which has the better additional data
(motion capture/EMG/etc.) and if image registration has already been started

on any of them.

All X-ray trials were examined using the above criteria, and one trial was selected for

each activity resulting in a set of three processed X-ray trials for each participant.

2.4.7 CALCULATING BIPLANE VIDEORADIOGRAPHY TIBIOFEMORAL
KINEMATICS

Once image registration was completed for each trial, the bone pose at each frame
of motion was converted into a 4x4 transformation matrix within the software (X4D,
DSX Suite, C-Motion). A text file was exported for each bone per trial, where a line of
text contained the transformation matrix between the X-ray laboratory GCS and the

bone’s ACS at each frame.

Custom MATLAB code was written to calculate the 6 DOF kinematics of the TF joint
of the tibia relative to the femur at each frame (Grood and Suntay 1983). This code
was also used to filter the resulting kinematics. An adaptive low-pass Butterworth

filter (cut-off frequency range 5-10 Hz) was applied (Erer 2007).

6 DOF kinematics were also calculated after redefining the tibial ACS to be aligned
the femoral ACS in the MRI scan position. This normalised differences in bone origin

locations between participants, particularly seen in the translations.
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The largest offsets were seen in CD as this was the most affected by knee size (due
to the Sl offset in the ACSs). By accounting for these offsets, compression was
standardised, enabling direct comparison across participants. This approached was
also commonly used to define joint distraction in literature (Gray et al. 2019;
Thomeer et al. 2020; Thomeer et al. 2021).

2.4.8 MARKER-BASED MOTION CAPTURE KINEMATICS

An overview of marker-based motion capture data processing is shown in Figure

2-27 and explained in more detail below.

AIM MODEL

y

Figure 2-27 — A) Static trial marker data captured in QTM (Qualysis, Sweden) B) Marker
trajectories manually identified and labelled. One static and one dynamic trial were manually
labelled to generate the Automatic Identification of Markers (AIM) model. C) A model was
created in Visual3D (V3D, HAS-Motion, Canada) by scaling virtual body segments using the
static trial marker positions. D) The AIM model was applied to all remaining trials, including
dynamic motions. E) Joint kinematics and kinetics data was calculated by applying the V3D
model to the dynamic trials. Gait event markers, such as heel-strike (HS) and toe-off (TO) were
also calculated during this step.
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Marker trajectory identification was performed using QTM (Qualisys, Sweden).
Trajectories were labelled manually for the first static and dynamic trial; these two
trials were then used to generate an Automatic Identification of Markers (AIM) model

which was applied to subsequent dynamic and static trials.

As discussed in Section 2.2.1, the arms of the BVR equipment occasionally
obscured the marker trajectories during dynamic trials. Marker trajectories gaps of
fewer than 15 frames were filled using a polynomial algorithm, while larger gaps — or
those at the start or end of a movement — were reconstructed using a relational fill,

which used three tracked marker trajectories to estimate the position of a fourth.

When tracking the marker trajectories from the first participant’s data collection
session, a lot of marker dropout was discovered. This increased the processing time,
as more manual intervention was required to piece together short trajectory
segments and perform additional gap-filling. To improve data quality and reduce
these issues in subsequent sessions, camera positions were optimised (Figure 2-28)
(Section 2.3.2). The full location map of the final camera positions, including the
camera heights and location of the X-ray equipment relative to the GCS can be

found in the data collection protocol in Appendix B.
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Before After

Figure 2-28 — Camera positions before (left) and after (right) optimising their positions in the
room. ‘FP’ indicates a force plate. The final laboratory setup (right) shows the additional force
plate added, as well as the position of the instrumented stairs within the room.

Once the camera positions had been optimised, there was little-to-no marker dropout
for the gait and lunge activities. However, the stair ascent activity still had some
marker dropout in all trials (particularly the foot and ankle markers) due to the
participant having to position their foot close to the X-ray detector and the higher

stairs blocking the lower ones.

Complete marker trajectories were exported as C3D files and imported into Visual3D
(HAS-Motion, Canada). A previously defined Visual3D pipeline was used to calculate
the TF joint rotations throughout each trial (Bowd 2022). During this pipeline, virtual
segments were created, and a generic model scaled using the relative marker

positions and the participant’s body weight.
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The CODA pelvis (Codamotion Ltd., United Kingdom) was chosen as it was
equivalent to the MSM pelvis ACS definition in the MSM used in a later chapter
(Chapter 3) (Arnold et al. 2010; Lenhart et al. 2015). The pelvis coordinate system
was defined using the anterior superior iliac spine (ASIS) and sacral markers, with
the origin at the midpoint of the two ASIS markers (HAS-Motion 2024b) (Figure
2-29).

Sacral

) Left ASIS

Right ASIS
X

Figure 2-29 — CODA pelvis axes definition.
Figure adapted from HAS-Motion (2024b).

Time-stamped event markers were used to define the start and end of the stance
phase, or the weightbearing portion of the lunge, defined as the foot making contact
with or leaving the force plate, using a 20 N threshold (Bowd 2022). The pipeline was

adapted to export these event markers, as well as the calculated TF rotations.

2.4.9 RESEARCH QUESTIONS

With the methodology fully defined, fulfilling the overall objective set out at the start
of the Chapter (Section 2.1.2), a series of research questions was developed to
evaluate the robustness of the pipeline. These questions were chosen to
demonstrate how the data collection and processing methods achieve the research

aims (Section 2.1.2), and their rationale is outlined below.

Q1: How well do the different BVR X-ray and motion capture equipment
configurations capture their respective activities?

As this was a pilot study, this was the first protocol developed to capture in-vivo
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kinematics for this specific BVR equipment. Therefore, it is important to assess how
effectively the proposed X-ray equipment configurations were able to image the knee
during all three pilot activities to inform future studies. Capturing full knee motion with
BVR is challenging due to the joint’s large range of motion relative to the small
imaging volume, therefore only a specific portion of the activity, such as stance
phase, can typically be targeted. Understanding which sections of the activities were
captured successfully in this pilot cohort will provide future protocol refinements to
improve consistency, as well as a more comprehensive understanding of the

potential limitations of these specific configurations.

Q2: Are the six DOF TF kinematic trends and magnitudes for this cohort
consistent with results presented in literature?

This question addresses the validity of the pipeline by comparing the calculated TF
kinematics to published values. Demonstrating consistency with established trends
and magnitudes from other studies will confirm if the methodology is suitable for the
proposed application. As this is a novel dataset acquired with a newly developed
protocol, benchmarking against the literature also helps identify any unexpected
differences and builds confidence in the reliability and physiological relevance of the

outputs.

Q3: How does changing the ACS representations alter the kinematic outputs?
TF kinematics in literature are often presented using different bone ACS definitions,
which can substantially affect the resulting kinematic outputs (Section 1.3.3). The
most widely used method for defining TF kinematics is using the Joint Coordinate
System (JCS) set out by Grood and Suntay (1983) recommended by the ISB for
defining femoral and tibial ACSs (Wu et al. 2002). The JCS uses separate ACSs for
the femur and tibia based off bone morphology and defines the rotations and
translations around each respective axes to conform to clinically relevant definitions,

allowing for meaningful application of the output kinematics.

These separate ACS definitions were applied using the automated algorithm by
Miranda et al. (2010) (Section 2.4.3) to compare with BVR results in literature as this
was the most common way TF kinematics were presented (Kozanek et al. 2009;
Gray et al. 2019; Gale and Anderst 2020; Thomeer et al. 2021; Thomeer et al. 2022).
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Using two separate bone ACS definitions and the JCS provides clinically relevant
kinematics. However, this may not be suitable in all contexts. For example, CD of the
knee can be influenced by knee size — larger bones increase the distance between
the femoral and tibial ACSs, which introduces an offset in the CD values. This makes
it harder to compare overall compression patterns across a cohort as the results will
be offset due to knee size variation.

To address this, some studies modify ACS definitions. For example, Gray et al.
(2019) adjusted the tibial origin to align with the femoral origin in an unloaded
extended pose, setting CD to start from zero. Similarly, rigid body modelling
approaches (e.g. Visual3D, OpenSim) often use coincident ACSs in the neutral pose

for simplicity and consistency across participants.

In this study, both approaches were used: one with separate ACSs, as per the JCS,
for comparison with literature, and another with coincident ACSs to reflect the
definitions used in the V3D model (Section 2.4.8) as well as the OpenSim Model
used in the MSM pipeline in the following Chapter. Comparing these outputs helps
highlight how ACS definitions influence interpretation and comparability of TF

kinematic results.

Q4: Do the secondary TF kinematics (all DOFs except flexion) couple with
flexion?

Understanding potential coupling between knee flexion and the secondary TF DOFs
is important for correctly modelling the relationship between anatomy and function of
the TF joint (Koo and Koo 2019; Thomeer et al. 2021). Such coupling of the
secondary DOFs to flexion in the knee has previously been reported in literature
(Kozanek et al. 2009; Gray et al. 2019; Koo and Koo 2019; Thomeer et al. 2021).
Identifying these coupled motions is also relevant for a range of biomechanical
applications, from computational modelling to TKR design (Thomeer et al. 2021).

It has been suggested that if all five secondary TF DOFs are found to be coupled
with flexion, the relative bone movements are guided primarily by ligament geometry
and articular contact (Thomeer et al. 2021). This assumption has led to coupling
being incorporated into the design of MSMs by setting the secondary DOFs as
functions of knee flexion to provide better estimates of six DOF TF motion than can

be calculated using motion capture (Smith 2017; Hume et al. 2018). This is true of
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the MSM used to calculate knee joint contact in a later chapter of this thesis
(Chapter 3), therefore, it is important to investigate these relationships within this

cohort to understand potential errors in the model’s assumptions.

Q5: How accurately does marker-based motion capture calculate TF rotations
compared to the gold-standard in-vivo BVR results?

Finally, comparing simultaneous motion capture and BVR knee kinematics enables
the quantification of motion-capture errors on a subject-specific basis. This can help
demonstrate the strengths and weaknesses of the technique in calculating
kinematics, as well as highlighting potential areas for improvement. Despite the
accuracy of motion capture being previously well documented (Sati et al. 1996;
Reinschmidt et al. 1997a; Stagni et al. 2005; Akbarshahi et al. 2010; Tranberg et al.
2011; Tsai et al. 2011; Miranda et al. 2013; Hume et al. 2018), it was included in this
study to serve as a baseline comparison for the dataset used in Chapter 3, where an
algorithm aimed to optimise and improve the secondary kinematic predictions within

a MSM pipeline.

2.4.10 STATISTICAL ANALYSES

The following analyses were performed to help answer the research questions set

out above (Section 2.4.9).

The mean and standard deviation (std) of the results of the five participants were
calculated for each activity for all frames where data were available for all five
participants. This provided a mean overall kinematic profile for each DOF, as well as

showing the variation across the cohort.

To investigate coupling between flexion and the other DOFs (research question 4,
Section 2.4.9), Pearson’s coefficient (r) was calculated for the relationship between
flexion and each DOF in turn, then squared to calculate the coefficient of
determination (r?) — which can range between 0 (no correlation) and 1 (perfect
coupling). The r? threshold values in Table 2-5 were used to define the levels of
correlation between each DOF and flexion. These values were chosen due to their

use in literature (Moore et al. 2015; Thomeer et al. 2021).
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Table 2-5 — r2 thresholds for defining correlation with flexion

Threshold Correlation of the
DOF with flexion
r2>0.7 Coupled

0.5<r?2<0.7 | Moderately correlated

r’<0.5 Weakly correlated

To investigate research question 5 (Section 2.4.9), the rotation angles output from
the marker-based motion capture data using the V3D pipeline (Section 2.4.8) were
compared with the gold-standard rotations from the simultaneous BVR data (Section
2.4.7) using a Bland-Altman analysis (Altman and Bland 1983). This plotted the
difference between the rotations (V3D value minus BVR value) at each frame
against the ‘ground truth’ BVR-calculated rotation for that same frame (Figure 2-30).
It was chosen to plot against BVR on the x-axis as the BVR was the gold-standard
for comparison in this instance. This allowed the distributions of the differences in
V3D-calculated rotations to be visualised, including underestimation and
overestimation. The median and limits of agreement — +1.45 times the interquartile
range (IQR) — were calculated as part of the Bland-Altman analysis. The differences
for all participants were collated and also plotted as violin plots to help visualise the

range of differences (Figure 2-30).
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Figure 2-30 — How the Bland Altman and Violin distribution plots are generated.

2.4.11 VISUALISING MOTION CAPTURE MARKERS IN THE BVR
COORDINATE SPACE

To help answer research question 5 (from Section 2.4.9) and explore the relationship
between BVR and motion-capture kinematics, it was useful to visualise the motion
capture marker positions relative to the underlying bone poses defined from image
registration. As errors in anatomical landmark placement can propagate to the bone

ACS definitions, resulting in constant errors in the subsequent kinematics (Della
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Croce et al. 1999), visual inspection of marker positioning provided insight into how

these placement errors may have influenced the kinematic outputs in this study.

The marker locations were visualised along with the BVR bone positions (Figure
2-31) in the same coordinate space (Section 2.4.3) within the DSX suite (HAS-
Motion, Canada). This was initially done for a static trial to visualise the positions of
the condyle markers relative to the underlying femur position, as these marker
positions were used for scaling of the model in relation to the ACS of the knee bone
segments. The marker positions were then also visualised during dynamic trials to

investigate their relative locations throughout dynamic movement.

bbb At

Figure 2-31 — Marker locations (yellow dots) visualised relative to the BVR bone
positions in DSX (HAS-Motion, Canada).

2.5 RESULTS AND DISCUSSION

The results from five healthy volunteers (3 male/2 female, mean age 47.8 years,
mean BMI 23 kg/m?) were used to demonstrate the pipeline. For each participant,
one repeat of each activity was processed (chosen using the criteria in Section
2.4.6).

100



2.5.1 RESEARCH QUESTION 1: HOW WELL DO THE DIFFERENT BVR X-
RAY AND MOTION CAPTURE EQUIPMENT CONFIGURATIONS
CAPTURE THEIR RESPECTIVE ACTIVITIES?

Due to a small X-ray capture volume compared to the amount of knee motion during
typical dynamic activities, it is difficult to capture the entirety of a movement using
BVR. Hence why portions of a motion are typically targeted (e.g. stance phase of
gait) using unique setups to optimise capture of each specific activity. For this reason
it is important to investigate the performance of individual equipment configurations
and activity combinations (Research Question 1 - Section 2.4.9), as capture quality
will differ due to the path of the knee through the X-ray capture volume, influenced

by individual variation in movement.

The percentage coverage of the targeted portion of each pilot activity was
investigated to demonstrate the effectiveness of the X-ray configurations for
capturing their respective activities. For gait and stair ascent, this was % stance
phase, and for lunge it was % lunge (with 0-100% representing HS-TO). The
percentage where image registration was possible for each of the five participants
was calculated, along with the mean percentage coverage of the cohort and the
percentage coverage where data was available for all five participants (Table 2-6).
Table 2-6 — Percentage of total stance phase (or lunge) captured by BVR for each

participant and the mean of the five participants for each activity. (Frames captured
outside of stance phase - HS to TO - ignored in these calculations)

Gait (%) Stair ascent (%) Lunge (%)

HVO001 62 92 87

HV002 42 100 82

HV003 55 62 63

HVO004 59 100 80

HV005 53 88 78

Mean 54 88 78

% coverage of frames 23 49 62
with data for all
five participants
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Table 2-6 shows variation in percentage coverage across the activities with level gait
presenting the lowest mean coverage of all three activities (mean = 54%), as well as
the lowest absolute percentage stance captured (42%). This low percentage
coverage was due to the higher amount of horizontal movement through the imaging
volume compared to the other activities. The part of stance phase captured during
level gait was also not consistent across the different participants (as seen in Figure
2-33 in Section 2.5.2) resulting only 23% of the total stance phase where data were
available for all five participants simultaneously (occurring at approximately 40-60%
stance). This was due to variations in foot placement on the force plate below the
X-ray equipment, affecting the path of the knee through the X-ray volume changing
which portion of stance was captured, highlighting the difficulty in repeatability when

using BVR to capture level gait in this configuration.

Aiming to reduce this error and increase the consistency of percentage stance
captured, later participants were unblinded to the desired foot placement location
(Section 2.3.6). Although this is not ideal as it may alter natural walking, the
kinematic results from HV003, HV004 and HV0O05 cover a more consistent region of
stance phase (Figure 2-33) suggesting that this unblinding had the desired effect of

creating greater consistency of data collected between participants.

Another limitation of the level gait setup was occlusion, with the contralateral limb at
least partially obstructing the imaged knee in one X-ray view in about half of all
collected frames. However, the BVR system configuration was optimised to prevent
complete occlusion in both views at once, ensuring at least one clear image for
registration throughout (Figure 2-32). Despite this, the occlusion likely reduced
image registration accuracy, as both views are needed for precise 3D bone

positioning.
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Imaged knee
obscured in
View 1 only.

Contralateral limb
visible in both
views, but with
minimal
obstruction of the
bone outlines.

Imaged knee
obscured in
View 2 only.

Figure 2-32 — Three phases of occlusion of the image knee by the contralateral limb
during the stance phase of gait. All images have a level 3 high dynamic range filter applied
for image clarity.

Like level gait, the stair ascent activity also suffered from occlusion of the
contralateral limb. A similar pattern of occlusion occurred, with the target limb being
obscured in one X-ray view, then in the other X-ray view (Figure 2-32), again aiming

for minimal frames where the target knee was occluded in both images at once.

Again, like level gait data capture, the entirety of the stance phase was not captured
for all five participants during stair ascent. However, there was a larger proportion
where data were available for all participants (49% compared to 23% for level gait,

Table 2-6) and a larger percentage of stance phase was covered by each of the
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participants individually (mean coverage = 88%). During stair ascent, the knee
initially moved horizontally (similar to gait), but in the second half of stance phase,
the knee shifted back towards the centre of the imaging volume as the participant’s
centre of mass moved vertically. This vertical motion, combined with the shorter
horizontal step distance on the staircase, resulted in a reduced stride length
compared to level gait. As a result, the knee remained within the X-ray capture

volume for longer, enabling a greater proportion of the stance phase to be recorded.

Stair ascent was the only activity to capture the full stance phase for any participant
(HV002 & HV004). This shows potential to capture a consistent portion of this activity

across more participants, if repeated in the future.

Although stair ascent had the highest mean percentage coverage of stance phase, it
did not have the highest coverage of where data were available for all participants.
This was due to one participant having data captured prior to stance phase but
missing the last ~40% (HV003), and another participant not having the first ~10% of
stance phase captured. This left an overlapping region of 50% of stance phase

collected for all participants.

The lunge activity had the largest overlap where data were available for all
participants (62%, Table 2-6). The participant practiced their lunge to align the
anterior edge of the knee during peak lunge with the extent of the X-ray volume.
Therefore, once the knee came into the volume, it remained in the volume
throughout the lunge until the person began to stand up again, resulting in a
consistent central portion of the activity captured across the cohort. This also meant
that this activity did not suffer from any occlusion as the contralateral limb was not

moved during the lunge.

The mean percentage covered by all participants for lunge (78%) was lower than
stair ascent (88%) because the beginning and end of the lunge was cutoff when the
knee left the X-ray field of view. However, as this activity was intended to look at
larger knee flexion angles, missing the beginning and end of the activity at the lower
flexion angles does not affect the intended purpose of the chosen movement.

Understanding how much of the activity is captured, and which portions are
captured, with a given setup is important for targeting specific phases of motion. For
example, to ensure consistent capture of HS during level gait, the position of the
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BVR equipment relative to the foot position could be adjusted so the frames captured

are centred around HS instead of mid-stance as they are currently.

Overall, the effectiveness of the BVR equipment setup to capture dynamic motion
varied depending on the activity, with level gait being captured poorly but stair ascent

and lunge having a larger proportion of the activity covered.
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2.5.2 RESEARCH QUESTION 2A: ARE THE LEVEL GAIT SIX DOF TF
KINEMATIC TRENDS AND MAGNITUDES FOR THIS COHORT
CONSISTENT WITH RESULTS PRESENTED IN LITERATURE?

The six DOF kinematics of the TF joint during stance phase of level gait for the five
healthy volunteers are shown in Figure 2-33. For each DOF, the mean and %1

standard deviation (std) were plotted for all points where data was available for all

participants.
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Figure 2-33 — Six DOF kinematics of the TF joint calculated for five participants during level
gait. Mean and 1 std calculated for all frames where data were available for all participants.

The TF joint was found to have a peak of flexion at ~20% stance, before extending
through to ~60% stance where the knee began to flex again (Figure 2-33a). Flexion
values ranged from a maximum ~20° to ~-6° (extension). These results were
consistent with the general patterns reported in literature (Section 1.5.1) where a
flexion peak of ~15° occurs during early stance, followed by knee extension towards
neutral (0° flexion), as reported in other studies using BVR to obtain TF kinematics.
(Kozanek et al. 2009; Gray et al. 2019; Gale and Anderst 2020; Thomeer et al. 2020;
Thomeer et al. 2021). Similar variation of some participants’ knees remaining flexed

throughout stance phase, whereas other individuals displayed some joint extension
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towards the end of stance, was also found in studies with larger cohorts (Gale and
Anderst 2020), suggesting this is representative of natural population variation.

AA (Figure 2-33b) was found to have the smallest rotational ROM out of the three
planes; for example, the peak-to-peak ROM (mean * std) for the cohort during 40-
60% stance was 1.1 £ 0.4° for AA, compared to 8.4 + 1.9° for FE and 3.3 £ 1.2° for
IE. This is consistent with literature reporting mid-stance AA ROM of approximately
1-2 + 2° (Kozanek et al. 2009; Myers et al. 2012; Kefala et al. 2017; Gale and
Anderst 2020; Hamilton et al. 2023). Adduction was described as having a non-
descript profile throughout stance phase (Kozanek et al. 2009; Gray et al. 2019; Gale
and Anderst 2020; Thomeer et al. 2020; Thomeer et al. 2021) which was also seen
in this cohort. On average, the knee was found to be slightly adducted throughout
stance, however one participant displayed greater adduction throughout (HV003)
and one participant (HV002) displayed abduction throughout.

The tibia was generally found to be internally rotated relative to the femur in most of
the participants, but one participant (HV002) displayed external rotation instead
(Figure 2-33c). This variation was also seen by Gale and Anderst (2020) who
reported individual differences ranging from only internal rotation throughout stance
to only external rotation. This DOF displayed the second largest rotational ROM,
after flexion. Cohort mean internal rotation during 40-60% stance was 0-2°, similar
to the ranges reported in the literature which generally found the knee to be internally
rotated on average (~0-5°) during stance (Kozanek et al. 2009; Kefala et al. 2017;
Thomeer et al. 2021), or found the mean IE rotation to fluctuate around 0° for the
majority of stance (Gray et al. 2019; Thomeer et al. 2020). However, one study found
the mean of their cohort to be externally rotated (by ~1-5°) for the majority of stance
phase, with mean internal rotation (by ~2°) only occurring at terminal stance (Gale
and Anderst 2020).

Figure 2-33e shows that the tibia was found to be translated anteriorly relative to the
femur throughout stance phase of gait, with the mean translation around 4-5 mm
during 40-60% stance. This was within the mean anterior translation range
presented in literature of ~1-7 mm during mid-stance (Kozanek et al. 2009; Gray et
al. 2019; Gale and Anderst 2020; Thomeer et al. 2020; Thomeer et al. 2021). The

overall trend of this cohort was a slightly increasing anterior translation through
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stance phase. Other BVR studies also found anterior translation during stance
phase, but found the opposite trend of a slight decrease in anterior translation
instead of a slight increase (Gray et al. 2019; Gale and Anderst 2020; Thomeer et al.
2020; Thomeer et al. 2021). Although the overall trends found were different, as the
magnitudes of AP translation ROM found were small (~5 mm), the impact of these
differences on overall knee motion is likely minimal. Further investigation with a
larger cohort would be needed to see if this difference in trend is seen consistently

with this methodology.

The tibia was found to be laterally translated during stance phase for all participants
(Figure 2-33d). The absolute value of lateral translation during stance phase was

large compared with the relative changes seen.

CD was seen to have only a small ROM in each participant, but with variation in the

absolute values seen between participants (Figure 2-33f).

The six DOF TF kinematics were also compared as changes from the relative bone
position from the MRI by making the femoral and tibial ACSs coincident (Section
2.4.10) as this was how some BVR studies have presented their results (Gray et al.
2019; Thomeer et al. 2020; Thomeer et al. 2021). The coincident ACS kinematics
were also plotted against % stance phase (Figure 2-34). Further discussion of how
the kinematics differ when calculated using separate and coincident ACS definitions

can be found in Section 2.5.5.

When comparing the results from the coincident axes, the magnitude of lateral
translation seen, -1 mm to 2.5 mm (Figure 2-34j), is consistent with the range of -1
mm to 3 mm found in other studies during the stance phase of gait (Gray et al. 2019;
Thomeer et al. 2020; Thomeer et al. 2021).
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6 DOF kinematics — LEVEL GAIT — Coincident ACSs
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Figure 2-34 — Six DOF TF kinematics calculated using coincident ACSs for the femur
and tibia.

For CD there was a slight trend of compression, transitioning to slight joint distraction
throughout the stance phase (Figure 2-34l). This was not seen in literature where
mean compression of ~1-2 mm was found throughout the whole of stance phase
(Gray et al. 2019; Thomeer et al. 2020; Thomeer et al. 2021). When defined from
coincident axes, CD translation was found to have the smallest peak-to-peak
translational ROM of 1.1 £ 0.6 mm (mean = std), compared to 1.5 + 0.5 mm for ML
and 1.6 £ 0.7 mm for AP, which was consistent with literature findings (Kozanek et
al. 2009; Thomeer et al. 2020; Thomeer et al. 2021; Hamilton et al. 2023).

Overall, the six DOF kinematics observed during level gait were generally consistent
with the patterns and magnitudes described in literature, although due to the
variation seen within this cohort a larger number of participants would be needed to
confirm the similarity of the mean profiles with those presented in literature.
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2.5.3 RESEARCH QUESTION 2B: ARE THE STAIR ASCENT SIX DOF TF
KINEMATIC TRENDS AND MAGNITUDES FOR THIS COHORT
CONSISTENT WITH RESULTS PRESENTED IN LITERATURE?

The six DOF kinematics of the TF joint during stance phase of a stair ascent for the

five participants are shown in Figure 2-35.

6 DOF kinematics — STAIR ASCENT
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Figure 2-35 — Six DOF TF kinematics calculated for five participants during stair ascent.
Mean and +1 std calculated for all frames where data were available for all participants.

Flexion across all five participants displayed a similar profile (Figure 2-35a), with the
knee being flexed (~50°) at HS, increasing to peak flexion (mean peak = 61.8°) at
around 20% stance phase, before the knee began extending until about 75% stance
where flexion remained relatively constant until just before TO. At the lowest point of
flexion, during the final 25% of stance phase, of the four participants that had BVR
collected during that section of stance, two participants remained slightly flexed,
whilst the other two had slight extension of the knee. These flexion profiles were
generally consistent with those presented in literature (Tsai et al. 2011; Li et al. 2012;
Suzuki et al. 2012; Li et al. 2013; Thomeer et al. 2021), with the peak flexion
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occurring within the range of percentage stance seen in literature and with a mean
peak flexion magnitude of 61.8° sitting in the middle of the range presented in
literature (50-70°). The steady decrease in flexion angle, followed by a steady period
at around ~10° and a slight increase seen in some participants just before TO was
also consistent with the patterns seen by other studies (Tsai et al. 2011; Thomeer et
al. 2021).

As observed for level gait, AA had a non-descript profile. The mean angle was
adducted throughout by ~0.5-1.5° (Figure 2-35b) which was slightly lower than the
1-5° mean adduction range presented in literature (Li et al. 2012; Thomeer et al.
2021). AA also had the smallest ROM of the three rotational DOFs, with the mean
peak-to-peak ROM = std (where data were available for all participants) being 2.4 +
1.3° (compared to 44.0 + 6.8° for FE and 7.8 + 3.3° for |E).

The mean IE rotation of the knee from this dataset (Figure 2-35c) presented internal
rotation throughout the whole of stance phase, with the mean internal rotation
decreasing throughout from 12.9° to 5.9°, matching the ranges of ~4-18° of internal
rotation seen in literature that followed the same pattern of decreasing internal
rotation (Tsai et al. 2011; Li et al. 2012; Thomeer et al. 2021). Although the mean
rotation angle was consistent with literature, a wide ROM was seen across the
cohort. All participants remained internally rotated throughout stance phase, except

HV002 who externally rotated their knee during the last 40% of stance.

Again, as observed for level gait, all participants presented lateral translation
throughout stance phase of stair ascent (Figure 2-35d). Most participants displayed
slight anterior translation (Figure 2-35€), however this was not exclusively seen, as
seen in level gait. Figure 2-35e shows an overall trend of increasing anterior

translation across stance phase of stair ascent.

When compared to the other studies that have presented the translations as
changes of the position of the bone origins relative to one another, the mean
translation was anterior in both this cohort and the literature. However, this cohort
had a lower mean anterior translation (~-0.5 to -2 mm) compared to literature, where
an initial peak (~5 mm) was followed by a decrease toward ~0 mm (Tsai et al. 2011;
Thomeer et al. 2021). In contrast to that trend, the mean translation in this cohort

increased anteriorly.
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6 DOF kinematics — STAIR ASCENT — Coincident ACSs
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Figure 2-36 — Six DOF TF kinematics calculated using coincident ACSs during stair ascent.
The mean ML translation was found to be non-descript with little variation due to the
diverging profiles between participants at the start of the activity. This mean
remained slightly laterally translated throughout, remaining around 1mm, which was

similar to the results presented by Li et al. (2012).

Like with ML translation, the mean CD value remained fairly consistent (around

1 mm compression) due to the variation seen between participants at the start of the
activity. The mean sat between the profiles presented in literature (Tsai et al. 2011;
Thomeer et al. 2021).

Generally, the mean kinematic profiles seen across the six DOFs were consistent
with results in literature (Tsai et al. 2011; Li et al. 2012; Suzuki et al. 2012; Li et al.
2013; Thomeer et al. 2021). However, with only a few studies presenting in-vivo
kinematics of stair ascent using BVR, it is challenging to define the expected
variation across participants. Particularly, for the translations where diverging

kinematic profiles are seen during the higher flexion angles (Figure 2-36), it is hard to
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get a true mean and know if these profiles are representative of a typical healthy
population or not.

2.54 RESEARCH QUESTION 2C: ARE THE WEIGHTBEARING LUNGE
SIX DOF TF KINEMATIC TRENDS AND MAGNITUDES FOR THIS
COHORT CONSISTENT WITH RESULTS PRESENTED IN
LITERATURE?

A dynamic, weightbearing lunge was chosen as an activity as part of this pilot
protocol as it provided an unobscured view of the bones in the knee throughout the
whole activity (unlike gait and stair ascent where the contralateral limb crosses the
target limb for a portion of stance phase). It also enabled investigation of the
secondary DOFs during higher values of flexion, which is important as deep flexion
activities have been highlighted as a key outcome for TKR patients (Weiss et al.
2002; Huddleston et al. 2009; Galvin et al. 2018).

The six DOF kinematics of the TF joint during a weightbearing, dynamic lunge are
shown in Figure 2-37. The % lunge displayed on the x-axis was defined as the
period where the participant was weightbearing and making contact with the force
plate — similarly to how stance phase was defined for the other two activities (Section
2.4.8).
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6 DOF kinematics — LUNGE
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Figure 2-37 - Six DOF TF kinematics calculated for five participants during a
weightbearing lunge. Mean and 1 std calculated for all frames where data were
available for all participants.

Figure 2-37a shows that there was a large range in the maximum TF flexion that
each participant reached during their lunge (64 - 110°). As each participant was
instructed to lunge as deeply as they felt comfortable with, the maximum flexion
angle achieved varied greatly between participants. To investigate larger or a more
specific range of flexion angles, it may be better to utilise an open-chain flexion
activity, as this may allow less-confident participants to achieve higher flexion
angles. However, this does neglect the effects of weightbearing on joint kinematics
so may not be suitable depending on the research question. Alternatively, squatting
and kneeling have been shown to present similar kinematic motions (Galvin et al.
2018) which would allow analysis of the same range of deep flexion but may present
similar obstacles to a weightbearing lunge of difficulty performing the full movement
and balancing for OA sufferers and TKR patients.

This inconsistency in maximum flexion angle reached was also seen across the

studies in literature, with some reaching much higher values of flexion than others as
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some studies modified a typical lunge to reach deeper flexion (Leszko et al. 2011;
Hamai et al. 2013), whereas others only measured to 90° flexion (Myers et al. 2012).
The lack of consistency between studies and participants makes comparisons

difficult, so only general overall trends should be evaluated.

The other 5 DOFs showed variation between participants. The mean profile for AA,
AP, and CD displayed relatively little change during the lunge, each displaying a
non-descript profile. |IE rotation had a slight increase in internal rotation towards the
peak of the lunge (Figure 2-37c); a similar profile was seen in an increase in lateral
translation towards the maximum flexion value, but this was not consistent across all

participants (Figure 2-37f).

The large variation was still seen when the kinematics were calculated using the

coincident axes, with only AP displaying a particular reduction in ROM (Figure 2-38).
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Figure 2-38 — Six DOF TF kinematics calculated using coincident ACSs during a lunge.

Activities involving smooth flexion-extension cycles, such as lunging or open-chain
flexion, are often used to investigate the relationship between flexion and the other
five DOFs in the knee (Leszko et al. 2011; Hamai et al. 2013; Kefala et al. 2017;

Hamilton et al. 2022). To compare with the trends seen in literature, each DOF was
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plotted against flexion (Figure 2-39); this figure is repeated in Section 2.5.6 where
coupling of flexion with the secondary DOFs is discussed further.

Kinematics against flexion — LUNGE - Coincident ACSs
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Figure 2-39 - Six DOF TF kinematics of a lunge (calculated using coincident ACSs)
plotted against flexion angle.

Three participants (HV001, HV002 & HV004) displayed knee adduction throughout
the lunge, consistent with literature (Leszko et al. 2011; Qi et al. 2013; Kefala et al.
2017; Thomeer et al. 2021; Hamilton et al. 2022). These same three participants
also showed an overall trend of increasing adduction as flexion increased (Figure
2-39), also seen by some studies in literature (Leszko et al. 2011; Hamai et al. 2013;
Qi et al. 2013). However, the remaining two participants showed abduction instead,
with HV0O03 in particular demonstrating an opposite trend of increasing abduction

with increased flexion.

TF internal rotation was seen throughout the lunge in all the participants, which was
consistent with literature for the same range of flexion (Leszko et al. 2011; Hamai et
al. 2013; Qi et al. 2013; Kefala et al. 2017; Thomeer et al. 2021; Hamilton et al.
2022).
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On average, the tibia was translated posteriorly throughout which is the opposite of
the results presented in literature which showed increasing anterior translation with
increased flexion (Qi et al. 2013; Kefala et al. 2017; Thomeer et al. 2021; Hamilton et
al. 2022). As the magnitude of the mean posterior translation was small
(approximately 1-2 mm throughout) and the expected correlation with increasing
flexion was not observed, it is assumed that a larger dataset is required to confirm

consistency with literature.

The ML translation seemed to be split into two profiles in this cohort (Figure 2-39),
with one group (HV001, HV002 & HV005) showing lateral translation of the tibia
which increased with flexion, and another group (HV003 & HV004) showing medial
translation. The latter is more consistent with literature, with a slight trend of
increasing medial translation with flexion (Qi et al. 2013; Thomeer et al. 2021;
Hamilton et al. 2022). Kefala et al. (2017) found variation between participants, with
a mixture of TF medial and lateral translation during seated knee FE, thus it is

possible that variation seen in this cohort is representative of the wider population.

CD was inconsistent between the participants, with some participants showing non-
descript joint compression profiles and others displaying distraction proportional

increasing flexion which is contrary to other recent findings (Hamilton et al. 2022).

The high variability of results in the six DOFs of this cohort may indicate usage of
different coordination strategies, possibly arising from the inconsistent performance
of the activity due to the lack of specific instructions. The lunge length, maximum
flexion angle achieved and speed of their lunge may all have affected participant
movement and balance during their lunge, increasing the observed differences. A
more consistent way of carrying out this activity to remove extraneous variables

would allow for easier comparison and interpretation of the data.

In conclusion, the kinematics calculated during lunging for these five participants had
varied similarity with literature. For example, the consistent internal rotation observed
matched literature (Leszko et al. 2011; Hamai et al. 2013; Qi et al. 2013; Kefala et al.
2017; Thomeer et al. 2021; Hamilton et al. 2022), however the posterior translation
calculated contradicted reported trends (Qi et al. 2013; Kefala et al. 2017; Thomeer

et al. 2021; Hamilton et al. 2022). The inconsistency of the execution of the lunge
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between participants may have contributed to the differences seen across the

cohort.

2.5.5 RESEARCH QUESTION 3: HOW DOES CHANGING THE ACS
REPRESENTATIONS ALTER THE KINEMATIC OUTPUTS?

As discussed in Chapter 1.3.3, translations of the TF joint are not always presented
in literature using the standard Grood and Suntay (1983) conventions, and can be
presented as changes relative to an original coincident point instead. By presenting
the kinematics calculated using both separate and coincident ACSs, the effect of

altered coordinate system definition can be investigated.

To investigate the variation in the kinematics calculated using separate and
coincident ACSs (research question 3, Section 2.4.9), the overall cohort ROM was
calculated by subtracting the minimum value of any participant from the maximum
value of any participant for each DOF, for each activity (Table 2-7).

Table 2-7 — Overall Cohort ROM (overall maximum — overall minimum value) for the
three activities comparing the two ACS definitions. A positive difference indicates the

separate ACSs resulted in a larger kinematic ROM; a negative difference indicates
the coincident ACSs resulted in a larger ROM.

LEVEL GAIT STAIR ASCENT LUNGE

Q c @ € o) i< o)

T als g g |8 3 e | & 3 =

8 Qe Q s |8 3|2 & s |8 B |2 & 5

& <35 < = | § Q|35 O £ | § Q|3 O =

@) (@] n < | O < (@) 0w < | 0O < o

Flex (°) | 26.98 |26.37 | 061 |62.18 |6273 |-055 |78.32 |79.16 |-0.84
Abd (°) 10.80 |4.08 [672 |[7.95 |964 |[-169 |[850 |12.21 |-3.72
Ext (°) 18.59 | 12.43 [6.15 |[22.67 |1594 [6.73 |20.69 |16.47 |4.22

Lat (mm) | 10.64 | 4.06 6.58 13.50 | 11.73 | 1.77 14.58 | 13.20 |1.39

Ant (mm) | 6.90 |4.05 2.85 8.66 5.00 3.66 7.56 6.06 1.49

Dist (mm) | 10.53 | 4.27 6.27 10.25 | 4.65 5.60 7.89 6.85 1.04

Table 2-7 shows there was little difference in the flexion ROM between the two
methods calculated during any of the activities (all differences were within 1°). This

would suggest that the separate tibia ACS had a similar alignment to the femoral
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ACS in the sagittal plane leading to minimal observed flexion differences when they
were made coincident. This was likely due to the placement of the leg within the
Tx/Rx Knee 15 Flare MRI Coill, resulting in a neutral knee flexion angle (0°) for the

CISS-3D scan (Section 2.2), from which the coincident axes were defined.

Although the ROMs showed minimal differences during level gait, the flexion
magnitudes from the coincident ACSs (Figure 2-34g) were lower than when
calculated using separate ACSs (Figure 2-33a), although they still displayed a similar

overall profile.

For level gait, the ROM when the changes are defined using coincident axes were all
Found to be smaller than when using separately defined axes in all six DOF (Table
2-7). However, this was not true for the other two activities. For both stair ascent and
lunge, the abduction ROM was greater when calculated using the coincident axes.
Abduction had the smallest rotational ROM during all the activities, demonstrating
that even small differences in axis definition can substantially affect the calculated
range for lower-magnitude motions. This highlights the sensitivity of certain DOFs,
particularly abduction, to ACS setup and reinforces the need for consistency in axis

definitions when comparing results across studies or applications.

When analysing the three translational DOFs calculated using the Grood and Suntay
(1983) approach (Figure 2-33), the translational ROMs were comparable to those
found in the literature (Gale and Anderst 2020). They display large magnitude, and
ranges of magnitude, relative to the ROMs in all three planes. This is representative
of the variation in knee size across participants, resulting in variation in absolute
translational values seen as the bone size differences, will cause offsets in the
relative positions and rotations of the femur and tibia ACSs. This is seen most clearly
in CD (Figure 2-33f) where the translations of 20-30 mm were a result of defining the
femoral ACS between the condyles and the tibial ACS on the tibial plateau.

By making the femoral and tibial ACSs coincident (as described in Section 2.4.7), the
kinematics could be described as changes from a coincident (neutral) position, as
defined from the MRI scan knee alignment, thus reducing inter-participant variation
caused by differences in bone sizes. This resulted in smaller translational ROM
during all activities (Table 2-7) because, when calculated from the coincident starting

point, the translations only represent the relative motion of the bones, removing any
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influence of initial ACS offset on translation magnitudes. This is the reason why
translational DOFs are often presented as changes from a coincident set of axes in
the literature (Gray et al. 2019; Thomeer et al. 2020; Thomeer et al. 2021). It is also
why the coincident ACS definition here resulted in secondary kinematics being closer

to neutral (0°/mm) in all five secondary DOFs.

As the ROMs for the translational DOFs were small across all three activities,
identifying trends from this dataset should be done cautiously, as the results are of a
similar magnitude to the accuracy of BVR.

In addition to affecting the ROM, altering the ACS definitions also influences the
kinematic patterns seen in the secondary DOFs. For example, during stair ascent,
using separate ACSs resulted in generally consistent variation across the entire
activity in the secondary DOFs (Figure 2-35). Whereas, when using the coincident
ACS definitions, AA, ML, and CD demonstrated greater variability between
participants at the beginning of stance phase when flexion was high, before
converging more towards the end of stance phase where the flexion angle was lower

and was changing less (Figure 2-36).

The differences seen between the kinematics when calculated using these two
different ACSs definitions demonstrates the importance of consistency in ACS
choice when comparing kinematics between methods. Different ACS definitions may
be more appropriate for certain applications, for example, if using marker-based
motion capture data, it may be more appropriate to define the joint from a single
coincident set of axes rather than two separate axes.

2.5.6 RESEARCH QUESTION 4: DO THE SECONDARY TF KINEMATICS
(ALL DOFS EXCEPT FLEXION) COUPLE WITH FLEXION?

To investigate the coupling between flexion and the other DOFs (Question 4,
Section 2.4.9), each of the kinematics calculated using the coincident ACSs were
plotted against their flexion values at each frame (Figure 2-40, Figure 2-41 & Figure
2-42) and coefficient of determination (r?) was calculated (Section 2.4.10) for each
activity (Table 2-8).
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Flexion (%)

Lateral Translation (mm)

Figure 2-40 shows each DOF plotted against flexion for all frames of level gait for

each participant. These results highlight the variation in how secondary kinematics

are related to flexion angle in different participants. Some DOFs, such as abduction,

external rotation and distraction, display an overall decreasing trend with increasing

flexion, however, on examination of individual results, this pattern is less clear.

Kinematics against flexion — LEVEL GAIT — Coincident ACSs
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Figure 2-40 — Six DOF TF kinematics of level gait (calculated using coincident ACSs)

plotted against flexion angle.

The overall trends observed for the level gait activity were not observed across the

other activities. When looking at the secondary DOFs for stair ascent (Figure 2-41),

the variation in secondary kinematics between participants increases as flexion

increases. This is seen particularly in abduction and lateral translation where the

results are converged (at around 0° flexion) then diverge as flexion reaches its peak

for this activity.
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Kinematics against flexion — STAIR ASCENT — Coincident ACSs
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Figure 2-41 - Six DOF TF kinematics of stair ascent (calculated using coincident
ACSs) plotted against flexion angle.

Looking at the individual profiles, there is some apparent correlation between the
diverging kinematics. For example, HV001 displays an overall decrease in abduction
with increasing flexion during stair ascent, with the largest adduction value of the five
participants at peak flexion; HV001 also had the highest lateral translation which
increased with increasing flexion. HV003, however, presented the opposite of both
these trends, with increasing adduction and medial translation (reaching the highest
values of the cohort for both of these). These results suggest potential relationships
between some of the secondary DOFs and further investigation is required to fully

describe knee motion.

As with stair ascent, greater variation was seen between participants when plotting
the secondary kinematics against flexion during lunge (Figure 2-42), than during

level gait. The trends seen for abduction, lateral translation and distraction for each
individual follow a fairly consistent path for the increase (solid line) and subsequent

decrease (dashed line) in flexion, even if each participant’s kinematic profile is
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different. However, this consistency is not seen in external rotation where there is a
difference in the profile between the increase (solid line) and the decrease (dashed
line) in flexion, with all participants displaying larger internal rotation when lunging
forward than when they were returning to an upright position. This increased internal
rotation during the flexion increase may be to stabilise the knee during weight
acceptance.

Kinematics against flexion — LUNGE — Coincident ACSs
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Figure 2-42 - Six DOF TF kinematics of a lunge (calculated using coincident ACSs)
plotted against flexion angle. (This figure is the same as Figure 2-39 in Section 2.5.4)

From literature, clear trends were shown for several of the secondary DOFs when
plotted against knee flexion angle during weight bearing or open-chain flexion
activities. This included increasing internal rotation of the tibia relative to the femur
with increasing flexion (Leszko et al. 2011; Hamai et al. 2013; Kefala et al. 2017,
Hamilton et al. 2022). Although this was not seen in the whole cohort, some of the

individual kinematic profiles (for example, HV001) displayed this trend (Figure 2-42).

The r? values of each DOF for each activity are presented in Table 2-8. These were
evaluated against the threshold values of 20.7 to define coupling (highlighted in

green), 0.5 < r? < 0.7 for moderate correlation (highlighted in yellow) and < 0.5 for
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weak correlation between a secondary DOF and flexion (Section 2.4.10). R?is
presented per activity for each participant, then the mean of the five individual r?
values for the activity, followed by the r? of all data from all participants pooled
(combined), and finally the r? of the mean kinematic profile (where data were
available for all five participants).

Table 2-8 - Coefficient of determination (r?) between flexion and each DOF for the
three different activities.

2 Gait
FE AA IE ML AP CD
HVO001 1.000| 0.798 | 0.896| 0.874| 0.697 | 0.903
HV002 1.000 | 0.234| 0.586| 0.493| 0.112| 0.593
HV003 1.000 | 0.403| 0.015| 0.397| 0.470| 0.988
HV004 1.000| 0.379| 0.759| 0.430| 0.475| 0.932
HV005 1.000| 0.199| 0.384| 0.025| 0.743| 0.333
Average (mean) 1.000 | 0.403| 0.528| 0.444 | 0.499| 0.750
Combined 1.000| 0.399| 0.116| 0.093| 0.065| 0.037
Mean kinematics 1.000 | 0.915| 0.851| 0.401| 0.392| 0.965
2 Stair Ascent
FE AA IE ML AP CD
HV001 1.000 | 0.933| 0.861| 0.908 | 0.206 | 0.555
HV002 1.000| 0.911| 0.954| 0.002| 0.432| 0.850
HV003 1.000| 0.689| 0.303| 0.879| 0.445| 0.743
HV004 1.000 | 0.683| 0.655| 0.747 | 0.468 | 0.007
HV005 1.000 | 0.426| 0.091| 0.212| 0.357| 0.003
Average (mean) 1.000| 0.728| 0.573| 0.549 | 0.382| 0.432
Combined 1.000 | 0.259| 0.106| 0.069| 0.049| 0.039
Mean kinematics 1.000| 0.390| 0914 | 0.144| 0.466 | 0.003
2 Lunge
FE AA IE ML AP CD
HV001 1.000 | 0.947| 0.756| 0.857| 0.790| 0.670
HV002 1.000 | 0.257| 0.215| 0.489| 0.097| 0.738
HV003 1.000 | 0.816| 0.219| 0.031| 0.631| 0.421
HV004 1.000| 0.303| 0.366 | 0.848 | 0.086| 0.744
HV005 1.000 | 0.125| 0.003| 0.968 | 0.003| 0.731
Average (mean) 1.000| 0.490| 0.312| 0.639| 0.321| 0.661
Combined 1.000 | 0.061| 0.027| 0.021| 0.016| 0.014
Mean kinematics 1.000 | 0.011| 0.052| 0.821| 0.408 | 0.894
\ Coupled \ \ Moderately correlated | | Weakly correlated

‘Average (mean)’ is the mean of the five r? values of each participant for the given
activity (the five values above in the column). ‘Combined’ is the r? of the pooled
kinematic data points of the whole cohort. ‘Mean kinematics’ is the r? of the mean
kinematic profile of the cohort (where data were available for all five participants).
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The results in Table 2-8 show that the degree of coupling varied between
participants, activities, and DOFs with no consistent pattern. Some participants, like
HV001, show high r? values between flexion and the secondary DOFs during all
three activities. For HV001, only AP translation during stair ascent was found to be
weakly correlated to flexion, with all other DOFs moderately correlated or coupled
across the three activities. However, other participants display weaker correlations in
general between flexion and the secondary DOFs; for example, HV005 found weak
correlations of r’= 0.03 for both IE rotation and AP translation during the lunge. This
suggests that coupling of the secondary coordinates to flexion may be dependent on

the movement patterns of an individual.

To investigate coupling with flexion across the cohort, three different metrics were
calculated. Firstly, the mean of the five individual r? values was calculated. Next, the
r? of all pooled data point values across all participants was calculated. Finally,

r? was calculated by inputting mean kinematic profiles of the cohort (including all
frames where data were available for all participants). Out of these three metrics, the
combined dataset found the lowest r? values, with all secondary DOFs weakly
correlated to flexion during all three activities. This is due to the different trends seen
between the participants, so although there may be correlations between flexion and
the secondary DOFs on an individual level, this is not seen when the data are

pooled.

When taking the average of the five r? values, there was some coupling and
moderate correlations seen between flexion and the secondary DOFs, but it was not
consistent across the three activities. This was reflective of the inter- and intra-
participant variability in the r? values calculated across the activities.

The r? value of the mean input kinematic profile have the highest levels of correlation
during level gait of the three metrics. This is likely due to the small number of frames
of input data where the mean could be calculated from all five participants not
capturing the variation seen throughout the whole of stance phase. This is the
method used to calculate coupling between flexion and the other DOFs in literature
(Kozanek et al. 2009; Gray et al. 2019; Thomeer et al. 2021). Whereas in this study
adduction was found to be coupled with flexion during stance phase of level gait, it

was only found to be moderately (Kozanek et al. 2009; Thomeer et al. 2021) or
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weakly (Gray et al. 2019) correlated with flexion in literature. External rotation was
only found to be coupled with flexion by one other study (Gray et al. 2019), with the

others reporting moderate correlation (Kozanek et al. 2009; Thomeer et al. 2021).

In literature, all the translational DOFs were found to be coupled with flexion during
level gait (Kozanek et al. 2009; Gray et al. 2019; Thomeer et al. 2021), however in
this cohort, only compression was found to be correlated with flexion; anterior and

medial translation were both found to be weakly correlated with flexion.

For stair ascent, the only secondary DOF coupled with flexion was external rotation,
with all other DOFs weakly correlated. This disagreed with the results presented by
one other study (Thomeer et al. 2021) which found all secondary DOFs to be at least
moderately coupled with flexion during stair ascent.

During lunging, the mean kinematic profile was found to be coupled with flexion for
medial translation and compression but weakly correlated for the other secondary
DOFs. Both rotational DOFs were found to have very weak correlations (r?> <0.1). In
contrast, Thomeer et al. (2021) found coupling between flexion and all five
secondary DOFs during a different high flexion activity (open-chain flexion reaching
around 100°) with r? values >0.8. This suggests that although the lunge provides a
high flexion ROM to calculate coupling with, it may not be suitable as weightbearing
changes the kinematic profile during the increase and decrease of flexion (as seen

with external rotation in Figure 2-42).

Despite r? being calculated from the mean kinematic profile in literature, the results in
Table 2-8 suggest it may not be the most suitable method for assessing coupling
between flexion and the secondary DOFs for a cohort due to the variation seen in
levels of correlation between individuals. When the mean profile of all kinematics is
used for this calculation, the opposing trends within the dataset cancel each other
out and remove some of the variation seen. Calculating the cohort mean after the r?
values have been calculated individually may give a better representation of the
coupling for the cohort as this will reflect the participants with strong and weak
correlations. Particularly for this study where the number of participants was small
and the mean could only be calculated over part of stance phase, the r? of the mean
kinematic profile is not a good representation of relationship between flexion and the
other DOFs.
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Another factor affecting the strength of correlation would be the filtering applied to
the output kinematics. Heavier filtering would smooth the data more, increasing the
chance of the r? value exceeding the threshold for coupling. As the data in this study
was lightly filtered to preserve kinematic features, residual noise may be contributing

to lower r? values.

Understanding the coupling between flexion and the secondary DOFs facilitates
correct modelling of knee function and its relation to anatomy (Koo and Koo 2019;
Thomeer et al. 2021), particularly when using the assumption of coupling to drive
MSMs. If the coupling relied on to improve MSM estimates of TF motion compared
with marker-based motion capture (Smith 2017; Hume et al. 2018) does not exist,
then the resulting kinematics generated will not be representative of in-vivo motion.
For example, in this study, anterior translation was only weakly correlated with
flexion across all three activities for the three average cohort metrics, as well as for
all five participants during stair ascent. This suggests that anterior translation may

not be accurately predicted by a function of flexion.

While weakly correlated DOFs may not be well captured by generic functions of
flexion, the variation observed between participants in the relationships between
flexion and each secondary DOF (Figure 2-40, Figure 2-41 & Figure 2-42) suggests
that personalisation within MSM pipelines could still be valuable. Pipelines that use
scaled models or incorporate personalised geometries to create individualised
functions of flexion (such as the ones described in Chapter 3) may better represent
participant-specific coupling patterns and, therefore, capture the individual kinematic

variations.

2.5.7 RESEARCH QUESTION 5: HOW DO MARKER-BASED MOTION
CAPTURE TF ROTATIONS COMPARE TO THE GOLD-STANDARD
IN-VIVO BVR RESULTS?

To investigate the accuracy of the marker-based motion capture rotations, the results
from the V3D pipeline (Section 2.4.8) were compared with the BVR kinematics,
defined as a ‘gold-standard’. This is because the BVR approach is expected to
produce higher fidelity data (Sati et al. 1996; Stagni et al. 2005; Akbarshahi et al.
2010; Tsai et al. 2011). Although the accuracy of marker-based motion capture for
the knee has been well documented (Sati et al. 1996; Reinschmidt et al. 1997a;
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Stagni et al. 2005; Akbarshahi et al. 2010; Tranberg et al. 2011; Tsai et al. 2011;
Miranda et al. 2013; Hume et al. 2018), it was included as part of this study because
it provides a comparator for potentially improved secondary kinematic predictions
(from the same data collection sessions) for use in the MSM pipeline utilised in a

later chapter (Chapter 3).

For this comparison, the V3D rotations were compared with the BVR kinematics
calculated using the coincident ACSs as this relates to how the knee joint is defined
in the V3D model (Section 2.5.5).

The mean rotations %1 std from the V3D and BVR pipelines were plotted for each
activity (Figure 2-43, Figure 2-44, Figure 2-45). For clarity, the individual kinematics
were plotted along with the mean +1 std for BVR in the first column and V3D in the
second column, with the mean %1 std for both plotted in the third column for each of
the three activities in turn. The results of the Bland-Altman analysis (Section 2.4.10)
for each rotational DOF were included as a fourth column. The Bland-Altman
analysis presents the difference between the V3D rotation and the BVR rotation at
each frame (where both were calculated), plotted against the gold-standard BVR
‘ground-truth’ value. The median difference and £1.45 interquartile range (IQR) of

the whole dataset are also indicated on each Bland-Altman plot.

Only the TF rotations were included in this analysis as translations are not typically
reported from marker-based motion capture due to the known inaccuracies
associated with the technique. Previously reported translational errors between
marker-based and BVR calculations are around 20 mm (Miranda et al. 2013; Hume
et al. 2018), thus significantly larger than the expected ROM in these DOFs, Marker-

based motion capture is therefore unsuitable for measuring translations.
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Figure 2-43 — TF rotations during gait calculated Visual3D compared with BVR, with individual results as well as mean +1 std plotted
for comparison. Bland-Altman analysis results are also included in the fourth column.
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Figure 2-44 - TF rotations during stair ascent calculated Visual3D compared with BVR, with individual results as well as mean 1 std
plotted for comparison. Bland-Altman analysis results are also included in the fourth column.
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Figure 2-45 - TF rotations during lunge calculated Visual3D compared with BVR, with individual results as well as mean +1 std plotted
for comparison. Bland-Altman analysis results are also included in the fourth column.
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As seen in the graphs presented in Figure 2-43, the V3D calculated flexion angle
during level gait is higher than BVR by a median of 14°. The Bland-Altman plot also
shows that as the BVR calculated flexion increases, the difference between V3D and
BVR decreases. The flexion profiles between the recorded section of BVR and the

V3D angles are generally similar, with a consistent offset.

For both AA and IE during gait, the ranges calculated by V3D are much higher than
BVR, reflected in the magnitude of the standard deviations. Despite this, the mean
values calculated are similar between the two methods, with an absolute median

difference of less than a degree for both angles.

For both BVR and V3D, the mean abduction angle remains around 0° for the central
portion of stance phase of gait (where BVR kinematics were available) with a non-
descript profile in that section. For three of the participants, absolute values of
abduction are within a couple of degrees of the BVR calculated values, but HV003
has higher abduction and HV002 has higher adduction causing the standard
deviation to be larger in the V3D than BVR results.

External rotation during gait shows the greatest difference out of the three rotational
DOFs due to the large variation calculated from the marker data. For example, in
Figure 2-43, the maximum difference found was 17.5° for HV004.

As with level gait, the V3D results for stair ascent show a similar offset from the BVR
results, with a median difference of 13° (Figure 2-44). The Bland-Altman plot
indicated greater differences at the lowest and highest degrees of BVR flexion, while
mid-range flexion values (10-45°) showed more consistent differences. This pattern
was also evident in the kinematics graphs, where between ~30-50% of stance
phase, both V3D and BVR have a similar rate of decrease in flexion angle, though
with a magnitude that is offset.

The largest differences occurred at the start and end of each set of collected BVR
results, corresponding to the region of maximum and minimum flexion angles. V3D
found the peak of stance during stair ascent to be not only higher in magnitude than
BVR but also occurring earlier in the stance phase, increasing the differences
observed at peak flexion. Aside from this difference in occurrence of peak flexion,
the flexion profiles for each individual were similar between V3D and BVR, just with
an offset. Despite HV005 exhibiting a higher flexion angle and a more variable rate
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of change during flexion decrease, both V3D and BVR captured the same variation
in gradient.

V3D abduction ROM was larger than the BVR ROM, reflected in the Bland-Altman
plot where there is a large spread of differences across a small range of BVR

abduction values.

Both BVR and V3D mean curves show internal rotation throughout 20-60% stance
phase of stair ascent, however BVR calculated greater internal rotation compared to
V3D. For the participants where the final 20% of stance phase was captured by
BVR, the data shows no further change of internal rotation, whereas the V3D

calculated an increase into external rotation in the same period.

Similarly to the other two activities, V3D overestimated flexion during the lunge, with
the same median difference as observed for level gait (14°) (Figure 2-45). The
flexion profiles were also similar between the two datasets, with peak flexion
occurring at a similar percentage of the stance phase for each individual. For
example, HV005 reached peak flexion later, as they took longer to lunge than to
return upright. This pattern was reflected in both V3D and BVR flexion profiles.
HV005 also exhibited the highest flexion of all participants in both datasets, while
HV004 had the lowest peak flexion in both. The order of participants by peak flexion
magnitude was the same across both methods, supporting the possibility of a

consistent offset.

Both V3D and BVR methods found the knee to be adducted on average during the
lunge, with both methods showing relatively large standard deviations. V3D generally
overestimated adduction during lunge. The adduction of one participant in particular
(HV001) was poorly estimated with the BVR approach calculating the greatest
adduction out of the cohort, whereas V3D found the same participant to have one of

the lowest adduction values, with some abduction for a portion of the lunge.

The knee was found to be externally rotated on average during the lunge, with the
V3D pipeline displaying a similar profile to the BVR, however the BVR found greater
internal rotation (by a median of 8.4°) with a lower standard deviation. As with other
rotations, the accuracy of the V3D-calculated rotation varied between participants.
For instance, HV002 had one of the highest BVR internal rotations, but V3D
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calculated it to be externally rotated throughout, significantly affecting the overall
accuracy of external rotation for this activity.

The distribution of the differences for each rotation during each activity from the
Bland-Altman analyses is shown in Figure 2-46, presented as violin plots with
overlaid box plots to indicate the median difference and £IQR, along with any

outliers.
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Figure 2-46 - Violin plots with overlayed boxplots showing the distribution of the
differences between V3D and BVR rotations during the three activities. (Flex/Ext =
flexion/extension, Abd/Add = abduction/adduction, Ext/Int Rot = external/internal rotation)
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For all three activities, external rotation exhibited the largest range of differences.
While the median difference for external rotation in level gait was within 1°, for the
other two activities involving higher flexion, the median difference was
overestimated, with a wider distribution. Adduction was the most accurate of the
three rotations with the smallest median difference in all three activities. The
consistent offset in flexion across the activities is also highlighted in Figure 2-46 by

the position of the violin plots relative to the 0° difference.

The limits of agreement (+1.45IQR) in flexion were relatively small compared to the
ROM in the sagittal plane, whereas the limits of agreement for abduction and
external rotation were much larger relative to their ROM. External rotation, in
particular, had a large IQR, highlighting the challenge of estimating this rotation from
marker-based motion capture data.

A similar median difference in flexion angle between V3D and BVR derived rotations
was seen across all activities (Figure 2-43, Figure 2-44 & Figure 2-45), indicating a
consistent offset in calculation of the V3D flexion angles compared to the gold-
standard BVR flexion. Although other studies have shown overestimation of flexion
from marker-based motion capture data, with maximum errors of 9° (Miranda et al.
2013), the differences found in this study were higher than expected, displaying a
constant offset.

To investigate if the offset was due to the marker positioning relative to the bone, as
this is a known cause of a constant offset in marker-based motion capture
kinematics (Della Croce et al. 1999), the markers were visualised in DSX (HAS-
Motion, Canada) as described in Section 2.4.11 (Figure 2-47).
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Figure 2-47 — Markers (yellow) visualised in X4D (DSX Suite, HAS-Motion,
Canada) relative the BVR femur pose from a single frame of a static trial. The
markers are shown with the bone model (above) and the femur ACS (below) from
two views (a sagittal view on the left and a transverse view on the right).
Marker definitions: Med = medial femoral condyle, Lat = lateral femoral condyle,
Pat = patella, Ankle Med/Lat = medial/lateral malleolus.

The anterior offset of the femoral condyle markers relative to the underlying bone,
seen in the static trial (Figure 2-47), was also seen during the dynamic trials. This
was consistent with the overestimation of flexion seen in the kinematic results from
all three activities (Figure 2-43, Figure 2-44 & Figure 2-45). This marker offset
creates a more anterior ML axis in the V3D model as compared to the BVR bone
model which could explain the consistent overestimation of median flexion observed

across all activities.

The V3D outputs are not only showing a systematic error due incorrect marker
placement; they are also subject to unpredictable errors in relation to soft tissue
artefact. The consequences of these combined errors can lead to incorrect

interpretation of joint ROM, a parameter often used as an indicator of joint health and
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recovery (Minns 2005; McCarthy et al. 2013; Oka et al. 2020). Furthermore, a higher
joint flexion angle, calculated by computational models using this data, would lead to
an anterior shift in the joint contact location on the tibial plateau and increased

calculated contact forces.

The impact of the femoral condyle marker misplacement was particularly evident in
stair ascent at the peak flexion and extension values (Figure 2-44). When markers
are placed anteriorly on the skin, their movement differs from the underlying bone,
leading to greater soft tissue artefact, particularly as the skin stretches at peak
flexion. This explains why the V3D-calculated peak flexion occurred earlier in stance
phase, as the anteriorly placed skin markers reach their ‘peak flexion’ location earlier

than the actual underlying bone anatomical markers.

The findings of this study are consistent with previous research that has reported the
tendency for overestimation of joint angles when using skin markers (Reinschmidt et
al. 1997a), particularly for external rotation, which exhibited a large range of V3D-
calculated values compared to BVR-calculated rotations (Figure 2-46). Although AA
and |E rotations showed good agreement in terms of median differences during gait
(Figure 2-43), the ROM in each DOF from the V3D results highlights variable
accuracy. In some participants, differences between V3D and BVR calculated joint
angles were larger than the magnitude of the rotation calculated from BVR,
demonstrating the limitation of marker-based motion capture in estimating secondary

knee rotations.

Adduction was the most accurate of the three rotations, with the smallest median
difference across all activities. However, the accuracy of AA varied between
participants and activities, showing inconsistency in motion capture results. For level
gait, AA was generally accurate (median = 0.88°), but the results were skewed by
two participants (Figure 2-43); HV002 had the largest adduction angle calculated by
V3D, leading to consistently lower differences, below the lower IQR boundary

of -3.4°, whereas HV003 exhibited greater abduction in the V3D results but remained
within the upper IQR boundary. However, these extremes were not consistent across
other activities. For example, during stair ascent and lunge, HV001 had the largest
absolute differences in abduction (Figure 2-44 & Figure 2-45), further demonstrating

variability in AA calculation.
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IE had particularly poor accuracy for stair ascent and lunge (Figure 2-46), with a
greater IQR than flexion despite having a much smaller ROM. This suggests that
higher flexion activities introduce greater errors in IE, likely due to increased skin
motion as the knee flexes. Larger IQRs during stair ascent and lunge were also seen
in AA and FE, supporting the suggestion that increased skin-motion during deeper
flexion increases marker-based rotation calculation errors. As with other studies,
better agreement was found between marker- and X-ray- derived kinematics at lower
flexion angles (Tranberg et al. 2011; Hume et al. 2018), demonstrated by the higher
median difference and IQR during the stair ascent and lunge activities than during
level gait.

The large variation in the differences for the secondary DOFs are mostly due to STA.
Skin-marker motion has been shown to vary greatly in relation to the underlying bone
motion (Sati et al. 1996; Reinschmidt et al. 1997a; Stagni et al. 2005; Akbarshahi et
al. 2010; Tsai et al. 2011), as well as being subject and task dependent (Akbarshahi
et al. 2010). These STA errors propagate into the subsequent kinematic results and
are evident in the results from the variability and range of differences seen across
the participants and activities, showing one of the key challenges associated with
skin-mounted markers. As STA errors are not constant, it cannot be accounted for
when calculating the kinematics, therefore it remains a known limitation of marker-

based motion capture.

The limits of agreement (+1.45 IQR) are low compared to the overall sagittal plane
ROM. This is not the same for AA or IE. These findings align with previous research
investigating the accuracy of marker-derived TF kinematics, which has also
concluded that while marker-based motion capture provides suitable accuracy for
measuring flexion, it is not as reliable for the secondary DOFs (Reinschmidt et al.
1997a; Stagni et al. 2005; Tranberg et al. 2011; Miranda et al. 2013; Hume et al.
2018).

Small changes in TF kinematics are often examined when interpreting the impact of
injury (Moglo and Shirazi-Adl 2005; Ali et al. 2017) or interventions (Schwechter and
Fitz 2012; Clary et al. 2013b; Heyse et al. 2017). However, large percentage errors

may limit the usefulness of the secondary rotations for clinical interpretations of gait

and dynamic movement analysis (Stagni et al. 2005). This highlights the need for
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alternative methods, such as BVR, to measure knee kinematics accurately and thus
fully understand bone motion.

From literature, motion capture has been shown to exhibit rotational errors of up to
25°(Akbarshahi et al. 2010) and translational errors of up to 30 mm (Miranda et al.
2013) (Section 1.4.2). In contrast, BVR has demonstrated substantially higher
accuracy, with reported errors of approximately 1-2° or less for rotational DOFs and
0.5-1.0 mm or less for translational DOFs (Bey et al. 2006; Anderst et al. 2009;
Anderst et al. 2011; Pitcairn et al. 2018; Akhbari et al. 2019; Pitcairn et al. 2020).
These differences in accuracy are particularly relevant in the context of clinical
decision-making, where surgical tolerances are often small. For example, in total
knee replacement, post-operative alignment is typically targeted to within £3° of
neutral mechanical alignment (Abdel et al. 2014). Accuracy differences are also
critical in computational modelling, where sensitivity to kinematic inputs has been
shown to result in changes in contact force, pressure and contact area of 100-200%
with variations as small as £0.1° or £0.1 mm (Fregly et al. 2008). Therefore, accurate
measurement of in-vivo joint kinematics is essential, along with an understanding of
how measurement uncertainty may influence both clinical interpretation and model-

based outcomes.

2.5.8 CHALLENGES AND RECOMMENDATIONS

BVR based research involves a number of associated challenges, particularly when
developing new protocols to collect high quality data. From this study, the following
specific challenges have been identified related to the BVR data collection protocaol,
including collecting marker-based motion capture in a BVR environment, and the
processing of these data. Alongside these challenges are recommendations are
suggested to address them.

BVR data capture and processing challenges

The main challenges of developing a BVR protocol are associated with the ability to
consistently capture the same portion of the chosen dynamic motions, with the knee
clearly visible in both X-ray views for as many frames of motion as possible. This can

be broken down further into the following challenges:
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Challenge: Only a limited number of frames were obtained during level gait
using the current X-ray equipment configuration and the section of stance

captured was not consistent.

Level gait is commonly studied using BVR (Kozanek et al. 2009; Gray et al. 2019;
Gale and Anderst 2020; Thomeer et al. 2020; Thomeer et al. 2021). Locomotion is a
key activity of daily living and it is therefore important to understand the effect of
clinical interventions on patient movement including level gait. However, collecting
level gait data using a typical BVR setup is challenging due to the large level of knee
motion relative to the X-ray volume. Thus a limited portion of the stance phase can
be recorded using the current X-ray/camera configuration (mean coverage = 54 %,
Table 2-6).

In an attempt to address this issue during X-ray capture of level gait in the current
study, the final three participants were unblinded to the desired location of their foot
placement on the ground reaction force plate, directly beneath the BVR capture
volume. A smaller targeted foot placement area on the force plate ensured that the
knee was maintained centrally in the X-ray images, (Figure 2-12), and unblinding the
participants to target this area improved the consistency of the stance phase

coverage.

This study was the first to attempt to collect and quantify knee kinematics data using
the new BVR laboratory in Cardiff for comparison with synchronously recorded
marker-based motion capture and explore the subsequent impact on outputs and
musculoskeletal models. Therefore, although unblinding participants could potentially
alter their natural gait; by encouraging targeted foot placement, the benefit of
increased data collection outweighed this potential limitation. However, despite this
unblinding, a large portion of the stance phase of gait was still not captured,
suggesting this could still be improved for future protocols.

Recommendation: Use of a treadmill to capture walking.

Although treadmills have been shown to alter walking patterns compared to level
overground gait (Hollman et al. 2016), they have frequently been used to investigate
TF kinematics during walking in previous BVR studies (Kozanek et al. 2009; Liu et al.
2010; Barre et al. 2013; Guan et al. 2016; Guan et al. 2017; Yang et al. 2018; Gale
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and Anderst 2019; Koo and Koo 2019; Nagai et al. 2019; Gale and Anderst 2020;
Byrapogu et al. 2022) as they allow for capture of a larger portion of the gait cycle.

One benefit of the using a treadmill for BVR is the reduced occlusion by the
contralateral limb as the source-detector pairs can be oriented around the target limb
as the participant will remain in a consistent, central position relative to the
equipment. Using a treadmill also reduces the variation in knee location and motion

relative to the X-ray capture volume, resulting more frames of gait being captured.

Capturing a greater portion of the activity than is possible with the current
overground setup would enable better comparisons between participant cohorts (e.g.
healthy vs pathological volunteers). A treadmill offers a compromise between
maintaining a natural walking motion and recording a sufficient part of the gait cycle.
Therefore, it is recommended for future data collection protocol development and

adoption, that an instrumented treadmill is integrated into the activities.

Challenge: Image registration issues caused by occlusion of the target bones
by the contralateral limb or the imaged knee partially leaving the X-ray view

during dynamic activities.

In adopting BVR for any desired activity, minimising occlusion by the contralateral
limb should be integral to the design of BVR configurations to optimise output image
quality. When both knees overlap in the imaging volume, the bone outlines become
obscured and the edge detection is unusable, making image registration much
harder during those frames. BVR configurations should not allow any occlusion of
the target limb for accurate definition of bone poses throughout the whole activity,

however this is an ideal and, in reality, would not be practical for all activities.

Even in activities that do not involve contralateral limb occlusion, like the lunge,
image registration issues may still arise. For example, despite conducting practice
trials to ensure appropriate positioning of the knee within the X-ray volume, for some
participants, the knee moved partially out of frame during the peak of their lunge.
This affected each trial differently, as the difficulty of image registration varied based

on how much of the femur and tibia remained in the frame to be matched.

Recommendation: Choosing X-ray equipment configurations to minimise

these issues.
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Where possible, X-ray configurations should be chosen to avoid occlusion of the
contralateral limb by placing the source-detector pairs so the contralateral limb does
not cross their path. This is easier to do for activities where the participant does not
have to move through the volume perpendicular to the X-rays. For example,
performing level gait on a treadmill allows for one X-ray to image the knee from a
direct anterior view, which is not possible with overground gait due to the travel
required. When this is not achievable, consideration of foot placement and knee
location within the volume may help to minimise the occlusion during certain portions

of the movement but is not the best option.

To mitigate image registration challenges due to the knee leaving the X-ray view,
multiple trial repeats were recorded, and positional adjustments were made between
recordings to keep the knee in shot as much as possible. However, there is a tricky
balance between ensuing the knee is fully in frame at all times and moving it too far
back, which results in capturing less of the activity when the knee is moving from
lower to higher flexion angles and only recording the peak lunge as the bones come
into shot later in the movement. Therefore, for future protocols it is recommended to
practice the movement before X-ray capture, so the participant is confident with the

activity, and to capture multiple trials to account for variation in human movement.

Challenge: Inconsistent execution of the lunge activity makes comparison

between participants difficult.

By not providing the participant with specific instructions about the length, depth and
timing of the lunge, the weightbearing lunge was carried out in an inconsistent
manner by participants during this study. Although these individual parameters could
be used to differentiate between healthy and pathological cohorts, for example,
maximum flexion angle has been shown to be lower in OA patients (Wang et al.
2024), asking participants to aim for their maximum possible lunge may result in
overbalancing or falling if they have no additional support. However, if the participant
is only asked to lunge as low as they feel confident to, they may not reach the same

maximum flexion angle.

Recommendation: Provide more prescriptive instructions or choose an

alternative high-flexion activity depending on the research context.
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Defining of the purpose of the activity within the protocol relative to the research
question being posed will determine what is asked of the participant. If the primary
goal of the activity is to understand knee kinematics during a weightbearing
functional task that mimics daily life, a lunge still may be suitable choice, particularly
if the instructions are given with more specificity — e.g. a specific lunge length or
target angle. This should remove some variability from the activity performance and

make the results more comparable.

However, when investigating coupling between flexion and the other five DOFs in the
TF joint, a more controlled, consistent activity, such as a seated knee extension or
open chain flexion, may be more appropriate. For example, a non-weightbearing
flexion ROM activity would be more suitable for defining the relationship between
flexion and the secondary DOFs.

Challenge: Collection and processing of X-ray static trials.

A further consideration regarding the X-ray data capture is the positioning of the
participant’s knee relative to the X-ray detectors during the X-ray static trials. For the
neutral static data recordings, the static trials proved more difficult to match
compared to the dynamic trials captured using the same configurations due to the
orientation of the leg.

For the level gait and lunge setups, in order to position the leg within the X-ray field
of view and also prevent occlusion by the contralateral limb while maintaining a
neutral stance, the leg had to be shifted from a position that would be adopted
naturally for each particular dynamic activity. As a result, the camera/X-ray
configuration was not optimised for image registration with the knee in a ‘static’ data
capture orientation, leading to inconsistencies with subsequent manual matching of

the bone models to the X-ray video frames.

This was not relevant for the stair ascent setup as, initially, a static X-ray capture
was taken with the foot on the first step of the staircase with the knee bent. It was
later removed from the protocol (for the last three participants) as it was deemed to
have limited value because the knee was not maintained in a consistent neutral
position (standing extension) or at a consistent angle of flexion. Given its limited
benefit with the exposure to ionising radiation, the stair ascent X-ray static was
excluded from the protocol.
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Recommendation: Capture X-ray static poses with the leg in a similar
orientation to its counterpart dynamic movement for a given equipment

configuration.

To make image registration between the dynamic and static trials more consistent,
where possible, the knee should be positioned in the same orientation as it would be
in for a dynamic trial in a given setup. This is only possible for certain X-ray
configurations where the contralateral limb will not occlude the target limb in a
neutral standing position and is not possible with any of the setups used in this
study. For this reason, when designing future BVR protocols, alternative activity

setups should be considered for capturing X-ray static trials.
Challenge: Consistent definition of ACSs to describe knee kinematics.

As shown in Section 2.5.5, changing the ACS definition alters the kinematics output
from the pipeline. Therefore, it is important to have a consistent approach for
describing and defining ACSs and the resulting kinematics. Inclusion of the
automated algorithm in this study helped achieve this by removing human
inconsistency in ACS application whilst also speeding up this part of the process.
However, the algorithm was not consistent when identifying the ACS axes for the
initially input partial bone models (Section 2.4.3).

Recommendation: Use automatic algorithms with full bone models (or

anatomical landmarks) to generate consistent ACSs between participants.

Using full bone models, or alternatively hip joint centre or medial malleolus ankle
landmarks, improved the consistency of the ACS generation by the algorithm. This
removed the crosstalk errors between the planes in the subsequent six DOF
kinematics calculated.

For this reason, it is recommended that a long leg scan is included for future
research to allow for segmentation of the full bone models. If full bone models are
not available, inclusion of as much of the bone shaft as possible is recommended, as
well as ensuring that the shaft cut is parallel to the femoral condyles or tibial plateau

to help the automated algorithm correctly orient the plane used to calculate the axes.
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Marker-based motion capture challenges

Challenge: Marker dropout due to BVR equipment blocking camera views.

As this was a pilot study, there were several iterative updates to the data collection
protocol with the aim to improve the quality of the output data. For example, the data
collection session for the first participant suffered from a large amount of marker
dropout due to sub-optimal camera placement. This was associated with occlusion of
markers by the BVR equipment.

Recommendation: Optimise camera placement relative to all X-ray equipment

configurations.

For subsequent participants, a fully documented, repeatable camera configuration
was designed and adopted to ensure markers were clearly visible for as much of the
activity as possible, across all activities (Section 2.3.2).

Challenge: Marker placement errors — specifically the femoral condyle

markers.

Marker-based motion capture data are always subject to the inherent errors
associated with STA and marker placement. However, in particular for this study, the
anterior placement of the femoral condyle markers relative to the underlying bony
condyles, resulted in large overestimates of TF flexion in all activities (Section 2.5.7).
This highlights the importance of careful marker placement to minimise these errors.
To locate the femoral condyles, participants were asked to perform a seated knee
flexion-extension whilst the researcher palpated to locate the anatomical, bony
landmarks, and then then the markers were placed on the flexed knee. However, the
palpated marker locations could shift anteriorly when the participant stood upright,

thus relocating the markers relative to the underlying bony condyles.

Recommendation: Palpate femoral condyle markers whilst the participant is

standing.

To minimise the error associated with the overestimation of flexion, it is therefore
recommended for future data collection protocol development and adoption, that the
femoral condyles are palpated and located on the standing subject with markers

placed on the extended knee.

145



Other study limitations

As well as the challenges associated with the BVR and motion capture data

collection and processing, there were also some limitations to the current study.

Limitation: The accuracy of the new BVR system at Cardiff is currently

unknown.

Although BVR accuracy has been shown to be within two degrees and millimetres
for calculating TF kinematics (Li et al. 2008; Anderst et al. 2009; Guan et al. 2016),
the accuracy of each specific system can vary (Section 1.4.1). Because the BVR
system at Cardiff was custom built, the accuracy of this system for calculating TF
kinematics for the configurations and activities used in this study is not yet known.
To better understand the true fidelity of the ‘gold-standard’ data used in comparisons
with motion capture, future studies should analyse the accuracy of this equipment
and its configurations, potentially through comparison with implanted beads or
roentgen stereophotogrammetric analysis (RSA) (Section 1.2.4). RSA is a commonly
used technique for determining model-based image registration accuracy (Setliff and
Anderst 2024) as it involves comparing bone poses from the standard pipeline to
bone positions calculated by tracking radiopaque implanted beads. The bead
positions can be determined with greater accuracy as they do not suffer from errors
in the model geometry or bone edge definition in the images. RSA could also be
used to quantify the impact of occlusion on image registration, as well as quantifying

the accuracy of the setup for calculating the kinematics more generally.
Limitation: Small dataset.

One of the main limitations of this study is the small dataset of only five participants.
BVR studies typically involve small cohorts, with 77% of BVR studies between 2004
and 2022 including 20 or less, due to the high cost and long time required for
processing — estimated to be between 40 and 80 hours per BVR data collection
session (Setliff and Anderst 2024). However, as the overall aim for this thesis was
development of the methods and pipelines to more fully utilise the outputs from the
new BVR system, only a small pilot dataset was required to establish these

protocols.
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Future studies utilising these protocols to answer clinically relevant questions should
try to include a greater number of participants to be able to draw statistically
significant conclusions. With a variety of emerging automated approaches for image
segmentation (Ridhma et al. 2020) and image registration (Miranda et al. 2011; Lin
et al. 2018; Burton et al. 2024), automatic methods with sufficient accuracy could be
integrated into the pipeline to enable these larger datasets by reducing the number

of hours of manual intervention required.
Limitation: Patellofemoral kinematics ignored in this study.

Due to time restrictions, this study was limited to investigating TF motion only.
However, these techniques could be extended to include patellofemoral (PF) joint
kinematics investigations. Image registration of the patella could be performed on the
existing data set to investigate the relationship between TF and PF kinematics during

dynamic movements.

Since the pilot protocol was originally designed for the TF joint, it is not optimised for
patella matching, making image registration more challenging. Additionally, because
the patella is a sesamoid bone, accurately determining rotations is more complex
compared to the femur or tibia which have more distinct shapes and edges. For
focused PF kinematics investigation, alternative X-ray and motion capture equipment
configurations should be considered to obtain clearer images of the patella and

minimise overlap with the femur.

2.6 CONCLUSION

A protocol for collecting and processing simultaneous BVR and marker-based
motion capture data, along with generating 3D bone models from MRI, has been
developed and defined, for three functional activities, as demonstrated by the
successful calculation of six DOF TF kinematics. The protocol was successfully
applied to multiple participants, highlighting its potential for future research. By
incorporating three different dynamic activities, the protocol proved capable of
imaging the knee across a range of flexion angles, with the potential for expansion to
include other activities, such as treadmill walking or step-down, to further investigate

typical knee kinematics. It also has the potential to be utilised with pathological
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cohorts to assess how injury or disease affects the joint, as well as the effects of

potential interventions.

The BVR-derived kinematics from this study were compared with existing literature
and generally agreed with previous findings. For example, flexion angles during both
level gait (Figure 2-33) and stair ascent (Figure 2-35) were consistent with both the
magnitude and profile reported in prior studies, with AA displaying the smallest ROM
in these activities (Kozanek et al. 2009; Tsai et al. 2011; Li et al. 2012; Myers et al.
2012; Suzuki et al. 2012; Li et al. 2013; Kefala et al. 2017; Gale and Anderst 2020;
Thomeer et al. 2021; Hamilton et al. 2023). The mean internal rotation was shown to
increase with flexion during all three activities, also agreeing with previous studies
(Leszko et al. 2011; Tsai et al. 2011; Li et al. 2012; Hamai et al. 2013; Kefala et al.
2017; Thomeer et al. 2021; Hamilton et al. 2022).

TF translations were found to have similar magnitudes to those in literature (Kozanek
et al. 2009; Qi et al. 2013; Kefala et al. 2017; Gray et al. 2019; Thomeer et al. 2020;
Thomeer et al. 2021; Hamilton et al. 2022; Hamilton et al. 2023). However,
substantial variation was observed across participants and activities; also commonly
seen in the literature. This variation is likely due to differences in individual
coordination strategies, as well as the small magnitudes of the translations, which
can cause potentially larger proportional inaccuracies in the results.

The BVR-derived TF rotations were also compared with the marker-based motion
capture rotations, calculated using V3D (HAS-Motion, Canada). These results
(Figure 2-43, Figure 2-44, Figure 2-45) showed a systematic offset of the flexion
angle calculated between the two methods which was due to consistent anterior
marker misplacement relative to the underlying femoral condyles. This highlights the
difficulty of correctly locating and placing the markers relative to the anatomical
landmarks. AA and IE displayed greater variability in their results compared to
flexion, with large percentage errors relative to their planar ROM, particularly at
higher flexion angles. This illustrates the influence of STA on marker-derived
kinematics, along with variation across different participants and activities, making it
challenging to correct for.

The errors in marker-based motion capture rotations, caused by marker

misplacement and STA, have potential implications for use in clinical decision-
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making, as well as for models derived from this data, such as joint contact models.
This highlights the need for alternative methods to calculate joint kinematics from
motion-capture data, especially where an alternative such as BVR is not viable, as

well as careful consideration of the possible errors when interpreting such data.

Overall, the aims for this chapter, which were set out in Section 1.8, were achieved.
Simultaneous BVR and marker-based motion capture were successfully captured
during multiple dynamic activities. These data were processed using the developed
pipeline, which combined model-based image registration with MRI-derived bone
geometries to calculate six DOF TF kinematics. The data collection and processing
workflow was implemented for the first time in a cohort of healthy participants,
demonstrating its potential for future studies investigating knee pathology and
intervention outcomes. Together, the imaging datasets and BVR kinematics
produced in this chapter provide the foundation for the subsequent modelling
components of the framework, bridging the experimental and computational aspects

of this work.
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CHAPTER 3: DO PERSONALISED GEOMETRIES
IMPROVE KNEE KINEMATIC AND JOINT CONTACT
PREDICTIONS IN MUSCULOSKELETAL MODELS?

3.1 INTRODUCTION

3.1.1 BACKGROUND

Musculoskeletal modelling (MSM) enables estimation of dynamic in-vivo muscle
activations, joint kinematics and forces, making it a valuable tool in both clinical and
research settings (Cardona and Garcia Cena 2019; Luis et al. 2022). Such models
enable quantification of internal mechanics that are otherwise difficult or impossible
to measure directly using in-vivo methods, such as muscle forces, joint torques, and
joint contact forces during movement (Erdemir et al. 2007; Pandy and Andriacchi
2010; Cheze et al. 2015; Moissenet et al. 2017).

MSMs have been widely applied to explore conditions such as stroke and
osteoarthritis (OA), providing insights into altered neuromuscular control and joint
loading patterns (Lin and Yan 2011; Kumar et al. 2013; Dzialo et al. 2019; Price et al.
2020; Ghazwan et al. 2022; Giarmatzis et al. 2022; Wang et al. 2022; Bowd et al.
2023). In particular, altered joint contact loading has been associated with OA
progression (Richards et al. 2018; Dumas et al. 2020; Yamagata et al. 2021),

reinforcing the importance of accurate joint-level estimations.

Typically, MSMs rely on motion capture data to provide external kinematic inputs, but
as discussed previously (Section 1.4.2 and Section 2.5.7), marker-based motion
capture cannot accurately measure the smaller rotational and translational degrees
of freedom (DOFs) of knee motion. Motion capture data alone cannot measure
noninvasively more complex biomechanical data, such as these secondary joint
kinematics, as well as resulting joint tissue forces stresses and strains (Lloyd et al.
2023).

One approach aiming to overcome these limitations is the OpenSim-Joint Articular
Mechanics (JAM) (https://github.com/cInsmith/opensim-jam/) framework (Chapter 1,

Section 1.6.2) which utilises specialised articular contact representations (Lenhart et

al. 2015) to estimate joint kinematics (which cannot be reliably measured form
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motion capture), muscle activations, joint contact forces, and pressure distributions
within the knee (Smith et al. 2016). To have confidence in predictions from such
models, it is important to use benchmark data to ensure the quality of model outputs
(Lloyd et al. 2023).

Since direct in-vivo measurement of joint contact pressure, joint contact forces and
muscle forces are not possible in intact human knees, model outputs must be
validated using alternative measurable parameters — such as kinematics. Biplane
videoradiography (BVR) provides gold-standard, highly accurate six DOF kinematics
(Li et al. 2008; Anderst et al. 2009; Miranda et al. 2011; Guan et al. 2016; Gray et al.
2017; Gray et al. 2018; Setliff and Anderst 2024), providing a suitable benchmark for
MSM validation. As joint mechanics are highly sensitive to bone positioning (Yao et
al. 2008), such validation is important when using previously benchmarked models to
observe generalised trends. But it is even more important when considering
personalised models to investigate subject-specific predictions against subject-
specific data to understand the true predictive capabilities of the model on an
individual level (Smith 2017).

As well as providing a direct measure of individual bone motions, BVR also enables
investigation of joint contact in the knee, utilising bone poses to directly calculate

contact mechanics (Anderst and Tashman 2010; Hoshino and Tashman 2012; Li et
al. 2013; Thorhauer and Tashman 2015). Again, these BVR outputs can be used as

a comparator to assess MSM pipelines to understand knee joint contact mechanics.

A key question in improving model fidelity is whether including subject-specific
anatomical detail, particularly bone and cartilage geometry, enhances the accuracy
of predicted joint mechanics. While personalisation may improve estimates of joint
kinematics and contact, it requires additional imaging, segmentation, and
processing, making it more time-consuming and technically demanding than using
generic geometries. Recent developments to the Opensim-JAM modelling pipeline
have included creating personalised MSMs with personalised contact geometries
(Killen et al. 2024), aiming to further improve the accuracy of the model’s predictions.
It is therefore important to investigate whether the added complexity of incorporating
personalised joint geometry leads to meaningful improvements in joint contact

predictions, and if these gains are significant enough to justify the increased effort.
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3.1.2 AIM & OBJECTIVES

The main aim of this research was to test the hypothesis: does including
personalised contact geometries improve MSM estimates of TF kinematics and

contact pressures?
To answer this question fully, the following key research questions were proposed:

1. Does adding personalised TF geometries improve model estimates of TF
kinematics during level gait compared to a model with generic contact
geometries, when validated against gold-standard BVR kinematics?

2. Are MSM contact pressure maps more similar to BVR maps when using
personalised or generic contact geometries in the model?

3. Do the observed differences between the personalised and generic model
outputs reported during gait carry over to activities involving higher TF

flexion angles?
To answer these questions, the following objectives were defined:

e To generate MSMs incorporating personalised TF contact geometries.

e To apply the OpenSim-JAM MSM pipeline to multiple activities for both the
standard ‘generic’ model and the model with the personalised geometries
incorporated.

e To generate equivalent joint contact maps using bone poses from BVR.

e To compare the kinematic and contact pressure outputs from the generic and
personalised versions of the MSM to assess the accuracy and benefit of

model personalisation.

3.2 METHODOLOGY

The data collection protocol used to generate inputs for the following pipeline was

described in Chapter 2.

The participant data used in this chapter was the same as described previously
(Chapter 2), with the exception that HY001 was replaced by a new participant,
HV006. HV001's motion capture data had known issues (Section 2.3.2), so a new
participant with improved data quality was used to ensure a fair comparison across

all datasets.

152



The demographics for the participants used in this chapter (including the new
participant) can be found in Table 3-1.

Table 3-1 — Participant demographics

Participant ID | Sex Age (years) | Height (cm) | Weight (kg)
HV002 F 57 169.5 62.4
HVO003 M 54 182.0 87.5
HV004 M 52 176.5 67.1
HV005 F 47 158.5 51.0
HV006 M 54 174.0 84.7

3.2.1 THE GENERIC MODEL

The MSM used for this study was the generic OpenSim-JAM model (Lenhart et al.
2015). Figure 3-1 shows the full body model which was based on a lower limb model
containing a six DOF TF joint, a six DOF patellofemoral joint, a six DOF pelvis, a
three DOF ball-and-socket hip joint and a one DOF hinge joint representing the ankle
(Arnold et al. 2010).

Figure 3-1 — The generic model used for
this study (Lenhart et al. 2015)
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The model represented muscles acting about the right hip, knee and ankle joints
using 44 damped equilibrium musculotendon units (Millard et al. 2013; Lenhart et al.
2015). The equilibrium musculotendon model is a variation of the Hill-type model
(Section 1.6) commonly used in MSM simulations of human movement (Millard et al.
2013). Whereas in the standard Hill-type model the force generated by a muscle is
dependent only on the current muscle length, velocity and activation (Zajac 1989),
the equilibrium model expands on the model by adding a nonlinear elastic tendon
component, alongside the active contractile element and passive elastic elements
contained in a standard Hill-type model. Muscle force was calculated based on the
force-length-velocity relationship, varying nonlinearly with muscle stretching. Each
muscle force was assumed to be a scaled version of its representative fibres (Millard
et al. 2013). A damping coefficient of 0.1 was applied to the normalised muscle
velocity component of the equation to stop numerical singularities being reached,
reducing the simulation time (Millard et al. 2013).

Specialised contact geometries were incorporated into the right knee of the model,
including the bone and cartilage geometries of the distal femur, proximal tibia and
patella segmented from MRI scans of a 23-year-old female (Lenhart et al. 2015). The
femoral skeletal and cartilage geometries were aligned with the femoral geometry of
the base model (Arnold et al. 2010), and tibial and patellar geometries were placed
just [contacting] the femoral surfaces in an upright position (Lenhart et al. 2015).
These meshes were used to calculate contact pressures using an elastic foundation

model described in more detail below (Section 3.2.3).

Also segmented from MRI, the major ligaments in the right knee were represented in
the model by 14 bundles — including the superficial and deep medial collateral
ligament (MCL), lateral collateral ligament (LCL), anteriomedial and posteriolateral
anterior cruciate ligament (ACL), anteriolateral and posteriomedial posterior cruciate
ligament (PCL), and patella tendon. Each bundle contained between 5-8 elements,
apart from the iliotibial band which was represented by a single element (Lenhart
2015). The ligaments were modelled using the Blankevoort model (Section 0) which
assumes a nonlinear relationship at low strains and a linear region above a linear
strain limit of 0.03 (Butler et al. 1986; Blankevoort and Huiskes 1991).
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For the purpose of this study, this model was considered as the ‘generic’ model as
the geometries remained consistent across all participants, although the model was

tailored to each participant via a standard scaling procedure.

3.2.2 ADDITION OF PERSONALISED GEOMETRY

After scaling the ‘generic’ model, a ‘personalised’ version of the model was created
for each participant by swapping the generic contact geometries with a personalised

representation of the bones and cartilage surfaces of the knee (Killen et al. 2024).

Bone and cartilage geometries of the distal femur, proximal tibia and patella were
segmented from a high-resolution MRI scan with clear delineation between bone and
cartilage (Section 2.2). Geometries were segmented using a semi-automatic
thresholding approach, followed by manual refinement where necessary. For earlier
participants, these geometries were segmented from a DESS-3D scan, but this was
later replaced with a T1-VIBE scan as it produced a clearer boundary between

articular cartilage structures (Section 2.4.1).

Once segmented, bone and cartilage geometry models were smoothed using a
recursive Gaussian filter with a standard deviation of 2.0. The geometries were
meshed within Simpleware Scan IP (Synopsis, United States) using a standard in-
built meshing procedure. All models were then exported as surfaces (.stl files) to

match the format required for the MSM.

In the OpenSim-JAM MSM (Section 3.2.1), the contact cartilage geometries were
represented by single-surface geometries of only the contacting region where all
triangle normals were pointing toward the direction of contact. Therefore, articular
cartilage surface meshes were reduced to only this surface by manually selecting the
desired region and smoothing the newly created edge (MeshMixer, Autodesk Inc.,
USA) (Figure 3-3).
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Figure 3-3 — Example of the tibial plateau cartilage contact surface isolated with the
boundary (blue) smoothed.

Normals of the tibia and patella cartilage surfaces were then visually checked in
MeshLab (Cignoni et al. 2008) (Figure 3-2) as any that were not aligned with the
contact direction would cause erroneous forces resulting in the model being unable
to solve. Any elements with unsatisfactory normal directions were manually
removed. As they only occurred around the mesh boundary (i.e., in non-contacting

regions), they could be removed without affecting the rest of the geometry.

Figure 3-2 — Visualisation of the triangle normal directions in
MeshLab.
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The number of elements in the final meshes were then reduced using a quadratic
edge simplification algorithm (MeshLab) to assist with computational time when
calculating element-wise contact. All three cartilage meshes were reduced so they
contained a similar number of elements to the original ‘generic’ geometries (i.e.
around 30k, 8.5k, and 6k elements for the femoral, tibial and patellar cartilage

respectively).

Once the surfaces were prepared, an open-source framework was used to
implement the personalised model geometries (Killen et al. 2024). This framework
involved three main steps: registration and positioning of the personalised
geometries, morphing and optimisation of the muscle and ligament pathways, and
calibration of the new muscle and ligament parameters (including resting, optimal

fibre and tendon slack lengths).

For the first step, the MRI femur bone model was transformed to match the OpenSim
axes convention by defining manually selecting points on a 3D visualisation of the
bone to define the medial-lateral (ML), anterior-posterior (AP) and superior-inferior
(SI) directions which were mapped to the OpenSim convention (i.e. X = AP, Y= Sl,

Z = ML). The rotated segmentation was smoothed and remeshed to 500 faces to
allow for alignment with the full femur bone geometry from the generic model. This
alignment was achieved by firstly translating the bone to an arbitrary centre point
(based off the average position of all vertices) which was placed at the origin (0,0,0)
point of the full femur geometry (the femoral head), then the partial femur
segmentation was coarsely aligned with the distal part of the full femur model using
the midpoint of the model’s femoral condyle markers, before finally, an iterative point
algorithm was used to more accurately align the models (Figure 3-4) (Killen et al.
2024). The same transformations were then also applied to the tibia and patella bone
models, and all cartilage geometries, as well as selected manually defined
landmarks on the original MRI segmentation, so the geometries remained positioned
relative to one another (Figure 3-4).
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Figure 3-4 — Alignment of the personalised distal femur (blue) and the
generic full femur (red) with the other personalised geometries placed
relative to the femur. The defined landmarks are shown in white.

The following landmarks were defined for each participant: medial and lateral
femoral condyles, as well as superior, inferior, medial and lateral points on the
patella (Figure 3-4). To maintain consistency between participants, the femoral
condyle landmarks were defined as the points on the ML axis, as defined by the
automated ACS code (Miranda et al. 2010), where the bone geometry intersected on
either side. Patella landmarks were defined by calculating an ACS based on the
segmented bone geometry using another automated algorithm (Rainbow et al.
2013), then selecting the bone intersections between the Sl axis and ML axes to
define the four points. These landmarks were then used to define the femoral and
patellar ACSs in the model; as is the case in the generic model, the tibial ACS was

set as coincident with the femoral ACS.

Muscle, ligament, and wrapping points were embedded as passive points within this
host-mesh and morphed, together with the bone geometry, using an atlas-based
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fitting approach (Zhang et al. 2014). Muscle and ligament attachment points were
then projected onto the closest points on the personalised bone mesh.

Muscle and ligament path wrapping surfaces were also optimised to address muscle
and ligament path discontinuities by altering their position and orientation to best
match the muscle and ligament length changes of the reference (‘generic’ scaled)
model (Killen et al. 2020).

Finally, the muscle and ligament parameters were calibrated to ensure both the
passive and dynamic behaviour of the knee were physiological and comparable to
the reference (‘generic’ scaled) model. The ligament resting lengths and tendon
slack lengths were optimised to best match the strains between the personalised and
reference models, and the optimal muscle fibre lengths were calibrated to match
between the models (Modenese et al. 2016; Killen et al. 2024).

3.2.3 MUSCULOSKELETAL MODELLING PIPELINE

The pipeline was implemented in OpenSim version 4.1 (Delp et al. 2007; Seth et al.
2018) and was applied to all five participants (for the same repeat of the three
activities presented in Chapter 2 for HV002-HV005), firstly with the ‘generic’ model
(Section 3.2.1) and then again using the ‘personalised’ model (Section 3.2.2). Both
versions of the model had the rigid-body segments scaled based off the distance

between markers from the same standing static motion capture (Section 2.3).

The marker trajectories for the static and dynamic trials were tracked and exported
along with the ground reaction forces (Qualisys Track Manager, Qualisys, Sweden,
& Visual3D, C-motion Inc., Maryland, USA) as described in Chapter 2

(Section 2.4.8).

An overview of the OpenSim-JAM (https://github.com/clnsmith/opensim-jam/) MSM

pipeline that was used in this study is presented in Figure 3-5. This pipeline is
centred around the Concurrent Optimisation of Muscle Activations and Kinematics
(COMAK) algorithm and relies on the concept of measurable (primary) and
unmeasurable (secondary) DOFs from marker-based motion capture data (Smith
2017).
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IN: Scaled MSM & dynamic trial marker
trajectories

1. Inverse Kinematics (1K)

Passive forward flexion simulation used
to generate splines to constrain
secondary coordinates (all TF DOFs
except flexion & all PF DOFs) during the
IK step

IN: Ground
reaction forces

2. Concurrent Optimisation of
Muscle Activations and

Kinematics (COMAK)

Calculate secondary kinematics and
muscle forces that minimise the objective
function.

3. Joint Mechanics
Elastic foundation model used to
calculate joint contact proximity, pressure
distribution and potential energy.

Figure 3-5 — Overview showing the three main steps of the OpenSim-JAM MSM
pipeline used to calculate joint kinematics and contact pressure maps. In-vivo data
inputs are shown in the red boxes. More detailed diagrams for each of the three
steps can be found in Figure 3-6, Figure 3-7, and Figure 3-8.

The aim of the COMAK algorithm is to generate secondary kinematics, muscle
forces and ligament and contact moments that allow for the primary DOFs to be
prescribed as observed from the motion capture-derived kinematics, with the primary
DOF joint moments balanced by the muscle forces. As discussed in Section 1.4.2,
standard calculation of marker based motion capture knee kinematics have been
shown to be reliable for calculating flexion-extension (FE), but less accurate for
internal-external rotation (IE), abduction-adduction (AA) and all three translational
DOFs due to the size of the errors relative to the magnitude of the DOF ranges of
motion (ROMs) (Reinschmidt et al. 1997a; Akbarshahi et al. 2010; Tranberg et al.
2011; Miranda et al. 2013; Hume et al. 2018). COMAK utilises this concept, defining
TF flexion as a ‘primary’ DOF (as well as the three rotations at the hip and ankle
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dorsiflexion) and all the other five TF DOFs, along with all six patella DOFs, as
‘secondary’ DOFs. A third model DOF definition, ‘prescribed’, was used to define all
other joint DOFs. Like primary DOFs, prescribed DOFs were set to their observed
values from motion capture, however, they were not used to inform the secondary

kinematics.

When running the pipeline on the dynamic trial data, an issue was encountered with
the lunge activity from one individual (HV005) where the model became unstable
near the peak of the lunge due to the patella dislocating. To enable the model to
produce physiologically realistic results, all six DOFs of the patella were changed
from secondary coordinates to prescribed coordinates. This issue may have arisen
because this participant exhibited the highest flexion angle during the activity,
potentially exceeding the model’s functional limits as, when developed, the model
was assessed against cadaveric data up to 90° and in-vivo data up to 50° (Lenhart et
al. 2015). As the focus of this study was TF contact rather than patellofemoral (PF)
mechanics, this solution was considered an acceptable compromise. However,
future investigations involving high knee flexion may require modifications to the
model to ensure stability in such cases.

Inverse Kinematics

The first step of the MSM pipeline is shown in more detail in Figure 3-6. Before
performing the inverse kinematics routine, a passive forward flexion simulation
generated splines defining the relationship between the secondary kinematics
relative to TF flexion angle. For this forward flexion simulation, the model was first
stabilised into an initial neutral position, then the knee was moved steadily from 0° to
120° flexion whilst the muscles were set to produce 1% of their maximum isometric
force. Muscle activations were set to 1% to simulate passive flexion as this is
minimum activation value used with the muscle model to stop the singularities in the
equations from being approached as this would significantly slow down the
numerical integration (Millard et al. 2013). During at each flexion angle dynamic
equilibrium was achieved by adjusting secondary TF and PF coordinates to balance
the calculated ligament and cartilage contact forces and moments at each step.
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A global optimisation inverse kinematics routine was then used to generate the
primary and prescribed coordinates (q), velocities (q ), and accelerations (q') by
minimising the difference between the model and measured marker positions at

each time step.

constrained using the splines. (q, q, g")Primary

IN: Dynamic trial Sum of the squared differences between the
marker trajectories model and measured marker positions
COMAK

minimised at each time step.

IN: Scaled
MSM

I — !
1 Passive fleo)(lon fo!'warc_l simulation OUT: Secondary :
0% to 120° flexion kinematics splines | |
ai = 1 % |
I
I
1 .
Inverse Kinematics !
[ IN: Secondary Secondary coordinates (all TF DOFs ouT: |
kinematics splines except flexion & all PF DOFs) (q, g, G )Prescribed |
I
1
|
I
I
I

Figure 3-6 — Overview of the main inputs and outputs of the inverse kinematics step
from Figure 3-5, including the prior passive flexion simulation.

ai = muscle activations, and ¢, g, ¢ = coordinate, velocity and acceleration,
respectively.

Concurrent Optimisation of Muscle Activations and Kinematics (COMAK) Algorithm

The inverse kinematics results were then used as an input into the COMAK
algorithm (Figure 3-7). Firstly, primary and prescribed coordinates and velocities, as
well as the prescribed accelerations, were used in a forward settling simulation to
generate a stable initial model position, including secondary coordinates values, for

the first frame of the dynamic motion.

162



2 (N (from IK): Forward simulation OUT: ]

(q, q, g )prescrioed to settle model (g)secondary

L (g, g )Pmav ai=1% Settled in.itial pose

Concurrent Optimisation of Muscle
Activations and Kinematics

IN: Settled (COMAK) )
initial pose 1. Calculate secondary kinematics and OuT:

. g _
muscle forces 1. (g, g )secondan & g,

1
1
1
1
1
1
1
1
1
1
I
I
I
I
‘muscle [Econtact
IN (from IK): 2. Set state and calculate forces 2 F'F“gam’eft (@), |
(q, g )preserived 3. Solve equations of motion (@ .q). |
I
I
I
I
I
1
1
1
1
1
1
1
1
1

(q, q' )primary Fdamping (CI, q' )

3. q primaryq"secondary
IN: Ground
reaction forces

Minimise:
Nmuscle
J= 2" WV )

OUT: model
Constraints: states at each
O0<ac<1 time step
(¢')Pmary observed = simulated ¥

(q', q")seoondary =0

[ Joint Mechanics ]

Figure 3-7 - Overview of the main inputs and outputs of the COMAK step from
Figure 3-5.
ai = muscle activations, J = objective function, W; = muscle weightings, Vi = muscle
volumes, F = force, ¢, g, g = coordinate, velocity and acceleration, respectively

For all subsequent frames of motion, the prescribed and primary coordinates and
speeds were set to their observed values (from the inverse kinematics solution). The
algorithm then iteratively solved to find values for the secondary coordinates and
muscle activations that minimise the objective function (Equation 3-1) at each frame,
whilst adhering to specific constraints.
Nmuscle
= > WiViead) (Eq. 3-1)
i

Where W, = muscle weightings, Vi= muscle volumes, ai = muscle activations

All model states were required to satisfy the following constraints to ensure they

were physiologically reasonable:

1. Muscle activations must be between 0 and 1 (0 <ai< 1) to maintain

physiological realism.

2. Primary accelerations must match their values from the inverse kinematics

results to replicate the dynamic movement.
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3. Secondary kinematic velocities and accelerations were set to 0 to stop
unrealistic accelerations and keep the motions smooth.

During each iteration of the COMAK algorithm, once the secondary coordinates and
muscle activations were determined, and the model state was set, the generalised
forces were calculated and applied; this included the contact, ligament, damping,
muscle, and external forces. The equations of motion were then solved for the
primary and secondary accelerations, whilst the prescribed accelerations were

constrained to their measured values.

Joint Mechanics

The output model states at each frame were then used to provide a more detailed
analysis of element-level joint mechanics of the contact meshes of the knee (Figure
3-8). This was done using a hierarchical bounding boxes and ray tracing method
(Thelen et al. 2014) to implement a nonlinear elastic foundation formulation (Bei and
Fregly 2004) to calculate the pressure on each face in the mesh (Smith et al. 2018).

R et
3 |
|
Joint Mechanics OUT: .vtp files with )

| _ Joint Mechanics L
i| IN (from COMAK): Elastic foundation model used to triangle-level :
I model state at calculate joint contact proximity, pressure results for each |
|| eachtime step distribution and potential energy. frame |

|

. |

Figure 3-8 - Overview of the main inputs and outputs of the Joint Mechanics step
from Figure 3-5.

For the bounding box and ray tracing method, rays were traced from each element of
the ‘casting’ mesh (the mesh with fewer elements, in this case tibial cartilage)

towards the other mesh to determine overlap.

The other mesh (the femoral cartilage) is broken down into an oriented bounding box
(OBB) tree containing a hierarchy of boxes each representing different sections of
the mesh. Firstly, a box was created that tightly surrounded the whole femoral
cartilage mesh, then the mesh was iteratively bisected into smaller regions (with
roughly half the elements in each section), until the leaf nodes (individual faces)

were reached (Figure 3-9).
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Figure 3-9 — An oriented bounding box generation example where the black box
containing the whole mesh was bisected into two new regions (blue and red). Each of
these regions would subsequently be split in a similar manner.

Then, for each triangle on the tibial cartilage mesh, a ray was traced from the normal
of that triangle downwards towards the tibia bone surface (Figure 3-10) to determine
if that triangle has overlapped with the femoral cartilage mesh and, therefore, is in
contact at that frame. If the ray intersected with the box bounding the entire femoral

cartilage mesh, that tibial mesh triangle is determined as “in contact” at that frame.

Femoral cartilage surface

Tibial cartilage surface

Ray traced from
centre of
casting triangle

Figure 3-10 — Diagram of ray tracing direction from casting mesh
(tibial cartilage) to the target mesh (femoral cartilage).

Once contact was established, the corresponding contacting triangle on the femoral
cartilage was determined by iteratively working through the OBB tree, checking at
each level if the ray intersects with each bounding box, until reaching a leaf node.
The ‘contact distance’ — i.e. the amount of overlap between the two triangles — was
then calculated between the selected tibial cartilage face and the femoral cartilage

face specified in the contacting leaf node.

Once the contacting pair of triangles were identified, the depth of penetration (d)

between them was computed using Equation 3-2.
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_(F-C) -7

= (Eq. 3-2)
nt ¢ nf

I3f = the intersection point on the femoral cartilage triangle, 5} = the centre of the ray
casting triangle on the tibial cartilage, iy = the unit normal vector of the femoral
cartilage triangle, and fi; = the unit normal vector of the tibial cartilage triangle.

This allowed for the cartilage contact pressure for each contacting triangle to be
calculated using an elastic foundation model developed for articular cartilage (Bei
and Fregly 2004). The contact pressure (p) calculated was dependent on the contact
overlap depth (d), combined cartilage thickness (h = 6 mm), and material properties
(Young’s modulus, E = 5 MPa and Poisson’s ratio, v = 0.45) (Equation 3-3).

P="1 +(1v)(f )—EzU) (1~ %) (Eq. 3-3)

The resulting contact map at each frame was then output as a .vtp file containing

both the geometric mesh information (vertices and connectivity) as well as the
overlap depth and contact pressure of each triangle of the mesh.

3.2.4 BVR CONTACT MAP GENERATION

To calculate the TF joint contact pressure maps from the subject-specific BVR
kinematics and MRI geometries, the same approach from the OpenSim-JAM
workflow (described above in Section 3.2.3) was adapted and implemented in
MATLAB (MathWorks, USA). The code iteratively divided the femoral cartilage mesh
into an OBB tree and then a ray-intersection test was performed for each element on
the tibial cartilage mesh. If an intersection was found, the overlap depth and resulting

contact pressure were calculated.

At each frame of motion, the femoral and tibial cartilage meshes were positioned
based on the relative bone poses given by the 4x4 object transforms (OTs) from the
BVR data processing pipeline (Section 2.4) (Figure 3-11). First, the femoral cartilage
mesh was aligned with the global coordinate system (GCS) using the femur's
anatomical coordinate system (ACS). The corresponding OT was then applied to
transform the cartilage to its correct position based on the femur’s motion. The same
process was applied to the tibial cartilage, ensuring both meshes were positioned

according to their respective bone motions for contact analysis.
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”

Figure 3-11 — (1) Geometries aligned with the global origin (2) Geometries moved into their
relative positions for a single frame. The red box shows the overlap of the cartilage meshes
where contact pressures will be calculated.

The BVR contact map generation code was tested to ensure consistency with the
OpenSim-JAM approach; the test process and results are presented in Section
3.3.1.

By using the same mathematical approach as the OpenSim-JAM code, this enabled
consistent comparison between the MSM output contact maps and the resulting BVR
contact maps. The same personalised geometries used to create the personalised
MSM (Section 3.2.2) were used to calculate the BVR contact maps, again for

consistency.

3.2.5 REMAPPING PRESSURES TO GENERIC GEOMETRY

To standardise across the multiple geometries used to create the personalised and
BVR contact maps, all the personalised pressure results were remapped onto the
generic geometry. This not only allowed for comparison across the cohort, but it also
allowed for element-wise comparisons between the three versions of the contact
maps for the same individual — generic, personalised and BVR. While contact
surface morphology influenced the results during processing, remapping all data

onto the generic geometry removed its effect from the subsequent analysis. This
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ensured that any observed similarity between the personalised and BVR maps was
not simply due to shared geometry.

Remapping was performed to transfer the contact pressure distributions from the
personalised tibial cartilage meshes (output as .vtp files during the joint mechanics
step) onto the generic geometry using code provided by Dr Bryce Killen (KU
Leuven). To reassign the pressure distribution at each frame from the personalised
geometry to the generic mesh, the points from the personalised tibial cartilage mesh
were morphed to match the generic geometry using a host-mesh fitting algorithm.
Then, for each triangle in the generic mesh, the pressure value was assigned based

on the closest element in the morphed mesh.

The code was then also adapted to remap the BVR contact pressures to the generic
geometry in the same way. This resulted in all contact pressures being defined on a

common mesh, allowing for element-wise comparison.

3.2.1 WEIGHTED CENTRE OF PRESSURE

To compare the position of the contact pressure region between the three methods,
weighted centre of pressure (COP) was calculated for each half of the tibial plateau
separately. This allowed for identification of the movement of the pressure region on
both the medial and lateral side of the tibial cartilage. By weighting the COP based
on pressure magnitude, the whole pressure region location and value could be

condensed into a single point for ease of comparison.

To remove any differences due to the size and geometry of the personalised mesh
morphology, the weighted COP was calculated using the pressures remapped to the

generic geometry (Section 3.2.5).

Firstly, the tibial cartilage was split into its medial and lateral components by splitting
the mesh aligned with the global origin (Figure 3-12). Therefore, the cartilage was

split by its positive (lateral) and negative (medial) X coordinate values.
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Figure 3-12 — Tibial cartilage split into the medial and lateral sides based
on the X coordinate value.

For each half of the tibial plateau, the centroid location of each element was
calculated, then weighted by multiplying it by the pressure of that element. The sum
of all weighted centroids in each axis direction was divided by the total pressure of

that plateau half to determine the coordinates of the COP.

The weighted COP results were calculated for each of the three methods for each
participant and plotted back onto the generic tibial cartilage mesh to visualise the

COP displacement during the activity.

The range of displacement of the COP on the medial and lateral sides of the tibial
cartilage were calculated for each of the three methods to compare the amount of
COP motion in both the ML and AP directions.

The mean error between the MSM and BVR COP locations in the X and Y directions
across all available frames were also calculated for the generic and personalised

model for both plateaus. The overall mean error for the cohort was also calculated.
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3.2.2 STATISTICAL METHODS

Methods for comparing TF kinematics

For all six DOFs the mean and standard deviation (std) of the cohort were calculated
for the generic MSM, personalised MSM and BVR results. It was calculated for the
whole of stance phase for the MSM outputs, and only where data were available for

all five participants for the BVR kinematics.

Similarly to the comparison of the Visual3D pipeline outputs in Chapter 2 (Section
2.5.7), both sets of kinematics from the generic and personalised model versions of
the MSM pipeline were compared to the ‘ground truth’ BVR kinematics using a
Bland-Altman analysis (Altman and Bland 1983). As well as plotting the difference at
each frame against its corresponding BVR kinematic value, the median and
interquartile range (IQR) of the differences for the cohort were also calculated for
each DOF. Again, the results were simplified into violin plots to show the distribution
of these differences. See Figure 2-30 in Section 2.4.10 for more a more detailed

explanation of the generation of the Bland-Altman and violin plots.

To visualise the differences in the distribution between the generic model and
personalised model results compared to the ‘ground truth’ BVR results, a split violin

plot was used to show the distributions side by side (Figure 3-13).
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Figure 3-13 — Generation of a split violin plot comparing the distributions of two
datasets (A & B).

Dice Scores

The tibial cartilage contact pressure maps were compared by calculating the
Sarensen-Dice coefficient, also known as a Dice score, between pairs of images of
MSM and BVR contact pressure maps at each frame, allowing for quantification of
agreement between contact region shape between the two sets of results (Willing et
al. 2013; Thorhauer and Tashman 2015). The Dice score reduces the difference
between two binary 2D images to a single value by comparing “common” pixels
between the images. This value is calculated by doubling the total common pixels

then dividing by the total number of pixels in both images (Equation 3-4).
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Where |A N B| is the count of the common pixels between image A and image B,

D(A,B) = (Eq. 3-7)

|A| and |B| are the total number of pixels in image A and image B, respectively.

For each participant, the subject-specific tibia bone and cartilage models were
viewed superiorly in the transverse plane with the tibial ACS origin aligned with the
centre of the figure, so the tibial plateau was visible as a 2D image (Figure 3-14).
This was also repeated with the ‘generic’ MSM geometries. Each triangle on the
cartilage was then defined as in contact (value = 1, black) or not in contact (value =
0, white) based on the pressure results at the given frame.

Generic MSM Contact Map X-ray Contact Map

Contact
pressure
map

Equivalent ' '
Dice score . .

image

Image A Image B

Figure 3-14 — Example of the image generation for calculating the Dice score
between the generic MSM (Image A) and the BVR contact map (Image B) at a
single frame.

The resultant binary images of the contact regions were then compared in pairs;
firstly, the Dice score between the generic MSM and BVR contact maps were
calculated for all frames, then the personalised MSM and BVR contact map Dice

scores were calculated.
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Wilcoxon signed-rank test

To determine if the differences in the calculated Dice scores were statistically
significant between the generic and personalised MSM contact maps when
compared to the BVR contact maps, a paired Wilcoxon signed-rank test was
performed (MATLAB, MathWorks, USA). This non-parametric test was chosen as it
does not assume normality of the differences and is suitable for paired data
(Hollander et al. 2014).

The frame-by-frame Dice scores for the generic and personalised model contact
map images compared to their corresponding BVR-equivalents were pooled across
all participants. For this test, the differences between the personalised and generic
Dice scores were calculated, ranked by absolute difference, and then the signs of
the ranks were reintroduced. The sum of the positive and negative signed ranks
were computed, and the test returned the smaller of these two values as the W
statistic. The p-value was then calculated by comparing the W statistic to the
distribution of W under the null hypothesis. The null hypothesis — that there is no
statistically significant difference between the Dice scores of the two methods — was

rejected if the p-value was found to be below 0.05.

Statistical Parametric Mapping

For element-wise comparison between the pressure distributions generated using
the personalised and generic tibial cartilage geometries, all pressure maps were first
remapped onto the generic geometry (Section 3.2.5). Statistical Parametric Mapping
(SPM) was then performed on these remapped pressure maps to identify regions
where the error (the difference between the MSM and BVR pressures) differed

significantly between the personalised and generic MSM predictions.

For each participant, a paired t-test was conducted in MATLAB (MathWorks, USA)
using the SPM1D Toolbox (Pataky 2012). The test compared the absolute error
(MSM - BVR) between the personalised and generic predictions at each element
across the generic tibial cartilage surface, averaged across all available frames of
data which fell within stance phase for each participant. For each element, the
resulting t-statistic was normalised to a z-statistic value. Each element’s z-statistic
was then compared to the critical threshold (z*) to determine statistical significance.

The z* threshold was calculated separately for each participant based on random
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field theory (Adler 2010), which adjusts for multiple comparisons by considering the
number of elements tested and the smoothness of the data. Although each
participant had a different z* value depending on their data characteristics, a

consistent significance level of a = 0.05 was applied throughout.

After calculating individual results, a single overall mean map for the cohort was
generated by averaging the participant-specific t-maps. The mean z* value across all
participants was used as the threshold to visually indicate regions of significance on
the cohort-level map.

Comparing the contact maps like this allowed for areas of significantly better or
worse prediction to be highlighted, indicating where contact prediction differences
were occurring between the two sets of MSM maps. A larger number of elements
with a significantly higher error from the generic model results would indicate that the

personalised geometry improves contact pressure predictions.

Elements where the z-statistic exceeded the positive or negative z* threshold were
highlighted to show statistically significant differences in error between the generic

and personalised MSM predictions compared to the BVR results.

SPM was also applied to the mean error value (personalised — generic) across all
elements to investigate the differences in prediction accuracy through stance phase.
The same significance level of p < 0.05 was also applied for this comparison. By
investigating the differences over time, periods of stance phase where the model
accuracies diverged could be identified to investigate if there were certain points in

the activity where personalisation made a greater difference.
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3.3 METHOD EXPLORATION

To expand on the method development, further exploration was performed on three
specific aspects of the pipeline to understand the suitability of these methods for this
application, as well as understanding of some of the potential limitations.

3.3.1 TESTING THE BVR CONTACT MAP GENERATION CODE

The BVR contact map calculation code (Section 3.2.4) was tested to ensure it
accurately replicated the OpenSim-JAM equivalent ray tracing and bounding box
method (Section 3.2.3).

Firstly, a simple test was conducted to compare the outputs from the two methods.
Contact maps were generated using the generic MSM pipeline geometry (from the
Lenhart et al. (2015) model — Section 3.2.1) with the knee at 0°, 30°, 45°, 60°, and
90° flexion, with the other five TF DOFs set to 0°/mm.

For the MATLAB joint contact code, five OTs were created to represent these flexion
angles. Since the femur and tibia meshes from the MSM model were already aligned
with the origin (at 0,0,0), the OTs were directly applied to the tibia to achieve the

desired poses.

For the OpenSim-JAM comparison, a passive flexion simulation was run using the
‘forsim’ tool on the generic model. The five closest model states to the target flexion
angles were extracted, and the knee flexion was adjusted to match the exact values,
with the other five knee DOFs set to 0°/mm. These five frames were then processed
using the Joint Mechanics tool to generate contact maps.

175



The resulting five pairs of contact maps were visually compared to ensure no
discrepancies between the two sets of code (Figure 3-15).

Flexion

MATLAB OpenSim-JAM
angle
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Figure 3-15 — Contact map outputs from the MATLAB (left) and OpenSim-JAM
(right) pipelines of the generic geometry at the 5 tested flexion angles.

As well as visually checking the similarity, the following numerical parameters were
also compared to ensure consistency: the number of triangles in contact, the

maximum contact distance and the number of the triangle where that maximum
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distance occurred. These results are presented in Table 3-2 and confirm the
consistency of the outputs from the two methods as the results were identical.

Table 3-2 — Numerical results comparing the MATLAB (MAT) and OpenSim-JAM
(JAM) codes for calculating joint contact using the generic geometries at five flexion

angles.
Flexion Count of triangles in Maximum overlap depth Index of triangle
angle contact (mm) with maximum
(®) overlap depth
MAT | JAM | Difference | MAT | JAM | Difference | MAT JAM
0 681 | 681 0 0.404 | 0.404 0.000 6494 6494

30 424 | 424 0.552 | 0.552 0.000 5376 5376

45 731 731 0.945 | 0.945 0.000 5359 5359

60 984 | 984 1.730 | 1.730 0.000 1494 1494

ol ol o] ©o

90 1276 | 1276 2.857 | 2.857 0.000 5369 5369

A subsequent test was conducted using a randomly selected dynamic trial from one
participant. TF kinematics were extracted from the MSM pipeline’s IK results
(Section 3.2.3) and converted to OTs using a custom MATLAB script. The MATLAB
contact code was then run with these OTs and the generic model’s femoral and tibial
cartilage geometries. The results were compared with those from the standard Joint
Mechanics pipeline to assess consistency. Again, the differences between the
number of triangles in contact and the maximum overlap depth between the
MATLAB and OpenSim-JAM results were 0 across all 120 frames of dynamic
movement. The pressure values at each frame were also compared and no

differences were found (Figure 3-16).
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Figure 3-16 — Comparison of the contact maps from the two methods for an
example frame of dynamic motion.

During both tests, the two methods produced identical results, confirming that they
perform in the same way and, therefore, the MATLAB code could be used to
calculate contact maps from the BVR input data comparable to the results from the

OpenSim-JAM pipeline.

3.3.2 BVR CONTACT MAP SENSITIVITY TO OVERLAP DEPTH

When visualising the resulting BVR contact maps calculated for the three dynamic
activities using the MATLAB version of the bounding box and ray tracing method
(Section 3.2.4), some contact maps were found to have little or no triangles in

contact on either the medial or lateral plateau or both (Figure 3-17).

HVO0O0S - level gait HV002 — stair ascent HVO0O03 - lunge
30% stance phase 40% stance phase 50% stance phase
A A A
-
M - L(M o O - LM .
P P P

Figure 3-17 — Examples of small or one-sided contact regions from three different
participants, one from each activity.
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This minimal BVR contact was due to the lack of overlap between the femoral and
tibial cartilage meshes resulting from a combination of the cartilage geometries and
their relative positions due to the bone poses at each frame. Small errors in the
cartilage segmentation or bone poses generated from image registration potentially

contribute to the lack of contact seen between the two meshes.

For this reason, it was decided to investigate the sensitivity of the BVR pressure map
results to contact (overlap) depth. The threshold for a triangle to be considered “in
contact” in the MATLAB version of OpenSim-JAM was adjusted to reflect potential
errors. Three different minimum proximity thresholds were applied to the same gait
trial from one participant: the standard 0 mm threshold (i.e. the meshes physically
contact), -0.5 mm and -1 mm, so triangles within close proximity were also
considered “in contact”. By making the threshold negative, the ray was also traced in
the opposite direction to the usual ray direction (Figure 3-10) to find any triangles
closer than the specified threshold value. Altering the threshold like this aimed to

represent potential cumulative errors resulting in triangles not overlapping.

An example frame at 40% stance phase of level gait from HV003 was chosen for this
investigation as this participant displayed no contacting triangles on the lateral tibial
plateau at this frame (Figure 3-18). As well as visualising the contact area on the
mesh, the number of triangles in contact were counted and the contact area

calculated for each of the three threshold iterations.

The example in Figure 3-18 shows that as the threshold was reduced, the number of
triangles and total area in contact on the tibial plateau increased. When the threshold
was decreased by 0.5 mm, the contact area approximately doubled. Again, when the
threshold was decreased from 0.5 mm to 1 mm, the contact area increased,

although by a smaller proportion (increase of around 1.7 times).
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Figure 3-18 — Example of HV003 at 40% stance phase of level gait with
three different minimum proximity threshold values.

These results show that predicted contact regions using the ray tracing and
bounding box method were sensitive to the threshold value used. This confirms the

sensitivity of this method to potential small errors in mesh segmentation or bone
poses.
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However, when considering TF joint contact in this context, it is also important to
recognise that “no” contact seen between the cartilage meshes does not mean there
was no contact in the knee, as contact between the cartilage and the meniscus was
inherently included in the bone poses generated from BVR but not visualised. In this
context, “no” visible cartilage contact means the bones of the knee moved further
apart from each other relative to their positions in the MRI scanner (so no mesh

overlap occurred), not necessarily that the joint was out of contact.

3.3.3 KNEE MARKER POSITIONING ON MODEL

As discussed in the previous chapter (Section 2.5.7), during data collection, the
femoral condyle motion capture markers were placed too anteriorly compared to the
underlying bony landmarks when the participants stood in their static, neutral
standing positions. This affected the flexion accuracy of the motion-capture based

kinematic results as the flexion value was consistently overestimated.

As TF flexion angle is set as a primary coordinate in the COMAK algorithm, its value
is directly taken from the IK results and used to calculate all other secondary DOFs.
Hence, it is important to understand the effects of incorrect marker placement on the
flexion angle predicted during IK as this will have a direct influence on all the other

results — including the secondary kinematics and contact map predictions.

Errors in the femoral condyle marker placement would affect the MSMs calculation of
the femur’s location, altering the predicted hip joint positioning. The hip, and
subsequent global alterations, associated with the IK routine would likely result in an

overestimation of knee flexion.

To investigate how potential errors in marker position would affect IK knee flexion
outputs, the femoral condyle markers on the generic model were manipulated to
represent different marker placements during in-vivo data collection. A standing
static trial from a single participant (HV005 - chosen at random) was run through the
IK routine with variations of the generic model with the virtual model markers moved
anteriorly from their default position by 1 mm, 2 mm, 3 mm and 10 mm (for an
extreme change). The output TF flexion for each model variation was then compared
with the BVR flexion angle (from image registration at the same frame) to see if
manipulating the marker reduced the difference between the results. The virtual

markers were also then manually manipulated to visually matched the experimental
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marker positions relative to the femur geometry using the visualisation of the
markers in the BVR coordinate space (as described in Chapter 2, Section 2.4.11)
(Figure 3-19).

Original condyle Marker moved Marker position
marker position +10 mm anteriorly matched to BVR static

T
L.

~

Figure 3-19 — Femoral condyle marker manipulation on the generic MSM.
The resulting flexion angles are presented in Table 3-3. These results show that as
the position of the markers increased anteriorly, the flexion angle also decreased,
resulting in a value closer to the BVR measured position.
Table 3-3 — Knee flexion angles during standing static for one individual where the

condyle marker positions have been manipulated to better match their true positions
relative to the underlying bone.

HV005 - Static Knee flexion angle (°)

BVR -15.96

Gen. MSM - original 0.31

Gen. MSM - condyle makers moved anteriorly +1mm 0.03

Gen. MSM - condyle makers moved anteriorly +2mm -0.27

Gen. MSM - condyle makers moved anteriorly +3mm -0.56

Gen. MSM - condyle makers moved anteriorly +10mm -2.46

Manual manipulation of condyle markers to visually

(approximately) match BVR static -4.20
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These results also show that even when the virtual condyle markers were manually
manipulated to visually match their true positions, the knee flexion angle was still
overestimated by over 10°. This suggests that the differences in flexion angle
calculate were not solely due to marker misplacement but may also have been
influenced by other factors, such as differences in ACS definition between the MSM
and the BVR pipelines. Further investigation would be needed to understand the
effects of this offset, including by calculating the exact relative positions of the
markers to the bony landmarks and moving them to their precise positions

accordingly.

When looking at the manually moved marker position compared to its original
position on the model, the marker was not only translated anteriorly but also
superiorly. Again, further investigation would help determine how this superior
movement also affects the calculated flexion angle by performing a similar test with

superior manipulation of the virtual marker.

As well as using a static trial, the flexion angle of the same participant was also
tested using a level gait trial to investigate the effects of marker positioning on
dynamic trial results. The model with the markers manually manipulated into visual
alignment was run through the IK routine; the resulting TF flexion angle was plotted
alongside the original MSM COMAK flexion result and the BVR calculated flexion
(Figure 3-20).
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Figure 3-20 — Graph showing flexion angle during stance phase of level gait to
compare the original generic MSM COMAK flexion result and the new manipulated
marker position IK flexion to the BVR calculated flexion during a dynamic trial.

These results show that when the marker position was moved to visually match its
true position, the resulting flexion angle calculated was closer to the gold-standard
BVR angle. This highlights the need for accurate marker placement during data
collection, so the model’s marker positions represent the data correctly, and

accurately calculate the primary kinematics used to solve the optimisation algorithm.

3.4 RESULTS AND DISCUSSION

3.4.1 DO PERSONALISED GEOMETRIES IMPROVE KINEMATIC
PREDICTIONS DURING GAIT?

To answer research question 1 (Section 3.1.2):

Does adding personalised TF geometries improve model estimates of TF
kinematics during level gait compared to a model with generic contact

geometries, when validated against gold-standard BVR kinematics?

The six DOF kinematics calculated for level gait from the MSM pipeline using the two
versions of the model — one with generic contact geometries and one with
personalised contact geometries — were compared to the gold-standard BVR

kinematics (collected and calculated as described in Chapter 2).
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It was decided to initially analyse the model predicted kinematics during level gait as
this was the activity the OpenSim-JAM pipeline was developed for (Lenhart et al.
2015) (Section 1.6.2).

To match the joint definition in the MSM, the BVR kinematics were calculated with
the femoral and tibial ACSs coincident when in their initial segmented position from
the MRI scan. The kinematics of the five participants were plotted for the rotational
(Figure 3-21) and translational (Figure 3-22) DOFs for the three different methods.
For comparison, the methods were plotted in pairs in the first three columns: generic
MSM with personalised MSM, generic MSM with BVR, and personalised MSM with
BVR. The mean £1 std for all methods were plotted in the last column for each DOF.
Appendix C presents graphs comparing all three methods, split by individual

participant, for analysis of MSM prediction accuracy on an individual level.

To quantify the difference between the generic and personalised MSM kinematics to
the BVR results, a Bland-Altman analysis was performed for each DOF (Section 0),
firstly for the generic results, then for the personalised. Figure 3-23 and Figure 3-24
show the Bland-Altman results for the rotational DOFs and translational DOFs,
respectively, with each plot showing the difference between the MSM and BVR value
against the gold-standard BVR value at each frame where X-ray data was collected.
The median £1.45 IQR were also calculated and marked on the plots for the whole
dataset. The Bland-Altman plots were then simplified into split violin plots, with the
generic MSM on the left half of the plot in red and the personalised MSM on the right
half in green. The violin plots allow for comparison the distribution of the differences
between the two methods, highlighting accuracy differences (see Figure 3-13).

As seen in Figure 3-21, the flexion angles calculated for the cohort using both the
generic and personalised models were nearly identical. This was expected as the
flexion angles for both the generic and personalised MSMs were calculated during
the IK step, which was not influenced by the contact geometry. In the OpenSim-JAM
approach, TF flexion is considered to be a primary DOF and, therefore, directly
measurable from motion capture (Smith 2017). This means the flexion output was
not optimised during the COMAK step and was the same for both models.
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Figure 3-21 — Graphs showing the calculated rotations for the individual participants as well as the mean tstd of the cohort.
186



LEVEL GAIT - TRANSLATIONS

Generlc vs Personalised MSM Generic MSM vs BVR Personalised MSM vs BVR Means * std

€5 = 5f = 5f ) = 5|

E £ E £

c = = c

o S o S

ks ks kS I

c £ 20 2o

o o g M o

= = =S = m
e I3 Y g S

@ \, © T [ : ©

_I_S'r Y _|_5, _1_5,. Y _I_S,

0 50 100 0 50 100 0 50 100 0 50 100
% Stance % Stance % Stance % Stance

i %
— 3\#
- v-:;:..“,:

)"

Anterior Translation (mm)
o
<L
-:'.; S
\
1
l; )
i £
Y
{
H
#
n
1
o
|‘ -~
i\
]
\" \)
Y,
Anterior Translation (mm)
o
\¥
Anterior Translation (mm)
L
G-
“».
Anterior Translation (mm)
(=]

0 50 100 0 50 100 0 50 100 0 50 100
% Stance % Stance % Stance % Stance

Distraction (mm)
©

Distraction (mm)
o
)\>

]
A
A
Distraction (mm)
Distraction (mm)

0 50 100 0 50 100 0 50 100 0 50 100
% Stance % Stance % Stance % Stance

——HV002 BVR HV003 BVR ——HV004 BVR HV005 BVR ~———HV006 BVR =——BVR mean MSM-gen #std
= =HV002 MSM-gen HV003 MSM-gen = = HV004 MSM-gen HV005 MSM-gen = - HV006 MSM-gen BVR #std = MSM-pers mean
—==HV002 MSM-pers HV003 MSM-pers —=-—HV004 MSM-pers —-— HV005 MSM-pers —--— HV006 MSM-pers =—=MSM-gen mean MSM-pers +std

Figure 3-22 - Graphs showing the calculated translations for the individual participants as well as the mean tstd of the cohort.
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Figure 3-23 — Bland Altman analyses of the generic (left column, red) and personalised (right column, green) MSM rotations compared
against gold-standard BVR rotations. These results were simplified into violin plots to show the distribution of the differences (middle column).
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against gold-standard BVR rotations. These results were simplified into violin plots to show the distribution of the differences (middle column).
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The Bland-Altman plots for flexion angle (Figure 3-23) showed a median
overestimation of 13° for both versions of the model, closely matching the 14° offset
observed between Visual3D and BVR flexion angles (Figure 2-43 in Section 2.5.7).
As discussed in Section 2.5.7, this offset was likely caused by anterior misplacement
of the femoral condyle markers during data collection, leading to artificially elevated
flexion angles. In the Visual3D pipeline, this primarily affects tibial positioning, while
in the MSM pipeline it influences femur body positioning (including the hip). Despite
this, both methods showed the same flexion offset. As flexion is a primary coordinate
in the COMAK algorithm, secondary kinematics would also be affected by the

overestimated knee flexion angles.

AA was shown to have a similar profile when calculated using the generic MSM and
the personalised MSM, except towards the end of stance phase (80-100% stance)
where the models with the personalised geometries showed more diverging results
(Figure 3-21). As well as this, the mean predicted adduction angle was lower when
using the personalised model compared to the generic model. This meant that the
personalised model’s mean adduction angle was closer to the BVR mean, although
the median difference was only 0.7° closer overall (Figure 3-23).

External rotation showed greater variation in the generic model than the
personalised, with the greatest profile difference between the two methods out of all
the rotations (Figure 3-21). Although the median external rotation error for the
generic model was better than the personalised (0.95° compared to -4.2°, Figure
3-23), it had a higher IQR. The large IQR seen in both sets of results shows the
COMAK algorithm struggles to predict this rotation in general, even with
personalised joint geometries. As IE rotation had a larger ROM than AA, it was likely

more sensitive to the flexion overestimation error.

Both AA and IE rotation showed a negative correlation in their Bland-Altman plots
between flexion angle and MSM-BVR difference with both model versions (Figure
3-23). This suggests the MSM may be over-constraining the model’s secondary
DOFs and not allowing for the full ROM seen in the BVR results.

All three translational DOFs presented similar kinematic profiles for the stance phase
of gait between both models (Figure 3-22), although the offsets differed. For all three
translations, the personalised model allowed for a greater ROM than the generic
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model, suggesting that the TF translations were more sensitive to contact geometry
than to the input kinematics.

The generic model predicted lateral translation on average during mid-stance, which
was more consistent with the BVR results than the medial translation predicted by
the personalised model (Figure 3-24). This resulted in a smaller median difference
between the generic model and the BVR (-0.48 mm), than the personalised model (-
2.1 mm). The personalised model also had a larger IQR than the generic, increased
due to poor prediction of the ML translation of one participant (HV006).

AP translation showed the greatest median translational difference between the
MSM and BVR results between the two models (Figure 3-24). The personalised
model predicted this translation well (median difference with BVR = -0.43 mm),
whereas the generic model consistently overestimated the anterior translation
(median difference with BVR = 7.5 mm). The personalised model also had a
narrower IQR (£1.45 IQR: 7 mm vs 10.7 mm) with most differences clustered around
0 mm (Figure 3-24).

Although both models predicted similar AP translation trends, the personalised
model’s predictions of AP translation fluctuating around neutral (O mm) were not only
more consistent with the BVR results, but were also more similar to literature values
(0-5 mm) (Kozanek et al. 2009; Gray et al. 2019; Thomeer et al. 2020; Thomeer et
al. 2021). When presenting the personalised model workflow, Killen et al. (2024) also
found the generic model estimated greater anterior translation than the model with
personalised geometries. This overestimation is likely due to the specific anatomy
and alignment of the cartilage geometries of the individual used to define the generic
model. However, this would need to be confirmed by testing the pipeline with a
different ‘generic’ model (that uses a different set of contact geometries) with motion
capture inputs from the same cohort to see if the anterior translation prediction

improves.

Finally, CD translation presented a similar distribution of differences for both models
(seen from the violin plot in Figure 3-24), although the generic model displayed a
clearer correlation in the Bland-Altman plot, likely due to more consistent CD

patterns predicted across participants. On average, the personalised model
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predicted greater compression, which would likely lead to higher contact pressure

outputs.

3.4.2 TIBIOFEMORAL JOINT CONTACT MAPS DURING LEVEL GAIT

As one of the main uses for the OpenSim-JAM pipeline (Section 3.2.3) is to generate
contact pressure maps to understand loading distribution in the articular cartilage, it
was important to understand the effects the kinematic differences (Section 3.4.1) had

on the resulting maps.

The OpenSim-JAM contact pressure maps were compared with their BVR-
equivalents (generated using the same OBB tree and ray tracing method, Section
3.2.4) at each frame of motion where BVR data were available. This comparison

aimed to answer the second research question:

Are MSM contact pressure maps more similar to BVR maps when using

personalised or generic contact geometries in the model?

Figure 3-25 shows example contact maps from the BVR, personalised MSM, and
generic MSM for each participant at 50% stance, chosen as it was the only time
point with data available for all five participants. For a more comprehensive picture of
the results of the cohort, Appendix D contains the contact maps calculated at 10%
stance intervals of level gait for all participants individually. All the geometries in
Figure 3-25 are shown at the same scale, so visual size differences reflect actual
differences in model mesh sizes. Although the generic model rigid’s bodies were
scaled using marker landmarks, the specialised knee contact geometries were not
scaled between participants (Section 3.2.3), which could affect contact predictions

from the model.

Due to using identical contact geometries, the generic MSM contact maps showed
more consistent contact region predictions across the cohort than the other two
methods (Figure 3-25). This suggests that contact area predictions are sensitive to
articular cartilage surface morphology, so the generic geometries struggle to capture

inter-participant variation.
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Level Gait contact maps at 50% stance phase
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Figure 3-25 — Example contact maps for all participants at 50% stance phase during level
gait. BVR contact map results in the first column, personalised MSM results in the second
and the generic MSM contact map in the third.
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Out of the three methods, the BVR contact maps showed the largest variation in
contact area and location (first column of Figure 3-25), with some participants
displaying small contact areas at various points during gait, particularly on the medial
tibial plateau (three examples given in Figure 3-26). As joint contact area is sensitive
to small changes in bone positions (as shown in Section 3.3.2), calculating contact
pressure using this technique from BVR bone poses may not be suitable. Small
errors in segmentation, model smoothing and image registration errors could have
large effects on the predicted contact regions and pressure magnitudes from BVR.
As the meniscus was excluded from the model, the MSMs generally predicted larger
contact regions between the cartilage. In contrast, the BVR maps inherently include
meniscus mechanics, reducing the visible cartilage-cartilage contact where the

meniscus was situated.

Examples where small BVR contact areas lead to poor
agreement with personalised MSM predictions
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Figure 3-26 — Three example of small BVR contact areas calculated which affect
comparisons with MSM contact maps.
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Not all BVR contact maps showed such small contact regions. In some cases (like
HV005 and HV006 at 50% stance, Figure 3-25), BVR predictions were visually
similar to those from the personalised MSM. Three additional examples of good
agreement during stance phase of level gait are shown in Figure 3-27,

demonstrating how incorporating personalised geometries improves prediction of the

size and shape of contact areas.

Examples of good agreement between BVR and personalised
MSM contact areas
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Figure 3-27 — Examples of contact predictions with good agreement in area between
the personalised MSM and BVR results.
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Figure 3-27 also highlights variation in the pressure magnitudes predicted across the
different methods. In some cases (like HV003 at 70% stance, Figure 3-27) the

personalised model predicted much higher pressures than the BVR and generic
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MSM results, whereas in others (for example, HV006 at 20% stance, Figure 3-27),
the generic model predicted the highest values. Although these are extreme
examples, the BVR pressure magnitudes were generally lower than both MSMs.
This was likely due to the MSM requiring constant cartilage contact to solve for joint
forces, as well as the absence of the meniscus — which was inherently included in
the BVR contact calculations.

Overall, visual inspection showed that the personalised model improved the contact
region prediction compared to the generic model, when assessed against the BVR
contact maps. This was seen in the examples at 50% stance in Figure 3-25, across

the results in Appendix D, and in Figure 3-27.

Serensen-Dice coefficient

To expand on the visual inspection, the Sgrensen-Dice coefficient (Section 0) was
calculated and used to compare each MSM map to its BVR equivalent at every
frame. The mean Dice score across all frames for each participant was calculated,

along with the overall mean Dice score for the cohort (Table 3-4).

Table 3-4 — Mean Dice scores for each participant during level gait

Participant ID Mean Dice score of level gait frames
MSM compared against BVR contact map images.
Generic MSM Personalised MSM Difference
(c.f. BVR) (c.f. BVR) (pers. — gen.)
HV002 0.541 0.547 +0.006
HV003 0.334 0.377 +0.043
HV004 0.507 0.754 +0.248
HV005 0.336 0.427 +0.092
HV006 0.463 0.608 +0.145
Overall mean 0.436 0.543 +0.107

Table 3-4 shows that the personalised model increased the mean Dice score for all
participants, with an overall mean improvement of 10.7%. Figure 3-28 visualises this,
with the connecting lines highlighting that all participants had higher Dice scores with

the personalised model, though the degree of improvement varied. The median Dice
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scores for the cohort closely matched the overall means (Table 3-4) at 0.452 (IQR
+0.145) for the generic and 0.569 (IQR +0.314) for the personalised model. These
results support the hypothesis that including personalised contact geometries

improves model predictions of joint contact area.
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Figure 3-28 — Per-participant mean Dice scores plotted to visualise the
improvements between the generic and personalised model contact predictions.

To confirm if the improvement in the Dice-scores was statistically significant, a
Wilcoxon Signed-Rank test was performed, comparing the paired Dice scores for the
five participants (Section 3.2.1). The test revealed a statistically significant
improvement in the Dice scores for the personalised model compared to the generic
model (W = 5210, p < 0.0001, n = 109 paired frames). This result confirmed that
incorporating personalised geometries significantly improves the accuracy of contact
map predictions during level gait, demonstrating the value of representing

anatomical variation.
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The Dice scores were also plotted against percentage stance to investigate how
accuracy varied throughout the stance phase of level gait (Figure 3-29).

Generic vs Personalised Dice Scores during Level Gait
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Figure 3-29 — The Dice scores between the MSM and BVR contact maps at each frame
plotted against percentage stance of level gait for both the generic (dashed lines) and
personalised (solid lines) versions of the model.

For all five participants, the personalised model had a higher Dice score than the
generic model between 40-60%. However, outside of this range, the personalised
model did not always have the higher Dice score. Only HV004 had a consistent,

large improvement throughout all collected frames.

Some participants showed very similar Dice score profiles for both model versions.
For example, HV002 had comparable magnitudes throughout, with slightly better
predictions from 40-60% stance, but worse between 60-75% stance (Figure 3-29).
This led to only a small mean Dice score improvement for that participant (0.06
higher, Table 3-4). This increased similarity in Dice score was likely due the split
contact region on the medial tibial plateau (as a result of the contact morphology), as

well as the close size match between this participant and the generic geometry.

Participants with small BVR contact areas (e.g. HVY003 and HV005), presented low
Dice scores with both model versions, as the limited BVR contact reduced overlap
(with the MSM predicting contact where none was observed in BVR).
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Statistical Parametric Mapping

As the generic and personalised contact maps were generated on different meshes,
the personalised MSM and BVR results were remapped onto the generic model
geometries (Section 3.2.5) to allow for element-wise comparison on both an
individual and cohort level. This isolated discrepancies between the generic and
personalised MSM predictions and their BVR counterparts to differences in pressure

prediction, rather than mesh morphology.

SPM (Section 0) was used to compare the average errors of the (remapped)
personalised and generic MSM pressures against to the (remapped) BVR pressures
for each participant (Figure 3-30). For each element of the tibial cartilage, the z-value
was calculated, and compared to that participant’s z* value (a = 0.05). These were
coloured green if the personalised error was significantly lower (indicating better
prediction) or red if higher. The average errors were computed across all available
frames for each participant, which varied between individuals. A cohort mean map
was also created by averaging the z-values across participants for each mesh
element, with the mean z* of the five participants used as the threshold for statistical

significance.
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Statistical Parametric Map showing error differences
during available stance phase frames
HV002 HV003

(16 frames) (29 frames)
z*=6.19 z*=5.13

HV004 HV005
(24 frames) (21 frames)

z*=547 e z*=5.60

HVO006

(19 TFares) Cohort-level Mean t-map
z*=5.89 mean z* = 5.66

ot

_Pers. significantly better -Gen. significantly better
Figure 3-30 — Element-wise SPM comparing the mean error values (MSM — BVR) across the
specified number of frames for each participant, with the final map showing the mean results
across the whole cohort. Green = generic error was significantly higher (compared to that
participant’s z*), and red = personalised error was significantly higher.
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Compared to the averaged results, individual SPM maps revealed more areas with
significantly greater errors from the personalised model than the generic (red
elements, Figure 3-30). This was largely due to the personalised model results
having larger contact regions and higher pressures than the BVR data. The
participants with the largest regions of significantly better generic predictions (HV003
& HV005) were the same participants with small BVR contact areas (Section 3.4.2)
and low Dice scores (Figure 3-28, Section 0). These participants also showed large

regions of green (significantly better personalised predictions) for the same reason.

However, when the errors were averaged across the cohort, a large region emerged
on the medial tibial plateau where the generic model errors were significantly higher
than the personalised model. This was due to the generic model predicting a more
posterior contact region than the personalised MSM and BVR, resulting in significant
errors where the generic model predicted contact, but it was not observed in the
BVR results. This aligns with the greater anterior translation of the tibia relative to the
femur predicted by the generic model compared to the BVR (Figure 3-22, Section
3.4.1), shifting the contact region posteriorly.

The z* threshold value varied slightly between participants due to differences in the
number of frames included in the analysis. A higher z* threshold reflects a smaller
dataset, where more random errors may be present and the data may be less
smooth between frames. However, the z* values across participants were fairly

similar, ranging from 5.13 to 6.19 (Figure 3-30).

As well as using SPM to investigate element-wise differences, it was also applied to
per-frame analysis (Section 0). Figure 3-31 shows the total mean error difference
(generic — personalised) of all mesh elements at each frame where data was
collected per participant. The z* values for each participant are indicated on the
graph as dotted red lines and any results that fall within this band are not statistically
significant. Similarly to the element-wise comparison, green shaded regions indicate
frames where the generic error was significantly higher than the personalised
(personalised was better), whereas red shaded regions indicate significantly higher

personalised errors.
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Mean error across percentage stance phase
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Figure 3-31 — SPM mean generic vs personalised results across percentage stance phase for
each participant.

Although these results showed no consistent pattern of improved personalised
model prediction for any specific part of stance phase, all participants had regions
where the personalised MSM significantly outperformed the generic MSM (Figure
3-31). In contrast, only three participants showed any regions where the generic
model was significantly better. For all participants, the maximum positive t-statistic
(indicating better personalised model performance) was larger in absolute value than
the minimum negative t-statistic, suggesting that improvements from the

personalised model were more substantial than any areas where it underperformed.
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Only HV006 showed a consistent, statistically significant improvement throughout all
collected frames of gait using the personalised model. This was consistent with their
high mean Dice score for the personalised model (Figure 3-28, Section 0), and low
number of elements where the generic model errors were significantly smaller in the
element-wise SPM results (Figure 3-30), supporting the visual improvement in
contact map prediction seen in Appendix D. These results suggest that for HV006,
the personalised model offered a particularly good match to the BVR-derived contact
pressures, in part because its predicted magnitudes were closer to the lower BVR
values, whereas the generic model pressures were particularly high for this
participant.

Out of the five participants, HV005 presented with the largest percentage of stance
phase where the personalised model was not significantly better than the generic
model, with significant improvements only occurring during early stance. HV005 also
had the highest number of elements where the generic model significantly
outperformed the personalised model, and only a small number showing the
opposite. These results are likely due to the more accurate lateral tibial plateau
contact predictions by the generic model (as seen in the element-wise SPM in Figure
3-30), as well as the high pressure magnitudes calculated by the personalised
model. Although this analysis shows the generic model outperformed the
personalised from 30% stance onwards (Figure 3-31), this was not reflected in the
Dice-scores for this participant, which showed a greater improvement in the
personalised model from 40% stance onwards compared to earlier in the activity
(Figure 3-29). This suggests that the contact area predicted by the personalised
model was more consistent with the BVR results, while the generic model's pressure
magnitudes were closer to the BVR values for this participant.

Weighted Centre of Pressure differences

Weighted COP (Section 3.2.1) changes were also investigated using the remapped
contact pressure maps to allow for a fair comparison, not impacted by mesh size

differences.

The medial and lateral plateau COP positions were calculated for the three different

methods (personalised, generic and BVR), and their traces were plotted on the
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generic tibial cartilage geometry to visualise the movement of the COP on the tibial
plateau (Figure 3-32).
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Figure 3-32 — Weighted COP trace on the tibial plateau plotted for each participant.

On the medial plateau, the personalised model COP traces were consistently more
anterior (+y) than the generic model COP, consistent with the BVR results (Figure
3-32). The more posterior COP in the generic model was expected, given its greater

anterior tibial translation relative to the femur (Figure 3-24).

The BVR COP was found to have a greater ROM in the ML (x) direction than either

MSM when the mean range of COP displacements were calculated (Table 3-5). This
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was true for both the medial and lateral half of the tibial plateau. This indicates the
MSM may be over constraining the movement of the TF joint along the ML axis.
Table 3-5 — Mean range of COP displacement across all participants calculated for

the three methods in both the ML and AP directions for the medial and lateral halves
of the tibial plateau.

COP calculation Mean range of COP displacement
method Medial tibial plateau Lateral tibial plateau
ML (x) (mm) | AP (y) (mm) | ML (x) (mm) | AP (y) (mm)
BVR 8.75 8.22 6.31 5.14
Generic 214 7.31 3.50 4.23
Personalised 3.64 11.02 3.06 4.04

In the AP direction, the BVR had a slightly larger COP ROM than both models on the
lateral plateau, but the personalised model displayed the largest ROM on the medial

plateau (Table 3-5).

The error between the generic and personalised model COP predictions and the
BVR COP were calculated for the two axes directions (ML and AP) at each frame.
The mean error for each participant is presented in Table 3-6 along with the mean

for the cohort.

205



Table 3-6 — Mean error across all frames between MSM and BVR COP positions in
the ML and AP directions for the generic (gen.) and personalised (pers.) models. The
difference in error (gen. — pers.) is colour-coded: red indicates lower error for the
generic model, green indicates lower error for the personalised model.

- Medial tibial plateau error (mm)

Partlchlpant ML (x AP (y)

Gen. | Pers. | Diff. Gen. | Pers. | Diff.
HV002 581 6.92| -1.11] 9.84| 253 | 7.32
HV003 468 117| 351]6.85| 3.77| 3.08
HV004 274 | 177 097| 3.13| 3.89| -0.76
HV005 262 | 345| -0.83| 7.35| 2.80| 4.54
HV006 3.50] 2.23 1.27 1 940 | 448 | 4.92

Mean 3.87[311] 0.76] 7.31| 3.50| 3.82
Participant Lateral tibial plateau error (mm)
D ML (x AP (y)

Gen. | Pers. | Diff. Gen. | Pers. | Diff.

HV002 2.02| 3.09| -1.07| 2.31| 2.24 0.07
HV003 323 | 472 | -149| 474 | 2.85 1.89
HV004 292 | 3.70| -0.78| 256 | 4.37| -1.81
HV005 3.34| 3.93| -0.59| 0.77| 1.45| -0.68
HV006 431| 462 | -0.31]| 1.95| 1.87 0.09
Mean 316 | 4.01| -0.85| 247 | 2.56| -0.09

The largest difference in the mean cohort error (3.82 mm) between the two model
versions was found in the AP direction on the medial plateau, with the personalised
model showing a lower error (Table 3-6). In contrast, the AP translation on the lateral
tibial plateau showed the smallest difference in mean cohort error (-0.09 mm). The
mean cohort error in the ML direction was similar on both plateaus, with both below
1 mm. Although the personalised model had lower mean cohort errors on the medial
plateau in both directions, it had higher errors on the lateral plateau. Despite this,
errors were small in all directions except for AP translation on the medial plateau,
indicating this is the main direction where the personalised model improves

predictions.

3.4.3 MUSCULOSKELETAL MODEL PREDICTIONS DURING HIGHER
FLEXION ACTIVITIES

As well as investigating the model accuracy differences during level gait, the
comparison was expanded to two activities involving higher flexion angles: stair

ascent and lunge(also collected as part of the pilot dataset from Chapter 2). These
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activities challenged the model’s capabilities at a range higher of flexion than it is
typically used for aiming to answer the third research question:

Do the observed differences between the personalised and generic model
outputs reported during gait carry over to activities involving higher TF flexion

angles?
Stair ascent

Like with the kinematic results for gait in Section 3.4.1, the six DOF TF kinematics
were plotted against percentage stance for all three methods — BVR, generic MSM,
and personalised MSM (rotations in Figure 3-33 and translations in Figure 3-34). The
Bland-Altman results for these kinematics are presented in Figure 3-35 and Figure
3-36, along with violin plots summarising the distribution of differences across

participants (Section 0).

The flexion angles predicted by both MSMs had a similar profile to the BVR mean
result but with an earlier peak in flexion (Figure 3-33). They also showed a consistent
offset from the BVR results, 10° for the generic and 11° for the personalised (Figure

3-35), which was similar to the offset observed during gait.

Although the mean adduction of the generic model was closer to the BVR mean
(Figure 3-33), the median difference (MSM-BVR) was slightly smaller for the
personalised model (Figure 3-35). Whereas the personalised model adduction
values were more diverged at the beginning of stance, converging later in stance,
the generic model predictions were the opposite. Neither of these trends was seen in
the BVR results. The generic model tended to underestimate the adduction angle,
whereas the personalised model slightly overestimated it (Figure 3-35). Both models
poorly predicted the adduction for participant HV006, where they overestimated the
value compared to BVR. This was attributed to the large adduction angle calculated

for this participant by BVR, which was not replicated by either MSM.

IE rotation was poorly predicted by both versions of the model which both predicted
external rotation, opposing the internal rotation calculated from the BVR data (Figure
3-33). The generic model predicted a wider range of differences than the
personalised, but they had a similar mean profile with the same mean difference
offset to the BVR results (16°, Figure 3-35).
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Figure 3-33 — Graphs showing the calculated rotations for the individual participants during stair ascent as well as the mean std of the cohort.
The first column shows the BVR results, the second contains the generic MSM results, the third the personalised results and the fourth column
contains the mean xstd of all three methods.
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STAIR ASCENT - TRANSLATIONS
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Figure 3-34 — Graphs showing the calculated translations for the individual participants during stair ascent as well as the mean zstd of the cohort.
The first column shows the BVR results, the second contains the generic MSM results, the third the personalised results and the fourth column
contains the mean xstd of all three methods.
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Figure 3-35 — Bland Altman analyses of the generic (left column, red) and personalised (right column, green) MSM rotations
compared against gold-standard BVR rotations during stair ascent. These results were simplified into violin plots to show the
distribution of the differences (middle column).

210




Generic STAIR ASCENT - TRANSLATIONS Personalised

MSM kinematics against BVR MSM kinematics against BVR
Lateral(+)/Medial(-)

10
5 Lateral(+)/Medial(-) ' 5 Lateral(+)/Medial(-)
e o €
. €, 2.0 (+1.451QR) § g E o 0.65 (+1.451QR)
5% P ———) O &= < -2.3 [p=0.00]
) 2.7 [p=0.00] £ o o
£: = Es S o -5.2 (-1.45IQR)
2 373 (-1.45IQR) i 2 S
-10 b _ i -10 iy
-5 0 5 Gen. | Pers. -5 0 5
BVR (mm) ! BVR (mm)
1pAnterior(+)/Posterior(-) Anterior(+)/Posterior(-) gAnterior(+)/Posterior(-)
10
T 8 s 8.2 (+1.45IQR) = € 6f 6.3 (+1.45IQR)
8‘% _ 1y 55 gé '
5 6f o g 8 5 5C 4
%"9 4 P42 [0p=0.00] EE—) g | %"’? 2}
= = - = =
1 — 0
2 2 : =
0 7 = 0 0.09 (-1.451QR) i 2 . 2 T
- - _5 . - -
BVR (mm) Gen. : Pers. BVR (mm)
Diatraction(-i-)!Compression(-) Diglraction(-l-)a'Compression{-}
o Djstraction(+)/Compression(- -
S 6 i (+)/Comp ) S
g g &
6% 4 _ 3.6 (+1.45IQR) B . 6% 4 3.6 (+1.45IQR)
(o = @ m i
£ 2 . ) 3 £ .2
°3 & oz 45:0.76 [p=0.00]
=0 2 of =01 4§ B
.2_4 . - 1.8 (-1.451QR) ol -2_‘1 Z 2.1 (-1.45IQR)
BVR (mm) BVR (mm)

'
(4)}

Gen. ! Pers.
[o Hvo02 HV003 O HV004 HV005 Hv006 [ Generic MSM [_JPersonalised MSM |

Figure 3-36 — Bland Altman analyses of the generic (left column) and personalised (right column) MSM translations
compared against gold-standard BVR translations during stair ascent. These results were simplified into violin plots to show
the distribution of the giﬁerences (middle column).




The personalised model improved the median translational difference between the
MSM and the BVR results in all three DOFs (Figure 3-36), although there was little
difference in the median value between ML and CD translations. AP translation
accuracy was improved the most by the inclusion of personalised geometries, like
with level gait. Although, this was much less pronounced for stair ascent with the
personalised prediction being only 1.9 mm closer to the BVR translation value than

the generic model (as compared to the improvement of 7.07 mm during gait).

Both models predicted similar mean lateral translation magnitudes (Figure 3-34).
Like with external rotation, the models predicted the opposite magnitude of
translation to the BVR results (which predicted a mean medial translation). There
was also a negative correlation seen on the BA plots for both models (Figure 3-36),
displaying the same over constraining of this DOF as seen with level gait (Section
3.4.1, Figure 3-24).

Both the personalised and generic model predicted a peak of distraction during early
stance, coinciding with the peak in flexion during stair ascent (Figure 3-34). This was
not seen in the BVR results due to HV003 presenting higher compression during

early stance, skewing the mean.

To investigate the effects of the kinematic differences on the contact map results, the
MSM (Section 3.2.3) and BVR (Section 3.2.4) contact map differences were visually
analysed. See Appendix D for the contact maps at 10% intervals of stance phase

during stair ascent for each participant.

Examples were taken at 20% stance (corresponding with peak flexion, Figure 3-37)
and at 60% stance (the last 10% interval where data was available for all
participants, Figure 3-38). These two intervals were chosen to investigate contact
predictions at differing knee flexion magnitudes, as, compared to level gait, the peak

flexion in early stance is much higher, but of a similar magnitude during late stance.
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Stair ascent contact maps at 20% stance phase
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Figure 3-37 — Example contact maps for all participants at 20% stance phase (peak flexion)
during stair ascent. BVR contact map results in the first column, personalised MSM results in
the second and the generi&l\éISM contact map in the third.




Stair ascent contact maps at 60% stance phase
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Figure 3-38 - Example contact maps for all participants at 60% stance phase (lower
flexion) during stair ascent. BVR contact map results in the first column, personalised MSM
results in the second and the %%lleric MSM contact map in the third.



At 20% stance (Figure 3-37), contact was only found on one half of the tibial plateau
for 3/5 participants using the BVR data. This highlights the limitations of calculating
BVR contact using ray tracing and bounding boxes due to its sensitivity to mesh
positioning. Where there is little or no contact calculated by the BVR data,
differences in contact area between the MSM and BVR results are not easily

comparable.

For this activity, instances of little or no contact on one or both plateaus were more
commonly observed during the first half of stance phase when knee flexion was
higher. Some participants displayed these small contact regions throughout (e.g.
HV005), whereas some only displayed them in the first half of stance (e.g. HV004),
and some displayed larger, more consistent contact areas all through the activity
(e.g. HV0O06). This highlights the variable effects of personalised geometry and
kinematics on predicted contact area through the BVR results.

The two sets of MSM results at 20% stance phase (Figure 3-37) displayed a similar
pattern of contact region, with the medial tibial plateau contact sitting more
posteriorly than the lateral plateau contact, reflecting the high external rotation of the
tibia seen in both MSM results (Figure 3-33). This contrasted the contact pattern
resulting from the internal rotation calculated by the BVR, seen in participants where
contact was visible on both tibial plateau halves (Figure 3-39). The similarity between
the generic and personalised contact regions became less pronounced at 60%
stance phase (Figure 3-38) in some individuals (e.g. HV004), however was still
clearly seen in other participants (e.g. HV002 & HV005).

Persongllsed Generic

RN B B

60% stance phase of stair ascent

[ : |
Pressure (MPa)
0 2 4 6 8 10 12 14 16 18

Figure 3-39 — Example highlighting the difference in contact slope on the tibial plateau
caused by the variation in IE rotation.
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The differences in contact area due to the difference in external rotation, along with
the BVR results with little or no contact area predicted, resulted in low Dice scores
between the MSM and BVR predictions for both the generic and personalised

predictions during stair ascent (Table 3-7).

Table 3-7 — Mean Dice scores for each participant during stair ascent

Participant ID Mean Dice score of stair ascent frames
MSM compared against BVR contact map images.
Generic MSM | Personalised MSM Difference
(c.f. BVR) (c.f. BVR) (pers. — gen.)
HV002 0.188 0.162 -0.027
HV003 0.178 0.179 +0.001
HV004 0.181 0.457 +0.276
HV005 0.033 0.129 +0.096
HV006 0.002 0.070 +0.068
Overall mean 0.117 0.199 +0.083

All Dice scores were found to be below 0.2 for both models for all participants,
except for the personalised model of HV004, which had a mean Dice score was
0.475. This participant was the exception due to a combination of having the
smallest average BVR internal rotation of the cohort — resulting in a smaller offset in
external rotation with the MSM — as well as having relatively large contact areas
(particularly towards the end of stance phase). These factors led to a greater overlap
between the BVR and personalised MSM contact maps, as the personalised model
predicted a larger contact area than the generic model, increasing the number of

shared contact pixels for the Dice score calculation.

For all participants, except for HY004, the difference in the mean between the
personalised and generic Dice scores were found to be <0.1 due to the low Dice
scores predicted. As well as low cohort mean Dice scores (generic = 0.117,
personalised = 0.199), the cohort median Dice scores for stair ascent were also low,
at 0.147 (IQR %£0.196) for the generic and 0.189 (IQR +0.292) for the personalised
model.
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Despite these low averages and small differences, a Wilcoxon Signed-Rank test
(Section 3.2.1) found the difference to be statistically significant (W = 25947,

p < 0.0001). This suggests that the personalised geometry did improve the contact
area prediction. However, as the Dices scores are low, caution must be taken when
interpreting results from either model due to the lack of similarity with the BVR

results.

Lunge

The six DOF kinematics during a dynamic weightbearing lunge are presented in
Figure 3-40 and Figure 3-41 for the five participants from the generic MSM,
personalised MSM and BVR results for comparison. The Bland-Altman results for
these kinematics can be found in Figure 3-42 and Figure 3-43, along with the

distribution of differences simplified into violin plots.

Like the other two activities, the flexion angle predicted by both MSMs was the same
and the mean value was offset from the BVR results (Figure 3-40). The generic
model had a median flexion offset from the BVR results of 9.4° and the personalised
model had an offset of 10° (Figure 3-42). This was the smallest offset found for any
of the activities and was also smaller than the 14° offset of the Visual3D motion-

capture results for the lunge activity (Section 2.5.7).
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LUNGE - ROTATIONS
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Figure 3-40 — Graphs showing the calculated rotations for the individual participants during lunging as well as the mean tstd of the cohort.
The first column shows the BVR results, the second contains the generic MSM results, the third the personalised results and the fourth column
contains the mean xstd of all three methods.
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LUNGE - TRANSLATIONS
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Figure 3-41 — Graphs showing the calculated translations for the individual participants during lunging as well as the mean tstd of the cohort.
The first column shows the BVR results, the second contains the generic MSM results, the third the personalised results and the fourth column
contains the mean tstd of all three methods.
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Generic
MSM kinematics against BVR

LUNGE - ROTATIONS
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Figure 3-42 — Bland Altman analyses of the generic (left column) and personalised (right column) MSM translations compared
against gold-standard BVR rotations during lunging. These results were simplified into violin plots to show the distribution of

the differences (middle column).
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All three methods calculated the knee to be adducted on average during lunge,
however, both the BVR and personalised MSM predicted a large range of
magnitudes across the cohort, with some participants displaying abduction
throughout (Figure 3-40). The adduction angle estimated by the generic model was
more consistent between participants. Both models displayed a large range of
differences between participants, but with a fairly consistent offset for each individual
(Figure 3-43).

Like with stair ascent, both MSMs poorly predicted TF internal rotation displaying the
same median rotation offset of 16° (Figure 3-42). The BVR results showed the knee
to be constantly internally rotated throughout the lunge, whereas both MSMs found

the average rotation fluctuated around 0° (Figure 3-40).

The personalised model presented a closer mean translation to the BVR results than
the generic model in both the AP and CD directions, but not for ML translation
(Figure 3-41). Both MSMs found medial translation overall, whereas the BVR
presented mean lateral translation, although there was variation between
participants, with some showing medial translation throughout. Again, like the other
two activities, the trend of decreasing difference with increased BVR medial

translation was present (Figure 3-43).

Similarly to the other two activities, the personalised model was found to improve the
median AP translation difference, this time by 1.5 mm (Figure 3-43). Again, both
models overestimated the translation, generally predicting anterior translation of the
tibia relative to the femur, whereas BVR generally presented posterior translation.

Both models found the joint to be distracted during the central portion of the lunge,
coinciding with the higher flexion angles, contrary to the BVR results where the
median remained around neutral (Figure 3-41). Although both MSMs overestimated
distraction, the personalised model did present a lower median difference and IQR

than the generic model (Figure 3-43).

The lunge contact maps from the three methods were then compared visually for
similarity. The results for each participant at intervals of 10% lunge can be found in
Appendix D. Examples of the contact maps for the cohort at 50% lunge are shown in
Figure 3-44; 50% lunge was chosen as this was a point of high flexion for all
participants, roughly matching the mean peak flexion value of the cohort.
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Like the other two activities, the BVR lunge contact maps had frames with little or no
contact on half of the tibial plateau, particularly on the medial plateau. Again, some
participants displayed more frames with small contact areas (e.g. HVY002 & HV003)
than others (e.g. HV006). There was no obvious kinematic pattern as to the
participants that presented with smaller contact regions, suggesting this was more
likely due to individual geometry, or segmentation and image registration errors than

kinematic inputs.

Like with stair ascent, the MSM contact regions were located more posteriorly on the
medial plateau compared to the lateral plateau (Figure 3-44), again due to the
predicted external rotation of the tibia (Figure 3-40). This was more clearly seen in
the personalised MSM lunge results than in the generic (e.g. HV002, HV003 &
HVO006 in Figure 3-44), likely due to the personalised MSM'’s external rotation being
higher at 50% lunge. The BVR contact maps displayed the opposite pattern of the
medial contact being more anterior than the lateral, reflecting the much higher

internal rotation calculated using this method than the MSMs.
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Lunge contact maps at 50% lunge
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Figure 3-44 — Example contact maps for all participants at 50% lunge (high flexion). BVR
contact map results in the first column, personalised MSM results in the second and the
generic MSM contact map in the third.
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The Dice scores for each participant between the generic and personalised MSMs
and the BVR results were calculated for each frame for each participant; they are

presented in Table 3-8 along with the cohort mean.

Table 3-8 - Mean Dice scores for each participant during lunging

Participant ID Mean Dice score of lunge frames
MSM compared against BVR contact map images.
Generic MSM | Personalised MSM Difference
(c.f. BVR) (c.f. BVR) (pers. — gen.)
HV002 0.245 0.171 -0.075
HV003 0.319 0.176 -0.143
HV004 0.569 0.628 +0.059
HV005 0.029 0.136 +0.108
HV006 0.166 0.283 +0.117
Overall mean 0.265 0.279 +0.013

The mean Dice scores for the cohort varied between participants with some having
very low scores (e.g. HV005), but some presenting higher scores (HV004). Although,
the overall mean difference (+0.013) for the cohort suggested that the personalised
model improved the contact area prediction, it was only a very small difference, and
the generic model had a higher mean Dice score for 2/5 participants. As well as this,
the median difference was higher for the generic model at 0.217 (IQR = 0.283) than
the personalised model at 0.180 (IQR = 0.205). When the Wilcoxon signed-rank test
was performed on the paired lunge frames for the cohort, it found the generic model
contact predictions to be statistically significantly better than the personalised (W =
33261, p = 0.0039). This again suggests that the model is not suitable for predicting
TF contact during activities with high flexion, such as a lunge.

3.4.4 DISCUSSION OF RESULTS ACROSS THE THREE ACTIVITIES

As seen in Chapter 2 when the BVR kinematics were compared with Visual3D (V3D)
(Section 2.5.7), an offset was seen between the marker-based calculation of the
MSM flexion angle with the BVR measured flexion angle. To compare the offset
across all three activities, the mean difference from the earlier Bland-Altman
analyses (Figure 3-23, Figure 3-35 & Figure 3-42) are included in Table 3-9.
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Table 3-9 — Median differences from the Bland-Altman analyses (Figure 3-23, Figure

3-35 & Figure 3-42) between the modelling pipelines and BVR flexion results.

Activity Median flexion difference (method — BVR)
V3D (°) Generic (°) Personalised (°)

Gait 14 13 13

Stair ascent 13 10 11

Lunge 14 9.4 10

Whereas V3D found a similar flexion offset across the three activities, the MSMs
both had a smaller offset for the activities with higher flexion than gait. This is likely
because the marker misplacement would affect the femur body positioning in the
model, rather than the direct joint kinematics (like in V3D) so their effect on the
calculated flexion angle would be different. These significant flexion errors would
have affected the secondary kinematics calculated by the MSM as they are defined

as functions of flexion during the inverse kinematics step.

When looking at the secondary kinematics, external rotation differences most
affected the contact area variation during the high flexion activities. During both stair
ascent and lunge, the MSM predicted rotations were much higher than the internal
rotations (considered negative) calculated from the BVR data (Figure 3-33, Figure
3-40). A median difference of 16° was found by both models during both activities,
showing this rotation to be poorly predicted by the model for activities involving high

flexion.

This difference between the model-predicted and BVR-calculated internal rotation of
the tibia relative to the femur during activities with high flexion was likely due to the
muscles, ligaments or wrapping surfaces in the model causing external rotation
when the knee flexed. When visualising a stair ascent trial in OpenSim, the whole
shank (including the foot) rotated despite the foot being planted on the floor during
stance phase (Figure 3-45). This external rotation of the foot highlights the
corresponding external rotation occurring at the knee, which was opposite to the
internal rotation calculated by BVR during the same activity. As the experimental

markers do not display the same external rotation as the virtual markers, this
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suggests this rotation was not caused by the experimental data, but the behaviour of
the model itself.

Heel-strike Mid-stance

© Virtual markers

@ Experimental markers
(from motion capture)

Figure 3-45 — Example of a personalised MSM (HV005) predicting internal rotation of
the foot during a stair ascent. The pink markers are virtual markers showing the model’s
predicted marker locations (based off body segment positioning) and the blue show the

marker locations as measured directly from motion capture.

When looking at the forward flexion simulation that generated the splines coupling
the secondary coordinates to TF flexion angle (Section 3.2.3), the knee rotated
externally as flexion increased (Figure 3-46). This trend opposes results found in
literature, where TF flexion was shown to be coupled with internal rotation of the tibia
in activities involving higher knee flexion angles (e.g. open-chain flexion) (Thomeer
et al. 2021). As these forward flexion splines are used to set the initial secondary

coordinate values during COMAK (before optimisation), the algorithm would be
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solving for increasing external rotation values as knee flexion increases, getting
further from the gold-standard BVR internal rotation measured. At the lower flexion
angles involved in level gait (below 1 radian/~60°), the spline only allows for small
degrees of external rotation, which is why the difference between model-predicted
value and BVR-calculated rotation more evident during the activities with higher

flexion.

Passive flexion simulation results
Internal rotation against flexion
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Figure 3-46 — Passive forward flexion simulation internal rotation plotted
against TF flexion. This spine is used to generate the internal rotation
(secondary coordinate) value used as an initial position for the COMAK
algorithm.

For all three activities, the generic MSM had a larger external rotation standard
deviation and IQR of the differences than the personalised model. Although greater
variation in internal rotation may be expected from the personalised model results
due to contact geometry variation, this was not the case. Further work is needed to
investigate the reason for this reduced variability in this DOF from the personalised
model, however it may be due to the repositioning of the soft tissue attachment
points or wrapping surfaces, or calibration of the muscle and ligament parameters

when creating the personalised versions of the models.
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The adduction angle prediction showed mixed results across activities. The
personalised MSM had a better median difference than the generic model during gait
(Figure 3-23), a slight improvement during stair ascent (Figure 3-35), but a worse
median difference during lunging (Figure 3-42). During the lunge, the personalised
model produced a wider range of adduction angles across the cohort, more
comparable to the BVR results, whereas the generic model gave more consistent
values across participants. While the greater ROM meant the personalised model’s
mean adduction angle was closer to that of the BVR during stair ascent (Figure
3-40), the participants with the extreme values did not match between methods. As a
result, the wider range did not translate to improved accuracy on an individual level,

and personalisation did not improve adduction predictions during lunging.

Of the three translational DOFs, AP translation showed the greatest improvement in
median difference (MSM-BVR) and smallest IQR when the model was personalised.
The generic model consistently overestimated anterior translation across all activities
studied (not seen in the personalised results), possibly due to the specific surface
morphology or positioning of the generic contact meshes. These results support
personalising the model geometry to improve prediction of AP translation across

various activities and flexion ranges.

ML translation showed the same trend in the Bland-Altman results of both models
across all the activities of negative correlation between the difference (MSM-BVR)
and the measured BVR value (Figure 3-24, Figure 3-36 & Figure 3-43), suggesting
the model over-constrained the joint translation in this direction. This was most
clearly visible in the lunge results, where both MSMs had small standard deviations
compared to the BVR results (Figure 3-41).

The MSMs predicted increased distraction with increased flexion, with the largest
distraction values occurring during the middle of the lunge and beginning of the stair
ascent, consistent with the high flexion angles during these periods. This was not
seen in the BVR results. From the spline shown in Figure 3-47, there was a trend of
greater distraction as flexion reached values above 0.5 rad (~30°), hence why the
bones were more distracted during high flexion.
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Passive flexion simulation results
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Figure 3-47 - Passive forward flexion simulation compression plotted against TF
flexion.

The OpenSim-JAM framework relies on the assumption that the secondary DOFs
are coupled with flexion angle to generate the initial secondary coordinate values
before optimisation (Section 3.2.3). The weak correlation found between the
secondary DOFs and flexion in the BVR results through all the activities (Chapter 2,
Section 2.5.6) meant the model’s secondary kinematics were not always accurate
across the cohort. This would also contribute to the MSM kinematic predictions
during higher flexion activities being worse than during level gait as the BVR

correlations were weaker for these activities than gait.

The personalised model showed the greatest improvement in contact area prediction
during activities involving lower flexion — i.e. during level gait and the second half of
the stance phase of stair ascent. This was supported by the Dice scores, which
found the largest mean difference between the personalised and generic models
during gait, followed by stair ascent, then lunge (Table 3-10). Although only 3/5
participants had the greatest improvement (highest difference) between the
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personalised and generic MSMs during gait, all participants had their highest mean
Dice score (MSM c.f. BVR) for the personalised model during level gait.

Table 3-10 — Mean Dice scores for all activities showing the mean generic (gen.) and
personalised (pers.) MSM scores (when compared to the BVR contact maps) across
all frames, as well as the difference (personalised — generic) between the mean Dice
scores for each individual and the cohort.
(Combination of Table 3-4, Table 3-7 & Table 3-8)

ID Mean Dice score
Level gait Stair Ascent Lunge
Gen. | Pers. Diff. Gen. | Pers. Diff. Gen. | Pers. | Diff.

HV002 | 0.541 | 0.547 | +0.006 | 0.188 | 0.162 | -0.027 | 0.245 | 0.171 | -0.075
HV003 | 0.334 | 0.377 | +0.043 | 0.178 | 0.179 | +0.001 | 0.319 | 0.176 | -0.143
HV004 | 0.507 | 0.754 | +0.248 | 0.181 | 0.457 | +0.276 | 0.569 | 0.628 | +0.059
HVO005 | 0.336 | 0.427 | +0.092 | 0.033 | 0.129 | +0.096 | 0.029 | 0.136 | +0.108
HV006 | 0.463 | 0.608 | +0.145 | 0.002 | 0.070 | +0.068 | 0.166 | 0.283 | +0.117
Overall

mean 0.436 | 0.543 | +0.107 | 0.117 | 0.199 | +0.083 | 0.265 | 0.279 | +0.013

Overall, these results suggest that personalising contact geometries improves
contact area predictions during lower-flexion activities where the kinematic
differences between the MSMs and BVR values were lower. However, for higher
flexion activities, alterations to the MSM would be required as the current model is

not suitable for predicting kinematics when higher flexion angles are involved.

3.4.5 CHALLENGES AND RECOMMENDATIONS

One of the main drivers of personalisation of MSMs is the limitations of a generic
model to represent individual variation in joint geometry and alignment, which
standard linear scaling of model segments cannot achieve (Bakke and Besier 2020;
Veerkamp et al. 2021; Davico et al. 2022). With associated errors increased in
models that consider contact mechanics between articulating surfaces, such as in
the OpenSim-JAM pipeline, accurately representing individual joint morphology is an
important step in understanding contact pressures in, not only healthy, but diseased

joints too (Killen et al. 2024). Hence it is important to understand if personalisation of
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the contact geometries improves joint kinematics and contact predictions, as
hypothesised.

As the generic model typically used with the OpenSim-JAM framework only used
contact geometries from a single 23-year-old female subject (Lenhart et al. 2015), it
is not representative of the population at large. As diseases, like OA, are more
prevalent in an older population, younger ‘generic’ geometries may not provide the
best representation of contact in an aged-matched population, even if they are
considered ‘healthy’. Contact pattern differences are likely to increase with
morphological changes due to disease progression, making personalisation even

more important.

As well as age, the generic model geometries do not capture knee size variation; in
the OpenSim-JAM framework, the specialised contact geometry meshes are not
scaled with the rigid body segments, only translated to their new position (based on
the leg length). In this study’s cohort, the ‘generic’ geometry was visually one of the
smaller meshes (compared to the personalised geometries used) meaning that
participants with larger knees may not have been accurately represented with the
generic version of the model as the contact surface size was much smaller. Although
no single ‘generic’ geometry can represent the variety of the whole population, a
model with an average sized knee may be a better choice where personalisation is

unfeasible and a generic model is required.

The current generic geometries used in this study may also be causing the
consistent anterior translation overestimation seen in the kinematics results. Using
an alternative participant as the ‘generic’ model basis would confirm if this offset was
due to the specific geometries, as well as investigate how the generic geometry

chosen affects the outputs contact patterns.

Another potential limitation of the generic model is the positioning of the contact
geometries within the knee. In their paper setting out the model, Lenhart et al. (2015)
state that the tibial cartilage surface was “placed to just contact the femoral
geometries in an upright position”. This adds uncertainty to the comparisons with the
generic model as it is unclear what manipulation was performed to alter the
geometry positions and, therefore, how that alteration may influence the joint ACS

definitions and the resulting kinematics.
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To minimise the differences between the knee joint origin between the methods, the
same algorithm (Miranda et al. 2010) was used to define the femoral ACSs in the
generic model and the personalised bone models to facilitate direct comparison
between results. As shown in the previous chapter, the ACS definition alters
kinematic outputs (Chapter 2, Section 2.5.5), so it was important to use the same
consistent ACS definition between the methods. Despite using the same algorithm to
define bone ACSs, differences may still remain, and these would contribute to

variation in the kinematics seen between methods.

Another challenge of comparing the MSM results with the BVR results was that the
contact maps did not always show contact on both plateaus during stance phase of
all three activities. This was likely due to the sensitivity of the method to small
changes in mesh positioning (Section 3.3.2), as well as the BVR bone poses
inherently including the meniscus and other soft tissues not included in the MSM,
reducing the contact area. Segmentation or smoothing errors could also contribute to
the small regions. For these reasons, it is recommended to explore alternative

methods for calculating contact from BVR bone poses.

The contact region between the MSM and BVR results would also be affected by the
assumption of the COMAK algorithm that the cartilage geometries must always be in
contact, so it can solve for the constraint equations. This may artificially increase the
predicted contact area as the meshes within the joint were being held together

throughout, increasing the differences between MSM and BVR contact areas.

Due to project time constraints, this analysis focussed on the TF joint and the contact
on the tibial cartilage. To expand the analysis in the future, the converse mapping of
the TF contact onto the femoral cartilage mesh would allow for fuller understanding
of the differences in contact location on both bones in the TF joint. Additionally, PF
kinematics and joint contact could be examined, as the patella and its cartilage are
also personalised in the model generation (Section 3.2.2). If using the same MSM to
evaluate PF joint contact, it is important to test the benefits of personalisation

separately to determine the accuracy for each individual joint.

Although the pipeline was only applied to a healthy population in this study, there is
future scope to investigate the differences between generic and personalised MSM

outputs in pathological cohorts. Diseased joints are like to show even greater
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improvements in accuracy when the model is personalised, due to the altered
kinematic strategies and contact morphologies being better captured by models that
include personalised joint contact representations. Not all patients will present with
the same differences from healthy joints, despite having the same disease,
therefore, to successfully model an individual's biomechanics, personalisation of the
joint morphology is recommended. Better model predictions can then be utilised in

individualised care and interventions to improve patient outcomes.

3.5 CONCLUSION

All aims set out at the start of the chapter (Section 3.1.2) were successfully met, with
the OpenSim-JAM pipeline being run for multiple dynamic activities, both with
generic and personalised geometries, for five participants. The resulting MSM
contact maps were then compared with BVR-equivalent maps for the first time to

assess the benefit of incorporating personalised TF joint contact geometries.

The results showed that personalised TF geometries particularly improved model
estimates of AP translation during the stance phase of level gait. When compared to
the gold-standard BVR kinematics, model personalisation improved the absolute
median difference between the MSM and BVR results by over 7 mm compared to
the generic model (Figure 3-24). This resulted in a visual improvement in contact
region prediction during gait when using the personalised geometries (Figure 3-25),
supported by improved Dice scores (Table 3-4). Element-wise SPM analysis
highlighted a significant region on the posterior medial plateau where the generic
model overestimated contact (Figure 3-30), as the BVR contact maps found the
medial contact to be located more anteriorly. The personalised model also found the
contact to be located in a similar anterior position, demonstrating the benefits of the
more accurate AP translation prediction. Weighted COP differences in the AP
direction were also reduced when using the personalised model (Table 3-5), further

supporting these findings.

As the medial side of the knee has been shown to be more susceptible to OA
initiation and propagation (Vincent et al. 2012) associated with increased loading and
COP shift on the medial tibial plateau during gait (Meireles et al. 2017), it is important
to accurately model the contact on the medial side of the knee. Therefore, although

the time and resource costs of personalising the contact geometries in the MSM are
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high, model personalisation is recommended for assessing TF contact during gait
trials as the generic model was less accurate at predicting the contact than the

personalised model, particularly on the medial tibial plateau.

However, for the activities involving greater TF flexion, such as stair ascent and
lunge, both models were less accurate. Errors in external rotation (Figure 3-35,
Figure 3-42) led to shifts in contact location on the tibial plateau. As the model was
originally developed for gait (Lenhart et al. 2015), further model optimisation would
be required to ensure reliable contact predictions for activities outside of walking. It
also highlights the benefit of testing model performance for each new activity, as
accuracy may vary. Once the model has been optimised for higher flexion, the
benefits of personalisation of contact geometries should be reevaluated as it would
likely improve contact predictions.

In conclusion, adding personalised contact geometries overall improves TF
kinematic and contact pressure region predictions during level gait, particularly in the
AP direction, but not for activities involving higher flexion angles. Therefore,
personalisation should be strongly considered when utilising the OpenSim-JAM

pipeline to assess gait.

This chapter directly supports the overarching research aims described in

Section 1.8 by benchmarking MSM predictions against accurate BVR-kinematics to
evaluate the benefits of personalised modelling. Within the context of the wider
framework, the MSM provides unique whole-body kinetic and kinematic data,
complementing the joint-specific outputs from the BVR and FEM components.
Importantly, as the MSM pipeline utilises different input data, the contact pressure
maps it generates offer a valuable reference for comparison with both BVR-derived
and FEM-based results. Together, these contributions strengthen the integrated
framework developed in this thesis and enhance its capacity to capture and interpret

the complex biomechanical behaviour of the knee during dynamic activity.
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CHAPTER 4: KINEMATIC-DRIVEN, SUBJECT SPECIFIC
FINITE ELEMENT MODELLING OF THE TIBIOFEMORAL
JOINT

41 INTRODUCTION

As knee osteoarthritis (OA) onset and progression is linked to excessive mechanical
loading of the tissues (Mukherjee et al. 2020), understanding of the stresses and
strains within load-bearing structures, such as the articular cartilage, during typical
in-vivo motion is important. Characterising the behaviour of healthy articular cartilage
during functional activities (e.g. walking) is key to understanding how its mechanical
properties weaken with OA (Sinusas 2012; Katz et al. 2021; Mohout et al. 2023).

Finite element modelling (FEM) is a technique used investigate internal mechanics of
tissues that occur under different loading conditions. Unlike the musculoskeletal
modelling (MSM) pipeline presented in Chapter 3, which calculated contact
pressures using 2D representations of the articular cartilage surfaces, FEM uses 3D
meshes to model element-wise deformations, allowing for the calculation of internal
parameters, such as stress and strain, providing additional insight into soft tissue
loading.

FEM has been widely used to investigate altered loading and disease progression
within osteoarthritic knees (Tarnita et al. 2014; Arjmand et al. 2018; Bolcos et al.
2020; Thienkarochanakul et al. 2020; Daszkiewicz and Luczkiewicz 2021; Lampen et
al. 2023; Mohout et al. 2023; Mononen et al. 2023), using the popular approach of
applying forces to drive the model. Determining the force inputs for a model requires
assumptions, such as the magnitude, direction and the location the force originates
from, as forces cannot be directly measured in-vivo in native joints. For a subject-
specific in-vivo FEM of knee joint loading, forces are typically calculated using MSMs
and motion capture data (Besier et al. 2008; Adouni and Shirazi-Adl 2014; Marouane
et al. 2016; Richards et al. 2018; Shu et al. 2018), or by scaling mean gait patterns
(Mononen et al. 2016; Paz et al. 2021). FEMs driven using these data will not
accurately replicate underlying bone movement due to errors associated with motion
capture (for example, soft tissue artefact and marker misplacement), as well as the

assumptions within the MSM pipeline.
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An alternative approach is to drive the model using in-vivo kinematics, however, this
is less common due to the challenges associated with obtaining accurate input
kinematics and the sensitivity of FEM to small kinematic changes (Fregly et al.
2008). Some kinematic-driven models of the knee have been created, but they often
used a hybrid force-kinematic approach (prescribing up to five degrees of freedom,
DOFs, and controlling the others based off force inputs) to account for potential
errors in the input kinematics (Halonen et al. 2013; Carey et al. 2014; Kwon et al.
2014; Bolcos et al. 2018; Gu and Pandy 2020).

Despite the recent advancements in the collection and processing of accurate
kinematics using biplane videoradiography (BVR) (Gray et al. 2018), exploration of
using these inputs to drive six DOFs of a FEM to investigate joint contact in the knee
has not been done to the author’s knowledge. By combining BVR kinematics and
geometries segmented from magnetic resonance imaging (MRI), a highly
personalised model can be created to replicate measured in-vivo joint motion. It is
important to understand the feasibility of this approach, as well as its potential
limitations, as it may provide new, alternative insight into in-vivo soft tissue loading,

complimenting discoveries from force-driven models.

4.1.1 AIM AND OBJECTIVES

Therefore, to investigate the potential of a fully kinematically-driven FEM of the
tibiofemoral joint (TF) during in-vivo motion, the aim of this study was to create a
subject-specific model of a healthy knee joint using geometries from MRI, where the
six DOFs of the TF joint are prescribed using accurate kinematics from BVR to
investigate contact pressure, stress and strain in the tibial cartilage during the stance

phase of level gait.
To help achieve this aim, it was further broken down into the following objectives:

e Develop a subject-specific TF joint model, including the bones, articular
cartilage and relevant soft tissues (segmented from MRI), that successfully
runs through all frames of the kinematic input data.

e Compare the personalised contact pressure outputs to those generated from
the ray tracing and bounding box method using the BVR and MSM pipelines
(Chapter 3) to explore the differences between the methodologies.
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¢ Use the FEM to calculate stresses and strains in the articular cartilage during
stance phase of level gait and compare these results to typical force-driven
models of healthy human knees in literature to assess the feasibility of

equivalent kinematic-driven models.

These objectives were defined to understand the advantages, limitations and
practicalities of using kinematics to drive an FEM and if there is potential for this
technique to be applied in the future to investigate joint loading in diseased knees

too.

4.2 METHODOLOGY

4.2.1 MODEL SUMMARY

To investigate the potential for a fully kinematically-driven FEM of the knee, a model
was created in FEBio (Maas et al. 2012) of a single healthy participant (Figure 4-1).
FEBIio was chosen for developing this joint contact model as it is open source,
specifically designed for biomechanical modelling, good for modelling soft tissue

interactions, and is validated against other FEM software (Maas et al. 2012).

HV004 was chosen for the model from the cohort dataset (as described in

Chapter 2) as a T1-VIBE MRI scan of their knee was collected (which was better for
segmenting soft tissues compared to the DESS scan used for earlier participants —
see Section 2.2) and a complete dataset (including segmented geometries and

matched BVR image registration) was available at the time of initial model creation.
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Figure 4-1 — FE knee model geometries.

An overview of the structures included in the model, along with their respective
Material models and number of elements are given in Table 4-1. More details on the

chosen material models — including the parameter values used, can be found in
Section 4.2.2.
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Table 4-1 — FE knee model structures included, their material models and number of

elements/springs used to represent them.

Material | Material Model Structures Number of
elements/springs
Bone Rigid body Distal femur 266,920
Proximal tibia (& 131,182
fibula)
Articular Nearly incompressible Femoral cartilage 312,696
cartilage | Neo-Hookean (modelled | :
_ o Tibial cartilage 103,383
using Mooney-Rivlin)
Meniscus | Transversely isotropic Medial meniscus 44678
Mooney-Rivlin
Lateral meniscus 23042
Meniscal | Linear spring bundles Anterior medial horn 50
horns
Posterior medial horn | 49
Anterior lateral horn 37
Posterior lateral horn 25
Ligaments | Non-linear Blankevoort | ACL 145
springs
Pring PCL 70
MCL 65
LCL 25

The model was driven by prescribing the bones (rigid bodies) using the object

transforms of the level gait trial for HY004 (Chapter 2, Section 0). It was chosen to

model gait as this is a commonly used activity across FE knee models in literature
(Yang et al. 2010; Adouni et al. 2012; Halonen et al. 2013; Daszkiewicz and
Luczkiewicz 2021; Fu et al. 2022; Mohout et al. 2023). Gait also involves lower

flexion than the other two activities — lunge and stair ascent (as shown in Table 4-2),

240




resulting in less extreme changes from the initial MRI position of the structures,
increasing the likelihood the model would be able to solve.
Table 4-2 — Maximum measured flexion angle calculated for each activity for the

participant used for the FEM and the whole cohort presented in this thesis
(Taken from the results in Chapter 2).

Gait Stair ascent Lunge
Maximum flexion angle for HV004 7.8° 56.6° 67.0°
Maximum flexion of the whole cohort 20.2° 60.4° 111°

An overview of the main modelling steps can be found in Figure 4-2, with more detail

on for these steps in Section 0.

The geometries in the model were initially separated (Step 1) to account for any
potential mesh overlap caused when smoothing the MRI segmentations (in
Simpleware, ScanlP) before importing them into FEBio. Then, the soft tissues were
brought into contact and allowed to compress and settle into their starting kinematic
position (Step 2). The contact position at the end of Step 2 was the first frame of
BVR kinematic motion, ready for the joint to be driven through the rest of the
kinematic frames of level gait (Step 3). All motion during the simulation was applied

to the tibia bone rigid body and the femur was fixed in all 6 DOFs throughout.

Along with the constraints used to drive the model through each step, Figure 4-2 also
provides a summary of the contacts applied during each step. These contacts

determined the soft tissue interactions between surfaces during the simulation. More
information on the constraints and contacts (including contact penalty values) can be

found in Section 0.

241




Initialised + Femur fixed in all 6 DOFs.
constraints *+ Femoral and tibial cartilage welded to femur and tibia, respectively.

Step 1: Separate

All geometries were separated by moving the
tibia (and attached tissues) downwards away
from the femur. The meniscus was moved half
the distance of the tibia, so it was not
contacting either cartilage surface.

Constraints
+ Tibia: -2 mm z-displacement, fixed in all 5
other DOFs.
+ Rigid body blocks' (circled in yellow):
-1 mm z-displacement (to constrain meniscus
movement)
Contacts
+ Tied-facet-on-facet between rigid body block
faces adjacent to the menisciouter edges.

Step 2: Initial Contact

Tibia moved into first frame position, allowing
the soft tissues to compress and settle.

Constraints
Tibia: 6 DOFs moved into positions for first
frame of BVR kinematics.
Contacts
« Sliding-facet-on-facetbetween femoral and
tibial cartilage.
+ Sliding-facet-on-facet between femoral
cartilage and superior menisci surfaces.
+ Sliding-facet-on-facet between tibial
cartilage and inferior menisci surfaces.

o e e e e e e e e e e e e e e e e e e e e e e e e e e

Step 3: Kinematic-driven

Knee joint constrained using BVR-derived
kinematics of the stance phase of level gait.
Constraints
« Tibia: 6 DOFs moved through all frames of
BVR kinematics.
Contacts
« Sliding-facet-on-facet between femoral and
tibial cartilage.
+ Sliding-facet-on-facet between femoral
cartilage and superior menisci surfaces.
+ Sliding-facet-on-facet between tibial
cartilage and inferior menisci surfaces.
Figure 4-2 — Overview of FE modelling steps to achieve kinematically-driven
motion.
'See Figure 4-12 in Section 0 for a clearer image of the rigid body blocks.
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4.2.2 KNEE STRUCTURES GEOMETRIC REPRESENTATIONS AND
MATERIAL MODELS

The following sections describe in more detail the generation of each structure within

the model, including the material model used to represent it.

All the personalised geometries segmented from the T1-VIBE MRI scan (Chapter 2,
Section 2.2) were meshed using the in-built +FE free algorithm in Simpleware
ScanlP (Synopsis, United States). The parameter values used by the algorithm to

generate the meshes of each 3D structure in the model are given in Table 4-3.

The +FE free algorithm uses adaptive meshing to generate tetrahedral elements
automatically sized based on geometry, progressively refining the mesh based on
image resolution (Synopsys 2022). It can generate meshes representing complex
geometries, as well as allowing the user to adjust the mesh coarseness of individual

regions, making it useful for meshing human tissue structures.

The material models and parameter values used for this model were taken from
literature due to time constraints as the comprehensive sensitivity analysis required
to fully determine the suitability of the models and parameters was outside the scope
of this project. As it was an exploration of potential use of kinematic-driven

modelling, example parameters from literature were deemed suitable.
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Table 4-3 — Mesh generation parameters used by the +FE free algorithm for each 3D structure in the model.

Parameter Femur Tibia/Fibula Femoral Tibial Medial &
cartilage cartilage Lateral
Meniscus
Target minimum edge length (mm) 1.44 1.44 0.454 0.454 0.410
o | Target maximum error (mm) 0.0640 0.0640 0.0640 0.0640 0.0640
% Maximum edge length (mm) 3.52 3.52 0.986 0.986 0.870
% Surface change rate 50 50 6 6 4
Q (1 = slow, 100 = fast)
"c:; Target number of elements acrossa | 0.75 0.75 0.97 0.97 0.98
§ layer
§ Self-intersection checks Partial Partial Partial Partial Partial
< Volume mesh generation internal 30 30 30 30 30
change rate (71 = slow, 100 = fast)
Quality optimisation cycles 5 5 5 5 5
Quality metric Jacobian, in-out ratio and edge length ratio
2 [Quality target 0.1 0.1 0.1 0.1 0.1
>
C | Allow off-surface Yes Yes Yes Yes Yes
é Maximum off-surface distance 0.2 0.2 0.2 0.2 0.2
= (local edge length fraction)
Maximum off-surface distance (mm) | 1000 1000 1000 1000 1000
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Bones

The femur and tibia segmentations from the T1-VIBE scan (Section 2.2) were used
to form the basis of the personalised model. The proximal fibula was also segmented
for the model, as it is the attachment site for the lateral collateral ligament (LCL). The
fibula model was exported with the tibia geometry, so they formed a single rigid body
in the model. Therefore, the kinematic relationship between them remained constant
throughout, and the constraints that prescribed tibial movement simultaneously
moved the fibula.

The bones (Figure 4-3) were set as rigid bodies as bone is much stiffer than the
surrounding soft tissues (Donahue et al. 2002; Adouni et al. 2012; Liu et al. 2022;
Steineman et al. 2022; Uzuner et al. 2022; Yan et al. 2024). This had the added
benefit of being able to directly prescribe their kinematics (using prescribed rigid
body constraints); driving the bone motion using kinematics is described in more
detail below (Section 4.2.3).

Distal Femur

— Proximal
Tibia

Proximal fibula
(combined with tibia into a
single rigid body)

Figure 4-3 — Bone geometries included in the FEM. The femur is shown in
blue and the combined tibia and fibula rigid body is shown in red.

The bones were meshed using the default mesh generation settings (Table 4-3). As
no deformation occurs to rigid objects, the number of elements does not affect model

outputs and a smaller number of elements reduces the computational cost, therefore
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the default settings were used. The final number of elements was 266,920 for the
femur and 131,182 for the combined tibia and fibula (Table 4-1).

Using rigid bodies for the bones removed the possibility of getting internal bone
mechanics results, including individual element changes across the bone structure.
However, it did reduce the computational time for the model as all elements in each
rigid bodies were considered as one, not needing individual calculations. This also
meant that the kinematics were able to be replicated from the measured bone
movements from BVR as they were not affected by deformations of the bone
meshes. As the model was designed to investigate soft tissue mechanics, and bone
is relatively incompressible compared to the other tissues in the knee (Uzuner et al.

2022), it was decided this compromise was appropriate for this application.

It was chosen not to include the patella in this model, due to the need to add extra
structures which would increase the complexity of the model without affecting the
outputs from the TF joint. As the focus of this study was TF joint contact and soft

tissue mechanics, adding the patella was not required.

Articular cartilage

The femoral and tibial articular cartilage (Figure 4-4) was also segmented from the
T1-VIBE scan as part of the work in Chapter 3. The personalised 3D geometries
were then exported, along with their bone-counterparts, so that each bone and
cartilage pair was exported as a single object with two parts. This meant that when
the objects were meshed in Simpleware ScanlP (Synopsis, United States), the
contacting surfaces between the bone and the cartilage were produced with
coincident nodes. These coincident nodes were welded together once the
geometries were imported into FEBio using the Weld nodes tool; this ensured that
the femur and femoral cartilage, and tibia and tibial cartilage, remained connected at
all times in the simulation, replacing the need for a tied contact and reducing model

complexity.
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Femoral cartilage

Figure 4-4 — Articular cartilage geometries in the model shown in pink.
A mesh convergence analysis was not performed for this model as this was an
exploratory study. However, since a large number of elements are necessary to
accurately capture the complex geometry of the structures within the knee, the mesh

density was assumed to exceed the requirements for convergence.

For this model, the articular cartilage meshes were generated (Table 4-3) so there
were around ten elements across the thickness of the cartilage to capture internal
cartilage mechanics. As the bone mesh was set to generate at a different mesh
coarseness, the elements were generated on a gradient near to the cartilage mesh
so that the nodes were coincident at the points where they met (Figure 4-5). This
resulted in 312,696 elements for the femoral cartilage and 103,383 elements for the
tibial cartilage (Table 4-1).
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cart//age and tibia bone boundary, showing the gradient change
between the mesh densities.

The articular cartilage was modelled as an isotropic, linear elastic, nearly
incompressible Neo-Hookean material (Besier et al. 2018), based on the
OpenKnee(s) material model definition (Chokhandre et al. 2023b). This was
achieved by setting the C2 parameter of FEBio’s Mooney-Rivlin (uncoupled) material
to 0 to reduce the model to an uncoupled version of the Neo-Hookean constitutive
model (FEBio 2022a). This was done to avoid element locking that may occur when

modelling nearly incompressible materials, like articular cartilage (FEBio 2022c).

The material properties used to represent cartilage using the Mooney-Rivlin model

are found in Table 4-4.

Table 4-4 — Articular cartilage Mooney-Rivlin material parameters taken from
Chokhandre et al. (2023b).

Parameter | Definition Value

Coefficient of the first invariant term (associated with

C1 2.54 MPa
shear stress)
Coefficient of the second invariant term (reduces the

C2 0 MPa
model to Neo-Hookean when set to 0).

K Bulk modulus (resistance to volume change). 100 MPa

Together these material coefficients cause this model to behave like a simplified
version of cartilage mechanical behaviour that assumes isotropic behaviour, with an
elastic modulus of 15 MPa and Poisson’s ratio of 0.475 (Donahue et al. 2002;
Zielinska and Donahue 2006; Guess et al. 2010; Kiapour et al. 2014b). This was
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adequate for understand local cartilage mechanics at this level, whilst not being too
computationally intensive (Chokhandre et al. 2023a).

Meniscus and meniscal horns

Because the meniscus plays a key role in tibiofemoral joint contact mechanics,
helping to evenly distribute pressure (Yan et al. 2024), it was included in the FEM.
The meniscal movement was constrained by the meniscal horns which were

modelled as springs (Figure 4-6).

Medial
meniscus

Anterior lateral
meniscal horn

Posterior
lateral
meniscal

horn

Anterior lateral~
meniscal horn

Anterior
medial
meniscal
horn

Lateral meniscus

Figure 4-6 — Meniscus and meniscal horns. The medial meniscus is in blue, and the lateral
meniscus is in green.

Like the articular cartilage, the geometries of the medial and lateral menisci were
segmented from the T1-VIBE scan sequence, meshed (with the settings given in
Table 4-3) and exported.

As it was difficult to determine the exact boundary between the meniscus body and
the meniscal horns from the MRI scan, the ends of the menisci were truncated
manually in Simpleware, using a similar approach to Gu and Pandy (2020), to form a
flat surface for the springs to be attached to.

The meniscus body was modelled as a nearly incompressible, transversely isotropic,

hyperelastic Mooney-Rivlin material (Chokhandre et al. 2023a). The material
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parameters used to represent the meniscus can be found in Table 4-5 (FEBio 2022b;
Chokhandre et al. 2023a). Like with the articular cartilage model, the meniscus
model utilised a Mooney-Rivlin (Equation 1-1) ground substance, converted to a
Neo-Hookean material by setting the constant c2 to 0 (Equation 1-3), again to avoid
element locking of nearly incompressible elements (FEBio 2022c).
Table 4-5 — Meniscus transversely isotropic Mooney-Rivlin material parameters
taken from Chokhandre et al. (2023a)

Parameter Definition Value

Coefficient of the first invariant term (associated with
C1 4.61 MPa
shear stress)

Coefficient of the second invariant term (reduces the
C2 0 MPa
model to Neo-Hookean when set to 0).

K Bulk modulus (resistance to volume change). 92.16 MPa
C3 Exponential stress coefficient 0.1197 MPa
C4 Fibre uncrimping coefficient 150

C5 Modulus of straightened fibres 400 MPa
Am Fibre stretch for straightened fibres 1.019

This material choice allowed for the circumferential fibres in the meniscus to be
modelled using FEBIo’s fiber generator tool (FEBio 2021b) and was a convenient
way to model the meniscus’ capacity for compressive loading largely dictated by its
circumferential stiffness which, in turn, is dictated by fibre alignment (Chokhandre et
al. 2023a). To apply the circumferential fibres, a small region of faces on each
truncated end of the meniscus were selected (Figure 4-7). One end was given a
value of one and the other zero to define boundary conditions for a Poisson-type
boundary value problem, used to generate a smooth scalar field throughout the
object (FEBio 2021b). The gradient of the scalar field was then used to calculate the
fibre vectors (FEBio 2021b).
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C)

Medial Lateral
meniscus meniscus

Figure 4-7 — Automatically generated circumferential fibres.
A) selection of faces on the truncated ends of the meniscal body.
B) fibres applied using those selections.
C) Superior view of the two menisci with the fibres generated.
The coloured fibres in B) and C) indicate the change in fibre direction.

Having the ends of the meniscus truncated not only helped with defining the

circumferential fibre directions but also allowed for the easy attachment of springs to

represent the meniscal horns, ensuring the springs followed the path of the horn

geometry.

Each meniscal horn was modelled as a 1D linear spring bundle (Gu and Pandy
2020) attached from the truncated end of the meniscus to its corresponding

attachment region on the tibia bone model. The attachment regions were defined

where the 3D meniscal horn segmentation intersected the tibia bone model, and that
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area on the tibia was given a denser mesh by remeshing the attachment region
surface with a target mesh size of 1 mm. This made it easy to find the correct
attachment regions on the tibia bone mesh once imported into FEBIo, as well as
creating more nodes to attach the springs too. This allowed the number of springs in
each bundle to be defined in a way that represented the overall meniscal horn
geometry with good coverage of the attachment site. Defining the meniscal horn as a
bundle with a larger number of springs helps to spread the load to make a more
realistic attachment between the two structures, as well as reducing the likelihood of

elements or nodes deforming badly at a single attachment point.

The stiffness of each spring within the meniscal horn bundle was calculated by
taking the total stiffness value of a meniscal horn — 2000 N/mm (Gu and Pandy
2020) — and dividing it by the number of springs in the bundle (Table 4-6).

Table 4-6 — Meniscal horn number and stiffness of springs in each bundle.

Meniscal horn Number of springs | Stiffness per spring (N/mm)
Anterior medial 50 40
Posterior medial 49 40.816
Anterior lateral 37 50.054
Posterior lateral 25 80
Ligaments

The ligaments included were the four main ligaments connecting the femur and tibia
(Figure 4-8): anterior cruciate ligament (ACL), posterior cruciate ligament (PCL),
medial collateral ligament (MCL), and the lateral collateral ligament (LCL). These
ligaments were added for the potential to leave one or more DOFs unconstrained, as
seen in other kinematic-driven FEMs in literature (Halonen et al. 2013; Carey et al.
2014; Kwon et al. 2014; Bolcos et al. 2018; Gu and Pandy 2020), to account for
errors in the input kinematics. However, due to the added complexity of requiring a
correctly applied force to leave one DOF unconstrained, it was outside of the scope

of this project. The ligaments were left in the model to allow for future potential to
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implement this, or to use this model to investigate ligament elongation and forces

during in-vivo motion.

Figure 4-8 — The four main knee ligaments represented by spring bundles.
The ACL is shown in purple, the PCL is in yellow, the MCL is in red and the
LCL is in green.

No other ligaments were included in the model as the four main ligaments were
considered substantial enough to constrain the bone movements without the need
for adding extra structures. The transverse ligament (TL) of the knee (also known as
the anterior inter-meniscal ligament) was not included as it was not seen on the
participant’s MRI scan. The reported incidence in literature of the TL varies from

31-94% (Szopinski and Adamczyk 2018) so it is not present in all individuals.

The 3D ligament geometries were roughly segmented from the T1-VIBE scan to find
the attachment regions on the bones. Like with the meniscal horn attachment
regions, the bone meshes were generated with a higher density of elements at the
ligament attachment sites. The surface areas of the ligament attachment sites were
calculated, along with the mean for each pair. The number of springs per ligament
was calculated so one spring approximately represented 1 mm? area (Esrafilian et al.
2020). The mean area (and therefore number of springs) was rounded to the nearest
5 mm? to account for segmentation errors. The total number of springs used to
represent each element were 145 for the ACL, 70 for the PCL, 25 for the LCL, and
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65 for the MCL (Figure 4-9). The non-linear springs were then added to the model by
selecting the specified number of nodes on each attachment site and attaching the
springs by closest line projection.

Proximal attachment Distal attachment

a) ACL
145 springs

b) PCL
70 springs

c) LCL
25 springs

d) MCL
65 springs

Figure 4-9 — Segmented ligament ﬁachmént regions for a) ACL, b) PCL, c) LCL and
d) MCL along with the total number of springs used to represent each ligament.
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The ligaments were represented in the model as non-linear Blankevoort springs
(Blankevoort and Huiskes 1991). This was the same ligament model used in the
MSM (Chapter 3, Section 3.2.1) and is described in more detail in Section 0.

The values of these force-strain equations for each spring in the ligament bundle
were determined using the parameters in Table 1-7; this included the total stiffness
(k;) and average reference strain (er) of the (anatomical) ligament bundles
(Blankevoort et al. 1991) as the individual bundles could not be segmented in
isolation from the MRI scan (Esrafilian et al. 2020). The force (f) was calculated for
the whole ligament and then divided by the number of springs in the bundle (as given
in Figure 4-9) to generate the curve for each individual spring.

Table 4-7 — Material parameters for the force-strain relationship of each ligament
taken from Blankevoort et al. (1991).

Ligament | Total stiffness/k; | Reference strain/er
[kN] [%]
ACL 10 8
PCL 18 -13.5
LCL 6 -7.33
MCL 8.25 3.66

For each ligament, a personalised reference length (L,) was calculated as the
distance between a central node from the defined attachment region at each end of
the ligament. This distance was taken as the L, for each ligament as the knee was
approximately fully extended in the segmented position from the MRI. The L,. for

each ligament is given in Table 4-8.

Table 4-8 — Ligament reference lengths (L,.) calculated.

Ligament | Reference length/L,
[mm]
ACL 33.5
PCL 32.0
LCL 57.1
MCL 58.4
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The Blankevoort force-strain relationship curves were calculated using MATLAB for
each 1D spring in the four different ligament bundles. The curves were output as text
files and were imported into FEBio to define the force point curve for each discrete

element set.

4.2.3 KINEMATICALLY DRIVEN MODEL

To drive the model kinematically, rigid rotations and displacements were applied to
the bones (rigid bodies) within the model. In FEBio, each DOF is applied as a

separate rigid constraint.

The relative TF joint motion was calculated from the object transforms (OTs)
exported from the DSX Suite (HAS-Motion, Canada), so the motion of the whole joint
could be applied to the tibia, whilst the femur was held still. This simplified the
application of dynamic constraints in the model, improving model stability and

performance.

The single OT representing each frame was then broken down into load curves
representing each DOF (MATLAB), with the rotations being converted into the Euler
Axis Angle convention used by FEBIo to prescribe rotations to a rigid body.

Alignment of bones to the global origin

The centre of mass (COM) of a rigid body in FEBIo is important as this is the point
where any rigid rotations and translations are applied relative to. By default, this
point is automatically calculated as the COM of the rigid body object. However, as
the rigid rotations and translations applied here were not defined around the COM,
but the anatomical coordinate systems (ACSs) used during image registration, it was
important to set the rigid body COM to a consistent, mathematically relevant point.
For ease of implementation, both rigid body COMs were set to the global coordinate
system (GCS) origin. Therefore, it was important to align the OT definitions with the

same origin point so the kinematics could be correctly applied.

To do this, all the geometries (bones, cartilage, meniscus) were transformed from
their positions in the MRI coordinate space by the inverse of the femoral ACS
definition to align the joint with the femoral ACS coincident with the GCS origin

(Figure 4-10). The relationships between the geometries in 3D space remained
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consistent, allowing for the springs representing the meniscal horns and ligaments to
be added.
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Figure 4-10 — The geometries from their original location relative
from the MRI scan (orange) transformed by the inverse of the
femoral ACS (blue) to align all geometries with the GCS origin in
FEBio.

The tibia OTs were converted to be defined using the femoral ACS, instead of the
original tibia ACS used for image registration so all motion was defined from a
coincident starting point; this was the same definition used to look at the kinematics
with coincident axes in Section 2.4.3, and is the same way they are defined in the
MSM model. This meant the whole TF joint movement was applied to the tibia
around the GCS - coincident with the femoral ACS.

Testing the kinematic inputs

To test that the OTs were correctly converted into the six rigid constraint load curves,
their resulting motion was compared to the output of FEBio’s Kinemat tool (FEBio
2021a). This was done using a simplified model of two identical cylinders to
represent the two bones and BVR kinematics from a randomly selected lunge trial

(Figure 4-11). The centre of the distal face of the ‘femur’ cylinder and the centre of
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the proximal face of the ‘tibia’ cylinder were aligned with the GCS origin in FEBio.
The generated load curves were applied to the ‘tibia’ cylinder, and the 4-point angle
between the central line of the two cylinders and the point distance between the
central nodes at each end were calculated at every five frames. The same
kinematics were applied to the two bodies using the Kinemat tool (which applied the
bone transforms separately to each object) and the same angles and distances were

Point Distance

X4
N

Figure 4-11 — Simple cylinder model to test rigid rotation and translation constraints were
applied correctly. The red object represents the femur and the blue the tibia. Grey boxes
show the two measurements taken using the central nodes of the cylinder’s circular faces.

calculated.

4 Point Angle

Points taken as
the central node of
each cylinder’s
circularend faces

The results were compared to ensure they were identical (Table 4-9) and that the six
DOF load curves were representing the TF joint movement correctly. As the

difference between the two methods was zero at all frames for both the 4-point angle
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and the point distance, the load curves were shown to correctly represent the

combined joint kinematics.

Table 4-9 — Results from comparison of the generated load curves and Kinemat tool
results at every five frames of motion.

4 Point Angle (°) Point Distance (mm)
Frame | Load Kinemat | Difference | Frame | Load Kinemat | Difference
curves | tool curves tool
1 29.02 | 29.02 0.00 1 29.08 29.08 0.00
5 39.52 | 39.52 0.00 5 28.93 28.93 0.00
10 49.27 | 49.27 0.00 10 29.72 29.72 0.00
15 57.58 | 57.58 0.00 15 30.61 30.61 0.00
20 62.07 | 62.07 0.00 20 30.15 30.15 0.00
25 64.82 | 64.82 0.00 25 30.02 30.02 0.00
30 67.11 | 67.11 0.00 30 30.41 30.41 0.00
35 68.34 | 68.34 0.00 35 30.32 30.32 0.00
40 68.30 | 68.30 0.00 40 30.09 30.09 0.00
45 68.03 | 68.03 0.00 45 30.56 30.56 0.00
50 66.25 |66.25 0.00 50 30.46 30.46 0.00
55 60.93 | 60.93 0.00 55 29.89 29.89 0.00
60 54.03 | 54.03 0.00 60 29.40 29.40 0.00
65 40.25 |40.25 0.00 65 28.77 28.77 0.00

Model steps, contacts and constraints

Before running the model through the BVR-derived kinematics, two steps were
needed: an initial separation to ensure no mesh overlap, and a step to bring the soft
tissues in the model into contact in their first kinematic frame position. The femur and
femoral cartilage were fixed using a rigid constraint in all six DOFs throughout the

whole simulation; all prescribed displacements were applied to the tibia.

Separation step

For the separation, the tibia was moved inferiorly from its initial MRI position using a
negative rigid z displacement control (from 0 mm to -2 mm); the other five tibial
DOFs were fixed for this step. To move the meniscus so that it was not in contact

259



with either cartilage surface, two blocks were added next to each meniscus and a
tied-facet-on-facet contact was used to connect the blocks to the faces on the edge
of each meniscus (Figure 4-12). These blocks were set as rigid bodies so a rigid z
displacement of -1 mm could be applied, pulling the meniscus into a position halfway

between the two cartilage meshes. The blocks were inactive for the remainder of the

simulation.

Selected faces on

the meniscus for o

the tied contact. Rigid body block

with -1 mm
z displacement
applied
Figure 4-12 — Rigid body block with the corresponding faces
on the meniscal wall for the tied contact.

Contact step

Once separated, the geometries were then brought back into contact by moving the
tibia into its position of the first frame of kinematic motion using rigid constraints that
varied from O (or -2 mm for the z-displacement) to the initial frame values. This
allowed the soft tissues to be bought into contact and compress, ready to run the

kinematic trial data.

Kinematics step

Once in its starting position, the tibia was moved through the TF joint motion
calculated using BVR via the six DOF prescribed rigid constraints. In total there were
24 frames of BVR data corresponding to 17% through 76% of stance phase of level
gait. To help the model solve, the frame rate was reduced from 60 Hz (the original
frequency the BVR data was collected in) to 10 Hz by increasing the time between
frames. The results were only analysed at the frames which corresponded with a

BVR input frame, and no time-dependent model elements were included, so the
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frame rate reduction only made it easier for the model to solve by decreasing the

gradient of the load curves between frames.

A summary of the contacts and contact penalties applied during each modelling step
can be found in Table 4-10. These penalties were the highest values that allowed the
model to solve all kinematic steps and run to full termination.

Table 4-10 — Contacts included in each step of the model.
(Identical contacts were used in Steps 2 & 3.)

Step Primary Secondary Contact type Contact | Two-
contact contact penalty | pass
surface surface

o Medial Medial rigid Tied-facet-on-facet 1 n/a
§ meniscus | body block

§ Lateral Lateral rigid | Tied-facet-on-facet 1 n/a

- meniscus | body block
Femoral Tibial Sliding-facet-on-facet 120 on
cartilage cartilage

s 5 Femoral Medial Sliding-facet-on-facet 60 on

g % cartilage meniscus

& &8 | Tibial Medial Sliding-facet-on-facet 75 on

% é cartilage meniscus

E é Femoral Lateral Sliding-facet-on-facet 1 off

N | cartlage | meniscus
Tibial Lateral Sliding-facet-on-facet 1 off
cartilage | meniscus

A low contact penalty value was required between the lateral meniscus and both

cartilage surfaces in order for the model to solve for all timesteps due to an issue

arising toward the end of the motion.

4.2.4 RESULTS OUTPUT AND ANALYSIS

Results were extracted from the final model at each timepoint that corresponded to a

tracked BVR frame of data during the kinematic step.
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Firstly, the contact pressures between the femoral cartilage and tibial cartilage
surfaces were analysed within FEBio with screenshots of the tibial cartilage contact
maps at each timepoint. The maximum contact pressure between the two cartilage
surfaces was also found at each timepoint. The contact maps and maximum
pressure values were compared to results from literature, as well as the

corresponding contact maps for this participant from the MSM work in Chapter 3.

To analyse the stresses within the femoral, medial tibial and lateral tibial cartilage,
the Cauchy stress tensor (Equation 4-11) for each element was exported at each
frame. This was then used to calculate the normal (axial) stress by taking the Z
component (0z) of the stress tensor. The principal stresses were determined by
calculating the eigenvalues of each stress tensor. The maximum principal stress was
defined as the eigenvalue with the greatest absolute magnitude, since compressive
stresses are represented by negative values. The von Mises stress was also
calculated using Equation 4-12. For each stress measure, the maximum value of any
element at each frame was found, along with the overall maximum at any point of the

motion.
O-XX ny O-XZ
o =|%x Oyy Oyz (Eq. 4-8)
Ozx Ozy Ogzz

Where o is the Cauchy stress tensor.

Oym = (Eq 4-9)

1 2 2
\/E [(axx — ayy) + (ayy — O'ZZ) + (0,, — axx)z] + 3(0,?3, + 0}, + azzx)
Where ovm = von Mises stress and all other stress (o) values are components of the
Cauchy stress tensor in Equation 4-11.

The maximum principal, axial and von Mises strains at each frame were calculated in

a similar manner using the Cauchy strain tensor (Equation 4-13).

Exx gxy Exz

e=\|&x &y E&yz (Eq. 4-10)
Ezx Ezy €22

The maximum stresses and strains were plotted against percentage stance and

compared to other FEMs modelling walking from literature.
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4.3 RESULTS AND DISCUSSION

As discussed in Chapter 1, understanding how the articular cartilage behaves under
joint loading is important as altered loading and the weakening of its mechanical
properties are common indicators of OA (Sinusas 2012; Mukherjee et al. 2020; Katz
et al. 2021; Mohout et al. 2023). Commonly used parameters to assess altered knee
mechanics include contact pressure, stress and strain. In particular, articular
cartilage stresses and strains are key outputs from a knee FEM as they are
unmeasurable parameters in-vivo and cannot be obtained through a standard MSM

pipeline (such as the one in Chapter 3).

To understand how the kinematic-driven model has performed, the outputs were
compared to the magnitudes found in literature from other FEMs of the healthy
human knee. This aimed to evaluate if this model has produced results of a similar
magnitude to force-driven FEMs, however due to all the models using different
material models and parameters, as well as being driven differently, comparison
between model outputs is limited. As tissue stresses and strains are unmeasurable
in-vivo, all FEMs must estimate these magnitudes so their accuracy cannot be

directly confirmed.

As shown in literature, peak magnitudes of pressure, stress and strain within the
articular cartilage generally corresponded to the first and second peaks of force
during the stance phase of gait (Adouni et al. 2012; Halonen et al. 2013; Mononen et
al. 2015; Daszkiewicz and Luczkiewicz 2021; Fu et al. 2022). For the trial used to
drive this model, the peaks of the Z-component of the ground reaction force (GRF)
measured by the force plate during the stance phase of gait were found to occur at
23% and 75.4% stance phase respectively. These points were both within the part of
stance phase captured by BVR (17-76%) so were able to be used for comparison

with the results from literature.

4.3.1 CONTACT PRESSURE

As discussed in Section 1.7.1, contact pressure is a commonly used output from
FEM when investigating altered knee mechanics due to OA. The contact pressure
maps of the femoral-tibial cartilage contact pressures visualised on the tibial cartilage
at 10% intervals of stance phase are presented in Figure 4-13, along with the contact

263



map from the first and last frames analysed within FEBio. It is important to note that
although the meniscus was included in the model, the cartilage contact with the

meniscus is not visualised here.

The contact pressure was found to be higher on the medial plateau at the start and
the end portions of the collected motion, with contact shifting to the lateral plateau
during mid-stance leaving central portions of the medial plateau with no contact. This
disagrees with literature where the medial plateau was found to consistently have a
greater contact area than the lateral plateau throughout the same portion of stance
phase modelled here (~20-75% stance) (Liu et al. 2010; Adouni et al. 2012), so no
contact on the medial plateau during any part of stance is unexpected. This may be
due to inaccuracies in image registration occurring during mid-stance as the
contralateral limb occluded the imaged knee during its swing-phase. This highlights
the potential sensitivity of the model to small kinematic errors on contact area

prediction.

The maximum articular cartilage contact pressure was found to peak at 28.9 MPa,
occurring on the medial plateau at 76% stance phase (the final frame of BVR data
collected). This value is higher than those typically reported in the literature for
healthy knees during gait, where peak contact pressures during stance phase range
from 8-17 MPa (Adouni et al. 2012; Halonen et al. 2013; Daszkiewicz and
Luczkiewicz 2021; Fu et al. 2022). However, some studies, such as Mononen et al.
(2015), have reported local medial compartment pressures up to 35 MPa,
demonstrating that large variation exists depending on model setup and driving data
choices. The studies compared here differ from the present model in several key
aspects that may explain the higher peak contact pressure observed.

Firstly, all of these models were at least partially force-driven, rather than purely
kinematically prescribed. Adouni et al. (2012) and Daszkiewicz and Luczkiewicz
(2021) applied mean, population-based joint loads and moments rather than subject-
specific data, which may underestimate contact magnitudes by smoothing individual
variability. Halonen et al. (2013) and Mononen et al. (2015) incorporated kinematic
inputs derived from experimental data but not subject-specific geometries, while Fu

et al. (2022) drove their model using MSM outputs from experimental gait data.
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Differences in the applied boundary conditions and input data can strongly influence

the magnitude and location of cartilage contact pressures.

Secondly, variations in mesh quality likely contributed to differences in pressure
magnitude. Some models used relatively coarse hexahedral meshes (Adouni et al.
2012; Halonen et al. 2013), which are less suited to capturing complex cartilage
morphologies and typically yield lower pressure magnitudes. The model presented
here used a denser tetrahedral mesh, which provides more accurate surface

representation but may lead to higher localised pressures.

Finally, local contact patterns were consistent with previous findings, with peak
pressures located on the medial tibial plateau (Haut Donahue et al. 2003; Adouni et
al. 2012; Halonen et al. 2013; Mononen et al. 2015; Daszkiewicz and Luczkiewicz
2021; Fu et al. 2022). The peak pressure corresponded with the second loading
peak of stance phase (76% stance), agreeing with some other models (Daszkiewicz
and Luczkiewicz 2021; Fu et al. 2022), but disagreeing with others that found peak
pressures occurring at the first peak of stance (Adouni et al. 2012; Halonen et al.
2013; Mononen et al. 2015). The highest pressure from this model was located
anteriorly on the medial edge of the tibial cartilage, consistent with findings by
Mononen et al. (2015).

Overall, while small registration errors could have contributed to the high local value
observed, the differences in model formulation, mesh resolution, and input data

across studies may also contribute to the higher contact pressures obtained.
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Figure 4-13 — Tibial cartilage contact pressure distributions at 10% intervals of stance
phase of level gait where BVR data were obtained. Also included are the first and last
frames as these involved high pressure magnitudes (with the highest pressure at 76%).
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Comparison to MSM and BVR-EFM contact pressure maps from Chapter 3

Contact pressure maps during the stance phase of level gait were also calculated
using an elastic foundation model in Chapter 3. This was done using the same BVR
input object transforms used to drive the FEM (see Section 3.2.4 - this model will be
referred to as BVR-EFM in this chapter) as well as using the marker-based motion
capture (collected as described in Chapter 2, Section 2.3.2) as an input to an MSM
pipeline (Section 3.2). The MSM pipeline was run with a model containing ‘generic’
contact geometries and one with the personalised MRl segmented geometries

incorporated (Section 3.2.2).

The resulting tibial cartilage contact maps from these three versions of the elastic
foundation model (Appendix D) were compared to the FEM contact pressures
between the femoral and tibial cartilage surfaces (visualised on the tibial cartilage in
Figure 4-13) to investigate their differences. The tibial cartilage was the focus for this

comparison as this was the same focus as the results in Chapter 3.

Firstly, the maximum contact pressure of any element on the tibial cartilage contact
surface at each frame was plotted for the four different methods (Figure 4-14). These
results show that the FEM calculated the highest contact pressure values of all the
methods, with particularly high pressures calculated at the start and end of the BVR
captured activity. However, there was generally better agreement in the maximum

pressure magnitude between methods from 20% to 60% stance.
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Figure 4-14 — Maximum contact pressure of any element at each frame of motion for the
four methods.

The final frame of motion (which corresponds with the largest peak of z-GRF) where
the highest FEM pressure (28.9 MPa) was found. This was much higher than the
peak pressures found for the personalised MSM (11.35 MPa), generic MSM (11.02
MPa) and BVR-EFM (8.39 MPa). These magnitude differences could be due to the
different method used to calculate pressure in FEBio and the deformation of the
elements. However, this also corresponds with the larger amounts of overlap
between the anterior portion of the lateral meniscus with both the femoral and tibial
cartilage which could be affecting the other contacts in the model and contributing to

the high pressures found between the cartilage contacts at this timepoint.
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As the highest pressure values in the FEM results were generally isolated to a few
elements in the final few frames of motion, to visually compare the FEM results with
the three elastic foundation models, the pressure scale was set to 0-19 MPa as this
was the maximum threshold used when plotting the contact maps in Appendix D.
This was done to keep the visual variation between the three elastic foundation
models, as when the maximum threshold was set to 29 MPa, the nuance between
these three was lost. Only the visualisation of the final four frames of the FEM
contact pressures were altered as all other results were below the 19 MPa threshold.
An example of the visual difference is shown for 70% stance phase in Figure 4-15,

showing the lower threshold is more suitable for indicating regions of high pressure.

Contact pressure at 70% stance
Colour map scale set 0 — 29 MPa

2
26.1 I
232}
2035

174 &=

14.5 &=

Contact pressure MPa

Colour map scale set 0 — 19 MPa

Contact pressure MPa

Figure 4-15 — Figure illustrating the difference in the
colour map when the maximum value threshold is
lowered for the FEM results.
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Three main frames were chosen for comparison: 20% (Figure 4-16), 50% (Figure
4-17) and 70% stance (Figure 4-18) respectively. These three were picked for
analysis as they covered the range of stance captured, representing approximately
the first and second peak loading as well as mid-stance, without using the beginning

and end frames of motion (which are more susceptible to image registration errors).

At 20% stance phase (Figure 4-16), all four models found higher contact pressures
and larger contact areas on the medial plateau than the lateral. The contact area of
the FEM and BVR-EFM maps were similar, as expected, due to using the same
bone pose input data to calculate contact area. The personalised MSM showed a
similar contact region to the FEM (and BVR-EFM) on the medial plateau, but not on
the lateral plateau. The generic MSM showed similar pressure magnitudes to the
FEM on the medial plateau, but the contact area was smaller and located more

posteriorly.
20% stance phase
FEM BVR-EFM
A A
o€ e
P P
Personalised MSM Generic MSM
A A
M L M O . L
P P
Pressure (MPa) [ L L . P |
0 2 4 6 8 10 12 14 16 18
Figure 4-16 — The four tibial cartilage contact maps at 20% stance
phase.

The BVR-EFM and FEM maps are likely to predict the contact area more accurately

as they both use the accurate BVR bone poses as inputs, whereas the MSMs
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estimate bone poses from marker-based motion capture. The FEM also has the
added benefit of modelling the meniscus, making the resulting contact area between

the femoral and tibial cartilage more representative of the in-vivo scenario.

At 50% stance phase (Figure 4-17), the FEM showed the smallest contact area on
the medial plateau of all the contact maps, due to this, the contact pressure
magnitudes were found to be higher on the lateral plateau than the medial for the
FEM for mid-stance. This was not seen in the personalised and generic MSM results
where the medial plateau continued to have the larger contact area and pressure
magnitudes compared to the lateral plateau. The lower contact pressures and
contact area ‘gap’ visible in both the FEM and BVR-EFM maps at 50% stance are
likely due to a combination of cartilage morphology and image registration being
more difficult during mid-stance due to occlusion by the contralateral limb reducing
bone pose accuracy.

50% stance phase

FEM BVR-EFM
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M t a L m e ‘ L
= P
Personalised MSM Generic MSM
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. 0 @ " Qe .
= =
Pressure (Mpa) 0 2 4 6 é 110 1I2 14 16 18

Figure 4-17 — The four tibial cartilage contact maps at 50% stance
phase.

271



The contact maps at 70% stance phase (Figure 4-18) produced similar trends to
those seen at 20% stance phase, with the FEM, BVR-EFM and personalised MSM
producing similar contact regions on the medial tibial plateau with the peak contact

pressure located anteriorly on the medial plateau.

70% stance phase

FEM BVR-EFM
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Figure 4-18 — The four tibial cartilage contact maps at 70% stance
phase.

Again, the contact area on the lateral plateau was predicted to be more posteriorly
located by the two MSMs, reducing their similarity. Although the generic MSM had
the least similarity with predicted contact region compared to the FEM results, the
contact pressure magnitudes were the most similar, with higher contact pressures
also being found on the lateral plateau. In contrast, the personalised MSM had
relatively low contact pressures on the lateral plateau, offloading onto the medial
condyle of the knee which is not reflected in either of the BVR-based models. This
suggests that the personalised model may be incorrectly distributing the load through
the joint at the second peak of loading during the stance phase of gait as it has a
higher ratio of medial to lateral condyle maximum contact pressure than the other
three models. As altered loading distribution, such as increased medial knee loading,
is associated with OA (Trad et al. 2017; Arjmand et al. 2018; Mononen et al. 2023),
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this may lead to incorrect assumptions about joint function if used to model knee
contact pressures and should be investigated further in the future.

4.3.2 STRESS

Unlike articular cartilage contact surfaces pressures which could be obtained through
other methods, such as MSM pipelines (Chapter 3), an FEM can be used to expand

the contact analysis to internal parameters such as stress within the tissue.

Maximum stress magnitudes

To understand if the model produced results comparative to literature, the maximum
von Mises, principal and normal stresses were calculated across all frames of motion
(Table 4-11).

The magnitudes and timing of these stress peaks (Table 4-11) showed partial
agreement with previous finite element studies of the healthy knee during gait. The
maximum von Mises stresses (8-13 MPa) were comparable with those reported by
Halonen et al. (2013), who found a peak of approximately 10 MPa during early
stance (around 20% stance). However, the maximum normal and principal stresses
in the present model were lower than those from studies using more complex
material formulations. For example, Halonen et al. (2013) and Mononen et al. (2015)
both employed fibril-reinforced poroviscoelastic (FRPVE) cartilage models that
incorporated collagen fibril orientation and depth-dependent proteoglycan and fibril
distributions. Their models produced maximum principal stress magnitudes of

30-40 MPa at approximately 25% stance (Halonen et al. 2013) and 35.2 MPa at 20%
stance (Mononen et al. 2015), respectively. In contrast, Yang et al. (2010) modelled
cartilage as isotropic elastic and reported lower normal stresses of 13-17 MPa,
closer to those found here. This demonstrates the effect of material model choice on
model outputs and explains some of the differences in stress magnitude found
between different FEMs. The simplified isotropic elastic model used here does not
capture the depth-wise anisotropy, viscoelasticity, or fluid pressurisation represented

in FRPVE models, which tend to produce higher localised stresses.
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Table 4-11 — Maximum von Mises stress, normal (axial or z-) stress and compressive principal stress magnitudes in each structure
and their stance-phase occurrences.

Cartilage structure Max. von Mises | Occurrence | Max. normal | Occurrence Max. principal | Occurrence
stress (MPa) (% stance) stress (MPa) | (% stance) stress (MPa) | (% stance)
Femoral cartilage 12.60 16.6 11.29 16.6 2.30 16.6
Medial tibial cartilage 10.50 70.5 19.27 75.6 12.65 16.6
Lateral tibial cartilage 8.80 73.0 10.90 67.9 6.61 21.8
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As well as the material model used, differences in magnitude and timing of peak
pressures may also arise from the chosen mesh density and element type. The
current model used a finer tetrahedral mesh than many of the earlier studies in
literature, which used coarser hexahedral meshes, influencing stress concentrations
and peak values. As none of the other models were solely driven by kinematics,
differences in loading conditions and driving inputs would also affect stress

calculations.

When comparing which cartilage structure found the highest magnitudes, the highest
von Mises stresses were found in the femoral cartilage which aligns with the findings
of Tarnita et al. (2014). In contrast, the highest peak values for both maximum
principal and maximum normal stress were found in the medial tibial cartilage (Table
4-11). As the medial tibial cartilage was found to have higher maximum stresses
than the lateral, these results were consistent with previous findings (Yang et al.
2010; Mononen et al. 2015). The low principal and normal stresses found in the
femoral cartilage were likely because of the contact mechanics between the two
meshes. An artificially enlarged contact area on the femoral cartilage surface,
potentially caused by segmentation or input kinematic errors or incorrectly modelled
interactions with the meniscus, would spread the load across a larger area, reducing

the stresses in that region.

Overall, the differences in stress magnitudes and distributions between models likely
reflect a combination of factors, including variations in material models, mesh
density, element type, and loading or boundary conditions. As stress cannot be
directly measured in-vivo during walking, it is not possible to determine which
modelling approach most accurately represents the true physiological values.
Nevertheless, understanding where the present results sit compared to the range
reported in literature provides useful context for evaluating model behaviour and
consistency, demonstrating that the outputs are broadly comparable with those of
other published FEMs of the healthy knee.

Stress variation throughout stance phase

The maximum von Mises stress of the three different regions of articular cartilage at
each frame were plotted against percentage stance phase to understand how the

stress varied throughout the movement (Figure 4-19). Von Mises stress was chosen
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because it summarises the combined multidirectional stresses, rather than the
directional loading presented by principal or normal stresses, providing a
visualisation of 3D trends in cartilage loading. To reduce the influence any outliers
where elements had very high stresses, the top 1% of elements under stress (where

von Mises stress > 0) were averaged at each frame.

Maximum Von Mises Stress
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= = Mean of top 1% Lateral Tlbial Cartilage

Figure 4-19 — Maximum von Mises stress in any element against percentage
stance phase. The mean von Mises stress of the top 1% of elements in each
cartilage structure is also included to account for any outliers.

The maximum von Mises stresses in all three structures followed a similar pattern,
with higher stresses early in the collected portion of stance, a slight decrease during
mid-stance, and an increase towards the end of the collected portion. The higher
stresses at the start and end of stance correspond to the two loading peaks at
approximately 25% and 75% of stance during level gait. A similar trend was seen in
the maximum principal and normal stresses within each structure. The profiles
shown in Figure 4-19 generally agree with previous literature, showing higher

stresses near the loading peaks and lower stresses during mid-stance (Halonen et
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al. 2013; Mononen et al. 2015). However, as the stance phase modelled was
restricted to 16-76% of stance, it is more difficult to compare the overall trends, since
behaviour outside the collected range cannot be confirmed. In general, the trend for
the lateral tibial cartilage agreed more closely with the literature than the medial tibial
cartilage. This model found the second stress peak to be higher for both the medial
and lateral tibial cartilage (Figure 4-19), whereas literature reports a lower first peak
and higher second peak for the lateral side (Mononen et al. 2015), and a higher

initial peak for the medial side (Halonen et al. 2013; Mononen et al. 2015).

The overall maximum von Mises stress found in the femoral, medial tibial and lateral
tibial cartilage structures from Table 4-11 are summarised again in Table 4-12, along
with the results for the mean of the top 1% of elements.

Table 4-12 — Maximum von Mises stresses in each cartilage structure and when the
maximum occurred.

Cartilage structure Max Occurrence | Mean top 1% | Occurrence
(MPa) | (% stance) | max (MPa) (% stance)
Femoral cartilage 12.60 16.6 6.87 75.6
Medial tibial cartilage 10.50 70.5 6.04 73.0
Lateral tibial cartilage 8.80 73.0 5.70 75.6

As Table 4-12 shows, the maximum von Mises stress in the femoral cartilage was
found at 16.6% stance, corresponding with the first frame of stance phase collected
using BVR. This was not seen when the top 1% of elements were averaged, where
the maximum occurred at 75.6% stance (Figure 4-20), corresponding with the
second peak of loading during gait. This suggests this high initial stress was due to
only a few high values, which, when investigated, were visibly concentrated at the
boundary between the bone and the femoral cartilage, where the anterior, medial
edge of the medial tibial cartilage contacts the femoral cartilage. This concentration
of stress at the bone-cartilage boundary may be partly due to the modelling
assumption of a rigid bone surface in contact with deformable cartilage. In-vivo, the
bone-cartilage interface would deform slightly under load, producing a smoother
stress distribution. As a result, such isolated elements of very high stress are unlikely
to occur physiologically and are more likely to reflect a local numerical effect rather

than a true mechanical feature.
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Based on experience with BVR image registration (Chapter 2, Section 0), it is
hypothesised that elevated stresses in the first frame may be linked to reduced
registration accuracy when the bone was partially out of frame. This causes the early

peak to occur before the first peak of loading at around 25% stance where it would
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Figure 4-20 — Von Mises stress in the femoral cartilage at 75.6% when the maximum
mean stress value of the top 1% of elements occurred.

be expected.

As seen clearly from the superior view (Figure 4-20), the stress patterns seen on the
femoral cartilage were typically ring-shaped, likely due to the cartilage morphology
resulting in larger deformation around the edges of the tibial cartilage. The stresses
were higher on the medial condyle at the start of the motion, with the distribution

becoming more even between the medial and lateral sides through stance phase.
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The stresses moved anteriorly with increasing stance phase, consistent with the
transfer of body weight during gait (Liu et al. 2010). Higher stresses were seen
closer to the bone-cartilage boundary than on the cartilage-cartilage surface. This
was likely due to the bones being modelled in rigid bodies so only the cartilage can

deform at the bone-cartilage interface.

The von Mises stress in the tibial cartilage was also higher in the medial plateau at
the start of the motion, with lower stresses in both sides during midstance, before
increasing again towards the second peak of loading where the peak stresses
occurred. At the peak (Figure 4-21), the von Mises stresses were generally located
anteriorly, with a particularly high region of stress located anteriorly on the medial
edge of the medial plateau. This may be due to a small inaccuracy in the medial-
lateral (ML) translation of the tibia from image registration artificially increasing the

stresses in this region where this pattern was unexpected.
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Figure 4-21 — Von Mises stress in the tibial cartilage at 75.6% stance.
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4.3.3 STRAIN

Another metric of internal contact mechanics that can be extracted from an FEM
simulation is strain. Increased strain within the articular cartilage has previously been
shown to be linked with knee OA (Tarnita et al. 2014; Arjmand et al. 2018; Bolcos et
al. 2022; Lampen et al. 2023) and is, therefore, a key output from joint contact

models used to quantify disease progression.

Maximum principal strain against percentage stance for the three cartilage structures
is shown in Figure 4-22. It was chosen to analyse principal strain throughout stance
as this was a commonly reported strain metric in FE models of the knee from
literature (see Table 1-3, Section 1.7.1).
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Figure 4-22 — Maximum principal strain against percentage stance. The mean
principal strain of the top 1% of elements in each cartilage structure is also included
to account for any outliers.

Like with von Mises stress (Figure 4-19), the highest maximum principal strains

(Figure 4-22) were found at the beginning and end frames of the motion, with the
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femoral cartilage and medial tibial cartilage displaying particularly large strains at the
end. When the mean of the top 1% of elements was taken instead, the maximum
values were much lower suggesting there were specific erroneous elements with

artificially high strains at the start and end frames.

The maximum principal strains generally followed a very similar pattern to the
maximum von Mises stresses in all three structures. This was expected as both

stress and strain are related to element deformation.

The magnitudes of principal strain predicted by this model were much higher than
those reported in literature (Table 4-13), where all maximum principal strains were
reported as <30% (Adouni et al. 2012; Halonen et al. 2013; Mononen et al. 2015; Fu
et al. 2022). This was also true of normal strain and shear strain magnitudes (Table
4-13). These extremely high strains highlight the need for caution when interpreting
cartilage mechanics from kinematic-driven models, as FEM results can be highly
sensitive to the input kinematics. Further investigation is required to better
understand this sensitivity and how small variations in the kinematic inputs affect the
predicted tissue strains.

Table 4-13 — Comparison of the strain results from this simulation compared with
those reported in literature (Table 1-3, Section 1.7.1).

Strain metric Maximum value from Maximum value reported
this model in literature

Principal strain 85.8% <30%'

Axial strain 73% <21%?2

Shear strain 17% <25%3

T(Fu et al. 2022) ?(Yang et al. 2010) 3(Mohout et al. 2023)

4.4 LIMITATIONS, CHALLENGES AND RECOMMENDATIONS

4.41 MODEL LIMITATIONS

As this model was developed to explore the potential methodology for a fully
kinematic-driven knee FEM, the material models and parameters were taken from
the literature. Since material model choices can strongly influence results, the

selected materials should be evaluated for their suitability and for the effect they may
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have on the outputs. A sensitivity analysis of the parameter values should also be
carried out before taking the model further to understand their impact on results.

Another limitation of this model is that mesh convergence was not investigated.
However, as geometry has been shown to be key for knee contact simulations (even
more influential than the material model chosen) (Yao et al. 2024), a fine mesh was
already used to capture the geometry of the contacting surfaces with sufficient detail.
Therefore, the number of elements used likely exceeded the point where further
refinement would have little effect.

Although output magnitudes of the parameters of interest were compared to
literature, there are limitations to this comparison. Different modelling choices — in
the material models and parameters chosen — mean results are not directly
comparable. Also, internal cartilage stresses and strains are unmeasurable in-vivo
so all models are estimating these parameters, and their estimations will vary based

on their choices and assumptions.

Another potential limitation of this model was the low contact penalties used for
some of the defined contacts (given in Table 4-10 in Section 0). These were the
highest values for each contact that still allowed the model to run to full termination.
The contact penalties were particularly low on the lateral meniscus due to its overlap
with the femoral and tibial cartilage near its anterior meniscal horn during the
kinematics step. This overlap likely arose from the bone kinematics causing the
anterior portion of the meniscal body to be compressed between the cartilage
surfaces, creating an issue at the boundary between the meniscal body and horns.
As the meniscal horns were represented by springs, they were unaffected by this
overlap but also did not contribute to the contact mechanics needed to separate the
articulating surfaces. Consequently, the deformation of the lateral meniscus was not
accurately represented, as the overlapping geometry does not reflect the in-vivo
condition where the tissues would deform under load. This limitation would affect the
internal mechanical outputs (e.g. stress and strain) of both the meniscus and
articular cartilage, as the meniscus would not correctly distribute load through the
joint. The higher contact penalty used for cartilage-cartilage contact compared to
meniscus-cartilage contacts likely influenced the results across all kinematic steps,

particularly towards the end of motion when overlap was greatest and a higher
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penalty would have been most beneficial. As this model focused primarily on
articular cartilage behaviour, the lower meniscal contact penalties were not
prohibitive for the current study, but they would need to be re-evaluated in any future

work extending the analysis to meniscal mechanics.

Another future improvement to the model could be to include the PF joint in the FEM.
The patella could also be prescribed using BVR-derived bone poses, extending the
model’s application to PF joint mechanics. As the position of the patella, and its
subsequent interaction with the femoral cartilage, depends on TF kinematics,

incorporating both joints would give the most comprehensive model of knee motion.

4.4.2 CHALLENGES OF THE KINEMATIC-DRIVEN FEM APPROACH

One of the main challenges of a subject-specific model using personalised geometric
and kinematic inputs is the amount of time and expertise required to not only process
the inputs, but also to set up the model. Due to its complexity, the pipeline is not
easily scalable as every new participant or activity would require individual
optimisation to allow the model to run successfully. However, highly complex,
subject-specific models have the benefit of accurately capturing an individual's
in-vivo joint mechanics, replicating a real-life scenario. As FEMs are sensitive to
many factors, using generic model kinematics or geometries may not provide
enough detail to understand in-vivo stresses and strains in the articular cartilage or

other soft tissues.

Although this model has shown that a kinematically-driven FEM of the knee is
possible, using this pipeline to develop models of different activities and participants
would be needed to thoroughly test this methodology to confirm if this is a repeatable
and useable technique for FEM.

Another challenge of kinematic-driven modelling specifically is the model’s sensitivity
to the kinematic inputs. This sensitivity likely caused the particularly high strains in
the articular cartilage in this model, highlighting the need to investigate the sensitivity
of model outputs to the input kinematic errors. Fregly et al. (2008) have shown that
pose errors in input kinematics as small as 0.1 °/mm caused the maximum contact
forces, pressures and area to vary by 100-200% during a gait cycle simulated using
in-vivo single-plane fluoroscopy data from a knee with a TKR. They used an elastic

foundation model to calculate these contact outputs (like the MSM in Chapter 3). To
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understand if this sensitivity extends to the internal tissue stresses and strains in an
FEM, it is recommended to perform a sensitivity analysis by altering the input
kinematics by known amounts. This was not done for this model due to the time
constraints, but if this model were to be utilised in the future, it should be explored to

truly understand the limitations of this technique to correctly interpret the results.

The unrealistic, extreme values of stress and strain occurring at the start and end of
the movement were potentially due to higher BVR kinematic errors at these frames.
Image registration was likely less accurate at these frames as the bones were
partially out of shot and the boundary kinematic frames cannot be placed within the
trend of the other surrounding frames or filtered using the surrounding data points.
This means these frames were likely less accurate, causing larger stresses and

strains to occur due to the increased positional errors occurring at these frames.

4.4.3 RECOMMENDATIONS FOR KINEMATIC-DRIVEN MODELLING

One benefit of kinematic-driven modelling is the direct input of measurable data
which can be used to explore the changes in the distribution of contact mechanical
parameters during dynamic motion. Therefore, it is important to investigate the
distributions of pressures, stresses and strains throughout the tissue, focussing more

on this than the overall magnitudes.

Kinematic-driven FEMs may be useful for understanding the changes in the
distributions of stresses and strains in the articular cartilage under different loading
conditions or due to different pathologies. For example, they can help identify which
regions of cartilage experience the highest strains, which may indicate an increased
risk of wear and OA development (Griebel et al. 2013; Widmyer et al. 2013; Sutter et
al. 2015). They can also be used to explore how altered loading patterns affect strain
distributions and potentially influence OA progression. By relying less on the
absolute magnitudes of the FEM outputs and instead comparing general patterns
and trends, kinematic-driven modelling could be a useful tool for investigating
articular cartilage loading.

A more suitable option may be using the accurate input BVR kinematics to drive an
MSM to generate force inputs for a force-driven FEM. Hybrid MSM-FEM approaches
have been developed to calculate knee contact mechanics (Besier et al. 2005; Shu
et al. 2018; Navacchia et al. 2019; Ali et al. 2020; Kainz et al. 2020; Esrafilian et al.
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2022; Mohout et al. 2023), but these still rely on standard marker-based motion
capture inputs to drive the model. Using a similar hybrid approach, but with the
higher accuracy BVR kinematics instead, some of the issues with a directly
kinematic driven FEM may be overcome. For example, the contact penalty values
may be able to be increased and therefore produce a more realistic contact
response in the deformation of the tissues as the MSM would account for potential

errors in the input kinematics through the optimisation process.

4.5 CONCLUSION

To achieve the aims set out in Section 4.1.1 and analyse articular cartilage contact
mechanics in the healthy knee during the stance phase of gait, a subject-specific
model was developed using personalised MRI geometries (including the bones,
articular cartilage, meniscus and key ligaments) and BVR-derived bone poses to

prescribe all 6 DOFs.

The cartilage pressure distributions during the prescribed stance phase of gait
covered a similar area to the BVR-EFM results (as expected due to using the same
kinematic inputs), however the pressure magnitudes from the FEM were found to be
higher (Figure 4-14). The maximum pressure from the FEM (28.9 MPa) were also
much higher than the personalised and generic MSM results, as well as the range of
8-17 MPa presented in literature (Adouni et al. 2012; Halonen et al. 2013; Mononen
et al. 2015; Daszkiewicz and Luczkiewicz 2021; Fu et al. 2022). However, the

highest pressures were consistently found on the medial plateau across all methods.

Stresses were successfully obtained from the model, with magnitudes comparable to
literature (Table 4-11). Higher stresses were found at the start and end of the
collected stance phase, corresponding with the two peaks of loading at
approximately 23% and 75% of stance phase of level gait (Figure 4-19).

The strains output from the FEM (Table 4-13) were much higher than literature. This
was likely due to the model’s sensitivity to small kinematic errors and would require
analysis before future usage of the model and pipeline.

Kinematic-driven modelling shows potential as a method for understanding TF joint
contact mechanics, including the distribution of the stresses and strains throughout

the 3D structures of the knee, such as the articular cartilage. This could be used to
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identify regions of higher stress and strain which, if compared to OA knees, could
inform on the progression of the disease and potential interventions.

By implementing a fully kinematically-driven FEM of the knee using BVR-derived 6
DOF kinematics, this chapter completes the aims for the framework set out in
Section 1.8. The kinematically-driven FEM enabled detailed assessment of cartilage
contact pressures, stresses, and strains during gait, providing insight into internal
tissue mechanics not accessible through other methods in the framework. In this
way, the FEM complements the BVR and MSM components by linking measured
kinematics and joint-level loads to tissue-level mechanics. It completes the
framework by demonstrating the feasibility of creating highly personalised models
driven by in-vivo data, offering a new approach for evaluating knee joint mechanics
that can be extended to answer clinically relevant research questions.
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CHAPTER 5: DISCUSSION, CONCLUSION AND FUTURE
WORK

5.1 DISCUSSION OF THE FRAMEWORK TO INVESTIGATE
TIBIOFEMORAL JOINT CONTACT MECHANICS

This overall aim of this thesis, as set out in Chapter 1 (Section 1.8), was to develop a
comprehensive framework to investigate tibiofemoral (TF) joint contact mechanics
that integrates accurate in-vivo biplane videoradiography (BVR) kinematics into

musculoskeletal models (MSM) and finite element models (FEM).

The need for such a framework was identified to provide a detailed understanding of
how the knee behaves under loading during functional dynamic activities, with the
future goal of informing new studies of disease progression or intervention
outcomes. Understanding knee biomechanics in this context is important, as
conditions such as osteoarthritis (OA) have been linked to altered joint kinematics
and loading (Mills et al. 2013; Farrokhi et al. 2014; Yamagata et al. 2021), leading to
pain, instability, and reduced mobility (Hunter and Bierma-Zeinstra 2019). By
integrating high-fidelity imaging with personalised modelling, this work aimed to
capture not only knee joint kinematics, but also contact pressures, whole-body
forces, and internal cartilage mechanics. By doing so it also demonstrates that
combining methodologies can provide a more comprehensive understanding of knee

biomechanics than any individual method could offer.

To achieve this aim, an integrated pipeline was developed that combines high-fidelity
imaging with personalised modelling techniques. The framework consists of three
key components, each addressing the specific aims outlined in Section 1.8, and
contributing uniquely to the overall framework.

Chapter 2 established a robust data collection and processing pipeline,
acquiring MRI and BVR data to calculate accurate 6 degree of freedom (DOF)
TF kinematics for comparison and validation with simultaneously collected
marker-based motion capture. Implemented for the first time in a cohort of healthy
participants, the feasibility of this workflow for future studies was demonstrated and it
produced high-quality data to feed into the subsequent modelling stages. The BVR-
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derived kinematics form the foundation of the framework, driving the FEM and
providing a reference for evaluating MSM predictions.

Chapter 3 implemented the MSM pipeline using the marker-based motion
capture and MRI data collected in Chapter 2. Subject-specific contact geometries
from the MRI scans were incorporated to assess the benefits of personalised
modelling. Outputs from both generic and personalised models were evaluated
against BVR-derived kinematics and contact maps. This was the first such
comparison for the OpenSim-JAM pipeline and demonstrated the potential
advantages of personalised modelling. MSM complements the BVR and FEM
components by providing whole-body kinetic and kinematic data, while its contact
pressure maps offer a valuable reference for cross-method comparison, supporting
the overarching aims of Section 1.8 to develop a robust, integrated framework for
assessing knee biomechanics.

Chapter 4 implemented a fully kinematically driven FEM of the knee using the
BVR-derived 6 DOF kinematics from Chapter 2. The FEM calculated internal
stresses and strains within the tibial cartilage, providing insight into tissue mechanics
that cannot be obtained from MSM or BVR alone, linking measured kinematics and
joint-level loads to tissue-level mechanics. This completes the integrated framework
and demonstrates the feasibility of highly personalised, data-driven models for

evaluating knee joint mechanics.

To ensure consistency across the three framework components, the same MRI-
derived personalised geometries and BVR-derived kinematics were used as the
foundation. This allowed the framework to capture subject-specific variations in both
kinematics and tissue mechanics. By combining these techniques into a single
integrated pipeline, the framework enables cross-validation and comparison
across methods. The integration of these techniques means that each part informs
and validates the others, creating a cohesive framework for studying in-vivo knee

biomechanics (Figure 5-1).
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The framework also reveals key challenges in high-fidelity knee modelling. Each
component is technically complex, requiring extensive expertise, computational
resources, and careful data processing. As collecting and analysing BVR data,
segmenting MRI geometries, and running personalised MSM and FEM simulations is
time consuming, scaling the pipeline would be challenging. However, detailed and
highly personalised approaches can be used to assess which aspects of the model
most influence the outputs. By demonstrating the sensitivity of MSM and FEM results
to kinematic accuracy and geometric personalisation, this work provides practical

insights for researchers who may not have access to BVR or who are using more
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simplified models. In this way, the pipeline functions both as a tool for generating
new biomechanical insights and as a benchmark for refining larger-scale or less

detailed modelling approaches.

This framework provides both methodological and practical contributions,
demonstrating the potential of high-fidelity, subject-specific modelling and setting a
foundation for future knee biomechanics studies. Each component delivers distinct
yet complementary outputs: BVR provides accurate kinematics, MSM estimates joint
contact pressures and whole-body forces, and FEM quantifies internal cartilage
stresses and strains. By integrating these techniques and capitalising on the
strengths of each, the framework achieves the overarching aims of Section 1.8,
providing a comprehensive understanding of knee biomechanics during dynamic
functional activities. This approach demonstrates the value of personalised data,
while guiding researchers without access to high fidelity imaging, such as BVR,
highlighting the benefits and limitations of different methods. While highly
personalised models and precise kinematic data are not always feasible, they can
inform broader modelling strategies, emphasising the importance of developing
detailed, robust pipelines. Whether applied individually or as a fully integrated
system, the framework can be extended to include pathological knees, supporting
clinically relevant investigations and enhancing understanding of the relationships
between knee biomechanics, pain, and pathology to improve diagnosis and
treatment of conditions such as OA.

As with all research, this study also had inherent limitations. Some of the main

limitations are:

e A small pilot dataset.

e Patellofemoral (PF) kinematics were ignored.

e The framework was only applied to a healthy population.

e BVR imaging challenges with the current activity setups, including limited
numbers of frames captured and contralateral limb occlusion, for example,
during level gait.

e The BVR kinematics were not input directly into the MSM pipeline, so it was
only driven by lower fidelity marker-based motion capture inputs.
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e The MSM poorly predicted TF kinematics during activities involving higher
flexion angles.

e No sensitivity analysis was performed on the FEM for its mesh convergence
or material models and parameters.

e The sensitivity of the FEM to the kinematic inputs was not investigated.

e The contact penalties between some of the contacting surfaces in the FEM

were low, for example, between the lateral meniscus and articular cartilage.

The impact of these, and the other identified limitations of each part of the
framework, are discussed in more detail in Sections 2.5.8, 3.4.5, and 4.4.1.
Recognising these limitations is important for contextualising the findings and
identifying priorities for future research, informing the proposed areas for further

development as discussed in Section 5.3.

5.2 CONCLUSION

A framework to investigate TF joint biomechanics during functional movement was
developed by combining in-vivo BVR imaging with MSM and FEM, achieving the
primary aims set out in Chapter 1 (Section 1.8). A robust workflow was established,
linking accurate experimental data with personalised computational models to

quantify and predict knee joint behaviour.

BVR data were successfully collected and processed using the newly developed
acquisition and registration pipeline, providing accurate 6 DOF TF kinematics during
multiple dynamic activities. The measured kinematics were consistent with prior
studies, supporting the reliability of the BVR system for determining in-vivo knee
motion. Compared to the BVR results, simultaneous marker-based motion capture
rotations showed greater variability and an overestimated range of motion,
highlighting the impact of soft tissue artefact, as well as a consistent flexion median

offset of 13-14° caused by marker placement errors.

Personalising TF contact geometries within the MSM pipeline improved the
prediction of knee kinematics compared to the generic model, particularly for anterior
translation where the absolute median difference between MSM and BVR results
was reduced by more than 7 mm. This improvement led to more accurate medial

contact area predictions when benchmarked against BVR-derived contact maps. The
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FEM, driven directly by BVR-derived kinematics, produced stress magnitudes
comparable with literature (though strains were higher). When comparing cartilage
contact pressures across methods, the FEM predicted higher peak pressures than
both MSM and BVR elastic foundation models, by approximately 10 MPa and

20 MPa respectively, demonstrating how different modelling approaches offer
complementary insights into joint loading mechanics.

By integrating these methods, the framework links kinematics, loading, and tissue-
level responses, providing a comprehensive and highly personalised view of knee
biomechanics under functional joint loading. As well as demonstrating the feasibility
and value of combining in-vivo imaging with computational modelling, it highlights the
strengths and limitations of each approach, providing guidance for researchers
without access to BVR data. The framework’s methodological advances, whether
applied individually or as an integrated system, lay the foundation for personalised

investigation, diagnosis, monitoring, and treatment of knee pathologies.

5.3 FUTURE WORK

As this thesis focused on methodological advancements using a small pilot cohort of
five healthy participants, future work should expand these techniques to larger and
more diverse cohorts, including pathological knees, to address clinically relevant

questions.

The framework developed here focussed solely on the TF joint. Future work should
incorporate the PF joint, as the patella is an integral part of the knee complex and

important for achieving a more complete understanding of knee biomechanics.

5.3.1 DATA COLLECTION PROTOCOL IMPROVEMENTS, VALIDATION
AND ITS APPLICATION TO PATIENT COHORTS

To apply the data collection protocol set out in Chapter 2 to future cohorts, it is
important to consider the functional activities being imaged and the corresponding
BVR X-ray configurations carefully. For level gait, only a limited number of frames
could be collected due to frequent occlusion by the contralateral leg. To overcome
this, a treadmill is recommended for capturing walking. Although treadmill use has
been shown to alter gait patterns (Hollman et al. 2016), it enables configurations with

reduced occlusion and allows a larger portion of the activity to be captured, which is
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why treadmills are frequently used in BVR studies of knee kinematics (Kozanek et al.
2009; Liu et al. 2010; Barre et al. 2013; Guan et al. 2016; Guan et al. 2017; Yang et
al. 2018; Gale and Anderst 2019; Koo and Koo 2019; Nagai et al. 2019; Gale and
Anderst 2020; Byrapogu et al. 2022). Therefore, treadmill use is recommended to

improve data quality and reduce some of the limitations associated with level gait.

As people with OA often report difficulties performing mobility-related tasks (Davis et
al. 1991; Clynes et al. 2019), other activities to be considered for the pipeline include
downhill walking (also on a treadmill), stair decent or step down, and sit-to-stand.
Stair descent, in particular, has often been reported as the most painful activity (Gur
et al. 2002; Takasaki et al. 2013; Wan et al. 2024) and is therefore important to
include when investigating the effects and treatments of OA. When implementing
these new activities, X-ray source—detector pairs should be positioned to minimise
occlusion, ensuring at least one image without occlusion where possible. This will
enhance the quality and accuracy of image registration, resulting in more reliable

kinematic outputs.

To fully understand the accuracy and limitations of any BVR-derived kinematics, it is
important to assess the accuracy of each specific X-ray system in each separate
experimental setup used. Future work should therefore validate the system using
implanted radio-opaque beads, either in-vivo or in cadaveric specimens, to quantify
the accuracy of the pipeline (Section 1.4.1). This will provide a clearer and more

robust understanding of its reliability.

The pipelines developed in this thesis for the collection and processing of the
simultaneous BVR and marker-based motion capture data are now being adapted
and used as part of an EPSRC-funded project: ‘Multi-platform pipeline for
engineering human knee joint function’. This project is in collaboration with
researchers at Imperial College London and KU Leuven to link in-vivo, in-vitro and
in-silico methods (including MSM) to investigate knee joint function pre- and post-
total knee replacement (TKR), with a focus on knee instability after surgery. This
highlights both the direction of the work presented in this thesis and the value of the
developed pipelines for application to patient cohorts in addressing clinically relevant

questions.
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5.3.2 MUSCULOSKELETAL MODELLING PIPELINE INVESTIGATIONS

As the pipeline presented in this thesis was only an exploration using pilot data,
there is scope to expand on the modelling work in the future. As discussed in
Chapter 3 (Section 3.4.5), an important next step is to investigate how MSM outputs
are influenced by the input kinematics. One approach would be to drive the model
using BVR kinematics within the MSM pipeline. For example, inputting the BVR-
measured flexion angle could help account for errors arising from femoral condyle
marker misplacement, which directly affects the model-derived secondary kinematics
(as these are calculated as functions of flexion). This would provide insight into how
incorrect flexion angles propagate through the pipeline and impact model outputs —

an important consideration when using marker-based motion capture inputs.

This could be extended further by prescribing the TF DOFs using kinematics from
BVR to investigate the effect of more accurate input kinematics on contact map
outputs. While the secondary kinematics would still need to settle during the COMAK
step to ensure model convergence, using accurate BVR-derived inputs rather than
IK results would enable solutions to be based on more realistic starting conditions.
This would be particularly valuable in cases where secondary kinematics are not
strongly coupled to flexion.

Inputting BVR kinematics in this way could also clarify whether accurate kinematics
or personalised geometries have the greater impact on model performance. This
would help identify the key limitations of the pipeline and highlight the most important
considerations when only motion capture data are available. Furthermore, testing the
model with accurate BVR kinematics could guide future improvements to the
pipeline, supporting the generation of more accurate secondary kinematics from
motion capture inputs alone. This may also include extending the model’'s
capabilities to higher flexion angles, since this thesis demonstrated that kinematic
predictions worsen during high-flexion activities. Updating the model based on the
relationship between flexion and secondary kinematics derived from BVR in-vivo
imaging of high-flexion activities would help the model to perform more robustly

across a broader range of movements.
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5.3.3 KINEMATICS-DRIVEN FINITE ELEMENT MODEL ALTERATIONS
AND IMPROVEMENTS

For the FEM, as the model was primarily used to explore the feasibility of kinematic-
driven modelling, further robust testing and analysis would be required before
applying it to future research questions. For example, a mesh convergence study
should be performed to confirm that the final model contains a sufficient number of
elements, and the choice of material models and their associated parameters should

be evaluated to ensure they are appropriate for the intended application.

The high contact pressures and strains observed in the model highlight the
importance of understanding its sensitivity to input kinematics. Future work could
explore this by systematically varying all 6 DOFs and analysing the response of each
individually. Such analyses would not only clarify how kinematic errors propagate
through the model but also provide guidance on optimising kinematic-driven
approaches. This could inform refinement of the technique to improve robustness

and reliability, bringing kinematic-driven FEM closer to practical application.

An alternative approach to the FEM step of the framework would be to drive the
model using forces from the MSM pipeline. Hybrid MS-FEM approaches have been
used previously (Besier et al. 2005; Shu et al. 2018; Navacchia et al. 2019; Ali et al.
2020; Kainz et al. 2020; Esrafilian et al. 2022; Mohout et al. 2023), but they still rely
on marker-based motion capture inputs, increasing the number of estimated
parameters. By instead inputting accurate in-vivo TF kinematics from BVR into the
MSM and using those outputs to drive the FEM, the strengths of both methods could
be combined. The MSM would account for small kinematic errors, while the FEM
would calculate internal cartilage mechanics with reduced sensitivity to these errors.
This approach would provide both whole-body kinematics and muscle forces from
MSM and detailed internal cartilage mechanics from FEM, offering a cohesive,

comprehensive framework for investigating multiple aspects of joint loading.

5.3.4 FUTURE OF THE FRAMEWORK

Overall, the framework developed in this thesis provides a foundation for
investigating multiple aspects of knee biomechanics that can be further expanded

and refined to achieve greater cohesion and integration of the various methods. By
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further exploring the combined potential of the unique contributions from the BVR,

MSM, and FEM components, future work could focus on creating a more seamless
pipeline. For example, BVR-derived kinematics could be fed through MSM to drive
FEM in a hybrid approach, enabling both whole-body and tissue-level outputs from

the same data.

Expanding the framework to larger and more diverse cohorts, including pathological
knees, would further enhance its value. By applying the integrated framework to
clinical populations, researchers could systematically investigate how changes in
joint mechanics relate to pain, disease progression, or surgical outcomes. In this
way, the framework has the potential to become a versatile, translational tool,
combining high-fidelity, in-vivo imaging with computational modelling to address
clinically relevant questions about knee joint function and pathology.
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1 SET UP - PRIOR TO PARTICIPANT

Print off the following forms before the participant arrives:

1l
L1

Participant information sheet and consent form (x2) (BBRCVA - Fluoroscopy -
HVIS.CF - vi2.1 clean.doc) — just consent form needed for second copy.
Fluoroscopy screening form (ARUKBBC - Fluoroscopy — screening form PRB — v10
— CLEAN.docx)

Informed consent checklist (BBRCVA CRF Informed Consent Checklist — vl.1.doc)
Data collection visit formn (BBRCVA CRF Visit — v2.doc)

Knee X-ray Protocol Computer Sheet Checklist
(KneeFluoroComputerSheet0.2.docm) — update Participant ID and select relevant
leg before printing.

Questionnaires:
o Knee Outcome Survey
o KOOS
o Oxford Knee Score
o PACS proforma
o WOMAC

Motion Capture

Camera Positioning

12 motion capture cameras and 6 Miqus video cameras required. The same motion
capture camera setup is used for left or right knee.

341



342



343



The diagram shows a floorplan
of the lab with the camera
positions (black circles) with
their camera number from
Qualisys and their cabling.
Vellow = data and power, red =
mains power, blue = data
cable. (L) denotes a camera on
the lower rail. 5, 2 and 11 are
on tripods. The numbers in
white boxes show the force
plates.
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For wall mounted cameras:

Camera Serial No. | 16697 16704 16641 16712 | 16709 | 16718 16648 16644 16711 16697 16704 16641
Camera Number in
8 Qualisys 3 10 12 1 8 9 6 4 7 3 10 12
5 | Exposure and flash
@ | time (us) 58 128 249 5317 93 171 23 607 180 58 128 249
9 | Marker Threshold
5 (%) 15 42 56 14 21 22 26 38 42 15 42 56
O [ camera Focus (m) |10 10 10 Infinity | 10 10 10 4.6 10.5 10 10 10
Camera Aperture
® 5.6 2.8 5 11 9 7.1 2.8 11 7.1 5.6 2.8 5
Tripod Head Style
(Hex or Rect) Rect Rect Rect Rect Rect Rect Rect Rect Rect Rect Rect Rect
',?, Tripod Head «
ﬁ angle (Flex) 20 20 30 10 10 0 10 30 15 20 20 30
g Tripod Head (3
2| angle (adduction) 25 0 5 0 0 90 5 5 10 25 0 5
& | Tripod
Head y angle
(internal Rotation) | 5 60 25 75 65 40 15 40 55 5 60 25
<
£ | Wall.Rail Distance.
3 | Side E.UC.121 |E.UD.4 |S.UB.l |S.UC.6 |SLC.l |S.UC.55 | W.LA.12 | W.UA.184 | W.UC.22 | E.UC.12 | E.UD.4 | S.UB.1
E 5.R 6.L 3.R 5.L 0.R 6.R 55.L 6.R 40.L 15.R 6.L 3.R
c=u Camera mount up
B | or down Up Up Up Down | Up Up Up Up Up Up Up Up
Where the wall mount key is:
Which wall in the Upper or Lower  Distance in mm
X-ray lab. E.g first, followed from rail end to . .
North, South, East, by identifier nearest edge of Eg:::: tf:;'e
West “ mount \ distance from
'1 \ Py /
Wall.Rail.Distance.Side
e.g. N.UA.70.R
) i \ " Right Side of rail
North W;” Upper row, 7(;mm from ?r\‘:::nce taken
Rail A ' rail edge to 345

mount edge




For cameras on tripods:

o Camera Serial No. 16710 16700 16694

5 Camera Number in Qualisys 5 2 11

@ Exposure and flash time (us) 128 258 58

E’ Marker Threshold (%) 15 23 15

o Camera Focus (m) 17.6 13.6 10

0 Camera Aperture (f) 7.1 11 5.6
Tripod Head Style (Hex or Rect) | Rect Rect Rect

"g g | Tripod Head a angle (Flex) 30 15 25

.% 3 Tripod Head 8 angle (adduction) | O 10 0

= Tripod Head y angle (internal
Rotation) 40 0 70
Tripod Serial Number NTO002 NTO005 NTO004
Tripod Vertical Column Height
(mm) 258 254 258
Tripod to floor centre (mm) 1803 611 1800
Tripod centre X position in
room (mimy) -2992 -3377 -3475
Tripod Centre Y position in

3 room (mimy) -1095 148 1067

£ |Leg1X (mm) -1999 2934 -2592

= Leg 1Y (mm) -1509 97 -34
Leg 2 X (mm) -3652 -3607 -4646
Leg2Y (mm) -1507 -222 1428
Leg 3 X (mm) -2808 -2999 -2626
Leg 3Y (mm) 82 550 1996
Leg 1 length (imm) 2206 900 2215
Leg 2 length (inm) 2205 905 2331
Leg 3 length (mm) 2329 915 2338

(See pictures above for placement of tripods in room)

1.1.2

Calibration

To initialise and calibrate the motion capture camera system:

1.
2.

Turn on Qualisys cameras and force plates

Turn on HDBX computer and open InstaCal and Qualisys Track Manager (QTM) in

that order.

Load up the “Knee Miqus Stairs” Qualisys project folder HDBX

Calibrate the volume with the L-Frame on force plate 2, with the long axis pointing
in the direction of travel. Make sure to calibrate whole volume for all three

activities.
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5. Locate each of the force plates individually by using the metal corner markers
and saving the file: ‘FP_1’

o ocrec: i
Locate each step of the stairs by placing a marker on the four corners.
6. Zero the force plates and then test by visualising the force arrows during real-

time.

12 EMG
Ensure EMG box is plugged in and EMGs are charged ahead of time. On InstaCal, check
EMGs are visible and sufficiently charged.

1.3 Biplane X-ray

To initialise the biplane X-ray system:

1. From the keys safe in T0.16, put the key labelled ‘Emergency Stop Reset Key’ and
place it into the C1 X-Ray Safety Interface.

2. Turn on the C1 X-Ray Safety Interface by rotating the red control clockwise. The
emergency alarm will sound and is deactivated by turning the emergency alarm
reset key clockwise.

3. Ensure all required dosimeter badges are being worn.

4. Turn on the C3 manipulator Control Panel by rotating the red control clockwise to
power the manipulator.

o

Login to the Manipulator HMI to allow manipulation of the machine.
6. Turn on both Epsilon Generator interfaces labelled ‘High Voltage Generator A
and B’ by pressing the power button.

@eme-s = T =
——=— §F
ER ErE B =!=
Un un un 3 (-]
- = (-]
®eooe — 8 e
e®o®o®ecs W
TVOVOTO VOOV
Poo®teoe "8 s

The X-ray machine must be moved into the correct position for the data collection. The
following parameters must be changed:
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Axis ID [Description
Longitudinal axis along direction of
walking
Y Lateral axis perpendicular to X
A-O Rotate Axis —set A
A-DT  [Tilt Axis — set A detector
A-ST [Tilt Axis — set A x-ray source
A-DR  [Radial Axis - set A detector
A-SR Radial Axis - set A x-ray source
A-DZ Vertical Axis — set A detector
A-SZ Vertical Axis — set A x-ray source
B-o Rotate Axis — set B
B-DT Tilt Axis — set B detector
B-ST Tilt Axis — set B x-ray source
B-DR Radial Axis - set B detector
B-SR Radial Axis - set B x-ray source
B-DZ Vertical Axis — set B detector
B-SZ Vertical Axis — set B x-ray source

X

Before the participant arrives, the X-ray system should be set to the stairs configuration
with the instrumented staircase in-situ.
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For the right leg setup:
(The front edge of the bottom step of the staircase should be aligned with FP4 and FP5 -
but not touching the force plates).

TS s Ll ! ;
i s gl
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Gait:

The first set up required will be stairs followed by gait, then lunge. The values for all
parameters for each X-ray set up can be found in Appendix A.
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132  X-ray Warmup

To warmup the X-ray tubes:

1. Place lead aprons in front of image intensifier.

2. Select the warmup protocol.

(@omd iy eplon; oo e
————— 8

[ 4] [ 50]

Un un un =I=
- a =
?P99® — 3 e
eo®o®ca @

®® 9 ® 90 000

TeoSee PSS

3. Enable the Neutral Density filter by pressing the F1 Button.

(@omd s [ — —
. e RN
ER | 50] ==
Uun on un 39 [
- = =
o900 — JI=EE
®0©

®ea '@.
POOOOO VOV

4. Perform 2 rounds of preparing the system:
Press PREP on both systems

. Hold the PREP buttons until the indicator light begins blinking

. Hold all buttons until the system automatically stops firing

a
b

c. Continue to hold the PREP button while pressing the X-Ray button
d

e. The HU should be above 5% after both exposures

5. Remove the lead aprons and replace on the hangers in control room (T0.16)

Software:

Open PFV4 and load the camera settings 50FPS test
Adjust the frame rate to 60 FPS, pulse width 1.25ms

i

Select the appropriate settings on the Epsilon Generators:
» Stair ascent = 80kV, 160mA (first setup)
» Gait = 80kV, 160mA
» Lunge = 70kV, 125mA

2 SET UP — WITH PARTICIPANT

2.1 Initial Participant Interactions
When the participant arrives:

1. Turn on intercom system.
2. Meet participant at entrance to MSKBRF and take them to T0.15/16.

3. Ask the participant to change into shorts and T-shirt.
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4. Confirm identity of volunteer.

Carry out informed consent. Ensure both copies of the form are filled.

6. Record participant ID, date of birth, height, and weight on the computer sheet
checklist.

7. Adjust X-ray machine Z-height to match participant.

2.2 EMG Placement

14 EMGs are used.

o

A W N R

Once EMGs are placed, secure with Tubigrip. Carry out the following tests (as on the
computer sheet checklist):

e EMGTest
e MVCRight! — Maximum Voluntary Contractions (right leg).
e MVCLeft! - Maximum Voluntary Contractions (left leg).

IMVC tests: get participant to stand on tiptoes for 3 seconds, flex leg behind them (pushing
up) while you resist for 3 seconds, sit on chair and extend leg (pushing upwards) while you
resist for 3 seconds.

2.3 Motion Capture Markers
2.3.1  Marker Set

54 are needed for the modified Cleveland Clinic marker set.

Note: Separate L & R PSIS markers are not included. Instead, a single PSIS marker is
included.
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R-Acronium

R- llliac crest

R-ASIS -

R- Greater troch
R thigh sup+inf
R thigh lateral x2
R- Patella

R - Epicondyles "

Full trial ~ Static only

L thigh lateral x2

-. L- Epicondyles

Neck-C7

“~ L-Acronium

Thoracic—-T8-9
L-Elbow- (Lat. Ep.)

R
L- llliac crest
L-ASIS
Sacral -
L-Wrist— Mid
L- Greater troch

L thigh sup+inf

L- Patella

L-shank post

-Elbow- (Lat. Ep.)

Lumbar-L4-5

R-Wrist— Mid

PSIS

R-shank post

R- shank sup+inf- - L~ shank sup+inf

R-shank lateral “L-shank lateral

L+R midfoot lat
- L+R Heels-toe height

R-Malleoli -~ L-Malleoli
R-Midfoot sup

R-1st + 5th MP joint

L-Midfoot sup
= L-1st + 5th MP joint ¢

Ground

L-2nd toe tip ' L-2nd toe tip

2.3.2  Motion Capture Statics

Collect (at least) two motion-capture-only statics (see computer sheet checklist). These
should be in a position that is as neutral as possible (with hands down by sides, feet
roughly shoulder width apart).

1. Standing with one leg on force plate 2 facing away from the south wall (towards
control room).

2. Standing with both feet on force plate 1 facing the west wall (towards the door to
the corridor).

Check: once statics are complete, apply marker list on QTM to check all markers are visible.
Repeat statics if necessary.

3 X-RAY CALIBRATION

The following calibration steps should be carried out at the start and end of each set of
measurements using a different set up.

The X-rays should be saved using this format: Particpant_Setup_Time_Calibration
(e.g. ‘HVOO1_Stairs_Start_White’)

3.1 White

Capture plain biplane screens with nothing in front of them (see setup photos from

).

Used for uniformity correction in post-processing.
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3.2 Grids

Place the two metal grids on the detector faces. Collect an X-ray exposure.

pi
i

Used for image distortion correction in post-processing.

3.3 Lego Cube

Creates grid of metal beads with four wire shapes. Place on other objects to get correct
height (this may differ based on participant height) and collect an X-ray exposure.

Examples of the orientation and placement of the cube for each of the three setups:

1. STAIRS
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3. LUNGE

Ensure both images of the cube show the beads clearly (with minimal overlap) and the four
shapes should be identifiable for post-processing.

3.4 Cone

Cone with motion capture markers. Place into view, align top of cone with red laser, and
collect capture.

Used to synchronise bi-plane X-ray and motion capture systems.

4 DATA COLLECTION

For each setup, complete a motion-capture-only static, an X-ray static, a couple of
repeats of the activity with only motion-capture and then X-ray captures of the activity.

Ensure DIAMENTOR dose printer is turned on before beginning captures involving
participant.

41 Stair Ascent

Participant will climb stairs with their desired imaging leg landing on the first step (in-
line with the X-rays).

Watch out for height limit when climbing stairs — warn participant to be careful not to hit
their head

Setup photo

1. ‘Start_Stairs_’ X-ray calibration set
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4. Activity captures (motion capture only & with X-rays).
5. ‘End_Stairs_’ X-ray calibration set

42 Gait

Participant will walk down the lab with their desired leg hitting force plate 2. Do test
walks to get correct starting location using the tape markers on the floor.

Change QTM project to “Knee Miqus” (not KneeMiqusStairs) before collecting gait and
lunge or turn off the stairs in the settings.

1. ‘Start_Gait_’ X-ray calibration set
2. Motion capture static:




3. X-ray static:

4. Activity éaptures (motion capture only & with X-rays).
5. ‘End_Gait_’ X-ray calibration set

43 Lunge

Participant will stand facing the X-ray detectors and lunge forward onto the desired leg.

1. ‘Start Gait_’ X-ray calibration set
2. Motion capture static/X-ray static:

4. ‘End_Gait_’ X-ray calibration set
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5 POST-PARTICIPANT STEPS

After the participant has left:

Print dosage labels and stick on the dosage sheets.
Upload data to NAS.

Scan and upload participant sheet.

Check relevant paperwork is all signed.

File documents.

Ol WD

6 APPENDICIES
6.1 Appendix A — X-ray System Setups

Axis |Unit Stair Stair Gait Lunge
ID Description Ascent | Ascent
Right Left
x mm [Longitudinal axis along 3799 2611 20717 2201
direction of walking
Y mm [Lateral axis perpendicular to X -294 -294 -312 -312
A-O ° [Rotate Axis —set A 115 130 112 150
A-DT ° [Tilt Axis — set A detector 0 0 0 0
AST ° [Tilt Axis —set A x-ray source 0 0 0 0
A-DR | mm [Radial Axis - set A detector 550 550 485 370
A-SR | mm [Radial Axis - set A x-ray source 1150 1150 1300 980
A-DZ | mm |Vertical Axis — set A detector 750 750 460 550
A-SZ | mm [Vertical Axis — set A x-ray 771 771 457 539
source
B-9 ° [Rotate Axis —set B 63 63 61 115
B-DT ° [Tilt Axis — set B detector 0 0 0 0
B-ST ° [Tilt Axis — set B x-ray source 0 0 0 0
B-DR [ mm [Radial Axis - set B detector 550 550 485 370
B-SR | mm [Radial Axis - set B x-ray source 1150 1150 1300 980
B-DZ | mm [Vertical Axis — set B detector 750 750 466 550
B.gy |Mm Vertical Axis — set B x-ray 773 7113 485 543
source
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APPENDIX B: QUESTIONNAIRES
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KNEE OUTCOME SURVEY
Activities of Daily Living Scale

SYMPTOMS:

1.

—

0 what degree does pain in your knee affect your daily activity level?

R

O I never have pain in my knee.

O I have pain in my knee, but it does not affect my daily activity.
0 Pain affects my activity slightly.

[0  Pain affects my activity moderately.

[0 Pain affects my activity severely.

O Pain in my knee prevents me from performing all daily activities.

OO0O00O04dr

o
—

o0 what degree does grinding or grating of your knee affect your daily activity level?

R

O I never have grinding or grating in my knee.

O I have grinding or grating in my knee, but it does not affect my daily activity.
O Grinding or grating affects my activity slightly.

O Grinding or grating affects my activity moderately.

O Grinding or grating affects my activity severely.

O Grinding or grating in my knee prevents me from performing all daily activities.

OO0O00O0O4dr

3. To what degree does stiffness in your knee affect your daily activity level?
L R

OO0 I never have stiffness in my knee.

OO0 | have stiffness in my knee, but it does not affect my daily activity.
OO0 stiffness affects my activity slightly.

OO0 stiffness affects my activity moderately.

OO0 stiffness affects my activity severely.

00 Stiffness in my knee prevents me from performing all daily activities.




Subject: 1D: Date:

4. To what degree does swelling in your knee affect your daily activity level?
L R

I 1 never have swelling in my knee.

I3 1 have swelling in my knee, but it does not affect my daily activity.
100 swelling affects my activity slightly.

103 swelling affects my activity moderately.

100 swelling affects my activity severely.

100 swelling in my knee prevents me from performing all daily activities.

5. To what degree does slipping of your knee affect your daily activity level?
L R

OO0 1 never have slipping of my knee.

OO0 1 have slipping in my knee, but it does not affect my daily activity.
OO0 Slipping affects my activity slightly.

OO slipping affects my activity moderately.

OO0 Slipping affects my activity severely.

00 Slipping of my knee prevents me from performing all daily activities.

6. To what degree does buckling of your knee affect your daily activity level?
L R

OO0 1 never have buckling of my knee.

OO0 | have buckling of my knee, but it does not affect my daily activity.
OO0 Buckling affects my activity slightly.

OO0 Buckling affects my activity moderately.

OO0 Buckling affects my activity severely.

00 Buckling of my knee prevents me from performing all daily activities.

7. To what degree does weakness or lack of strength of your leq affect your daily activity
level?
LR

OO My leg never feels weak.

OO0 My leg feels weak, but it does not affect my daily activity.

OO0 Weakness affects my activity slightly.

OO0 weakness affects my activity moderately.

OO0 weakness affects my activity severely.

00 Weakness of my leg prevents me from performing all daily activities.




Subject:

1D: Date:

FUNCTIONAL DISABILITY WITH ACTIVITIES

OF DAILY LIVING:

8. How does your knee affect your ability to walk?

10.

11.

L R
00
00
00
00
a0
a0

My knee does not affect my ability to walk.

I have pain in my knee when walking, but it does not affect my ability to walk.
My knee prevents me from walking more than 1 mile.

My knee prevents me from walking more than 1/2 mile.

My knee prevents me from walking more than 1 block.

My knee prevents me from walking.

Because of your knee, do you walk with crutches or a cane?

L R
HIn
HIn
HIn
HIn

I can walk without crutches or a cane.

My knee causes me to walk with 1 crutch or a cane.
My knee causes me to walk with 2 crutches.

Because of my knee, | cannot walk even with crutches.

Does your knee cause you to limp when you walk?

L R
HIn
HIn
HIn

I can walk without a limp.
Sometimes my knee causes me to walk with a limp.
Because of my knee, | cannot walk without a limp.

How does your knee affect your ability to go up stairs?

L R
00
00

OO
OO
OO
OO

My knee does not affect my ability to go up stairs.

I have pain in my knee when going up stairs, but it does not limit my ability to
go up stairs.

I am able to go up stairs normally, but I need to rely on use of a railing.
I am able to go up stairs one step at a time with use of a railing.

I have to use crutches or a cane to go up stairs.

I cannot go up stairs.



Subject: 1D: Date:

12. How does your knee affect your ability to go down stairs?

L R

OO My knee does not affect my ability to go down stairs.

00 I have pain in my knee when going down stairs, but it does not limit my ability
to go down stairs.

OO0 I am able to go down stairs normally, but | need to rely on use of a railing.

OO0 I am able to go down stairs one step at a time with use of a railing.

OO0 I have to use crutches or a cane to go down stairs.

OO0 I cannot go down stairs.

13. How does your knee affect your ability to stand?

LR

0 My knee does not affect my ability to stand, I can stand for unlimited amounts of
time.

0 | have pain in my knee when standing, but it does not limit my ability to
stand.

0 Because of my knee | cannot stand for more than 1 hour.

0 Because of my knee | cannot stand for more than 1/2 hour.

0 Because of my knee | cannot stand for more than 10 minutes.

0 | cannot stand because of my knee.

14. How does your knee affect your ability to kneel on the front of your knee?
LR

a0 My knee does not affect my ability to kneel on the front of my knee. I can kneel
for unlimited amounts of time.

CI00 1 have pain when kneeling on the front of my knee, but it does not limit my
ability to kneel.

a0 I cannot kneel on the front of my knee for more than 1 hour.

a0 I cannot kneel on the front of my knee for more than 1/2 hour.

a0 I cannot kneel on the front of my knee for more than 10 minutes.

a0 I cannot kneel on the front of my knee.



Subject:

1D: Date:

15. How does your knee affect your ability to squat?

16.

17.

L R
oo
oo
oo
oo
oo
oo

My knee does not affect my ability to squat, I can squat all the way down.

I have pain in my knee when squatting, but I can still squat all the way down.
I cannot squat more than3/4 of the way down.

I cannot squat more than 1/2 of the way down.

I cannot squat more than 1/4 of the way down.

I cannot squat because of my knee.

How does your knee affect your ability to sit with your knee bent?

L R
OO

HIn

OO
OO
OO
OO

My knee does not affect my ability to sit with my knee bent, | can sit for
unlimited amounts of time.

I have pain in my knee when sitting with my knee bent, but it does not limit my
ability to sit.

I cannot sit with my knee bent for more than 1 hour.

I cannot sit with my knee bent for more than 1/2 hour.

I cannot sit with my knee bent for more than 10 minutes.
I cannot sit with my knee bent.

How does your knee affect your ability to rise from a chair?

L R
OO
OO

HIn
OO

My knee does not affect my ability to rise from a chair.

I have pain when rising from a seated position, but it does not affect my
ability to rise from a seated position.

Because of my knee | can only rise from a chair if 1 use my hands and arms to
assist.

Because of my knee | cannot rise from a chair.



Knee injury and Osteoarthritis Outcome Score (KOOS), English version LK1.0

KOOS KNEE SURVEY

Today’s date: / / Date of birth: / /

Name:

INSTRUCTIONS: This survey asks for your view about your knee. This
information will help us keep track of how you feel about your knee and how
well you are able to perform your usual activities.

Answer every question by ticking the appropriate box, only one box for each
question. If you are unsure about how to answer a question, please give the
best answer you can.

Symptoms
These questions should be answered thinking of your knee symptoms during
the last week.

S1. Do you have swelling in your knee?

Never Rarely Sometimes Often Always
O O O O O
S2. Do you feel grinding, hear clicking or any other type of noise when your knee
moves?
Never Rarely Sometimes Often Always
O O O O O
S3. Does your knee catch or hang up when moving?
Never Rarely Sometimes Often Always
O O O O O
S4. Can you straighten your knee fully?
Always Often Sometimes Rarely Never
O O O O O
S5. Can you bend your knee fully?
Always Often Sometimes Rarely Never
O O O O O
Stiffness

The following questions concern the amount of joint stiffness you have
experienced during the last week in your knee. Stiffness is a sensation of
restriction or slowness in the ease with which you move your knee joint.

S6. How severe is your knee joint stiffness after first wakening in the morning?
None Mild Moderate Severe Extreme

(] O O (] O

S7. How severe is your knee stiffness after sitting, lying or resting later in the day?
None Mild Moderate Severe Extreme

O O O O O



Knee injury and Osteoarthritis Outcome Score (KOOS), English version LK1.0

Pain
P1. How often do you experience knee pain?
Never Monthly Weekly Daily
O O O O

What amount of knee pain have you experienced the
following activities?

P2. Twisting/pivoting on your knee

None Mild Moderate Severe
O O a O
P3. Straightening knee fully
None Mild Moderate Severe
a O a a
P4. Bending knee fully
None Mild Moderate Severe
O O a O
P5. Walking on flat surface
None Mild Moderate Severe
a O a a
P6. Going up or down stairs
None Mild Moderate Severe
O O a O
P7. At night while in bed
None Mild Moderate Severe
a O a a
P8. Sitting or lying
None Mild Moderate Severe
O O a O
P9. Standing upright
None Mild Moderate Severe
a O a a

Function, daily living

Always
O

last week during the

Extreme

O

Extreme

(m]

Extreme

O

Extreme

(m]

Extreme

O

Extreme

(m]

Extreme

O

Extreme

(m]

The following questions concern your physical function. By this we mean your

ability to move around and to look after yourself. For

each of the following

activities please indicate the degree of difficulty you have experienced in the

last week due to your knee.

Al. Descending stairs
None Mild Moderate Severe
O O O O

A2. Ascending stairs
None Mild Moderate Severe

(m O O (m

Extreme

(m]

Extreme

(m]



Knee injury and Osteoarthritis Outcome Score (KOOS), English version LK1.0

For each of the following activities please indicate the degree of difficulty you
have experienced in the last week due to your knee.

A3. Rising from sitting

None Mild Moderate Severe Extreme
a O a a O
A4. Standing
None Mild Moderate Severe Extreme
O O a O O
AS5. Bending to floor/pick up an object
None Mild Moderate Severe Extreme
a O a a O
A6. Walking on flat surface
None Mild Moderate Severe Extreme
O O a O O
A7. Getting in/out of car
None Mild Moderate Severe Extreme
a O a a O
A8. Going shopping
None Mild Moderate Severe Extreme
O O a O O
A9. Putting on socks/stockings
None Mild Moderate Severe Extreme
a O a a O
A10. Rising from bed
None Mild Moderate Severe Extreme
O O a O O
Al1l. Taking off socks/stockings
None Mild Moderate Severe Extreme
a O a a O
A12. Lying in bed (turning over, maintaining knee position)
None Mild Moderate Severe Extreme
O O a O O
A13. Getting in/out of bath
None Mild Moderate Severe Extreme
a O a a O
Al4. Sitting
None Mild Moderate Severe Extreme
(] O O (] a

A15. Getting on/off toilet

None Mild Moderate Severe Extreme

O O O O O



Knee injury and Osteoarthritis Outcome Score (KOOS), English version LK1.0

For each of the following activities please indicate the degree of difficulty you
have experienced in the last week due to your knee.

A16. Heavy domestic duties (moving heavy boxes, scrubbing floors, etc)

None Mild Moderate Severe Extreme
a O a a O
A17. Light domestic duties (cooking, dusting, etc)
None Mild Moderate Severe Extreme
O O a O O

Function, sports and recreational activities

The following questions concern your physical function when being active on a
higher level. The questions should be answered thinking of what degree of
difficulty you have experienced during the last week due to your knee.

SP1. Squatting

None Mild Moderate Severe Extreme
O O O O O
SP2. Running
None Mild Moderate Severe Extreme
O O O O a
SP3. Jumping
None Mild Moderate Severe Extreme
O O O O O
SP4. Twisting/pivoting on your injured knee
None Mild Moderate Severe Extreme
O O O O a
SP5. Kneeling
None Mild Moderate Severe Extreme
O O O O O

Quality of Life

Q1. How often are you aware of your knee problem?
Never Monthly Weekly Daily Constantly

(m O O (m O

Q2. Have you modified your life style to avoid potentially damaging activities
to your knee?

Not at all Mildly Moderately Severely Totally
O O O O O
Q3. How much are you troubled with lack of confidence in your knee?
Not at all Mildly Moderately Severely Extremely
O O O O O
Q4. In general, how much difficulty do you have with your knee?
None Mild Moderate Severe Extreme
O O O O O

Thank you very much for completing all the questions in this questionnaire.



The Oxford Knee Score

During the past four weeks:

1. How would you describe the pain you usually have from your
knee

L

R
[ ][ ] None
[ ][] Very mild
[ ][] Mild
[ ][] Moderate
[ ][] Severe

2. Have you had any trouble with washing and drying yourself (all
over) because of your knee?

L R

[ ][ ] No trouble at all

[ ][] Very little trouble
[ ][] Moderate trouble
[ ][] Extreme difficulty
[ ][] Impossible to do

3. Have you had any trouble getting in and out of a car or using
public transport because of your knee? (whichever you tend to

use)

L R

[ ][ ] No trouble at all

[ ][] Very little trouble
[ ][] Moderate trouble
[ ][] Extreme difficulty
[ ][] Impossible to do

4. For how long have you been able to walk before the pain from
your knee becomes severe? (with or without a stick)

L R

[ ][] No Pain/ > 30min

[ ][ ]16to 30 min

[ ][ ]5to 15 min

[ ][] Around the house only

[ ][] Not at all — severe on walking



5. After a meal (sat at table), how painful has it been for you to
stand up from a chair because of your knee?

L R

[ ][] Not at all painful
[ ][] Slightly painful

[ ][] Moderately painful
[ ][] Very painful

[ ][ ] Unbearable

6. Have you been limping when walking, because of your knee?

L R

[ ][] Rarely/never

[ ][] Sometimes or just at first
[ ][] Often, not just at first

[ ][] Most of the time

[ ][] All of the time

7. Could you kneel down and get up again afterwards?

R
[ ] Yes, easily

[ ] With a little difficulty
[ ] With moderate difficulty
[ ] With extreme difficulty

[ ][] No, impossible

(e

8. Have you been troubled by pain from your knee in bed at night?

R

[ ] No nights

[ ]Only 1 or 2 nights
[_] Some nights

[_] Most nights
[]

Every night

(e



9. How much has pain from your knee interfered with your usual
work (including housework)

R

[ ] Not at all

[ ]A little bit
Moderately

L]
[ ] Greatly
L]

L
[ ]
[ ]
[ ]
[ ]
[ ][] Totally

10. Have you felt that your knee might suddenly “give way” or let
you down?

L R

[ ][] Rarely/never

[ ][] Sometimes or just at first
[ ][] Often, not just at first

[ ][] Most of the time

[ ][] All of the time

11. Could you do the household shopping on your own?

L R

[ ][] Yes, easily

(] ] With little difficulty

[ ][] with moderate difficulty
[ ][] wWith extreme difficulty

[ ][] No, impossible

12. Could you walk down a flight of stairs?

R

[ ] Yes, easily

[ ] With little difficulty

[_] With moderate difficulty
[ ] With extreme difficulty
[_] No, impossible

(e



PACS

CLINICAL
INFORMATION
o SPECIAL
PACS (pain audit collection
system) is a database for INTEREST
collecting information from pain G RO U P

clinics on diagnosis, treatment and
outcome for the purposes of clinical (CISIG)

governance and audit Of the Pain
Society

Pain intensity, impact of pain on the patient’s life,

and the outcomes achieved from treatment are
measured using the Brief Pain Inventory (BPI). The BPI
uses a numeric rating scale to score pain, pain relief and

interference with function

Different tear-off BPI forms are available for ‘new’ or ‘follow-up’

patients. Completion of these will aid data entry into PACS

By using the form each time your patient attends the clinic,
response to treatment can be followed and, if requested,

compared with other clinics

Please see User’'s Manual for Instructions Clinical Information Special
Interest Group

The Pain Society

The English & Irish Chapter
of the International
Association for the Study
of Pain

PACS is supported by an
educational grant from

Pharmacia



PACS/BPI

ASSESSMENT

FORM

Hospital

Date

Registration number
Patient’s name

Year of birth

Diagnosis

2.
Duration of symptoms

Treatment

Consultant

Source: Pain Research Group, Department of
Neurology, University of Wisconsin-Madison

Used with permission. May be duplicated and

used in clinical practice.

This data is collected for assessment of your
pain. In addition, the information is entered
into a national database for audit and
research. This is anonymous. If you do not
wish it to be used, then please inform pain

clinic staff.

BRIEF PAIN INVENTORY

Please circle your response or ask for help if you are having problems

. Please rate your pain by circling the one number that best describes

your pain at its WORST in the past week.

0 1 2 3 4 5 6 7 8 9 10
NO PAIN PAIN AS BAD AS YOU CAN IMAGINE

. Please rate your pain by circling the one number that best describes

your pain at its LEAST in the past week.

0 1 2 3 4 5 6 7 8 9 10
NO PAIN PAIN AS BAD AS YOU CAN IMAGINE

. Please rate your pain by circling the one number that best describes

your pain on the AVERAGE.

0 1 2 3 4 5 6 7 8 9 10
NO PAIN PAIN AS BAD AS YOU CAN IMAGINE

. Please rate your pain by circling the one number that tells how much

pain you have RIGHT NOW.

0 1 2 3 4 5 6 7 8 9 10
NO PAIN PAIN AS BAD AS YOU CAN IMAGINE

. Circle the one number that describes how during the past week,

PAIN HAS INTERFERED with your:
A. General activity

0 1 2 3 4 5 6 7 8 9 10
DOES NOT INTERFERE COMPLETELY INTERFERES
B. Mood

0 1 2 3 4 5 6 7 8 9 10
DOES NOT INTERFERE COMPLETELY INTERFERES

C. Walking ability

0 1 2 3 4 5 6 7 8 9 10
DOES NOT INTERFERE COMPLETELY INTERFERES

D. Normal work (includes work both outside the home and housework)

0 1 2 3 4 5 6 7 8 9 10
DOES NOT INTERFERE COMPLETELY INTERFERES

E. Relationships with other people

0 1 2 3 4 5 6 7 8 9 10
DOES NOT INTERFERE COMPLETELY INTERFERES
F. Sleep

0 1 2 3 4 5 6 7 8 9 10
DOES NOT INTERFERE COMPLETELY INTERFERES

G. Enjoyment of life

0 1 2 3 4 5 6 7 8 9 10
DOES NOT INTERFERE COMPLETELY INTERFERES
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PACS/BPI
ASSESSMENT
FORM

Hospital

Date

Registration number
Patient’s name

Year of birth

Treatment

Consultant

Source: Pain Research Group, Department of
Neurology, University of Wisconsin-Madison

Used with permission. May be duplicated and
used in clinical practice.

This data is collected for assessment of your
pain. In addition, the information is entered
into a national database for audit and
research. This is anonymous. If you do not
wish it to be used, then please inform pain
clinic staff.

BRIEF PAIN INVENTORY

Please circle your response or ask for help if you are having problems

. How much RELIEF have pain treatments or medications FROM THIS CLINIC

provided? Please circle the one percentage that shows how much.

100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%
COMPLETE RELIEF NO RELIEF

. Please rate your pain by circling the one number that best describes

your pain at its WORST in the past week.

0 1 2 3 4 5 6 7 8 9 10
NO PAIN PAIN AS BAD AS YOU CAN IMAGINE

. Please rate your pain by circling the one number that best describes

your pain at its LEAST in the past week.

0 1 2 3 4 5 6 7 8 9 10
NO PAIN PAIN AS BAD AS YOU CAN IMAGINE

. Please rate your pain by circling the one number that best describes

your pain on the AVERAGE.

0 1 2 3 4 5 6 7 8 9 10
NO PAIN PAIN AS BAD AS YOU CAN IMAGINE

. Please rate your pain by circling the one number that tells how much

pain you have RIGHT NOW.

0 1 2 3 4 5 6 7 8 9 10
NO PAIN PAIN AS BAD AS YOU CAN IMAGINE

. Circle the one number that describes how during the past week,

PAIN HAS INTERFERED with your:
A. General activity

0 1 2 3 4 5 6 7 8 9 10
DOES NOT INTERFERE COMPLETELY INTERFERES

B. Mood

0 1 2 3 4 5 6 7 8 9 10
DOES NOT INTERFERE COMPLETELY INTERFERES

C. Walking ability

0 1 2 3 4 5 6 7 8 9 10
DOES NOT INTERFERE COMPLETELY INTERFERES

D. Normal work (includes work both outside the home and housework)

0 1 2 3 4 5 6 7 8 9 10
DOES NOT INTERFERE COMPLETELY INTERFERES

E. Relationships with other people

0 1 2 3 4 5 6 7 8 9 10
DOES NOT INTERFERE COMPLETELY INTERFERES

F. Sleep

0 1 2 3 4 5 6 7 8 9 10
DOES NOT INTERFERE COMPLETELY INTERFERES

G. Enjoyment of life

0 1 2 3 4 5 6 7 8 9 10
DOES NOT INTERFERE COMPLETELY INTERFERES



The Western Ontario and McMaster Universities Osteoarthritis Index

(WOMAC)

Name: Date:

Instructions: Please rate the activities in each category according to the following

scale of difficulty: 0 = None, 1 =Slight, 2 =Moderate, 3= Very,

Circle one number for each activity

4 = Extremely

Pain . Walking

. Stair Climbing

. Nocturnal

Rest

. Weight bearing

Stiffness . Morning stiffness

. Stiffness occurring later in the day

Physical Function . Descending stairs

. Ascending stairs

. Rising from sitting

. Standing

. Bending to floor

. Walking on flat surface

. Getting in / out of car

© N @ O s NN o e N

. Going shopping

[(e]

. Putting on socks

10. Lying in bed

11. Taking off socks

12. Rising from bed

13. Getting in/out of bath

14. Sitting

15. Getting on/off toilet

16. Heavy domestic duties

17. Light domestic duties

o O o 0o 0o |© o o oo o |0 o 0|0 o0 |© 0o o | o o

e I e N e N P B T C e P e e N P I o N P e P N B N £ U P\ P N P N P N P N P N P N & Y P N P N

NN NN N ININININININININININDINININ NN INDININ

W W W (W [W W W W W W W W W W W WWWIWwWW W W W

A ISP IBIMIPDTISIPDTIDDIDD I I I BB

Total Score: /96 = %

Comments / Interpretation (to be completed by therapist only):



APPENDIX C: BVR, GENERIC
MSM & PERSONALISED MSM
KINEMATICS PRESENTED PER
PARTICIPANT
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APPENDIX D: CONTACT
PRESSURE MAPS PER
PARTICIPANT FOR THE THREE
ACTIVITIES
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Contact map results during level gait

Contact pressure maps from the generic MSM, personalised MSM, and BVR-JAM
equivalent at 10% intervals of stance phase of level gait where data were available for
each individual participant.
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Contact map results during stair ascent

Contact pressure maps from the generic MSM, personalised MSM, and BVR-JAM
equivalent at 10% intervals of stance phase of stair ascent where data were available
for each individual participant.
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Contact map results during lunging

Contact pressure maps from the generic MSM, personalised MSM, and BVR-JAM
equivalent at 10% intervals of lunge (defined as heel-strike to toe-off) where data were
available for each individual participant.
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