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ABSTRACT 

Understanding the relationship between knee joint mechanics and disease is 

essential for improving the prevention and treatment of conditions such as 

osteoarthritis (OA). This work developed a comprehensive framework to investigate 

tibiofemoral (TF) joint contact mechanics by integrating accurate in-vivo biplane 

videoradiography (BVR) kinematics with musculoskeletal (MSM) and finite element 

(FEM) modelling. By combining the complementary strengths of these techniques, 

the framework provides a more comprehensive understanding of knee 

biomechanics, capturing joint kinematics, loading, and internal tissue mechanics 

during dynamic functional activities.  

A protocol was established for the simultaneous acquisition and processing of BVR 

and marker-based motion capture data, enabling accurate calculation of 6 degree of 

freedom TF kinematics during gait, stair ascent, and lunging tasks. These datasets 

were used to evaluate MSM predictions of TF kinematics and contact pressures, 

comparing models with generic and MRI-derived personalised contact geometries. 

Incorporating subject-specific bone and cartilage geometries improved MSM 

estimates during gait, particularly in the anterior-posterior direction, however the 

limitations of the modelling approach for higher flexion activities were highlighted.  

The BVR-derived kinematics were then used to drive a fully kinematically driven 

FEM of the knee, enabling investigation of articular cartilage contact pressures, 

stresses, and strains during the stance phase of gait. The model produced loading 

patterns consistent with previous literature, with peak contact pressures, stresses 

and strains coinciding with the loading peaks during gait. The model demonstrated 

the feasibility and value of combining high-fidelity imaging with FEM to explore 

in-vivo internal cartilage mechanics.  

Overall, this research presents a novel, integrated approach for studying in-vivo knee 

biomechanics. The framework delivers both methodological and practical advances, 

providing a foundation for future work investigating pathological cohorts, surgical 

interventions, and the biomechanical mechanisms underlying disease onset and 

progression.  
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CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW 

1.1 INTRODUCTION 

The knee is the largest joint in the human body. It plays a key role in controlling the 

body’s centre of mass and posture during activities of daily living, facilitating 

movement through a large range of motion (ROM) and its ability to withstand high 

forces (Standring 2021). As a weight-bearing joint, it provides both mobility and 

stability, enabling efficient and controlled movement. The knee consists of two 

articulating joints, the tibiofemoral (TF) and patellofemoral (PF) joints, which together 

form a complex synovial structure essential for locomotion. Because it is involved in 

many daily activities, sustains high mechanical loads, and is inherently unstable, the 

knee is particularly susceptible to injury and disease, both of which are commonly 

associated with pain. Although the relationships between mechanical factors, altered 

joint biomechanics, and pain have been explored (Wyndow et al. 2016; Seeley et al. 

2022; Hutchison et al. 2023), they remain poorly understood. Knee pain accounts for 

around 5% of general practice consultations (Frese et al. 2013), highlighting its 

widespread impact and the need for a deeper understanding of the biomechanical 

mechanisms linked to pain.  

Osteoarthritis (OA) is the most common chronic joint disease (Mukherjee et al. 

2020). 60% of all OA cases affect the knee, making it the most frequently affected 

joint (Prieto-Alhambra et al. 2014; Long et al. 2022). OA is a degenerative disease of 

the whole joint, causing loss of articular cartilage and abnormal remodelling of bone 

(Arden and Nevitt 2006; Mukherjee et al. 2020), resulting in symptoms of pain, 

reduced mobility and joint instability (Hunter and Bierma-Zeinstra 2019). As with 

knee pain more broadly, alterations in joint loading, such as increased medial 

loading and higher knee adduction moments, have been linked to the development 

and progression of OA (Baliunas et al. 2002; Miyazaki et al. 2002; Andriacchi and 

Mündermann 2006), with uneven load distribution accelerating structural joint 

deterioration (Sharma et al. 2001). Factors such as malalignment, previous injury, 

and altered neuromuscular control also contribute to abnormal joint mechanics and 

accelerate cartilage degeneration (Griffin and Guilak 2005; Felson 2013). With knee 

OA affecting around 16% of the global population (≥ 16 years old) (Cui et al. 2020), it 

is important to understand the altered biomechanics that can lead to disease 
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progression, as OA cannot currently be prevented effectively (Mukherjee et al. 

2020). 

Although radiographic changes are commonly used to diagnose OA, the relationship 

between structural damage and symptoms is weak (Bensalma et al. 2022). 

Increasing evidence shows that mechanical factors such as altered joint loading, 

malalignment, and dynamic instability are more closely related to pain and functional 

impairment than static radiographic images (Bensalma et al. 2022; Hutchison et al. 

2022). For example, greater medial knee loading and the presence of varus thrust 

have been linked to higher pain levels and disease progression (Hutchison et al. 

2022), but limited knee flexion during loading is associated with poorer function 

(Bensalma et al. 2022). These findings highlight the importance of considering joint 

mechanics in both research and clinical management, as understanding how 

biomechanical alterations relate to pain may help identify modifiable targets for 

intervention (Allen et al. 2025). Assessing both healthy and pathological joints is 

therefore essential to understanding the altered biomechanics associated with 

musculoskeletal disease, injury, and interventions (Postolka et al. 2020; Ulbricht et 

al. 2020).  

To fully understand these changes, all aspects of knee biomechanics must be 

considered. Combining information about bone kinematics from accurate imaging, 

with joint contact pressures, loading, soft tissue stresses and strains from 

personalised models, provides a comprehensive picture of in-vivo knee 

biomechanics. Using complementary imaging and modelling techniques brings 

together the strengths of multiple methodologies to enhance insight, providing a 

deeper understanding of an individual’s joint behaviour during functional activities. 

Analysing in-vivo knee kinematics and loading in this way can provide better insight 

into OA characteristics, including how it progresses, ultimately aiming to improve 

prevention and treatment strategies for those suffering from this disease. 

The remainder of Chapter 1 provides an overview of existing methods in literature for 

measuring in-vivo joint kinematics, with particular focus on biplane videoradiography 

(BVR) and its application to quantifying knee motion during dynamic activities. 

Current approaches to musculoskeletal modelling (MSM) and finite element 

modelling (FEM) of the knee are also reviewed, with emphasis on their use in 
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investigating cartilage mechanics. Together, this literature is used to identify 

limitations and gaps in current methodologies, providing the rationale for the 

approaches taken in this thesis, particularly the incorporation of BVR-derived 

kinematics in knee modelling. 

1.2 MEASURING IN-VIVO JOINT KINEMATICS 

In-vivo assessments form an important part of human motion analysis which aims to 

assist with identification, prevention and rehabilitation of musculoskeletal diseases, 

disabilities and injuries by investigating altered movement patterns (Hausdorff et al. 

2000; Salarian et al. 2004; Astephen et al. 2008; Heesen et al. 2008; Sawacha et al. 

2012; Pavao et al. 2013; Franklyn-Miller et al. 2017; Wade et al. 2022). 

For the knee in particular, in-vivo imaging is key to understanding the small changes 

in TF kinematics caused by diseases like OA (Mills et al. 2013; Farrokhi et al. 2014; 

Yamagata et al. 2021), injury (Moglo and Shirazi-Adl 2005; Ali et al. 2017) or 

interventions (Schwechter and Fitz 2012; Clary et al. 2013b; Heyse et al. 2017). 

Accurately determining in-vivo knee joint kinematics, including all six degrees of 

freedom (DOFs) including rotations and translations (Figure 1-1), is necessary to 

understand complex joint movement in both healthy and pathological cohorts 

(Astephen et al. 2008; Giphart et al. 2012).  
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Multiple methods for calculating in-vivo kinematics exist, which capture the 6 DOFs 

of the both the TF and PF joints to varying levels of accuracy, a few of which are 

described in the following sections. 

1.2.1 MARKER-BASED MOTION CAPTURE 

Marker-based motion capture is the established standard for quantifying human joint 

motion (Hume et al. 2018). This typically involves a set of infrared cameras which 

are used to identify the positions of retro-reflective markers in three-dimensional (3D) 

space (Figure 1-2). These markers are placed on specific locations on the body, 

including palpated anatomical landmarks and marker clusters, and are used for joint 

Figure 1-1 – The six DOFs of the TF joint with the three translational DOFs in 
the top row and the three rotational DOFs in the bottom row.  

Image from Standring (2021). 
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definitions and tracking body segment motion. The identified markers are then used 

to define body segment position and orientation and calculate relative joint 

kinematics (Taylor et al. 1982; Kadaba et al. 1990). 

This technique can quantify whole body kinematics, providing high repeatability in 

the sagittal plane for the lower limb (Mackey et al. 2005). However, it has insufficient 

accuracy in the other planes (Ramsey and Wretenberg 1999) as it suffers from 

errors caused by inaccurate marker placement on anatomical landmarks, as well as 

soft tissue artefact (STA) (Ramsey and Wretenberg 1999; Gorton et al. 2009; 

Akbarshahi et al. 2010). The quantification of the accuracy of this technique is 

discussed in more detail in Section 1.4.2. 

1.2.2 FLUOROSCOPY AND BIPLANE VIDEORADIOGRAPHY 

Another technique used for measuring in-vivo joint kinematics is X-ray fluoroscopy, 

also known as videoradiography. Fluoroscopy is the process of real-time dynamic 

imaging using X-rays (Cowen et al. 2008) and has been used to image joints in-vivo 

since the 1970s (Gray et al. 2018). An X-ray source-detector pair is used to sample 

images of the human body as it passes through the X-ray beam, producing a series 

radiographs containing the bone poses (the six DOF rotations and translations) of 

the desired joint at each point in time. Model-based image registration is then 

performed, matching a 3D geometry (Section 1.3.2) to the outline of the bone on a 

radiograph to define the pose at each frame.  

Figure 1-2 – Identified markers overlayed on a single camera view (left) reconstructed in 
3D from all camera views (right). 
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Originally, fluoroscopy was performed using a single plane system, sampling 

radiographs from a continuous X-ray beam. Single-plane fluoroscopy has limited 

accuracy as it is difficult to determine any motion out-of-plane due to having only the 

perspective of a single 2D image at each timepoint (Fregly et al. 2005; Lin et al. 

2014). 

To overcome this, Biplane Videoradiography (BVR) systems were introduced, using 

two synchronised source-detector pairs to obtain simultaneous images at each frame 

from two different orientations to allow for more accurate 3D reconstruction of bone 

positions (Gray et al. 2018). Another advancement of BVR was utilising pulsed 

X-rays instead of a continuous beam, which reduces the radiation dose to the 

participant by emitting a series of short pulses, reducing the total X-ray exposure 

time (Mahesh 2001); this also reduces blur, improving output image quality (Williams 

2018). 

BVR is currently the gold-standard for accurately measuring in-vivo kinematics 

during physiological loading (Li et al. 2012; Gray et al. 2018; Setliff and Anderst 

2024). Unlike marker-based motion capture, BVR has been shown to produce highly 

accurate 3D arthrokinematics of the knee joint in all planes (Li et al. 2008; Anderst et 

al. 2009; Guan et al. 2016; Gray et al. 2017; Pitcairn et al. 2018) (Section 1.4.1). It is 

not affected by STA or marker misplacement as it does not require placement of 

external devices or markers which may interfere with natural movement (Kozanek et 

al. 2009; Setliff and Anderst 2024).  

However, a limitation of BVR is that there is only a relatively small capture volume 

when compared to other imaging modalities. This means it is very difficult to capture 

the entire motion path of the knee through the whole of an activity, so capture is 

limited to certain sections of the movement (e.g., stance phase) (Kozanek et al. 

2009). For this reason, BVR may be captured simultaneously with alternative 

imaging methods (e.g. marker-based motion capture) to provide (less accurate) 

whole body motion, along with highly accurate kinematics of the joint(s) of interest.  

1.2.3 INTRACORTICAL BONE PINS 

Although BVR is highly accurate, greater accuracy can be achieved by rigidly 

attaching a trackable object directly to the bone. This ensures only bone motion is 
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recorded and is not affected by inaccuracies in the model segmentation and 

registration. 

Levens et al. (1948) were the first to use intracortical bone pins to investigate in-vivo 

human motion by surgically implanting threaded stainless-steel pins into bony 

landmarks on the lower limb with attached retroreflective markers to track body 

segment motion. This approach allowed for accurate joint kinematic calculations 

since, unlike skin-mounted markers (Section 1.2.1), those fixed to bone pins did not 

move relative to the underlying bone they were tracking. This technique has 

subsequently been used by other researchers to investigate knee joint kinematics  

(McClay 1990; Koh et al. 1992; Lafortune et al. 1992b; Lafortune et al. 1994; 

Reinschmidt et al. 1997b; Ramsey and Wretenberg 1999; Benoit et al. 2006). 

Despite the highly accuracy of this technique, the involvement of invasive surgical 

methods makes it unsuitable for larger scale studies due to the complexity, risks and 

ethical considerations associated with surgical implantation of the rods. 

Complications can also arise with the pins and their insertion sites, including the pins 

vibrating, bending, or loosening during data collection, as well as the potential for 

impingement of soft tissues (Levens et al. 1948; Ramsey et al. 2003). 

1.2.4 ROENTGEN STEREOPHOTOGRAMMETRIC ANALYSIS 

An alternative method for determining bone motion with high accuracy is roentgen 

stereophotogrammetric analysis (RSA) (Kärrholm et al. 1997; Valstar et al. 2005; 

Bragdon et al. 2006). RSA involves the surgical implantation of small tantalum beads 

into the desired bone, with at least three beads per bone to allow for 3D pose 

reconstruction. The radiopaque beads are then visible when imaged using 

videoradiography, enabling tracking of the bead centroids across a dynamic activity. 

These data, along with the 3D relationship between the bead positions and the bone 

anatomical coordinate system (ACS), enable accurate calculation of TF kinematics 

(Nilsson et al. 1990; Anderst et al. 2009; Tranberg et al. 2011; Cardinale et al. 2020). 

Similarly to intracortical bone pins (Section 1.2.3), RSA requires invasive surgery, 

which limits its use to small-scale cohorts, usually as part of an already planned 

procedure (e.g. total knee replacement, TKR, or anterior cruciate ligament, ACL, 

repair). 
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Whereas model-based image registration can be affected by inaccuracies in the 

model geometry or unclear bone edges on the radiographs (Anderst et al. 2009), 

bead positions can be defined more precisely, providing greater accuracy despite 

using the same imaging techniques (Section 1.2.2). For these reasons, RSA is often 

used to determine the accuracy of a standard model-based BVR pipeline (Setliff and 

Anderst 2024) as the two methods can be directly compared using the same images. 

1.3 BIPLANE VIDEORADIOGRAPHY 

1.3.1 BVR SYSTEM AT CARDIFF 

The bespoke BVR system at Cardiff (Figure 1-3) was designed for easy and 

consistent positioning of the two source-detectors pairs, both relative to each other 

and to the global coordinate system (GCS) of the laboratory (Williams 2018). This 

was achieved by a custom-built ceiling-mounted pair of mechanical arms, which are 

fixed to ensure each source and corresponding detector are always aligned on the 

horizontal plane. This, along with 16 controllable axes, enables quick, repeatable 

positioning of the system to ensure X-ray quality. With ten of the 16 axes computer-

controlled, this again speeds up equipment positioning, allowing multiple setups 

within a single data collection session; a capability most BVR systems lack due to 

requiring manual setup of separate source and detector equipment. The ease of the 

Cardiff BVR system repositioning allows for a wider range of movements to be 

captured in one session, as different activities require adjustment to the X-ray arm 

positioning, for example, in height or angle, to optimise for bone tracking. The 

specific definition and controls of these axes, along with their positions for the 

activities included in the pilot protocol and created as part of the initial development 

of the system, are discussed in more detail in Section 2.3.1. 
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An important feature of the BVR system at Cardiff is the capacity for both continuous 

(at up to 1000 fps) and pulsed X-ray imaging (up to 125 fps). As discussed in 

Section 1.2.2, the use of pulsed X-rays contributes to minimising the ionising 

radiation dose. The source-detector pairs are synchronised to capture images of 

short X-ray pulses, instead of sampling images from a continuous X-ray beam, thus 

reducing the overall time the X-ray beam is firing during a given movement.  

1.3.2 3D BONE MODEL GENERATION 

To calculate kinematics from two-dimensional (2D) BVR images, 3D models of bone 

geometry are matched with radiograph pairs during image registration (Kim et al. 

2011). There are two main imaging modalities used for generating 3D geometries for 

this application: computed tomography (CT) and magnetic resonance imaging (MRI). 

CT is the gold standard for generating 3D bone models (Moro-oka et al. 2007; Lee et 

al. 2008; Rathnayaka et al. 2012) because it produces clear, defined bone 

boundaries. However, as CT requires increasing the ionising radiation dose, 

alternative imaging modalities, e.g., MRI, may be more appropriate, particularly when 

imaging healthy volunteers. Studies have shown that 3T MRI provides sufficient 

Figure 1-3 – Bespoke BVR system at Cardiff University. 
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accuracy for model-based image registration, making it a viable alternative to CT 

(Neubert et al. 2017; Williams 2018). Additionally, MRI can image soft-tissue joint 

structures, such as the articular cartilage and menisci, which are not visible on CT 

scans without a contrast agent. Inclusion of soft tissue imaging enables further 

analysis of joint contact, including cartilage contact areas or ligament elongation, 

when combined with BVR image registration outputs, (Setliff and Anderst 2024). 

The specific structures of interest can then be segmented from the 3D imaging to 

create 3D geometries which are used to generate the digitally reconstructed 

radiographs (DRRs) required for image registration (Section 2.4.2). 

1.3.3 DEFINING TIBIOFEMORAL KINEMATICS 

6 DOF kinematics of the tibiofemoral joint, calculated for the bone pose maps 

generated from model-based image registration, fully define the position and 

orientation of the bone ACS at each frame. The most common approach for 

calculating these kinematics is the method proposed by Grood and Suntay (1983) 

(Figure 1-4), as recommended by the International Society of Biomechanics (ISB) 

(Wu et al. 2002).  

This describes the three rotations of the knee as follows: flexion around the fixed 

body of the femur (medial-lateral, ML, axis through the femoral condyles), external 

rotation around the fixed body axis of the tibia (superior-inferior, SI, axis, 

perpendicular to the tibial plateau), and adduction around the floating axis (the cross-

product of the two fixed body axes). These conventions can also be used to define 

TF joint translations, but their magnitudes are highly dependent on the positioning of 

the bone origins chosen (Grood and Suntay 1983).  
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One limitation of comparing TF translations across a cohort using these conventions 

is that knee size affects translation magnitude, making it difficult to average results 

across a cohort. For example, in SI axis translations, the offset in distraction 

magnitude is highly dependent on knee size because larger bones result in greater 

separation between bone origins, making it challenging to detect variations in 

movement over large offsets. For this reason, alternative approaches have been 

used, such as defining only compression-distraction (CD) or all three knee joint 

translations relative to an initial coincident origin (usually the femoral origin located 

Figure 1-4 – Joint coordinate system angle definitions,  
recreated from Grood and Suntay (1983). 
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between the condyles) (Kefala et al. 2017; Gray et al. 2019; Thomeer et al. 2021; 

Kour et al. 2022) or expressing the translations of one bone in the coordinate system 

of the other (Tashman et al. 2004; Li et al. 2012).  Using a single, coincident origin 

also has the benefit of being consistent with the typical joint definition in marker-

based motion capture kinematics, for example, in an OpenSim model (Lenhart et al. 

2015), allowing for direct comparison between translation outputs. 

1.3.4 PREVIOUS BVR STUDIES 

A number of previous studies have used BVR to obtain in-vivo kinematics for a 

variety of joints, including up to six DOFs of the TF and PF joints. A scoping review 

by Setliff and Anderst (2024), that investigated the usage of BVR for in-vivo human 

skeletal kinematics, found that nearly half of all in-vivo BVR studies (180/379 studies 

included) looked at knee kinematics.  

Setliff and Anderst (2024) also found that the average in-vivo BVR study cohort size 

(across all joints, not just the knee) was small (mean = 16, median = 11). This 

reflects the time required to process BVR data (which they estimated at 40-80 hrs 

per data collection), as well as the high cost associated with this technique.  

BVR has been used to study knee kinematics across various dynamic activities. 

Table 1-1 provides examples of movements investigated in literature, illustrating the 

range of activities studied, although this is not an exhaustive list. 

Table 1-1 – Examples of the activities used with BVR to investigate knee motion. 

Activity Studies 
Level gait (overground) (Myers et al. 2012; Guan et al. 2016; Guan et al. 

2017; Kefala et al. 2017; Pitcairn et al. 2018; Gray 

et al. 2019; Gray et al. 2020; Gray et al. 2021; 

Thomeer et al. 2021; Ganapam et al. 2022; 

Hamilton et al. 2022; Kour et al. 2022; Thomeer et 

al. 2022; Hamilton et al. 2023; Guan et al. 2024) 

Treadmill level gait (Kozanek et al. 2009; Liu et al. 2010; Barre et al. 

2013; Guan et al. 2016; Guan et al. 2017; Yang et 

al. 2018; Gale and Anderst 2019; Koo and Koo 
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2019; Nagai et al. 2019; Gale and Anderst 2020; 

Byrapogu et al. 2022) 

Downhill gait (overground or 

treadmill) 

(Farrokhi et al. 2014; Gustafson et al. 2015; Gray et 

al. 2021; Gustafson et al. 2021; Thomeer et al. 

2021; Ganapam et al. 2022; Thomeer et al. 2022) 

Running (treadmill) (Li et al. 2012; Nagai et al. 2019; Tanaka et al. 

2023) 

Downhill running (treadmill) (Tashman et al. 2004; Tashman et al. 2007; Anderst 

et al. 2009; Hoshino and Tashman 2012; Hoshino et 

al. 2013; Nagai et al. 2018; Yang et al. 2018) 

Stair ascent/step up (Li et al. 2012; Suzuki et al. 2012; Li et al. 2013; 

Pitcairn et al. 2018; Gray et al. 2021; Thomeer et al. 

2021; Byrapogu et al. 2022; Kour et al. 2022; 

Thomeer et al. 2022; Guan et al. 2024) 

Stair decent/step down (Kefala et al. 2017; Gray et al. 2021; Thomeer et al. 

2021; Byrapogu et al. 2022; Kour et al. 2022; 

Thomeer et al. 2022; Guan et al. 2024) 

Non-weightbearing flexion 

(or extension) 

(Myers et al. 2011; Myers et al. 2012; Kefala et al. 

2017; Shih et al. 2020; Gray et al. 2021; Thomeer et 

al. 2021; Thomeer et al. 2022; Hamilton et al. 2023) 

Continuous lunge (dynamic, 

weightbearing) 

(Kernkamp et al. 2019; Hamilton et al. 2022) 

Quasi-static lunge 

(weightbearing) 

(Defrate et al. 2006; Bingham et al. 2008; Nha et al. 

2008; Van de Velde et al. 2009a; Van de Velde et al. 

2009b; Hosseini et al. 2012; Kobayashi et al. 2013; 

Qi et al. 2013; Van de Velde et al. 2016) 

Sit-to-stand (Shih et al. 2020; Byrapogu et al. 2022; Kour et al. 

2022; Guan et al. 2024) 

Stand-to-sit (Kour et al. 2022; Guan et al. 2024) 

Drop landing (Myers et al. 2011; Torry et al. 2011a; Torry et al. 

2011b; Myers et al. 2012; Tanaka et al. 2023) 

Pivot (90° direction change) (Kefala et al. 2017) 
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Due to variations in BVR equipment, different configurations are often used for the 

same activity. Physical limitations in the arrangement of the X-ray source-detector 

pairs may prevent them from being positioned in certain configurations. For example, 

with the Cardiff BVR system, with source-detector pairs mounted on machine arms, 

it is not possible to stack the detectors directly on top of one another, and there will 

always be a slight offset. Currently, no standard exists for collecting data across 

activities, leaving BVR protocol design up to user discretion. This lack of 

standardisation makes it challenging to compare results across research studies 

(Setliff and Anderst 2024). 

BVR has been used to investigate many clinically relevant questions, highlighting its 

ability to provide accurate, useful in-vivo data. It has not only been utilised to 

investigate changes in joint kinematics due to diseases, such as OA (Farrokhi et al. 

2014; Gustafson et al. 2015; Gustafson et al. 2021), but also the efficacy of 

interventions for such diseases, including TKR (Barre et al. 2013; Guan et al. 2016; 

Guan et al. 2017; Gray et al. 2020; Shih et al. 2020; Kour et al. 2022; Guan et al. 

2024), UKA (Byrapogu et al. 2022), and ACL injury and subsequent repairs (Defrate 

et al. 2006; Tashman et al. 2007; Van de Velde et al. 2009a; Hosseini et al. 2012; 

Van de Velde et al. 2016; Nagai et al. 2018; Pitcairn et al. 2018; Ganapam et al. 

2022).  

As well as studying six DOF kinematics, BVR has also been used to investigate 

cartilage deformation (Liu et al. 2010; Thomeer et al. 2022) and contact location (Liu 

et al. 2010; Hamai et al. 2013; Gray et al. 2019; Thomeer et al. 2021; Thomeer et al. 

2022), as well as TF centre of rotation location changes (Gray et al. 2019; Postolka 

et al. 2020) and joint space distances (Byrapogu et al. 2022). 

1.4 DATA COLLECTION TECHNIQUE ACCURACY 

1.4.1 ACCURACY OF BIPLANE VIDEORADIOGRAPHY 

The accuracy of BVR for calculating in-vivo bone motion and kinematics has been 

quantified across a range of joints, with studies typically reporting an accuracy of 

around 1-2° or better for rotational DOFs, and 0.5-1.0 mm or better for translational 

DOFs (Bey et al. 2006; Anderst et al. 2009; Anderst et al. 2011; Pitcairn et al. 2018; 

Akhbari et al. 2019; Pitcairn et al. 2020).  
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RSA is typically used as the benchmark for BVR accuracy (Setliff and Anderst 2024) 

as the implanted beads can be tracked from the same X-ray images used in 

standard model-based image registration. The accuracy of BVR is dependent on 

several factors, including the joint of interest, source-detector equipment and 

configuration, X-ray generator settings, and type of dynamic activity being imaged. 

Therefore, the accuracy of a specific protocol must be determined individually. 

Anderst et al. (2009) investigated BVR accuracy during in-vivo treadmill running 

(2.5 m/s) in three ACL-reconstruction patients who had three tantalum beads 

implanted into their ACL-intact leg during the reconstruction surgery. They found 

femur and tibia tracking precision to be similar, with no significant bias in model-

based tracking compared to bead-based tracking. The rotations were shown to be 

generally well predicted by the model-based image registration with root mean 

squared (RMS) errors of 1.75° (FE), 1.44° (IE) and 0.54° (AA). The translations were 

also calculated accurately, with ML and CD both having RMS errors of 0.69 mm. AP 

translation had the highest RMS error of the TF translations (1.54 mm), suggested to 

be due to the orientation of the source-detectors relative to the direction of travel, 

reinforcing the dependence of BVR accuracy on equipment configuration. 

Another study looking at BVR TF tracking accuracy was Guan et al. (2016) who 

investigated the accuracy of their mobile biplane X-ray imaging system during 

simulated walking of an intact human cadaveric knee compared to a TKR implanted 

into sawbones. Again, they compared model-based tracking to the ‘gold-standard’ 

bead-based tracking. They found greater accuracy for the TKR knee measurements, 

likely because the implant edges were more clearly defined in the X-ray images and 

the precisely known TKR component geometry facilitated more accurate model-

matching. The RMS errors for the intact knee ranged from 0.30-0.77° for the 

rotations and 0.35-0.78 mm for the translations. The highest errors were found in the 

IE rotation and ML translation and were attributed to the inter-axis angle of the X-ray 

setup (60°) and their position relative to the imaged knee.  

Li et al. (2008) also investigated the accuracy of their (static) BVR system using 

human cadavers, comparing model-based image registration-derived to RSA-derived 

kinematics. The mean difference between RSA and model-based TF rotations during 
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dynamic flexion-extension (of the full knee ROM) were found to be between -0.16-

0.37°, and the translations were found to be between -0.13-0.24 mm. 

These studies show that BVR is an accurate method for determining in-vivo 

kinematics of the TF joint during dynamic movements, although specific protocol and 

equipment accuracy can vary. 

1.4.2 MARKER-BASED MOTION CAPTURE ACCURACY 

As discussed briefly in Section 1.2.1, marker-based motion capture is widely used for 

assessing joint kinematics, but its accuracy is affected by several factors, including 

anatomical landmark identification, STA, and movement dynamics. Various studies 

have evaluated these limitations across different activities to understand their effects 

on TF joint kinematics.  

STA is one of the main contributing factors to marker-based motion capture errors. 

To investigate this, several studies have employed single-plane fluoroscopy to 

assess STA during various dynamic tasks, including Stagni et al. (2005) who used 

retroreflective, radiopaque markers to compare skin-marker motion capture with 

single-plane fluoroscopy in TKR patients. The skin markers moved significantly 

relative to the underlying implant components (and therefore bones), with deviations 

reaching 31 mm for the thigh and 21 mm for the shank, with the largest errors (up to 

42 mm) occurring in the distal thigh. AA and IE rotations were found to be most 

affected, indicating that STA could substantially compromise kinematic interpretation, 

particularly in clinical gait analysis.  

Akbarshahi et al. (2010) investigated STA across multiple activities, including open-

chain knee flexion, hip axial rotation, walking, and step-ups, by comparing marker-

based motion capture results with single-plane fluoroscopy. Their results highlighted 

the subject-, task-, and location-dependent nature of STA magnitudes. They also 

showed greater STA for the thigh than the shank, with marker movement RMS errors 

reaching 29.3 mm and kinematic errors peaking in open-chain flexion (FE: 24.3°, IE: 

17.9°, AA: 14.5°). Using a similar method, Tsai et al. (2011) examined STA during 

stair ascent, again finding greater soft tissue movement in the thigh than the shank. 

They also found knee joint centre translations to be significantly larger from motion-

capture data. Earlier work by Sati et al. (1996) also explored skin-bone movement 

using single-plane fluoroscopy and skin-mounted radio-opaque markers, during 
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dynamic knee flexion, revealing substantial variability in marker displacement over 

the medial and lateral femoral condyles (2.5–17 mm RMS), with maximum marker 

movement reaching 44 mm. Collectively, these studies support the current belief that 

STA is a major source of error in marker-based TF kinematics, particularly in 

dynamic and high-flexion tasks. 

Reinschmidt et al. (1997b) presented similar findings when comparing skin-marker 

motion capture with intracortical bone pin data (Section 1.2.3) during running, 

attributing the main differences between external and skeletal motion to thigh STA. 

These differences resulted in FE errors that averaged 21% of the ROM during 

stance, while IE and AA errors were much larger, at 63% and 70% of the ROM, 

respectively. Joint angles were consistently overestimated, with errors varying 

considerably between subjects. 

Ramsey and Wretenberg (1999) also utilised intracortical bone pins to investigate 

marker-based motion capture accuracy. They found skin-mounted marker kinematics 

exhibited translational errors of 2-15 mm and rotational errors of 2-10° compared to 

bone pin measurements, again stating STA as the primary source of error. 

STA errors lead to incorrectly calculated bone axes positions as demonstrated by 

Miranda et al. (2013), who explored motion capture errors during a dynamic jump-cut 

manoeuvre. Discrepancies in femoral ACS axes rotation and translation peaked at 

18.18° and 33.70 mm, respectively; tibial ACS axes errors were similarly high, at 

13.43° and 29.11 mm. These axes errors had a subsequent effect on the calculated 

six DOF kinematics with maximum rotational differences of 9.28° in FE, 11.80° in AA, 

and 14.76° in IE. Translations were found to be poorly predicted with maximum 

errors of 16.84 mm in the ML direction, 21.62 mm for AP, and 27.60 mm for CD. 

Notably, the secondary rotational and translational errors often exceeded 100% of 

the measurement magnitude. The largest errors occurred post-ground contact, 

where soft tissue and muscle oscillations amplified motion capture errors. 

Hume et al. (2018) compared motion capture-derived kinematics to BVR using both 

a standard three DOF Visual3D (V3D, HAS-Motion, Canada) pipeline and a six DOF 

OpenSim MSM across a range of activities – including seated knee extension, gait, 

step-down, and pivot turns. For the V3D results, large errors in translation were seen 

in all three planes, consistent with the findings from Miranda et al. (2013). The 
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largest error was found in the AP (20.9 mm), followed by CD (19.7 mm) and ML (7.0 

mm) directions, highlighting why translations are rarely reported from marker-based 

V3D pipelines. Rotational errors were smaller but still reached 5.9° for AA and 7.0° 

for IE rotation. Hume et al. (2018) also found that the differences between the V3D 

and BVR secondary kinematics increased as knee flexion increased. An alternative 

approach, using the OpenSim MSM with spline functions to relate secondary 

kinematics to flexion produced improved kinematic prediction accuracy but did not 

fully resolve subject-specific discrepancies (Hume et al. 2018). 

Marker-based motion capture derived kinematics have also been compared to the 

more accurate method, RSA (Section 1.2.4). Using RSA as the comparator, 

Tranberg et al. (2011) found relatively good agreement of flexion during active knee 

extension, but motion capture slightly overestimated flexion, with errors increasing 

from 2° at full extension to 5° at higher flexion angles. IE rotation was found to be 

reasonably accurate at lower flexion angles but diverged significantly at higher 

flexion (up to 11° at 50°). AA displayed systematic mean differences of 2-4° across 

all flexion angles. These results highlight that while FE data derived from motion-

capture is likely reliable, errors in secondary kinematics are more pronounced, due 

to STA and the small true motion in these planes. 

As well as STA, marker placement variability also contributes to kinematic errors. 

Della Croce et al. (1999) examined intra- and inter-examiner reliability in anatomical 

landmark identification, reporting root mean square (RMS) errors of 6-21 mm for 

intra-examiner assessments and 13-25 mm for inter-examiner comparisons. These 

variations affect bone ACS definitions, introducing systematic inaccuracies. 

Together, these studies illustrate the challenges of using marker-based motion 

capture for precise kinematic analysis. The main sources of error include marker 

placement variation and STA, with inaccuracies worsening at higher flexion angles 

and during dynamic tasks.  
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1.5 BIPLANE VIDEORADIOGRAPHY HEALTHY IN-VIVO 
TIBIOFEMORAL KINEMATICS FROM LITERATURE 

From literature, a description of the 6 DOF kinematics of the TF joint for healthy 

volunteers participating in in-vivo BVR studies is summarised below for the three 

activities in the protocol described in Chapter 2 (Section 2.3.6). These activities were 

chosen for a pilot study protocol. They were created as part of the Cardiff BVR 

system development (Section 1.3.1) to provide data on a range of functional knee 

movements, for everyday activities (level gait and stair ascent) and high flexion 

(lunge) to give a picture of healthy TF joint motion. 

1.5.1 LEVEL GAIT 

As shown in Table 1-1 in Section 1.3.4, level gait is the most studied activity when 

using BVR to investigate TF kinematics. This key activity of daily living is often used 

as an indicator of knee joint health (Minns 2005; Kumar et al. 2013; Mills et al. 2013), 

hence why it is an important activity to study. 

The TF joint was found to have little flexion at heel-strike (HS); some studies 

reported small degrees of flexion at HS (Gray et al. 2019; Gale and Anderst 2020), 

whereas others reported slight extension (Kozanek et al. 2009; Thomeer et al. 2021). 

After HS, the knee then began to flex, reaching its first flexion peak during early 

stance. The knee then extended again until approximately 70% stance, where it 

rapidly flexed until toe-off (TO), reaching its maximum value for stance phase. There 

was some disagreement regarding the value of the maximum flexion peak at TO. 

Some studies predicting a lower peak, around 15° (Gray et al. 2019), while others 

predicted up to around 50° (Thomeer et al. 2020). Although all studies described a 

similar flexion pattern, this difference arose from the timing of the second flexion 

peak in the entire gait cycle, which was predicted to occur close to TO. This timing 

difference also explains the variations in the ROM observed across the studies. 

Little AA rotation was found during stance phase (Kefala et al. 2017; Gray et al. 

2019; Gale and Anderst 2020; Thomeer et al. 2021), with it having the smallest ROM 

of the three rotations (Kozanek et al. 2009; Myers et al. 2012; Kefala et al. 2017; 

Gale and Anderst 2020; Hamilton et al. 2023). Most studies found the average knee 

adduction angle to remain positive throughout stance phase (Kefala et al. 2017; Gray 
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et al. 2019; Gale and Anderst 2020; Thomeer et al. 2021), however, some studies 

found the knee to be abducted instead (Kozanek et al. 2009; Myers et al. 2012). 

There was also disagreement over whether the abduction angle correlates with 

flexion; Kozanek et al. (2009) found adduction to be moderately correlated with 

flexion, whereas Thomeer et al. (2021) and Gray et al. (2019) found weak 

correlation.  

Most studies found the tibia was found to be externally rotated at HS, then internally 

rotated throughout the majority of the rest of stance phase, with this internal rotation 

overall increasing in value throughout stance phase until reaching peak internal 

rotation at terminal stance (Kozanek et al. 2009; Kefala et al. 2017; Gray et al. 2019; 

Thomeer et al. 2020; Thomeer et al. 2021). However, one study found the mean 

angle remained externally rotated throughout the majority of stance phase (Gale and 

Anderst 2020), although it found a similar rotation pattern to the other studies. 

External rotation was found to be moderately correlated with flexion (Kozanek et al. 

2009; Thomeer et al. 2021). 

The largest translational ROM during stance phase was AP (Kozanek et al. 2009; 

Gale and Anderst 2020; Hamilton et al. 2023). Most studies found the tibia to be 

anteriorly translated relative to the femur during the whole of stance phase (Kozanek 

et al. 2009; Gray et al. 2019; Gale and Anderst 2020; Thomeer et al. 2021). Some 

studies found a peak anterior translation around the point of contralateral TO, then a 

decrease in anterior translation, followed by a final increase to maximum anterior 

translation during the latter portion of stance phase (Gray et al. 2019; Thomeer et al. 

2020; Thomeer et al. 2021). Increased anterior translation was found to be linked 

with flexion (Kozanek et al. 2009; Gray et al. 2019; Thomeer et al. 2021). 

Overall, the knee was found to begin stance phase laterally translated, with minimal 

change until the latter part of stance, where the knee shifted medially reaching its 

peak medial translation at TO (Gray et al. 2019; Thomeer et al. 2020; Thomeer et al. 

2021). The differences in pattern found in other studies (Kozanek et al. 2009; Gale 

and Anderst 2020) can be attributed to the different methods used to define the 

translations. Medial shift was found to be correlated with increasing flexion (Gray et 

al. 2019; Thomeer et al. 2021). 
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CD was found to have the smallest translational ROM, with minimal change during 

stance, often with a non-descript profile (Kozanek et al. 2009; Thomeer et al. 2020; 

Thomeer et al. 2021; Hamilton et al. 2023). The TF joint was found to be in 

compression throughout stance (Gray et al. 2019; Thomeer et al. 2020; Thomeer et 

al. 2021). It was also found to be coupled with flexion (Gray et al. 2019; Thomeer et 

al. 2021). 

1.5.2 STAIR ASCENT 

Stair ascent (or an equivalent step-up activity) was included in fewer BVR studies 

than level gait (Section 1.3.4), with only a handful of studies presenting TF 

kinematics in healthy individuals (Suzuki et al. 2012; Li et al. 2013; Thomeer et al. 

2021). Suzuki et al. (2012) and Li et al. (2013) only presented TF flexion out of the 

six DOFs, as they looked at PF kinematics and TF joint contact location, 

respectively. Therefore, to better understand the expected kinematic profiles in 

healthy knees for this activity, studies using single-plane fluoroscopy (Tsai et al. 

2011) and involving intact knees – compared to an injured contralateral limb – (Li et 

al. 2012) were also included.  

The flexion profiles of the stance phase of stair ascent all began at a high degree of 

flexion (ranging from ~50-70°), increasing slightly to peak flexion (at around 10-20% 

stance phase), before steadily decreasing to reach minimum flexion (Tsai et al. 

2011; Li et al. 2012; Suzuki et al. 2012; Li et al. 2013; Thomeer et al. 2021). The end 

of stance phase differed between studies, with some finding the mean flexion angle 

to increase again in the last ~10% stance phase after reaching its minimum (Tsai et 

al. 2011; Thomeer et al. 2021), whereas others only found a steady decrease, 

reaching slight joint extension at the end of stance (Suzuki et al. 2012; Li et al. 

2013). This may be due to these studies using a single step-up activity, as opposed 

to a multiple-step stair ascent, so stance ends with both feet on the floor in a neutral 

standing position, rather than the participant continuing on to the next stair.  

The knee displayed a small ROM of a few degrees throughout stance phase (Tsai et 

al. 2011; Li et al. 2012; Thomeer et al. 2021). Thomeer et al. (2021) found the mean 

knee adduction to remain around 4-5° throughout all of stance phase. Li et al. (2012) 

similarly found the knee to be slightly adducted (between 0-2° adduction) throughout, 

with an overall slight trend of increasing adduction through to the end of the recorded 
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period of the activity (0.3s from HS). Unlike the other two, Tsai et al. (2011) found the 

knee to be abducted during stance phase, finding the largest abduction angles 

toward the start and end of the activity, with it tending to 0° at around 50% stance. 

All three studies found the knee to be internally rotated by ~10-18° at the start of 

stance, followed by a decrease reaching a minimum of approximately 4-8° at the end 

of stance phase (Tsai et al. 2011; Li et al. 2012; Thomeer et al. 2021). Tsai et al. 

(2011) and Thomeer et al. (2021) found a similar IE rotation ROM, with a similar 

profile of a steeper decrease at the start, followed by a short period of minimal 

change around 60% stance, then another period of decrease. 

AP was found to have the largest ROM out of the three translations (Tsai et al. 2011; 

Thomeer et al. 2021). Thomeer et al. (2021) found the tibia to be translated anteriorly 

throughout the whole of stance phase, with initial increasing anterior motion at HS, 

peaking early in stance phase (approximately 7 mm at around 15-20% stance), 

followed by decreasing anterior drawer. Tsai et al. (2011) found a similar initial peak 

of anterior motion (at around 20-30% stance), then the tibia moved posteriorly, 

reaching slight posterior translation during 80-90% stance (the end of recorded 

motion). Li et al. (2012), however, reported posterior translation of the knee at HS 

(starting at around 20 mm), with a slight anterior movement for the rest of the 

recorded period (reaching around 10mm posterior translation). The overall 

magnitude of translation reported by Li et al. (2012) appears comparable to that of 

the other two studies, though in the opposite direction. As the authors did not specify 

the sign convention used in their graphs (labelled only as ‘AP translation’), negative 

values were assumed to represent posterior translation. 

There was little ML translation ROM during the stance phase of stair ascent, with all 

studies showing this translation to fluctuate around 0 mm (Tsai et al. 2011; Li et al. 

2012; Thomeer et al. 2021). Tsai et al. (2011) and Thomeer et al. (2021) found a 

similar profile of a small lateral peak in the first half of stance, followed by the tibia 

moving medially, reaching an overall medial translation in the second half of stance, 

whereas Li et al. (2012) found the tibia to be translated laterally by less than 1 mm 

throughout, with little variation.  

Tsai et al. (2011) predicted very little change in CD translation during stance phase 

of stair ascent, with slight proximal translation in the first half, followed be even 
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smaller distal translation in the second half, all fluctuating around 0 mm translation. 

Thomeer et al. (2021) also found a small ROM, but the tibia was proximally 

translated (around 2 mm) all through stance. Li et al. (2012) found larger distal 

translation of the knee of around 15-25 mm, likely due to the joint definition offset, 

and found a trend of increasing distal translation from HS onwards. 

Only Thomeer et al. (2021) reported on correlation between flexion angle and the 

other five secondary TF DOFs during stair ascent. Coupling was found between 

flexion and abduction, external rotation, and lateral shift (r2 = 0.76, 0.80, and 0.83, 

respectively). Moderate correlation was found between flexion and the other two 

rotations. 

Due to the limited number of studies investigating stair ascent TF kinematics using 

BVR, it is difficult to know the extent of the range of variation expected across 

participants when completing this activity.  

1.5.3 LUNGE 

A dynamic weightbearing lunge was included in the pilot study protocol to investigate 

knee kinematics during deeper knee flexion. As there is demand for deep flexion 

amongst OA and TKR patients to allow them to perform a range of daily activities 

such as kneeling, squatting, gardening, yoga and getting into a bath (Weiss et al. 

2002; Huddleston et al. 2009; Galvin et al. 2018). Understanding healthy TF 

kinematics during deeper flexion becomes necessary to bring patients closer to 

‘typical’ movement, improving knee ROM in all six DOFs, not just FE. 

As only one study presented healthy TF kinematics during a dynamic, weightbearing 

lunge using BVR (Hamilton et al. 2022), studies that used single-plane radiography 

(Leszko et al. 2011; Hamai et al. 2013), a quasi-static lunge (Qi et al. 2013), or a 

non-weightbearing flexion-extension activity (Myers et al. 2012; Kefala et al. 2017; 

Thomeer et al. 2021) are also used to describe kinematic profiles of the TF joint 

during a high-flexion activity. 

A large variation was found in the flexion ROM between activities. Some studies only 

measured kinematics from 0° flexion (Myers et al. 2012; Thomeer et al. 2021), 

whereas others measured from full joint extension (Leszko et al. 2011; Qi et al. 

2013). The range of peak flexion was large as some studies stopped the knee flexing 
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at 90° (Myers et al. 2012), whereas others altered the activity to increase the 

maximum flexion angle; for example, Leszko et al. (2011) got their participants to 

lean forward at the peak lunge, and Hamai et al. (2013) made participants lunge onto 

a 25 cm step, reaching 150° knee flexion. 

The tibia was consistently reported as adducted relative to the femur during flexion 

activities (Leszko et al. 2011; Hamai et al. 2013; Qi et al. 2013; Kefala et al. 2017; 

Thomeer et al. 2021; Hamilton et al. 2022). Some studies also showed an overall 

trend of increasing adduction as flexion increased (Leszko et al. 2011; Hamai et al. 

2013; Qi et al. 2013), however this was not observed consistently across studies. 

For IE rotation, a consistent trend of increasing internal rotation of the tibia relative to 

the femur was observed in multiple studies, reaching around ~20° internal rotation at 

100° flexion (Leszko et al. 2011; Hamai et al. 2013; Kefala et al. 2017; Hamilton et 

al. 2022). Generally, the knee was found to remain internally rotated throughout 

(Hamai et al. 2013; Kefala et al. 2017; Thomeer et al. 2021; Hamilton et al. 2022), 

however some recorded slight external rotation at very low flexion angles (into joint 

extension) (Leszko et al. 2011; Qi et al. 2013) which was attributed to the screw-

home mechanism (Barnett 1953; Hallen and Lindahl 1966). 

For the translations, increasing knee flexion angle resulted in increasing anterior 

translation of the tibia relative to the femur (Qi et al. 2013; Kefala et al. 2017; 

Thomeer et al. 2021; Hamilton et al. 2022). ML translation was presented with less 

consistency, with some studies presenting a lateral to medial shift of the tibia as 

flexion increased (Thomeer et al. 2021; Hamilton et al. 2022). In contrast, Qi et al. 

(2013) showed higher lateral translations (6-8 mm) at higher and lower flexion 

angles, with a lower lateral translation between 30-120° flexion (3.0-4.5 mm). Kefala 

et al. (2017) found variation in the magnitude of ML translation between participants, 

with some showing medial translation and others showing lateral translation. CD was 

not presented by many studies, but Thomeer et al. (2021) found the joint to be in 

compression throughout, beginning at around 1 mm of compression with minimal 

change during early flexion, then increasing to reach a peak compression of around 

4 mm at peak flexion and Hamilton et al. (2022) presented CD translation that 

decreased as flexion increased (with an average ROM of 4.5 mm). 
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Thomeer et al. (2021) found all five secondary DOFs to be coupled with flexion 

angle, with r2 values ranging from 0.81 to 0.99. This shows the value of activities that 

achieve high flexion angles in understanding the relationship between flexion and the 

other TF DOFs. 

1.6 MUSCULOSKELETAL MODELLING 

Musculoskeletal modelling (MSM) is used to investigate parameters that are unable 

to be measured directly from in-vivo methods, such as musculo-tendon and joint 

contact forces during movement (Erdemir et al. 2007; Pandy and Andriacchi 2010; 

Cheze et al. 2015; Moissenet et al. 2017). By modelling the skeleton as a series of 

rigid bodies connected by joints and actuated by muscle and ligament forces, MSM 

allows for non-invasive estimations of in-vivo joint kinematics, muscle activation 

patterns and joint forces during dynamic motion. This makes it a useful tool for both 

research and clinical applications (Cardona and Garcia Cena 2019; Luis et al. 2022). 

MSM provides a method for quantifying muscle forces, joint torques, and tissue 

loading during movement, providing a tool to investigate pathologies affecting 

neuromuscular control, such as stroke (Lin and Yan 2011; Giarmatzis et al. 2022; 

Wang et al. 2022), or joint specific pathologies, such as OA (Kumar et al. 2013; 

Dzialo et al. 2019; Price et al. 2020; Ghazwan et al. 2022; Bowd et al. 2023).  

MSMs designed to focus on knee movement typically represent the lower limb joints 

with varying DOFs of movement depending on the specific joint and the complexity 

required to replicate joint movement. The upper body can also be included to model 

full body movement. 

The MSM bones and joints are articulated using spring bundles, representing the 

muscles and ligaments, to replicate body positions. The equations of motion are then 

solved to match input marker trajectories and ground reaction forces (GRFs), 

typically from marker-based motion capture, as frequently used inputs (Sylvester et 

al. 2021). Together, the ligament and muscle forces are balanced, through the 

process of inverse dynamics, to solve the resultant forces required to generate 

movement of the model that matches the measured in-vivo body movements from 

motion-capture. This then allows further analysis of muscle coordination strategies or 

joint contact throughout a dynamic motion.   
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The most widely used muscle model for MSM is the Hill-type muscle model (Miller 

2018; Andersen 2021; Yeo et al. 2023). It made up of three elements (Figure 1-5): a 

contractile element that accounts for activation dynamics (including force-length-

velocity relationships), a series elastic element representing tendon elasticity and 

energy storage, and a parallel elastic element modelling passive tissue stiffness at 

extreme lengths (Zajec 1989; Scovil and Ronsky 2006; Miller 2018; Cardona and 

Garcia Cena 2019; Luis et al. 2022; Zhao et al. 2022). Although the Hill-type model 

suffers from numerical instabilities, it is still widely used due to its computational 

simplicity and suitability for large-scale simulations (Yeo et al. 2023). 

Ligaments are usually modelled as nonlinear springs that act in a straight line 

between defined bony insertion points. This has the benefit of a low computational 

cost and easy integration, but neglects the anisotropy and viscoelasticity of the 

tissue (Kiapour et al. 2014b). 

One open-source platform used for MSM is OpenSim (Delp et al. 2007). It is widely 

used for dynamic simulations and biomechanical analysis as it is flexible, powerful 

and freely available. It provides tools for creating subject-specific models, importing 

experimental data, conducting inverse and forward dynamics analyses, and 

generating muscle-driven simulations, as well as allowing customisable workflows 

through a scripting interface (Hicks 2013). This makes it suitable for investigating 

muscle function, movement dynamics, and designing medical interventions. It has 

been used extensively for a range of applications including rehabilitation, 

orthopaedics, ergonomics, performance and robotics (Petrucci 2024). 

α

Force

Force

Series 
elastic 

element

Figure 1-5 – Hill-type muscle model diagram showing the three model 
elements. 
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1.6.1 JOINT CONTACT MODELLING 

As well as joint kinematics and muscle forces, MSMs can also be used to investigate 

joint contact mechanics, including predicting tissue loading and cartilage wear, 

during movement. Understanding healthy and pathological knee contact mechanics 

is important as abnormalities in TF contact pressure distributions have been 

correlated with cartilage degeneration and subchondral bone remodelling in 

osteoarthritic knees (Khot and Guttal 2021; Mohout et al. 2023). As well as native 

knee contact analysis, these techniques can also be expanded to investigate 

surgical interventions by simulating how implants distribute joint loading (Eskinazi 

and Fregly 2016). 

There are several approaches to investigating joint contact mechanics using MSMs, 

including Hertzian contact models, elastic foundation models, surrogate contact 

models and hybrid MSM-FE workflows. 

Hertzian contact theory is used to calculate the deformation and pressure distribution 

between two contacting non-congruent, elastic surfaces (Johnson 1985). While this 

approach can be used to approximate knee contact mechanics, it is ideally suited for 

quasistatic normal loads, frictionless surfaces and small deformations – assumptions 

which are not always true of real joints (Zdero et al. 2023). However, Hertzian 

contact has been used to model TKR joint contact forces (Dao and Pouletaut 2015) 

as implants have smoother, stiffer, and more congruent surfaces, making them 

better suited to this theory than the natural knee. 

An elastic foundation model provides a better representation of articular cartilage 

properties and contact behaviour than Hertzian contact theory, as it can account for 

cartilage thickness variations and non-uniform pressure distributions. Elastic 

foundation models, also known as rigid body spring models or discrete element 

analysis, consider the contact of each element in a surface mesh independently of 

one another, calculating contact pressure based on local penetration depth (Johnson 

1985). This can be used to model the articular cartilage in the knee as a “bed of 

springs” forming an elastic layer of known thickness to calculate contact pressure 

distribution across the joint surface (Li et al. 1997; Fregly et al. 2003; Segal et al. 

2009; Henak et al. 2013).  
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Another approach to joint contact modelling in MSM pipelines is to use a surrogate 

contact model. These models employ machine learning from previous contact 

simulations to replicate more computationally expensive contact models (such as 

elastic foundation or FE models) (Eskinazi and Fregly 2016).  

MSMs can also be integrated with FE models (Section 1.7) of specific joints to create 

a hybrid approach to perform contact analysis (Besier et al. 2005; Shu et al. 2018; 

Navacchia et al. 2019; Ali et al. 2020; Kainz et al. 2020; Esrafilian et al. 2022; 

Mohout et al. 2023). In this method, muscle forces and joint kinematics are first 

computed using an MSM pipeline. The resulting loads are then applied to a more 

detailed FE model, typically incorporating subject-specific geometries, to calculate 

cartilage deformation, stresses, and strains, as in a standard FE analysis. This 

approach has the benefit of capturing internal tissue mechanics (e.g. stress and 

strain) as well as allowing for subject specific accuracy. However, it requires a 

complex setup (typically with two separate models) which is computationally 

expensive. 

1.6.2 OPENSIM-JAM 

OpenSim-Joint Articular Mechanics (JAM) (https://github.com/clnsmith/opensim-

jam/) is an open-source framework designed to estimate joint kinematics, muscle 

activations, and joint contact forces, including pressure distributions within the knee 

(Smith et al. 2016). It provides more detailed joint mechanics predictions by 

incorporating specialised articular contact representations (Lenhart et al. 2015) 

(Figure 1-6). A key concept in OpenSim-JAM is the distinction between measurable 

and unmeasurable kinematics from motion capture (Smith et al. 2016). Knee flexion 

is considered to be directly measurable from motion capture, whereas the secondary 

DOFs have greater uncertainty and are therefore constrained as functions of flexion 

using predefined splines. 

https://github.com/clnsmith/opensim-jam/
https://github.com/clnsmith/opensim-jam/
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Like a conventional MSM pipeline, OpenSim-JAM begins by calculating inverse 

kinematics from experimental motion data. However, instead of allowing all 

kinematics to vary freely, it constrains secondary kinematics to be functions of knee 

flexion angle. The standard OpenSim-JAM workflow then uses the Concurrent 

Optimisation of Muscle Activations and Kinematics (COMAK) algorithm to refine 

these predictions. COMAK simultaneously optimises muscle activations and 

secondary kinematics while ensuring consistency with physics-based constraints. 

This approach aims to improve the accuracy of secondary kinematic predictions, 

which is particularly important given the strong dependence of joint contact 

mechanics on kinematic inputs (Anderson et al. 2008a; Henak et al. 2013; Bolcos et 

al. 2018). Once the kinematics have been optimised using COMAK, contact pressure 

distributions are computed using the specialised contact geometries (Lenhart et al. 

2015) and an elastic foundation model (Bei and Fregly 2004; Smith et al. 2018) 

(Section 1.6.1). 

Because of the ability of the OpenSim-JAM framework to estimate joint loading and 

contact pressure distributions, this approach has been utilised across a range of 

Figure 1-6 – Model developed by Lenhart et al. (2015) 
used in the standard OpenSim-JAM pipeline. 
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applications. For example, it has been utilised in the study of knee joint contact force 

changes due to OA (Meireles et al. 2017; Di Raimondo et al. 2023), as well as linking 

cartilage strains to OA disease progression biomarkers (Mohout et al. 2023). It has 

also been used to investigate the effects of surgical interventions on knee joint 

loading, for example, pre- and post- high tibial osteotomy (Bowd et al. 2023) and the 

influence of TKR posterior tibial slope (Guo et al. 2024). Beyond applications to OA 

and its interventions, OpenSim-JAM has been used to investigate how articular 

contact geometry influences knee kinematics and contact mechanics (Clouthier et al. 

2019) and how patella alta affects crouch gait in children (Brandon et al. 2017). It 

has also been used to contribute to future rehabilitation guidelines by investigating 

knee joint loading during a range of functional activities including squatting, lunging, 

hopping, stair climbing and gait (van Rossom et al. 2018). The variety of applications 

for the framework shown through these studies highlights the value of OpenSim-

JAM’s outputs, its estimations of muscle activations, joint kinematics and loading, for 

clinically-driven research. 

1.6.3 VALIDATION OF MUSCULOSKELETAL MODEL ACCURACY 

Validation of MSMs ensures computational model predictions are consistent with 

reality via comparison with experimental results (Henak et al. 2013). For joint contact 

analysis, there are three main validation checks: kinematics, contact patterns, and 

contact pressure and area magnitudes (Henak et al. 2013). 

Joint contact mechanics have been investigated in-vitro using pressure sensitive 

films (Bachus et al. 2006; Kim et al. 2009; Chen et al. 2016a; Zdero et al. 2016; 

Imani Nejad et al. 2020). This is the most common in-vitro method for studying joint 

contact mechanics (Zdero et al. 2023). It produces outputs proportional to the 

mechanical loads applied which can be used to understand joint contact pressure 

magnitudes and distribution in a directly measurable way. However, the physical film 

inserted into the joint can disturb the joint’s ordinary articulation (Zdero et al. 2023). 

In-vitro comparisons of kinematics have also been performed to help validate MSM 

predictions (Farshidfar et al. 2023). This helps define how accurately the MSM 

recreates knee joint motion but is still not representative of true in-vivo movement as 

the knee motion is artificially generated.  



31 
 

In-vivo data can also be used to investigate MSM accuracy; this is often done by 

investigating output force distributions using instrumented implants (Chen et al. 

2016b; Ding et al. 2016). For example, a common dataset used to validate models is 

from the “Grand challenge competition to predict in-vivo knee loads”  (Fregly et al. 

2012) which provides open-source knee kinematics and contact dynamics from 

instrumented implants. This dataset has been used to validate model kinematics 

(Shu et al. 2021), contact force predictions (Kinney et al. 2013), and compare 

accuracy between models (Curreli et al. 2021) as it provides in-vivo data with real 

loading conditions in the knee. However, the data is limited to TKR only and is, 

therefore, not representative of healthy joint mechanics. It also requires invasive 

surgery and is only appropriate where a TKR is already necessary.  

Investigating the validity of results from an intact knee is more limited as joint contact 

pressures cannot be directly measured. Therefore, validation of measurable 

quantities is required to help ensure the model is physiologically reasonable. As BVR 

can be used to accurately determine knee joint kinematics (Section 1.4.1), model-

predicted joint kinematics can be compared to these data to asses model accuracy 

(Ali et al. 2020).  

By confirming the accuracy of these measurable parameters, i.e., joint kinematics, 

and checking joint contact output magnitudes are consistent with instrumented 

implant or in-vitro film measurements, the model outputs can be determined as 

representative of intact knee mechanics. 

During their development of the standard model used in the OpenSim-JAM 

framework, Lenhart et al. (2015) used dynamic MRI to validate the secondary 

kinematics of the knee during passive flexion. The knee was cyclically flexed through 

a limited ROM of 36° (due to the MRI bore size) and the six DOF kinematics were 

compared to the model-predicted values during the passive flexion simulation. The 

secondary kinematics were generally found to be consistent between the two, with 

the MRI-measured results falling within the simulated uncertainty range (Lenhart et 

al. 2015).  

Output contact load predictions from the OpenSim-JAM framework were compared 

to the knee “Grand challenge” results to assess the accuracy of the simulation 

(Smith 2017). A single model was created for one of the “Grand challenge” 
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participants with the generic contact geometries swapped for the implant geometries. 

During a standard gait trial, the OpenSim-JAM results were shown to have RMS 

errors of 0.33 BW, which is comparable to other proposed methods for calculating 

knee joint forces (Kinney et al. 2013; Thelen et al. 2014; Marra et al. 2015).  

The output kinematics from the COMAK algorithm were also compared generally 

with in-vivo measurements (Smith 2017), showing a similar trend to bone pins of 

internal tibial rotation during stance phase (Lafortune et al. 1992a) and greater 

anterior tibial centre of pressure (COP) translation on the medial plateau compared 

to the lateral plateau which matched MRI-BVR kinematics (Kozanek et al. 2009; Liu 

et al. 2010). Although this confirms overall trends match in-vivo kinematics, further 

analysis is needed to validate the framework’s predictions on an individual level. 

Smith (2017) acknowledged in his thesis that “in the future, subject-specific model 

predictions should be compared against in-vivo subject-specific kinematics 

measured during functional movement to accurately quantify the true predictive 

capacity.” 

1.6.4 PERSONALISED MUSCULOSKELETAL MODELS 

To improve model prediction accuracy, MSMs are usually personalised to some 

degree to better represent in-vivo participant motion. This can range from a simple 

linear scaling of a generic model, to a highly personalised MSM using subject-

specific data. This personalisation can include adding subject-specific bone and joint 

geometries (Zhang et al. 2014; Fernandez et al. 2016; Modenese and Renault 2021; 

Davico et al. 2022), as well as personalising contact surfaces and joint mechanisms 

(Marra 2019; Davico et al. 2022; Killen et al. 2024) to better represent an individual’s 

kinematics and kinetics. It could also involve adjusting muscle attachment sites, 

muscle pathways or wrapping surfaces to better reflect an individual’s anatomy 

(Killen et al. 2020; Davico et al. 2022). EMG data can also be used to tailor muscle 

activation patterns for personalised movement patterns (Lloyd and Besier 2003; 

Davico et al. 2022; Esrafilian et al. 2022); this is particularly useful in pathological 

populations with altered neuromuscular control. 

Generic models, while convenient, often fail to capture anatomical variability, 

especially in pathological or atypical populations (Fernandez et al. 2023). The 

addition of personalised joint geometries (including bone and cartilage), can lead to 
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notable differences in kinematics, kinetics and muscle forces (Marra 2019; Kainz et 

al. 2021; Davico et al. 2022; Fernandez et al. 2023; Killen et al. 2024) due to the 

models being highly sensitive to joint geometries (Cleather and Bull 2012). Generic 

models may also underestimate or misrepresent joint loading patterns, potentially 

leading to inaccurate predictions, thus inclusion of subject-specific geometries allows 

for more reliable results for clinical assessments and intervention planning 

(Fernandez et al. 2016). 

Recent frameworks have been developed to allow for automation of personalised 

model creation to streamline the complicated process, reducing operator time and 

increasing reproducibility so they can be more widely utilised (Modenese and 

Renault 2021). One such pipeline, recently developed by Killen et al. (2024), allows 

for generation of a personalised model compatible with the OpenSim-JAM 

framework (Section 1.6.2) to model TF joint contact pressures. This involves 

swapping ‘generic’ bone and cartilage meshes for subject-specific segmentations, 

updating the muscle and ligament pathways, and calibrating soft tissue parameters 

to maintain physiological behaviour.  

To evaluate the benefit of these personalisation pipelines, it is important to test them 

against high-quality in-vivo data. Such benchmark datasets are essential to assess 

whether personalised models provide meaningful improvements over generic 

alternatives (Lloyd et al. 2023). Ensuring that model outputs accurately reflect joint 

kinematics and mechanics is essential for producing meaningful results thus 

comparing the outputs to in-vivo gold-standard data is a key step in validating any 

new modelling approach. 

1.7 FINITE ELEMENT MODELLING 

Finite element modelling (FEM) offers an alternative technique for modelling joint 

contacts. As with MSM, it can be used to calculate unmeasurable parameters, such 

as joint contact forces and pressure distributions (Rullkoetter et al. 2017). However, 

unlike MSMs, where joint contact geometries are typically simplified into 2D 

surfaces, FEMs use meshes of 3D elements, allowing for calculation of internal 

tissue mechanics, e.g., stress and strain, as well as surface-level contact.  
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One platform specifically designed for finite element analysis of biomechanics is 

FEBio (Maas et al. 2012). This open-source platform specialises in representations 

of biological tissue interactions, providing a useful tool for modelling joint contact 

mechanics and has been used previously to model the knee joint for a wide variety 

of applications (Cooper et al. 2019; Mukherjee et al. 2020; Yan et al. 2024). 

1.7.1 FINITE ELEMENT MODELLING OF KNEE OSTEOARTHRITIS 

Publications on knee modelling have become increasingly prevalent in the last 

decade (2015 to 2025), with the number of papers focusing on knee modelling or 

simulation reaching up to 1000 per year (Erdemir et al. 2019). This reflects the 

usefulness of these techniques to investigate a range of biomechanical applications 

in the knee. However, the large number of studies also highlights the need for 

tailored models to suit specific applications application.  

FEMs have been developed to understand joint loading and contact mechanics in 

articular cartilage (Fernandez et al. 2008; Meng et al. 2014; Gu and Pandy 2020), 

investigate ligament internal mechanics and repairs (Mootanah et al. 2014; Ali et al. 

2017; Yanez et al. 2024), influence pre-operative planning or implant designs (Kwon 

et al. 2014; Rullkoetter et al. 2017; Shu et al. 2021), study disease progression 

(Bolcos et al. 2020; Mukherjee et al. 2020; Lampen et al. 2023), and analyse injury 

mechanisms (Mo et al. 2012; Kiapour et al. 2014a). 

As discussed in the introduction (Section 1.1), OA is a disease of the whole joint and 

it is associated with altered joint loading (Griffin and Guilak 2005; Kumar et al. 2013; 

van Tunen et al. 2018). FEM is a useful tool for understanding the internal tissue 

mechanical changes, i.e., excessive tissue stresses and strains, that have been 

suggested as being a key driver for the onset and progression of OA (Mukherjee et 

al. 2020).  

Articular cartilage is one of the primary load-bearing structures within the knee that 

becomes damaged through the excessive mechanical loading, which can lead to OA 

(Mukherjee et al. 2020). Weakening of the mechanical properties of articular 

cartilage is a common indicator of OA and is a significant factor in the loss of joint 

function (Sinusas 2012; Katz et al. 2021; Mohout et al. 2023). For this reason, it is 

important to understand the internal tissue mechanics of the articular cartilage under 

typical joint loading in both healthy and diseased knees. 
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Knee FEMs have investigated various mechanical changes in the knee resulting 

from OA, including how altered joint loading affects the articular cartilage and 

meniscus (Tarniţă et al. 2014; Thienkarochanakul et al. 2020; Daszkiewicz and 

Luczkiewicz 2021) as well as understanding OA disease indicators and progression 

(Arjmand et al. 2018; Mohout et al. 2023). 

The most commonly analysed parameters for quantifying altered knee mechanics 

due to OA included stress (Bolcos et al. 2020; Lampen et al. 2023; Mononen et al. 

2023), most commonly von Mises stress (Tarniţă et al. 2014; Trad et al. 2017; 

Arjmand et al. 2018; Peters et al. 2018), strain (Arjmand et al. 2018; Peters et al. 

2018; Bolcos et al. 2020; Lampen et al. 2023), load distribution between the medial 

and lateral compartments (Trad et al. 2017; Arjmand et al. 2018; Mononen et al. 

2023), and contact pressures (Trad et al. 2017; Mononen et al. 2023).  

Overall, these results showed that knee OA is associated with increased medial 

compartment loading (Trad et al. 2017; Arjmand et al. 2018; Mononen et al. 2023) 

resulting in an increase in both joint stress and strain (Tarniţă et al. 2014; Arjmand et 

al. 2018; Bolcos et al. 2022; Lampen et al. 2023).  

The outputs from any new model should be compared with previously reported 

output magnitudes to assess consistency and reliability of any results. Stress, strain 

and contact pressure articular cartilage outputs from FEMs of healthy knees in 

literature are presented in Table 1-2, Table 1-3 and Table 1-4, respectively. 
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Table 1-2 – Articular cartilage stress findings from FEMs of healthy knees in 
literature. 

Reference Model setup/loading Main stress findings 
Yang et al. 

(2010) 

In-vivo gait data (motion 

capture) and GRFs. 

Max normal stress: 17 MPa (FC),16 

MPa (lat TC),13 MPa (med TC) 

Halonen et al. 

(2013) 

Simulated gait cycle 

driven using 

force/kinematics 

combination 

Max principal stress: 30-40 MPa (at 

25% stance) 

Max von Mises stress: 10 MPa (at 

20% stance) 

Tarniţă et al. 

(2014) 

Loading of 800 N 

&1500 N (compression 

force applied to femoral 

head) 

Max von Mises Stress: 2.17 MPa (TC 

800N), 3.22 MPa (TC 1500N), 2.41 

MPa (FC 800N) and 4.53 MPa (FC 

1500N) 

Mononen et al. 

(2015) 

Treadmill walking data 

(motion capture) and 

GRFs. 

Max principal stress: 35.2 MPa (med 

at 20% stance), 16.1 MPa (lat at 80% 

stance) 

Table abbreviations: max = maximum, FC = femoral cartilage, TC = tibial cartilage, 
med = medial, lat = lateral, GRFs = ground reaction forces 

 

As summarised from Table 1-2, studies generally report higher maximum stresses in 

the femoral cartilage compared to the tibial cartilage (Yang et al. 2010; Tarniţă et al. 

2014). Within the tibial cartilage, the medial compartment was shown to experience 

greater stress magnitudes than the lateral compartment (Mononen et al. 2015). Peak 

stresses were shown to occur at around 20-25% stance, consistent with a peak in 

joint loading (Halonen et al. 2013; Mononen et al. 2015). 
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Table 1-3 – Articular cartilage strain findings from FE models of healthy knees in 
literature. 

Reference Model setup/loading Main strain findings 
Yang et al. 

(2010) 

In-vivo gait data (motion 

capture) and GRFs. 

Max axial strain: 17.01% (med TC) 

and 20.67% (FC) 

Adouni et al. 

(2012) 

Mean reported in-vivo 

gait data (motion capture) 

and GRFs. 

Max principal strain: 20% (lat TC at 

25% stance) 

Halonen et al. 

(2013) 

Simulated gait cycle 

driven using 

force/kinematics 

combination 

Max principal strain: 7.5-8.5% (at 

25% stance)  

Max axial strain: 6% (at 25% stance) 

Mononen et al. 

(2015) 

Treadmill walking data 

(motion capture) and 

GRFs. 

Max principal strain: 8% (med TC at 

25% stance), 5% (lat TC at 75% 

stance) 

Max axial strain: 20% (med TC), 10% 

(lat TC) 

Fu et al. 

(2022) 

Stance phase of gait. Max principal strain: 21.20% (med 

TC at 25% stance), 24.35% (lat TC at 

75% stance), 29.68% (FC at 25% 

stance) 

Mohout et al. 

(2023) 

In-vivo gait data (motion 

capture) and GRFs. 

Max shear strain: <25% (throughout 

gait cycle) 

Table abbreviations: max = maximum, FC = femoral cartilage, TC = tibial cartilage, 
med = medial, lat = lateral, GRFs = ground reaction forces 

 

As with stress, the peak strains (Table 1-3) in the medial compartment of the tibial 

cartilage were typically found at 20-25% stance, consistent with peak joint loading 

(Adouni et al. 2012; Halonen et al. 2013; Mononen et al. 2015; Fu et al. 2022). 

Maximum lateral compartment strains were typically found later (at 75% stance) 

corresponding with the second joint loading peak (Mononen et al. 2015; Fu et al. 

2022). Studies disagreed on which half of the tibial cartilage the maximum strain 

occurred, with some finding the medial tibial cartilage to experience higher strains 

(Yang et al. 2010; Mononen et al. 2015), whereas others found the lateral to present 
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higher values (Adouni et al. 2012; Fu et al. 2022). The femoral cartilage was found to 

experience higher strains than the tibial cartilage (Yang et al. 2010; Fu et al. 2022) 

Table 1-4 - Articular cartilage contact pressure findings from FE models of healthy 
knees in literature. 

Reference Model setup/loading Main contact pressure findings 
Haut Donahue et 

al. (2003) 

1200N and 0° flexion Peak contact pressure: 3.69 MPa 

(lat), 3.44 MPa (med) 

Adouni et al. 

(2012) 

Mean reported in-vivo 

gait data (motion 

capture) and GRFs. 

Peak contact pressure: 8.1 MPa 

(med TC at 25% stance) 

Halonen et al. 

(2013) 

Simulated gait cycle 

driven using 

force/kinematics 

combination 

Peak contact pressure: 14-17 MPa 

(med at 25% stance) 

Mononen et al. 

(2015) 

Treadmill walking data 

(motion capture) and 

GRFs. 

Peak contact pressure: 14 MPa (med 

at 25% stance), 12 MPa (lat at 80% 

stance) 

Daszkiewicz and 

Luczkiewicz 

(2021) 

Stance phase of gait 

(focussed on 

meniscus) 

Peak contact pressure: 8.0 MPa 

(med TC at 75% stance), 5.5 MPa 

(lat TC at 25% stance) 

Fu et al. (2022) Stance phase of gait. Peak contact pressure: 17.07 MPa 

(med TC at 75% stance), 14.7 MPa 

(lat TC at 75% stance), 15.58 MPa 

(FC at 25% stance) 

Table abbreviations: max = maximum, FC = femoral cartilage, TC = tibial cartilage, 
med = medial, lat = lateral, GRFs = ground reaction forces 

Peak contact pressure (Table 1-4) was found to be associated with the two peaks of 

force during stance phase of gait (25% and 75% stance) (Adouni et al. 2012; 

Halonen et al. 2013; Mononen et al. 2015; Daszkiewicz and Luczkiewicz 2021; Fu et 

al. 2022). Peak medial tibial cartilage contact pressure was consistently found to be 

higher than the peak in the lateral compartment (Haut Donahue et al. 2003; Adouni 

et al. 2012; Halonen et al. 2013; Mononen et al. 2015; Daszkiewicz and Luczkiewicz 

2021; Fu et al. 2022).  
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1.7.2 REPRESENTATION OF KEY STRUCTURES OF THE KNEE  

Choosing how to represent key knee structures (Figure 1-7) in an FEM requires 

balancing the model complexity, computational efficiency and numerical stability with 

the model requirements and application. More complex material models can capture 

important tissue behaviours (such as nonlinearity, anisotropy, or viscoelasticity) but 

they are often more complex and less stable, making them less suitable for large-

scale or population-based simulations (Weiss and Gardiner 2001; Peña et al. 2006). 

However, simpler models, although more efficient, may not capture important tissue 

mechanical behaviours. All material models are based on specific assumptions 

which affect their behaviour, so it is important to understand the benefits and 

limitations of each model in relation to specific study aims.  

In this section, the key mechanical characteristics of the major tissues in the knee 

are discussed, focussing on which aspects of their function have been modelled in 

literature, rather than an exhaustive review of all mathematical models used. The 

material models described in more detail in the following sections were used in the 

development of the FEM for this study (Chapter 4). The chosen material models and 

parameter values were taken from literature due to the time constraints and 

difficulties associated with generating personalised material parameters from in-vivo 

data (Cooper et al. 2019). 

Figure 1-7 – Key structures of the knee. The four main ligaments of the knee are 
labelled in blue. Created with Biorender.com. 
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Bones 

In knee FEMs, on a joint level scale, the bones are most often modelled using rigid 

bodies, due to the much greater Young’s modulus and density when compared to 

the surrounding soft tissues (Donahue et al. 2002; Adouni et al. 2012; Liu et al. 2022; 

Steineman et al. 2022; Uzuner et al. 2022; Yan et al. 2024). This approach has the 

advantage of being less computationally expensive as each element in the body is 

treated as mathematically identical. For kinematically-driven models, modelling the 

bones as rigid bodies also allows for kinematics to be applied directly, using them to 

drive the model. 

In some cases, a linear elastic material may be used to study internal bone 

mechanics (Shirazi and Shirazi-Adl 2009; Guess et al. 2010; Mootanah et al. 2014; 

Benos et al. 2020). A deformable model is typically used when the model is 

investigating internal bone mechanics (e.g. in the subchondral bone) or for studies 

involving complex loads (Yan et al. 2024).  

Articular cartilage 

Articular cartilage is an inhomogeneous, anisotropic soft tissue that exhibits strong 

creep and stress relaxation behaviour (Mow et al. 1989). Although models have 

been developed to capture the poroelasticity (Donahue et al. 2002; Wilson et al. 

2003; Vaziri et al. 2008), hyperelasticity (Anderson et al. 2008b) and anisotropy 

(Wilson et al. 2003; Vaziri et al. 2008), cartilage is often simplified to a 

homogeneous, isotropic, linearly elastic material (Peña et al. 2007; Klets et al. 2016). 

This simplification reduces the complexity of the model, reducing the computational 

demand, whilst capturing the general behaviour of articular cartilage under loading in 

a manner suitable for joint-level modelling (Chokhandre et al. 2023a). 

The articular cartilage was modelled as an isotropic, linear elastic, nearly 

incompressible material (Donahue et al. 2002; Chokhandre et al. 2023a) represented 

using a Neo-Hookean model. The Neo-Hookean model (Treloar 1943a,b) provides a 

mathematically simplistic representation of the non-linear deformation of a rubber-

like material (Holzapfel 2000), making it suitable for a simplified cartilage model. 

To achieve the Neo-Hookean representation, a Mooney-Rivlin material model 

(Equation 1-1) (Mooney 1940; Rivlin 1948,1949b,a) was used with the constant c2 
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set to 0 to avoid element locking associated with incompressible elements (FEBio 

2022c). 

 𝛹𝛹 = 𝑐𝑐1(𝐼𝐼1 − 3) +  𝑐𝑐2(𝐼𝐼2 − 3) (Eq. 1-1) 

Where 𝛹𝛹 = strain energy function, I1 /I2 = strain invariants and c1/ c2 = constants 
defined as: 

  𝑐𝑐1 = 𝜇𝜇1
2   and  𝑐𝑐2 = 𝜇𝜇2

2  (Eq. 1-2) 

Where the shear modulus µ = µ1 - µ2. 

This Mooney-Rivlin model was reduced to an uncoupled Neo-Hookean model by 

setting the constant c2 to 0 (FEBio 2022a), giving the following equation: 

 𝛹𝛹 = 𝑐𝑐1(𝐼𝐼1 − 3) (Eq. 1-3) 

Where 𝛹𝛹 = strain energy function, I1 = strain invariant and c1 = a constant based on 
the shear modulus (Equation 1-2).  

In a review of tissue material properties of the TF joint by Peters et al. (2018), the 

range of elastic modulus used to model the articular cartilage varied from 5 MPa 

(Peña et al. 2006) to 67.6 MPa (Potocnik et al. 2008) where only a single value was 

used, with 12 MPa being the most common; the Poisson’s ratios presented ranged 

from 0.3 (Potocnik et al. 2008) to 0.46 (Peña et al. 2006), with the majority of models 

using a value of 0.45.  

Articular cartilage in the knee has also been previously modelled as a Neo-Hookean 

material with an elastic modulus of 15 MPa and Poisson’s ratio of 0.475 (Donahue et 

al. 2002; Zielinska and Donahue 2006; Guess et al. 2010; Kiapour et al. 2014b); the 

corresponding Mooney-Rivlin model parameters for these material properties are 

given in Table 1-5 (Chokhandre et al. 2023b). 

Table 1-5 – Articular cartilage Mooney-Rivlin material parameters to achieve a  
Neo-Hookean response (Chokhandre et al. 2023b). 

Parameter Definition Value 

C1 
Coefficient of the first invariant term (associated with 

shear stress) 
2.54 MPa 

C2 
Coefficient of the second invariant term (reduces the 

model to Neo-Hookean when set to 0). 
0 MPa 

K Bulk modulus (resistance to volume change). 100 MPa 
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Meniscus and meniscal horns 

As the meniscus plays a key role in stabilisation, load bearing and stress distribution 

within the knee (Walker and Erkiuan 1975; Messner and Gao 1998; Peña et al. 

2006; Athanasiou and Sanchez-Adams 2009; Imeni et al. 2020), it is an important 

structure often included in FE knee models. 

The meniscus has a complicated architecture, including a circumferential 

arrangement of collagen fibres in the main body of the meniscus (Petersen and 

Tillmann 1998; Mow and Huiskes 2005) which provides greater stiffness and 

strength to resist hoop stresses (LeRoux and Setton 2002; Li et al. 2005; Peloquin et 

al. 2016; Morejon et al. 2023). To capture this structure, the meniscus is often 

modelled using transversely isotropic (Donahue et al. 2002; Yao et al. 2006; 

Zielinska and Donahue 2006; Yang et al. 2010; Klets et al. 2016) or fibril-reinforced 

materials (Bendjaballah et al. 1995; Jilani et al. 1997; Moglo and Shirazi-Adl 2003; 

Mononen et al. 2011), although isotropic linear elastic materials (Périé and Hobatho 

1998; Beillas et al. 2004; Peña et al. 2008; Beidokhti et al. 2016; Li et al. 2020) and 

spring-elements (Li et al. 1999) have been used as simpler, less computationally 

expensive alternatives.  

Along with its anisotropic behaviour, the meniscus also exhibits hyperelasticity due to 

its complex structure. Various hyperelastic materials have been used to capture this 

aspect of meniscal behaviour (Haemer et al. 2012; Kazemi and Li 2014; Khoshgoftar 

et al. 2015; Shriram et al. 2017), adding realism but further complexity to the model.  

The time dependent mechanical response of the meniscus – resulting from fluid flow 

and the intrinsic viscoelasticity of the collagen fibres (Imeni et al. 2020) – has also 

been captured using more complex material models (Kazemi et al. 2011; Mononen 

et al. 2011; Haemer et al. 2012; Kazemi and Li 2014; Halonen et al. 2017). This 

poroelastic behaviour is typically neglected in full knee models as the length of a 

typical functional activity modelled (e.g. stance phase of level gait) is significantly 

smaller than the viscoelastic time of the meniscus (Imeni et al. 2020). 

Various combinations of the anisotropic, hyper-poro-elastic properties of the 

meniscus have been used in different models depending on the application and 

resources available. Despite the variation in complexity of meniscus material models, 

it has been shown that geometry has a greater effect on meniscal kinematics and 
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knee contact mechanics than the material parameters chosen (Yao et al. 2024). This 

suggests that for a subject-specific model, an emphasis should be placed on using 

personalised geometries to increase accuracy, whereas generic material properties 

may be sufficient (Yao et al. 2024). 

In the review of knee material parameters for FEM by Peters et al. (2018), the elastic 

modulus of the meniscus was shown to vary greatly with magnitudes varying from 

8 MPa (Bendjaballah et al. 1995) to 250 MPa (Beillas et al. 2004), with some models 

even using a modulus of 0 MPa (Kazemi and Li 2014). The Poisson’s ratio was also 

shown to vary from 0.2 (Yang et al. 2010; Mootanah et al. 2014) to 0.49 (Peña et al. 

2006). Another review of meniscus modelling by Imeni et al. (2020) found that for 

transversely isotropic material, the Young’s modulus was found to be 120-150 MPa 

and 20 MPa in the circumferential and radial directions, respectively. 

In the most recent OpenKnee(s) model cohort (Chokhandre et al. 2023b), the 

meniscus was represented by a nearly incompressible, transversely isotropic 

hyperelastic material using the parameters given in Table 1-6. 

These values correspond to a Young’s modulus of around ~45 MPa in the 

circumferential direction and ~27 MPa in the radial direction, as well as a Poisson’s 

ratio of ~0.45 in both directions. This was achieved using the in-built fibre generator 

tool in FEBio (FEBio 2021b) to generate circumferential fibres (described in more 

detail in Chapter 4, Section 0) to capture the anisotropic stiffness that largely dictates 

meniscus behaviour and its capacity for sustaining compressive loading 

(Chokhandre et al. 2023a). 

Like with the articular cartilage model, the meniscus model utilised a Mooney-Rivlin 

(Equation 1-1) ground substance, converted to a Neo-Hookean material by setting 

the constant c2 to 0 (Equation 1-3), again to avoid element locking of nearly 

incompressible elements (FEBio 2022c). 
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Table 1-6 – Meniscus transversely isotropic Mooney-Rivlin material parameters 
taken from Chokhandre et al. (2023a)  

Parameter Definition Value 

C1 
Coefficient of the first invariant term (associated with 

shear stress) 
4.61 MPa 

C2 
Coefficient of the second invariant term (reduces the 

model to Neo-Hookean when set to 0). 
0 MPa 

K Bulk modulus (resistance to volume change). 92.16 MPa 

C3 Exponential stress coefficient 0.1197 MPa 

C4 Fibre uncrimping coefficient 150 

C5 Modulus of straightened fibres 400 MPa 

λm Fibre stretch for straightened fibres 1.019 

 

The meniscal horn attachments, ligamentous structures connecting the meniscal 

bodies to the tibial subchondral bone (Messner and Gao 1998), can either be 

represented by linear elastic solids (Donahue et al. 2002; Dhaher et al. 2010) or 

spring elements (Donahue et al. 2002; Yao et al. 2006; Gu and Pandy 2020). Spring 

elements are more commonly used (Imeni et al. 2020) as this reduces model 

complexity compared to adding more 3D structures as they require more elements 

as well as additional contacts with the surrounding structures. 

The review by Imeni et al. (2020) found the most commonly used material properties 

for modelling the meniscal horns to be linear elastic, with Young’s moduli typically 

ranging from about 90 to 600 MPa, and stiffness values between roughly 200 and 

2000 N/mm depending on the horn and study. 

Knee ligaments 

The ligaments in the knee also exhibit a complex material behaviour due to the 

water-rich ground substance reinforced with crimped collagen fibres (Diamant et al. 

1972; Comninou and Yannas 1976; Daniel et al. 1990). This results in a force-strain 

relationship with two distinct regions: the non-linear toe-region as the crimping 

progressively disappears and the fibrils become aligned with the loading direction, 

then an almost-linear, higher stiffness region corresponding with the stretching of the 

fibrils (Trent et al. 1976; Weiss and Gardiner 2001; Galbusera et al. 2014). This 
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tissue structure also causes the ligaments to be anisotropic, incompressible, 

hyperelastic and viscoelastic (Yan et al. 2024). 

Another complex element of ligament behaviour is reference strain (εr), also known 

as pre-strain. This is the strain within the ligament in full knee extension (the 

reference position) as, in-vivo, the ligament will always be sustaining a tensile load 

(Daniel et al. 1990; Galbusera et al. 2014). When modelling, consideration of this 

initial reference strain before dynamic motion can be implemented to better 

represent true material behaviour. 

One-dimensional (1D) line elements are the most common representation of 

ligaments in FE models of the knee joint (Blankevoort et al. 1991; Li et al. 1999; 

Donahue et al. 2002; Beillas et al. 2004; Mesfar and Shirazi-Adl 2006; Checa et al. 

2008; Amiri and Wilson 2012; Bloemker et al. 2012; Guess and Stylianou 2012; 

Mohout et al. 2023). Although single elements have been used (Yu et al. 2001), 

more frequently they are represented by bundles of multiple springs covering the 

insertion sites (Galbusera et al. 2014). Using non-linear 1D springs allows for easy 

implementation and replication of the force-strain curves from experimental tests, 

along with the pre-strain, at a low computational cost. However, it only provides 

information in the fibre direction and requires special techniques for incorporating 

ligament wrapping. Despite these limitations, 1D spring models are still 

recommended for simulation of global knee behaviour where the ligament itself is not 

the focus of the model (Galbusera et al. 2014). 

Alternatively, ligaments can also be modelled as 3D structures (Peña et al. 2006; 

Kazemi and Li 2014; Uzuner et al. 2022; Chokhandre et al. 2023b), segmented from 

MRI, which inherently accounts for ligament wrapping and provides a more accurate 

anatomical, personalised structure representation. Recommended for when the 

ligament or its interaction with surrounding tissues is the focus (Galbusera et al. 

2014), it provides information about internal tissues mechanics (such as ligament 

strain) that cannot be determined from a 1D model. The disadvantages of the high 

computational cost and difficulty in validation associated with the more complex 3D 

models make 3D structures unsuitable for all applications. As ligaments are strongly 

anisotropic and not able to sustain compression, they are difficult to model using 3D 
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materials, and this can result in oversimplified constitutive models being used 

instead (Galbusera et al. 2014). 

As a compromise, ligaments have also been modelled using 2D shells or 

membranes reinforced with line elements to capture both the anisotropy and pre-

strain material behaviours (Halloran et al. 2005; Baldwin et al. 2009; Clary et al. 

2013a; Zelle et al. 2014). 

When looking at the material properties used to model ligaments in literature, a 

review by Galbusera et al. (2014) found their values exhibited considerable variability 

across studies, particularly for reference strain. For example, the reference strain 

was shown to vary from 0 to 0.16 for the ACL and -0.169 to 0.24 for the PCL 

(Galbusera et al. 2014). 

One of the most common 1D spring ligament models is the Blankevoort model. The 

force-strain relationship is split into three distinct regions (Equation 1-4), including no 

force below 0 strain, a quadratic toe-region up to the linear strain limit (𝜀𝜀𝑙𝑙) of 0.03 

(Butler et al. 1986), and a linear relationship above that threshold (Blankevoort and 

Huiskes 1991). A visualisation of this force-strain relationship is given in Figure 1-8. 

 

 𝑓𝑓 = �

0
1
4𝑘𝑘𝑙𝑙𝜀𝜀

2 𝜀𝜀𝑙𝑙�

𝑘𝑘𝑙𝑙(𝜀𝜀 − 𝜀𝜀𝑙𝑙)

𝜀𝜀 < 0

        0 ≤ 𝜀𝜀 ≤ 2𝜀𝜀𝑙𝑙
𝜀𝜀 > 2𝜀𝜀𝑙𝑙

 (Eq. 1-4) 

Where f = tensile force in each ligament element, 𝑘𝑘𝑙𝑙 = ligament stiffness,  

𝜀𝜀𝑙𝑙 = linear strain limit, ε = current ligament strain. 
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The strain is then calculated at any time point using Equation 1-5 and the 

corresponding force determined from the Blankevoort relationship (Equation 1-4, 

Figure 1-8) with the parameters given in Table 1-7. 

 𝜀𝜀 =
(𝐿𝐿 − 𝐿𝐿0)

𝐿𝐿0
 (Eq. 1-5) 

Where ε = current ligament strain, L = current ligament length and 𝐿𝐿0 = ligament zero 

load length. 

Table 1-7 – Material parameters for the force-strain relationship of each ligament 
taken from Blankevoort et al. (1991). 

Ligament Total stiffness/𝒌𝒌𝒍𝒍 
[kN] 

Reference strain/εr 

[%] 
ACL 10 8 

PCL 18 -13.5 

LCL 6 -7.33 

MCL 8.25 3.66 

 

For each ligament, an individual zero-load length (L0) is needed to calculate the 

strain. This represents the length of the ligament in a completely unloaded state (with 

Figure 1-8 – Blankevoort Ligament model force-strain relationship. 



48 
 

no pre-strain). However, as this parameter is un-measurable in-vivo, it is calculated 

using the reference length (Lr) and reference strain (εr) parameters determined when 

the knee is in its ‘reference position’ in full extension (Equation 1-6) (Blankevoort et 

al. 1991). 

 𝐿𝐿0 = 𝐿𝐿𝑟𝑟 ∕ (𝜀𝜀𝑟𝑟 + 1) (Eq. 1-6) 

Where 𝐿𝐿0 = ligament zero-load length, 𝐿𝐿𝑟𝑟 = the ligament reference length,  

and 𝜀𝜀𝑟𝑟 = the reference strain. 

1.7.3 KINEMATIC DRIVEN FINITE ELEMENT MODELLING OF THE KNEE 

Models are typically force-driven due to the sensitivity of FEMs to kinematics (Fregly 

et al. 2008) and the lack of accurate input kinematics.  

A few studies (summarised in Table 1-8) have created models of the knee that are 

fully or partially driven by kinematics. Typically these models have utilised more 

accurate inputs kinematics derived from X-ray imaging, with bead-based imaging 

(such as RSA, Section 1.2.4) (Beillas et al. 2004; Gu and Pandy 2020) or BVR 

(Fernandez et al. 2008; Halonen et al. 2013; Carey et al. 2014; Xiao et al. 2021) 

being commonly used. However, some models did use motion-capture or MSM to 

derive the input kinematics instead (Halonen et al. 2016; Bolcos et al. 2018).  

Despite more accurate inputs, a hybrid force-kinematic approach was often used to 

drive the FEM to account for potential errors in the input kinematics. One approach 

taken was to prescribe up to five TF DOFs, leaving a translation (typically CD/SI) 

free to settle based off external forces (Halonen et al. 2013; Carey et al. 2014; Gu 

and Pandy 2020). Other models only prescribed one or two kinematic DOFs (Kwon 

et al. 2014; Bolcos et al. 2018), whereas others prescribed the TF kinematics to 

model PF movement. 
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Table 1-8 – Kinematically-driven FE knee models from literature. 

Study Kinematics Application for model 
Prescribed DOFs Activity modelled 

Beillas et 

al. (2004) 

Femur kinematics 

prescribed, tibia 

motion driven by 

the knee and ankle 

joints and muscle 

actions (EMG). 

One participant 

performed a single-leg 

hop and was imaged 

using RSA. 

Development of a 

framework to apply 

subject-specific 

kinematics to a generic 

low limb model. 

Fernandez 

et al. 

(2008) 

TF six DOF 

kinematics 

prescribed (patella 

motion predicted 

by the model). 

One healthy participant 

was imaged during a 

step-up activity using 

BVR. 

Investigating PF joint 

function – including joint 

contact stresses. 

Halonen et 

al. (2013) 

TF FE, IE, AP and 

ML prescribed (AA 

and CD assumed 

to be left free). 

One healthy participant 

with simulated gait and 

loaded standing (using 

BVR as input data). 

Used to investigate the 

importance of cartilage 

proteoglycan and 

collagen distributions on 

stresses and strains. 

Carey et 

al. (2014) 

Five DOFs 

constrained, SI 

translation left free. 

One participant intact 

vs menisectomised 

knee. BVR collected 

during standing. 

Comparison of MRI 

(supine) and BVR 

(standing) kinematically 

constrained models. 

Kwon et al. 

(2014) 

FE and IE 

rotations 

prescribed. 

One healthy participant 

with a virtual UKA 

performed. Simulated 

gait cycle. 

Compared the contact 

pressures and stresses 

in two UKA designs.  
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Halonen et 

al. (2016) 

TF six DOFs 

constrained but AA 

and IE 

implemented as 

moments not 

rotations. 

One participant’s gait 

kinematics derived 

from motion capture 

and MSM.  

Comparison of FE 

modelling with and 

without the patella and 

quadriceps to 

investigate their 

importance. 

Bolcos et 

al. (2018) 

FE and IE 

rotations 

prescribed in some 

models. (All other 

DOFs force-driven 

or left free). 

One participant had 

three gait trials 

averaged. Kinematics 

during the stance 

phase of level gait 

were calculated using 

MSM. 

Comparison of four 

models with varying 

complexity, 

implementing 

kinematics to simplify 

the model. 

Gu and 

Pandy 

(2020) 

Five DOFs 

constrained, SI 

translation left free. 

Three cadaveric knees 

simulated flexion (15-

60°) with a load 

applied. Kinematics 

derived using BVR and 

implanted beads. 

Validate model 

predictions of contact 

pressure, contact area 

and contact force. 

Xiao et al. 

(2021) 

All six DOFs. One healthy participant 

performed a lunge. 

Kinematics from in-

vivo BVR. 

Estimate forces and 

strains in a single-

bundle ACL 

reconstruction 

 

Out of all the models in Table 1-8, only Xiao et al. (2021) and Fernandez et al. 

(2008) prescribed all six DOFs of the TF joint, both using BVR-derived kinematics. 

Fernandez et al. (2008) used their model to investigate PF kinematics and Xiao et al. 

(2021) used their model to investigate forces and stresses on ACL reconstruction 

grafts, so the only soft tissue structure included was the ACL. These models provide 

examples of a fully kinematic-driven simulations that utilise accurate BVR kinematics 

to investigate clinically relevant questions. However, neither model investigated the 

internal mechanics of the articular cartilage in the TF joint and so there is scope to 

developing a new model, expanding the soft tissues included. 
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1.8 RESEARCH AIMS 

As discussed in the introduction (Section 1.1), a clear understanding of knee joint 

biomechanics is fundamental to identifying and explaining changes associated with 

diseases such as OA. OA is strongly linked to altered joint loading and kinematics 

(Mills et al. 2013; Farrokhi et al. 2014; Yamagata et al. 2021), which disrupt the 

normal distribution of mechanical stresses across the knee. Mechanical factors, 

including malalignment, injury, and changes in neuromuscular control, are primary 

drivers of cartilage degeneration and disease progression (Griffin and Guilak 2005; 

Felson 2013). Accurate quantification of these biomechanical changes is therefore 

essential. Longitudinal studies have shown that elevated medial knee loading, 

reflected by increased knee adduction moments during gait, predicts both the onset 

and progression of medial TF OA (Baliunas et al. 2002; Miyazaki et al. 2002; 

Andriacchi and Mündermann 2006). Imaging and alignment analyses further 

demonstrate that abnormal load distribution accelerates structural deterioration of 

the joint (Sharma et al. 2001). The combination of high precision in-vivo imaging 

techniques, such as BVR, with personalised modelling pipelines provides a robust 

and detailed characterisation of individual knee loading during dynamic functional 

activities, enabling a mechanistic understanding of OA development and progression 

(Andriacchi et al. 2009; Gustafson et al. 2021; Mononen et al. 2023).  

The primary aim of this research thesis was to develop a framework that integrates 

accurate six DOF TF kinematics, obtained from the BVR system at Cardiff 

University, into MSM and FEM pipelines. Access to the BVR system provided the 

opportunity to generate and leverage a high-quality dataset of precise in-vivo 

measurements of knee bone motion, enabling a more detailed understanding of joint 

mechanics. By integrating these measurements into MSM and FEM pipelines, the 

research aimed to establish a robust methodology for quantifying and predicting 

knee joint behaviour under physiologically relevant conditions. 

BVR (Chapter 2): As this was the first study of the knee using the new BVR system 

at Cardiff, the initial focus of the work was to establish a robust protocol for the 

simultaneous acquisition of BVR and marker-based motion capture data during 

multiple dynamic knee activities. The study also developed a dedicated processing 

pipeline to compute six DOF TF joint kinematics from BVR data, using MRI-
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segmented bone models and image registration techniques. The complete data 

acquisition and processing framework was then implemented and evaluated for the 

first time in a cohort of healthy participants. 

MSM (Chapter 3): Following this, the marker-based motion capture data were 

processed through a musculoskeletal modelling (MSM) pipeline (OpenSim-JAM) to 

estimate TF kinematics and contact pressures during the imaged movements. This 

stage included the first comparison between MSM-derived outputs and BVR-

measured kinematics to evaluate the general accuracy of the MSM in typical 

applications, providing valuable insight for other users of the pipeline.  

In particular, the work investigated the potential benefits of model personalisation by 

addressing the question: does incorporating personalised contact geometries 

improve MSM predictions of TF kinematics and loading? Using a new framework for 

generating MSMs with subject-specific knee joint geometries (Killen et al. 2024), the 

study examined potential improvements in model predictions to better understand 

the advantages of personalised modelling approaches. 

FEM (Chapter 4): The final stage of the framework development aimed to generate 

the first fully kinematically driven FEM of the knee for investigating articular cartilage 

mechanics. In this work, the BVR-derived kinematics were utilised in a novel way by 

driving the model using TF bone poses. To demonstrate the potential of this 

modelling approach, variations in cartilage contact pressures, stresses, and strains 

were examined during the stance phase of level gait. 

Each component of the framework provided distinct yet complementary outputs: 

kinematics from the BVR, contact pressures and muscle forces from the MSM, and 

internal tissue mechanics from the FEM. By integrating these techniques and 

capitalising on the strengths of each, the framework combines BVR, MSM, and FEM 

approaches to deliver a more comprehensive understanding of knee biomechanics 

during functional joint loading using highly personalised models. This integration 

aims to not only demonstrate the potential modelling applications of accurate BVR-

derived kinematics but also provide valuable insights for researchers without access 

to such data, highlighting the respective benefits and limitations of the different 

methods employed. Although highly personalised models and precise kinematic data 

are not always feasible or available, they can inform broader modelling strategies; 
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therefore, the development of detailed pipelines remains essential for advancing 

understanding of knee joint health. 

This thesis aims to demonstrate the feasibility of developing tools capable of 

enhancing the accuracy, personalisation, and clinical relevance of computational 

models of the knee. Whether applied as individual components or as an integrated 

system, the framework can be extended to include pathological knees to address 

clinically relevant questions and to deepen understanding of the relationships 

between knee biomechanics, pathology, and pain. Ultimately, the tools and 

framework developed in this research are designed to be applied in translational 

settings, supporting clinicians and researchers in developing personalised, data-

driven approaches to diagnosing, monitoring, and treating knee joint pathologies 

such as OA. 
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CHAPTER 2: QUANTIFYING TIBIOFEMORAL KINEMATICS 
USING BIPLANE VIDEORADIOGRAPHY 

2.1 INTRODUCTION 

2.1.1 BACKGROUND 

Accurately determining in-vivo tibiofemoral (TF) kinematics in all six degrees of 

freedom (DOF) is necessary to understand joint movement in both healthy and 

pathological cohorts (Giphart et al. 2012). It allows for better quantification of altered 

biomechanics due to diseases such as osteoarthritis, injury, and various 

interventions (Postolka et al. 2020; Ulbricht et al. 2020).  

Marker-based motion capture is the current research gold-standard technique for 

measuring three-dimensional (3D) in-vivo kinematics and provides high repeatability 

in the sagittal plane for the knee (Mackey et al. 2005), but insufficient accuracy in the 

other planes (Ramsey and Wretenberg 1999). This technique can provide whole 

body kinematics, however, it suffers from errors caused by inaccurate marker 

placement on anatomical landmarks (Tranberg et al. 2011), as well as soft tissue 

artefact (Ramsey and Wretenberg 1999; Akbarshahi et al. 2010; Miranda et al. 

2013). 

Biplane Videoradiography (BVR) is currently the most accurate technique for 

measuring in-vivo skeletal kinematics noninvasively (Gray et al. 2017; Gray et al. 

2018), and has emerged as the new gold standard for in-vivo kinematics during 

physiological loading (Setliff and Anderst 2024). For BVR, two X-ray source-detector 

pairs fire from different perspectives to produce image pairs that can be used to 

determine 3D information about the bones within the knee (Gray et al. 2018). Unlike 

traditional motion capture, BVR has been shown to produce highly accurate 3D 

arthrokinematics of the knee joint in all planes (Li et al. 2008; Anderst et al. 2009; 

Miranda et al. 2011; Guan et al. 2016) and is not affected by soft tissue artefact or 

marker misplacement. However, BVR does suffer from a limited imaging volume and 

occlusion by the contralateral limb (Gray et al. 2018). Different X-ray source-detector 

pairs configurations are required for different activities to minimise these limitations 

(Gray et al. 2017; Gray et al. 2018). BVR has typically only been used on studies 

with small cohorts (with a mean of 11 participants per study) due to the high costs 
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and significant amount of time required to process the results (Setliff and Anderst 

2024). 

Although BVR is the more accurate technique, marker-based motion capture 

remains widely used due to its accessibility and lack of ionising radiation. Comparing 

joint kinematics from marker-based motion capture to those obtained using BVR 

leads to better understanding of its inaccuracies and limitations. This understanding 

enables motion capture users to interpret their data with greater nuance and 

additionally highlights potential areas for improvement in the data collection and 

processing methods. 

Simultaneous capture of accurate joint-specific kinematics using BVR alongside 

whole body marker-based motion capture, not only facilitates direct comparison 

between the two methods, but also enables further analysis of the links between 

whole body and joint specific biomechanics. As BVR is limited by capture volume 

and duration (to minimise ionising radiation exposure), there is a need for an 

integrated approach to investigate whole body responses alongside detailed joint-

level mechanics (Li et al. 2012). Developing successfully integrated approaches for 

data collection is important for understanding altered joint mechanics due to 

pathologies and their broader effects on other joints in the body. 

2.1.2 AIM & OBJECTIVES 

As explained in Section 1.8, the overall aim of this chapter was to develop and define 

a robust protocol for collecting and processing simultaneous BVR and marker-based 

motion capture data, along with 3D magnetic resonance imaging (MRI) sequences. 

This protocol was designed to investigate TF joint kinematics across multiple 

dynamic functional movements and was to be applied for the first time to a cohort of 

healthy participants. 

This was further broken down into the following objectives: 

• To use the defined X-ray data collection and processing pipeline to calculate 

healthy TF kinematics for multiple participants during multiple activities to 

demonstrate its potential for use in future studies. 
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• To compare the resulting X-ray derived kinematics to those found in literature 

to assess the validity of the pipeline outputs by assessing their similarity and 

consistency with previous studies. 

• To compare equivalent marker-based motion capture rotations – derived 

using Visual3D (V3D, HAS-Motion, Canada) – to those calculated from the 

‘gold standard’ BVR data, to better understand the accuracy and limitations of 

this more commonly used technique. 

2.2 DATA COLLECTION: MAGNETIC RESONANCE IMAGING 

Each healthy volunteer took part in two separate data collection sessions. The first 

involved a series of MRI scans to obtain 3D joint geometry, and the second captured 

simultaneous BVR, marker-based motion capture and electromyography (EMG) 

during dynamic movements. 

Ethical approval was granted by the Wales Research Ethics Committee 3 (Ref: 

10/MRE09/28) and written informed consent was obtained before each data 

collection session. 

For the first session, the MRI scans were carried out at the Cardiff University Brain 

Research Imaging Centre (CUBRIC, Cardiff University) in a 3T Magnetom Prisma 

MRI scanner (Siemens Healthcare GmbH, Germany). Sequences were based off 

previously defined imaging protocols (Williams 2018), with key details and 

associated parameters recorded in Table 2-1. 

. 
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Table 2-1 – MRI sequence parameters 

 

Before scanning, informed consent was given by each participant and a safety 

screening form was completed. The participants were then asked to change into 

appropriate clothing and remove all metallic items.  

Participants were positioned in the scanner feet-first supine with their legs in a 

neutral position and the scanner bed was roughly aligned to the palpated location of 

the greater trochanter. 

Firstly, a whole-leg scan was obtained using the body radio frequency (RF) coil. A 

’FastView’ scan was performed to ensure the whole leg was visible (from hip to 

ankle) in the imaging volume, and to determine which sections of the body RF coil 

were required. Then the leg was scanned in sections using a series of 

Magnetisation-Prepared Rapid Acquisition Gradient Echo (MPRAGE) scan 

sequences. The number of scans required to image the whole leg depended on the 

height of the participant but was typically around 3-4 scans. 

Sequence  MPRAGE  
(Long leg) 

CISS-3D DESS-3D T1-VIBE 

Repetition Time  

(TR, ms) 

2200 5.84 14.84 11.7 

Echo Time (TE, ms) 2.18 2.92 5.04 5.46 

Flip Angle (°) 8 50 25 10 

Echo train length 1 1 2 1 

Pixel Spacing (mm) 0.78125 x 

0.78125 

0.6445 x 

0.6445 

0.6328 x 

0.6328 

0.59 x 0.59 

Slice Thickness (mm) 5 0.64 0.63 0.60 

Field of View  

(FOV, mm) 

328 x 500 165 x 165 162 x 162 150 x 150 

Matrix 320 x 210 256 x 256 256 x 256 256 x 256 

Total Acquisition Time 

(minutes:seconds) 

4:37 per 

section 

7:10 5:28 6:26 

Orientation Transverse Sagittal Sagittal Sagittal 
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A series of higher resolution scans were then captured using a Tx/Rx Knee 15 Flare 

Coil. A short 10-15 second localiser scan sequence was used to align the imaging 

volume around the centre of the TF joint. This ensured all structures of interest were 

captured in subsequent scan sequences.  

A 3D Constructive Interference in Steady State (CISS-3D) scan sequence was 

obtained as it provides high contrast between cortical and cancellous bone (Figure 

2-1). The CISS-3D scan sequence was used as an equivalent to the FIESTA-C 

sequence in the original protocol (Hingwala et al. 2011; Williams 2018). 

A 3D Dual Echo Steady State (DESS-3D) scan sequence was also performed as it 

provided high contrast between the articular cartilage and its surrounding tissue 

(including the subchondral bone interface) (Thakkar et al. 2011). As the cartilage 

was well defined in the DESS-3D scan, this sequence was used to segment the 

articular cartilage and meniscus (Section 2.4.1). 

Figure 2-1 – CISS-3D scan of the TF joint visualised in all 3 planes. 
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For the last two participants, a T1-weighted Volume-Interpolated Breath hold 

Examination (VIBE) was added to the MRI collection protocol. This sequence has 

been shown to provide similar results to the DESS-3D sequence when imaging 

cartilage (Zink et al. 2015). The higher visual contrast between bone and the soft 

tissues in the T1-VIBE scan made it easier to utilise segmentation tools (such as 

thresholding tools) and see the boundary between certain tissues (e.g. femoral and 

tibial cartilage) reducing the time required for each segmentation (Figure 2-2). 

Therefore, for these two participants, the T1-VIBE scan was used to segment the 

articular cartilage and meniscus instead of the DESS-3D scan (Section 2.4.1). 

T1-VIBE

DESS-3D

Figure 2-2 – A DESS-3D compared to a T1-VIBE scan sequence in all three planes. 
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2.3 DATA COLLECTION: COMBINED BIPLANE 
VIDEORADIOGRAPHY, MARKER-BASED MOTION CAPTURE AND 
ELECTROMYOGRAPHY PROTOCOL 

The second data collection session took place at the Musculoskeletal Biomechanics 

Research Facility (MSKBRF, School of Engineering, Cardiff University), and involved 

capturing BVR, marker-based motion capture data, force plate data, EMG, and video 

footage. An existing pilot study protocol, established in Cardiff as part of the initial 

development of the BVR system, was used for this study. It involved imaging the 

knee during three functional activities: level overground gait, a stair ascent, and a 

dynamic, weightbearing lunge. As part of this work, some modifications were made 

to the protocol to improve the quality of data collected; for example, camera positions 

were well-defined to allow for repeatability in the setup (Section 2.3.2). 

2.3.1 BIPLANE VIDEORADIOGRAPHY EQUIPMENT POSITIONING AND 

CALIBRATION IMAGES 

Custom-built BVR equipment (Williams 2018) was used to collect BVR imaging for 

this study. The BVR system has 16 adjustable axes to allow for flexible positioning of 

the machine (Figure 2-3). Using these axes, the equipment can be manipulated into 

many orientations, including its location within the room, the position of each 

individual source and detector on their respective arms, and the angle of the source-

detector pairs within the room and in relation to each other (Figure 2-4). As ten of the 

axes are computer-controlled, re-positioning of the machine was quick and 

consistent. This allowed for easy changeover of equipment setup during the data 

collection session, where a new configuration was needed for each activity. Key 

parameters for the three X-ray equipment configurations for each activity can be 

found in Table 2-2 – with additional information in Appendix A. 
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Figure 2-3- Diagram detailing the 16 controllable axes of the BVR equipment. ‘*’ denotes 
computer-controlled axes; the remaining axes require manual manipulation by aligning the 

angles with permanently attached protractors. 

Figure 2-4 – Birdseye view of the two source-detector pairs showing θ, the 
angle between the two systems, and SDD, source-to-detector distance 
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Table 2-2 – Key BVR equipment setup parameters for each of the three activities, as 
depicted in the diagram in Figure 2-4 

Parameter * Level Gait Lunge Stair Ascent 
Voltage (kV)  80 70 80 

Current (mA)  160 125 160 

Source-to-Detector 

Distance (SDD) (mm)  

1785 1350 1700 

Source-tilt (°)  0 0 0 

Detector-tilt (°)  0 0 0 

Angle θ (°) 61 150 130 

The only difference in X-ray equipment positioning between participants was the 

height of the source-detector pairs from the ground. For each activity, the participant 

placed their foot on the location of the central laser point (projecting downwards from 

where the two arms meet at the centre of the ceiling mount), and the source-detector 

pairs were adjusted vertically until the lasers from each source were aligned with the 

participant’s knee joint. This ensured the knee was centred in the X-ray volume 

during the trials. 

For each configuration, four pairs of BVR calibration images were collected (Figure 

2-5). A ‘white’ image – with nothing in the X-ray volume – was captured for non-

uniformity correction (Figure 2-5a). To correct for image distortion, uniform grids with 

circular holes of known dimension and spacing were X-rayed (Figure 2-5b). A cube 

constructed of LEGO® bricks containing a grid of 64 radio-opaque beads was 

imaged to allow for calculation of the 3D configuration of the X-ray hardware 

(Knörlein et al. 2016). The cube was carefully placed in the X-ray volume to ensure 

the beads filled the majority of both 2D X-ray images, with minimal overlap of beads, 

to provide the largest number of visible beads for the calculation (Figure 2-5c).  

Finally, a cone with six radio-opaque beads, each covered with a retroreflective 

surface, was imaged simultaneously with the BVR and marker-based motion capture 

systems to allow the two to be registered together by calculating the positions of the 

beads in both coordinate systems, allowing for the calculation of the transformation 

between the two global coordinate systems (GCSs) (Figure 2-5d). The results from 

*All parameters are the same for both System A and System B, except Angle θ which 
is the angle between the two systems. 
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one system can then be expressed in the coordinate system of the other, facilitating 

direct comparison of the collected data, which is useful for visualising the BVR knee 

bone poses relative to the measured marker motion. 

Section 2.4.3 contains more details on how these images were used to calibrate and 

process all collected X-ray images. Since they were critical to the processing 

pipeline, the four pairs of calibration images were collected at both the start and end 

of each activity, providing a spare set for redundancy. 

Figure 2-5 – Set of four X-ray calibration images taken at the 
beginning and end of every setup. 
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All the other equipment used in this data collection session were time synchronised 

with the transistor-transistor logic (TTL) pulse from one of the BVR high-speed 

cameras (60 Hz) to allow for simultaneous data capture from multiple sources. This 

enabled direct comparison and integration of different datasets, offering a more 

complete representation of a participant’s movement. 

2.3.2 MARKER-BASED MOTION CAPTURE SETUP 

A ring of 12 Oqus 700+ marker-based motion capture cameras (Qualysis, Sweden) 

and six Miqus Video Cameras (Qualysis, Sweden) were centred around five Bertec 

force plates (Bertec Corporation, Ohio, USA) embedded in the floor in the centre of 

the room (Figure 2-6). 

In the process of developing the data collection protocol, the positions of the 

cameras were trialled and optimised to reduce marker drop out during the dynamic 

trials, as this was identified as an issue with early participants. 

FP1

FP2

FP3

FP4

FP5300mm

600mm

40
0m

m

Figure 2-6 – Screen shots from Qualysis Track Manager (QTM, Qualysis, Sweden) of 
the laboratory camera configuration relative to the force plate and instrumented 

staircase placement (above), with an annotated, enlarged image of the force plates 
and stairs with the L-frame markers in position (below). 
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To remove the need for recalibrating the motion capture cameras during the data 

collection session, a single camera configuration was used for all three activities. As 

the BVR equipment obscured the views of different cameras during different 

activities, it was important to trial all different activity X-ray and motion capture 

equipment configurations when deciding the final camera positions. Each camera 

was reviewed individually to check its view across the three configurations, as well 

as collectively, to check that marker coverage was sufficient for all activities.  

Another aim of the final camera setup was to maximise the number of wall-mounted 

cameras. Wall-mounted cameras were quicker and easier to reposition than tripods, 

as they were attached to rails on the walls, requiring only their location on a fixed rail 

for positioning. This reduced the floor space occupied by tripods, minimising trip 

hazards, as well as allowing for ease of movement of equipment (such as the 

instrumented staircase and the BVR system) during the session. In the final camera 

configuration (Figure 2-6), nine cameras were wall-mounted and only three were on 

tripods. 

Once the camera configuration was finalised, the camera angle on its mount and its 

settings in Qualisys Track Manager (QTM, Qualisys, Sweden) were recorded. For 

each wall-mounted camera, the rail it was attached to and its distance from a 

specified end of the rail were noted. For tripod-mounted cameras, detailed 

information about the tripod and its position in the laboratory was recorded, including 

the tripod’s centre position, the location of each leg relative to a fixed point on the 

laboratory floor, the height of each tripod section, and the length of each leg. 

The camera positions used in this study were documented in the data collection 

protocol (Appendix A). Recording this information ensured a repeatable camera 

setup for each data collection session, maintaining consistency in camera coverage 

and, therefore, reliable marker trajectory identification across participants. 

Before each data collection session, the motion capture cameras were calibrated to 

account for any shifts in position and to establish the laboratory’s GCS. This process 

determined the relative positions of each camera and force plate within the GCS.  

Calibration involved placing an L-frame, consisting of a long and short arm with 

different numbers of markers, around the selected force plate (FP2 in Figure 2-6), 

with the long arm aligned to the direction of travel. The L-frame’s corner was placed 
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on the force plate’s corner, aligning its arms with the plate’s edges. The marker at 

the join of the arms defined the global origin (0,0,0), with the long arm defining the 

x-axis, the short arm the y-axis, and the z-axis calculated as their cross product, 

pointing vertically upwards. All 3D marker locations throughout the session were 

recorded as X, Y, and Z distances from this GCS. 

The cameras positions were then calibrated relative to the GCS using a calibration 

wand. This consisted of two markers at either end of a T-shaped wand which were a 

known distance apart. This wand was passed through the volume to be calibrated 

which covered the area the dynamic activities would be performed in. This included 

above each step of the staircase and directly above the five force plates embedded 

in the floor. For calibration, the laboratory was set up for the stair ascent activity (the 

first activity). With the X-ray equipment positioned for the stair ascent activity, the 

volume it occupied could not be calibrated. However, since the participant never 

moved through this area during any activity (even after the equipment was 

repositioned), it remained a suitable and repeatable location for the initial calibration.  

From the 2D marker positions of the wand markers and L-frame markers seen by 

each camera, the relative 3D positions of each camera to each other and the GCS 

were calculated and reconstructed in QTM (Qualisys, Sweden) (Figure 2-6). The 

average residual error between the detected and expected marker positions across 

all cameras and calibration points was calculated for each motion capture camera. 

The calibration was repeated if the average residual error was >1 mm for any 

camera to ensure marker tracking quality. 
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After camera calibration, every force plate was located by placing a single marker on 

its each of its four corners. A marker-mounted plate, designed to slot down the sides 

of the force plate (Figure 2-7), ensured consistent marker placement. Similarly, the 

location of each step of the staircase was also found by placing a single marker on 

each of the corners. 

A modified Cleveland Clinic marker set involving 54 individual retroreflective markers 

was used (Kinney et al. 2013; Whatling et al. 2020) (Figure 2-8). Anatomical 

markers, used to calculate body reference frames, were located by palpating bony 

landmarks. Four individual tracking markers were used for each segment, as at least 

three are required to calculate 3D segment motion, with the fourth marker allowing 

for possible marker dropout due to obstruction (e.g. by equipment or clothing).This 

marker set was chosen as it had been used for previous studies at Cardiff (Whatling 

et al. 2020; Bowd et al. 2023), so this new data collected could extend the existing 

dataset as it would be directly comparable.  

Figure 2-7 – Force plate corner marker mount (left), 
and in-situ on the 4 corners (right)  
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Marker trajectories were captured at 120 Hz as the motion capture cameras were 

synchronised to the TTL signal from one of the BVR high-speed cameras (60 Hz) 

with a two-times frequency multiplier applied. The trajectories were recorded 

alongside the EMG and force plate data using QTM (Qualisys, Sweden).  

2.3.3 ELECTROMYOGRAPHY 

A total of 14 EMG sensors (Delsys Inc, Massachusetts, USA) were used to record 

the electrical activity of 7 muscle targets per leg (Figure 2-9). This configuration of 

EMG sensors was chosen similarly to the motion capture marker set, due to its prior 

use in studies within the research group at Cardiff (Khatib 2018). The sensor 

placements were based on a modified version of the Surface Electromyography for 

the Non-invasive Assessment of Muscle (SENIAM) Guidelines (Hermens and Freriks 

1997) with the specific targets selected based on previous recommendations to 

minimise crosstalk between lower limb surface signals during gait (Hermens et al. 

2000). 

Figure 2-8 – Modified Cleveland Clinic marker set. 
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Figure 2-9 - Electromyography electrode placement protocol.  
Numbers represent electrode labels. Rectus femoris (2, 10); Vastus lateralis (3, 11); 

Vastus medialis (4, 12); Biceps femoris (5, 13); Semitendinosus (6, 14); 
Gastrocnemius lateral (7, 15); Gastrocnemius medial (8, 16). 

The muscle bellies were located by asking the participant to tense specific muscle 

groups via a series of activities (e.g. standing on tiptoes) allowing for visual 

inspection and palpation of the muscle region by the researcher to locate the largest 

part of the muscles. The muscle belly sensor locations were then marked using an 

eye liner pencil to indicate the areas that required skin preparation. The placement 

areas were shaved to remove hair and exfoliated to remove dry skin, improving the 

contact between the skin and EMG sensors. An electro-gel was applied to the 

electrodes on the back of each sensor to improve the conductivity of muscle signals. 

The EMG sensors were attached to the participant using double-sided stickers and 

further secured using an elastin tubing (Tubigrip, Mölnlycke Health Care, Sweden). 

EMG was collected as part of this protocol to allow for future analysis of muscle 

activity patterns, although it was outside the scope of this research to process the 

EMG signals due to time constraints.  
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2.3.4 DEMOGRAPHIC DATA, ANTHROPOMETRIC DATA, AND 

QUESTIONNAIRES 

Basic demographic data was collected at the start of each session, including date of 

birth, height and weight. The demographics for each participant are given in  

Table 2-3. 

Table 2-3 – Participant demographics 

Participant ID Sex Age (years) Height (cm) Weight (kg) 
HV001 M 28 185.0 85.0 

HV002 F 57 169.5 62.4 

HV003 M 54 182.0 87.5 

HV004 M 52 176.5 67.1 

HV005 F 47 158.5 51.0 

 

Each participant was asked to fill out a series of questionnaires during the BVR data 

collection session to ascertain details about their perceived general knee health. 

These were the Knee Outcome Survey (KOS) (Irrgang et al. 1998), the Knee injury 

and Osteoarthritis Outcome Score (KOOS) (Roos et al. 1998), the Oxford Knee 

Score (OKS) (Dawson et al. 1998), the Pain Audit Collection System (PACS) 

proforma assessment form, and the Western Ontario and McMaster Universities 

Osteoarthritis Index (WOMAC) (Bellamy et al. 1988). The mean cohort questionnaire 

results, along with the score that deviated the most from the healthy reference score, 

are presented in Table 2-4. 

Table 2-4 – Cohort questionnaire results 

*The participant score that deviated the most from the healthy reference score 

Questionnaire Healthy reference 
score 

Mean Worst observed 
score* 

KOS 85 84.5 83 

KOOS 100% 99.0% 97.6% 

OKS 48 47.3 46 

PACS 0 0 0 

WOMAC 0% 0.260% 1.04% 
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The small amount of cohort deviation from the healthy reference score for each 

questionnaire was reflective of the average age of the participants, with slight 

deviations being expected with aging and not necessarily indicative of disease.  

A copy of the questionnaires can be found in Appendix B. These specific 

questionnaires were chosen as they were part of previous studies completed at 

Cardiff (Williams 2018; Bowd 2022) so this would allow for possible future 

comparison amongst a wider cohort.  

2.3.5 STATIC TRIALS 

Static trials were obtained at the start of each activity with the participant standing in 

a neutral position, arms by their sides. The first static trial captured was motion 

capture only, and the resulting trajectories were checked carefully to ensure all 

markers were visible in the calibrated motion-capture volume. A static trial with all 

markers visible was required for scaling both the V3D models and musculoskeletal 

models (MSMs), so this static trial was repeated until all markers were visible. 

Static trials, including BVR, were then performed to determine bone poses in a 

neutral knee position. BVR static recordings were performed for the gait and lunge 

configurations, with participants standing perpendicular to the normal direction of 

travel. This ensured their imaged (right) knee remained within the X-ray volume while 

the contralateral knee was out of both views. Initially, static trials were collected for 

all three activities, but the stair ascent static trial was later removed as, in this setup, 

participants stood with one leg on the ground and the other on the first step with a 

bent knee, meaning the position was not neutral.  

2.3.6 DYNAMIC TRIALS 

Each participant performed multiple repeats of the following three dynamic activities: 

stair ascent, level gait, and lunge. Before collecting X-ray trials, several practice 

repeats were conducted using only motion capture, EMG, force plates, and video 

cameras (without BVR). The number of practice trial repeats varied by participant 

and activity, depending on participant and researcher confidence in performing the 

movement correctly under X-ray conditions.  

Once confident with the practice trials, up to five repeats of each activity were 

captured with X-rays firing. The number of X-ray trials collected was carefully 
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controlled to ensure the radiation exposure remained within the 0.154 mSV limit (per 

session) defined under the study ethics. 

The first activity consisted of a stair ascent starting with both feet on the floor, 

ascending three instrumented steps, and finishing with both feet on the platform at 

the top of the staircase. For this activity, the BVR equipment was located around the 

first step of the stairs (Figure 2-10).   

The next activity was level overground gait performed at a self-selected speed 

across a 7 m walkway. Force plates were located in the central portion of the 

walkway, with the BVR equipment centred around FP2 (Figure 2-11) (for context with 

motion capture setup see Figure 2-6). To allow the participant to walk with their 

natural gait pattern, avoiding force plate targeting, the participants were unaware of 

the locations of the force plates. The participant’s starting location was adjusted until 

they achieved clean force plate hits (defined as all of the foot stepping within the 

boundary of the force plate). 

Figure 2-10 – Collection setup for the stair ascent activity.  

Figure 2-11 – Level gait equipment configuration with target area 
marked using masking tape. 
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For the earlier participants in the study, blinding to the force plate locations was 

maintained throughout the whole activity. However, when carrying out the X-ray 

trials, participants were often inconsistent with their heel-strike placement on the 

X-ray force plate (FP2, Figure 2-6) which meant that their knee was not always 

central in the X-ray imaging volume. Due to the amount of joint movement through 

the imaging volume during gait, this activity only captured a small number of frames 

of motion, which was decreased further by inaccurate foot placement on the force 

plate. 

The area of the heel-strike location to ensure good knee placement in the imaging 

volume (approximately 0.06 m2) was significantly smaller than the size of the force 

plate (0.24 m2) (Figure 2-12). This made it harder to ensure correct foot placement 

solely through adjustments to the participant’s starting location. For this reason, once 

they had completed their trial repeats with no X-rays (blinded), the later participants 

in the study were asked to aim for a marker area on the second force plate for the 

X-ray trials (Figure 2-11). This improved consistency of the portion of stance phase 

collected during the X-ray trials. 

The third activity was a weightbearing, dynamic lunge onto a single force plate where 

the participant performed a single continuous movement from an upright standing 

position, to a self-selected lunge length and flexion angle, then back to standing 

(Figure 2-13). 

Figure 2-12 – Diagram of target region (outlined in red) on FP2 for foot 
placement during level gait (left) relative to the global coordinate 

system (GCS) of the motion-capture laboratory (right).  
The ‘x’ denotes the centre of the X-ray volume relative to the FP. 
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2.4 DATA PROCESSING 

2.4.1 IMAGE SEGMENTATION 

The MRI images (Section 2.2) were segmented using Simpleware Scan IP 

(Synopsis, United States) to produce 3D models of the structures within the joint. For 

the process of model-based image registration (Section 0), models of the cortical 

and cancellous bone of the distal femur and proximal tibia were required as part of 

the BVR kinematics calculation pipeline.  

Firstly, cortical bone masks were created by manually segmenting the desired region 

from the high-resolution CISS-3D scan (Figure 2-14). The initial segmented models 

were then dilated isotropically by one pixel, smoothed using a recursive Gaussian 

filter, and eroded by one pixel to preserve their overall shape. 

The recursive Gaussian filter achieved smoothing by modifying each voxel based on 

surrounding voxels, with weightings defined by a Gaussian distribution and a 

specified standard deviation (σ) (Synopsys 2024). An isotropic Gaussian σ value of 

1.5 was chosen as it reduced the surface noise whilst preserving bony details 

needed for image registration.  

Figure 2-13 – Participant carrying out a 
dynamic, weightbearing lunge 
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To generate the cancellous bone models, a mask was created using the threshold 

tool to select all pixels in the image that were above a defined value, removing pixels 

representing cortical bone (Figure 2-15). The cortical bone shows up as darker pixels 

than the cancellous bone in the CISS-3D scan due to its lower water content, 

allowing for thresholding.  

A Boolean operation was then performed to produce a mask only containing pixels 

from the thresholding result that intersected with the cortical bone mask. Finally, a 

visual inspection was performed of the result of the Boolean operation to ensure that 

the cancellous bone mask was fully encased by the cortical mask as a watertight 

model was needed to generate the DRR (Section 2.4.2) for image registration 

(Section 0). If any of the cancellous pixels were visible through the cortical mask, the 

cancellous mask was eroded by the minimum amount required to fully conceal it.  

Figure 2-14 – 3D femur and tibia models (with recursive Gaussian 
smoothing applied) segmented from a CISS-3D scan. 
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The bone meshes were exported from Simpleware as .stl files, then converted into 

.obj files using MeshLab (Cignoni et al. 2008) for import into the DSX Suite 

(HAS-motion, Canada).  

Additionally, full bone models for both the femur and tibia were segmented from the 

long leg scan for each participant. These were used to define the anatomical 

coordinate systems (ACSs) for each bone (Section 2.4.3). 

The DESS-3D (or T1-VIBE scan for later participants) was used to segment soft 

tissue structures, such as the articular cartilage, to be used for subject-specific 

musculoskeletal and finite element modelling in subsequent chapters. More details of 

how these structures were segmented and utilised can be found in Chapter 3 and 

Chapter 4. 

2.4.2 ‘SIMULATED CT’ GENERATION 

Model-based image registration (Section 0) requires a Digitally Reconstructed 

Radiograph (DRR) created from a 3D imaging scan, typically computed tomography 

(CT), which is then matched to each X-ray image pair (Gray et al. 2018). DRRs are 

synthetic X-ray images generated by tracing rays from each X-ray source to its 

corresponding imaging plane through a floating 3D bone model, casting a 2D 

radiographic projection. Each pixel in the 2D DRR represents the total accumulated 

Figure 2-15 – Threshold applied to CISS-3D pixels to 
select only those above a given value. 
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CT values along the ray’s path from the X-ray source to the imaging plane 

(Russakoff et al. 2005).  

When using a CT scan for model based image registration, the segmented models 

are exported as partial volumes with voxel radiographic properties that inherently 

differ between cortical and cancellous bone (Welte et al. 2022). However, since this 

dataset was acquired using MRI, ‘simulated CT’ data were generated using the 

‘Image Data Generator’ tool (Orient3D, DSX Suite, HAS-Motion, Canada). This tool 

constructs an artificial partial CT volume from user-defined voxel size, generic 

cortical and cancellous bone density properties, and input masks representing the 

inner and outer cortical bone surfaces (Section 2.4.1). This simulated CT was then 

used to generate DRR projections during image registration (Section 0). 

2.4.3 ANATOMICAL COORDINATE SYSTEM DEFINITION 

As well as generating the ‘simulated CT’, Orient3D was also used to apply ACSs to 

the segmented bone models using automated algorithms (Miranda et al. 2010) 

(Figure 2-16).  

Manually defined landmarks (including an anterior point, as well as proximal and 

distal points on the bone shaft) were used to assist the algorithm in determining bone 

orientation and isolating specific regions of the bone model.  

The algorithm developed by Miranda et al. (2010) generates an ACS for the femur by 

first fitting a cylinder to the femoral condyles, with the cylinder’s central vector 

Figure 2-16 – Anatomical Coordinate Systems (ACSs) applied to the  
femur (left) and tibia (right). 
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defining the medial-lateral (ML) axis. The inertial axis is then calculated through the 

femoral diaphysis, and the anterior-posterior (AP) axis was defined as the cross 

product of the inertial and ML axes. Finally, the long axis (compression-distraction, 

CD) is determined by recrossing the AP and ML axes. For the tibia, the ACS is 

established by isolating the tibial plateau using the inertial axes and positioning a 

plane at the largest cross-sectional area (Miranda et al. 2010). In both cases, 

defining the ACS relied on correctly calculating the inertial axis. 

The automated approach was chosen to ensure consistency across participants, 

reducing human error and processing time. However, when applied to partial bone 

models, despite the use of additional manual landmarks, the algorithm often 

struggled to correctly determine the inertial axes. This led to errors in ACS 

orientation, as inaccuracies in isolating the femoral diaphysis or tibial plateau 

interfered with the calculation of the axes. These orientation errors affected the 

subsequent six DOF kinematics calculations due to crosstalk between axes. 

Although Miranda et al. (2010) developed their algorithm for partial distal femur and 

proximal tibia 3D geometries, without the traditional use of hip and ankle joint 

centres, it was found to perform better and more consistently when these landmarks 

could be identified by inputting the full bone geometry into the algorithm  

(Figure 2-17). This was likely due to the automated algorithm requiring the femoral 

diaphysis length to be at least 55 mm (Miranda et al. 2010), with some bone models 

being close to that threshold. 
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Therefore, to ensure physiologically meaningful axes were generated, the full femur 

and tibia models, segmented from the long leg scan (Section 2.4.1), were aligned 

with the high-resolution partial bone models (MeshMixer, Autodesk, USA), and the 

ACSs were recalculated using the full bone geometries. In most cases, the algorithm 

successfully identified the inertial axes using only the full bone models. However, for 

some femurs, an additional hip joint centre landmark was needed to accurately 

define the ACS. For these cases, the centre of the femoral head was identified by 

fitting a sphere to the full bone model (Rhino, Robert McNeel & Associates, USA). 

This process is summarised in Figure 2-18. 

Figure 2-17 – Anatomical Coordinate Systems (ACSs) generated using the automated 
algorithms (Miranda et al. 2010) for the femur and tibia. The ‘old’ ACSs were generated 

using the partial bone models only and the ‘new’ ACSs were generated using the full 
bone models.  
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2.4.4 X-RAY CALIBRATION 

Before image registration, all X-ray images were calibrated using the corresponding 

set of calibration images for each configuration (Section 2.3).  

The X-ray images were captured using Photron FASTCAM Mini WX100 high-speed 

cameras (Tech Imaging Services, Massachusetts, USA) controlled through Photron 

FASTCAM Viewer 4 (PFV4, Tech Imaging Services, Massachusetts, USA). The 

images were originally saved in the ‘MRAW’ format when collected and then were 

converted into multipage ‘.TIFF’ files for image registration. Each X-ray also had to 

be rotated 90 degrees because the cameras were mounted sideways in the detector 

units. They were also down sampled from 2048 x 2024 pixels to 1024 x 1024 pixels 

to reduce image noise and produce stronger edge contrast (Williams et al. 2026) to 

1 2 3

2

4

4

Figure 2-18 – Showing the process of generating full bone models to calculate bone 
ACSs. (1) Full bone models segmented from the long leg scan in Simpleware Scan 

IP (Synopsis, United States). (2) Full bone models were aligned with the partial bone 
models and exported in their new positions. (3) Hip joint centre (HJC) landmark was 

identified by fitting a sphere to the femoral head when the algorithm did not apply 
correctly to just the full femur model (Rhino, Robert McNeel & Associates, USA).  
(4) ACSs applied to the full bone models ready to be applied to the partial bone 

models. 



81 
 

improve the clarity of the edge detection algorithm results (Section 0), making image 

registration easier as the bone edges were clearer. 

Once converted, the intensity (or ‘white’) image for each detector was used to correct 

for inherent discrepancies in the pixel intensities recorded across the detector. The 

‘white threshold’ parameter value for each view was adjusted to remove any pixels 

outside the view of the image detector (Figure 2-19). The pixel values of each X-ray 

were taken away from the remaining ‘white’ image pixels of the relevant detector 

(inverting the image) to perform uniformity correction for all X-ray trials (HAS-Motion 

2024a).  

Subsequently, the X-rays were corrected for image distortion using the ‘grid’ images 

(Figure 2-20). Two main types of distortion need to be corrected: ‘pincushion’ 

distortion, which occurs due to the curved X-ray photocathode projecting onto a flat 

image intensifier, and ‘S-curve’ distortion due to the Earth’s magnetic field affecting 

the emitted electrons (Rudin et al. 1991; Cowen et al. 2008). The grids each 

contained a uniform pattern of holes so the distortion of each region of this pattern 

could be calculated and corrected for. Partial grid holes, which were too small to give 

an accurate representation of where the centre of the hole was, were removed by 

adjusting the ‘grid centroid size range’ until only the complete grid holes were 

selected as valid. Using the centroid locations of all valid grid holes, a displacement 

map was calculated and used to move each pixel to its proper location (HAS-Motion 

2024a). 

Figure 2-19 – Uniformity correction ‘white’ image, with red exclusion zone defining 
the circular capture region of the X-ray detector. 
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The 3D configuration of the X-ray source-detector pairs within the X-ray GCS was 

determined using images of the LEGO® cube (Knörlein et al. 2016). As well as an 

equally spaced array of 64 radio-opaque beads, the cube also contained four wire 

shapes (square, circle, triangle, cross) whose centres were identified by the user 

(Figure 2-21). The shape centre landmarks helped the software to identify the 

centroid location of each bead (numbered 1 to 64). However, as the shape centres 

may not have been accurately positioned, they were removed before calculating the 

3D configuration of the system from the digitised bead positions.  

Figure 2-20 – Image distortion correction example, with ‘valid’, full grid holes in blue 
and partial grid holes round the edges of the images in red. 
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The residual error between the predicted and identified centroid location of each 

bead was then calculated, along with the total residual error across all beads. High 

residual errors were seen when centroid locations were difficult to predict, such as 

when beads overlapped in one or both X-ray views. These bead centroids were 

removed, and the 3D configuration was recalculated. This was repeated iteratively 

until only beads with low residuals (<0.4 mm) remained. 

View 1

View 1

View 2

View 2

Figure 2-21 - X-ray images of the LEGO® cube containing a 3D grid of radio-opaque 
beads in the DSX Suite (HAS-motion, USA). The four wire shapes were manually 
identified (above) and the beads were automatically numbered using those shape 

locations (below). 
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The X-ray images of the pylon and its corresponding motion capture were used to 

register the BVR and motion-capture systems together to allow their data to be 

viewed in the same coordinate space (Figure 2-22). The beads were identified in the 

same order from the same trial image in both QTM (Qualisys, Sweden) and 

SlicerAutoscoperM (Akhbari et al. 2019). The positions of the beads were then co-

registered using MATLAB code provided by Dr Michael Rainbow from Queens 

University and the transform between the motion-capture GCS and the BVR GCS 

was calculated to allow for conversion between the two. This works by calculating 

the optimal rotation matrix between the centroid of the six beads in the BVR 

coordinate system and the motion capture coordinate system using singular value 

decomposition (Söderkvist and Wedin 1993; Challis 1995), then calculating the 

translation between the centroid locations after rotating (Jacobs and van de Bogert 

[no date]). 
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Figure 2-22 – Labelled pylon marker positions from motion capture and BVR co-
registered to calculate the transformation matrix between the two systems.   
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2.4.5 MODEL-BASED IMAGE REGISTRATION 

Model-based image registration generated pose maps containing the XYZ rotations 

and translations required to fully describe the 3D position and orientation of each 

bone within the X-ray GCS at each frame. The model-based image registration 

processing pipeline was carried out using the DSX Suite (HAS-Motion, USA) on 

Windows 10 with an Intel® Core i7 processor, 32.0 GB RAM, and a Nvidia RTX 2080 

graphics card. 

The DRR from the ‘simulated CT’ (Section 2.4.2) was projected onto each X-ray view 

and matched to both views at once for every frame of motion (Figure 2-23). For the 

first frame of each new trial, image registration was performed by manually 

manipulating the six DOFs of the floating bone model in the 3D view to roughly 

position and orientate the DRR, before using finer keyboard controls to precisely 

match the bone outlines to both views simultaneously (Figure 2-24).

Figure 2-23 – Screenshot of the 3D view (DSX suite, HAS-motion, Canada) showing the 
matched DRRs projected onto a pair of images from a single frame of a level gait trial. The 

green and red dots in the foreground represent the location of each X-ray source with a 
ray traced to the centre of the detector image to show the configuration of the BVR 

equipment. 
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Figure 2-24 – Image registration process for the first frame of a new trial. A single frame from a lunge is given here as an example.  
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To make image registration of the DRR easier, a Sobel edge detection algorithm 

(built into the DSX Suite) was applied to both the X-ray images and the projected 

DRR to enhance the edges of the bones (HAS-Motion 2024c) (Figure 2-25). The 3D 

bone pose was then added to the pose map defining the XYZ translations and XYZ 

Euler angles from the X-ray GCS to the bone’s ACS. This was repeated for every 

frame where both the femur and tibia were visible in the trial. 

For each trial, initially bone poses were generated at approximately every five frames 

through the motion by manually adjusting the bone’s position and orientation. Then, 

using spline generated poses as an initial starting point for manual matching, the 

remaining frames were added to the pose map. When all poses were recorded, each 

DOF was adjusted using the graph widget to smooth the unrealistic changes in 

DOFs values between frames.  

Figure 2-25 – X-ray images with (below) and without (above) the Sobel 
edge detection algorithm applied. 
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For the activities where both knees passed through the imaging volume, the 

contralateral limb occluded part, or all, of the target limb during some stages of the 

activity. When this occurred, the bone outlines became obscured, and the edge 

detection algorithm made the image noisier (Figure 2-26). This made image 

registration more difficult during those frames. To minimise these effects, the frames 

either side of the occlusion were manually matched, and the resulting splines were 

used to help inform the poses for the remaining frames affected by occlusion. 

The final matched bone poses were visualised as a continuous motion using FEBio’s 

‘Kinemat’ tool (Maas et al. 2012) to see if the movements produced looked 

physiologically reasonable. This was particularly valuable during sections of motion 

where the contralateral limb obscured the bone being matched in one or both X-ray 

views, as this was where it was hardest to perform image registration.  

2.4.6 TRIAL SELECTION CRITERIA 

Due to the substantial amount of time required to complete image registration for a 

single trial, only one trial per activity was processed for each participant. To 

qualitatively assess the X-ray trials to pick the “best” trial repeat for image 

registration, the following set of criteria were defined:  

Figure 2-26 – Extreme example of occlusion by the contralateral limb. 
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• Discount any trials where the activity was not performed correctly (e.g. the 

participant did not follow the instructions correctly/there was no clean hit of the 

‘X-ray’ force plate).  

• Discount trials where the X-ray images didn’t fully capture the participant 

moving through the volume.  

• Select the trial with the greatest number of “trackable frames” (frames where a 

substantial proportion of the outline of all bones to be tracked are clearly 

visible). The number of trackable frames can be calculated by total frames of 

movement (count from first trackable frame to the last trackable frame) minus 

the number of frames with contralateral limb obscuring one/both bones, or the 

bones going out of shot (e.g. at peak lunge).  

• If two or more trials for a particular activity have a similar number of “trackable 

frames” consider which has the better additional data 

(motion capture/EMG/etc.) and if image registration has already been started 

on any of them.   

All X-ray trials were examined using the above criteria, and one trial was selected for 

each activity resulting in a set of three processed X-ray trials for each participant. 

2.4.7 CALCULATING BIPLANE VIDEORADIOGRAPHY TIBIOFEMORAL 

KINEMATICS 

Once image registration was completed for each trial, the bone pose at each frame 

of motion was converted into a 4x4 transformation matrix within the software (X4D, 

DSX Suite, C-Motion). A text file was exported for each bone per trial, where a line of 

text contained the transformation matrix between the X-ray laboratory GCS and the 

bone’s ACS at each frame. 

Custom MATLAB code was written to calculate the 6 DOF kinematics of the TF joint 

of the tibia relative to the femur at each frame (Grood and Suntay 1983). This code 

was also used to filter the resulting kinematics. An adaptive low-pass Butterworth 

filter (cut-off frequency range 5-10 Hz) was applied (Erer 2007). 

6 DOF kinematics were also calculated after redefining the tibial ACS to be aligned 

the femoral ACS in the MRI scan position. This normalised differences in bone origin 

locations between participants, particularly seen in the translations.  
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The largest offsets were seen in CD as this was the most affected by knee size (due 

to the SI offset in the ACSs). By accounting for these offsets, compression was 

standardised, enabling direct comparison across participants. This approached was 

also commonly used to define joint distraction in literature (Gray et al. 2019; 

Thomeer et al. 2020; Thomeer et al. 2021). 

2.4.8 MARKER-BASED MOTION CAPTURE KINEMATICS 

An overview of marker-based motion capture data processing is shown in Figure 

2-27 and explained in more detail below. 

Figure 2-27 – A) Static trial marker data captured in QTM (Qualysis, Sweden) B) Marker 
trajectories manually identified and labelled. One static and one dynamic trial were manually 

labelled to generate the Automatic Identification of Markers (AIM) model. C) A model was 
created in Visual3D (V3D, HAS-Motion, Canada) by scaling virtual body segments using the 
static trial marker positions. D) The AIM model was applied to all remaining trials, including 
dynamic motions. E) Joint kinematics and kinetics data was calculated by applying the V3D 

model to the dynamic trials. Gait event markers, such as heel-strike (HS) and toe-off (TO) were 
also calculated during this step. 
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Marker trajectory identification was performed using QTM (Qualisys, Sweden). 

Trajectories were labelled manually for the first static and dynamic trial; these two 

trials were then used to generate an Automatic Identification of Markers (AIM) model 

which was applied to subsequent dynamic and static trials. 

As discussed in Section 2.2.1, the arms of the BVR equipment occasionally 

obscured the marker trajectories during dynamic trials. Marker trajectories gaps of 

fewer than 15 frames were filled using a polynomial algorithm, while larger gaps – or 

those at the start or end of a movement – were reconstructed using a relational fill, 

which used three tracked marker trajectories to estimate the position of a fourth. 

When tracking the marker trajectories from the first participant’s data collection 

session, a lot of marker dropout was discovered. This increased the processing time, 

as more manual intervention was required to piece together short trajectory 

segments and perform additional gap-filling. To improve data quality and reduce 

these issues in subsequent sessions, camera positions were optimised (Figure 2-28) 

(Section 2.3.2). The full location map of the final camera positions, including the 

camera heights and location of the X-ray equipment relative to the GCS can be 

found in the data collection protocol in Appendix B. 
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Once the camera positions had been optimised, there was little-to-no marker dropout 

for the gait and lunge activities. However, the stair ascent activity still had some 

marker dropout in all trials (particularly the foot and ankle markers) due to the 

participant having to position their foot close to the X-ray detector and the higher 

stairs blocking the lower ones.  

Complete marker trajectories were exported as C3D files and imported into Visual3D 

(HAS-Motion, Canada). A previously defined Visual3D pipeline was used to calculate 

the TF joint rotations throughout each trial (Bowd 2022). During this pipeline, virtual 

segments were created, and a generic model scaled using the relative marker 

positions and the participant’s body weight.  

Figure 2-28 – Camera positions before (left) and after (right) optimising their positions in the 
room. ‘FP’ indicates a force plate. The final laboratory setup (right) shows the additional force 

plate added, as well as the position of the instrumented stairs within the room.  
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The CODA pelvis (Codamotion Ltd., United Kingdom) was chosen as it was 

equivalent to the MSM pelvis ACS definition in the MSM used in a later chapter 

(Chapter 3) (Arnold et al. 2010; Lenhart et al. 2015). The pelvis coordinate system 

was defined using the anterior superior iliac spine (ASIS) and sacral markers, with 

the origin at the midpoint of the two ASIS markers (HAS-Motion 2024b) (Figure 

2-29).  

Time-stamped event markers were used to define the start and end of the stance 

phase, or the weightbearing portion of the lunge, defined as the foot making contact 

with or leaving the force plate, using a 20 N threshold (Bowd 2022). The pipeline was 

adapted to export these event markers, as well as the calculated TF rotations. 

2.4.9 RESEARCH QUESTIONS 

With the methodology fully defined, fulfilling the overall objective set out at the start 

of the Chapter (Section 2.1.2), a series of research questions was developed to 

evaluate the robustness of the pipeline. These questions were chosen to 

demonstrate how the data collection and processing methods achieve the research 

aims (Section 2.1.2), and their rationale is outlined below. 

Q1: How well do the different BVR X-ray and motion capture equipment 
configurations capture their respective activities? 
As this was a pilot study, this was the first protocol developed to capture in-vivo 

Figure 2-29 – CODA pelvis axes definition.  
Figure adapted from HAS-Motion (2024b). 
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kinematics for this specific BVR equipment. Therefore, it is important to assess how 

effectively the proposed X-ray equipment configurations were able to image the knee 

during all three pilot activities to inform future studies. Capturing full knee motion with 

BVR is challenging due to the joint’s large range of motion relative to the small 

imaging volume, therefore only a specific portion of the activity, such as stance 

phase, can typically be targeted. Understanding which sections of the activities were 

captured successfully in this pilot cohort will provide future protocol refinements to 

improve consistency, as well as a more comprehensive understanding of the 

potential limitations of these specific configurations.  

Q2: Are the six DOF TF kinematic trends and magnitudes for this cohort 
consistent with results presented in literature? 

This question addresses the validity of the pipeline by comparing the calculated TF 

kinematics to published values. Demonstrating consistency with established trends 

and magnitudes from other studies will confirm if the methodology is suitable for the 

proposed application. As this is a novel dataset acquired with a newly developed 

protocol, benchmarking against the literature also helps identify any unexpected 

differences and builds confidence in the reliability and physiological relevance of the 

outputs. 

Q3: How does changing the ACS representations alter the kinematic outputs? 

TF kinematics in literature are often presented using different bone ACS definitions, 

which can substantially affect the resulting kinematic outputs (Section 1.3.3). The 

most widely used method for defining TF kinematics is using the Joint Coordinate 

System (JCS) set out by Grood and Suntay (1983) recommended by the ISB for 

defining femoral and tibial ACSs (Wu et al. 2002). The JCS uses separate ACSs for 

the femur and tibia based off bone morphology and defines the rotations and 

translations around each respective axes to conform to clinically relevant definitions, 

allowing for meaningful application of the output kinematics.  

These separate ACS definitions were applied using the automated algorithm by 

Miranda et al. (2010) (Section 2.4.3) to compare with BVR results in literature as this 

was the most common way TF kinematics were presented (Kozanek et al. 2009; 

Gray et al. 2019; Gale and Anderst 2020; Thomeer et al. 2021; Thomeer et al. 2022). 
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Using two separate bone ACS definitions and the JCS provides clinically relevant 

kinematics. However, this may not be suitable in all contexts. For example, CD of the 

knee can be influenced by knee size – larger bones increase the distance between 

the femoral and tibial ACSs, which introduces an offset in the CD values. This makes 

it harder to compare overall compression patterns across a cohort as the results will 

be offset due to knee size variation. 

To address this, some studies modify ACS definitions. For example, Gray et al. 

(2019) adjusted the tibial origin to align with the femoral origin in an unloaded 

extended pose, setting CD to start from zero. Similarly, rigid body modelling 

approaches (e.g. Visual3D, OpenSim) often use coincident ACSs in the neutral pose 

for simplicity and consistency across participants. 

In this study, both approaches were used: one with separate ACSs, as per the JCS, 

for comparison with literature, and another with coincident ACSs to reflect the 

definitions used in the V3D model (Section 2.4.8) as well as the OpenSim Model 

used in the MSM pipeline in the following Chapter. Comparing these outputs helps 

highlight how ACS definitions influence interpretation and comparability of TF 

kinematic results. 

Q4: Do the secondary TF kinematics (all DOFs except flexion) couple with 
flexion? 
Understanding potential coupling between knee flexion and the secondary TF DOFs 

is important for correctly modelling the relationship between anatomy and function of 

the TF joint (Koo and Koo 2019; Thomeer et al. 2021). Such coupling of the 

secondary DOFs to flexion in the knee has previously been reported in literature 

(Kozanek et al. 2009; Gray et al. 2019; Koo and Koo 2019; Thomeer et al. 2021). 

Identifying these coupled motions is also relevant for a range of biomechanical 

applications, from computational modelling to TKR design (Thomeer et al. 2021). 

It has been suggested that if all five secondary TF DOFs are found to be coupled 

with flexion, the relative bone movements are guided primarily by ligament geometry 

and articular contact (Thomeer et al. 2021). This assumption has led to coupling 

being incorporated into the design of MSMs by setting the secondary DOFs as 

functions of knee flexion to provide better estimates of six DOF TF motion than can 

be calculated using motion capture (Smith 2017; Hume et al. 2018). This is true of 
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the MSM used to calculate knee joint contact in a later chapter of this thesis 

(Chapter 3), therefore, it is important to investigate these relationships within this 

cohort to understand potential errors in the model’s assumptions. 

Q5: How accurately does marker-based motion capture calculate TF rotations 
compared to the gold-standard in-vivo BVR results? 

Finally, comparing simultaneous motion capture and BVR knee kinematics enables 

the quantification of motion-capture errors on a subject-specific basis. This can help 

demonstrate the strengths and weaknesses of the technique in calculating 

kinematics, as well as highlighting potential areas for improvement. Despite the 

accuracy of motion capture being previously well documented (Sati et al. 1996; 

Reinschmidt et al. 1997a; Stagni et al. 2005; Akbarshahi et al. 2010; Tranberg et al. 

2011; Tsai et al. 2011; Miranda et al. 2013; Hume et al. 2018), it was included in this 

study to serve as a baseline comparison for the dataset used in Chapter 3, where an 

algorithm aimed to optimise and improve the secondary kinematic predictions within 

a MSM pipeline.  

2.4.10 STATISTICAL ANALYSES 

The following analyses were performed to help answer the research questions set 

out above (Section 2.4.9). 

The mean and standard deviation (std) of the results of the five participants were 

calculated for each activity for all frames where data were available for all five 

participants. This provided a mean overall kinematic profile for each DOF, as well as 

showing the variation across the cohort. 

To investigate coupling between flexion and the other DOFs (research question 4, 

Section 2.4.9), Pearson’s coefficient (r) was calculated for the relationship between 

flexion and each DOF in turn, then squared to calculate the coefficient of 

determination (r2) – which can range between 0 (no correlation) and 1 (perfect 

coupling). The r2 threshold values in Table 2-5 were used to define the levels of 

correlation between each DOF and flexion. These values were chosen due to their 

use in literature (Moore et al. 2015; Thomeer et al. 2021). 
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Table 2-5 – r2 thresholds for defining correlation with flexion 

Threshold Correlation of the 
DOF with flexion 

r2 ≥0.7 Coupled 

0.5 ≤ r2 < 0.7 Moderately correlated 

r2 < 0.5 Weakly correlated 

 

To investigate research question 5 (Section 2.4.9), the rotation angles output from 

the marker-based motion capture data using the V3D pipeline (Section 2.4.8) were 

compared with the gold-standard rotations from the simultaneous BVR data (Section 

2.4.7) using a Bland-Altman analysis (Altman and Bland 1983). This plotted the 

difference between the rotations (V3D value minus BVR value) at each frame 

against the ‘ground truth’ BVR-calculated rotation for that same frame (Figure 2-30). 

It was chosen to plot against BVR on the x-axis as the BVR was the gold-standard 

for comparison in this instance. This allowed the distributions of the differences in 

V3D-calculated rotations to be visualised, including underestimation and 

overestimation. The median and limits of agreement – ±1.45 times the interquartile 

range (IQR) – were calculated as part of the Bland-Altman analysis. The differences 

for all participants were collated and also plotted as violin plots to help visualise the 

range of differences (Figure 2-30). 
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2.4.11 VISUALISING MOTION CAPTURE MARKERS IN THE BVR 

COORDINATE SPACE 

To help answer research question 5 (from Section 2.4.9) and explore the relationship 

between BVR and motion-capture kinematics, it was useful to visualise the motion 

capture marker positions relative to the underlying bone poses defined from image 

registration. As errors in anatomical landmark placement can propagate to the bone 

ACS definitions, resulting in constant errors in the subsequent kinematics (Della 

Figure 2-30 – How the Bland Altman and Violin distribution plots are generated. 
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Croce et al. 1999), visual inspection of marker positioning provided insight into how 

these placement errors may have influenced the kinematic outputs in this study. 

The marker locations were visualised along with the BVR bone positions (Figure 

2-31) in the same coordinate space (Section 2.4.3) within the DSX suite (HAS-

Motion, Canada). This was initially done for a static trial to visualise the positions of 

the condyle markers relative to the underlying femur position, as these marker 

positions were used for scaling of the model in relation to the ACS of the knee bone 

segments. The marker positions were then also visualised during dynamic trials to 

investigate their relative locations throughout dynamic movement.  

 

2.5 RESULTS AND DISCUSSION 

The results from five healthy volunteers (3 male/2 female, mean age 47.8 years, 

mean BMI 23 kg/m2) were used to demonstrate the pipeline. For each participant, 

one repeat of each activity was processed (chosen using the criteria in Section 

2.4.6). 

Figure 2-31 – Marker locations (yellow dots) visualised relative to the BVR bone 
positions in DSX (HAS-Motion, Canada). 
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2.5.1 RESEARCH QUESTION 1: HOW WELL DO THE DIFFERENT BVR X-

RAY AND MOTION CAPTURE EQUIPMENT CONFIGURATIONS 

CAPTURE THEIR RESPECTIVE ACTIVITIES? 

Due to a small X-ray capture volume compared to the amount of knee motion during 

typical dynamic activities, it is difficult to capture the entirety of a movement using 

BVR. Hence why portions of a motion are typically targeted (e.g. stance phase of 

gait) using unique setups to optimise capture of each specific activity. For this reason 

it is important to investigate the performance of individual equipment configurations 

and activity combinations (Research Question 1 - Section 2.4.9), as capture quality 

will differ due to the path of the knee through the X-ray capture volume, influenced 

by individual variation in movement.  

The percentage coverage of the targeted portion of each pilot activity was 

investigated to demonstrate the effectiveness of the X-ray configurations for 

capturing their respective activities. For gait and stair ascent, this was % stance 

phase, and for lunge it was % lunge (with 0-100% representing HS-TO). The 

percentage where image registration was possible for each of the five participants 

was calculated, along with the mean percentage coverage of the cohort and the 

percentage coverage where data was available for all five participants (Table 2-6). 

Table 2-6 – Percentage of total stance phase (or lunge) captured by BVR for each 
participant and the mean of the five participants for each activity. (Frames captured 

outside of stance phase - HS to TO - ignored in these calculations) 

 

 Gait (%) Stair ascent (%) Lunge (%) 

HV001 62 92 87 

HV002 42 100 82 

HV003 55 62 63 

HV004 59 100 80 

HV005 53 88 78 

Mean 54 88 78 
% coverage of frames 

with data for all  
five participants 

23 49 62 
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Table 2-6 shows variation in percentage coverage across the activities with level gait 

presenting the lowest mean coverage of all three activities (mean = 54%), as well as 

the lowest absolute percentage stance captured (42%). This low percentage 

coverage was due to the higher amount of horizontal movement through the imaging 

volume compared to the other activities. The part of stance phase captured during 

level gait was also not consistent across the different participants (as seen in Figure 

2-33 in Section 2.5.2) resulting only 23% of the total stance phase where data were 

available for all five participants simultaneously (occurring at approximately 40-60% 

stance). This was due to variations in foot placement on the force plate below the 

X-ray equipment, affecting the path of the knee through the X-ray volume changing 

which portion of stance was captured, highlighting the difficulty in repeatability when 

using BVR to capture level gait in this configuration.  

Aiming to reduce this error and increase the consistency of percentage stance 

captured, later participants were unblinded to the desired foot placement location 

(Section 2.3.6). Although this is not ideal as it may alter natural walking, the 

kinematic results from HV003, HV004 and HV005 cover a more consistent region of 

stance phase (Figure 2-33) suggesting that this unblinding had the desired effect of 

creating greater consistency of data collected between participants. 

Another limitation of the level gait setup was occlusion, with the contralateral limb at 

least partially obstructing the imaged knee in one X-ray view in about half of all 

collected frames. However, the BVR system configuration was optimised to prevent 

complete occlusion in both views at once, ensuring at least one clear image for 

registration throughout (Figure 2-32). Despite this, the occlusion likely reduced 

image registration accuracy, as both views are needed for precise 3D bone 

positioning.  
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Like level gait, the stair ascent activity also suffered from occlusion of the 

contralateral limb. A similar pattern of occlusion occurred, with the target limb being 

obscured in one X-ray view, then in the other X-ray view (Figure 2-32), again aiming 

for minimal frames where the target knee was occluded in both images at once.  

Again, like level gait data capture, the entirety of the stance phase was not captured 

for all five participants during stair ascent. However, there was a larger proportion 

where data were available for all participants (49% compared to 23% for level gait, 

Table 2-6) and a larger percentage of stance phase was covered by each of the 

Figure 2-32 – Three phases of occlusion of the image knee by the contralateral limb 
during the stance phase of gait. All images have a level 3 high dynamic range filter applied 

for image clarity. 
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participants individually (mean coverage = 88%). During stair ascent, the knee 

initially moved horizontally (similar to gait), but in the second half of stance phase, 

the knee shifted back towards the centre of the imaging volume as the participant’s 

centre of mass moved vertically. This vertical motion, combined with the shorter 

horizontal step distance on the staircase, resulted in a reduced stride length 

compared to level gait. As a result, the knee remained within the X-ray capture 

volume for longer, enabling a greater proportion of the stance phase to be recorded. 

Stair ascent was the only activity to capture the full stance phase for any participant 

(HV002 & HV004). This shows potential to capture a consistent portion of this activity 

across more participants, if repeated in the future.  

Although stair ascent had the highest mean percentage coverage of stance phase, it 

did not have the highest coverage of where data were available for all participants. 

This was due to one participant having data captured prior to stance phase but 

missing the last ~40% (HV003), and another participant not having the first ~10% of 

stance phase captured. This left an overlapping region of 50% of stance phase 

collected for all participants. 

The lunge activity had the largest overlap where data were available for all 

participants (62%, Table 2-6). The participant practiced their lunge to align the 

anterior edge of the knee during peak lunge with the extent of the X-ray volume. 

Therefore, once the knee came into the volume, it remained in the volume 

throughout the lunge until the person began to stand up again, resulting in a 

consistent central portion of the activity captured across the cohort. This also meant 

that this activity did not suffer from any occlusion as the contralateral limb was not 

moved during the lunge. 

The mean percentage covered by all participants for lunge (78%) was lower than 

stair ascent (88%) because the beginning and end of the lunge was cutoff when the 

knee left the X-ray field of view. However, as this activity was intended to look at 

larger knee flexion angles, missing the beginning and end of the activity at the lower 

flexion angles does not affect the intended purpose of the chosen movement. 

Understanding how much of the activity is captured, and which portions are 

captured, with a given setup is important for targeting specific phases of motion. For 

example, to ensure consistent capture of HS during level gait, the position of the 
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BVR equipment relative to the foot position could be adjusted so the frames captured 

are centred around HS instead of mid-stance as they are currently. 

Overall, the effectiveness of the BVR equipment setup to capture dynamic motion 

varied depending on the activity, with level gait being captured poorly but stair ascent 

and lunge having a larger proportion of the activity covered. 
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2.5.2 RESEARCH QUESTION 2A: ARE THE LEVEL GAIT SIX DOF TF 

KINEMATIC TRENDS AND MAGNITUDES FOR THIS COHORT 

CONSISTENT WITH RESULTS PRESENTED IN LITERATURE? 

The six DOF kinematics of the TF joint during stance phase of level gait for the five 

healthy volunteers are shown in Figure 2-33. For each DOF, the mean and ±1 

standard deviation (std) were plotted for all points where data was available for all 

participants. 

The TF joint was found to have a peak of flexion at ~20% stance, before extending 

through to ~60% stance where the knee began to flex again (Figure 2-33a). Flexion 

values ranged from a maximum ~20° to ~-6° (extension). These results were 

consistent with the general patterns reported in literature (Section 1.5.1) where a 

flexion peak of ~15° occurs during early stance, followed by knee extension towards 

neutral (0° flexion), as reported in other studies using BVR to obtain TF kinematics. 

(Kozanek et al. 2009; Gray et al. 2019; Gale and Anderst 2020; Thomeer et al. 2020; 

Thomeer et al. 2021). Similar variation of some participants’ knees remaining flexed 

throughout stance phase, whereas other individuals displayed some joint extension 

Figure 2-33 – Six DOF kinematics of the TF joint calculated for five participants during level 
gait. Mean and ±1 std calculated for all frames where data were available for all participants. 
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towards the end of stance, was also found in studies with larger cohorts (Gale and 

Anderst 2020), suggesting this is representative of natural population variation. 

AA (Figure 2-33b) was found to have the smallest rotational ROM out of the three 

planes; for example, the peak-to-peak ROM (mean ± std) for the cohort during 40-

60% stance was 1.1 ± 0.4° for AA, compared to 8.4 ± 1.9° for FE and 3.3 ± 1.2° for 

IE. This is consistent with literature reporting mid-stance AA ROM of approximately 

1-2 ± 2° (Kozanek et al. 2009; Myers et al. 2012; Kefala et al. 2017; Gale and 

Anderst 2020; Hamilton et al. 2023). Adduction was described as having a non-

descript profile throughout stance phase (Kozanek et al. 2009; Gray et al. 2019; Gale 

and Anderst 2020; Thomeer et al. 2020; Thomeer et al. 2021) which was also seen 

in this cohort. On average, the knee was found to be slightly adducted throughout 

stance, however one participant displayed greater adduction throughout (HV003) 

and one participant (HV002) displayed abduction throughout. 

The tibia was generally found to be internally rotated relative to the femur in most of 

the participants, but one participant (HV002) displayed external rotation instead 

(Figure 2-33c). This variation was also seen by Gale and Anderst (2020) who 

reported individual differences ranging from only internal rotation throughout stance 

to only external rotation. This DOF displayed the second largest rotational ROM, 

after flexion. Cohort mean internal rotation during 40–60% stance was 0–2°, similar 

to the ranges reported in the literature which generally found the knee to be internally 

rotated on average (~0–5°) during stance (Kozanek et al. 2009; Kefala et al. 2017; 

Thomeer et al. 2021), or found the mean IE rotation to fluctuate around 0° for the 

majority of stance (Gray et al. 2019; Thomeer et al. 2020). However, one study found 

the mean of their cohort to be externally rotated (by ~1-5°) for the majority of stance 

phase, with mean internal rotation (by ~2°) only occurring at terminal stance (Gale 

and Anderst 2020). 

Figure 2-33e shows that the tibia was found to be translated anteriorly relative to the 

femur throughout stance phase of gait, with the mean translation around 4-5 mm 

during 40-60% stance. This was within the mean anterior translation range 

presented in literature of ~1-7 mm during mid-stance (Kozanek et al. 2009; Gray et 

al. 2019; Gale and Anderst 2020; Thomeer et al. 2020; Thomeer et al. 2021). The 

overall trend of this cohort was a slightly increasing anterior translation through 
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stance phase. Other BVR studies also found anterior translation during stance 

phase, but found the opposite trend of a slight decrease in anterior translation 

instead of a slight increase (Gray et al. 2019; Gale and Anderst 2020; Thomeer et al. 

2020; Thomeer et al. 2021). Although the overall trends found were different, as the 

magnitudes of AP translation ROM found were small (~5 mm), the impact of these 

differences on overall knee motion is likely minimal. Further investigation with a 

larger cohort would be needed to see if this difference in trend is seen consistently 

with this methodology. 

The tibia was found to be laterally translated during stance phase for all participants 

(Figure 2-33d). The absolute value of lateral translation during stance phase was 

large compared with the relative changes seen.  

CD was seen to have only a small ROM in each participant, but with variation in the 

absolute values seen between participants (Figure 2-33f).  

The six DOF TF kinematics were also compared as changes from the relative bone 

position from the MRI by making the femoral and tibial ACSs coincident (Section 

2.4.10) as this was how some BVR studies have presented their results (Gray et al. 

2019; Thomeer et al. 2020; Thomeer et al. 2021). The coincident ACS kinematics 

were also plotted against % stance phase (Figure 2-34). Further discussion of how 

the kinematics differ when calculated using separate and coincident ACS definitions 

can be found in Section 2.5.5. 

When comparing the results from the coincident axes, the magnitude of lateral 

translation seen, -1 mm to 2.5 mm (Figure 2-34j), is consistent with the range of -1 

mm to 3 mm found in other studies during the stance phase of gait (Gray et al. 2019; 

Thomeer et al. 2020; Thomeer et al. 2021).  
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For CD there was a slight trend of compression, transitioning to slight joint distraction 

throughout the stance phase (Figure 2-34l). This was not seen in literature where 

mean compression of ~1-2 mm was found throughout the whole of stance phase 

(Gray et al. 2019; Thomeer et al. 2020; Thomeer et al. 2021). When defined from 

coincident axes, CD translation was found to have the smallest peak-to-peak 

translational ROM of 1.1 ± 0.6 mm (mean ± std), compared to 1.5 ± 0.5 mm for ML 

and 1.6 ± 0.7 mm for AP, which was consistent with literature findings (Kozanek et 

al. 2009; Thomeer et al. 2020; Thomeer et al. 2021; Hamilton et al. 2023). 

Overall, the six DOF kinematics observed during level gait were generally consistent 

with the patterns and magnitudes described in literature, although due to the 

variation seen within this cohort a larger number of participants would be needed to 

confirm the similarity of the mean profiles with those presented in literature. 

 

Figure 2-34 – Six DOF TF kinematics calculated using coincident ACSs for the femur 
and tibia. 
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2.5.3 RESEARCH QUESTION 2B: ARE THE STAIR ASCENT SIX DOF TF 

KINEMATIC TRENDS AND MAGNITUDES FOR THIS COHORT 

CONSISTENT WITH RESULTS PRESENTED IN LITERATURE? 

The six DOF kinematics of the TF joint during stance phase of a stair ascent for the 

five participants are shown in Figure 2-35. 

Flexion across all five participants displayed a similar profile (Figure 2-35a), with the 

knee being flexed (~50°) at HS, increasing to peak flexion (mean peak = 61.8°) at 

around 20% stance phase, before the knee began extending until about 75% stance 

where flexion remained relatively constant until just before TO. At the lowest point of 

flexion, during the final 25% of stance phase, of the four participants that had BVR 

collected during that section of stance, two participants remained slightly flexed, 

whilst the other two had slight extension of the knee. These flexion profiles were 

generally consistent with those presented in literature (Tsai et al. 2011; Li et al. 2012; 

Suzuki et al. 2012; Li et al. 2013; Thomeer et al. 2021), with the peak flexion 

Figure 2-35 – Six DOF TF kinematics calculated for five participants during stair ascent. 
Mean and ±1 std calculated for all frames where data were available for all participants. 
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occurring within the range of percentage stance seen in literature and with a mean 

peak flexion magnitude of 61.8° sitting in the middle of the range presented in 

literature (50-70°). The steady decrease in flexion angle, followed by a steady period 

at around ~10° and a slight increase seen in some participants just before TO was 

also consistent with the patterns seen by other studies (Tsai et al. 2011; Thomeer et 

al. 2021). 

As observed for level gait, AA had a non-descript profile. The mean angle was 

adducted throughout by ~0.5-1.5° (Figure 2-35b) which was slightly lower than the  

1-5° mean adduction range presented in literature (Li et al. 2012; Thomeer et al. 

2021). AA also had the smallest ROM of the three rotational DOFs, with the mean 

peak-to-peak ROM ± std (where data were available for all participants) being 2.4 ± 

1.3° (compared to 44.0 ± 6.8° for FE and 7.8 ± 3.3° for IE).  

The mean IE rotation of the knee from this dataset (Figure 2-35c) presented internal 

rotation throughout the whole of stance phase, with the mean internal rotation 

decreasing throughout from 12.9° to 5.9°, matching the ranges of ~4-18° of internal 

rotation seen in literature that followed the same pattern of decreasing internal 

rotation (Tsai et al. 2011; Li et al. 2012; Thomeer et al. 2021). Although the mean 

rotation angle was consistent with literature, a wide ROM was seen across the 

cohort. All participants remained internally rotated throughout stance phase, except 

HV002 who externally rotated their knee during the last 40% of stance.  

Again, as observed for level gait, all participants presented lateral translation 

throughout stance phase of stair ascent (Figure 2-35d). Most participants displayed 

slight anterior translation (Figure 2-35e), however this was not exclusively seen, as 

seen in level gait. Figure 2-35e shows an overall trend of increasing anterior 

translation across stance phase of stair ascent. 

When compared to the other studies that have presented the translations as 

changes of the position of the bone origins relative to one another, the mean 

translation was anterior in both this cohort and the literature. However, this cohort 

had a lower mean anterior translation (~-0.5 to -2 mm) compared to literature, where 

an initial peak (~5 mm) was followed by a decrease toward ~0 mm (Tsai et al. 2011; 

Thomeer et al. 2021). In contrast to that trend, the mean translation in this cohort 

increased anteriorly. 
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The mean ML translation was found to be non-descript with little variation due to the 

diverging profiles between participants at the start of the activity. This mean 

remained slightly laterally translated throughout, remaining around 1mm, which was 

similar to the results presented by Li et al. (2012). 

Like with ML translation, the mean CD value remained fairly consistent (around 

1 mm compression) due to the variation seen between participants at the start of the 

activity. The mean sat between the profiles presented in literature (Tsai et al. 2011; 

Thomeer et al. 2021).  

Generally, the mean kinematic profiles seen across the six DOFs were consistent 

with results in literature (Tsai et al. 2011; Li et al. 2012; Suzuki et al. 2012; Li et al. 

2013; Thomeer et al. 2021). However, with only a few studies presenting in-vivo 

kinematics of stair ascent using BVR, it is challenging to define the expected 

variation across participants. Particularly, for the translations where diverging 

kinematic profiles are seen during the higher flexion angles (Figure 2-36), it is hard to 

Figure 2-36 – Six DOF TF kinematics calculated using coincident ACSs during stair ascent. 
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get a true mean and know if these profiles are representative of a typical healthy 

population or not. 

2.5.4 RESEARCH QUESTION 2C: ARE THE WEIGHTBEARING LUNGE 

SIX DOF TF KINEMATIC TRENDS AND MAGNITUDES FOR THIS 

COHORT CONSISTENT WITH RESULTS PRESENTED IN 

LITERATURE? 

A dynamic, weightbearing lunge was chosen as an activity as part of this pilot 

protocol as it provided an unobscured view of the bones in the knee throughout the 

whole activity (unlike gait and stair ascent where the contralateral limb crosses the 

target limb for a portion of stance phase). It also enabled investigation of the 

secondary DOFs during higher values of flexion, which is important as deep flexion 

activities have been highlighted as a key outcome for TKR patients (Weiss et al. 

2002; Huddleston et al. 2009; Galvin et al. 2018). 

The six DOF kinematics of the TF joint during a weightbearing, dynamic lunge are 

shown in Figure 2-37. The % lunge displayed on the x-axis was defined as the 

period where the participant was weightbearing and making contact with the force 

plate – similarly to how stance phase was defined for the other two activities (Section 

2.4.8). 
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Figure 2-37a shows that there was a large range in the maximum TF flexion that 

each participant reached during their lunge (64 - 110°). As each participant was 

instructed to lunge as deeply as they felt comfortable with, the maximum flexion 

angle achieved varied greatly between participants. To investigate larger or a more 

specific range of flexion angles, it may be better to utilise an open-chain flexion 

activity, as this may allow less-confident participants to achieve higher flexion 

angles. However, this does neglect the effects of weightbearing on joint kinematics 

so may not be suitable depending on the research question. Alternatively, squatting 

and kneeling have been shown to present similar kinematic motions (Galvin et al. 

2018) which would allow analysis of the same range of deep flexion but may present 

similar obstacles to a weightbearing lunge of difficulty performing the full movement 

and balancing for OA sufferers and TKR patients. 

This inconsistency in maximum flexion angle reached was also seen across the 

studies in literature, with some reaching much higher values of flexion than others as 

Figure 2-37 - Six DOF TF kinematics calculated for five participants during a 
weightbearing lunge. Mean and ±1 std calculated for all frames where data were 

available for all participants. 
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some studies modified a typical lunge to reach deeper flexion (Leszko et al. 2011; 

Hamai et al. 2013), whereas others only measured to 90° flexion (Myers et al. 2012). 

The lack of consistency between studies and participants makes comparisons 

difficult, so only general overall trends should be evaluated. 

The other 5 DOFs showed variation between participants. The mean profile for AA, 

AP, and CD displayed relatively little change during the lunge, each displaying a 

non-descript profile. IE rotation had a slight increase in internal rotation towards the 

peak of the lunge (Figure 2-37c); a similar profile was seen in an increase in lateral 

translation towards the maximum flexion value, but this was not consistent across all 

participants (Figure 2-37f). 

The large variation was still seen when the kinematics were calculated using the 

coincident axes, with only AP displaying a particular reduction in ROM (Figure 2-38). 

Activities involving smooth flexion-extension cycles, such as lunging or open-chain 

flexion, are often used to investigate the relationship between flexion and the other 

five DOFs in the knee (Leszko et al. 2011; Hamai et al. 2013; Kefala et al. 2017; 

Hamilton et al. 2022). To compare with the trends seen in literature, each DOF was 

Figure 2-38 – Six DOF TF kinematics calculated using coincident ACSs during a lunge. 
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plotted against flexion (Figure 2-39); this figure is repeated in Section 2.5.6 where 

coupling of flexion with the secondary DOFs is discussed further.  

Three participants (HV001, HV002 & HV004) displayed knee adduction throughout 

the lunge, consistent with literature (Leszko et al. 2011; Qi et al. 2013; Kefala et al. 

2017; Thomeer et al. 2021; Hamilton et al. 2022). These same three participants 

also showed an overall trend of increasing adduction as flexion increased (Figure 

2-39), also seen by some studies in literature (Leszko et al. 2011; Hamai et al. 2013; 

Qi et al. 2013). However, the remaining two participants showed abduction instead, 

with HV003 in particular demonstrating an opposite trend of increasing abduction 

with increased flexion.  

TF internal rotation was seen throughout the lunge in all the participants, which was 

consistent with literature for the same range of flexion (Leszko et al. 2011; Hamai et 

al. 2013; Qi et al. 2013; Kefala et al. 2017; Thomeer et al. 2021; Hamilton et al. 

2022). 

Figure 2-39 - Six DOF TF kinematics of a lunge (calculated using coincident ACSs) 
plotted against flexion angle. 
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On average, the tibia was translated posteriorly throughout which is the opposite of 

the results presented in literature which showed increasing anterior translation with 

increased flexion (Qi et al. 2013; Kefala et al. 2017; Thomeer et al. 2021; Hamilton et 

al. 2022). As the magnitude of the mean posterior translation was small 

(approximately 1-2 mm throughout) and the expected correlation with increasing 

flexion was not observed, it is assumed that a larger dataset is required to confirm 

consistency with literature.  

The ML translation seemed to be split into two profiles in this cohort (Figure 2-39), 

with one group (HV001, HV002 & HV005) showing lateral translation of the tibia 

which increased with flexion, and another group (HV003 & HV004) showing medial 

translation. The latter is more consistent with literature, with a slight trend of 

increasing medial translation with flexion (Qi et al. 2013; Thomeer et al. 2021; 

Hamilton et al. 2022). Kefala et al. (2017) found variation between participants, with 

a mixture of TF medial and lateral translation during seated knee FE, thus it is 

possible that variation seen in this cohort is representative of the wider population. 

CD was inconsistent between the participants, with some participants showing non-

descript joint compression profiles and others displaying distraction proportional  

increasing flexion which is contrary to other recent findings (Hamilton et al. 2022). 

The high variability of results in the six DOFs of this cohort may indicate usage of 

different coordination strategies, possibly arising from the inconsistent performance 

of the activity due to the lack of specific instructions. The lunge length, maximum 

flexion angle achieved and speed of their lunge may all have affected participant 

movement and balance during their lunge, increasing the observed differences. A 

more consistent way of carrying out this activity to remove extraneous variables 

would allow for easier comparison and interpretation of the data.  

In conclusion, the kinematics calculated during lunging for these five participants had 

varied similarity with literature. For example, the consistent internal rotation observed 

matched literature (Leszko et al. 2011; Hamai et al. 2013; Qi et al. 2013; Kefala et al. 

2017; Thomeer et al. 2021; Hamilton et al. 2022), however the posterior translation 

calculated contradicted reported trends (Qi et al. 2013; Kefala et al. 2017; Thomeer 

et al. 2021; Hamilton et al. 2022). The inconsistency of the execution of the lunge 
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between participants may have contributed to the differences seen across the 

cohort. 

2.5.5 RESEARCH QUESTION 3: HOW DOES CHANGING THE ACS 

REPRESENTATIONS ALTER THE KINEMATIC OUTPUTS? 

As discussed in Chapter 1.3.3, translations of the TF joint are not always presented 

in literature using the standard Grood and Suntay (1983) conventions, and can be 

presented as changes relative to an original coincident point instead. By presenting 

the kinematics calculated using both separate and coincident ACSs, the effect of 

altered coordinate system definition can be investigated. 

To investigate the variation in the kinematics calculated using separate and 

coincident ACSs (research question 3, Section 2.4.9), the overall cohort ROM was 

calculated by subtracting the minimum value of any participant from the maximum 

value of any participant for each DOF, for each activity (Table 2-7). 

Table 2-7 – Overall Cohort ROM (overall maximum – overall minimum value) for the 
three activities comparing the two ACS definitions. A positive difference indicates the 
separate ACSs resulted in a larger kinematic ROM; a negative difference indicates 

the coincident ACSs resulted in a larger ROM. 
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Flex (°) 26.98 26.37 0.61 62.18 62.73 -0.55 78.32 79.16 -0.84 

Abd (°) 10.80 4.08 6.72 7.95 9.64 -1.69 8.50 12.21 -3.72 

Ext (°) 18.59 12.43 6.15 22.67 15.94 6.73 20.69 16.47 4.22 

Lat (mm) 10.64 4.06 6.58 13.50 11.73 1.77 14.58 13.20 1.39 

Ant (mm) 6.90 4.05 2.85 8.66 5.00 3.66 7.56 6.06 1.49 

Dist (mm) 10.53 4.27 6.27 10.25 4.65 5.60 7.89 6.85 1.04 

 

Table 2-7 shows there was little difference in the flexion ROM between the two 

methods calculated during any of the activities (all differences were within 1°). This 

would suggest that the separate tibia ACS had a similar alignment to the femoral 
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ACS in the sagittal plane leading to minimal observed flexion differences when they 

were made coincident. This was likely due to the placement of the leg within the 

Tx/Rx Knee 15 Flare MRI Coil, resulting in a neutral knee flexion angle (0°) for the 

CISS-3D scan (Section 2.2), from which the coincident axes were defined.  

Although the ROMs showed minimal differences during level gait, the flexion 

magnitudes from the coincident ACSs (Figure 2-34g) were lower than when 

calculated using separate ACSs (Figure 2-33a), although they still displayed a similar 

overall profile.  

For level gait, the ROM when the changes are defined using coincident axes were all 

Found to be smaller than when using separately defined axes in all six DOF (Table 

2-7). However, this was not true for the other two activities. For both stair ascent and 

lunge, the abduction ROM was greater when calculated using the coincident axes.  

Abduction had the smallest rotational ROM during all the activities, demonstrating 

that even small differences in axis definition can substantially affect the calculated 

range for lower-magnitude motions. This highlights the sensitivity of certain DOFs, 

particularly abduction, to ACS setup and reinforces the need for consistency in axis 

definitions when comparing results across studies or applications. 

When analysing the three translational DOFs calculated using the Grood and Suntay 

(1983) approach (Figure 2-33), the translational ROMs were comparable to those 

found in the literature (Gale and Anderst 2020). They display large magnitude, and 

ranges of magnitude, relative to the ROMs in all three planes. This is representative 

of the variation in knee size across participants, resulting in variation in absolute 

translational values seen as the bone size differences, will cause offsets in the 

relative positions and rotations of the femur and tibia ACSs. This is seen most clearly 

in CD (Figure 2-33f) where the translations of 20-30 mm were a result of defining the 

femoral ACS between the condyles and the tibial ACS on the tibial plateau.  

By making the femoral and tibial ACSs coincident (as described in Section 2.4.7), the 

kinematics could be described as changes from a coincident (neutral) position, as 

defined from the MRI scan knee alignment, thus reducing inter-participant variation 

caused by differences in bone sizes. This resulted in smaller translational ROM 

during all activities (Table 2-7) because, when calculated from the coincident starting 

point, the translations only represent the relative motion of the bones, removing any 
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influence of initial ACS offset on translation magnitudes. This is the reason why 

translational DOFs are often presented as changes from a coincident set of axes in 

the literature (Gray et al. 2019; Thomeer et al. 2020; Thomeer et al. 2021). It is also 

why the coincident ACS definition here resulted in secondary kinematics being closer 

to neutral (0°/mm) in all five secondary DOFs.  

As the ROMs for the translational DOFs were small across all three activities, 

identifying trends from this dataset should be done cautiously, as the results are of a 

similar magnitude to the accuracy of BVR. 

In addition to affecting the ROM, altering the ACS definitions also influences the 

kinematic patterns seen in the secondary DOFs. For example, during stair ascent, 

using separate ACSs resulted in generally consistent variation across the entire 

activity in the secondary DOFs (Figure 2-35). Whereas, when using the coincident 

ACS definitions, AA, ML, and CD demonstrated greater variability between 

participants at the beginning of stance phase when flexion was high, before 

converging more towards the end of stance phase where the flexion angle was lower 

and was changing less (Figure 2-36).  

The differences seen between the kinematics when calculated using these two 

different ACSs definitions demonstrates the importance of consistency in ACS 

choice when comparing kinematics between methods. Different ACS definitions may 

be more appropriate for certain applications, for example, if using marker-based 

motion capture data, it may be more appropriate to define the joint from a single 

coincident set of axes rather than two separate axes. 

2.5.6 RESEARCH QUESTION 4: DO THE SECONDARY TF KINEMATICS 

(ALL DOFS EXCEPT FLEXION) COUPLE WITH FLEXION? 

To investigate the coupling between flexion and the other DOFs (Question 4, 

Section 2.4.9), each of the kinematics calculated using the coincident ACSs were 

plotted against their flexion values at each frame (Figure 2-40, Figure 2-41 & Figure 

2-42) and coefficient of determination (r2) was calculated (Section 2.4.10) for each 

activity (Table 2-8).  
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Figure 2-40 shows each DOF plotted against flexion for all frames of level gait for 

each participant. These results highlight the variation in how secondary kinematics 

are related to flexion angle in different participants. Some DOFs, such as abduction, 

external rotation and distraction, display an overall decreasing trend with increasing 

flexion, however, on examination of individual results, this pattern is less clear.   

The overall trends observed for the level gait activity were not observed across the 

other activities. When looking at the secondary DOFs for stair ascent (Figure 2-41), 

the variation in secondary kinematics between participants increases as flexion 

increases. This is seen particularly in abduction and lateral translation where the 

results are converged (at around 0° flexion) then diverge as flexion reaches its peak 

for this activity.  

Figure 2-40 – Six DOF TF kinematics of level gait (calculated using coincident ACSs) 
plotted against flexion angle. 
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Looking at the individual profiles, there is some apparent correlation between the 

diverging kinematics. For example, HV001 displays an overall decrease in abduction 

with increasing flexion during stair ascent, with the largest adduction value of the five 

participants at peak flexion; HV001 also had the highest lateral translation which 

increased with increasing flexion. HV003, however, presented the opposite of both 

these trends, with increasing adduction and medial translation (reaching the highest 

values of the cohort for both of these). These results suggest potential relationships 

between some of the secondary DOFs and further investigation is required to fully 

describe knee motion. 

As with stair ascent, greater variation was seen between participants when plotting 

the secondary kinematics against flexion during lunge (Figure 2-42), than during 

level gait. The trends seen for abduction, lateral translation and distraction for each 

individual follow a fairly consistent path for the increase (solid line) and subsequent 

decrease (dashed line) in flexion, even if each participant’s kinematic profile is 

Figure 2-41 - Six DOF TF kinematics of stair ascent (calculated using coincident 
ACSs) plotted against flexion angle. 
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different. However, this consistency is not seen in external rotation where there is a 

difference in the profile between the increase (solid line) and the decrease (dashed 

line) in flexion, with all participants displaying larger internal rotation when lunging 

forward than when they were returning to an upright position. This increased internal 

rotation during the flexion increase may be to stabilise the knee during weight 

acceptance. 

From literature, clear trends were shown for several of the secondary DOFs when 

plotted against knee flexion angle during weight bearing or open-chain flexion 

activities. This included increasing internal rotation of the tibia relative to the femur 

with increasing flexion (Leszko et al. 2011; Hamai et al. 2013; Kefala et al. 2017; 

Hamilton et al. 2022). Although this was not seen in the whole cohort, some of the 

individual kinematic profiles (for example, HV001) displayed this trend (Figure 2-42). 

The r2 values of each DOF for each activity are presented in Table 2-8. These were 

evaluated against the threshold values of ≥0.7 to define coupling (highlighted in 

green), 0.5 ≤ r2 < 0.7 for moderate correlation (highlighted in yellow) and < 0.5 for 

Figure 2-42 - Six DOF TF kinematics of a lunge (calculated using coincident ACSs) 
plotted against flexion angle. (This figure is the same as Figure 2-39 in Section 2.5.4) 



124 
 

weak correlation between a secondary DOF and flexion (Section 2.4.10). R2 is 

presented per activity for each participant, then the mean of the five individual r2 

values for the activity, followed by the r2 of all data from all participants pooled 

(combined), and finally the r2 of the mean kinematic profile (where data were 

available for all five participants). 

Table 2-8 - Coefficient of determination (r2) between flexion and each DOF for the 
three different activities.  

r2 Gait 
FE AA IE ML AP CD 

HV001 1.000 0.798 0.896 0.874 0.697 0.903 
HV002 1.000 0.234 0.586 0.493 0.112 0.593 
HV003 1.000 0.403 0.015 0.397 0.470 0.988 
HV004 1.000 0.379 0.759 0.430 0.475 0.932 
HV005 1.000 0.199 0.384 0.025 0.743 0.333 
Average (mean) 1.000 0.403 0.528 0.444 0.499 0.750 
Combined 1.000 0.399 0.116 0.093 0.065 0.037 
Mean kinematics 1.000 0.915 0.851 0.401 0.392 0.965 

r2 
Stair Ascent 

FE AA IE ML AP CD 
HV001 1.000 0.933 0.861 0.908 0.206 0.555 
HV002 1.000 0.911 0.954 0.002 0.432 0.850 
HV003 1.000 0.689 0.303 0.879 0.445 0.743 
HV004 1.000 0.683 0.655 0.747 0.468 0.007 
HV005 1.000 0.426 0.091 0.212 0.357 0.003 
Average (mean) 1.000 0.728 0.573 0.549 0.382 0.432 
Combined 1.000 0.259 0.106 0.069 0.049 0.039 
Mean kinematics 1.000 0.390 0.914 0.144 0.466 0.003 

r2 
Lunge 

FE AA IE ML AP CD 
HV001 1.000 0.947 0.756 0.857 0.790 0.670 
HV002 1.000 0.257 0.215 0.489 0.097 0.738 
HV003 1.000 0.816 0.219 0.031 0.631 0.421 
HV004 1.000 0.303 0.366 0.848 0.086 0.744 
HV005 1.000 0.125 0.003 0.968 0.003 0.731 
Average (mean) 1.000 0.490 0.312 0.639 0.321 0.661 
Combined 1.000 0.061 0.027 0.021 0.016 0.014 
Mean kinematics 1.000 0.011 0.052 0.821 0.408 0.894 
 Coupled  Moderately correlated  Weakly correlated 

‘Average (mean)’ is the mean of the five r2 values of each participant for the given 
activity (the five values above in the column). ‘Combined’ is the r2 of the pooled 

kinematic data points of the whole cohort. ‘Mean kinematics’ is the r2 of the mean 
kinematic profile of the cohort (where data were available for all five participants). 
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The results in Table 2-8 show that the degree of coupling varied between 

participants, activities, and DOFs with no consistent pattern. Some participants, like 

HV001, show high r2 values between flexion and the secondary DOFs during all 

three activities. For HV001, only AP translation during stair ascent was found to be 

weakly correlated to flexion, with all other DOFs moderately correlated or coupled 

across the three activities. However, other participants display weaker correlations in 

general between flexion and the secondary DOFs; for example, HV005 found weak 

correlations of r2= 0.03 for both IE rotation and AP translation during the lunge. This 

suggests that coupling of the secondary coordinates to flexion may be dependent on 

the movement patterns of an individual. 

To investigate coupling with flexion across the cohort, three different metrics were 

calculated. Firstly, the mean of the five individual r2 values was calculated. Next, the 

r2 of all pooled data point values across all participants was calculated. Finally, 

r2 was calculated by inputting mean kinematic profiles of the cohort (including all 

frames where data were available for all participants). Out of these three metrics, the 

combined dataset found the lowest r2 values, with all secondary DOFs weakly 

correlated to flexion during all three activities. This is due to the different trends seen 

between the participants, so although there may be correlations between flexion and 

the secondary DOFs on an individual level, this is not seen when the data are 

pooled. 

When taking the average of the five r2 values, there was some coupling and 

moderate correlations seen between flexion and the secondary DOFs, but it was not 

consistent across the three activities. This was reflective of the inter- and intra-

participant variability in the r2 values calculated across the activities. 

The r2 value of the mean input kinematic profile have the highest levels of correlation 

during level gait of the three metrics. This is likely due to the small number of frames 

of input data where the mean could be calculated from all five participants not 

capturing the variation seen throughout the whole of stance phase. This is the 

method used to calculate coupling between flexion and the other DOFs in literature 

(Kozanek et al. 2009; Gray et al. 2019; Thomeer et al. 2021). Whereas in this study 

adduction was found to be coupled with flexion during stance phase of level gait, it 

was only found to be moderately (Kozanek et al. 2009; Thomeer et al. 2021) or 
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weakly (Gray et al. 2019) correlated with flexion in literature. External rotation was 

only found to be coupled with flexion by one other study (Gray et al. 2019), with the 

others reporting moderate correlation (Kozanek et al. 2009; Thomeer et al. 2021).  

In literature, all the translational DOFs were found to be coupled with flexion during 

level gait (Kozanek et al. 2009; Gray et al. 2019; Thomeer et al. 2021), however in 

this cohort, only compression was found to be correlated with flexion; anterior and 

medial translation were both found to be weakly correlated with flexion.  

For stair ascent, the only secondary DOF coupled with flexion was external rotation, 

with all other DOFs weakly correlated. This disagreed with the results presented by 

one other study (Thomeer et al. 2021) which found all secondary DOFs to be at least 

moderately coupled with flexion during stair ascent.  

During lunging, the mean kinematic profile was found to be coupled with flexion for 

medial translation and compression but weakly correlated for the other secondary 

DOFs. Both rotational DOFs were found to have very weak correlations (r2 <0.1). In 

contrast, Thomeer et al. (2021) found coupling between flexion and all five 

secondary DOFs during a different high flexion activity (open-chain flexion reaching 

around 100°) with r2 values >0.8. This suggests that although the lunge provides a 

high flexion ROM to calculate coupling with, it may not be suitable as weightbearing 

changes the kinematic profile during the increase and decrease of flexion (as seen 

with external rotation in Figure 2-42). 

Despite r2 being calculated from the mean kinematic profile in literature, the results in 

Table 2-8 suggest it may not be the most suitable method for assessing coupling 

between flexion and the secondary DOFs for a cohort due to the variation seen in 

levels of correlation between individuals. When the mean profile of all kinematics is 

used for this calculation, the opposing trends within the dataset cancel each other 

out and remove some of the variation seen. Calculating the cohort mean after the r2 

values have been calculated individually may give a better representation of the 

coupling for the cohort as this will reflect the participants with strong and weak 

correlations. Particularly for this study where the number of participants was small 

and the mean could only be calculated over part of stance phase, the r2 of the mean 

kinematic profile is not a good representation of relationship between flexion and the 

other DOFs. 
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Another factor affecting the strength of correlation would be the filtering applied to 

the output kinematics. Heavier filtering would smooth the data more, increasing the 

chance of the r2 value exceeding the threshold for coupling. As the data in this study 

was lightly filtered to preserve kinematic features, residual noise may be contributing 

to lower r2 values. 

Understanding the coupling between flexion and the secondary DOFs facilitates 

correct modelling of knee function and its relation to anatomy (Koo and Koo 2019; 

Thomeer et al. 2021), particularly when using the assumption of coupling to drive 

MSMs. If the coupling relied on to improve MSM estimates of TF motion compared 

with marker-based motion capture (Smith 2017; Hume et al. 2018) does not exist, 

then the resulting kinematics generated will not be representative of in-vivo motion. 

For example, in this study, anterior translation was only weakly correlated with 

flexion across all three activities for the three average cohort metrics, as well as for 

all five participants during stair ascent. This suggests that anterior translation may 

not be accurately predicted by a function of flexion. 

While weakly correlated DOFs may not be well captured by generic functions of 

flexion, the variation observed between participants in the relationships between 

flexion and each secondary DOF (Figure 2-40, Figure 2-41 & Figure 2-42) suggests 

that personalisation within MSM pipelines could still be valuable. Pipelines that use 

scaled models or incorporate personalised geometries to create individualised 

functions of flexion (such as the ones described in Chapter 3) may better represent 

participant-specific coupling patterns and, therefore, capture the individual kinematic 

variations. 

2.5.7 RESEARCH QUESTION 5: HOW DO MARKER-BASED MOTION 

CAPTURE TF ROTATIONS COMPARE TO THE GOLD-STANDARD 

IN-VIVO BVR RESULTS? 

To investigate the accuracy of the marker-based motion capture rotations, the results 

from the V3D pipeline (Section 2.4.8) were compared with the BVR kinematics, 

defined as a ‘gold-standard’. This is because the BVR approach is expected to 

produce higher fidelity data (Sati et al. 1996; Stagni et al. 2005; Akbarshahi et al. 

2010; Tsai et al. 2011). Although the accuracy of marker-based motion capture for 

the knee has been well documented (Sati et al. 1996; Reinschmidt et al. 1997a; 
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Stagni et al. 2005; Akbarshahi et al. 2010; Tranberg et al. 2011; Tsai et al. 2011; 

Miranda et al. 2013; Hume et al. 2018), it was included as part of this study because 

it provides a comparator for potentially improved secondary kinematic predictions 

(from the same data collection sessions) for use in the MSM pipeline utilised in a 

later chapter (Chapter 3). 

For this comparison, the V3D rotations were compared with the BVR kinematics 

calculated using the coincident ACSs as this relates to how the knee joint is defined 

in the V3D model (Section 2.5.5). 

The mean rotations ±1 std from the V3D and BVR pipelines were plotted for each 

activity (Figure 2-43, Figure 2-44, Figure 2-45). For clarity, the individual kinematics 

were plotted along with the mean ±1 std for BVR in the first column and V3D in the 

second column, with the mean ±1 std for both plotted in the third column for each of 

the three activities in turn. The results of the Bland-Altman analysis (Section 2.4.10) 

for each rotational DOF were included as a fourth column. The Bland-Altman 

analysis presents the difference between the V3D rotation and the BVR rotation at 

each frame (where both were calculated), plotted against the gold-standard BVR 

‘ground-truth’ value. The median difference and ±1.45 interquartile range (IQR) of 

the whole dataset are also indicated on each Bland-Altman plot.  

Only the TF rotations were included in this analysis as translations are not typically 

reported from marker-based motion capture due to the known inaccuracies 

associated with the technique. Previously reported translational errors between 

marker-based and BVR calculations are around 20 mm (Miranda et al. 2013; Hume 

et al. 2018), thus significantly larger than the expected ROM in these DOFs, Marker-

based motion capture is therefore unsuitable for measuring translations.
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Figure 2-43 – TF rotations during gait calculated Visual3D compared with BVR, with individual results as well as mean ±1 std plotted 
for comparison. Bland-Altman analysis results are also included in the fourth column. 
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Figure 2-44 - TF rotations during stair ascent calculated Visual3D compared with BVR, with individual results as well as mean ±1 std 
plotted for comparison. Bland-Altman analysis results are also included in the fourth column. 
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Figure 2-45 - TF rotations during lunge calculated Visual3D compared with BVR, with individual results as well as mean ±1 std plotted 
for comparison. Bland-Altman analysis results are also included in the fourth column. 
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As seen in the graphs presented in Figure 2-43, the V3D calculated flexion angle 

during level gait is higher than BVR by a median of 14°. The Bland-Altman plot also 

shows that as the BVR calculated flexion increases, the difference between V3D and 

BVR decreases. The flexion profiles between the recorded section of BVR and the 

V3D angles are generally similar, with a consistent offset. 

For both AA and IE during gait, the ranges calculated by V3D are much higher than 

BVR, reflected in the magnitude of the standard deviations. Despite this, the mean 

values calculated are similar between the two methods, with an absolute median 

difference of less than a degree for both angles.  

For both BVR and V3D, the mean abduction angle remains around 0° for the central 

portion of stance phase of gait (where BVR kinematics were available) with a non-

descript profile in that section. For three of the participants, absolute values of 

abduction are within a couple of degrees of the BVR calculated values, but HV003 

has higher abduction and HV002 has higher adduction causing the standard 

deviation to be larger in the V3D than BVR results. 

External rotation during gait shows the greatest difference out of the three rotational 

DOFs due to the large variation calculated from the marker data. For example, in 

Figure 2-43, the maximum difference found was 17.5° for HV004. 

As with level gait, the V3D results for stair ascent show a similar offset from the BVR 

results, with a median difference of 13° (Figure 2-44). The Bland-Altman plot 

indicated greater differences at the lowest and highest degrees of BVR flexion, while 

mid-range flexion values (10-45°) showed more consistent differences. This pattern 

was also evident in the kinematics graphs, where between ~30-50% of stance 

phase, both V3D and BVR have a similar rate of decrease in flexion angle, though 

with a magnitude that is offset.  

The largest differences occurred at the start and end of each set of collected BVR 

results, corresponding to the region of maximum and minimum flexion angles. V3D 

found the peak of stance during stair ascent to be not only higher in magnitude than 

BVR but also occurring earlier in the stance phase, increasing the differences 

observed at peak flexion. Aside from this difference in occurrence of peak flexion, 

the flexion profiles for each individual were similar between V3D and BVR, just with 

an offset. Despite HV005 exhibiting a higher flexion angle and a more variable rate 
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of change during flexion decrease, both V3D and BVR captured the same variation 

in gradient. 

V3D abduction ROM was larger than the BVR ROM, reflected in the Bland-Altman 

plot where there is a large spread of differences across a small range of BVR 

abduction values.  

Both BVR and V3D mean curves show internal rotation throughout 20-60% stance 

phase of stair ascent, however BVR calculated greater internal rotation compared to 

V3D. For the participants where the final 20% of stance phase was captured by 

BVR, the data shows no further change of internal rotation, whereas the V3D 

calculated an increase into external rotation in the same period. 

Similarly to the other two activities, V3D overestimated flexion during the lunge, with 

the same median difference as observed for level gait (14°) (Figure 2-45). The 

flexion profiles were also similar between the two datasets, with peak flexion 

occurring at a similar percentage of the stance phase for each individual. For 

example, HV005 reached peak flexion later, as they took longer to lunge than to 

return upright. This pattern was reflected in both V3D and BVR flexion profiles. 

HV005 also exhibited the highest flexion of all participants in both datasets, while 

HV004 had the lowest peak flexion in both. The order of participants by peak flexion 

magnitude was the same across both methods, supporting the possibility of a 

consistent offset. 

Both V3D and BVR methods found the knee to be adducted on average during the 

lunge, with both methods showing relatively large standard deviations. V3D generally 

overestimated adduction during lunge. The adduction of one participant in particular 

(HV001) was poorly estimated with the BVR approach calculating the greatest 

adduction out of the cohort, whereas V3D found the same participant to have one of 

the lowest adduction values, with some abduction for a portion of the lunge. 

The knee was found to be externally rotated on average during the lunge, with the 

V3D pipeline displaying a similar profile to the BVR, however the BVR found greater 

internal rotation (by a median of 8.4°) with a lower standard deviation. As with other 

rotations, the accuracy of the V3D-calculated rotation varied between participants. 

For instance, HV002 had one of the highest BVR internal rotations, but V3D 
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calculated it to be externally rotated throughout, significantly affecting the overall 

accuracy of external rotation for this activity. 

The distribution of the differences for each rotation during each activity from the 

Bland-Altman analyses is shown in Figure 2-46, presented as violin plots with 

overlaid box plots to indicate the median difference and ±IQR, along with any 

outliers.  

  Figure 2-46 - Violin plots with overlayed boxplots showing the distribution of the 
differences between V3D and BVR rotations during the three activities.(Flex/Ext = 

flexion/extension, Abd/Add = abduction/adduction, Ext/Int Rot = external/internal rotation) 
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For all three activities, external rotation exhibited the largest range of differences. 

While the median difference for external rotation in level gait was within 1°, for the 

other two activities involving higher flexion, the median difference was 

overestimated, with a wider distribution. Adduction was the most accurate of the 

three rotations with the smallest median difference in all three activities. The 

consistent offset in flexion across the activities is also highlighted in Figure 2-46 by 

the position of the violin plots relative to the 0° difference. 

The limits of agreement (±1.45IQR) in flexion were relatively small compared to the 

ROM in the sagittal plane, whereas the limits of agreement for abduction and 

external rotation were much larger relative to their ROM. External rotation, in 

particular, had a large IQR, highlighting the challenge of estimating this rotation from 

marker-based motion capture data.  

A similar median difference in flexion angle between V3D and BVR derived rotations 

was seen across all activities (Figure 2-43, Figure 2-44 & Figure 2-45), indicating a 

consistent offset in calculation of the V3D flexion angles compared to the gold-

standard BVR flexion. Although other studies have shown overestimation of flexion 

from marker-based motion capture data, with maximum errors of 9° (Miranda et al. 

2013), the differences found in this study were higher than expected, displaying a 

constant offset. 

To investigate if the offset was due to the marker positioning relative to the bone, as 

this is a known cause of a constant offset in marker-based motion capture 

kinematics (Della Croce et al. 1999), the markers were visualised in DSX (HAS-

Motion, Canada) as described in Section 2.4.11 (Figure 2-47).  
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The anterior offset of the femoral condyle markers relative to the underlying bone, 

seen in the static trial (Figure 2-47), was also seen during the dynamic trials.  This 

was consistent with the overestimation of flexion seen in the kinematic results from 

all three activities (Figure 2-43, Figure 2-44 & Figure 2-45). This marker offset 

creates a more anterior ML axis in the V3D model as compared to the BVR bone 

model which could explain the consistent overestimation of median flexion observed 

across all activities.   

The V3D outputs are not only showing a systematic error due incorrect marker 

placement; they are also subject to unpredictable errors in relation to soft tissue 

artefact. The consequences of these combined errors can lead to incorrect 

interpretation of joint ROM, a parameter often used as an indicator of joint health and 

Figure 2-47 – Markers (yellow) visualised in X4D (DSX Suite, HAS-Motion, 
Canada) relative the BVR femur pose from a single frame of a static trial. The 

markers are shown with the bone model (above) and the femur ACS (below) from 
two views (a sagittal view on the left and a transverse view on the right). 

Marker definitions: Med = medial femoral condyle, Lat = lateral femoral condyle, 
Pat = patella, Ankle Med/Lat = medial/lateral malleolus. 
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recovery (Minns 2005; McCarthy et al. 2013; Oka et al. 2020). Furthermore, a higher 

joint flexion angle, calculated by computational models using this data, would lead to 

an anterior shift in the joint contact location on the tibial plateau and increased 

calculated contact forces. 

The impact of the femoral condyle marker misplacement was particularly evident in 

stair ascent at the peak flexion and extension values (Figure 2-44). When markers 

are placed anteriorly on the skin, their movement differs from the underlying bone, 

leading to greater soft tissue artefact, particularly as the skin stretches at peak 

flexion. This explains why the V3D-calculated peak flexion occurred earlier in stance 

phase, as the anteriorly placed skin markers reach their ‘peak flexion’ location earlier 

than the actual underlying bone anatomical markers.  

The findings of this study are consistent with previous research that has reported the 

tendency for overestimation of joint angles when using skin markers (Reinschmidt et 

al. 1997a), particularly for external rotation, which exhibited a large range of V3D-

calculated values compared to BVR-calculated rotations (Figure 2-46). Although AA 

and IE rotations showed good agreement in terms of median differences during gait 

(Figure 2-43), the ROM in each DOF from the V3D results highlights variable 

accuracy. In some participants, differences between V3D and BVR calculated joint 

angles were larger than the magnitude of the rotation calculated from BVR, 

demonstrating the limitation of marker-based motion capture in estimating secondary 

knee rotations. 

Adduction was the most accurate of the three rotations, with the smallest median 

difference across all activities. However, the accuracy of AA varied between 

participants and activities, showing inconsistency in motion capture results. For level 

gait, AA was generally accurate (median = 0.88°), but the results were skewed by 

two participants (Figure 2-43); HV002 had the largest adduction angle calculated by 

V3D, leading to consistently lower differences, below the lower IQR boundary 

of -3.4°, whereas HV003 exhibited greater abduction in the V3D results but remained 

within the upper IQR boundary. However, these extremes were not consistent across 

other activities. For example, during stair ascent and lunge, HV001 had the largest 

absolute differences in abduction (Figure 2-44 & Figure 2-45), further demonstrating 

variability in AA calculation. 
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IE had particularly poor accuracy for stair ascent and lunge (Figure 2-46), with a 

greater IQR than flexion despite having a much smaller ROM. This suggests that 

higher flexion activities introduce greater errors in IE, likely due to increased skin 

motion as the knee flexes. Larger IQRs during stair ascent and lunge were also seen 

in AA and FE, supporting the suggestion that increased skin-motion during deeper 

flexion increases marker-based rotation calculation errors. As with other studies, 

better agreement was found between marker- and X-ray- derived kinematics at lower 

flexion angles (Tranberg et al. 2011; Hume et al. 2018), demonstrated by the higher 

median difference and IQR during the stair ascent and lunge activities than during 

level gait.  

The large variation in the differences for the secondary DOFs are mostly due to STA. 

Skin-marker motion has been shown to vary greatly in relation to the underlying bone 

motion (Sati et al. 1996; Reinschmidt et al. 1997a; Stagni et al. 2005; Akbarshahi et 

al. 2010; Tsai et al. 2011), as well as being subject and task dependent (Akbarshahi 

et al. 2010). These STA errors propagate into the subsequent kinematic results and 

are evident in the results from the variability and range of differences seen across 

the participants and activities, showing one of the key challenges associated with 

skin-mounted markers. As STA errors are not constant, it cannot be accounted for 

when calculating the kinematics, therefore it remains a known limitation of marker-

based motion capture. 

The limits of agreement (±1.45 IQR) are low compared to the overall sagittal plane 

ROM. This is not the same for AA or IE. These findings align with previous research 

investigating the accuracy of marker-derived TF kinematics, which has also 

concluded that while marker-based motion capture provides suitable accuracy for 

measuring flexion, it is not as reliable for the secondary DOFs (Reinschmidt et al. 

1997a; Stagni et al. 2005; Tranberg et al. 2011; Miranda et al. 2013; Hume et al. 

2018). 

Small changes in TF kinematics are often examined when interpreting the impact of 

injury (Moglo and Shirazi-Adl 2005; Ali et al. 2017) or interventions (Schwechter and 

Fitz 2012; Clary et al. 2013b; Heyse et al. 2017). However, large percentage errors 

may limit the usefulness of the secondary rotations for clinical interpretations of gait 

and dynamic movement analysis (Stagni et al. 2005). This highlights the need for 
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alternative methods, such as BVR, to measure knee kinematics accurately and thus 

fully understand bone motion. 

From literature, motion capture has been shown to exhibit rotational errors of up to 

25°(Akbarshahi et al. 2010) and translational errors of up to 30 mm (Miranda et al. 

2013) (Section 1.4.2). In contrast, BVR has demonstrated substantially higher 

accuracy, with reported errors of approximately 1-2° or less for rotational DOFs and 

0.5-1.0 mm or less for translational DOFs (Bey et al. 2006; Anderst et al. 2009; 

Anderst et al. 2011; Pitcairn et al. 2018; Akhbari et al. 2019; Pitcairn et al. 2020). 

These differences in accuracy are particularly relevant in the context of clinical 

decision-making, where surgical tolerances are often small. For example, in total 

knee replacement, post-operative alignment is typically targeted to within ±3° of 

neutral mechanical alignment (Abdel et al. 2014). Accuracy differences are also 

critical in computational modelling, where sensitivity to kinematic inputs has been 

shown to result in changes in contact force, pressure and contact area of 100-200% 

with variations as small as ±0.1° or ±0.1 mm (Fregly et al. 2008). Therefore, accurate 

measurement of in-vivo joint kinematics is essential, along with an understanding of 

how measurement uncertainty may influence both clinical interpretation and model-

based outcomes. 

2.5.8 CHALLENGES AND RECOMMENDATIONS 

BVR based research involves a number of associated challenges, particularly when 

developing new protocols to collect high quality data. From this study, the following 

specific challenges have been identified related to the BVR data collection protocol, 

including collecting marker-based motion capture in a BVR environment, and the 

processing of these data. Alongside these challenges are recommendations are 

suggested to address them.     

BVR data capture and processing challenges 

The main challenges of developing a BVR protocol are associated with the ability to 

consistently capture the same portion of the chosen dynamic motions, with the knee 

clearly visible in both X-ray views for as many frames of motion as possible. This can 

be broken down further into the following challenges:  
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Challenge: Only a limited number of frames were obtained during level gait 
using the current X-ray equipment configuration and the section of stance 
captured was not consistent. 

Level gait is commonly studied using BVR (Kozanek et al. 2009; Gray et al. 2019; 

Gale and Anderst 2020; Thomeer et al. 2020; Thomeer et al. 2021). Locomotion is a 

key activity of daily living and it is therefore important to understand the effect of 

clinical interventions on patient movement including level gait. However, collecting 

level gait data using a typical BVR setup is challenging due to the large level of knee 

motion relative to the X-ray volume. Thus a limited portion of the stance phase can 

be recorded using the current X-ray/camera configuration (mean coverage = 54%, 

Table 2-6). 

In an attempt to address this issue during X-ray capture of level gait in the current 

study, the final three participants were unblinded to the desired location of their foot 

placement on the ground reaction force plate, directly beneath the BVR capture 

volume. A smaller targeted foot placement area on the force plate ensured that the 

knee was maintained centrally in the X-ray images, (Figure 2-12), and unblinding the 

participants to target this area improved the consistency of the stance phase 

coverage.  

This study was the first to attempt to collect and quantify knee kinematics data using 

the new BVR laboratory in Cardiff for comparison with synchronously recorded 

marker-based motion capture and explore the subsequent impact on outputs and 

musculoskeletal models. Therefore, although unblinding participants could potentially 

alter their natural gait; by encouraging targeted foot placement, the benefit of 

increased data collection outweighed this potential limitation. However, despite this 

unblinding, a large portion of the stance phase of gait was still not captured, 

suggesting this could still be improved for future protocols. 

Recommendation: Use of a treadmill to capture walking. 

Although treadmills have been shown to alter walking patterns compared to level 

overground gait (Hollman et al. 2016), they have frequently been used to investigate 

TF kinematics during walking in previous BVR studies (Kozanek et al. 2009; Liu et al. 

2010; Barre et al. 2013; Guan et al. 2016; Guan et al. 2017; Yang et al. 2018; Gale 
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and Anderst 2019; Koo and Koo 2019; Nagai et al. 2019; Gale and Anderst 2020; 

Byrapogu et al. 2022) as they allow for capture of a larger portion of the gait cycle. 

One benefit of the using a treadmill for BVR is the reduced occlusion by the 

contralateral limb as the source-detector pairs can be oriented around the target limb 

as the participant will remain in a consistent, central position relative to the 

equipment. Using a treadmill also reduces the variation in knee location and motion 

relative to the X-ray capture volume, resulting more frames of gait being captured.  

Capturing a greater portion of the activity than is possible with the current 

overground setup would enable better comparisons between participant cohorts (e.g. 

healthy vs pathological volunteers). A treadmill offers a compromise between 

maintaining a natural walking motion and recording a sufficient part of the gait cycle. 

Therefore, it is recommended for future data collection protocol development and 

adoption, that an instrumented treadmill is integrated into the activities.  

Challenge: Image registration issues caused by occlusion of the target bones 
by the contralateral limb or the imaged knee partially leaving the X-ray view 
during dynamic activities. 

In adopting BVR for any desired activity, minimising occlusion by the contralateral 

limb should be integral to the design of BVR configurations to optimise output image 

quality. When both knees overlap in the imaging volume, the bone outlines become 

obscured and the edge detection is unusable, making image registration much 

harder during those frames. BVR configurations should not allow any occlusion of 

the target limb for accurate definition of bone poses throughout the whole activity, 

however this is an ideal and, in reality, would not be practical for all activities.  

Even in activities that do not involve contralateral limb occlusion, like the lunge, 

image registration issues may still arise. For example, despite conducting practice 

trials to ensure appropriate positioning of the knee within the X-ray volume, for some 

participants, the knee moved partially out of frame during the peak of their lunge. 

This affected each trial differently, as the difficulty of image registration varied based 

on how much of the femur and tibia remained in the frame to be matched.  

Recommendation: Choosing X-ray equipment configurations to minimise 
these issues. 
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Where possible, X-ray configurations should be chosen to avoid occlusion of the 

contralateral limb by placing the source-detector pairs so the contralateral limb does 

not cross their path. This is easier to do for activities where the participant does not 

have to move through the volume perpendicular to the X-rays. For example, 

performing level gait on a treadmill allows for one X-ray to image the knee from a 

direct anterior view, which is not possible with overground gait due to the travel 

required. When this is not achievable, consideration of foot placement and knee 

location within the volume may help to minimise the occlusion during certain portions 

of the movement but is not the best option. 

To mitigate image registration challenges due to the knee leaving the X-ray view, 

multiple trial repeats were recorded, and positional adjustments were made between 

recordings to keep the knee in shot as much as possible. However, there is a tricky 

balance between ensuing the knee is fully in frame at all times and moving it too far 

back, which results in capturing less of the activity when the knee is moving from 

lower to higher flexion angles and only recording the peak lunge as the bones come 

into shot later in the movement. Therefore, for future protocols it is recommended to 

practice the movement before X-ray capture, so the participant is confident with the 

activity, and to capture multiple trials to account for variation in human movement.  

Challenge: Inconsistent execution of the lunge activity makes comparison 
between participants difficult.  

By not providing the participant with specific instructions about the length, depth and 

timing of the lunge, the weightbearing lunge was carried out in an inconsistent 

manner by participants during this study. Although these individual parameters could 

be used to differentiate between healthy and pathological cohorts, for example, 

maximum flexion angle has been shown to be lower in OA patients (Wang et al. 

2024), asking participants to aim for their maximum possible lunge may result in 

overbalancing or falling if they have no additional support. However, if the participant 

is only asked to lunge as low as they feel confident to, they may not reach the same 

maximum flexion angle.  

Recommendation: Provide more prescriptive instructions or choose an 
alternative high-flexion activity depending on the research context. 
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Defining of the purpose of the activity within the protocol relative to the research 

question being posed will determine what is asked of the participant. If the primary 

goal of the activity is to understand knee kinematics during a weightbearing 

functional task that mimics daily life, a lunge still may be suitable choice, particularly 

if the instructions are given with more specificity – e.g. a specific lunge length or 

target angle. This should remove some variability from the activity performance and 

make the results more comparable.  

However, when investigating coupling between flexion and the other five DOFs in the 

TF joint, a more controlled, consistent activity, such as a seated knee extension or 

open chain flexion, may be more appropriate. For example, a non-weightbearing 

flexion ROM activity would be more suitable for defining the relationship between 

flexion and the secondary DOFs. 

Challenge: Collection and processing of X-ray static trials.  

A further consideration regarding the X-ray data capture is the positioning of the 

participant’s knee relative to the X-ray detectors during the X-ray static trials. For the 

neutral static data recordings, the static trials proved more difficult to match 

compared to the dynamic trials captured using the same configurations due to the 

orientation of the leg. 

For the level gait and lunge setups, in order to position the leg within the X-ray field 

of view and also prevent occlusion by the contralateral limb while maintaining a 

neutral stance, the leg had to be shifted from a position that would be adopted 

naturally for each particular dynamic activity. As a result, the camera/X-ray 

configuration was not optimised for image registration with the knee in a ‘static’ data 

capture orientation, leading to inconsistencies with subsequent manual matching of 

the bone models to the X-ray video frames.  

This was not relevant for the stair ascent setup as, initially, a static X-ray capture 

was taken with the foot on the first step of the staircase with the knee bent. It was 

later removed from the protocol (for the last three participants) as it was deemed to 

have limited value because the knee was not maintained in a consistent neutral 

position (standing extension) or at a consistent angle of flexion. Given its limited 

benefit with the exposure to ionising radiation, the stair ascent X-ray static was 

excluded from the protocol. 
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Recommendation: Capture X-ray static poses with the leg in a similar 
orientation to its counterpart dynamic movement for a given equipment 
configuration.  

To make image registration between the dynamic and static trials more consistent, 

where possible, the knee should be positioned in the same orientation as it would be 

in for a dynamic trial in a given setup. This is only possible for certain X-ray 

configurations where the contralateral limb will not occlude the target limb in a 

neutral standing position and is not possible with any of the setups used in this 

study. For this reason, when designing future BVR protocols, alternative activity 

setups should be considered for capturing X-ray static trials. 

Challenge: Consistent definition of ACSs to describe knee kinematics. 

As shown in Section 2.5.5, changing the ACS definition alters the kinematics output 

from the pipeline. Therefore, it is important to have a consistent approach for 

describing and defining ACSs and the resulting kinematics. Inclusion of the 

automated algorithm in this study helped achieve this by removing human 

inconsistency in ACS application whilst also speeding up this part of the process. 

However, the algorithm was not consistent when identifying the ACS axes for the 

initially input partial bone models (Section 2.4.3).  

Recommendation: Use automatic algorithms with full bone models (or 
anatomical landmarks) to generate consistent ACSs between participants. 

Using full bone models, or alternatively hip joint centre or medial malleolus ankle 

landmarks, improved the consistency of the ACS generation by the algorithm. This 

removed the crosstalk errors between the planes in the subsequent six DOF 

kinematics calculated. 

For this reason, it is recommended that a long leg scan is included for future 

research to allow for segmentation of the full bone models. If full bone models are 

not available, inclusion of as much of the bone shaft as possible is recommended, as 

well as ensuring that the shaft cut is parallel to the femoral condyles or tibial plateau 

to help the automated algorithm correctly orient the plane used to calculate the axes. 
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Marker-based motion capture challenges 

Challenge: Marker dropout due to BVR equipment blocking camera views. 

As this was a pilot study, there were several iterative updates to the data collection 

protocol with the aim to improve the quality of the output data. For example, the data 

collection session for the first participant suffered from a large amount of marker 

dropout due to sub-optimal camera placement. This was associated with occlusion of 

markers by the BVR equipment.  

Recommendation: Optimise camera placement relative to all X-ray equipment 
configurations. 

For subsequent participants, a fully documented, repeatable camera configuration 

was designed and adopted to ensure markers were clearly visible for as much of the 

activity as possible, across all activities (Section 2.3.2). 

Challenge: Marker placement errors – specifically the femoral condyle 
markers. 

Marker-based motion capture data are always subject to the inherent errors 

associated with STA and marker placement. However, in particular for this study, the 

anterior placement of the femoral condyle markers relative to the underlying bony 

condyles, resulted in large overestimates of TF flexion in all activities (Section 2.5.7). 

This highlights the importance of careful marker placement to minimise these errors. 

To locate the femoral condyles, participants were asked to perform a seated knee 

flexion-extension whilst the researcher palpated to locate the anatomical, bony 

landmarks, and then then the markers were placed on the flexed knee. However, the 

palpated marker locations could shift anteriorly when the participant stood upright, 

thus relocating the markers relative to the underlying bony condyles. 

Recommendation: Palpate femoral condyle markers whilst the participant is 
standing.  

To minimise the error associated with the overestimation of flexion, it is therefore 

recommended for future data collection protocol development and adoption, that the 

femoral condyles are palpated and located on the standing subject with markers 

placed on the extended knee. 
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Other study limitations 

As well as the challenges associated with the BVR and motion capture data 

collection and processing, there were also some limitations to the current study. 

Limitation: The accuracy of the new BVR system at Cardiff is currently 
unknown.  

Although BVR accuracy has been shown to be within two degrees and millimetres 

for calculating TF kinematics (Li et al. 2008; Anderst et al. 2009; Guan et al. 2016), 

the accuracy of each specific system can vary (Section 1.4.1). Because the BVR 

system at Cardiff was custom built, the accuracy of this system for calculating TF 

kinematics for the configurations and activities used in this study is not yet known.  

To better understand the true fidelity of the ‘gold-standard’ data used in comparisons 

with motion capture, future studies should analyse the accuracy of this equipment 

and its configurations, potentially through comparison with implanted beads or 

roentgen stereophotogrammetric analysis (RSA) (Section 1.2.4). RSA is a commonly 

used technique for determining model-based image registration accuracy (Setliff and 

Anderst 2024) as it involves comparing bone poses from the standard pipeline to 

bone positions calculated by tracking radiopaque implanted beads. The bead 

positions can be determined with greater accuracy as they do not suffer from errors 

in the model geometry or bone edge definition in the images. RSA could also be 

used to quantify the impact of occlusion on image registration, as well as quantifying 

the accuracy of the setup for calculating the kinematics more generally.  

Limitation: Small dataset. 

One of the main limitations of this study is the small dataset of only five participants. 

BVR studies typically involve small cohorts, with 77% of BVR studies between 2004 

and 2022 including 20 or less, due to the high cost and long time required for 

processing – estimated to be between 40 and 80 hours per BVR data collection 

session (Setliff and Anderst 2024). However, as the overall aim for this thesis was 

development of the methods and pipelines to more fully utilise the outputs from the 

new BVR system, only a small pilot dataset was required to establish these 

protocols. 
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Future studies utilising these protocols to answer clinically relevant questions should 

try to include a greater number of participants to be able to draw statistically 

significant conclusions. With a variety of emerging automated approaches for image 

segmentation (Ridhma et al. 2020) and image registration (Miranda et al. 2011; Lin 

et al. 2018; Burton et al. 2024), automatic methods with sufficient accuracy could be 

integrated into the pipeline to enable these larger datasets by reducing the number 

of hours of manual intervention required. 

Limitation: Patellofemoral kinematics ignored in this study. 

Due to time restrictions, this study was limited to investigating TF motion only. 

However, these techniques could be extended to include patellofemoral (PF) joint 

kinematics investigations. Image registration of the patella could be performed on the 

existing data set to investigate the relationship between TF and PF kinematics during 

dynamic movements.  

Since the pilot protocol was originally designed for the TF joint, it is not optimised for 

patella matching, making image registration more challenging. Additionally, because 

the patella is a sesamoid bone, accurately determining rotations is more complex 

compared to the femur or tibia which have more distinct shapes and edges. For 

focused PF kinematics investigation, alternative X-ray and motion capture equipment 

configurations should be considered to obtain clearer images of the patella and 

minimise overlap with the femur. 

2.6 CONCLUSION 

A protocol for collecting and processing simultaneous BVR and marker-based 

motion capture data, along with generating 3D bone models from MRI, has been 

developed and defined, for three functional activities, as demonstrated by the 

successful calculation of six DOF TF kinematics. The protocol was successfully 

applied to multiple participants, highlighting its potential for future research. By 

incorporating three different dynamic activities, the protocol proved capable of 

imaging the knee across a range of flexion angles, with the potential for expansion to 

include other activities, such as treadmill walking or step-down, to further investigate 

typical knee kinematics. It also has the potential to be utilised with pathological 
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cohorts to assess how injury or disease affects the joint, as well as the effects of 

potential interventions.  

The BVR-derived kinematics from this study were compared with existing literature 

and generally agreed with previous findings. For example, flexion angles during both 

level gait (Figure 2-33) and stair ascent (Figure 2-35) were consistent with both the 

magnitude and profile reported in prior studies, with AA displaying the smallest ROM 

in these activities (Kozanek et al. 2009; Tsai et al. 2011; Li et al. 2012; Myers et al. 

2012; Suzuki et al. 2012; Li et al. 2013; Kefala et al. 2017; Gale and Anderst 2020; 

Thomeer et al. 2021; Hamilton et al. 2023). The mean internal rotation was shown to 

increase with flexion during all three activities, also agreeing with previous studies 

(Leszko et al. 2011; Tsai et al. 2011; Li et al. 2012; Hamai et al. 2013; Kefala et al. 

2017; Thomeer et al. 2021; Hamilton et al. 2022).  

TF translations were found to have similar magnitudes to those in literature (Kozanek 

et al. 2009; Qi et al. 2013; Kefala et al. 2017; Gray et al. 2019; Thomeer et al. 2020; 

Thomeer et al. 2021; Hamilton et al. 2022; Hamilton et al. 2023). However, 

substantial variation was observed across participants and activities; also commonly 

seen in the literature. This variation is likely due to differences in individual 

coordination strategies, as well as the small magnitudes of the translations, which 

can cause potentially larger proportional inaccuracies in the results. 

The BVR-derived TF rotations were also compared with the marker-based motion 

capture rotations, calculated using V3D (HAS-Motion, Canada). These results 

(Figure 2-43, Figure 2-44, Figure 2-45) showed a systematic offset of the flexion 

angle calculated between the two methods which was due to consistent anterior 

marker misplacement relative to the underlying femoral condyles. This highlights the 

difficulty of correctly locating and placing the markers relative to the anatomical 

landmarks. AA and IE displayed greater variability in their results compared to 

flexion, with large percentage errors relative to their planar ROM, particularly at 

higher flexion angles. This illustrates the influence of STA on marker-derived 

kinematics, along with variation across different participants and activities, making it 

challenging to correct for.  

The errors in marker-based motion capture rotations, caused by marker 

misplacement and STA, have potential implications for use in clinical decision-
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making, as well as for models derived from this data, such as joint contact models. 

This highlights the need for alternative methods to calculate joint kinematics from 

motion-capture data, especially where an alternative such as BVR is not viable, as 

well as careful consideration of the possible errors when interpreting such data.  

Overall, the aims for this chapter, which were set out in Section 1.8, were achieved. 

Simultaneous BVR and marker-based motion capture were successfully captured 

during multiple dynamic activities. These data were processed using the developed 

pipeline, which combined model-based image registration with MRI-derived bone 

geometries to calculate six DOF TF kinematics. The data collection and processing 

workflow was implemented for the first time in a cohort of healthy participants, 

demonstrating its potential for future studies investigating knee pathology and 

intervention outcomes. Together, the imaging datasets and BVR kinematics 

produced in this chapter provide the foundation for the subsequent modelling 

components of the framework, bridging the experimental and computational aspects 

of this work. 
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CHAPTER 3: DO PERSONALISED GEOMETRIES 
IMPROVE KNEE KINEMATIC AND JOINT CONTACT 
PREDICTIONS IN MUSCULOSKELETAL MODELS? 

3.1 INTRODUCTION 

3.1.1 BACKGROUND 

Musculoskeletal modelling (MSM) enables estimation of dynamic in-vivo muscle 

activations, joint kinematics and forces, making it a valuable tool in both clinical and 

research settings (Cardona and Garcia Cena 2019; Luis et al. 2022). Such models 

enable quantification of internal mechanics that are otherwise difficult or impossible 

to measure directly using in-vivo methods, such as muscle forces, joint torques, and 

joint contact forces during movement (Erdemir et al. 2007; Pandy and Andriacchi 

2010; Cheze et al. 2015; Moissenet et al. 2017).  

MSMs have been widely applied to explore conditions such as stroke and 

osteoarthritis (OA), providing insights into altered neuromuscular control and joint 

loading patterns (Lin and Yan 2011; Kumar et al. 2013; Dzialo et al. 2019; Price et al. 

2020; Ghazwan et al. 2022; Giarmatzis et al. 2022; Wang et al. 2022; Bowd et al. 

2023). In particular, altered joint contact loading has been associated with OA 

progression (Richards et al. 2018; Dumas et al. 2020; Yamagata et al. 2021), 

reinforcing the importance of accurate joint-level estimations. 

Typically, MSMs rely on motion capture data to provide external kinematic inputs, but 

as discussed previously (Section 1.4.2 and Section 2.5.7), marker-based motion 

capture cannot accurately measure the smaller rotational and translational degrees 

of freedom (DOFs) of knee motion. Motion capture data alone cannot measure 

noninvasively more complex biomechanical data, such as these secondary joint 

kinematics, as well as resulting joint tissue forces stresses and strains (Lloyd et al. 

2023). 

One approach aiming to overcome these limitations is the OpenSim-Joint Articular 

Mechanics (JAM) (https://github.com/clnsmith/opensim-jam/) framework (Chapter 1, 

Section 1.6.2) which utilises specialised articular contact representations (Lenhart et 

al. 2015) to estimate joint kinematics (which cannot be reliably measured form 

https://github.com/clnsmith/opensim-jam/
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motion capture), muscle activations, joint contact forces, and pressure distributions 

within the knee (Smith et al. 2016). To have confidence in predictions from such 

models, it is important to use benchmark data to ensure the quality of model outputs 

(Lloyd et al. 2023).  

Since direct in-vivo measurement of joint contact pressure, joint contact forces and 

muscle forces are not possible in intact human knees, model outputs must be 

validated using alternative measurable parameters – such as kinematics. Biplane 

videoradiography (BVR) provides gold-standard, highly accurate six DOF kinematics 

(Li et al. 2008; Anderst et al. 2009; Miranda et al. 2011; Guan et al. 2016; Gray et al. 

2017; Gray et al. 2018; Setliff and Anderst 2024), providing a suitable benchmark for 

MSM validation. As joint mechanics are highly sensitive to bone positioning (Yao et 

al. 2008), such validation is important when using previously benchmarked models to 

observe generalised trends. But it is even more important when considering 

personalised models to investigate subject-specific predictions against subject-

specific data to understand the true predictive capabilities of the model on an 

individual level (Smith 2017). 

As well as providing a direct measure of individual bone motions, BVR also enables 

investigation of joint contact in the knee, utilising bone poses to directly calculate 

contact mechanics (Anderst and Tashman 2010; Hoshino and Tashman 2012; Li et 

al. 2013; Thorhauer and Tashman 2015). Again, these BVR outputs can be used as 

a comparator to assess MSM pipelines to understand knee joint contact mechanics. 

A key question in improving model fidelity is whether including subject-specific 

anatomical detail, particularly bone and cartilage geometry, enhances the accuracy 

of predicted joint mechanics. While personalisation may improve estimates of joint 

kinematics and contact, it requires additional imaging, segmentation, and 

processing, making it more time-consuming and technically demanding than using 

generic geometries. Recent developments to the Opensim-JAM modelling pipeline 

have included creating personalised MSMs with personalised contact geometries 

(Killen et al. 2024), aiming to further improve the accuracy of the model’s predictions. 

It is therefore important to investigate whether the added complexity of incorporating 

personalised joint geometry leads to meaningful improvements in joint contact 

predictions, and if these gains are significant enough to justify the increased effort. 
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3.1.2 AIM & OBJECTIVES 

The main aim of this research was to test the hypothesis: does including 

personalised contact geometries improve MSM estimates of TF kinematics and 

contact pressures? 

To answer this question fully, the following key research questions were proposed: 

1. Does adding personalised TF geometries improve model estimates of TF 

kinematics during level gait compared to a model with generic contact 

geometries, when validated against gold-standard BVR kinematics? 

2. Are MSM contact pressure maps more similar to BVR maps when using 

personalised or generic contact geometries in the model? 

3. Do the observed differences between the personalised and generic model 

outputs reported during gait carry over to activities involving higher TF 

flexion angles? 

To answer these questions, the following objectives were defined: 

• To generate MSMs incorporating personalised TF contact geometries. 

• To apply the OpenSim-JAM MSM pipeline to multiple activities for both the 

standard ‘generic’ model and the model with the personalised geometries 

incorporated. 

• To generate equivalent joint contact maps using bone poses from BVR. 

• To compare the kinematic and contact pressure outputs from the generic and 

personalised versions of the MSM to assess the accuracy and benefit of 

model personalisation. 

3.2 METHODOLOGY 

The data collection protocol used to generate inputs for the following pipeline was 

described in Chapter 2.  

The participant data used in this chapter was the same as described previously 

(Chapter 2), with the exception that HV001 was replaced by a new participant, 

HV006. HV001's motion capture data had known issues (Section 2.3.2), so a new 

participant with improved data quality was used to ensure a fair comparison across 

all datasets. 
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Figure 3-1 – The generic model used for 
this study (Lenhart et al. 2015) 

The demographics for the participants used in this chapter (including the new 

participant) can be found in Table 3-1. 

Table 3-1 – Participant demographics 

Participant ID Sex Age (years) Height (cm) Weight (kg) 
HV002 F 57 169.5 62.4 

HV003 M 54 182.0 87.5 

HV004 M 52 176.5 67.1 

HV005 F 47 158.5 51.0 

HV006 M 54 174.0 84.7 

 

3.2.1 THE GENERIC MODEL 

The MSM used for this study was the generic OpenSim-JAM model (Lenhart et al. 

2015). Figure 3-1 shows the full body model which was based on a lower limb model 

containing a six DOF TF joint, a six DOF patellofemoral joint, a six DOF pelvis, a 

three DOF ball-and-socket hip joint and a one DOF hinge joint representing the ankle 

(Arnold et al. 2010). 
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The model represented muscles acting about the right hip, knee and ankle joints 

using 44 damped equilibrium musculotendon units (Millard et al. 2013; Lenhart et al. 

2015). The equilibrium musculotendon model is a variation of the Hill-type model 

(Section 1.6) commonly used in MSM simulations of human movement (Millard et al. 

2013). Whereas in the standard Hill-type model the force generated by a muscle is 

dependent only on the current muscle length, velocity and activation (Zajac 1989), 

the equilibrium model expands on the model by adding a nonlinear elastic tendon 

component, alongside the active contractile element and passive elastic elements 

contained in a standard Hill-type model. Muscle force was calculated based on the 

force-length-velocity relationship, varying nonlinearly with muscle stretching. Each 

muscle force was assumed to be a scaled version of its representative fibres (Millard 

et al. 2013). A damping coefficient of 0.1 was applied to the normalised muscle 

velocity component of the equation to stop numerical singularities being reached, 

reducing the simulation time (Millard et al. 2013). 

Specialised contact geometries were incorporated into the right knee of the model, 

including the bone and cartilage geometries of the distal femur, proximal tibia and 

patella segmented from MRI scans of a 23-year-old female (Lenhart et al. 2015). The 

femoral skeletal and cartilage geometries were aligned with the femoral geometry of 

the base model (Arnold et al. 2010), and tibial and patellar geometries were placed 

just [contacting] the femoral surfaces in an upright position (Lenhart et al. 2015). 

These meshes were used to calculate contact pressures using an elastic foundation 

model described in more detail below (Section 3.2.3). 

Also segmented from MRI, the major ligaments in the right knee were represented in 

the model by 14 bundles – including the superficial and deep medial collateral 

ligament (MCL), lateral collateral ligament (LCL), anteriomedial and posteriolateral 

anterior cruciate ligament (ACL), anteriolateral and posteriomedial posterior cruciate 

ligament (PCL), and patella tendon. Each bundle contained between 5-8 elements, 

apart from the iliotibial band which was represented by a single element (Lenhart 

2015). The ligaments were modelled using the Blankevoort model (Section 0) which 

assumes a nonlinear relationship at low strains and a linear region above a linear 

strain limit of 0.03 (Butler et al. 1986; Blankevoort and Huiskes 1991). 
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For the purpose of this study, this model was considered as the ‘generic’ model as 

the geometries remained consistent across all participants, although the model was 

tailored to each participant via a standard scaling procedure. 

3.2.2 ADDITION OF PERSONALISED GEOMETRY 

After scaling the ‘generic’ model, a ‘personalised’ version of the model was created 

for each participant by swapping the generic contact geometries with a personalised 

representation of the bones and cartilage surfaces of the knee (Killen et al. 2024). 

Bone and cartilage geometries of the distal femur, proximal tibia and patella were 

segmented from a high-resolution MRI scan with clear delineation between bone and 

cartilage (Section 2.2). Geometries were segmented using a semi-automatic 

thresholding approach, followed by manual refinement where necessary. For earlier 

participants, these geometries were segmented from a DESS-3D scan, but this was 

later replaced with a T1-VIBE scan as it produced a clearer boundary between 

articular cartilage structures (Section 2.4.1).  

Once segmented, bone and cartilage geometry models were smoothed using a 

recursive Gaussian filter with a standard deviation of 2.0. The geometries were 

meshed within Simpleware Scan IP (Synopsis, United States) using a standard in-

built meshing procedure. All models were then exported as surfaces (.stl files) to 

match the format required for the MSM. 

In the OpenSim-JAM MSM (Section 3.2.1), the contact cartilage geometries were 

represented by single-surface geometries of only the contacting region where all 

triangle normals were pointing toward the direction of contact. Therefore, articular 

cartilage surface meshes were reduced to only this surface by manually selecting the 

desired region and smoothing the newly created edge (MeshMixer, Autodesk Inc., 

USA) (Figure 3-3).  
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Figure 3-2 – Visualisation of the triangle normal directions in 
MeshLab. 

Normals of the tibia and patella cartilage surfaces were then visually checked in 

MeshLab (Cignoni et al. 2008) (Figure 3-2) as any that were not aligned with the 

contact direction would cause erroneous forces resulting in the model being unable 

to solve. Any elements with unsatisfactory normal directions were manually 

removed. As they only occurred around the mesh boundary (i.e., in non-contacting 

regions), they could be removed without affecting the rest of the geometry. 

Figure 3-3 – Example of the tibial plateau cartilage contact surface isolated with the 
boundary (blue) smoothed. 
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The number of elements in the final meshes were then reduced using a quadratic 

edge simplification algorithm (MeshLab) to assist with computational time when 

calculating element-wise contact. All three cartilage meshes were reduced so they 

contained a similar number of elements to the original ‘generic’ geometries (i.e. 

around 30k, 8.5k, and 6k elements for the femoral, tibial and patellar cartilage 

respectively).  

Once the surfaces were prepared, an open-source framework was used to 

implement the personalised model geometries (Killen et al. 2024). This framework 

involved three main steps: registration and positioning of the personalised 

geometries, morphing and optimisation of the muscle and ligament pathways, and 

calibration of the new muscle and ligament parameters (including resting, optimal 

fibre and tendon slack lengths).  

For the first step, the MRI femur bone model was transformed to match the OpenSim 

axes convention by defining manually selecting points on a 3D visualisation of the 

bone to define the medial-lateral (ML), anterior-posterior (AP) and superior-inferior 

(SI) directions which were mapped to the OpenSim convention (i.e. X = AP, Y= SI,  

Z = ML). The rotated segmentation was smoothed and remeshed to 500 faces to 

allow for alignment with the full femur bone geometry from the generic model. This 

alignment was achieved by firstly translating the bone to an arbitrary centre point 

(based off the average position of all vertices) which was placed at the origin (0,0,0) 

point of the full femur geometry (the femoral head), then the partial femur 

segmentation was coarsely aligned with the distal part of the full femur model using 

the midpoint of the model’s femoral condyle markers, before finally, an iterative point 

algorithm was used to more accurately align the models (Figure 3-4) (Killen et al. 

2024). The same transformations were then also applied to the tibia and patella bone 

models, and all cartilage geometries, as well as selected manually defined 

landmarks on the original MRI segmentation, so the geometries remained positioned 

relative to one another (Figure 3-4). 



158 
 

The following landmarks were defined for each participant: medial and lateral 

femoral condyles, as well as superior, inferior, medial and lateral points on the 

patella (Figure 3-4). To maintain consistency between participants, the femoral 

condyle landmarks were defined as the points on the ML axis, as defined by the 

automated ACS code (Miranda et al. 2010), where the bone geometry intersected on 

either side. Patella landmarks were defined by calculating an ACS based on the 

segmented bone geometry using another automated algorithm (Rainbow et al. 

2013), then selecting the bone intersections between the SI axis and ML axes to 

define the four points. These landmarks were then used to define the femoral and 

patellar ACSs in the model; as is the case in the generic model, the tibial ACS was 

set as coincident with the femoral ACS. 

Muscle, ligament, and wrapping points were embedded as passive points within this 

host-mesh and morphed, together with the bone geometry, using an atlas-based 

Figure 3-4 – Alignment of the personalised distal femur (blue) and the 
generic full femur (red) with the other personalised geometries placed 

relative to the femur. The defined landmarks are shown in white. 
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fitting approach (Zhang et al. 2014). Muscle and ligament attachment points were 

then projected onto the closest points on the personalised bone mesh. 

Muscle and ligament path wrapping surfaces were also optimised to address muscle 

and ligament path discontinuities by altering their position and orientation to best 

match the muscle and ligament length changes of the reference (‘generic’ scaled) 

model (Killen et al. 2020).  

Finally, the muscle and ligament parameters were calibrated to ensure both the 

passive and dynamic behaviour of the knee were physiological and comparable to 

the reference (‘generic’ scaled) model. The ligament resting lengths and tendon 

slack lengths were optimised to best match the strains between the personalised and 

reference models, and the optimal muscle fibre lengths were calibrated to match 

between the models (Modenese et al. 2016; Killen et al. 2024). 

3.2.3 MUSCULOSKELETAL MODELLING PIPELINE 

The pipeline was implemented in OpenSim version 4.1 (Delp et al. 2007; Seth et al. 

2018) and was applied to all five participants (for the same repeat of the three 

activities presented in Chapter 2 for HV002-HV005), firstly with the ‘generic’ model 

(Section 3.2.1) and then again using the ‘personalised’ model (Section 3.2.2). Both 

versions of the model had the rigid-body segments scaled based off the distance 

between markers from the same standing static motion capture (Section 2.3). 

The marker trajectories for the static and dynamic trials were tracked and exported 

along with the ground reaction forces (Qualisys Track Manager, Qualisys, Sweden, 

& Visual3D, C-motion Inc., Maryland, USA) as described in Chapter 2 

(Section 2.4.8). 

An overview of the OpenSim-JAM (https://github.com/clnsmith/opensim-jam/) MSM 

pipeline that was used in this study is presented in Figure 3-5. This pipeline is 

centred around the Concurrent Optimisation of Muscle Activations and Kinematics 

(COMAK) algorithm and relies on the concept of measurable (primary) and 

unmeasurable (secondary) DOFs from marker-based motion capture data (Smith 

2017).  

https://github.com/clnsmith/opensim-jam/
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The aim of the COMAK algorithm is to generate secondary kinematics, muscle 

forces and ligament and contact moments that allow for the primary DOFs to be 

prescribed as observed from the motion capture-derived kinematics, with the primary 

DOF joint moments balanced by the muscle forces. As discussed in Section 1.4.2, 

standard calculation of marker based motion capture knee kinematics have been 

shown to be reliable for calculating flexion-extension (FE), but less accurate for 

internal-external rotation (IE), abduction-adduction (AA) and all three translational 

DOFs due to the size of the errors relative to the magnitude of the DOF ranges of 

motion (ROMs) (Reinschmidt et al. 1997a; Akbarshahi et al. 2010; Tranberg et al. 

2011; Miranda et al. 2013; Hume et al. 2018). COMAK utilises this concept, defining 

TF flexion as a ‘primary’ DOF (as well as the three rotations at the hip and ankle 

2. Concurrent Optimisation of 
Muscle Activations and 
Kinematics (COMAK)

Calculate secondary kinematics and 
muscle forces that minimise the objective 

function.

1. Inverse Kinematics (IK)
Passive forward flexion simulation used 

to generate splines to constrain 
secondary coordinates (all TF DOFs 

except flexion & all PF DOFs) during the 
IK step

3. Joint Mechanics
Elastic foundation model used to 

calculate joint contact proximity, pressure 
distribution and potential energy.

IN: Scaled MSM & dynamic trial marker 
trajectories

IN: Ground 
reaction forces

Figure 3-5 – Overview showing the three main steps of the OpenSim-JAM MSM 
pipeline used to calculate joint kinematics and contact pressure maps. In-vivo data 

inputs are shown in the red boxes. More detailed diagrams for each of the three 
steps can be found in Figure 3-6, Figure 3-7, and Figure 3-8. 
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dorsiflexion) and all the other five TF DOFs, along with all six patella DOFs, as 

‘secondary’ DOFs. A third model DOF definition, ‘prescribed’, was used to define all 

other joint DOFs. Like primary DOFs, prescribed DOFs were set to their observed 

values from motion capture, however, they were not used to inform the secondary 

kinematics.  

When running the pipeline on the dynamic trial data, an issue was encountered with 

the lunge activity from one individual (HV005) where the model became unstable 

near the peak of the lunge due to the patella dislocating. To enable the model to 

produce physiologically realistic results, all six DOFs of the patella were changed 

from secondary coordinates to prescribed coordinates. This issue may have arisen 

because this participant exhibited the highest flexion angle during the activity, 

potentially exceeding the model’s functional limits as, when developed, the model 

was assessed against cadaveric data up to 90° and in-vivo data up to 50° (Lenhart et 

al. 2015). As the focus of this study was TF contact rather than patellofemoral (PF) 

mechanics, this solution was considered an acceptable compromise. However, 

future investigations involving high knee flexion may require modifications to the 

model to ensure stability in such cases. 

Inverse Kinematics 

The first step of the MSM pipeline is shown in more detail in Figure 3-6. Before 

performing the inverse kinematics routine, a passive forward flexion simulation 

generated splines defining the relationship between the secondary kinematics 

relative to TF flexion angle. For this forward flexion simulation, the model was first 

stabilised into an initial neutral position, then the knee was moved steadily from 0° to 

120° flexion whilst the muscles were set to produce 1% of their maximum isometric 

force. Muscle activations were set to 1% to simulate passive flexion as this is 

minimum activation value used with the muscle model to stop the singularities in the 

equations from being approached as this would significantly slow down the 

numerical integration (Millard et al. 2013). During at each flexion angle dynamic 

equilibrium was achieved by adjusting secondary TF and PF coordinates to balance 

the calculated ligament and cartilage contact forces and moments at each step. 
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A global optimisation inverse kinematics routine was then used to generate the 

primary and prescribed coordinates (𝑞𝑞), velocities (𝑞𝑞 ̇ ), and accelerations (𝑞̈𝑞 ) by 

minimising the difference between the model and measured marker positions at 

each time step. 

 

Concurrent Optimisation of Muscle Activations and Kinematics (COMAK) Algorithm 

The inverse kinematics results were then used as an input into the COMAK 

algorithm (Figure 3-7). Firstly, primary and prescribed coordinates and velocities, as 

well as the prescribed accelerations, were used in a forward settling simulation to 

generate a stable initial model position, including secondary coordinates values, for 

the first frame of the dynamic motion.  

  

Inverse Kinematics
Secondary coordinates (all TF DOFs 
except flexion & all PF DOFs) 
constrained using the splines.
Sum of the squared differences between the 
model and measured marker positions 
minimised at each time step.

IN: Scaled 
MSM

IN: Dynamic trial 
marker trajectories

Passive flexion forward simulation
0° to 120° flexion

ai = 1%

OUT: Secondary 
kinematics splines

IN: Secondary 
kinematics splines

OUT: 
(𝑞𝑞, 𝑞𝑞 ̇, 𝑞𝑞 ̈ )prescribed

(𝑞𝑞, 𝑞𝑞 ̇, 𝑞𝑞 ̈ )primary

1

COMAK

Figure 3-6 – Overview of the main inputs and outputs of the inverse kinematics step 
from Figure 3-5, including the prior passive flexion simulation. 

ai = muscle activations, and 𝑞𝑞, 𝑞̇𝑞, 𝑞̈𝑞 = coordinate, velocity and acceleration, 
respectively. 
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For all subsequent frames of motion, the prescribed and primary coordinates and 

speeds were set to their observed values (from the inverse kinematics solution). The 

algorithm then iteratively solved to find values for the secondary coordinates and 

muscle activations that minimise the objective function (Equation 3-1) at each frame, 

whilst adhering to specific constraints. 

 J = � (Wi

nmuscle

i

⋅ Vi ⋅ ai2) (Eq. 3-1) 

Where Wi = muscle weightings, Vi = muscle volumes, ai = muscle activations 

All model states were required to satisfy the following constraints to ensure they 

were physiologically reasonable: 

1. Muscle activations must be between 0 and 1 (0 < ai < 1) to maintain 

physiological realism. 

2. Primary accelerations must match their values from the inverse kinematics 

results to replicate the dynamic movement. 

Concurrent Optimisation of Muscle 
Activations and Kinematics 

(COMAK)
1. Calculate secondary kinematics and 
muscle forces
2. Set state and calculate forces 
3. Solve equations of motion

Forward simulation 
to settle model 

ai = 1%

IN (from IK):
(𝑞𝑞, 𝑞𝑞 ̇, 𝑞𝑞 ̈ )prescribed

(𝑞𝑞, 𝑞𝑞 ̇ )primary

OUT: 
(𝑞𝑞)secondary

Settled initial pose

IN (from IK):
(𝑞𝑞, 𝑞𝑞 ̇ )prescribed

(𝑞𝑞, 𝑞𝑞 ̇ )primary

OUT: 
1. (𝑞𝑞, 𝑞𝑞 ̇ )secondary & ai
2. Fi

muscle, Fcontact (𝑞𝑞), 
Fligament (𝑞𝑞, 𝑞𝑞 ̇ ), 
Fdamping (𝑞𝑞, 𝑞𝑞 ̇ )

3. 𝑞𝑞 ̈ primary 𝑞𝑞 ̈ secondary

IN: Ground 
reaction forces

IN: Settled 
initial pose

Minimise:
𝐽 = (𝑊𝑖

𝑛𝑛𝑚𝑢𝑠𝑐𝑐𝑙𝑙𝑒
𝑖 ⋅ 𝑉𝑖 ⋅ 𝑎𝑖)

Constraints:
0 < ai < 1

(𝑞𝑞 ̈ )primary  observed = simulated
(𝑞𝑞 ̇, 𝑞𝑞 ̈ )secondary = 0

OUT: model 
states at each 

time step

2

Joint Mechanics

Figure 3-7 - Overview of the main inputs and outputs of the COMAK step from 
Figure 3-5.  

ai = muscle activations, J = objective function, Wi = muscle weightings, Vi = muscle 
volumes, F = force, 𝑞𝑞, 𝑞̇𝑞, 𝑞̈𝑞 = coordinate, velocity and acceleration, respectively 
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3. Secondary kinematic velocities and accelerations were set to 0 to stop 

unrealistic accelerations and keep the motions smooth. 

During each iteration of the COMAK algorithm, once the secondary coordinates and 

muscle activations were determined, and the model state was set, the generalised 

forces were calculated and applied; this included the contact, ligament, damping, 

muscle, and external forces. The equations of motion were then solved for the 

primary and secondary accelerations, whilst the prescribed accelerations were 

constrained to their measured values. 

Joint Mechanics 

The output model states at each frame were then used to provide a more detailed 

analysis of element-level joint mechanics of the contact meshes of the knee (Figure 

3-8). This was done using a hierarchical bounding boxes and ray tracing method 

(Thelen et al. 2014) to implement a nonlinear elastic foundation formulation (Bei and 

Fregly 2004) to calculate the pressure on each face in the mesh (Smith et al. 2018). 

For the bounding box and ray tracing method, rays were traced from each element of 

the ‘casting’ mesh (the mesh with fewer elements, in this case tibial cartilage) 

towards the other mesh to determine overlap.  

The other mesh (the femoral cartilage) is broken down into an oriented bounding box 

(OBB) tree containing a hierarchy of boxes each representing different sections of 

the mesh. Firstly, a box was created that tightly surrounded the whole femoral 

cartilage mesh, then the mesh was iteratively bisected into smaller regions (with 

roughly half the elements in each section), until the leaf nodes (individual faces) 

were reached (Figure 3-9).  

Joint Mechanics
Elastic foundation model used to 
calculate joint contact proximity, pressure 
distribution and potential energy.

IN (from COMAK): 
model state at 
each time step

OUT: .vtp files with 
triangle-level 

results for each 
frame

3

Figure 3-8 - Overview of the main inputs and outputs of the Joint Mechanics step 
from Figure 3-5. 
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Then, for each triangle on the tibial cartilage mesh, a ray was traced from the normal 

of that triangle downwards towards the tibia bone surface (Figure 3-10) to determine 

if that triangle has overlapped with the femoral cartilage mesh and, therefore, is in 

contact at that frame. If the ray intersected with the box bounding the entire femoral 

cartilage mesh, that tibial mesh triangle is determined as “in contact” at that frame.  

Once contact was established, the corresponding contacting triangle on the femoral 

cartilage was determined by iteratively working through the OBB tree, checking at 

each level if the ray intersects with each bounding box, until reaching a leaf node. 

The ‘contact distance’ – i.e. the amount of overlap between the two triangles – was 

then calculated between the selected tibial cartilage face and the femoral cartilage 

face specified in the contacting leaf node. 

Once the contacting pair of triangles were identified, the depth of penetration (d) 

between them was computed using Equation 3-2.  

Figure 3-9 – An oriented bounding box generation example where the black box 
containing the whole mesh was bisected into two new regions (blue and red). Each of 

these regions would subsequently be split in a similar manner.  

Tibial cartilage surface

Femoral cartilage surface

Ray traced from 
centre of 

casting triangle

Figure 3-10 – Diagram of ray tracing direction from casting mesh 
(tibial cartilage) to the target mesh (femoral cartilage). 
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 𝑑𝑑 =
�𝑃𝑃�⃗𝑓𝑓 − 𝐶𝐶𝑡𝑡� ⋅ 𝑛𝑛�𝑓𝑓

𝑛𝑛�𝑡𝑡 ⋅ 𝑛𝑛�𝑓𝑓
 (Eq. 3-2) 

𝑃𝑃�⃗𝑓𝑓 = the intersection point on the femoral cartilage triangle, 𝐶𝐶𝑡𝑡 = the centre of the ray 
casting triangle on the tibial cartilage, 𝑛𝑛�𝑓𝑓 = the unit normal vector of the femoral 
cartilage triangle, and 𝑛𝑛�𝑡𝑡 = the unit normal vector of the tibial cartilage triangle.  

This allowed for the cartilage contact pressure for each contacting triangle to be 

calculated using an elastic foundation model developed for articular cartilage (Bei 

and Fregly 2004). The contact pressure (p) calculated was dependent on the contact 

overlap depth (d), combined cartilage thickness (h = 6 mm), and material properties 

(Young’s modulus, E = 5 MPa and Poisson’s ratio, v = 0.45) (Equation 3-3).  

 𝑝𝑝 = −
(1 − 𝑣𝑣)𝐸𝐸

(1 + 𝑣𝑣)(1 − 2𝑣𝑣) 𝑙𝑙𝑙𝑙 �1 −
𝑑𝑑
ℎ
� (Eq. 3-3) 

The resulting contact map at each frame was then output as a .vtp file containing 

both the geometric mesh information (vertices and connectivity) as well as the 

overlap depth and contact pressure of each triangle of the mesh. 

3.2.4 BVR CONTACT MAP GENERATION 

To calculate the TF joint contact pressure maps from the subject-specific BVR 

kinematics and MRI geometries, the same approach from the OpenSim-JAM 

workflow (described above in Section 3.2.3) was adapted and implemented in 

MATLAB (MathWorks, USA). The code iteratively divided the femoral cartilage mesh 

into an OBB tree and then a ray-intersection test was performed for each element on 

the tibial cartilage mesh. If an intersection was found, the overlap depth and resulting 

contact pressure were calculated.  

At each frame of motion, the femoral and tibial cartilage meshes were positioned 

based on the relative bone poses given by the 4×4 object transforms (OTs) from the 

BVR data processing pipeline (Section 2.4) (Figure 3-11). First, the femoral cartilage 

mesh was aligned with the global coordinate system (GCS) using the femur's 

anatomical coordinate system (ACS). The corresponding OT was then applied to 

transform the cartilage to its correct position based on the femur’s motion. The same 

process was applied to the tibial cartilage, ensuring both meshes were positioned 

according to their respective bone motions for contact analysis. 



167 
 

The BVR contact map generation code was tested to ensure consistency with the 

OpenSim-JAM approach; the test process and results are presented in Section 

3.3.1. 

By using the same mathematical approach as the OpenSim-JAM code, this enabled 

consistent comparison between the MSM output contact maps and the resulting BVR 

contact maps. The same personalised geometries used to create the personalised 

MSM (Section 3.2.2) were used to calculate the BVR contact maps, again for 

consistency. 

3.2.5 REMAPPING PRESSURES TO GENERIC GEOMETRY 

To standardise across the multiple geometries used to create the personalised and 

BVR contact maps, all the personalised pressure results were remapped onto the 

generic geometry. This not only allowed for comparison across the cohort, but it also 

allowed for element-wise comparisons between the three versions of the contact 

maps for the same individual – generic, personalised and BVR. While contact 

surface morphology influenced the results during processing, remapping all data 

onto the generic geometry removed its effect from the subsequent analysis. This 

Figure 3-11 – (1) Geometries aligned with the global origin (2) Geometries moved into their 
relative positions for a single frame. The red box shows the overlap of the cartilage meshes 

where contact pressures will be calculated. 
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ensured that any observed similarity between the personalised and BVR maps was 

not simply due to shared geometry. 

Remapping was performed to transfer the contact pressure distributions from the 

personalised tibial cartilage meshes (output as .vtp files during the joint mechanics 

step) onto the generic geometry using code provided by Dr Bryce Killen (KU 

Leuven). To reassign the pressure distribution at each frame from the personalised 

geometry to the generic mesh, the points from the personalised tibial cartilage mesh 

were morphed to match the generic geometry using a host-mesh fitting algorithm. 

Then, for each triangle in the generic mesh, the pressure value was assigned based 

on the closest element in the morphed mesh.  

The code was then also adapted to remap the BVR contact pressures to the generic 

geometry in the same way. This resulted in all contact pressures being defined on a 

common mesh, allowing for element-wise comparison. 

3.2.1 WEIGHTED CENTRE OF PRESSURE 

To compare the position of the contact pressure region between the three methods, 

weighted centre of pressure (COP) was calculated for each half of the tibial plateau 

separately. This allowed for identification of the movement of the pressure region on 

both the medial and lateral side of the tibial cartilage. By weighting the COP based 

on pressure magnitude, the whole pressure region location and value could be 

condensed into a single point for ease of comparison. 

To remove any differences due to the size and geometry of the personalised mesh 

morphology, the weighted COP was calculated using the pressures remapped to the 

generic geometry (Section 3.2.5). 

Firstly, the tibial cartilage was split into its medial and lateral components by splitting 

the mesh aligned with the global origin (Figure 3-12). Therefore, the cartilage was 

split by its positive (lateral) and negative (medial) X coordinate values. 
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For each half of the tibial plateau, the centroid location of each element was 

calculated, then weighted by multiplying it by the pressure of that element. The sum 

of all weighted centroids in each axis direction was divided by the total pressure of 

that plateau half to determine the coordinates of the COP. 

The weighted COP results were calculated for each of the three methods for each 

participant and plotted back onto the generic tibial cartilage mesh to visualise the 

COP displacement during the activity. 

The range of displacement of the COP on the medial and lateral sides of the tibial 

cartilage were calculated for each of the three methods to compare the amount of 

COP motion in both the ML and AP directions. 

The mean error between the MSM and BVR COP locations in the X and Y directions 

across all available frames were also calculated for the generic and personalised 

model for both plateaus. The overall mean error for the cohort was also calculated. 

  

Figure 3-12 – Tibial cartilage split into the medial and lateral sides based 
on the X coordinate value. 
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3.2.2 STATISTICAL METHODS 

Methods for comparing TF kinematics 

For all six DOFs the mean and standard deviation (std) of the cohort were calculated 

for the generic MSM, personalised MSM and BVR results. It was calculated for the 

whole of stance phase for the MSM outputs, and only where data were available for 

all five participants for the BVR kinematics. 

Similarly to the comparison of the Visual3D pipeline outputs in Chapter 2 (Section 

2.5.7), both sets of kinematics from the generic and personalised model versions of 

the MSM pipeline were compared to the ‘ground truth’ BVR kinematics using a 

Bland-Altman analysis (Altman and Bland 1983).  As well as plotting the difference at 

each frame against its corresponding BVR kinematic value, the median and 

interquartile range (IQR) of the differences for the cohort were also calculated for 

each DOF. Again, the results were simplified into violin plots to show the distribution 

of these differences. See Figure 2-30 in Section 2.4.10 for more a more detailed 

explanation of the generation of the Bland-Altman and violin plots.  

To visualise the differences in the distribution between the generic model and 

personalised model results compared to the ‘ground truth’ BVR results, a split violin 

plot was used to show the distributions side by side (Figure 3-13).  
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Dice Scores 

The tibial cartilage contact pressure maps were compared by calculating the 

Sørensen-Dice coefficient, also known as a Dice score, between pairs of images of 

MSM and BVR contact pressure maps at each frame, allowing for quantification of 

agreement between contact region shape between the two sets of results (Willing et 

al. 2013; Thorhauer and Tashman 2015). The Dice score reduces the difference 

between two binary 2D images to a single value by comparing “common” pixels 

between the images. This value is calculated by doubling the total common pixels 

then dividing by the total number of pixels in both images (Equation 3-4).  

Figure 3-13 – Generation of a split violin plot comparing the distributions of two 
datasets (A & B). 
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For each participant, the subject-specific tibia bone and cartilage models were 

viewed superiorly in the transverse plane with the tibial ACS origin aligned with the 

centre of the figure, so the tibial plateau was visible as a 2D image (Figure 3-14). 

This was also repeated with the ‘generic’ MSM geometries. Each triangle on the 

cartilage was then defined as in contact (value = 1, black) or not in contact (value = 

0, white) based on the pressure results at the given frame. 

The resultant binary images of the contact regions were then compared in pairs; 

firstly, the Dice score between the generic MSM and BVR contact maps were 

calculated for all frames, then the personalised MSM and BVR contact map Dice 

scores were calculated. 

  

 𝐷𝐷(𝐴𝐴,𝐵𝐵) =
2|𝐴𝐴 ∩ 𝐵𝐵|
|𝐴𝐴| + |𝐵𝐵| (Eq. 3-7) 

Where |𝐴𝐴 ∩ 𝐵𝐵| is the count of the common pixels between image A and image B, 

 |𝐴𝐴| and |𝐵𝐵| are the total number of pixels in image A and image B, respectively. 

Figure 3-14 – Example of the image generation for calculating the Dice score 
between the generic MSM (Image A) and the BVR contact map (Image B) at a 

single frame. 
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Wilcoxon signed-rank test 

To determine if the differences in the calculated Dice scores were statistically 

significant between the generic and personalised MSM contact maps when 

compared to the BVR contact maps, a paired Wilcoxon signed-rank test was 

performed (MATLAB, MathWorks, USA). This non-parametric test was chosen as it 

does not assume normality of the differences and is suitable for paired data 

(Hollander et al. 2014).  

The frame-by-frame Dice scores for the generic and personalised model contact 

map images compared to their corresponding BVR-equivalents were pooled across 

all participants. For this test, the differences between the personalised and generic 

Dice scores were calculated, ranked by absolute difference, and then the signs of 

the ranks were reintroduced. The sum of the positive and negative signed ranks 

were computed, and the test returned the smaller of these two values as the W 

statistic. The p-value was then calculated by comparing the W statistic to the 

distribution of W under the null hypothesis. The null hypothesis – that there is no 

statistically significant difference between the Dice scores of the two methods – was 

rejected if the p-value was found to be below 0.05. 

Statistical Parametric Mapping 

For element-wise comparison between the pressure distributions generated using 

the personalised and generic tibial cartilage geometries, all pressure maps were first 

remapped onto the generic geometry (Section 3.2.5). Statistical Parametric Mapping 

(SPM) was then performed on these remapped pressure maps to identify regions 

where the error (the difference between the MSM and BVR pressures) differed 

significantly between the personalised and generic MSM predictions. 

For each participant, a paired t-test was conducted in MATLAB (MathWorks, USA) 

using the SPM1D Toolbox (Pataky 2012). The test compared the absolute error 

(MSM – BVR) between the personalised and generic predictions at each element 

across the generic tibial cartilage surface, averaged across all available frames of 

data which fell within stance phase for each participant. For each element, the 

resulting t-statistic was normalised to a z-statistic value. Each element’s z-statistic 

was then compared to the critical threshold (z*) to determine statistical significance. 

The z* threshold was calculated separately for each participant based on random 
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field theory (Adler 2010), which adjusts for multiple comparisons by considering the 

number of elements tested and the smoothness of the data. Although each 

participant had a different z* value depending on their data characteristics, a 

consistent significance level of α = 0.05 was applied throughout. 

After calculating individual results, a single overall mean map for the cohort was 

generated by averaging the participant-specific t-maps. The mean z* value across all 

participants was used as the threshold to visually indicate regions of significance on 

the cohort-level map. 

Comparing the contact maps like this allowed for areas of significantly better or 

worse prediction to be highlighted, indicating where contact prediction differences 

were occurring between the two sets of MSM maps. A larger number of elements 

with a significantly higher error from the generic model results would indicate that the 

personalised geometry improves contact pressure predictions. 

Elements where the z-statistic exceeded the positive or negative z* threshold were 

highlighted to show statistically significant differences in error between the generic 

and personalised MSM predictions compared to the BVR results. 

SPM was also applied to the mean error value (personalised – generic) across all 

elements to investigate the differences in prediction accuracy through stance phase. 

The same significance level of p < 0.05 was also applied for this comparison. By 

investigating the differences over time, periods of stance phase where the model 

accuracies diverged could be identified to investigate if there were certain points in 

the activity where personalisation made a greater difference. 
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3.3 METHOD EXPLORATION 

To expand on the method development, further exploration was performed on three 

specific aspects of the pipeline to understand the suitability of these methods for this 

application, as well as understanding of some of the potential limitations. 

3.3.1 TESTING THE BVR CONTACT MAP GENERATION CODE 

The BVR contact map calculation code (Section 3.2.4) was tested to ensure it 

accurately replicated the OpenSim-JAM equivalent ray tracing and bounding box 

method (Section 3.2.3).  

Firstly, a simple test was conducted to compare the outputs from the two methods. 

Contact maps were generated using the generic MSM pipeline geometry (from the 

Lenhart et al. (2015) model – Section 3.2.1) with the knee at 0°, 30°, 45°, 60°, and 

90° flexion, with the other five TF DOFs set to 0°/mm. 

For the MATLAB joint contact code, five OTs were created to represent these flexion 

angles. Since the femur and tibia meshes from the MSM model were already aligned 

with the origin (at 0,0,0), the OTs were directly applied to the tibia to achieve the 

desired poses. 

For the OpenSim-JAM comparison, a passive flexion simulation was run using the 

‘forsim’ tool on the generic model. The five closest model states to the target flexion 

angles were extracted, and the knee flexion was adjusted to match the exact values, 

with the other five knee DOFs set to 0°/mm. These five frames were then processed 

using the Joint Mechanics tool to generate contact maps.  
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The resulting five pairs of contact maps were visually compared to ensure no 

discrepancies between the two sets of code (Figure 3-15).  

As well as visually checking the similarity, the following numerical parameters were 

also compared to ensure consistency: the number of triangles in contact, the 

maximum contact distance and the number of the triangle where that maximum 

Figure 3-15 – Contact map outputs from the MATLAB (left) and OpenSim-JAM 
(right) pipelines of the generic geometry at the 5 tested flexion angles. 
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distance occurred. These results are presented in Table 3-2 and confirm the 

consistency of the outputs from the two methods as the results were identical. 

Table 3-2 – Numerical results comparing the MATLAB (MAT) and OpenSim-JAM 
(JAM) codes for calculating joint contact using the generic geometries at five flexion 

angles. 

Flexion 

angle 

(°) 

Count of triangles in 

contact 

Maximum overlap depth 

(mm) 

Index of triangle 

with maximum 

overlap depth 

MAT JAM Difference MAT JAM Difference MAT JAM 

0 681 681 0 0.404 0.404 0.000 6494 6494 

30 424 424 0 0.552 0.552 0.000 5376 5376 

45 731 731 0 0.945 0.945 0.000 5359 5359 

60 984 984 0 1.730 1.730 0.000 1494 1494 

90 1276 1276 0 2.857 2.857 0.000 5369 5369 

 

A subsequent test was conducted using a randomly selected dynamic trial from one 

participant. TF kinematics were extracted from the MSM pipeline’s IK results 

(Section 3.2.3) and converted to OTs using a custom MATLAB script. The MATLAB 

contact code was then run with these OTs and the generic model’s femoral and tibial 

cartilage geometries. The results were compared with those from the standard Joint 

Mechanics pipeline to assess consistency. Again, the differences between the 

number of triangles in contact and the maximum overlap depth between the 

MATLAB and OpenSim-JAM results were 0 across all 120 frames of dynamic 

movement. The pressure values at each frame were also compared and no 

differences were found (Figure 3-16).  
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During both tests, the two methods produced identical results, confirming that they 

perform in the same way and, therefore, the MATLAB code could be used to 

calculate contact maps from the BVR input data comparable to the results from the 

OpenSim-JAM pipeline. 

3.3.2 BVR CONTACT MAP SENSITIVITY TO OVERLAP DEPTH 

When visualising the resulting BVR contact maps calculated for the three dynamic 

activities using the MATLAB version of the bounding box and ray tracing method 

(Section 3.2.4), some contact maps were found to have little or no triangles in 

contact on either the medial or lateral plateau or both (Figure 3-17). 

Figure 3-16 – Comparison of the contact maps from the two methods for an 
example frame of dynamic motion.  

Figure 3-17 – Examples of small or one-sided contact regions from three different 
participants, one from each activity. 
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This minimal BVR contact was due to the lack of overlap between the femoral and 

tibial cartilage meshes resulting from a combination of the cartilage geometries and 

their relative positions due to the bone poses at each frame. Small errors in the 

cartilage segmentation or bone poses generated from image registration potentially 

contribute to the lack of contact seen between the two meshes.  

For this reason, it was decided to investigate the sensitivity of the BVR pressure map 

results to contact (overlap) depth. The threshold for a triangle to be considered “in 

contact” in the MATLAB version of OpenSim-JAM was adjusted to reflect potential 

errors. Three different minimum proximity thresholds were applied to the same gait 

trial from one participant: the standard 0 mm threshold (i.e. the meshes physically 

contact), -0.5 mm and -1 mm, so triangles within close proximity were also 

considered “in contact”. By making the threshold negative, the ray was also traced in 

the opposite direction to the usual ray direction (Figure 3-10) to find any triangles 

closer than the specified threshold value. Altering the threshold like this aimed to 

represent potential cumulative errors resulting in triangles not overlapping. 

An example frame at 40% stance phase of level gait from HV003 was chosen for this 

investigation as this participant displayed no contacting triangles on the lateral tibial 

plateau at this frame (Figure 3-18). As well as visualising the contact area on the 

mesh, the number of triangles in contact were counted and the contact area 

calculated for each of the three threshold iterations.  

The example in Figure 3-18 shows that as the threshold was reduced, the number of 

triangles and total area in contact on the tibial plateau increased. When the threshold 

was decreased by 0.5 mm, the contact area approximately doubled. Again, when the 

threshold was decreased from 0.5 mm to 1 mm, the contact area increased, 

although by a smaller proportion (increase of around 1.7 times).  
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These results show that predicted contact regions using the ray tracing and 

bounding box method were sensitive to the threshold value used. This confirms the 

sensitivity of this method to potential small errors in mesh segmentation or bone 

poses. 

Figure 3-18 – Example of HV003 at 40% stance phase of level gait with 
three different minimum proximity threshold values. 
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However, when considering TF joint contact in this context, it is also important to 

recognise that “no” contact seen between the cartilage meshes does not mean there 

was no contact in the knee, as contact between the cartilage and the meniscus was 

inherently included in the bone poses generated from BVR but not visualised. In this 

context, “no” visible cartilage contact means the bones of the knee moved further 

apart from each other relative to their positions in the MRI scanner (so no mesh 

overlap occurred), not necessarily that the joint was out of contact. 

3.3.3 KNEE MARKER POSITIONING ON MODEL 

As discussed in the previous chapter (Section 2.5.7), during data collection, the 

femoral condyle motion capture markers were placed too anteriorly compared to the 

underlying bony landmarks when the participants stood in their static, neutral 

standing positions. This affected the flexion accuracy of the motion-capture based 

kinematic results as the flexion value was consistently overestimated.  

As TF flexion angle is set as a primary coordinate in the COMAK algorithm, its value 

is directly taken from the IK results and used to calculate all other secondary DOFs.  

Hence, it is important to understand the effects of incorrect marker placement on the 

flexion angle predicted during IK as this will have a direct influence on all the other 

results – including the secondary kinematics and contact map predictions.  

Errors in the femoral condyle marker placement would affect the MSMs calculation of 

the femur’s location, altering the predicted hip joint positioning. The hip, and 

subsequent global alterations, associated with the IK routine would likely result in an 

overestimation of knee flexion. 

To investigate how potential errors in marker position would affect IK knee flexion 

outputs, the femoral condyle markers on the generic model were manipulated to 

represent different marker placements during in-vivo data collection. A standing 

static trial from a single participant (HV005 - chosen at random) was run through the 

IK routine with variations of the generic model with the virtual model markers moved 

anteriorly from their default position by 1 mm, 2 mm, 3 mm and 10 mm (for an 

extreme change). The output TF flexion for each model variation was then compared 

with the BVR flexion angle (from image registration at the same frame) to see if 

manipulating the marker reduced the difference between the results. The virtual 

markers were also then manually manipulated to visually matched the experimental 
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marker positions relative to the femur geometry using the visualisation of the 

markers in the BVR coordinate space (as described in Chapter 2, Section 2.4.11) 

(Figure 3-19). 

The resulting flexion angles are presented in Table 3-3. These results show that as 

the position of the markers increased anteriorly, the flexion angle also decreased, 

resulting in a value closer to the BVR measured position. 

Table 3-3 – Knee flexion angles during standing static for one individual where the 
condyle marker positions have been manipulated to better match their true positions 

relative to the underlying bone. 

HV005 - Static Knee flexion angle (°) 

BVR -15.96 

Gen. MSM - original 0.31 

Gen. MSM - condyle makers moved anteriorly +1mm 0.03 

Gen. MSM - condyle makers moved anteriorly +2mm -0.27 

Gen. MSM - condyle makers moved anteriorly +3mm -0.56 

Gen. MSM - condyle makers moved anteriorly +10mm -2.46 

Manual manipulation of condyle markers to visually 
(approximately) match BVR static -4.20 

 

  

Figure 3-19 – Femoral condyle marker manipulation on the generic MSM. 
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These results also show that even when the virtual condyle markers were manually 

manipulated to visually match their true positions, the knee flexion angle was still 

overestimated by over 10°. This suggests that the differences in flexion angle 

calculate were not solely due to marker misplacement but may also have been 

influenced by other factors, such as differences in ACS definition between the MSM 

and the BVR pipelines. Further investigation would be needed to understand the 

effects of this offset, including by calculating the exact relative positions of the 

markers to the bony landmarks and moving them to their precise positions 

accordingly.  

When looking at the manually moved marker position compared to its original 

position on the model, the marker was not only translated anteriorly but also 

superiorly. Again, further investigation would help determine how this superior 

movement also affects the calculated flexion angle by performing a similar test with 

superior manipulation of the virtual marker. 

As well as using a static trial, the flexion angle of the same participant was also 

tested using a level gait trial to investigate the effects of marker positioning on 

dynamic trial results. The model with the markers manually manipulated into visual 

alignment was run through the IK routine; the resulting TF flexion angle was plotted 

alongside the original MSM COMAK flexion result and the BVR calculated flexion 

(Figure 3-20). 
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These results show that when the marker position was moved to visually match its 

true position, the resulting flexion angle calculated was closer to the gold-standard 

BVR angle. This highlights the need for accurate marker placement during data 

collection, so the model’s marker positions represent the data correctly, and 

accurately calculate the primary kinematics used to solve the optimisation algorithm. 

3.4 RESULTS AND DISCUSSION 

3.4.1 DO PERSONALISED GEOMETRIES IMPROVE KINEMATIC 

PREDICTIONS DURING GAIT? 

To answer research question 1 (Section 3.1.2):  

Does adding personalised TF geometries improve model estimates of TF 

kinematics during level gait compared to a model with generic contact 

geometries, when validated against gold-standard BVR kinematics? 

The six DOF kinematics calculated for level gait from the MSM pipeline using the two 

versions of the model – one with generic contact geometries and one with 

personalised contact geometries – were compared to the gold-standard BVR 

kinematics (collected and calculated as described in Chapter 2).  

Figure 3-20 – Graph showing flexion angle during stance phase of level gait to 
compare the original generic MSM COMAK flexion result and the new manipulated 

marker position IK flexion to the BVR calculated flexion during a dynamic trial. 
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It was decided to initially analyse the model predicted kinematics during level gait as 

this was the activity the OpenSim-JAM pipeline was developed for (Lenhart et al. 

2015) (Section 1.6.2). 

To match the joint definition in the MSM, the BVR kinematics were calculated with 

the femoral and tibial ACSs coincident when in their initial segmented position from 

the MRI scan. The kinematics of the five participants were plotted for the rotational 

(Figure 3-21) and translational (Figure 3-22) DOFs for the three different methods. 

For comparison, the methods were plotted in pairs in the first three columns: generic 

MSM with personalised MSM, generic MSM with BVR, and personalised MSM with 

BVR. The mean ±1 std for all methods were plotted in the last column for each DOF. 

Appendix C presents graphs comparing all three methods, split by individual 

participant, for analysis of MSM prediction accuracy on an individual level. 

To quantify the difference between the generic and personalised MSM kinematics to 

the BVR results, a Bland-Altman analysis was performed for each DOF (Section 0), 

firstly for the generic results, then for the personalised. Figure 3-23 and Figure 3-24 

show the Bland-Altman results for the rotational DOFs and translational DOFs, 

respectively, with each plot showing the difference between the MSM and BVR value 

against the gold-standard BVR value at each frame where X-ray data was collected. 

The median ±1.45 IQR were also calculated and marked on the plots for the whole 

dataset. The Bland-Altman plots were then simplified into split violin plots, with the 

generic MSM on the left half of the plot in red and the personalised MSM on the right 

half in green. The violin plots allow for comparison the distribution of the differences 

between the two methods, highlighting accuracy differences (see Figure 3-13). 

As seen in Figure 3-21, the flexion angles calculated for the cohort using both the 

generic and personalised models were nearly identical. This was expected as the 

flexion angles for both the generic and personalised MSMs were calculated during 

the IK step, which was not influenced by the contact geometry. In the OpenSim-JAM 

approach, TF flexion is considered to be a primary DOF and, therefore, directly 

measurable from motion capture (Smith 2017). This means the flexion output was 

not optimised during the COMAK step and was the same for both models. 
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Figure 3-21 – Graphs showing the calculated rotations for the individual participants as well as the mean ±std of the cohort.  
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Figure 3-22 - Graphs showing the calculated translations for the individual participants as well as the mean ±std of the cohort.  
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Figure 3-23 – Bland Altman analyses of the generic (left column, red) and personalised (right column, green) MSM rotations compared 
against gold-standard BVR rotations. These results were simplified into violin plots to show the distribution of the differences (middle column). 
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Figure 3-24 – Bland Altman analyses of the generic (left column, red) and personalised (right column, green) MSM translations compared 
against gold-standard BVR rotations. These results were simplified into violin plots to show the distribution of the differences (middle column). 
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The Bland-Altman plots for flexion angle (Figure 3-23) showed a median 

overestimation of 13° for both versions of the model, closely matching the 14° offset 

observed between Visual3D and BVR flexion angles (Figure 2-43 in Section 2.5.7). 

As discussed in Section 2.5.7, this offset was likely caused by anterior misplacement 

of the femoral condyle markers during data collection, leading to artificially elevated 

flexion angles. In the Visual3D pipeline, this primarily affects tibial positioning, while 

in the MSM pipeline it influences femur body positioning (including the hip). Despite 

this, both methods showed the same flexion offset. As flexion is a primary coordinate 

in the COMAK algorithm, secondary kinematics would also be affected by the 

overestimated knee flexion angles.  

AA was shown to have a similar profile when calculated using the generic MSM and 

the personalised MSM, except towards the end of stance phase (80-100% stance) 

where the models with the personalised geometries showed more diverging results 

(Figure 3-21). As well as this, the mean predicted adduction angle was lower when 

using the personalised model compared to the generic model. This meant that the 

personalised model’s mean adduction angle was closer to the BVR mean, although 

the median difference was only 0.7° closer overall (Figure 3-23). 

External rotation showed greater variation in the generic model than the 

personalised, with the greatest profile difference between the two methods out of all 

the rotations (Figure 3-21). Although the median external rotation error for the 

generic model was better than the personalised (0.95° compared to -4.2°, Figure 

3-23), it had a higher IQR. The large IQR seen in both sets of results shows the 

COMAK algorithm struggles to predict this rotation in general, even with 

personalised joint geometries. As IE rotation had a larger ROM than AA, it was likely 

more sensitive to the flexion overestimation error. 

Both AA and IE rotation showed a negative correlation in their Bland-Altman plots 

between flexion angle and MSM-BVR difference with both model versions (Figure 

3-23). This suggests the MSM may be over-constraining the model’s secondary 

DOFs and not allowing for the full ROM seen in the BVR results. 

All three translational DOFs presented similar kinematic profiles for the stance phase 

of gait between both models (Figure 3-22), although the offsets differed. For all three 

translations, the personalised model allowed for a greater ROM than the generic 
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model, suggesting that the TF translations were more sensitive to contact geometry 

than to the input kinematics. 

The generic model predicted lateral translation on average during mid-stance, which 

was more consistent with the BVR results than the medial translation predicted by 

the personalised model (Figure 3-24). This resulted in a smaller median difference 

between the generic model and the BVR (-0.48 mm), than the personalised model (-

2.1 mm). The personalised model also had a larger IQR than the generic, increased 

due to poor prediction of the ML translation of one participant (HV006). 

AP translation showed the greatest median translational difference between the 

MSM and BVR results between the two models (Figure 3-24). The personalised 

model predicted this translation well (median difference with BVR = -0.43 mm), 

whereas the generic model consistently overestimated the anterior translation 

(median difference with BVR = 7.5 mm). The personalised model also had a 

narrower IQR (±1.45 IQR: 7 mm vs 10.7 mm) with most differences clustered around 

0 mm (Figure 3-24). 

Although both models predicted similar AP translation trends, the personalised 

model’s predictions of AP translation fluctuating around neutral (0 mm) were not only 

more consistent with the BVR results, but were also more similar to literature values 

(0-5 mm) (Kozanek et al. 2009; Gray et al. 2019; Thomeer et al. 2020; Thomeer et 

al. 2021). When presenting the personalised model workflow, Killen et al. (2024) also 

found the generic model estimated greater anterior translation than the model with 

personalised geometries. This overestimation is likely due to the specific anatomy 

and alignment of the cartilage geometries of the individual used to define the generic 

model. However, this would need to be confirmed by testing the pipeline with a 

different ‘generic’ model (that uses a different set of contact geometries) with motion 

capture inputs from the same cohort to see if the anterior translation prediction 

improves. 

Finally, CD translation presented a similar distribution of differences for both models 

(seen from the violin plot in Figure 3-24), although the generic model displayed a 

clearer correlation in the Bland-Altman plot, likely due to more consistent CD 

patterns predicted across participants. On average, the personalised model 
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predicted greater compression, which would likely lead to higher contact pressure 

outputs. 

3.4.2 TIBIOFEMORAL JOINT CONTACT MAPS DURING LEVEL GAIT  

As one of the main uses for the OpenSim-JAM pipeline (Section 3.2.3) is to generate 

contact pressure maps to understand loading distribution in the articular cartilage, it 

was important to understand the effects the kinematic differences (Section 3.4.1) had 

on the resulting maps.  

The OpenSim-JAM contact pressure maps were compared with their BVR-

equivalents (generated using the same OBB tree and ray tracing method, Section 

3.2.4) at each frame of motion where BVR data were available. This comparison 

aimed to answer the second research question: 

Are MSM contact pressure maps more similar to BVR maps when using 

personalised or generic contact geometries in the model? 

Figure 3-25 shows example contact maps from the BVR, personalised MSM, and 

generic MSM for each participant at 50% stance, chosen as it was the only time 

point with data available for all five participants. For a more comprehensive picture of 

the results of the cohort, Appendix D contains the contact maps calculated at 10% 

stance intervals of level gait for all participants individually. All the geometries in 

Figure 3-25 are shown at the same scale, so visual size differences reflect actual 

differences in model mesh sizes. Although the generic model rigid’s bodies were 

scaled using marker landmarks, the specialised knee contact geometries were not 

scaled between participants (Section 3.2.3), which could affect contact predictions 

from the model. 

Due to using identical contact geometries, the generic MSM contact maps showed 

more consistent contact region predictions across the cohort than the other two 

methods (Figure 3-25). This suggests that contact area predictions are sensitive to 

articular cartilage surface morphology, so the generic geometries struggle to capture 

inter-participant variation. 
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Figure 3-25 – Example contact maps for all participants at 50% stance phase during level 
gait. BVR contact map results in the first column, personalised MSM results in the second 

and the generic MSM contact map in the third. 
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Out of the three methods, the BVR contact maps showed the largest variation in 

contact area and location (first column of Figure 3-25), with some participants 

displaying small contact areas at various points during gait, particularly on the medial 

tibial plateau (three examples given in Figure 3-26). As joint contact area is sensitive 

to small changes in bone positions (as shown in Section 3.3.2), calculating contact 

pressure using this technique from BVR bone poses may not be suitable. Small 

errors in segmentation, model smoothing and image registration errors could have 

large effects on the predicted contact regions and pressure magnitudes from BVR. 

As the meniscus was excluded from the model, the MSMs generally predicted larger 

contact regions between the cartilage. In contrast, the BVR maps inherently include 

meniscus mechanics, reducing the visible cartilage-cartilage contact where the 

meniscus was situated. 

Figure 3-26 – Three example of small BVR contact areas calculated which affect 
comparisons with MSM contact maps. 



195 
 

Not all BVR contact maps showed such small contact regions. In some cases (like 

HV005 and HV006 at 50% stance, Figure 3-25), BVR predictions were visually 

similar to those from the personalised MSM. Three additional examples of good 

agreement during stance phase of level gait are shown in Figure 3-27, 

demonstrating how incorporating personalised geometries improves prediction of the 

size and shape of contact areas.  

Figure 3-27 also highlights variation in the pressure magnitudes predicted across the 

different methods. In some cases (like HV003 at 70% stance, Figure 3-27) the 

personalised model predicted much higher pressures than the BVR and generic 

Figure 3-27 – Examples of contact predictions with good agreement in area between 
the personalised MSM and BVR results. 
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MSM results, whereas in others (for example, HV006 at 20% stance, Figure 3-27), 

the generic model predicted the highest values. Although these are extreme 

examples, the BVR pressure magnitudes were generally lower than both MSMs. 

This was likely due to the MSM requiring constant cartilage contact to solve for joint 

forces, as well as the absence of the meniscus – which was inherently included in 

the BVR contact calculations. 

Overall, visual inspection showed that the personalised model improved the contact 

region prediction compared to the generic model, when assessed against the BVR 

contact maps. This was seen in the examples at 50% stance in Figure 3-25, across 

the results in Appendix D, and in Figure 3-27. 

Sørensen-Dice coefficient  

To expand on the visual inspection, the Sørensen-Dice coefficient (Section 0) was 

calculated and used to compare each MSM map to its BVR equivalent at every 

frame. The mean Dice score across all frames for each participant was calculated, 

along with the overall mean Dice score for the cohort (Table 3-4).  

Table 3-4 – Mean Dice scores for each participant during level gait 

Participant ID Mean Dice score of level gait frames 
MSM compared against BVR contact map images. 

Generic MSM  
(c.f. BVR) 

Personalised MSM 
(c.f. BVR) 

Difference  
(pers. – gen.) 

HV002 0.541 0.547 +0.006 

HV003 0.334 0.377 +0.043 

HV004 0.507 0.754 +0.248 

HV005 0.336 0.427 +0.092 

HV006 0.463 0.608 +0.145 

Overall mean 0.436 0.543 +0.107 

 

Table 3-4 shows that the personalised model increased the mean Dice score for all 

participants, with an overall mean improvement of 10.7%. Figure 3-28 visualises this, 

with the connecting lines highlighting that all participants had higher Dice scores with 

the personalised model, though the degree of improvement varied. The median Dice 
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scores for the cohort closely matched the overall means (Table 3-4) at 0.452 (IQR 

±0.145) for the generic and 0.569 (IQR ±0.314) for the personalised model. These 

results support the hypothesis that including personalised contact geometries 

improves model predictions of joint contact area.  

 

To confirm if the improvement in the Dice-scores was statistically significant, a 

Wilcoxon Signed-Rank test was performed, comparing the paired Dice scores for the 

five participants (Section 3.2.1). The test revealed a statistically significant 

improvement in the Dice scores for the personalised model compared to the generic 

model (W = 5210, p < 0.0001, n = 109 paired frames). This result confirmed that 

incorporating personalised geometries significantly improves the accuracy of contact 

map predictions during level gait, demonstrating the value of representing 

anatomical variation. 

Figure 3-28 – Per-participant mean Dice scores plotted to visualise the 
improvements between the generic and personalised model contact predictions. 
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The Dice scores were also plotted against percentage stance to investigate how 

accuracy varied throughout the stance phase of level gait (Figure 3-29).  

For all five participants, the personalised model had a higher Dice score than the 

generic model between 40-60%. However, outside of this range, the personalised 

model did not always have the higher Dice score. Only HV004 had a consistent, 

large improvement throughout all collected frames.  

Some participants showed very similar Dice score profiles for both model versions. 

For example, HV002 had comparable magnitudes throughout, with slightly better 

predictions from 40-60% stance, but worse between 60-75% stance (Figure 3-29). 

This led to only a small mean Dice score improvement for that participant (0.06 

higher, Table 3-4). This increased similarity in Dice score was likely due the split 

contact region on the medial tibial plateau (as a result of the contact morphology), as 

well as the close size match between this participant and the generic geometry. 

Participants with small BVR contact areas (e.g. HV003 and HV005), presented low 

Dice scores with both model versions, as the limited BVR contact reduced overlap 

(with the MSM predicting contact where none was observed in BVR). 

  

Figure 3-29 – The Dice scores between the MSM and BVR contact maps at each frame 
plotted against percentage stance of level gait for both the generic (dashed lines) and 

personalised (solid lines) versions of the model. 
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Statistical Parametric Mapping 

As the generic and personalised contact maps were generated on different meshes, 

the personalised MSM and BVR results were remapped onto the generic model 

geometries (Section 3.2.5) to allow for element-wise comparison on both an 

individual and cohort level. This isolated discrepancies between the generic and 

personalised MSM predictions and their BVR counterparts to differences in pressure 

prediction, rather than mesh morphology.  

SPM (Section 0) was used to compare the average errors of the (remapped) 

personalised and generic MSM pressures against to the (remapped) BVR pressures 

for each participant (Figure 3-30). For each element of the tibial cartilage, the z-value 

was calculated, and compared to that participant’s z* value (α = 0.05). These were 

coloured green if the personalised error was significantly lower (indicating better 

prediction) or red if higher. The average errors were computed across all available 

frames for each participant, which varied between individuals. A cohort mean map 

was also created by averaging the z-values across participants for each mesh 

element, with the mean z* of the five participants used as the threshold for statistical 

significance.  
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Figure 3-30 – Element-wise SPM comparing the mean error values (MSM – BVR) across the 
specified number of frames for each participant, with the final map showing the mean results 

across the whole cohort. Green = generic error was significantly higher (compared to that 
participant’s z*), and red = personalised error was significantly higher. 
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Compared to the averaged results, individual SPM maps revealed more areas with 

significantly greater errors from the personalised model than the generic (red 

elements, Figure 3-30). This was largely due to the personalised model results 

having larger contact regions and higher pressures than the BVR data. The 

participants with the largest regions of significantly better generic predictions (HV003 

& HV005) were the same participants with small BVR contact areas (Section 3.4.2) 

and low Dice scores (Figure 3-28, Section 0). These participants also showed large 

regions of green (significantly better personalised predictions) for the same reason. 

However, when the errors were averaged across the cohort, a large region emerged 

on the medial tibial plateau where the generic model errors were significantly higher 

than the personalised model. This was due to the generic model predicting a more 

posterior contact region than the personalised MSM and BVR, resulting in significant 

errors where the generic model predicted contact, but it was not observed in the 

BVR results. This aligns with the greater anterior translation of the tibia relative to the 

femur predicted by the generic model compared to the BVR (Figure 3-22, Section 

3.4.1), shifting the contact region posteriorly. 

The z* threshold value varied slightly between participants due to differences in the 

number of frames included in the analysis. A higher z* threshold reflects a smaller 

dataset, where more random errors may be present and the data may be less 

smooth between frames. However, the z* values across participants were fairly 

similar, ranging from 5.13 to 6.19 (Figure 3-30). 

As well as using SPM to investigate element-wise differences, it was also applied to 

per-frame analysis (Section 0). Figure 3-31 shows the total mean error difference 

(generic – personalised) of all mesh elements at each frame where data was 

collected per participant. The z* values for each participant are indicated on the 

graph as dotted red lines and any results that fall within this band are not statistically 

significant. Similarly to the element-wise comparison, green shaded regions indicate 

frames where the generic error was significantly higher than the personalised 

(personalised was better), whereas red shaded regions indicate significantly higher 

personalised errors.  



202 
 

Although these results showed no consistent pattern of improved personalised 

model prediction for any specific part of stance phase, all participants had regions 

where the personalised MSM significantly outperformed the generic MSM (Figure 

3-31). In contrast, only three participants showed any regions where the generic 

model was significantly better. For all participants, the maximum positive t-statistic 

(indicating better personalised model performance) was larger in absolute value than 

the minimum negative t-statistic, suggesting that improvements from the 

personalised model were more substantial than any areas where it underperformed. 

Figure 3-31 – SPM mean generic vs personalised results across percentage stance phase for 
each participant.  
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Only HV006 showed a consistent, statistically significant improvement throughout all 

collected frames of gait using the personalised model. This was consistent with their 

high mean Dice score for the personalised model (Figure 3-28, Section 0), and low 

number of elements where the generic model errors were significantly smaller in the 

element-wise SPM results (Figure 3-30), supporting the visual improvement in 

contact map prediction seen in Appendix D. These results suggest that for HV006, 

the personalised model offered a particularly good match to the BVR-derived contact 

pressures, in part because its predicted magnitudes were closer to the lower BVR 

values, whereas the generic model pressures were particularly high for this 

participant. 

Out of the five participants, HV005 presented with the largest percentage of stance 

phase where the personalised model was not significantly better than the generic 

model, with significant improvements only occurring during early stance. HV005 also 

had the highest number of elements where the generic model significantly 

outperformed the personalised model, and only a small number showing the 

opposite. These results are likely due to the more accurate lateral tibial plateau 

contact predictions by the generic model (as seen in the element-wise SPM in Figure 

3-30), as well as the high pressure magnitudes calculated by the personalised 

model. Although this analysis shows the generic model outperformed the 

personalised from 30% stance onwards (Figure 3-31), this was not reflected in the 

Dice-scores for this participant, which showed a greater improvement in the 

personalised model from 40% stance onwards compared to earlier in the activity 

(Figure 3-29). This suggests that the contact area predicted by the personalised 

model was more consistent with the BVR results, while the generic model's pressure 

magnitudes were closer to the BVR values for this participant. 

Weighted Centre of Pressure differences 

Weighted COP (Section 3.2.1) changes were also investigated using the remapped 

contact pressure maps to allow for a fair comparison, not impacted by mesh size 

differences.  

The medial and lateral plateau COP positions were calculated for the three different 

methods (personalised, generic and BVR), and their traces were plotted on the 
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generic tibial cartilage geometry to visualise the movement of the COP on the tibial 

plateau (Figure 3-32).  

On the medial plateau, the personalised model COP traces were consistently more 

anterior (+y) than the generic model COP, consistent with the BVR results (Figure 

3-32). The more posterior COP in the generic model was expected, given its greater 

anterior tibial translation relative to the femur (Figure 3-24).  

The BVR COP was found to have a greater ROM in the ML (x) direction than either 

MSM when the mean range of COP displacements were calculated (Table 3-5). This 

Figure 3-32 – Weighted COP trace on the tibial plateau plotted for each participant.  
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was true for both the medial and lateral half of the tibial plateau. This indicates the 

MSM may be over constraining the movement of the TF joint along the ML axis. 

Table 3-5 – Mean range of COP displacement across all participants calculated for 
the three methods in both the ML and AP directions for the medial and lateral halves 

of the tibial plateau. 

COP calculation 

method 

Mean range of COP displacement 

Medial tibial plateau Lateral tibial plateau 

ML (x) (mm) AP (y) (mm) ML (x) (mm) AP (y) (mm) 

BVR 8.75 8.22 6.31 5.14 

Generic 2.14 7.31 3.50 4.23 

Personalised  3.64 11.02 3.06 4.04 

 

In the AP direction, the BVR had a slightly larger COP ROM than both models on the 

lateral plateau, but the personalised model displayed the largest ROM on the medial 

plateau (Table 3-5).  

The error between the generic and personalised model COP predictions and the 

BVR COP were calculated for the two axes directions (ML and AP) at each frame. 

The mean error for each participant is presented in Table 3-6 along with the mean 

for the cohort. 
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Table 3-6 – Mean error across all frames between MSM and BVR COP positions in 
the ML and AP directions for the generic (gen.) and personalised (pers.) models. The 

difference in error (gen. – pers.) is colour-coded: red indicates lower error for the 
generic model, green indicates lower error for the personalised model. 

Participant 
ID 

Medial tibial plateau error (mm) 
ML (x) AP (y) 

Gen. Pers. Diff. Gen. Pers. Diff. 
HV002 5.81 6.92 -1.11 9.84 2.53 7.32 
HV003 4.68 1.17 3.51 6.85 3.77 3.08 
HV004 2.74 1.77 0.97 3.13 3.89 -0.76 
HV005 2.62 3.45 -0.83 7.35 2.80 4.54 
HV006 3.50 2.23 1.27 9.40 4.48 4.92 
Mean 3.87 3.11 0.76 7.31 3.50 3.82 

Participant 
ID 

Lateral tibial plateau error (mm) 
ML (x) AP (y) 

Gen. Pers. Diff. Gen. Pers. Diff. 
HV002 2.02 3.09 -1.07 2.31 2.24 0.07 
HV003 3.23 4.72 -1.49 4.74 2.85 1.89 
HV004 2.92 3.70 -0.78 2.56 4.37 -1.81 
HV005 3.34 3.93 -0.59 0.77 1.45 -0.68 
HV006 4.31 4.62 -0.31 1.95 1.87 0.09 
Mean 3.16 4.01 -0.85 2.47 2.56 -0.09 

 

The largest difference in the mean cohort error (3.82 mm) between the two model 

versions was found in the AP direction on the medial plateau, with the personalised 

model showing a lower error (Table 3-6). In contrast, the AP translation on the lateral 

tibial plateau showed the smallest difference in mean cohort error (-0.09 mm). The 

mean cohort error in the ML direction was similar on both plateaus, with both below 

1 mm. Although the personalised model had lower mean cohort errors on the medial 

plateau in both directions, it had higher errors on the lateral plateau. Despite this, 

errors were small in all directions except for AP translation on the medial plateau, 

indicating this is the main direction where the personalised model improves 

predictions. 

3.4.3 MUSCULOSKELETAL MODEL PREDICTIONS DURING HIGHER 

FLEXION ACTIVITIES 

As well as investigating the model accuracy differences during level gait, the 

comparison was expanded to two activities involving higher flexion angles: stair 

ascent and lunge(also collected as part of the pilot dataset from Chapter 2). These 
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activities challenged the model’s capabilities at a range higher of flexion than it is 

typically used for aiming to answer the third research question: 

Do the observed differences between the personalised and generic model 

outputs reported during gait carry over to activities involving higher TF flexion 

angles? 

Stair ascent 

Like with the kinematic results for gait in Section 3.4.1, the six DOF TF kinematics 

were plotted against percentage stance for all three methods – BVR, generic MSM, 

and personalised MSM (rotations in Figure 3-33 and translations in Figure 3-34). The 

Bland-Altman results for these kinematics are presented in Figure 3-35 and Figure 

3-36, along with violin plots summarising the distribution of differences across 

participants (Section 0).  

The flexion angles predicted by both MSMs had a similar profile to the BVR mean 

result but with an earlier peak in flexion (Figure 3-33). They also showed a consistent 

offset from the BVR results, 10° for the generic and 11° for the personalised (Figure 

3-35), which was similar to the offset observed during gait.  

Although the mean adduction of the generic model was closer to the BVR mean 

(Figure 3-33), the median difference (MSM-BVR) was slightly smaller for the 

personalised model (Figure 3-35). Whereas the personalised model adduction 

values were more diverged at the beginning of stance, converging later in stance, 

the generic model predictions were the opposite. Neither of these trends was seen in 

the BVR results. The generic model tended to underestimate the adduction angle, 

whereas the personalised model slightly overestimated it (Figure 3-35). Both models 

poorly predicted the adduction for participant HV006, where they overestimated the 

value compared to BVR. This was attributed to the large adduction angle calculated 

for this participant by BVR, which was not replicated by either MSM. 

IE rotation was poorly predicted by both versions of the model which both predicted 

external rotation, opposing the internal rotation calculated from the BVR data (Figure 

3-33). The generic model predicted a wider range of differences than the 

personalised, but they had a similar mean profile with the same mean difference 

offset to the BVR results (16°, Figure 3-35). 
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Figure 3-33 – Graphs showing the calculated rotations for the individual participants during stair ascent as well as the mean ±std of the cohort.  
The first column shows the BVR results, the second contains the generic MSM results, the third the personalised results and the fourth column 

contains the mean ±std of all three methods. 
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Figure 3-34 – Graphs showing the calculated translations for the individual participants during stair ascent as well as the mean ±std of the cohort.  
The first column shows the BVR results, the second contains the generic MSM results, the third the personalised results and the fourth column 

contains the mean ±std of all three methods. 
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Figure 3-35 – Bland Altman analyses of the generic (left column, red) and personalised (right column, green) MSM rotations 
compared against gold-standard BVR rotations during stair ascent. These results were simplified into violin plots to show the 

distribution of the differences (middle column). 
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Figure 3-36 – Bland Altman analyses of the generic (left column) and personalised (right column) MSM translations 
compared against gold-standard BVR translations during stair ascent. These results were simplified into violin plots to show 

the distribution of the differences (middle column). 
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The personalised model improved the median translational difference between the 

MSM and the BVR results in all three DOFs (Figure 3-36), although there was little 

difference in the median value between ML and CD translations. AP translation 

accuracy was improved the most by the inclusion of personalised geometries, like 

with level gait. Although, this was much less pronounced for stair ascent with the 

personalised prediction being only 1.9 mm closer to the BVR translation value than 

the generic model (as compared to the improvement of 7.07 mm during gait). 

Both models predicted similar mean lateral translation magnitudes (Figure 3-34). 

Like with external rotation, the models predicted the opposite magnitude of 

translation to the BVR results (which predicted a mean medial translation). There 

was also a negative correlation seen on the BA plots for both models (Figure 3-36), 

displaying the same over constraining of this DOF as seen with level gait (Section 

3.4.1, Figure 3-24). 

Both the personalised and generic model predicted a peak of distraction during early 

stance, coinciding with the peak in flexion during stair ascent (Figure 3-34). This was 

not seen in the BVR results due to HV003 presenting higher compression during 

early stance, skewing the mean. 

To investigate the effects of the kinematic differences on the contact map results, the 

MSM (Section 3.2.3) and BVR (Section 3.2.4) contact map differences were visually 

analysed. See Appendix D for the contact maps at 10% intervals of stance phase 

during stair ascent for each participant. 

Examples were taken at 20% stance (corresponding with peak flexion, Figure 3-37) 

and at 60% stance (the last 10% interval where data was available for all 

participants, Figure 3-38). These two intervals were chosen to investigate contact 

predictions at differing knee flexion magnitudes, as, compared to level gait, the peak 

flexion in early stance is much higher, but of a similar magnitude during late stance. 
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 Figure 3-37 – Example contact maps for all participants at 20% stance phase (peak flexion) 
during stair ascent. BVR contact map results in the first column, personalised MSM results in 

the second and the generic MSM contact map in the third. 



214 
 

  

Figure 3-38 - Example contact maps for all participants at 60% stance phase (lower 
flexion) during stair ascent. BVR contact map results in the first column, personalised MSM 

results in the second and the generic MSM contact map in the third. 
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At 20% stance (Figure 3-37), contact was only found on one half of the tibial plateau 

for 3/5 participants using the BVR data. This highlights the limitations of calculating 

BVR contact using ray tracing and bounding boxes due to its sensitivity to mesh 

positioning. Where there is little or no contact calculated by the BVR data, 

differences in contact area between the MSM and BVR results are not easily 

comparable.  

For this activity, instances of little or no contact on one or both plateaus were more 

commonly observed during the first half of stance phase when knee flexion was 

higher. Some participants displayed these small contact regions throughout (e.g. 

HV005), whereas some only displayed them in the first half of stance (e.g. HV004), 

and some displayed larger, more consistent contact areas all through the activity 

(e.g. HV006). This highlights the variable effects of personalised geometry and 

kinematics on predicted contact area through the BVR results. 

The two sets of MSM results at 20% stance phase (Figure 3-37) displayed a similar 

pattern of contact region, with the medial tibial plateau contact sitting more 

posteriorly than the lateral plateau contact, reflecting the high external rotation of the 

tibia seen in both MSM results (Figure 3-33). This contrasted the contact pattern 

resulting from the internal rotation calculated by the BVR, seen in participants where 

contact was visible on both tibial plateau halves (Figure 3-39). The similarity between 

the generic and personalised contact regions became less pronounced at 60% 

stance phase (Figure 3-38) in some individuals (e.g. HV004), however was still 

clearly seen in other participants (e.g. HV002 & HV005). 

Figure 3-39 – Example highlighting the difference in contact slope on the tibial plateau 
caused by the variation in IE rotation.  
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The differences in contact area due to the difference in external rotation, along with 

the BVR results with little or no contact area predicted, resulted in low Dice scores 

between the MSM and BVR predictions for both the generic and personalised 

predictions during stair ascent (Table 3-7).  

Table 3-7 – Mean Dice scores for each participant during stair ascent  

Participant ID Mean Dice score of stair ascent frames 
MSM compared against BVR contact map images. 

Generic MSM  
(c.f. BVR) 

Personalised MSM 
(c.f. BVR) 

Difference  
(pers. – gen.) 

HV002 0.188 0.162 -0.027 

HV003 0.178 0.179 +0.001 

HV004 0.181 0.457 +0.276 

HV005 0.033 0.129 +0.096 

HV006 0.002 0.070 +0.068 

Overall mean 0.117 0.199 +0.083 

 

All Dice scores were found to be below 0.2 for both models for all participants, 

except for the personalised model of HV004, which had a mean Dice score was 

0.475. This participant was the exception due to a combination of having the 

smallest average BVR internal rotation of the cohort – resulting in a smaller offset in 

external rotation with the MSM – as well as having relatively large contact areas 

(particularly towards the end of stance phase). These factors led to a greater overlap 

between the BVR and personalised MSM contact maps, as the personalised model 

predicted a larger contact area than the generic model, increasing the number of 

shared contact pixels for the Dice score calculation. 

For all participants, except for HV004, the difference in the mean between the 

personalised and generic Dice scores were found to be <0.1 due to the low Dice 

scores predicted. As well as low cohort mean Dice scores (generic = 0.117, 

personalised = 0.199), the cohort median Dice scores for stair ascent were also low, 

at 0.147 (IQR ±0.196) for the generic and 0.189 (IQR ±0.292) for the personalised 

model.  



217 
 

Despite these low averages and small differences, a Wilcoxon Signed-Rank test 

(Section 3.2.1) found the difference to be statistically significant (W = 25947, 

p < 0.0001). This suggests that the personalised geometry did improve the contact 

area prediction. However, as the Dices scores are low, caution must be taken when 

interpreting results from either model due to the lack of similarity with the BVR 

results.  

Lunge 

The six DOF kinematics during a dynamic weightbearing lunge are presented in 

Figure 3-40 and Figure 3-41 for the five participants from the generic MSM, 

personalised MSM and BVR results for comparison. The Bland-Altman results for 

these kinematics can be found in Figure 3-42 and Figure 3-43, along with the 

distribution of differences simplified into violin plots.  

Like the other two activities, the flexion angle predicted by both MSMs was the same 

and the mean value was offset from the BVR results (Figure 3-40). The generic 

model had a median flexion offset from the BVR results of 9.4° and the personalised 

model had an offset of 10° (Figure 3-42). This was the smallest offset found for any 

of the activities and was also smaller than the 14° offset of the Visual3D motion-

capture results for the lunge activity (Section 2.5.7). 



218 
 

 

 

  

Figure 3-40 – Graphs showing the calculated rotations for the individual participants during lunging as well as the mean ±std of the cohort.  
The first column shows the BVR results, the second contains the generic MSM results, the third the personalised results and the fourth column 

contains the mean ±std of all three methods. 
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Figure 3-41 – Graphs showing the calculated translations for the individual participants during lunging as well as the mean ±std of the cohort.  
The first column shows the BVR results, the second contains the generic MSM results, the third the personalised results and the fourth column 

contains the mean ±std of all three methods. 
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Figure 3-42 – Bland Altman analyses of the generic (left column) and personalised (right column) MSM translations compared 
against gold-standard BVR rotations during lunging. These results were simplified into violin plots to show the distribution of 

the differences (middle column). 
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Figure 3-43 – Bland Altman analyses of the generic (left column) and personalised (right column) MSM translations compared 
against gold-standard BVR translations during lunging. These results were simplified into violin plots to show the distribution of 

the differences (middle column). 
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All three methods calculated the knee to be adducted on average during lunge, 

however, both the BVR and personalised MSM predicted a large range of 

magnitudes across the cohort, with some participants displaying abduction 

throughout (Figure 3-40). The adduction angle estimated by the generic model was 

more consistent between participants. Both models displayed a large range of 

differences between participants, but with a fairly consistent offset for each individual 

(Figure 3-43).  

Like with stair ascent, both MSMs poorly predicted TF internal rotation displaying the 

same median rotation offset of 16° (Figure 3-42). The BVR results showed the knee 

to be constantly internally rotated throughout the lunge, whereas both MSMs found 

the average rotation fluctuated around 0° (Figure 3-40).  

The personalised model presented a closer mean translation to the BVR results than 

the generic model in both the AP and CD directions, but not for ML translation 

(Figure 3-41). Both MSMs found medial translation overall, whereas the BVR 

presented mean lateral translation, although there was variation between 

participants, with some showing medial translation throughout. Again, like the other 

two activities, the trend of decreasing difference with increased BVR medial 

translation was present (Figure 3-43). 

Similarly to the other two activities, the personalised model was found to improve the 

median AP translation difference, this time by 1.5 mm (Figure 3-43). Again, both 

models overestimated the translation, generally predicting anterior translation of the 

tibia relative to the femur, whereas BVR generally presented posterior translation. 

Both models found the joint to be distracted during the central portion of the lunge, 

coinciding with the higher flexion angles, contrary to the BVR results where the 

median remained around neutral (Figure 3-41). Although both MSMs overestimated 

distraction, the personalised model did present a lower median difference and IQR 

than the generic model (Figure 3-43).  

The lunge contact maps from the three methods were then compared visually for 

similarity. The results for each participant at intervals of 10% lunge can be found in 

Appendix D. Examples of the contact maps for the cohort at 50% lunge are shown in 

Figure 3-44; 50% lunge was chosen as this was a point of high flexion for all 

participants, roughly matching the mean peak flexion value of the cohort.  
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Like the other two activities, the BVR lunge contact maps had frames with little or no 

contact on half of the tibial plateau, particularly on the medial plateau. Again, some 

participants displayed more frames with small contact areas (e.g. HV002 & HV003) 

than others (e.g. HV006). There was no obvious kinematic pattern as to the 

participants that presented with smaller contact regions, suggesting this was more 

likely due to individual geometry, or segmentation and image registration errors than 

kinematic inputs.  

Like with stair ascent, the MSM contact regions were located more posteriorly on the 

medial plateau compared to the lateral plateau (Figure 3-44), again due to the 

predicted external rotation of the tibia (Figure 3-40). This was more clearly seen in 

the personalised MSM lunge results than in the generic (e.g. HV002, HV003 & 

HV006 in Figure 3-44), likely due to the personalised MSM’s external rotation being 

higher at 50% lunge. The BVR contact maps displayed the opposite pattern of the 

medial contact being more anterior than the lateral, reflecting the much higher 

internal rotation calculated using this method than the MSMs.  
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Figure 3-44 – Example contact maps for all participants at 50% lunge (high flexion). BVR 
contact map results in the first column, personalised MSM results in the second and the 

generic MSM contact map in the third. 
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The Dice scores for each participant between the generic and personalised MSMs 

and the BVR results were calculated for each frame for each participant; they are 

presented in Table 3-8 along with the cohort mean.  

Table 3-8 - Mean Dice scores for each participant during lunging 

Participant ID Mean Dice score of lunge frames 
MSM compared against BVR contact map images. 

Generic MSM  
(c.f. BVR) 

Personalised MSM 
(c.f. BVR) 

Difference  
(pers. – gen.) 

HV002 0.245 0.171 -0.075 

HV003 0.319 0.176 -0.143 

HV004 0.569 0.628 +0.059 

HV005 0.029 0.136 +0.108 

HV006 0.166 0.283 +0.117 

Overall mean 0.265 0.279 +0.013 

 

The mean Dice scores for the cohort varied between participants with some having 

very low scores (e.g. HV005), but some presenting higher scores (HV004). Although, 

the overall mean difference (+0.013) for the cohort suggested that the personalised 

model improved the contact area prediction, it was only a very small difference, and 

the generic model had a higher mean Dice score for 2/5 participants. As well as this, 

the median difference was higher for the generic model at 0.217 (IQR = 0.283) than 

the personalised model at 0.180 (IQR = 0.205). When the Wilcoxon signed-rank test 

was performed on the paired lunge frames for the cohort, it found the generic model 

contact predictions to be statistically significantly better than the personalised (W = 

33261, p = 0.0039). This again suggests that the model is not suitable for predicting 

TF contact during activities with high flexion, such as a lunge. 

3.4.4 DISCUSSION OF RESULTS ACROSS THE THREE ACTIVITIES 

As seen in Chapter 2 when the BVR kinematics were compared with Visual3D (V3D) 

(Section 2.5.7), an offset was seen between the marker-based calculation of the 

MSM flexion angle with the BVR measured flexion angle. To compare the offset 

across all three activities, the mean difference from the earlier Bland-Altman 

analyses (Figure 3-23, Figure 3-35 & Figure 3-42) are included in Table 3-9.  
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Table 3-9 – Median differences from the Bland-Altman analyses (Figure 3-23, Figure 
3-35 & Figure 3-42) between the modelling pipelines and BVR flexion results. 

Activity Median flexion difference (method – BVR) 
V3D (°) Generic (°) Personalised (°) 

Gait 14 13 13 

Stair ascent 13 10 11 

Lunge 14 9.4 10 

  

Whereas V3D found a similar flexion offset across the three activities, the MSMs 

both had a smaller offset for the activities with higher flexion than gait. This is likely 

because the marker misplacement would affect the femur body positioning in the 

model, rather than the direct joint kinematics (like in V3D) so their effect on the 

calculated flexion angle would be different. These significant flexion errors would 

have affected the secondary kinematics calculated by the MSM as they are defined 

as functions of flexion during the inverse kinematics step. 

When looking at the secondary kinematics, external rotation differences most 

affected the contact area variation during the high flexion activities. During both stair 

ascent and lunge, the MSM predicted rotations were much higher than the internal 

rotations (considered negative) calculated from the BVR data (Figure 3-33, Figure 

3-40). A median difference of 16° was found by both models during both activities, 

showing this rotation to be poorly predicted by the model for activities involving high 

flexion. 

This difference between the model-predicted and BVR-calculated internal rotation of 

the tibia relative to the femur during activities with high flexion was likely due to the 

muscles, ligaments or wrapping surfaces in the model causing external rotation 

when the knee flexed. When visualising a stair ascent trial in OpenSim, the whole 

shank (including the foot) rotated despite the foot being planted on the floor during 

stance phase (Figure 3-45). This external rotation of the foot highlights the 

corresponding external rotation occurring at the knee, which was opposite to the 

internal rotation calculated by BVR during the same activity. As the experimental 

markers do not display the same external rotation as the virtual markers, this 
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suggests this rotation was not caused by the experimental data, but the behaviour of 

the model itself.  

When looking at the forward flexion simulation that generated the splines coupling 

the secondary coordinates to TF flexion angle (Section 3.2.3), the knee rotated 

externally as flexion increased (Figure 3-46). This trend opposes results found in 

literature, where TF flexion was shown to be coupled with internal rotation of the tibia 

in activities involving higher knee flexion angles (e.g. open-chain flexion) (Thomeer 

et al. 2021). As these forward flexion splines are used to set the initial secondary 

coordinate values during COMAK (before optimisation), the algorithm would be 

Figure 3-45 – Example of a personalised MSM (HV005) predicting internal rotation of 
the foot during a stair ascent. The pink markers are virtual markers showing the model’s 
predicted marker locations (based off body segment positioning) and the blue show the 

marker locations as measured directly from motion capture. 
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solving for increasing external rotation values as knee flexion increases, getting 

further from the gold-standard BVR internal rotation measured. At the lower flexion 

angles involved in level gait (below 1 radian/~60°), the spline only allows for small 

degrees of external rotation, which is why the difference between model-predicted 

value and BVR-calculated rotation more evident during the activities with higher 

flexion.  

For all three activities, the generic MSM had a larger external rotation standard 

deviation and IQR of the differences than the personalised model. Although greater 

variation in internal rotation may be expected from the personalised model results 

due to contact geometry variation, this was not the case. Further work is needed to 

investigate the reason for this reduced variability in this DOF from the personalised 

model, however it may be due to the repositioning of the soft tissue attachment 

points or wrapping surfaces, or calibration of the muscle and ligament parameters 

when creating the personalised versions of the models.  

Figure 3-46 – Passive forward flexion simulation internal rotation plotted 
against TF flexion. This spine is used to generate the internal rotation 

(secondary coordinate) value used as an initial position for the COMAK 
algorithm. 



229 
 

The adduction angle prediction showed mixed results across activities. The 

personalised MSM had a better median difference than the generic model during gait 

(Figure 3-23), a slight improvement during stair ascent (Figure 3-35), but a worse 

median difference during lunging (Figure 3-42). During the lunge, the personalised 

model produced a wider range of adduction angles across the cohort, more 

comparable to the BVR results, whereas the generic model gave more consistent 

values across participants. While the greater ROM meant the personalised model’s 

mean adduction angle was closer to that of the BVR during stair ascent (Figure 

3-40), the participants with the extreme values did not match between methods. As a 

result, the wider range did not translate to improved accuracy on an individual level, 

and personalisation did not improve adduction predictions during lunging. 

Of the three translational DOFs, AP translation showed the greatest improvement in 

median difference (MSM-BVR) and smallest IQR when the model was personalised. 

The generic model consistently overestimated anterior translation across all activities 

studied (not seen in the personalised results), possibly due to the specific surface 

morphology or positioning of the generic contact meshes. These results support 

personalising the model geometry to improve prediction of AP translation across 

various activities and flexion ranges.  

ML translation showed the same trend in the Bland-Altman results of both models 

across all the activities of negative correlation between the difference (MSM-BVR) 

and the measured BVR value (Figure 3-24, Figure 3-36 & Figure 3-43), suggesting 

the model over-constrained the joint translation in this direction. This was most 

clearly visible in the lunge results, where both MSMs had small standard deviations 

compared to the BVR results (Figure 3-41).  

The MSMs predicted increased distraction with increased flexion, with the largest 

distraction values occurring during the middle of the lunge and beginning of the stair 

ascent, consistent with the high flexion angles during these periods. This was not 

seen in the BVR results. From the spline shown in Figure 3-47, there was a trend of 

greater distraction as flexion reached values above 0.5 rad (~30°), hence why the 

bones were more distracted during high flexion. 
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The OpenSim-JAM framework relies on the assumption that the secondary DOFs 

are coupled with flexion angle to generate the initial secondary coordinate values 

before optimisation (Section 3.2.3). The weak correlation found between the 

secondary DOFs and flexion in the BVR results through all the activities (Chapter 2, 

Section 2.5.6) meant the model’s secondary kinematics were not always accurate 

across the cohort. This would also contribute to the MSM kinematic predictions 

during higher flexion activities being worse than during level gait as the BVR 

correlations were weaker for these activities than gait.  

The personalised model showed the greatest improvement in contact area prediction 

during activities involving lower flexion – i.e. during level gait and the second half of 

the stance phase of stair ascent. This was supported by the Dice scores, which 

found the largest mean difference between the personalised and generic models 

during gait, followed by stair ascent, then lunge (Table 3-10). Although only 3/5 

participants had the greatest improvement (highest difference) between the 

Figure 3-47 - Passive forward flexion simulation compression plotted against TF 
flexion. 
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personalised and generic MSMs during gait, all participants had their highest mean 

Dice score (MSM c.f. BVR) for the personalised model during level gait. 

Table 3-10 – Mean Dice scores for all activities showing the mean generic (gen.) and 
personalised (pers.) MSM scores (when compared to the BVR contact maps) across 
all frames, as well as the difference (personalised – generic) between the mean Dice 

scores for each individual and the cohort. 
 (Combination of Table 3-4, Table 3-7 & Table 3-8) 

ID Mean Dice score 
Level gait Stair Ascent Lunge 

Gen. Pers. Diff. Gen. Pers. Diff. Gen. Pers. Diff. 
HV002 0.541 0.547 +0.006 0.188 0.162 -0.027 0.245 0.171 -0.075 

HV003 0.334 0.377 +0.043 0.178 0.179 +0.001 0.319 0.176 -0.143 

HV004 0.507 0.754 +0.248 0.181 0.457 +0.276 0.569 0.628 +0.059 

HV005 0.336 0.427 +0.092 0.033 0.129 +0.096 0.029 0.136 +0.108 

HV006 0.463 0.608 +0.145 0.002 0.070 +0.068 0.166 0.283 +0.117 

Overall 
mean 

0.436 0.543 +0.107 0.117 0.199 +0.083 0.265 0.279 +0.013 

 

Overall, these results suggest that personalising contact geometries improves 

contact area predictions during lower-flexion activities where the kinematic 

differences between the MSMs and BVR values were lower. However, for higher 

flexion activities, alterations to the MSM would be required as the current model is 

not suitable for predicting kinematics when higher flexion angles are involved. 

3.4.5 CHALLENGES AND RECOMMENDATIONS 

One of the main drivers of personalisation of MSMs is the limitations of a generic 

model to represent individual variation in joint geometry and alignment, which 

standard linear scaling of model segments cannot achieve (Bakke and Besier 2020; 

Veerkamp et al. 2021; Davico et al. 2022). With associated errors increased in 

models that consider contact mechanics between articulating surfaces, such as in 

the OpenSim-JAM pipeline, accurately representing individual joint morphology is an 

important step in understanding contact pressures in, not only healthy, but diseased 

joints too (Killen et al. 2024). Hence it is important to understand if personalisation of 
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the contact geometries improves joint kinematics and contact predictions, as 

hypothesised. 

As the generic model typically used with the OpenSim-JAM framework only used 

contact geometries from a single 23-year-old female subject (Lenhart et al. 2015), it 

is not representative of the population at large. As diseases, like OA, are more 

prevalent in an older population, younger ‘generic’ geometries may not provide the 

best representation of contact in an aged-matched population, even if they are 

considered ‘healthy’. Contact pattern differences are likely to increase with 

morphological changes due to disease progression, making personalisation even 

more important. 

As well as age, the generic model geometries do not capture knee size variation; in 

the OpenSim-JAM framework, the specialised contact geometry meshes are not 

scaled with the rigid body segments, only translated to their new position (based on 

the leg length). In this study’s cohort, the ‘generic’ geometry was visually one of the 

smaller meshes (compared to the personalised geometries used) meaning that 

participants with larger knees may not have been accurately represented with the 

generic version of the model as the contact surface size was much smaller. Although 

no single ‘generic’ geometry can represent the variety of the whole population, a 

model with an average sized knee may be a better choice where personalisation is 

unfeasible and a generic model is required. 

The current generic geometries used in this study may also be causing the 

consistent anterior translation overestimation seen in the kinematics results. Using 

an alternative participant as the ‘generic’ model basis would confirm if this offset was 

due to the specific geometries, as well as investigate how the generic geometry 

chosen affects the outputs contact patterns. 

Another potential limitation of the generic model is the positioning of the contact 

geometries within the knee. In their paper setting out the model, Lenhart et al. (2015) 

state that the tibial cartilage surface was “placed to just contact the femoral 

geometries in an upright position”. This adds uncertainty to the comparisons with the 

generic model as it is unclear what manipulation was performed to alter the 

geometry positions and, therefore, how that alteration may influence the joint ACS 

definitions and the resulting kinematics. 
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To minimise the differences between the knee joint origin between the methods, the 

same algorithm (Miranda et al. 2010) was used to define the femoral ACSs in the 

generic model and the personalised bone models to facilitate direct comparison 

between results. As shown in the previous chapter, the ACS definition alters 

kinematic outputs (Chapter 2, Section 2.5.5), so it was important to use the same 

consistent ACS definition between the methods. Despite using the same algorithm to 

define bone ACSs, differences may still remain, and these would contribute to 

variation in the kinematics seen between methods. 

Another challenge of comparing the MSM results with the BVR results was that the 

contact maps did not always show contact on both plateaus during stance phase of 

all three activities. This was likely due to the sensitivity of the method to small 

changes in mesh positioning (Section 3.3.2), as well as the BVR bone poses 

inherently including the meniscus and other soft tissues not included in the MSM, 

reducing the contact area. Segmentation or smoothing errors could also contribute to 

the small regions. For these reasons, it is recommended to explore alternative 

methods for calculating contact from BVR bone poses. 

The contact region between the MSM and BVR results would also be affected by the 

assumption of the COMAK algorithm that the cartilage geometries must always be in 

contact, so it can solve for the constraint equations. This may artificially increase the 

predicted contact area as the meshes within the joint were being held together 

throughout, increasing the differences between MSM and BVR contact areas. 

Due to project time constraints, this analysis focussed on the TF joint and the contact 

on the tibial cartilage. To expand the analysis in the future, the converse mapping of 

the TF contact onto the femoral cartilage mesh would allow for fuller understanding 

of the differences in contact location on both bones in the TF joint. Additionally, PF  

kinematics and joint contact could be examined, as the patella and its cartilage are 

also personalised in the model generation (Section 3.2.2). If using the same MSM to 

evaluate PF joint contact, it is important to test the benefits of personalisation 

separately to determine the accuracy for each individual joint. 

Although the pipeline was only applied to a healthy population in this study, there is 

future scope to investigate the differences between generic and personalised MSM 

outputs in pathological cohorts. Diseased joints are like to show even greater 



234 
 

improvements in accuracy when the model is personalised, due to the altered 

kinematic strategies and contact morphologies being better captured by models that 

include personalised joint contact representations. Not all patients will present with 

the same differences from healthy joints, despite having the same disease, 

therefore, to successfully model an individual’s biomechanics, personalisation of the 

joint morphology is recommended. Better model predictions can then be utilised in 

individualised care and interventions to improve patient outcomes.  

3.5 CONCLUSION 

All aims set out at the start of the chapter (Section 3.1.2) were successfully met, with 

the OpenSim-JAM pipeline being run for multiple dynamic activities, both with 

generic and personalised geometries, for five participants. The resulting MSM 

contact maps were then compared with BVR-equivalent maps for the first time to 

assess the benefit of incorporating personalised TF joint contact geometries.  

The results showed that personalised TF geometries particularly improved model 

estimates of AP translation during the stance phase of level gait. When compared to 

the gold-standard BVR kinematics, model personalisation improved the absolute 

median difference between the MSM and BVR results by over 7 mm compared to 

the generic model (Figure 3-24). This resulted in a visual improvement in contact 

region prediction during gait when using the personalised geometries (Figure 3-25), 

supported by improved Dice scores (Table 3-4). Element-wise SPM analysis 

highlighted a significant region on the posterior medial plateau where the generic 

model overestimated contact (Figure 3-30), as the BVR contact maps found the 

medial contact to be located more anteriorly. The personalised model also found the 

contact to be located in a similar anterior position, demonstrating the benefits of the 

more accurate AP translation prediction. Weighted COP differences in the AP 

direction were also reduced when using the personalised model (Table 3-5), further 

supporting these findings. 

As the medial side of the knee has been shown to be more susceptible to OA 

initiation and propagation (Vincent et al. 2012) associated with increased loading and 

COP shift on the medial tibial plateau during gait (Meireles et al. 2017), it is important 

to accurately model the contact on the medial side of the knee. Therefore, although 

the time and resource costs of personalising the contact geometries in the MSM are 
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high, model personalisation is recommended for assessing TF contact during gait 

trials as the generic model was less accurate at predicting the contact than the 

personalised model, particularly on the medial tibial plateau. 

However, for the activities involving greater TF flexion, such as stair ascent and 

lunge, both models were less accurate. Errors in external rotation (Figure 3-35, 

Figure 3-42) led to shifts in contact location on the tibial plateau. As the model was 

originally developed for gait (Lenhart et al. 2015), further model optimisation would 

be required to ensure reliable contact predictions for activities outside of walking. It 

also highlights the benefit of testing model performance for each new activity, as 

accuracy may vary. Once the model has been optimised for higher flexion, the 

benefits of personalisation of contact geometries should be reevaluated as it would 

likely improve contact predictions.  

In conclusion, adding personalised contact geometries overall improves TF 

kinematic and contact pressure region predictions during level gait, particularly in the 

AP direction, but not for activities involving higher flexion angles. Therefore, 

personalisation should be strongly considered when utilising the OpenSim-JAM 

pipeline to assess gait. 

This chapter directly supports the overarching research aims described in 

Section 1.8 by benchmarking MSM predictions against accurate BVR-kinematics to 

evaluate the benefits of personalised modelling. Within the context of the wider 

framework, the MSM provides unique whole-body kinetic and kinematic data, 

complementing the joint-specific outputs from the BVR and FEM components. 

Importantly, as the MSM pipeline utilises different input data, the contact pressure 

maps it generates offer a valuable reference for comparison with both BVR-derived 

and FEM-based results. Together, these contributions strengthen the integrated 

framework developed in this thesis and enhance its capacity to capture and interpret 

the complex biomechanical behaviour of the knee during dynamic activity.  
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CHAPTER 4: KINEMATIC-DRIVEN, SUBJECT SPECIFIC 
FINITE ELEMENT MODELLING OF THE TIBIOFEMORAL 
JOINT 

4.1 INTRODUCTION 

As knee osteoarthritis (OA) onset and progression is linked to excessive mechanical 

loading of the tissues (Mukherjee et al. 2020), understanding of the stresses and 

strains within load-bearing structures, such as the articular cartilage, during typical 

in-vivo motion is important. Characterising the behaviour of healthy articular cartilage 

during functional activities (e.g. walking) is key to understanding how its mechanical 

properties weaken with OA (Sinusas 2012; Katz et al. 2021; Mohout et al. 2023). 

Finite element modelling (FEM) is a technique used investigate internal mechanics of 

tissues that occur under different loading conditions. Unlike the musculoskeletal 

modelling (MSM) pipeline presented in Chapter 3, which calculated contact 

pressures using 2D representations of the articular cartilage surfaces, FEM uses 3D 

meshes to model element-wise deformations, allowing for the calculation of internal 

parameters, such as stress and strain, providing additional insight into soft tissue 

loading. 

FEM has been widely used to investigate altered loading and disease progression 

within osteoarthritic knees (Tarniţă et al. 2014; Arjmand et al. 2018; Bolcos et al. 

2020; Thienkarochanakul et al. 2020; Daszkiewicz and Luczkiewicz 2021; Lampen et 

al. 2023; Mohout et al. 2023; Mononen et al. 2023), using the popular approach of 

applying forces to drive the model. Determining the force inputs for a model requires 

assumptions, such as the magnitude, direction and the location the force originates 

from, as forces cannot be directly measured in-vivo in native joints. For a subject-

specific in-vivo FEM of knee joint loading, forces are typically calculated using MSMs 

and motion capture data (Besier et al. 2008; Adouni and Shirazi-Adl 2014; Marouane 

et al. 2016; Richards et al. 2018; Shu et al. 2018), or by scaling mean gait patterns 

(Mononen et al. 2016; Paz et al. 2021). FEMs driven using these data will not 

accurately replicate underlying bone movement due to errors associated with motion 

capture (for example, soft tissue artefact and marker misplacement), as well as the 

assumptions within the MSM pipeline.  
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An alternative approach is to drive the model using in-vivo kinematics, however, this 

is less common due to the challenges associated with obtaining accurate input 

kinematics and the sensitivity of FEM to small kinematic changes (Fregly et al. 

2008). Some kinematic-driven models of the knee have been created, but they often 

used a hybrid force-kinematic approach (prescribing up to five degrees of freedom, 

DOFs, and controlling the others based off force inputs) to account for potential 

errors in the input kinematics (Halonen et al. 2013; Carey et al. 2014; Kwon et al. 

2014; Bolcos et al. 2018; Gu and Pandy 2020).  

Despite the recent advancements in the collection and processing of accurate 

kinematics using biplane videoradiography (BVR) (Gray et al. 2018), exploration of 

using these inputs to drive six DOFs of a FEM to investigate joint contact in the knee 

has not been done to the author’s knowledge. By combining BVR kinematics and 

geometries segmented from magnetic resonance imaging (MRI), a highly 

personalised model can be created to replicate measured in-vivo joint motion. It is 

important to understand the feasibility of this approach, as well as its potential 

limitations, as it may provide new, alternative insight into in-vivo soft tissue loading, 

complimenting discoveries from force-driven models. 

4.1.1 AIM AND OBJECTIVES 

Therefore, to investigate the potential of a fully kinematically-driven FEM of the 

tibiofemoral joint (TF) during in-vivo motion, the aim of this study was to create a 

subject-specific model of a healthy knee joint using geometries from MRI, where the 

six DOFs of the TF joint are prescribed using accurate kinematics from BVR to 

investigate contact pressure, stress and strain in the tibial cartilage during the stance 

phase of level gait. 

To help achieve this aim, it was further broken down into the following objectives: 

• Develop a subject-specific TF joint model, including the bones, articular 

cartilage and relevant soft tissues (segmented from MRI), that successfully 

runs through all frames of the kinematic input data. 

• Compare the personalised contact pressure outputs to those generated from 

the ray tracing and bounding box method using the BVR and MSM pipelines 

(Chapter 3) to explore the differences between the methodologies.  



238 
 

• Use the FEM to calculate stresses and strains in the articular cartilage during 

stance phase of level gait and compare these results to typical force-driven 

models of healthy human knees in literature to assess the feasibility of 

equivalent kinematic-driven models.  

These objectives were defined to understand the advantages, limitations and 

practicalities of using kinematics to drive an FEM and if there is potential for this 

technique to be applied in the future to investigate joint loading in diseased knees 

too. 

4.2 METHODOLOGY 

4.2.1 MODEL SUMMARY 

To investigate the potential for a fully kinematically-driven FEM of the knee, a model 

was created in FEBio (Maas et al. 2012) of a single healthy participant (Figure 4-1). 

FEBio was chosen for developing this joint contact model as it is open source, 

specifically designed for biomechanical modelling, good for modelling soft tissue 

interactions, and is validated against other FEM software (Maas et al. 2012).  

HV004 was chosen for the model from the cohort dataset (as described in 

Chapter 2) as a T1-VIBE MRI scan of their knee was collected (which was better for 

segmenting soft tissues compared to the DESS scan used for earlier participants – 

see Section 2.2) and a complete dataset (including segmented geometries and 

matched BVR image registration) was available at the time of initial model creation. 
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An overview of the structures included in the model, along with their respective 

Material models and number of elements are given in Table 4-1. More details on the 

chosen material models – including the parameter values used, can be found in 

Section 4.2.2. 

  

Figure 4-1 – FE knee model geometries. 
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Table 4-1 – FE knee model structures included, their material models and number of 
elements/springs used to represent them. 

Material Material Model Structures Number of 
elements/springs 

Bone Rigid body Distal femur 266,920 

Proximal tibia (& 

fibula) 

131,182 

Articular 

cartilage 

Nearly incompressible 

Neo-Hookean (modelled 

using Mooney-Rivlin) 

Femoral cartilage 312,696 

Tibial cartilage 103,383 

Meniscus Transversely isotropic 

Mooney-Rivlin 

Medial meniscus 44678 

Lateral meniscus 23042 

Meniscal 

horns 

Linear spring bundles Anterior medial horn 50 

Posterior medial horn 49 

Anterior lateral horn 37 

Posterior lateral horn 25 

Ligaments Non-linear Blankevoort 

springs 

ACL 145 

PCL 70 

MCL 65 

LCL 25 

 

The model was driven by prescribing the bones (rigid bodies) using the object 

transforms of the level gait trial for HV004 (Chapter 2, Section 0). It was chosen to 

model gait as this is a commonly used activity across FE knee models in literature 

(Yang et al. 2010; Adouni et al. 2012; Halonen et al. 2013; Daszkiewicz and 

Luczkiewicz 2021; Fu et al. 2022; Mohout et al. 2023). Gait also involves lower 

flexion than the other two activities – lunge and stair ascent (as shown in Table 4-2), 
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resulting in less extreme changes from the initial MRI position of the structures, 

increasing the likelihood the model would be able to solve. 

Table 4-2 – Maximum measured flexion angle calculated for each activity for the 
participant used for the FEM and the whole cohort presented in this thesis  

(Taken from the results in Chapter 2). 

 Gait Stair ascent Lunge 

Maximum flexion angle for HV004 7.8° 56.6° 67.0° 

Maximum flexion of the whole cohort 20.2° 60.4° 111° 

 

An overview of the main modelling steps can be found in Figure 4-2, with more detail 

on for these steps in Section 0.  

The geometries in the model were initially separated (Step 1) to account for any 

potential mesh overlap caused when smoothing the MRI segmentations (in 

Simpleware, ScanIP) before importing them into FEBio. Then, the soft tissues were 

brought into contact and allowed to compress and settle into their starting kinematic 

position (Step 2). The contact position at the end of Step 2 was the first frame of 

BVR kinematic motion, ready for the joint to be driven through the rest of the 

kinematic frames of level gait (Step 3). All motion during the simulation was applied 

to the tibia bone rigid body and the femur was fixed in all 6 DOFs throughout. 

Along with the constraints used to drive the model through each step, Figure 4-2 also 

provides a summary of the contacts applied during each step. These contacts 

determined the soft tissue interactions between surfaces during the simulation. More 

information on the constraints and contacts (including contact penalty values) can be 

found in Section 0. 
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 Figure 4-2 – Overview of FE modelling steps to achieve kinematically-driven 
motion. 

1See Figure 4-12 in Section 0 for a clearer image of the rigid body blocks. 



243 
 

4.2.2 KNEE STRUCTURES GEOMETRIC REPRESENTATIONS AND 

MATERIAL MODELS 

The following sections describe in more detail the generation of each structure within 

the model, including the material model used to represent it.  

All the personalised geometries segmented from the T1-VIBE MRI scan (Chapter 2, 

Section 2.2) were meshed using the in-built +FE free algorithm in Simpleware 

ScanIP (Synopsis, United States). The parameter values used by the algorithm to 

generate the meshes of each 3D structure in the model are given in Table 4-3. 

The +FE free algorithm uses adaptive meshing to generate tetrahedral elements 

automatically sized based on geometry, progressively refining the mesh based on 

image resolution (Synopsys 2022). It can generate meshes representing complex 

geometries, as well as allowing the user to adjust the mesh coarseness of individual 

regions, making it useful for meshing human tissue structures. 

The material models and parameter values used for this model were taken from 

literature due to time constraints as the comprehensive sensitivity analysis required 

to fully determine the suitability of the models and parameters was outside the scope 

of this project. As it was an exploration of potential use of kinematic-driven 

modelling, example parameters from literature were deemed suitable.  
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Table 4-3 – Mesh generation parameters used by the +FE free algorithm for each 3D structure in the model. 

 Parameter Femur Tibia/Fibula Femoral 
cartilage 

Tibial 
cartilage 

Medial & 
Lateral 
Meniscus 

Ad
ap

tiv
e 

su
rfa

ce
 re

m
es

hi
ng

 

Target minimum edge length (mm) 1.44 1.44 0.454 0.454 0.410 

Target maximum error (mm) 0.0640 0.0640 0.0640 0.0640 0.0640 

Maximum edge length (mm) 3.52 3.52 0.986 0.986 0.870 

Surface change rate  

(1 = slow, 100 = fast) 

50 50 6 6 4 

Target number of elements across a 

layer 

0.75 0.75 0.97 0.97 0.98 

Self-intersection checks Partial Partial Partial Partial Partial 

Volume mesh generation internal 

change rate (1 = slow, 100 = fast) 

30 30 30 30 30 

M
es

h 
Q

ua
lit

y 

Quality optimisation cycles 5 5 5 5 5 

Quality metric Jacobian, in-out ratio and edge length ratio 

Quality target 0.1 0.1 0.1 0.1 0.1 

Allow off-surface Yes Yes Yes Yes Yes 

Maximum off-surface distance  

(local edge length fraction) 

0.2 0.2 0.2 0.2 0.2 

Maximum off-surface distance (mm) 1000 1000 1000 1000 1000 
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Bones 

The femur and tibia segmentations from the T1-VIBE scan (Section 2.2) were used 

to form the basis of the personalised model. The proximal fibula was also segmented 

for the model, as it is the attachment site for the lateral collateral ligament (LCL). The 

fibula model was exported with the tibia geometry, so they formed a single rigid body 

in the model. Therefore, the kinematic relationship between them remained constant 

throughout, and the constraints that prescribed tibial movement simultaneously 

moved the fibula. 

The bones (Figure 4-3) were set as rigid bodies as bone is much stiffer than the 

surrounding soft tissues (Donahue et al. 2002; Adouni et al. 2012; Liu et al. 2022; 

Steineman et al. 2022; Uzuner et al. 2022; Yan et al. 2024). This had the added 

benefit of being able to directly prescribe their kinematics (using prescribed rigid 

body constraints); driving the bone motion using kinematics is described in more 

detail below (Section 4.2.3).  

The bones were meshed using the default mesh generation settings (Table 4-3). As 

no deformation occurs to rigid objects, the number of elements does not affect model 

outputs and a smaller number of elements reduces the computational cost, therefore 

Figure 4-3 – Bone geometries included in the FEM. The femur is shown in 
blue and the combined tibia and fibula rigid body is shown in red. 
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the default settings were used. The final number of elements was 266,920 for the 

femur and 131,182 for the combined tibia and fibula (Table 4-1). 

Using rigid bodies for the bones removed the possibility of getting internal bone 

mechanics results, including individual element changes across the bone structure. 

However, it did reduce the computational time for the model as all elements in each 

rigid bodies were considered as one, not needing individual calculations. This also 

meant that the kinematics were able to be replicated from the measured bone 

movements from BVR as they were not affected by deformations of the bone 

meshes. As the model was designed to investigate soft tissue mechanics, and bone 

is relatively incompressible compared to the other tissues in the knee (Uzuner et al. 

2022), it was decided this compromise was appropriate for this application. 

It was chosen not to include the patella in this model, due to the need to add extra 

structures which would increase the complexity of the model without affecting the 

outputs from the TF joint. As the focus of this study was TF joint contact and soft 

tissue mechanics, adding the patella was not required.  

Articular cartilage 

The femoral and tibial articular cartilage (Figure 4-4) was also segmented from the 

T1-VIBE scan as part of the work in Chapter 3. The personalised 3D geometries 

were then exported, along with their bone-counterparts, so that each bone and 

cartilage pair was exported as a single object with two parts. This meant that when 

the objects were meshed in Simpleware ScanIP (Synopsis, United States), the 

contacting surfaces between the bone and the cartilage were produced with 

coincident nodes. These coincident nodes were welded together once the 

geometries were imported into FEBio using the Weld nodes tool; this ensured that 

the femur and femoral cartilage, and tibia and tibial cartilage, remained connected at 

all times in the simulation, replacing the need for a tied contact and reducing model 

complexity. 
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A mesh convergence analysis was not performed for this model as this was an 

exploratory study. However, since a large number of elements are necessary to 

accurately capture the complex geometry of the structures within the knee, the mesh 

density was assumed to exceed the requirements for convergence. 

For this model, the articular cartilage meshes were generated (Table 4-3) so there 

were around ten elements across the thickness of the cartilage to capture internal 

cartilage mechanics. As the bone mesh was set to generate at a different mesh 

coarseness, the elements were generated on a gradient near to the cartilage mesh 

so that the nodes were coincident at the points where they met (Figure 4-5). This 

resulted in 312,696 elements for the femoral cartilage and 103,383 elements for the 

tibial cartilage (Table 4-1). 

Figure 4-4 – Articular cartilage geometries in the model shown in pink. 
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The articular cartilage was modelled as an isotropic, linear elastic, nearly 

incompressible Neo-Hookean material (Besier et al. 2018), based on the 

OpenKnee(s) material model definition (Chokhandre et al. 2023b). This was 

achieved by setting the C2 parameter of FEBio’s Mooney-Rivlin (uncoupled) material 

to 0 to reduce the model to an uncoupled version of the Neo-Hookean constitutive 

model (FEBio 2022a). This was done to avoid element locking that may occur when 

modelling nearly incompressible materials, like articular cartilage (FEBio 2022c). 

The material properties used to represent cartilage using the Mooney-Rivlin model 

are found in Table 4-4. 

Table 4-4 – Articular cartilage Mooney-Rivlin material parameters taken from 
Chokhandre et al. (2023b). 

Parameter Definition Value 

C1 
Coefficient of the first invariant term (associated with 

shear stress) 
2.54 MPa 

C2 
Coefficient of the second invariant term (reduces the 

model to Neo-Hookean when set to 0). 
0 MPa 

K Bulk modulus (resistance to volume change). 100 MPa 

 

Together these material coefficients cause this model to behave like a simplified 

version of cartilage mechanical behaviour that assumes isotropic behaviour, with an 

elastic modulus of 15 MPa and Poisson’s ratio of 0.475 (Donahue et al. 2002; 

Zielinska and Donahue 2006; Guess et al. 2010; Kiapour et al. 2014b). This was 

Figure 4-5 – Close up of the mesh generated of a section of the tibial 
cartilage and tibia bone boundary, showing the gradient change 

between the mesh densities. 



249 
 

adequate for understand local cartilage mechanics at this level, whilst not being too 

computationally intensive (Chokhandre et al. 2023a).   

Meniscus and meniscal horns 

Because the meniscus plays a key role in tibiofemoral joint contact mechanics, 

helping to evenly distribute pressure (Yan et al. 2024), it was included in the FEM. 

The meniscal movement was constrained by the meniscal horns which were 

modelled as springs (Figure 4-6). 

Like the articular cartilage, the geometries of the medial and lateral menisci were 

segmented from the T1-VIBE scan sequence, meshed (with the settings given in 

Table 4-3) and exported. 

As it was difficult to determine the exact boundary between the meniscus body and 

the meniscal horns from the MRI scan, the ends of the menisci were truncated 

manually in Simpleware, using a similar approach to Gu and Pandy (2020), to form a 

flat surface for the springs to be attached to. 

The meniscus body was modelled as a nearly incompressible, transversely isotropic, 

hyperelastic Mooney-Rivlin material (Chokhandre et al. 2023a). The material 

Figure 4-6 – Meniscus and meniscal horns. The medial meniscus is in blue, and the lateral 
meniscus is in green. 
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parameters used to represent the meniscus can be found in Table 4-5 (FEBio 2022b; 

Chokhandre et al. 2023a). Like with the articular cartilage model, the meniscus 

model utilised a Mooney-Rivlin (Equation 1-1) ground substance, converted to a 

Neo-Hookean material by setting the constant c2 to 0 (Equation 1-3), again to avoid 

element locking of nearly incompressible elements (FEBio 2022c). 

Table 4-5 – Meniscus transversely isotropic Mooney-Rivlin material parameters 
taken from Chokhandre et al. (2023a)  

Parameter Definition Value 

C1 
Coefficient of the first invariant term (associated with 

shear stress) 
4.61 MPa 

C2 
Coefficient of the second invariant term (reduces the 

model to Neo-Hookean when set to 0). 
0 MPa 

K Bulk modulus (resistance to volume change). 92.16 MPa 

C3 Exponential stress coefficient 0.1197 MPa 

C4 Fibre uncrimping coefficient 150 

C5 Modulus of straightened fibres 400 MPa 

λm Fibre stretch for straightened fibres 1.019 

 

This material choice allowed for the circumferential fibres in the meniscus to be 

modelled using FEBio’s fiber generator tool (FEBio 2021b) and was a convenient 

way to model the meniscus’ capacity for compressive loading largely dictated by its 

circumferential stiffness which, in turn, is dictated by fibre alignment (Chokhandre et 

al. 2023a). To apply the circumferential fibres, a small region of faces on each 

truncated end of the meniscus were selected (Figure 4-7). One end was given a 

value of one and the other zero to define boundary conditions for a Poisson-type 

boundary value problem, used to generate a smooth scalar field throughout the 

object (FEBio 2021b). The gradient of the scalar field was then used to calculate the 

fibre vectors (FEBio 2021b). 
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Having the ends of the meniscus truncated not only helped with defining the 

circumferential fibre directions but also allowed for the easy attachment of springs to 

represent the meniscal horns, ensuring the springs followed the path of the horn 

geometry. 

Each meniscal horn was modelled as a 1D linear spring bundle (Gu and Pandy 

2020) attached from the truncated end of the meniscus to its corresponding 

attachment region on the tibia bone model. The attachment regions were defined 

where the 3D meniscal horn segmentation intersected the tibia bone model, and that 

Figure 4-7 – Automatically generated circumferential fibres.  
A) selection of faces on the truncated ends of the meniscal body.  

B) fibres applied using those selections.  
C) Superior view of the two menisci with the fibres generated. 

The coloured fibres in B) and C) indicate the change in fibre direction. 
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area on the tibia was given a denser mesh by remeshing the attachment region 

surface with a target mesh size of 1 mm. This made it easy to find the correct 

attachment regions on the tibia bone mesh once imported into FEBio, as well as 

creating more nodes to attach the springs too. This allowed the number of springs in 

each bundle to be defined in a way that represented the overall meniscal horn 

geometry with good coverage of the attachment site. Defining the meniscal horn as a 

bundle with a larger number of springs helps to spread the load to make a more 

realistic attachment between the two structures, as well as reducing the likelihood of 

elements or nodes deforming badly at a single attachment point. 

The stiffness of each spring within the meniscal horn bundle was calculated by 

taking the total stiffness value of a meniscal horn – 2000 N/mm (Gu and Pandy 

2020) – and dividing it by the number of springs in the bundle (Table 4-6).  

Table 4-6 – Meniscal horn number and stiffness of springs in each bundle. 

Meniscal horn Number of springs Stiffness per spring (N/mm) 

Anterior medial 50 40 

Posterior medial 49 40.816 

Anterior lateral 37 50.054 

Posterior lateral 25 80 

 

Ligaments 

The ligaments included were the four main ligaments connecting the femur and tibia 

(Figure 4-8): anterior cruciate ligament (ACL), posterior cruciate ligament (PCL), 

medial collateral ligament (MCL), and the lateral collateral ligament (LCL). These 

ligaments were added for the potential to leave one or more DOFs unconstrained, as 

seen in other kinematic-driven FEMs in literature (Halonen et al. 2013; Carey et al. 

2014; Kwon et al. 2014; Bolcos et al. 2018; Gu and Pandy 2020), to account for 

errors in the input kinematics. However, due to the added complexity of requiring a 

correctly applied force to leave one DOF unconstrained, it was outside of the scope 

of this project. The ligaments were left in the model to allow for future potential to 
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implement this, or to use this model to investigate ligament elongation and forces 

during in-vivo motion. 

No other ligaments were included in the model as the four main ligaments were 

considered substantial enough to constrain the bone movements without the need 

for adding extra structures. The transverse ligament (TL) of the knee (also known as 

the anterior inter-meniscal ligament) was not included as it was not seen on the 

participant’s MRI scan. The reported incidence in literature of the TL varies from 

31-94% (Szopinski and Adamczyk 2018) so it is not present in all individuals. 

The 3D ligament geometries were roughly segmented from the T1-VIBE scan to find 

the attachment regions on the bones. Like with the meniscal horn attachment 

regions, the bone meshes were generated with a higher density of elements at the 

ligament attachment sites. The surface areas of the ligament attachment sites were 

calculated, along with the mean for each pair. The number of springs per ligament 

was calculated so one spring approximately represented 1 mm2 area (Esrafilian et al. 

2020). The mean area (and therefore number of springs) was rounded to the nearest 

5 mm2 to account for segmentation errors. The total number of springs used to 

represent each element were 145 for the ACL, 70 for the PCL, 25 for the LCL, and 

Figure 4-8 – The four main knee ligaments represented by spring bundles. 
The ACL is shown in purple, the PCL is in yellow, the MCL is in red and the 

LCL is in green. 
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65 for the MCL (Figure 4-9). The non-linear springs were then added to the model by 

selecting the specified number of nodes on each attachment site and attaching the 

springs by closest line projection. 

Figure 4-9 – Segmented ligament attachment regions for a) ACL, b) PCL, c) LCL and 
d) MCL along with the total number of springs used to represent each ligament. 
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The ligaments were represented in the model as non-linear Blankevoort springs 

(Blankevoort and Huiskes 1991). This was the same ligament model used in the 

MSM (Chapter 3, Section 3.2.1) and is described in more detail in Section 0. 

The values of these force-strain equations for each spring in the ligament bundle 

were determined using the parameters in Table 1-7; this included the total stiffness 

(𝑘𝑘𝑙𝑙) and average reference strain (εr) of the (anatomical) ligament bundles 

(Blankevoort et al. 1991) as the individual bundles could not be segmented in 

isolation from the MRI scan (Esrafilian et al. 2020). The force (f) was calculated for 

the whole ligament and then divided by the number of springs in the bundle (as given 

in Figure 4-9) to generate the curve for each individual spring. 

Table 4-7 – Material parameters for the force-strain relationship of each ligament 
taken from Blankevoort et al. (1991). 

Ligament Total stiffness/𝒌𝒌𝒍𝒍 
[kN] 

Reference strain/εr 

[%] 
ACL 10 8 

PCL 18 -13.5 

LCL 6 -7.33 

MCL 8.25 3.66 

 

For each ligament, a personalised reference length (𝐿𝐿𝑟𝑟) was calculated as the 

distance between a central node from the defined attachment region at each end of 

the ligament. This distance was taken as the 𝐿𝐿𝑟𝑟 for each ligament as the knee was 

approximately fully extended in the segmented position from the MRI. The 𝐿𝐿𝑟𝑟 for 

each ligament is given in Table 4-8. 

Table 4-8 – Ligament reference lengths (𝐿𝐿𝑟𝑟) calculated. 

Ligament Reference length/𝑳𝑳𝒓𝒓 
[mm] 

ACL 33.5 

PCL 32.0 

LCL 57.1 

MCL 58.4 

 



256 
 

The Blankevoort force-strain relationship curves were calculated using MATLAB for 

each 1D spring in the four different ligament bundles. The curves were output as text 

files and were imported into FEBio to define the force point curve for each discrete 

element set. 

4.2.3 KINEMATICALLY DRIVEN MODEL 

To drive the model kinematically, rigid rotations and displacements were applied to 

the bones (rigid bodies) within the model. In FEBio, each DOF is applied as a 

separate rigid constraint. 

The relative TF joint motion was calculated from the object transforms (OTs) 

exported from the DSX Suite (HAS-Motion, Canada), so the motion of the whole joint 

could be applied to the tibia, whilst the femur was held still. This simplified the 

application of dynamic constraints in the model, improving model stability and 

performance. 

The single OT representing each frame was then broken down into load curves 

representing each DOF (MATLAB), with the rotations being converted into the Euler 

Axis Angle convention used by FEBio to prescribe rotations to a rigid body.  

Alignment of bones to the global origin 

The centre of mass (COM) of a rigid body in FEBio is important as this is the point 

where any rigid rotations and translations are applied relative to. By default, this 

point is automatically calculated as the COM of the rigid body object. However, as 

the rigid rotations and translations applied here were not defined around the COM, 

but the anatomical coordinate systems (ACSs) used during image registration, it was 

important to set the rigid body COM to a consistent, mathematically relevant point. 

For ease of implementation, both rigid body COMs were set to the global coordinate 

system (GCS) origin. Therefore, it was important to align the OT definitions with the 

same origin point so the kinematics could be correctly applied. 

To do this, all the geometries (bones, cartilage, meniscus) were transformed from 

their positions in the MRI coordinate space by the inverse of the femoral ACS 

definition to align the joint with the femoral ACS coincident with the GCS origin 

(Figure 4-10). The relationships between the geometries in 3D space remained 
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consistent, allowing for the springs representing the meniscal horns and ligaments to 

be added.   

The tibia OTs were converted to be defined using the femoral ACS, instead of the 

original tibia ACS used for image registration so all motion was defined from a 

coincident starting point; this was the same definition used to look at the kinematics 

with coincident axes in Section 2.4.3, and is the same way they are defined in the 

MSM model. This meant the whole TF joint movement was applied to the tibia 

around the GCS – coincident with the femoral ACS. 

Testing the kinematic inputs 

To test that the OTs were correctly converted into the six rigid constraint load curves, 

their resulting motion was compared to the output of FEBio’s Kinemat tool (FEBio 

2021a). This was done using a simplified model of two identical cylinders to 

represent the two bones and BVR kinematics from a randomly selected lunge trial 

(Figure 4-11). The centre of the distal face of the ‘femur’ cylinder and the centre of 

Figure 4-10 – The geometries from their original location relative 
from the MRI scan (orange) transformed by the inverse of the 

femoral ACS (blue) to align all geometries with the GCS origin in 
FEBio. 
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the proximal face of the ‘tibia’ cylinder were aligned with the GCS origin in FEBio. 

The generated load curves were applied to the ‘tibia’ cylinder, and the 4-point angle 

between the central line of the two cylinders and the point distance between the 

central nodes at each end were calculated at every five frames. The same 

kinematics were applied to the two bodies using the Kinemat tool (which applied the 

bone transforms separately to each object) and the same angles and distances were 

calculated. 

The results were compared to ensure they were identical (Table 4-9) and that the six 

DOF load curves were representing the TF joint movement correctly. As the 

difference between the two methods was zero at all frames for both the 4-point angle 

Figure 4-11 – Simple cylinder model to test rigid rotation and translation constraints were 
applied correctly. The red object represents the femur and the blue the tibia. Grey boxes 

show the two measurements taken using the central nodes of the cylinder’s circular faces. 
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and the point distance, the load curves were shown to correctly represent the 

combined joint kinematics. 

Table 4-9 – Results from comparison of the generated load curves and Kinemat tool 
results at every five frames of motion. 

4 Point Angle (°) Point Distance (mm) 
Frame Load 

curves 
Kinemat 
tool 

Difference Frame Load 
curves 

Kinemat 
tool 

Difference 

1 29.02 29.02 0.00 1 29.08 29.08 0.00 

5 39.52 39.52 0.00 5 28.93 28.93 0.00 

10 49.27 49.27 0.00 10 29.72 29.72 0.00 

15 57.58 57.58 0.00 15 30.61 30.61 0.00 

20 62.07 62.07 0.00 20 30.15 30.15 0.00 

25 64.82 64.82 0.00 25 30.02 30.02 0.00 

30 67.11 67.11 0.00 30 30.41 30.41 0.00 

35 68.34 68.34 0.00 35 30.32 30.32 0.00 

40 68.30 68.30 0.00 40 30.09 30.09 0.00 

45 68.03 68.03 0.00 45 30.56 30.56 0.00 

50 66.25 66.25 0.00 50 30.46 30.46 0.00 

55 60.93 60.93 0.00 55 29.89 29.89 0.00 

60 54.03 54.03 0.00 60 29.40 29.40 0.00 

65 40.25 40.25 0.00 65 28.77 28.77 0.00 

 

Model steps, contacts and constraints 

Before running the model through the BVR-derived kinematics, two steps were 

needed: an initial separation to ensure no mesh overlap, and a step to bring the soft 

tissues in the model into contact in their first kinematic frame position. The femur and 

femoral cartilage were fixed using a rigid constraint in all six DOFs throughout the 

whole simulation; all prescribed displacements were applied to the tibia. 

Separation step 

For the separation, the tibia was moved inferiorly from its initial MRI position using a 

negative rigid z displacement control (from 0 mm to -2 mm); the other five tibial 

DOFs were fixed for this step. To move the meniscus so that it was not in contact 
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with either cartilage surface, two blocks were added next to each meniscus and a 

tied-facet-on-facet contact was used to connect the blocks to the faces on the edge 

of each meniscus (Figure 4-12). These blocks were set as rigid bodies so a rigid z 

displacement of -1 mm could be applied, pulling the meniscus into a position halfway 

between the two cartilage meshes. The blocks were inactive for the remainder of the 

simulation.  

Contact step 

Once separated, the geometries were then brought back into contact by moving the 

tibia into its position of the first frame of kinematic motion using rigid constraints that 

varied from 0 (or -2 mm for the z-displacement) to the initial frame values. This 

allowed the soft tissues to be bought into contact and compress, ready to run the 

kinematic trial data. 

Kinematics step 

Once in its starting position, the tibia was moved through the TF joint motion 

calculated using BVR via the six DOF prescribed rigid constraints. In total there were 

24 frames of BVR data corresponding to 17% through 76% of stance phase of level 

gait. To help the model solve, the frame rate was reduced from 60 Hz (the original 

frequency the BVR data was collected in) to 10 Hz by increasing the time between 

frames. The results were only analysed at the frames which corresponded with a 

BVR input frame, and no time-dependent model elements were included, so the 

Figure 4-12 – Rigid body block with the corresponding faces 
on the meniscal wall for the tied contact. 
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frame rate reduction only made it easier for the model to solve by decreasing the 

gradient of the load curves between frames.  

A summary of the contacts and contact penalties applied during each modelling step 

can be found in Table 4-10. These penalties were the highest values that allowed the 

model to solve all kinematic steps and run to full termination. 

Table 4-10 – Contacts included in each step of the model.  
(Identical contacts were used in Steps 2 & 3.) 

Step Primary 
contact 
surface 

Secondary 
contact 
surface 

Contact type Contact 
penalty 

Two-
pass 

1.
 S

ep
ar

at
e Medial 

meniscus 

Medial rigid 

body block 

Tied-facet-on-facet 1 n/a 

Lateral 

meniscus 

Lateral rigid 

body block 

Tied-facet-on-facet 1 n/a 

2.
 I

ni
tia

l C
on

ta
ct

 &
 

3.
 K

in
em

at
ic

s-
dr

iv
en

 

Femoral 

cartilage 

Tibial 

cartilage 

Sliding-facet-on-facet 120 on 

Femoral 

cartilage 

Medial 

meniscus 

Sliding-facet-on-facet 60 on 

Tibial 

cartilage 

Medial 

meniscus 

Sliding-facet-on-facet 75 on 

Femoral 

cartilage 

Lateral 

meniscus 

Sliding-facet-on-facet 1 off 

Tibial 

cartilage 

Lateral 

meniscus 

Sliding-facet-on-facet 1 off 

 

A low contact penalty value was required between the lateral meniscus and both 

cartilage surfaces in order for the model to solve for all timesteps due to an issue 

arising toward the end of the motion.  

4.2.4 RESULTS OUTPUT AND ANALYSIS 

Results were extracted from the final model at each timepoint that corresponded to a 

tracked BVR frame of data during the kinematic step. 
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Firstly, the contact pressures between the femoral cartilage and tibial cartilage 

surfaces were analysed within FEBio with screenshots of the tibial cartilage contact 

maps at each timepoint. The maximum contact pressure between the two cartilage 

surfaces was also found at each timepoint. The contact maps and maximum 

pressure values were compared to results from literature, as well as the 

corresponding contact maps for this participant from the MSM work in Chapter 3. 

To analyse the stresses within the femoral, medial tibial and lateral tibial cartilage, 

the Cauchy stress tensor (Equation 4-11) for each element was exported at each 

frame. This was then used to calculate the normal (axial) stress by taking the Z 

component (σzz) of the stress tensor. The principal stresses were determined by 

calculating the eigenvalues of each stress tensor. The maximum principal stress was 

defined as the eigenvalue with the greatest absolute magnitude, since compressive 

stresses are represented by negative values. The von Mises stress was also 

calculated using Equation 4-12. For each stress measure, the maximum value of any 

element at each frame was found, along with the overall maximum at any point of the 

motion. 

 𝜎𝜎 = �
𝜎𝜎𝑥𝑥𝑥𝑥 𝜎𝜎𝑥𝑥𝑥𝑥 𝜎𝜎𝑥𝑥𝑥𝑥
𝜎𝜎𝑦𝑦𝑦𝑦 𝜎𝜎𝑦𝑦𝑦𝑦 𝜎𝜎𝑦𝑦𝑦𝑦
𝜎𝜎𝑧𝑧𝑧𝑧 𝜎𝜎𝑧𝑧𝑧𝑧 𝜎𝜎𝑧𝑧𝑧𝑧

� (Eq. 4-8) 

Where σ is the Cauchy stress tensor. 

 𝜎𝜎𝑉𝑉𝑉𝑉 = (Eq. 4-9) 

�1
2
��𝜎𝜎𝑥𝑥𝑥𝑥 − 𝜎𝜎𝑦𝑦𝑦𝑦�

2
+ �𝜎𝜎𝑦𝑦𝑦𝑦 − 𝜎𝜎𝑧𝑧𝑧𝑧�

2
+ (𝜎𝜎𝑧𝑧𝑧𝑧 − 𝜎𝜎𝑥𝑥𝑥𝑥)2� + 3�𝜎𝜎𝑥𝑥𝑥𝑥2 + 𝜎𝜎𝑦𝑦𝑦𝑦2 + 𝜎𝜎𝑧𝑧𝑧𝑧2 � 

Where σVM = von Mises stress and all other stress (σ) values are components of the 
Cauchy stress tensor in Equation 4-11.  

The maximum principal, axial and von Mises strains at each frame were calculated in 

a similar manner using the Cauchy strain tensor (Equation 4-13). 

 𝜀𝜀 = �
𝜀𝜀𝑥𝑥𝑥𝑥 𝜀𝜀𝑥𝑥𝑥𝑥 𝜀𝜀𝑥𝑥𝑥𝑥
𝜀𝜀𝑦𝑦𝑦𝑦 𝜀𝜀𝑦𝑦𝑦𝑦 𝜀𝜀𝑦𝑦𝑦𝑦
𝜀𝜀𝑧𝑧𝑧𝑧 𝜀𝜀𝑧𝑧𝑧𝑧 𝜀𝜀𝑧𝑧𝑧𝑧

� (Eq. 4-10) 

The maximum stresses and strains were plotted against percentage stance and 

compared to other FEMs modelling walking from literature.  
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4.3 RESULTS AND DISCUSSION 

As discussed in Chapter 1, understanding how the articular cartilage behaves under 

joint loading is important as altered loading and the weakening of its mechanical 

properties are common indicators of OA (Sinusas 2012; Mukherjee et al. 2020; Katz 

et al. 2021; Mohout et al. 2023). Commonly used parameters to assess altered knee 

mechanics include contact pressure, stress and strain. In particular, articular 

cartilage stresses and strains are key outputs from a knee FEM as they are 

unmeasurable parameters in-vivo and cannot be obtained through a standard MSM 

pipeline (such as the one in Chapter 3).  

To understand how the kinematic-driven model has performed, the outputs were 

compared to the magnitudes found in literature from other FEMs of the healthy 

human knee. This aimed to evaluate if this model has produced results of a similar 

magnitude to force-driven FEMs, however due to all the models using different 

material models and parameters, as well as being driven differently, comparison 

between model outputs is limited. As tissue stresses and strains are unmeasurable 

in-vivo, all FEMs must estimate these magnitudes so their accuracy cannot be 

directly confirmed.  

As shown in literature, peak magnitudes of pressure, stress and strain within the 

articular cartilage generally corresponded to the first and second peaks of force 

during the stance phase of gait (Adouni et al. 2012; Halonen et al. 2013; Mononen et 

al. 2015; Daszkiewicz and Luczkiewicz 2021; Fu et al. 2022). For the trial used to 

drive this model, the peaks of the Z-component of the ground reaction force (GRF) 

measured by the force plate during the stance phase of gait were found to occur at 

23% and 75.4% stance phase respectively. These points were both within the part of 

stance phase captured by BVR (17-76%) so were able to be used for comparison 

with the results from literature. 

4.3.1 CONTACT PRESSURE 

As discussed in Section 1.7.1, contact pressure is a commonly used output from 

FEM when investigating altered knee mechanics due to OA. The contact pressure 

maps of the femoral-tibial cartilage contact pressures visualised on the tibial cartilage 

at 10% intervals of stance phase are presented in Figure 4-13, along with the contact 
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map from the first and last frames analysed within FEBio. It is important to note that 

although the meniscus was included in the model, the cartilage contact with the 

meniscus is not visualised here.  

The contact pressure was found to be higher on the medial plateau at the start and 

the end portions of the collected motion, with contact shifting to the lateral plateau 

during mid-stance leaving central portions of the medial plateau with no contact. This 

disagrees with literature where the medial plateau was found to consistently have a 

greater contact area than the lateral plateau throughout the same portion of stance 

phase modelled here (~20-75% stance) (Liu et al. 2010; Adouni et al. 2012), so no 

contact on the medial plateau during any part of stance is unexpected. This may be 

due to inaccuracies in image registration occurring during mid-stance as the 

contralateral limb occluded the imaged knee during its swing-phase. This highlights 

the potential sensitivity of the model to small kinematic errors on contact area 

prediction.  

The maximum articular cartilage contact pressure was found to peak at 28.9 MPa, 

occurring on the medial plateau at 76% stance phase (the final frame of BVR data 

collected). This value is higher than those typically reported in the literature for 

healthy knees during gait, where peak contact pressures during stance phase range 

from 8-17 MPa (Adouni et al. 2012; Halonen et al. 2013; Daszkiewicz and 

Luczkiewicz 2021; Fu et al. 2022). However, some studies, such as Mononen et al. 

(2015), have reported local medial compartment pressures up to 35 MPa, 

demonstrating that large variation exists depending on model setup and driving data 

choices. The studies compared here differ from the present model in several key 

aspects that may explain the higher peak contact pressure observed. 

Firstly, all of these models were at least partially force-driven, rather than purely 

kinematically prescribed. Adouni et al. (2012) and Daszkiewicz and Luczkiewicz 

(2021) applied mean, population-based joint loads and moments rather than subject-

specific data, which may underestimate contact magnitudes by smoothing individual 

variability. Halonen et al. (2013) and Mononen et al. (2015) incorporated kinematic 

inputs derived from experimental data but not subject-specific geometries, while Fu 

et al. (2022) drove their model using MSM outputs from experimental gait data. 
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Differences in the applied boundary conditions and input data can strongly influence 

the magnitude and location of cartilage contact pressures. 

Secondly, variations in mesh quality likely contributed to differences in pressure 

magnitude. Some models used relatively coarse hexahedral meshes (Adouni et al. 

2012; Halonen et al. 2013), which are less suited to capturing complex cartilage 

morphologies and typically yield lower pressure magnitudes. The model presented 

here used a denser tetrahedral mesh, which provides more accurate surface 

representation but may lead to higher localised pressures.  

Finally, local contact patterns were consistent with previous findings, with peak 

pressures located on the medial tibial plateau (Haut Donahue et al. 2003; Adouni et 

al. 2012; Halonen et al. 2013; Mononen et al. 2015; Daszkiewicz and Luczkiewicz 

2021; Fu et al. 2022). The peak pressure corresponded with the second loading 

peak of stance phase (76% stance), agreeing with some other models (Daszkiewicz 

and Luczkiewicz 2021; Fu et al. 2022), but disagreeing with others that found peak 

pressures occurring at the first peak of stance (Adouni et al. 2012; Halonen et al. 

2013; Mononen et al. 2015). The highest pressure from this model was located 

anteriorly on the medial edge of the tibial cartilage, consistent with findings by 

Mononen et al. (2015).  

Overall, while small registration errors could have contributed to the high local value 

observed, the differences in model formulation, mesh resolution, and input data 

across studies may also contribute to the higher contact pressures obtained. 
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Figure 4-13 – Tibial cartilage contact pressure distributions at 10% intervals of stance 
phase of level gait where BVR data were obtained. Also included are the first and last 

frames as these involved high pressure magnitudes (with the highest pressure at 76%).   
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Comparison to MSM and BVR-EFM contact pressure maps from Chapter 3 

Contact pressure maps during the stance phase of level gait were also calculated 

using an elastic foundation model in Chapter 3. This was done using the same BVR 

input object transforms used to drive the FEM (see Section 3.2.4 - this model will be 

referred to as BVR-EFM in this chapter) as well as using the marker-based motion 

capture (collected as described in Chapter 2, Section 2.3.2) as an input to an MSM 

pipeline (Section 3.2). The MSM pipeline was run with a model containing ‘generic’ 

contact geometries and one with the personalised MRI segmented geometries 

incorporated (Section 3.2.2). 

The resulting tibial cartilage contact maps from these three versions of the elastic 

foundation model (Appendix D) were compared to the FEM contact pressures 

between the femoral and tibial cartilage surfaces (visualised on the tibial cartilage in 

Figure 4-13) to investigate their differences. The tibial cartilage was the focus for this 

comparison as this was the same focus as the results in Chapter 3.  

Firstly, the maximum contact pressure of any element on the tibial cartilage contact 

surface at each frame was plotted for the four different methods (Figure 4-14). These 

results show that the FEM calculated the highest contact pressure values of all the 

methods, with particularly high pressures calculated at the start and end of the BVR 

captured activity. However, there was generally better agreement in the maximum 

pressure magnitude between methods from 20% to 60% stance.  
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The final frame of motion (which corresponds with the largest peak of z-GRF) where 

the highest FEM pressure (28.9 MPa) was found. This was much higher than the 

peak pressures found for the personalised MSM (11.35 MPa), generic MSM (11.02 

MPa) and BVR-EFM (8.39 MPa). These magnitude differences could be due to the 

different method used to calculate pressure in FEBio and the deformation of the 

elements. However, this also corresponds with the larger amounts of overlap 

between the anterior portion of the lateral meniscus with both the femoral and tibial 

cartilage which could be affecting the other contacts in the model and contributing to 

the high pressures found between the cartilage contacts at this timepoint. 

Figure 4-14 – Maximum contact pressure of any element at each frame of motion for the 
four methods. 
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As the highest pressure values in the FEM results were generally isolated to a few 

elements in the final few frames of motion, to visually compare the FEM results with 

the three elastic foundation models, the pressure scale was set to 0-19 MPa as this 

was the maximum threshold used when plotting the contact maps in Appendix D. 

This was done to keep the visual variation between the three elastic foundation 

models, as when the maximum threshold was set to 29 MPa, the nuance between 

these three was lost. Only the visualisation of the final four frames of the FEM 

contact pressures were altered as all other results were below the 19 MPa threshold. 

An example of the visual difference is shown for 70% stance phase in Figure 4-15, 

showing the lower threshold is more suitable for indicating regions of high pressure. 

Figure 4-15 – Figure illustrating the difference in the 
colour map when the maximum value threshold is 

lowered for the FEM results. 
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Three main frames were chosen for comparison: 20% (Figure 4-16), 50% (Figure 

4-17) and 70% stance (Figure 4-18) respectively. These three were picked for 

analysis as they covered the range of stance captured, representing approximately 

the first and second peak loading as well as mid-stance, without using the beginning 

and end frames of motion (which are more susceptible to image registration errors).  

At 20% stance phase (Figure 4-16), all four models found higher contact pressures 

and larger contact areas on the medial plateau than the lateral. The contact area of 

the FEM and BVR-EFM maps were similar, as expected, due to using the same 

bone pose input data to calculate contact area. The personalised MSM showed a 

similar contact region to the FEM (and BVR-EFM) on the medial plateau, but not on 

the lateral plateau. The generic MSM showed similar pressure magnitudes to the 

FEM on the medial plateau, but the contact area was smaller and located more 

posteriorly. 

The BVR-EFM and FEM maps are likely to predict the contact area more accurately 

as they both use the accurate BVR bone poses as inputs, whereas the MSMs 

Figure 4-16 – The four tibial cartilage contact maps at 20% stance 
phase. 
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estimate bone poses from marker-based motion capture. The FEM also has the 

added benefit of modelling the meniscus, making the resulting contact area between 

the femoral and tibial cartilage more representative of the in-vivo scenario.  

At 50% stance phase (Figure 4-17), the FEM showed the smallest contact area on 

the medial plateau of all the contact maps, due to this, the contact pressure 

magnitudes were found to be higher on the lateral plateau than the medial for the 

FEM for mid-stance. This was not seen in the personalised and generic MSM results 

where the medial plateau continued to have the larger contact area and pressure 

magnitudes compared to the lateral plateau. The lower contact pressures and 

contact area ‘gap’ visible in both the FEM and BVR-EFM maps at 50% stance are 

likely due to a combination of cartilage morphology and image registration being 

more difficult during mid-stance due to occlusion by the contralateral limb reducing 

bone pose accuracy.  

Figure 4-17 – The four tibial cartilage contact maps at 50% stance 
phase. 



272 
 

The contact maps at 70% stance phase (Figure 4-18) produced similar trends to 

those seen at 20% stance phase, with the FEM, BVR-EFM and personalised MSM 

producing similar contact regions on the medial tibial plateau with the peak contact 

pressure located anteriorly on the medial plateau.  

Again, the contact area on the lateral plateau was predicted to be more posteriorly 

located by the two MSMs, reducing their similarity. Although the generic MSM had 

the least similarity with predicted contact region compared to the FEM results, the 

contact pressure magnitudes were the most similar, with higher contact pressures 

also being found on the lateral plateau. In contrast, the personalised MSM had 

relatively low contact pressures on the lateral plateau, offloading onto the medial 

condyle of the knee which is not reflected in either of the BVR-based models. This 

suggests that the personalised model may be incorrectly distributing the load through 

the joint at the second peak of loading during the stance phase of gait as it has a 

higher ratio of medial to lateral condyle maximum contact pressure than the other 

three models. As altered loading distribution, such as increased medial knee loading, 

is associated with OA (Trad et al. 2017; Arjmand et al. 2018; Mononen et al. 2023), 

Figure 4-18 – The four tibial cartilage contact maps at 70% stance 
phase. 
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this may lead to incorrect assumptions about joint function if used to model knee 

contact pressures and should be investigated further in the future. 

4.3.2 STRESS 

Unlike articular cartilage contact surfaces pressures which could be obtained through 

other methods, such as MSM pipelines (Chapter 3), an FEM can be used to expand 

the contact analysis to internal parameters such as stress within the tissue. 

Maximum stress magnitudes 

To understand if the model produced results comparative to literature, the maximum 

von Mises, principal and normal stresses were calculated across all frames of motion 

(Table 4-11).  

The magnitudes and timing of these stress peaks (Table 4-11) showed partial 

agreement with previous finite element studies of the healthy knee during gait. The 

maximum von Mises stresses (8-13 MPa) were comparable with those reported by 

Halonen et al. (2013), who found a peak of approximately 10 MPa during early 

stance (around 20% stance). However, the maximum normal and principal stresses 

in the present model were lower than those from studies using more complex 

material formulations. For example, Halonen et al. (2013) and Mononen et al. (2015) 

both employed fibril-reinforced poroviscoelastic (FRPVE) cartilage models that 

incorporated collagen fibril orientation and depth-dependent proteoglycan and fibril 

distributions. Their models produced maximum principal stress magnitudes of 

30-40 MPa at approximately 25% stance (Halonen et al. 2013) and 35.2 MPa at 20% 

stance (Mononen et al. 2015), respectively. In contrast, Yang et al. (2010) modelled 

cartilage as isotropic elastic and reported lower normal stresses of 13-17 MPa, 

closer to those found here. This demonstrates the effect of material model choice on 

model outputs and explains some of the differences in stress magnitude found 

between different FEMs. The simplified isotropic elastic model used here does not 

capture the depth-wise anisotropy, viscoelasticity, or fluid pressurisation represented 

in FRPVE models, which tend to produce higher localised stresses. 
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Table 4-11 – Maximum von Mises stress, normal (axial or z-) stress and compressive principal stress magnitudes in each structure 
and their stance-phase occurrences. 

Cartilage structure Max. von Mises 
stress (MPa) 

Occurrence 
(% stance) 

Max. normal 
stress (MPa) 

Occurrence 
(% stance) 

Max. principal 
stress (MPa) 

Occurrence 
(% stance) 

Femoral cartilage 12.60  16.6 11.29 16.6 2.30 16.6 

Medial tibial cartilage 10.50 70.5 19.27 75.6 12.65 16.6 

Lateral tibial cartilage 8.80 73.0 10.90 67.9 6.61 21.8 
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As well as the material model used, differences in magnitude and timing of peak 

pressures may also arise from the chosen mesh density and element type. The 

current model used a finer tetrahedral mesh than many of the earlier studies in 

literature, which used coarser hexahedral meshes, influencing stress concentrations 

and peak values. As none of the other models were solely driven by kinematics, 

differences in loading conditions and driving inputs would also affect stress 

calculations.  

When comparing which cartilage structure found the highest magnitudes, the highest 

von Mises stresses were found in the femoral cartilage which aligns with the findings 

of Tarniţă et al. (2014). In contrast, the highest peak values for both maximum 

principal and maximum normal stress were found in the medial tibial cartilage (Table 

4-11). As the medial tibial cartilage was found to have higher maximum stresses 

than the lateral, these results were consistent with previous findings (Yang et al. 

2010; Mononen et al. 2015). The low principal and normal stresses found in the 

femoral cartilage were likely because of the contact mechanics between the two 

meshes. An artificially enlarged contact area on the femoral cartilage surface, 

potentially caused by segmentation or input kinematic errors or incorrectly modelled 

interactions with the meniscus, would spread the load across a larger area, reducing 

the stresses in that region. 

Overall, the differences in stress magnitudes and distributions between models likely 

reflect a combination of factors, including variations in material models, mesh 

density, element type, and loading or boundary conditions. As stress cannot be 

directly measured in-vivo during walking, it is not possible to determine which 

modelling approach most accurately represents the true physiological values. 

Nevertheless, understanding where the present results sit compared to the range 

reported in literature provides useful context for evaluating model behaviour and 

consistency, demonstrating that the outputs are broadly comparable with those of 

other published FEMs of the healthy knee. 

Stress variation throughout stance phase 

The maximum von Mises stress of the three different regions of articular cartilage at 

each frame were plotted against percentage stance phase to understand how the 

stress varied throughout the movement (Figure 4-19). Von Mises stress was chosen 
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because it summarises the combined multidirectional stresses, rather than the 

directional loading presented by principal or normal stresses, providing a 

visualisation of 3D trends in cartilage loading. To reduce the influence any outliers 

where elements had very high stresses, the top 1% of elements under stress (where 

von Mises stress > 0) were averaged at each frame.  

The maximum von Mises stresses in all three structures followed a similar pattern, 

with higher stresses early in the collected portion of stance, a slight decrease during 

mid-stance, and an increase towards the end of the collected portion. The higher 

stresses at the start and end of stance correspond to the two loading peaks at 

approximately 25% and 75% of stance during level gait. A similar trend was seen in 

the maximum principal and normal stresses within each structure. The profiles 

shown in Figure 4-19 generally agree with previous literature, showing higher 

stresses near the loading peaks and lower stresses during mid-stance (Halonen et 

Figure 4-19 – Maximum von Mises stress in any element against percentage 
stance phase. The mean von Mises stress of the top 1% of elements in each 

cartilage structure is also included to account for any outliers. 
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al. 2013; Mononen et al. 2015). However, as the stance phase modelled was 

restricted to 16-76% of stance, it is more difficult to compare the overall trends, since 

behaviour outside the collected range cannot be confirmed. In general, the trend for 

the lateral tibial cartilage agreed more closely with the literature than the medial tibial 

cartilage. This model found the second stress peak to be higher for both the medial 

and lateral tibial cartilage (Figure 4-19), whereas literature reports a lower first peak 

and higher second peak for the lateral side (Mononen et al. 2015), and a higher 

initial peak for the medial side (Halonen et al. 2013; Mononen et al. 2015). 

The overall maximum von Mises stress found in the femoral, medial tibial and lateral 

tibial cartilage structures from Table 4-11 are summarised again in Table 4-12, along 

with the results for the mean of the top 1% of elements.  

Table 4-12 – Maximum von Mises stresses in each cartilage structure and when the 
maximum occurred. 

Cartilage structure Max 
(MPa) 

Occurrence 
(% stance) 

Mean top 1% 
max (MPa) 

Occurrence 
(% stance) 

Femoral cartilage 12.60 16.6 6.87 75.6 

Medial tibial cartilage 10.50 70.5 6.04 73.0 

Lateral tibial cartilage 8.80 73.0 5.70 75.6 

 

As Table 4-12 shows, the maximum von Mises stress in the femoral cartilage was 

found at 16.6% stance, corresponding with the first frame of stance phase collected 

using BVR. This was not seen when the top 1% of elements were averaged, where 

the maximum occurred at 75.6% stance (Figure 4-20), corresponding with the 

second peak of loading during gait. This suggests this high initial stress was due to 

only a few high values, which, when investigated, were visibly concentrated at the 

boundary between the bone and the femoral cartilage, where the anterior, medial 

edge of the medial tibial cartilage contacts the femoral cartilage. This concentration 

of stress at the bone-cartilage boundary may be partly due to the modelling 

assumption of a rigid bone surface in contact with deformable cartilage. In-vivo, the 

bone-cartilage interface would deform slightly under load, producing a smoother 

stress distribution. As a result, such isolated elements of very high stress are unlikely 

to occur physiologically and are more likely to reflect a local numerical effect rather 

than a true mechanical feature. 
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Based on experience with BVR image registration (Chapter 2, Section 0), it is 

hypothesised that elevated stresses in the first frame may be linked to reduced 

registration accuracy when the bone was partially out of frame. This causes the early 

peak to occur before the first peak of loading at around 25% stance where it would 

be expected. 

As seen clearly from the superior view (Figure 4-20), the stress patterns seen on the 

femoral cartilage were typically ring-shaped, likely due to the cartilage morphology 

resulting in larger deformation around the edges of the tibial cartilage. The stresses 

were higher on the medial condyle at the start of the motion, with the distribution 

becoming more even between the medial and lateral sides through stance phase. 

Figure 4-20 – Von Mises stress in the femoral cartilage at 75.6% when the maximum 
mean stress value of the top 1% of elements occurred. 
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The stresses moved anteriorly with increasing stance phase, consistent with the 

transfer of body weight during gait (Liu et al. 2010). Higher stresses were seen 

closer to the bone-cartilage boundary than on the cartilage-cartilage surface. This 

was likely due to the bones being modelled in rigid bodies so only the cartilage can 

deform at the bone-cartilage interface. 

The von Mises stress in the tibial cartilage was also higher in the medial plateau at 

the start of the motion, with lower stresses in both sides during midstance, before 

increasing again towards the second peak of loading where the peak stresses 

occurred. At the peak (Figure 4-21), the von Mises stresses were generally located 

anteriorly, with a particularly high region of stress located anteriorly on the medial 

edge of the medial plateau. This may be due to a small inaccuracy in the medial-

lateral (ML) translation of the tibia from image registration artificially increasing the 

stresses in this region where this pattern was unexpected. 

Figure 4-21 – Von Mises stress in the tibial cartilage at 75.6% stance.  
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4.3.3 STRAIN 

Another metric of internal contact mechanics that can be extracted from an FEM 

simulation is strain. Increased strain within the articular cartilage has previously been 

shown to be linked with knee OA (Tarniţă et al. 2014; Arjmand et al. 2018; Bolcos et 

al. 2022; Lampen et al. 2023) and is, therefore, a key output from joint contact 

models used to quantify disease progression. 

Maximum principal strain against percentage stance for the three cartilage structures 

is shown in Figure 4-22. It was chosen to analyse principal strain throughout stance 

as this was a commonly reported strain metric in FE models of the knee from 

literature (see Table 1-3, Section 1.7.1). 

Like with von Mises stress (Figure 4-19), the highest maximum principal strains 

(Figure 4-22) were found at the beginning and end frames of the motion, with the 

Figure 4-22 – Maximum principal strain against percentage stance. The mean 
principal strain of the top 1% of elements in each cartilage structure is also included 

to account for any outliers. 
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femoral cartilage and medial tibial cartilage displaying particularly large strains at the 

end. When the mean of the top 1% of elements was taken instead, the maximum 

values were much lower suggesting there were specific erroneous elements with 

artificially high strains at the start and end frames. 

The maximum principal strains generally followed a very similar pattern to the 

maximum von Mises stresses in all three structures. This was expected as both 

stress and strain are related to element deformation. 

The magnitudes of principal strain predicted by this model were much higher than 

those reported in literature (Table 4-13), where all maximum principal strains were 

reported as <30% (Adouni et al. 2012; Halonen et al. 2013; Mononen et al. 2015; Fu 

et al. 2022). This was also true of normal strain and shear strain magnitudes (Table 

4-13). These extremely high strains highlight the need for caution when interpreting 

cartilage mechanics from kinematic-driven models, as FEM results can be highly 

sensitive to the input kinematics. Further investigation is required to better 

understand this sensitivity and how small variations in the kinematic inputs affect the 

predicted tissue strains. 

Table 4-13 – Comparison of the strain results from this simulation compared with 
those reported in literature (Table 1-3, Section 1.7.1). 

Strain metric Maximum value from 
this model  

Maximum value reported 
in literature  

Principal strain 85.8% <30%1 

Axial strain 73% <21%2 

Shear strain 117% <25%3 

1(Fu et al. 2022) 2(Yang et al. 2010) 3(Mohout et al. 2023) 

4.4 LIMITATIONS, CHALLENGES AND RECOMMENDATIONS 

4.4.1 MODEL LIMITATIONS 

As this model was developed to explore the potential methodology for a fully 

kinematic-driven knee FEM, the material models and parameters were taken from 

the literature. Since material model choices can strongly influence results, the 

selected materials should be evaluated for their suitability and for the effect they may 
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have on the outputs. A sensitivity analysis of the parameter values should also be 

carried out before taking the model further to understand their impact on results. 

Another limitation of this model is that mesh convergence was not investigated. 

However, as geometry has been shown to be key for knee contact simulations (even 

more influential than the material model chosen) (Yao et al. 2024), a fine mesh was 

already used to capture the geometry of the contacting surfaces with sufficient detail. 

Therefore, the number of elements used likely exceeded the point where further 

refinement would have little effect. 

Although output magnitudes of the parameters of interest were compared to 

literature, there are limitations to this comparison. Different modelling choices – in 

the material models and parameters chosen – mean results are not directly 

comparable. Also, internal cartilage stresses and strains are unmeasurable in-vivo 

so all models are estimating these parameters, and their estimations will vary based 

on their choices and assumptions.  

Another potential limitation of this model was the low contact penalties used for 

some of the defined contacts (given in Table 4-10 in Section 0). These were the 

highest values for each contact that still allowed the model to run to full termination. 

The contact penalties were particularly low on the lateral meniscus due to its overlap 

with the femoral and tibial cartilage near its anterior meniscal horn during the 

kinematics step. This overlap likely arose from the bone kinematics causing the 

anterior portion of the meniscal body to be compressed between the cartilage 

surfaces, creating an issue at the boundary between the meniscal body and horns. 

As the meniscal horns were represented by springs, they were unaffected by this 

overlap but also did not contribute to the contact mechanics needed to separate the 

articulating surfaces. Consequently, the deformation of the lateral meniscus was not 

accurately represented, as the overlapping geometry does not reflect the in-vivo 

condition where the tissues would deform under load. This limitation would affect the 

internal mechanical outputs (e.g. stress and strain) of both the meniscus and 

articular cartilage, as the meniscus would not correctly distribute load through the 

joint. The higher contact penalty used for cartilage-cartilage contact compared to 

meniscus-cartilage contacts likely influenced the results across all kinematic steps, 

particularly towards the end of motion when overlap was greatest and a higher 
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penalty would have been most beneficial. As this model focused primarily on 

articular cartilage behaviour, the lower meniscal contact penalties were not 

prohibitive for the current study, but they would need to be re-evaluated in any future 

work extending the analysis to meniscal mechanics. 

Another future improvement to the model could be to include the PF joint in the FEM. 

The patella could also be prescribed using BVR-derived bone poses, extending the 

model’s application to PF joint mechanics. As the position of the patella, and its 

subsequent interaction with the femoral cartilage, depends on TF kinematics, 

incorporating both joints would give the most comprehensive model of knee motion. 

4.4.2 CHALLENGES OF THE KINEMATIC-DRIVEN FEM APPROACH 

One of the main challenges of a subject-specific model using personalised geometric 

and kinematic inputs is the amount of time and expertise required to not only process 

the inputs, but also to set up the model. Due to its complexity, the pipeline is not 

easily scalable as every new participant or activity would require individual 

optimisation to allow the model to run successfully. However, highly complex, 

subject-specific models have the benefit of accurately capturing an individual’s 

in-vivo joint mechanics, replicating a real-life scenario. As FEMs are sensitive to 

many factors, using generic model kinematics or geometries may not provide 

enough detail to understand in-vivo stresses and strains in the articular cartilage or 

other soft tissues.  

Although this model has shown that a kinematically-driven FEM of the knee is 

possible, using this pipeline to develop models of different activities and participants 

would be needed to thoroughly test this methodology to confirm if this is a repeatable 

and useable technique for FEM. 

Another challenge of kinematic-driven modelling specifically is the model’s sensitivity 

to the kinematic inputs. This sensitivity likely caused the particularly high strains in 

the articular cartilage in this model, highlighting the need to investigate the sensitivity 

of model outputs to the input kinematic errors. Fregly et al. (2008) have shown that 

pose errors in input kinematics as small as 0.1 °/mm caused the maximum contact 

forces, pressures and area to vary by 100-200% during a gait cycle simulated using 

in-vivo single-plane fluoroscopy data from a knee with a TKR. They used an elastic 

foundation model to calculate these contact outputs (like the MSM in Chapter 3). To 
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understand if this sensitivity extends to the internal tissue stresses and strains in an 

FEM, it is recommended to perform a sensitivity analysis by altering the input 

kinematics by known amounts. This was not done for this model due to the time 

constraints, but if this model were to be utilised in the future, it should be explored to 

truly understand the limitations of this technique to correctly interpret the results. 

The unrealistic, extreme values of stress and strain occurring at the start and end of 

the movement were potentially due to higher BVR kinematic errors at these frames. 

Image registration was likely less accurate at these frames as the bones were 

partially out of shot and the boundary kinematic frames cannot be placed within the 

trend of the other surrounding frames or filtered using the surrounding data points. 

This means these frames were likely less accurate, causing larger stresses and 

strains to occur due to the increased positional errors occurring at these frames. 

4.4.3 RECOMMENDATIONS FOR KINEMATIC-DRIVEN MODELLING 

One benefit of kinematic-driven modelling is the direct input of measurable data 

which can be used to explore the changes in the distribution of contact mechanical 

parameters during dynamic motion. Therefore, it is important to investigate the 

distributions of pressures, stresses and strains throughout the tissue, focussing more 

on this than the overall magnitudes.  

Kinematic-driven FEMs may be useful for understanding the changes in the 

distributions of stresses and strains in the articular cartilage under different loading 

conditions or due to different pathologies. For example, they can help identify which 

regions of cartilage experience the highest strains, which may indicate an increased 

risk of wear and OA development (Griebel et al. 2013; Widmyer et al. 2013; Sutter et 

al. 2015). They can also be used to explore how altered loading patterns affect strain 

distributions and potentially influence OA progression. By relying less on the 

absolute magnitudes of the FEM outputs and instead comparing general patterns 

and trends, kinematic-driven modelling could be a useful tool for investigating 

articular cartilage loading. 

A more suitable option may be using the accurate input BVR kinematics to drive an 

MSM to generate force inputs for a force-driven FEM. Hybrid MSM-FEM approaches 

have been developed to calculate knee contact mechanics (Besier et al. 2005; Shu 

et al. 2018; Navacchia et al. 2019; Ali et al. 2020; Kainz et al. 2020; Esrafilian et al. 
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2022; Mohout et al. 2023), but these still rely on standard marker-based motion 

capture inputs to drive the model. Using a similar hybrid approach, but with the 

higher accuracy BVR kinematics instead, some of the issues with a directly 

kinematic driven FEM may be overcome. For example, the contact penalty values 

may be able to be increased and therefore produce a more realistic contact 

response in the deformation of the tissues as the MSM would account for potential 

errors in the input kinematics through the optimisation process. 

4.5 CONCLUSION 

To achieve the aims set out in Section 4.1.1 and analyse articular cartilage contact 

mechanics in the healthy knee during the stance phase of gait, a subject-specific 

model was developed using personalised MRI geometries (including the bones, 

articular cartilage, meniscus and key ligaments) and BVR-derived bone poses to 

prescribe all 6 DOFs. 

The cartilage pressure distributions during the prescribed stance phase of gait 

covered a similar area to the BVR-EFM results (as expected due to using the same 

kinematic inputs), however the pressure magnitudes from the FEM were found to be 

higher (Figure 4-14). The maximum pressure from the FEM (28.9 MPa) were also 

much higher than the personalised and generic MSM results, as well as the range of 

8-17 MPa presented in literature (Adouni et al. 2012; Halonen et al. 2013; Mononen 

et al. 2015; Daszkiewicz and Luczkiewicz 2021; Fu et al. 2022). However, the 

highest pressures were consistently found on the medial plateau across all methods. 

Stresses were successfully obtained from the model, with magnitudes comparable to 

literature (Table 4-11). Higher stresses were found at the start and end of the 

collected stance phase, corresponding with the two peaks of loading at 

approximately 23% and 75% of stance phase of level gait (Figure 4-19). 

The strains output from the FEM (Table 4-13) were much higher than literature. This 

was likely due to the model’s sensitivity to small kinematic errors and would require 

analysis before future usage of the model and pipeline. 

Kinematic-driven modelling shows potential as a method for understanding TF joint 

contact mechanics, including the distribution of the stresses and strains throughout 

the 3D structures of the knee, such as the articular cartilage. This could be used to 



286 
 

identify regions of higher stress and strain which, if compared to OA knees, could 

inform on the progression of the disease and potential interventions. 

By implementing a fully kinematically-driven FEM of the knee using BVR-derived 6 

DOF kinematics, this chapter completes the aims for the framework set out in 

Section 1.8. The kinematically-driven FEM enabled detailed assessment of cartilage 

contact pressures, stresses, and strains during gait, providing insight into internal 

tissue mechanics not accessible through other methods in the framework. In this 

way, the FEM complements the BVR and MSM components by linking measured 

kinematics and joint-level loads to tissue-level mechanics. It completes the 

framework by demonstrating the feasibility of creating highly personalised models 

driven by in-vivo data, offering a new approach for evaluating knee joint mechanics 

that can be extended to answer clinically relevant research questions. 
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CHAPTER 5: DISCUSSION, CONCLUSION AND FUTURE 
WORK 

5.1 DISCUSSION OF THE FRAMEWORK TO INVESTIGATE 
TIBIOFEMORAL JOINT CONTACT MECHANICS 

This overall aim of this thesis, as set out in Chapter 1 (Section 1.8), was to develop a 

comprehensive framework to investigate tibiofemoral (TF) joint contact mechanics 

that integrates accurate in-vivo biplane videoradiography (BVR) kinematics into 

musculoskeletal models (MSM) and finite element models (FEM).  

The need for such a framework was identified to provide a detailed understanding of 

how the knee behaves under loading during functional dynamic activities, with the 

future goal of informing new studies of disease progression or intervention 

outcomes. Understanding knee biomechanics in this context is important, as 

conditions such as osteoarthritis (OA) have been linked to altered joint kinematics 

and loading (Mills et al. 2013; Farrokhi et al. 2014; Yamagata et al. 2021), leading to 

pain, instability, and reduced mobility (Hunter and Bierma-Zeinstra 2019). By 

integrating high-fidelity imaging with personalised modelling, this work aimed to 

capture not only knee joint kinematics, but also contact pressures, whole-body 

forces, and internal cartilage mechanics. By doing so it also demonstrates that 

combining methodologies can provide a more comprehensive understanding of knee 

biomechanics than any individual method could offer. 

To achieve this aim, an integrated pipeline was developed that combines high-fidelity 

imaging with personalised modelling techniques. The framework consists of three 

key components, each addressing the specific aims outlined in Section 1.8, and 

contributing uniquely to the overall framework.  

Chapter 2 established a robust data collection and processing pipeline, 
acquiring MRI and BVR data to calculate accurate 6 degree of freedom (DOF) 
TF kinematics for comparison and validation with simultaneously collected 
marker-based motion capture. Implemented for the first time in a cohort of healthy 

participants, the feasibility of this workflow for future studies was demonstrated and it 

produced high-quality data to feed into the subsequent modelling stages. The BVR-
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derived kinematics form the foundation of the framework, driving the FEM and 

providing a reference for evaluating MSM predictions.  

Chapter 3 implemented the MSM pipeline using the marker-based motion 
capture and MRI data collected in Chapter 2. Subject-specific contact geometries 

from the MRI scans were incorporated to assess the benefits of personalised 

modelling. Outputs from both generic and personalised models were evaluated 

against BVR-derived kinematics and contact maps. This was the first such 

comparison for the OpenSim-JAM pipeline and demonstrated the potential 

advantages of personalised modelling. MSM complements the BVR and FEM 

components by providing whole-body kinetic and kinematic data, while its contact 

pressure maps offer a valuable reference for cross-method comparison, supporting 

the overarching aims of Section 1.8 to develop a robust, integrated framework for 

assessing knee biomechanics. 

Chapter 4 implemented a fully kinematically driven FEM of the knee using the 
BVR-derived 6 DOF kinematics from Chapter 2. The FEM calculated internal 

stresses and strains within the tibial cartilage, providing insight into tissue mechanics 

that cannot be obtained from MSM or BVR alone, linking measured kinematics and 

joint-level loads to tissue-level mechanics. This completes the integrated framework 

and demonstrates the feasibility of highly personalised, data-driven models for 

evaluating knee joint mechanics.  

To ensure consistency across the three framework components, the same MRI-

derived personalised geometries and BVR-derived kinematics were used as the 

foundation. This allowed the framework to capture subject-specific variations in both 

kinematics and tissue mechanics. By combining these techniques into a single 

integrated pipeline, the framework enables cross-validation and comparison 
across methods. The integration of these techniques means that each part informs 

and validates the others, creating a cohesive framework for studying in-vivo knee 

biomechanics (Figure 5-1). 
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The framework also reveals key challenges in high-fidelity knee modelling. Each 

component is technically complex, requiring extensive expertise, computational 

resources, and careful data processing. As collecting and analysing BVR data, 

segmenting MRI geometries, and running personalised MSM and FEM simulations is 

time consuming, scaling the pipeline would be challenging. However, detailed and 

highly personalised approaches can be used to assess which aspects of the model 

most influence the outputs. By demonstrating the sensitivity of MSM and FEM results 

to kinematic accuracy and geometric personalisation, this work provides practical 

insights for researchers who may not have access to BVR or who are using more 

Figure 5-1 – Diagram showing the relationships between different aspects of the framework.  
Boxes in blue relate to work from Chapter 2, green relates to Chapter 3 and pink relates to 

Chapter 4.  
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simplified models. In this way, the pipeline functions both as a tool for generating 

new biomechanical insights and as a benchmark for refining larger-scale or less 

detailed modelling approaches. 

This framework provides both methodological and practical contributions, 

demonstrating the potential of high-fidelity, subject-specific modelling and setting a 

foundation for future knee biomechanics studies. Each component delivers distinct 

yet complementary outputs: BVR provides accurate kinematics, MSM estimates joint 

contact pressures and whole-body forces, and FEM quantifies internal cartilage 

stresses and strains. By integrating these techniques and capitalising on the 

strengths of each, the framework achieves the overarching aims of Section 1.8, 

providing a comprehensive understanding of knee biomechanics during dynamic 

functional activities. This approach demonstrates the value of personalised data, 

while guiding researchers without access to high fidelity imaging, such as BVR, 

highlighting the benefits and limitations of different methods. While highly 

personalised models and precise kinematic data are not always feasible, they can 

inform broader modelling strategies, emphasising the importance of developing 

detailed, robust pipelines. Whether applied individually or as a fully integrated 

system, the framework can be extended to include pathological knees, supporting 

clinically relevant investigations and enhancing understanding of the relationships 

between knee biomechanics, pain, and pathology to improve diagnosis and 

treatment of conditions such as OA.  

As with all research, this study also had inherent limitations. Some of the main 

limitations are: 

• A small pilot dataset. 

• Patellofemoral (PF) kinematics were ignored. 

• The framework was only applied to a healthy population. 

• BVR imaging challenges with the current activity setups, including limited 

numbers of frames captured and contralateral limb occlusion, for example, 

during level gait. 

• The BVR kinematics were not input directly into the MSM pipeline, so it was 

only driven by lower fidelity marker-based motion capture inputs. 
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• The MSM poorly predicted TF kinematics during activities involving higher 

flexion angles. 

• No sensitivity analysis was performed on the FEM for its mesh convergence 

or material models and parameters.  

• The sensitivity of the FEM to the kinematic inputs was not investigated. 

• The contact penalties between some of the contacting surfaces in the FEM 

were low, for example, between the lateral meniscus and articular cartilage.  

The impact of these, and the other identified limitations of each part of the 

framework, are discussed in more detail in Sections 2.5.8, 3.4.5, and 4.4.1. 

Recognising these limitations is important for contextualising the findings and 

identifying priorities for future research, informing the proposed areas for further 

development as discussed in Section 5.3. 

5.2 CONCLUSION 

A framework to investigate TF joint biomechanics during functional movement was 

developed by combining in-vivo BVR imaging with MSM and FEM, achieving the 

primary aims set out in Chapter 1 (Section 1.8). A robust workflow was established, 

linking accurate experimental data with personalised computational models to 

quantify and predict knee joint behaviour. 

BVR data were successfully collected and processed using the newly developed 

acquisition and registration pipeline, providing accurate 6 DOF TF kinematics during 

multiple dynamic activities. The measured kinematics were consistent with prior 

studies, supporting the reliability of the BVR system for determining in-vivo knee 

motion. Compared to the BVR results, simultaneous marker-based motion capture 

rotations showed greater variability and an overestimated range of motion, 

highlighting the impact of soft tissue artefact, as well as a consistent flexion median 

offset of 13-14° caused by marker placement errors. 

Personalising TF contact geometries within the MSM pipeline improved the 

prediction of knee kinematics compared to the generic model, particularly for anterior 

translation where the absolute median difference between MSM and BVR results 

was reduced by more than 7 mm. This improvement led to more accurate medial 

contact area predictions when benchmarked against BVR-derived contact maps. The 
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FEM, driven directly by BVR-derived kinematics, produced stress magnitudes 

comparable with literature (though strains were higher). When comparing cartilage 

contact pressures across methods, the FEM predicted higher peak pressures than 

both MSM and BVR elastic foundation models, by approximately 10 MPa and 

20 MPa respectively, demonstrating how different modelling approaches offer 

complementary insights into joint loading mechanics. 

By integrating these methods, the framework links kinematics, loading, and tissue-

level responses, providing a comprehensive and highly personalised view of knee 

biomechanics under functional joint loading. As well as demonstrating the feasibility 

and value of combining in-vivo imaging with computational modelling, it highlights the 

strengths and limitations of each approach, providing guidance for researchers 

without access to BVR data. The framework’s methodological advances, whether 

applied individually or as an integrated system, lay the foundation for personalised 

investigation, diagnosis, monitoring, and treatment of knee pathologies. 

5.3 FUTURE WORK 

As this thesis focused on methodological advancements using a small pilot cohort of 

five healthy participants, future work should expand these techniques to larger and 

more diverse cohorts, including pathological knees, to address clinically relevant 

questions. 

The framework developed here focussed solely on the TF joint. Future work should 

incorporate the PF joint, as the patella is an integral part of the knee complex and 

important for achieving a more complete understanding of knee biomechanics. 

5.3.1 DATA COLLECTION PROTOCOL IMPROVEMENTS, VALIDATION 

AND ITS APPLICATION TO PATIENT COHORTS 

To apply the data collection protocol set out in Chapter 2 to future cohorts, it is 

important to consider the functional activities being imaged and the corresponding 

BVR X-ray configurations carefully. For level gait, only a limited number of frames 

could be collected due to frequent occlusion by the contralateral leg. To overcome 

this, a treadmill is recommended for capturing walking. Although treadmill use has 

been shown to alter gait patterns (Hollman et al. 2016), it enables configurations with 

reduced occlusion and allows a larger portion of the activity to be captured, which is 
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why treadmills are frequently used in BVR studies of knee kinematics (Kozanek et al. 

2009; Liu et al. 2010; Barre et al. 2013; Guan et al. 2016; Guan et al. 2017; Yang et 

al. 2018; Gale and Anderst 2019; Koo and Koo 2019; Nagai et al. 2019; Gale and 

Anderst 2020; Byrapogu et al. 2022). Therefore, treadmill use is recommended to 

improve data quality and reduce some of the limitations associated with level gait. 

As people with OA often report difficulties performing mobility-related tasks (Davis et 

al. 1991; Clynes et al. 2019), other activities to be considered for the pipeline include 

downhill walking (also on a treadmill), stair decent or step down, and sit-to-stand. 

Stair descent, in particular, has often been reported as the most painful activity (Gur 

et al. 2002; Takasaki et al. 2013; Wan et al. 2024) and is therefore important to 

include when investigating the effects and treatments of OA. When implementing 

these new activities, X-ray source–detector pairs should be positioned to minimise 

occlusion, ensuring at least one image without occlusion where possible. This will 

enhance the quality and accuracy of image registration, resulting in more reliable 

kinematic outputs. 

To fully understand the accuracy and limitations of any BVR-derived kinematics, it is 

important to assess the accuracy of each specific X-ray system in each separate 

experimental setup used. Future work should therefore validate the system using 

implanted radio-opaque beads, either in-vivo or in cadaveric specimens, to quantify 

the accuracy of the pipeline (Section 1.4.1). This will provide a clearer and more 

robust understanding of its reliability. 

The pipelines developed in this thesis for the collection and processing of the 

simultaneous BVR and marker-based motion capture data are now being adapted 

and used as part of an EPSRC-funded project: ‘Multi-platform pipeline for 

engineering human knee joint function’. This project is in collaboration with 

researchers at Imperial College London and KU Leuven to link in-vivo, in-vitro and 

in-silico methods (including MSM) to investigate knee joint function pre- and post-

total knee replacement (TKR), with a focus on knee instability after surgery. This 

highlights both the direction of the work presented in this thesis and the value of the 

developed pipelines for application to patient cohorts in addressing clinically relevant 

questions. 
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5.3.2 MUSCULOSKELETAL MODELLING PIPELINE INVESTIGATIONS 

As the pipeline presented in this thesis was only an exploration using pilot data, 

there is scope to expand on the modelling work in the future. As discussed in 

Chapter 3 (Section 3.4.5), an important next step is to investigate how MSM outputs 

are influenced by the input kinematics. One approach would be to drive the model 

using BVR kinematics within the MSM pipeline. For example, inputting the BVR-

measured flexion angle could help account for errors arising from femoral condyle 

marker misplacement, which directly affects the model-derived secondary kinematics 

(as these are calculated as functions of flexion). This would provide insight into how 

incorrect flexion angles propagate through the pipeline and impact model outputs – 

an important consideration when using marker-based motion capture inputs. 

This could be extended further by prescribing the TF DOFs using kinematics from 

BVR to investigate the effect of more accurate input kinematics on contact map 

outputs. While the secondary kinematics would still need to settle during the COMAK 

step to ensure model convergence, using accurate BVR-derived inputs rather than 

IK results would enable solutions to be based on more realistic starting conditions. 

This would be particularly valuable in cases where secondary kinematics are not 

strongly coupled to flexion. 

Inputting BVR kinematics in this way could also clarify whether accurate kinematics 

or personalised geometries have the greater impact on model performance. This 

would help identify the key limitations of the pipeline and highlight the most important 

considerations when only motion capture data are available. Furthermore, testing the 

model with accurate BVR kinematics could guide future improvements to the 

pipeline, supporting the generation of more accurate secondary kinematics from 

motion capture inputs alone. This may also include extending the model’s 

capabilities to higher flexion angles, since this thesis demonstrated that kinematic 

predictions worsen during high-flexion activities. Updating the model based on the 

relationship between flexion and secondary kinematics derived from BVR in-vivo 

imaging of high-flexion activities would help the model to perform more robustly 

across a broader range of movements. 
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5.3.3 KINEMATICS-DRIVEN FINITE ELEMENT MODEL ALTERATIONS 

AND IMPROVEMENTS 

For the FEM, as the model was primarily used to explore the feasibility of kinematic-

driven modelling, further robust testing and analysis would be required before 

applying it to future research questions. For example, a mesh convergence study 

should be performed to confirm that the final model contains a sufficient number of 

elements, and the choice of material models and their associated parameters should 

be evaluated to ensure they are appropriate for the intended application. 

The high contact pressures and strains observed in the model highlight the 

importance of understanding its sensitivity to input kinematics. Future work could 

explore this by systematically varying all 6 DOFs and analysing the response of each 

individually. Such analyses would not only clarify how kinematic errors propagate 

through the model but also provide guidance on optimising kinematic-driven 

approaches. This could inform refinement of the technique to improve robustness 

and reliability, bringing kinematic-driven FEM closer to practical application. 

An alternative approach to the FEM step of the framework would be to drive the 

model using forces from the MSM pipeline. Hybrid MS-FEM approaches have been 

used previously (Besier et al. 2005; Shu et al. 2018; Navacchia et al. 2019; Ali et al. 

2020; Kainz et al. 2020; Esrafilian et al. 2022; Mohout et al. 2023), but they still rely 

on marker-based motion capture inputs, increasing the number of estimated 

parameters. By instead inputting accurate in-vivo TF kinematics from BVR into the 

MSM and using those outputs to drive the FEM, the strengths of both methods could 

be combined. The MSM would account for small kinematic errors, while the FEM 

would calculate internal cartilage mechanics with reduced sensitivity to these errors. 

This approach would provide both whole-body kinematics and muscle forces from 

MSM and detailed internal cartilage mechanics from FEM, offering a cohesive, 

comprehensive framework for investigating multiple aspects of joint loading. 

5.3.4 FUTURE OF THE FRAMEWORK 

Overall, the framework developed in this thesis provides a foundation for 

investigating multiple aspects of knee biomechanics that can be further expanded 

and refined to achieve greater cohesion and integration of the various methods. By 



296 
 

further exploring the combined potential of the unique contributions from the BVR, 

MSM, and FEM components, future work could focus on creating a more seamless 

pipeline. For example, BVR-derived kinematics could be fed through MSM to drive 

FEM in a hybrid approach, enabling both whole-body and tissue-level outputs from 

the same data. 

Expanding the framework to larger and more diverse cohorts, including pathological 

knees, would further enhance its value. By applying the integrated framework to 

clinical populations, researchers could systematically investigate how changes in 

joint mechanics relate to pain, disease progression, or surgical outcomes. In this 

way, the framework has the potential to become a versatile, translational tool, 

combining high-fidelity, in-vivo imaging with computational modelling to address 

clinically relevant questions about knee joint function and pathology. 
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1 SET UP - PRIOR TO PARTICIPANT 
Print off the following forms before the participant arrives: 

• Participant information sheet and consent form (x2) (BBRCVA - Fluoroscopy -  

HVIS.CF - v12.1 clean.doc) – just consent form needed for second copy. 

• Fluoroscopy screening form (ARUKBBC – Fluoroscopy – screening form PRB – v10 

– CLEAN.docx) 

• Informed consent checklist (BBRCVA CRF Informed Consent Checklist – v1.1.doc) 

• Data collection visit form (BBRCVA CRF Visit – v2.doc) 

• Knee X-ray Protocol Computer Sheet Checklist 

(KneeFluoroComputerSheet0.2.docm) – update Participant ID and select relevant 

leg before printing. 

• Questionnaires: 

o Knee Outcome Survey 

o KOOS 

o Oxford Knee Score 

o PACS proforma 

o WOMAC 

1.1 Motion Capture 
1.1.1 Camera Positioning 
12 motion capture cameras and 6 Miqus video cameras required. The same motion 

capture camera setup is used for left or right knee. 

 

1 

8 

12 

9 
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The diagram shows a floorplan 

of the lab with the camera 

positions (black circles) with 

their camera number from 

Qualisys and their cabling. 

Yellow = data and power, red = 

mains power, blue = data 

cable. (L) denotes a camera on 

the lower rail. 5, 2 and 11 are 

on tripods. The numbers in 

white boxes show the force 

plates.
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For wall mounted cameras: 
C

a
m

e
r
a

 I
n

fo
 

Camera Serial No. 16697 16704 16641 16712 16709 16715 16648 16644 16711 16697 16704 16641 

Camera Number in 

Qualisys 3 10 12 1 8 9 6 4 7 3 10 12 

Exposure and flash 

time (us) 58 128 249 537 93 171 23 607 180 58 128 249 

Marker Threshold 

(%) 15 42 56 14 21 22 26 38 42 15 42 56 

Camera Focus (m) 10 10 10 Infinity 10 10 10 4.6 10.5 10 10 10 

Camera Aperture 

(f) 5.6 2.8 5 11 9 7.1 2.8 11 7.1 5.6 2.8 5 

T
ri

p
o

d
 H

e
a

d
 

Tripod Head Style 

(Hex or Rect) Rect Rect Rect Rect Rect Rect Rect Rect Rect Rect Rect Rect 

Tripod Head α 

angle (Flex) 20 20 30 10 10 0 10 30 15 20 20 30 

Tripod Head β 

angle (adduction) 25 0 5 0 0 90 5 5 10 25 0 5 

Tripod 

Head γ angle 

(internal Rotation)  5 60 25 75 65 40 15 40 55 5 60 25 

W
a

ll
 m

o
u

n
te

d
 

Wall.Rail.Distance.

Side  E.UC.121

5.R 

E.UD.4

6.L 

S.UB.1

3.R 

S.UC.6

5.L 

S.LC.1

0.R 

S.UC.55

6.R 

W.LA.12

55.L 

W.UA.184

6.R 

W.UC.22

40.L 

E.UC.12

15.R 

E.UD.4

6.L 

S.UB.1

3.R 

Camera mount up 

or down Up Up Up Down Up Up Up Up Up Up Up Up 

Where the wall mount key is: 
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For cameras on tripods: 
C

a
m

e
ra

 I
n

fo
 Camera Serial No. 16710 16700 16694 

Camera Number in Qualisys 5 2 11 

Exposure and flash time (us) 128 258 58 

Marker Threshold (%) 15 23 15 

Camera Focus (m) 17.6 13.6 10 

Camera Aperture (f) 7.1 11 5.6 

T
ri

p
o

d
 

H
e

a
d

 

Tripod Head Style (Hex or Rect) Rect Rect Rect 

Tripod Head α angle (Flex) 30 15 25 

Tripod Head β angle (adduction) 0 10 0 

Tripod Head γ angle (internal 

Rotation)  40 0 70 

T
ri

p
o

d
 

Tripod Serial Number NT002 NT005 NT004 

Tripod Vertical Column Height 

(mm) 258 254 258 

Tripod to floor centre (mm) 1803 611 1800 

Tripod centre X position in 

room (mm) -2992 -3377 -3475 

Tripod Centre Y position in 

room (mm) -1095 148 1067 

Leg 1 X (mm) -1999 -2934 -2592 

Leg 1 Y (mm) -1509 97 -34 

Leg 2 X (mm) -3652 -3607 -4646 

Leg 2 Y (mm) -1507 -222 1428 

Leg 3 X (mm) -2808 -2999 -2626 

Leg 3 Y (mm) 82 550 1996 

Leg 1 length (mm) 2206 900 2275 

Leg 2 length (mm)  2205 905 2331 

Leg 3 length (mm) 2329 915 2338 

(See pictures above for placement of tripods in room) 

1.1.2 Calibration 
To initialise and calibrate the motion capture camera system: 

1. Turn on Qualisys cameras and force plates 

2. Turn on HDBX computer and open InstaCal and Qualisys Track Manager (QTM) in 

that order. 

3. Load up the “Knee Miqus Stairs” Qualisys project folder HDBX 

4. Calibrate the volume with the L-Frame on force plate 2, with the long axis pointing 

in the direction of travel. Make sure to calibrate whole volume for all three 

activities. 
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5. Locate each of the force plates individually by using the metal corner markers 

and saving the file: ‘FP_1’ etc.  

 
Locate each step of the stairs by placing a marker on the four corners. 

6. Zero the force plates and then test by visualising the force arrows during real-

time. 

1.2 EMG 
Ensure EMG box is plugged in and EMGs are charged ahead of time. On InstaCal, check 

EMGs are visible and sufficiently charged.  

1.3 Biplane X-ray 
To initialise the biplane X-ray system: 

1. From the keys safe in T0.16, put the key labelled ‘Emergency Stop Reset Key’ and 

place it into the C1 X-Ray Safety Interface. 

2. Turn on the C1 X-Ray Safety Interface by rotating the red control clockwise. The 

emergency alarm will sound and is deactivated by turning the emergency alarm 

reset key clockwise. 

3. Ensure all required dosimeter badges are being worn. 

4. Turn on the C3 manipulator Control Panel by rotating the red control clockwise to 

power the manipulator. 

5. Login to the Manipulator HMI to allow manipulation of the machine. 

6. Turn on both Epsilon Generator interfaces labelled ‘High Voltage Generator A 

and B’ by pressing the power button. 

1.3.1 System Positioning 
The X-ray machine must be moved into the correct position for the data collection. The 

following parameters must be changed: 
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Axis ID   Description   

X   
Longitudinal axis along direction of 

walking   

Y   Lateral axis perpendicular to X   

A-Φ   Rotate Axis – set A   

A-DT   Tilt Axis – set A detector   

A-S T   Tilt Axis – set A x-ray source   

A-DR   Radial Axis - set A detector   

A-SR   Radial Axis - set A x-ray source   

A-DZ   Vertical Axis – set A detector   

A-SZ   Vertical Axis – set A x-ray source   

B-Φ   Rotate Axis – set B   

B-DT   Tilt Axis – set B detector   

B-ST   Tilt Axis – set B x-ray source   

B-DR   Radial Axis - set B detector   

B-SR   Radial Axis - set B x-ray source   

B-DZ   Vertical Axis – set B detector   

B-SZ   Vertical Axis – set B x-ray source   

 

Before the participant arrives, the X-ray system should be set to the stairs configuration 

with the instrumented staircase in-situ.  
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For the right leg setup:  

(The front edge of the bottom step of the staircase should be aligned with FP4 and FP5 – 

but not touching the force plates). 
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Gait: 

 

Lunge: 

 

The first set up required will be stairs followed by gait, then lunge. The values for all 

parameters for each X-ray set up can be found in Appendix A. 
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1.3.2 X-ray Warmup 
To warmup the X-ray tubes: 

1. Place lead aprons in front of image intensifier. 

2. Select the warmup protocol.  

3. Enable the Neutral Density filter by pressing the F1 Button.  

4. Perform 2 rounds of preparing the system: 

a. Press PREP on both systems 

b. Hold the PREP buttons until the indicator light begins blinking 

c. Continue to hold the PREP button while pressing the X-Ray button  

d. Hold all buttons until the system automatically stops firing  

e. The HU should be above 5% after both exposures 

5. Remove the lead aprons and replace on the hangers in control room (T0.16) 

Software: 

1. Open PFV4 and load the camera settings 50FPS test 

2. Adjust the frame rate to 60 FPS, pulse width 1.25ms  
3. Press the calibrate button in PV4 each time the settings are changed 

4. Select the appropriate settings on the Epsilon Generators: 

➢ Stair ascent = 80kV, 160mA (first setup) 

➢ Gait = 80kV, 160mA 

➢ Lunge = 70kV, 125mA 

2 SET UP – WITH PARTICIPANT 
2.1 Initial Participant Interactions 
When the participant arrives: 

1. Turn on intercom system. 

2. Meet participant at entrance to MSKBRF and take them to T0.15/16. 

3. Ask the participant to change into shorts and T-shirt. 
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4. Confirm identity of volunteer. 

5. Carry out informed consent. Ensure both copies of the form are filled. 

6. Record participant ID, date of birth, height, and weight on the computer sheet 

checklist. 

7. Adjust X-ray machine Z-height to match participant. 

2.2 EMG Placement 
14 EMGs are used.  

 

Once EMGs are placed, secure with Tubigrip. Carry out the following tests (as on the 

computer sheet checklist): 

• EMGTest  

• MVCRight1 – Maximum Voluntary Contractions (right leg).  

• MVCLeft1 – Maximum Voluntary Contractions (left leg). 

1MVC tests: get participant to stand on tiptoes for 3 seconds, flex leg behind them (pushing 

up) while you resist for 3 seconds, sit on chair and extend leg (pushing upwards) while you 

resist for 3 seconds. 

2.3 Motion Capture Markers 
2.3.1 Marker Set 
54 are needed for the modified Cleveland Clinic marker set. 

Note: Separate L & R PSIS markers are not included. Instead, a single PSIS marker is 

included. 
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2.3.2 Motion Capture Statics 
Collect (at least) two motion-capture-only statics (see computer sheet checklist). These 

should be in a position that is as neutral as possible (with hands down by sides, feet 

roughly shoulder width apart). 

1. Standing with one leg on force plate 2 facing away from the south wall (towards 

control room). 

2. Standing with both feet on force plate 1 facing the west wall (towards the door to 

the corridor). 

Check: once statics are complete, apply marker list on QTM to check all markers are visible. 

Repeat statics if necessary. 

3 X-RAY CALIBRATION 
The following calibration steps should be carried out at the start and end of each set of 

measurements using a different set up. 

The X-rays should be saved using this format: Particpant_Setup_Time_Calibration  

(e.g. ‘HV001_Stairs_Start_White’) 

3.1 White 
Capture plain biplane screens with nothing in front of them (see setup photos from 

Section 1.3.1). 

Used for uniformity correction in post-processing. 

PSIS 
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3.2 Grids 
Place the two metal grids on the detector faces. Collect an X-ray exposure.  

Used for image distortion correction in post-processing. 

3.3 Lego Cube 
Creates grid of metal beads with four wire shapes. Place on other objects to get correct 

height (this may differ based on participant height) and collect an X-ray exposure. 

Examples of the orientation and placement of the cube for each of the three setups: 

1. STAIRS 

2. GAIT 
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3. LUNGE 

 

Ensure both images of the cube show the beads clearly (with minimal overlap) and the four 

shapes should be identifiable for post-processing. 

 

3.4 Cone 
Cone with motion capture markers. Place into view, align top of cone with red laser, and 

collect capture. 

Used to synchronise bi-plane X-ray and motion capture systems. 

4 DATA COLLECTION 
For each setup, complete a motion-capture-only static, an X-ray static, a couple of 

repeats of the activity with only motion-capture and then X-ray captures of the activity. 

Ensure DIAMENTOR dose printer is turned on before beginning captures involving 

participant. 

4.1 Stair Ascent 
Participant will climb stairs with their desired imaging leg landing on the first step (in-

line with the X-rays).  

Watch out for height limit when climbing stairs – warn participant to be careful not to hit 

their head 

Setup photo 

1. ‘Start_Stairs_’ X-ray calibration set 



356 
 

2. Motion capture static: 

3. X-ray static (standing at bottom of stairs with leg on first step): 

4. Activity captures (motion capture only & with X-rays). 

5. ‘End_Stairs_’ X-ray calibration set 

4.2 Gait 
Participant will walk down the lab with their desired leg hitting force plate 2. Do test 

walks to get correct starting location using the tape markers on the floor. 

Change QTM project to “Knee Miqus” (not KneeMiqusStairs) before collecting gait and 

lunge or turn off the stairs in the settings. 

1. ‘Start_Gait_’ X-ray calibration set 

2. Motion capture static: 
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3. X-ray static: 

4. Activity captures (motion capture only & with X-rays). 

5. ‘End_Gait_’ X-ray calibration set 

4.3 Lunge 
Participant will stand facing the X-ray detectors and lunge forward onto the desired leg. 

1. ‘Start_Gait_’ X-ray calibration set 

2. Motion capture static/X-ray static: 

3. Activity captures (motion capture only & with X-rays). 

4. ‘End_Gait_’ X-ray calibration set 
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5 POST-PARTICIPANT STEPS 
After the participant has left: 

1. Print dosage labels and stick on the dosage sheets.  

2. Upload data to NAS. 

3. Scan and upload participant sheet. 

4. Check relevant paperwork is all signed. 

5. File documents. 

6 APPENDICIES 
6.1 Appendix A – X-ray System Setups 

Axis 

ID 

Unit 

Description 

Stair 

Ascent 

Right 

Stair 

Ascent 

Left 

Gait Lunge 

X   
mm Longitudinal axis along 

direction of walking   

3799 2611 2077 2201 

Y   mm Lateral axis perpendicular to X   -294 -294 -312 -312 

A-Φ   ° Rotate Axis – set A   115 130 112 150 

A-DT   ° Tilt Axis – set A detector   0 0 0 0 

A-S T   ° Tilt Axis – set A x-ray source   0 0 0 0 

A-DR   mm Radial Axis - set A detector   550 550 485 370 

A-SR   mm Radial Axis - set A x-ray source   1150 1150 1300 980 

A-DZ   mm Vertical Axis – set A detector   750 750 460 550 

A-SZ   mm Vertical Axis – set A x-ray 

source   

771 771 457 539 

B-Φ   ° Rotate Axis – set B   63 63 61 115 

B-DT   ° Tilt Axis – set B detector   0 0 0 0 

B-ST   ° Tilt Axis – set B x-ray source   0 0 0 0 

B-DR   mm Radial Axis - set B detector   550 550 485 370 

B-SR   mm Radial Axis - set B x-ray source   1150 1150 1300 980 

B-DZ   mm Vertical Axis – set B detector   750 750 466 550 

B-SZ   
mm Vertical Axis – set B x-ray 

source   
773 

773 485 543 
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APPENDIX B: QUESTIONNAIRES 



 

 

KNEE OUTCOME SURVEY 

Activities of Daily Living Scale 
 

SYMPTOMS: 
 

 
1. To what degree does pain in your knee affect your daily activity level? 

 L  R 

   I never have pain in my knee. 

  I have pain in my knee, but it does not affect my daily activity. 

  Pain affects my activity slightly. 

  Pain affects my activity moderately. 

  Pain affects my activity severely. 

  Pain in my knee prevents me from performing all daily activities. 

 

 

2. To what degree does grinding or grating of your knee affect your daily activity level? 

 L  R 

  I never have grinding or grating in my knee. 

  I have grinding or grating in my knee, but it does not affect my daily activity. 

  Grinding or grating affects my activity slightly. 

  Grinding or grating affects my activity moderately. 

  Grinding or grating affects my activity severely. 

  Grinding or grating in my knee prevents me from performing all daily activities. 

 

 

3. To what degree does stiffness in your knee affect your daily activity level? 

 L R 

 I never have stiffness in my knee. 

 I have stiffness in my knee, but it does not affect my daily activity. 

 Stiffness affects my activity slightly. 

 Stiffness affects my activity moderately. 

 Stiffness affects my activity severely. 

 Stiffness in my knee prevents me from performing all daily activities. 

 

 

 

 



Subject:  ID:  Date:  

 

4. To what degree does swelling in your knee affect your daily activity level? 

 L R 

 I never have swelling in my knee. 

 I have swelling in my knee, but it does not affect my daily activity. 

 Swelling affects my activity slightly. 

 Swelling affects my activity moderately. 

 Swelling affects my activity severely. 

 Swelling in my knee prevents me from performing all daily activities. 

 

 

5. To what degree does slipping of your knee affect your daily activity level? 

 L R 

 I never have slipping of my knee. 

 I have slipping in my knee, but it does not affect my daily activity. 

 Slipping affects my activity slightly. 

 Slipping affects my activity moderately. 

 Slipping affects my activity severely. 

 Slipping of my knee prevents me from performing all daily activities. 

 

 

6. To what degree does buckling of your knee affect your daily activity level? 

 L R 

 I never have buckling of my knee. 

 I have buckling of my knee, but it does not affect my daily activity. 

 Buckling affects my activity slightly. 

 Buckling affects my activity moderately. 

 Buckling affects my activity severely. 

 Buckling of my knee prevents me from performing all daily activities. 

 

 

7. To what degree does weakness or lack of strength of your leg affect your daily activity 

level? 

 L R 

 My leg never feels weak. 

 My leg feels weak, but it does not affect my daily activity. 

 Weakness affects my activity slightly. 

 Weakness affects my activity moderately. 

 Weakness affects my activity severely. 

 Weakness of my leg prevents me from performing all daily activities. 
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FUNCTIONAL DISABILITY WITH ACTIVITIES 

OF DAILY LIVING: 
 

 

8. How does your knee affect your ability to walk? 

L R 

 My knee does not affect my ability to walk. 

 I have pain in my knee when walking, but it does not affect my ability to walk. 

 My knee prevents me from walking more than 1 mile. 

 My knee prevents me from walking more than 1/2 mile. 

 My knee prevents me from walking more than 1 block. 

 My knee prevents me from walking. 

 

 

9. Because of your knee, do you walk with crutches or a cane? 

 L R 

 I can walk without crutches or a cane. 

 My knee causes me to walk with 1 crutch or a cane. 

 My knee causes me to walk with 2 crutches. 

 Because of my knee, I cannot walk even with crutches. 

 

 

10. Does your knee cause you to limp when you walk? 

 L R 

 I can walk without a limp. 

 Sometimes my knee causes me to walk with a limp. 

 Because of my knee, I cannot walk without a limp. 

 

 

11. How does your knee affect your ability to go up stairs? 

 L R 

 My knee does not affect my ability to go up stairs. 

 I have pain in my knee when going up stairs, but it does not limit my ability to 

go up stairs. 

 I am able to go up stairs normally, but I need to rely on use of a railing. 

 I am able to go up stairs one step at a time with use of a railing. 

 I have to use crutches or a cane to go up stairs. 

 I cannot go up stairs. 
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12. How does your knee affect your ability to go down stairs? 

 L R 

 My knee does not affect my ability to go down stairs. 

 I have pain in my knee when going down stairs, but it does not limit my ability 

to go down stairs. 

 I am able to go down stairs normally, but I need to rely on use of a railing. 

 I am able to go down stairs one step at a time with use of a railing. 

 I have to use crutches or a cane to go down stairs. 

 I cannot go down stairs. 

 

 

13. How does your knee affect your ability to stand? 

 L R 

 My knee does not affect my ability to stand, I can stand for unlimited amounts of  

       time. 

 I have pain in my knee when standing, but it does not limit my ability to  

       stand. 

 Because of my knee I cannot stand for more than 1 hour. 

 Because of my knee I cannot stand for more than 1/2 hour. 

 Because of my knee I cannot stand for more than 10 minutes. 

 I cannot stand because of my knee. 

 

 

14. How does your knee affect your ability to kneel on the front of your knee? 

 L R 

 My knee does not affect my ability to kneel on the front of my knee. I can kneel  

       for unlimited amounts of time. 

 I have pain when kneeling on the front of my knee, but it does not limit my 

ability to kneel. 

 I cannot kneel on the front of my knee for more than 1 hour. 

 I cannot kneel on the front of my knee for more than 1/2 hour. 

 I cannot kneel on the front of my knee for more than 10 minutes. 

 I cannot kneel on the front of my knee. 
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15. How does your knee affect your ability to squat? 

 L R 

 My knee does not affect my ability to squat, I can squat all the way down. 

 I have pain in my knee when squatting, but I can still squat all the way down. 

 I cannot squat more than3/4 of the way down. 

 I cannot squat more than 1/2 of the way down. 

 I cannot squat more than 1/4 of the way down. 

 I cannot squat because of my knee. 

 

 

16. How does your knee affect your ability to sit with your knee bent? 

 L R 

 My knee does not affect my ability to sit with my knee bent, I can sit for 

unlimited amounts of time. 

 I have pain in my knee when sitting with my knee bent, but it does not limit my  

ability to sit.      

 I cannot sit with my knee bent for more than 1 hour. 

 I cannot sit with my knee bent for more than 1/2 hour. 

 I cannot sit with my knee bent for more than 10 minutes. 

 I cannot sit with my knee bent. 

 

 

17. How does your knee affect your ability to rise from a chair? 

 L R 

 My knee does not affect my ability to rise from a chair. 

 I have pain when rising from a seated position, but it does not affect my  

ability to rise from a seated position.      

 Because of my knee I can only rise from a chair if I use my hands and arms to  

assist. 

 Because of my knee I cannot rise from a chair. 
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KOOS KNEE SURVEY 
 
 
Today’s date: _____/______/______ Date of birth: _____/______/______ 
 
 
Name: ____________________________________________________  
 

INSTRUCTIONS: This survey asks for your view about your knee. This 
information will help us keep track of how you feel about your knee and how 
well you are able to perform your usual activities. 
Answer every question by ticking the appropriate box, only one box for each 
question. If you are unsure about how to answer a question, please give the 
best answer you can. 

 
Symptoms 
These questions should be answered thinking of your knee symptoms during 
the last week. 
 
S1. Do you have swelling in your knee? 

Never 
 

Rarely 
 

Sometimes 
 

Often 
 

Always 
 

 
S2. Do you feel grinding, hear clicking or any other type of noise when your knee 
       moves? 

Never 
 

Rarely 
 

Sometimes 
 

Often 
 

Always 
 

 
S3. Does your knee catch or hang up when moving? 

Never 
 

Rarely 
 

Sometimes 
 

Often 
 

Always 
 

 
S4. Can you straighten your knee fully? 

Always 
 

Often 
 

Sometimes 
 

Rarely 
 

Never 
 

 
S5. Can you bend your knee fully? 

Always 
 

Often 
 

Sometimes 
 

Rarely 
 

Never 
 

 
Stiffness 
The following questions concern the amount of joint stiffness you have 
experienced during the last week in your knee. Stiffness is a sensation of 
restriction or slowness in the ease with which you move your knee joint. 
 
S6. How severe is your knee joint stiffness after first wakening in the morning? 

None 
 

Mild 
 

Moderate 
 

Severe 
 

Extreme 
 

 
S7. How severe is your knee stiffness after sitting, lying or resting later in the day? 

None 
 

Mild 
 

Moderate 
 

Severe 
 

Extreme 
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Pain 
P1. How often do you experience knee pain? 

Never 
 

Monthly 
 

Weekly 
 

Daily 
 

Always 
 

 
What amount of knee pain have you experienced the last week during the 
following activities? 
 
P2. Twisting/pivoting on your knee  

None 
 

Mild 
 

Moderate 
 

Severe 
 

Extreme 
 

 
P3. Straightening knee fully 

None 
 

Mild 
 

Moderate 
 

Severe 
 

Extreme 
 

 
P4. Bending knee fully 

None 
 

Mild 
 

Moderate 
 

Severe 
 

Extreme 
 

 
P5. Walking on flat surface 

None 
 

Mild 
 

Moderate 
 

Severe 
 

Extreme 
 

 
P6. Going up or down stairs 

None 
 

Mild 
 

Moderate 
 

Severe 
 

Extreme 
 

 
P7. At night while in bed 

None 
 

Mild 
 

Moderate 
 

Severe 
 

Extreme 
 

 
P8. Sitting or lying 

None 
 

Mild 
 

Moderate 
 

Severe 
 

Extreme 
 

 
P9. Standing upright 

None 
 

Mild 
 

Moderate 
 

Severe 
 

Extreme 
 

 
Function, daily living 
The following questions concern your physical function. By this we mean your 
ability to move around and to look after yourself. For each of the following 
activities please indicate the degree of difficulty you have experienced in the 
last week due to your knee. 
 
A1. Descending stairs 

None 
 

Mild 
 

Moderate 
 

Severe 
 

Extreme 
 

 
A2. Ascending stairs 

None 
 

Mild 
 

Moderate 
 

Severe 
 

Extreme 
 



Knee injury and Osteoarthritis Outcome Score (KOOS), English version LK1.0  3 

For each of the following activities please indicate the degree of difficulty you 
have experienced in the last week due to your knee. 
 
A3. Rising from sitting 

None 
 

Mild 
 

Moderate 
 

Severe 
 

Extreme 
 

 
A4. Standing 

None 
 

Mild 
 

Moderate 
 

Severe 
 

Extreme 
 

 
A5. Bending to floor/pick up an object 

None 
 

Mild 
 

Moderate 
 

Severe 
 

Extreme 
 

 
A6. Walking on flat surface 

None 
 

Mild 
 

Moderate 
 

Severe 
 

Extreme 
 

 
A7. Getting in/out of car 

None 
 

Mild 
 

Moderate 
 

Severe 
 

Extreme 
 

 
A8. Going shopping 

None 
 

Mild 
 

Moderate 
 

Severe 
 

Extreme 
 

 
A9. Putting on socks/stockings 

None 
 

Mild 
 

Moderate 
 

Severe 
 

Extreme 
 

 
A10. Rising from bed 

None 
 

Mild 
 

Moderate 
 

Severe 
 

Extreme 
 

 
A11. Taking off socks/stockings 

None 
 

Mild 
 

Moderate 
 

Severe 
 

Extreme 
 

 

A12. Lying in bed (turning over, maintaining knee position) 
None 

 
Mild 

 
Moderate 

 
Severe 

 
Extreme 

 
 
A13. Getting in/out of bath 

None 
 

Mild 
 

Moderate 
 

Severe 
 

Extreme 
 

 
A14. Sitting 

None 
 

Mild 
 

Moderate 
 

Severe 
 

Extreme 
 

 
A15. Getting on/off toilet 

None 
 

Mild 
 

Moderate 
 

Severe 
 

Extreme 
 



Knee injury and Osteoarthritis Outcome Score (KOOS), English version LK1.0  4 

For each of the following activities please indicate the degree of difficulty you 
have experienced in the last week due to your knee. 
 
A16. Heavy domestic duties (moving heavy boxes, scrubbing floors, etc) 

None 
 

Mild 
 

Moderate 
 

Severe 
 

Extreme 
 

 
A17. Light domestic duties (cooking, dusting, etc) 

None 
 

Mild 
 

Moderate 
 

Severe 
 

Extreme 
 

 
Function, sports and recreational activities 
The following questions concern your physical function when being active on a 
higher level. The questions should be answered thinking of what degree of 
difficulty you have experienced during the last week due to your knee. 

SP1. Squatting 
None 

 
Mild 

 
Moderate 

 
Severe 

 
Extreme 

 
 
SP2. Running 

None 
 

Mild 
 

Moderate 
 

Severe 
 

Extreme 
 

 
SP3. Jumping 

None 
 

Mild 
 

Moderate 
 

Severe 
 

Extreme 
 

 
SP4. Twisting/pivoting on your injured knee 

None 
 

Mild 
 

Moderate 
 

Severe 
 

Extreme 
 

 
SP5. Kneeling 

None 
 

Mild 
 

Moderate 
 

Severe 
 

Extreme 
 

 
Quality of Life 

Q1. How often are you aware of your knee problem? 
Never 

 
Monthly 

 
Weekly 

 
Daily 

 
Constantly 

 
 
Q2. Have you modified your life style to avoid potentially damaging activities 
       to your knee? 

Not at all 
 

Mildly 
 

Moderately  
 

Severely 
 

Totally 
 

 
Q3. How much are you troubled with lack of confidence in your knee? 

Not at all 
 

Mildly 
 

Moderately  
 

Severely 
 

Extremely 
 

 
Q4. In general, how much difficulty do you have with your knee? 

None 
 

Mild 
 

Moderate 
 

Severe 
 

Extreme 
 

Thank you very much for completing all the questions in this questionnaire. 



 

The Oxford Knee Score 

 
During the past four weeks: 

 

1. How would you describe the pain you usually have from your 

knee 

 

 L   R 

  None 

  Very mild 

  Mild 

  Moderate 

  Severe 

 

2. Have you had any trouble with washing and drying yourself (all 

over) because of your knee? 

 

 L   R 

  No trouble at all 

  Very little trouble 

  Moderate trouble 

  Extreme difficulty 

  Impossible to do 

 

3. Have you had any trouble getting in and out of a car or using 

public transport because of your knee? (whichever you tend to 

use) 

 

 L   R 

  No trouble at all 

  Very little trouble 

  Moderate trouble 

  Extreme difficulty 

  Impossible to do 

 

4. For how long have you been able to walk before the pain from 

your knee becomes severe? (with or without a stick) 

 

 L   R 

  No Pain/ > 30min 

  16 to 30 min 

  5 to 15 min 

  Around the house only 

  Not at all – severe on walking 



 

5. After a meal (sat at table), how painful has it been for you to 

stand up from a chair because of your knee? 

 

 L   R 

  Not at all painful 

  Slightly painful 

  Moderately painful 

  Very painful 

  Unbearable 

 

 

6. Have you been limping when walking, because of your knee? 

 

 L   R 

  Rarely/never 

  Sometimes or just at first 

  Often, not just at first  

  Most of the time 

  All of the time 

 

 

7. Could you kneel down and get up again afterwards? 

 

 L   R 

  Yes, easily 

  With a little difficulty 

  With moderate difficulty 

  With extreme difficulty 

  No, impossible 

 

 

8. Have you been troubled by pain from your knee in bed at night? 

 

 L   R 

  No nights 

  Only 1 or 2 nights 

  Some nights 

  Most nights 

  Every night 

 

 

 

 



 

9. How much has pain from your knee interfered with your usual 

work (including housework) 

 

 L   R 

  Not at all 

  A little bit  

  Moderately 

  Greatly 

  Totally 

 

 

10.  Have you felt that your knee might suddenly “give way” or let 

you down? 

 

 L   R 

  Rarely/never 

  Sometimes or just at first 

  Often, not just at first 

  Most of the time 

  All of the time 

 

 

11.  Could you do the household shopping on your own? 

 

 L   R 

  Yes, easily 

  With little difficulty 

  With moderate difficulty 

  With extreme difficulty 

  No, impossible 

 

 

12.  Could you walk down a flight of stairs? 

 

 L   R 

  Yes, easily 

  With little difficulty 

  With moderate difficulty 

  With extreme difficulty 

  No, impossible 
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NEW PATIENT

BRIEF PAIN INVENTORY
Please circle your response or ask for help if you are having problems

Please rate your pain by circling the one number that best describes
your pain at its WORST in the past week.

Please rate your pain by circling the one number that best describes
your pain at its LEAST in the past week.

Please rate your pain by circling the one number that best describes
your pain on the AVERAGE.

Please rate your pain by circling the one number that tells how much
pain you have RIGHT NOW.

Circle the one number that describes how during the past week,
PAIN HAS INTERFERED with your:
A. General activity

B. Mood

C. Walking ability

D. Normal work (includes work both outside the home and housework)

E. Relationships with other people

F. Sleep

G. Enjoyment of life

0           1           2           3           4           5           6           7           8           9          10
NO PAIN            PAIN AS BAD AS YOU CAN IMAGINE

0           1           2           3           4           5           6           7           8           9          10
NO PAIN            PAIN AS BAD AS YOU CAN IMAGINE

0           1           2           3           4           5           6           7           8           9          10

0           1           2           3           4           5           6           7           8           9          10
NO PAIN            PAIN AS BAD AS YOU CAN IMAGINE

0           1           2           3           4           5           6           7           8           9          10
DOES NOT INTERFERE           COMPLETELY INTERFERES

0           1           2           3           4           5           6           7           8           9          10
DOES NOT INTERFERE           COMPLETELY INTERFERES

0           1           2           3           4           5           6           7           8           9          10
DOES NOT INTERFERE           COMPLETELY INTERFERES

0           1           2           3           4           5           6           7           8           9          10
DOES NOT INTERFERE           COMPLETELY INTERFERES

0           1           2           3           4           5           6           7           8           9          10
DOES NOT INTERFERE           COMPLETELY INTERFERES

0           1           2           3           4           5           6           7           8           9          10
DOES NOT INTERFERE           COMPLETELY INTERFERES

0           1           2           3           4           5           6           7           8           9          10
DOES NOT INTERFERE           COMPLETELY INTERFERES

2. 

3. 

1. 

4. 

5. 

Source: Pain Research Group, Department of 
Neurology, University of Wisconsin-Madison

Used with permission. May be duplicated and 
used in clinical practice.

This data is collected for assessment of your 
pain. In addition, the information is entered 
into a national database for audit and 
research. This is anonymous. If you do not 
wish it to be used, then please inform pain 
clinic staff.

PACS/BPI

ASSESSMENT

FORM

Hospital 

Date

Registration number

Patient's name 

Year of birth 

Diagnosis 

1.

2.

Duration of symptoms

Treatment

Consultant

NO PAIN            PAIN AS BAD AS YOU CAN IMAGINE
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Different tear-off BPI forms are available for ‘new’ or ‘follow-up’

patients. Completion of these will aid data entry into PACS

By using the form each time your patient attends the clinic,

response to treatment can be followed and, if requested,

compared with other clinics

Please see User’s Manual for Instructions
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BRIEF PAIN INVENTORY
Please circle your response or ask for help if you are having problems

How much RELIEF have pain treatments or medications FROM THIS CLINIC
provided? Please circle the one percentage that shows how much.

Please rate your pain by circling the one number that best describes
your pain at its WORST in the past week.

Please rate your pain by circling the one number that best describes
your pain at its LEAST in the past week.

Please rate your pain by circling the one number that best describes
your pain on the AVERAGE.

Please rate your pain by circling the one number that tells how much
pain you have RIGHT NOW.

Circle the one number that describes how during the past week,
PAIN HAS INTERFERED with your:
A. General activity

B. Mood

C. Walking ability

D. Normal work (includes work both outside the home and housework)

E. Relationships with other people

F. Sleep

G. Enjoyment of life

0           1           2           3           4           5           6           7           8           9          10
NO PAIN           PAIN AS BAD AS YOU CAN IMAGINE

0           1           2           3           4           5           6           7           8           9          10
NO PAIN           PAIN AS BAD AS YOU CAN IMAGINE

0           1           2           3           4           5           6           7           8           9          10
NO PAIN           PAIN AS BAD AS YOU CAN IMAGINE

0           1           2           3           4           5           6           7           8           9          10
NO PAIN           PAIN AS BAD AS YOU CAN IMAGINE

0           1           2           3           4           5           6           7           8           9          10
DOES NOT INTERFERE           COMPLETELY INTERFERES

0           1           2           3           4           5           6           7           8           9          10
DOES NOT INTERFERE           COMPLETELY INTERFERES

0           1           2           3           4           5           6           7           8           9          10
DOES NOT INTERFERE           COMPLETELY INTERFERES

0           1           2           3           4           5           6           7           8           9          10
DOES NOT INTERFERE           COMPLETELY INTERFERES

0           1           2           3           4           5           6           7           8           9          10
DOES NOT INTERFERE           COMPLETELY INTERFERES

0           1           2           3           4           5           6           7           8           9          10
DOES NOT INTERFERE           COMPLETELY INTERFERES

0           1           2           3           4           5           6           7           8           9          10
DOES NOT INTERFERE           COMPLETELY INTERFERES

2. 

COMPLETE RELIEF                                                     NO RELIEF

1. 

3. 

4. 

5. 

6. 

100%     90%     80%     70%     60%     50%     40%     30%     20%     10%     0%

Source: Pain Research Group, Department of 
Neurology, University of Wisconsin-Madison

Used with permission. May be duplicated and 
used in clinical practice.

This data is collected for assessment of your 
pain. In addition, the information is entered 
into a national database for audit and 
research. This is anonymous. If you do not 
wish it to be used, then please inform pain 
clinic staff.

PACS/BPI

ASSESSMENT

FORM

Hospital 

Date

Registration number

Patient's name 

Year of birth

Treatment

Consultant 

FOLLOW - UP



              The Western Ontario and McMaster Universities Osteoarthritis Index  

                                                            (WOMAC) 

 

Name:____________________________________________ Date:________________ 

Instructions:  Please rate the activities in each category according to the following 

scale of difficulty:        0 = None,   1 = Slight,   2 = Moderate,   3 = Very,   4 = Extremely 

Circle one number for each activity_________________________________________ 

Pain              1. Walking            0    1    2    3    4 

              2. Stair Climbing           0    1    2    3    4  

              3. Nocturnal            0    1    2    3    4     

              4. Rest             0    1    2    3    4  

__________________5. Weight bearing           0    1    2    3    4 

Stiffness               1. Morning stiffness                      0    1    2    3 _ 4  

__________________2. Stiffness occurring later in the day        0    1    2    3    4  

Physical Function 1. Descending stairs           0    1    2    3    4  

                         2. Ascending stairs           0    1    2    3    4 

              3. Rising from sitting                      0    1    2    3    4  

              4. Standing            0    1    2    3    4  

              5. Bending to floor           0    1    2    3    4  

              6. Walking on flat surface          0    1    2    3    4  

              7. Getting in / out of car          0    1    2    3    4 

              8. Going shopping           0    1    2    3    4 

              9. Putting on socks           0    1    2    3    4 

              10. Lying in bed           0    1    2    3    4 

              11. Taking off socks           0    1    2    3    4 

              12. Rising from bed           0    1    2    3    4 

              13. Getting in/out of bath          0    1    2    3    4 

              14. Sitting            0    1    2    3    4 

              15. Getting on/off toilet          0    1    2    3    4 

              16. Heavy domestic duties          0    1    2    3    4  

              17. Light domestic duties          0    1    2    3    4 

 

Total Score: ______ / 96 = _______% 

Comments / Interpretation (to be completed by therapist only): 
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APPENDIX C: BVR, GENERIC 

MSM & PERSONALISED MSM 

KINEMATICS PRESENTED PER 

PARTICIPANT 
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APPENDIX D: CONTACT 

PRESSURE MAPS PER 

PARTICIPANT FOR THE THREE 

ACTIVITIES 

 



381 
 

Contact map results during level gait 

Contact pressure maps from the generic MSM, personalised MSM, and BVR-JAM 
equivalent at 10% intervals of stance phase of level gait where data were available for 
each individual participant. 
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Contact map results during stair ascent 

Contact pressure maps from the generic MSM, personalised MSM, and BVR-JAM 
equivalent at 10% intervals of stance phase of stair ascent where data were available 
for each individual participant. 
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Contact map results during lunging 

Contact pressure maps from the generic MSM, personalised MSM, and BVR-JAM 
equivalent at 10% intervals of lunge (defined as heel-strike to toe-off) where data were 
available for each individual participant. 
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