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Rheo-kinetic Predictions using a Finitely Extensible
Nonlinear Elastic Transient Network Model.
Part I: Simple Shear Flow

Alejandra Mil-Martinez!, René O. Vargas'**, Aldo Gémez-Lopez?, Juan P.
Escandon', Lorenzo Martinez-Suasteguil®, Timothy N. Phillips*

Abstract

This study presents multiscale simulations of complex fluids confined be-
tween parallel plates under simple shear flow, employing a finitely extensible
nonlinear elastic (FENE) transient network model. The model integrates
microscopic kinetic equations for microstructural breaking and recombina-
tion processes with macroscopic flow equations, enabling the prediction of
nonlinear velocity and stress fluctuations. A hybrid micro-macro numeri-
cal framework is developed to capture the coupling between microstructural
dynamics and macroscopic rheology. Numerical experiments explore the in-
fluence of kinetic rate constants, viscosity ratio, elasticity, extension length,
and inertia on flow instabilities. The results reveal that considering viscosity
as a function of microstructural kinetics induces fluctuations in the velocity
field. These fluctuations occur when the rate of interaction between mi-
crostructures reaches a certain value. The fluctuations decrease when the
system is dilute or elasticity is increased, and increase for short microstruc-
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tural chain extensions and increasing inertia. These findings establish a di-
rect connection between molecular-scale restructuring and macroscopic flow,
thereby contributing to the fundamental understanding of flow instabilities
and providing guidance for modelling complex fluids.

Keywords: Fluctuations, FENE transient network, Multiscale model

1. Introduction

Complex fluids can be described as fluids with internal microstructures, the
evolution of which influences the macroscopic dynamics of the material, in-
cluding its rheology [1]. Examples of complex fluids are food, biological
materials, and plastic coatings [2]. The internal microstructure of a complex
fluid is reorganized under flow, which in turn modifies the flow field, resulting
in highly nonlinear flow properties 3] and phenomena such as shear band-
ing [4]. Network models are characterised by breaking and recombination
processes that determine the degree of entanglement of polymer chains and
how they evolve in response to flow and energy changes. Classical transient
network models consider the creation of microstates as a thermal activation
process, while flow breaks the network [5-7]. Rincon et al. [8] proposed the
formation of a transient network through five microstates, using the moments
of the distribution function to calculate the rheological functions [9]. Manero
et al. [10] presented a simplified expression of the kinetics of the microstates,
leading to a global scheme instead of a detailed kinetics of the evolution
of each microstate. Garcia-Sandoval et al. [11] analysed the kinetics of the
entanglement—disentanglement process of complex fluids coupled to a rheo-
logical constitutive equation of state within an irreversible thermodynamics
framework. Quintero F. et al. [12] formulated a mesoscale stochastic rup-
ture/reform model in which single weights can join to form double weights
and double weights can separate to form single weights. The topology was
tracked in the simulation and finite extensible non-linear elastic (FENE)
springs were taken into account. In the classical FENE model [13], the non-
linear dumbbell possesses a constant maximum extensibility. However, in
the transient network model proposed by Rincon et al. [§], the maximum ex-
tensibility is not a constant, but a variable resulting from a kinetic process.
Ferrer et al. [14] coupled the FENE model with the transient network model
to describe the behaviour of a complex fluid under simple shear flow. Con-
stitutive equations based on microstructural theories that are simple enough



to solve a complex flow include the Vasquez-Cook-McKinley (VCM) [15]
and the simplified living Rolie-Poly (RP) [16] models. Germann et al. [17]
reviewed the VCM model from a non-equilibrium thermodynamic point of
view. To describe micellar breakage and reformation, they extended the
non-equilibrium mass action treatment of chemical reaction kinetics to mul-
ticomponent systems with an internal viscoelastic structure. Adams et al.
[18] incorporated microscopic reversibility into the VCM model by extending
an ensemble-averaged bead-spring phase-space model to include reversible
scission of two-spring chains. This model offered the prospect of including
additional physics and the ability to test the accuracy of closure approxi-
mations by parallel Brownian dynamics simulations. Lerouge and Olmsted
[19] proposed that to physically model shear banding, the stress tensor must
incorporate stresses due to microstructural quantities, such as molecular or
segmental orientation, micellar length, and concentration fields in polymeric
fluids. In this study, we present a multiscale modeling approach for complex
fluids confined between parallel plates, employing a FENE transient network
model [20, 21|. The model incorporates a microstructural kinetic mechanism
of bond breaking and recombination, which induces nonlinearities in the ve-
locity field. We analyse the influence of kinetic rate constants, viscosity ratio,
elasticity, and inertia on the overall flow behaviour.

The paper is organised as follows. The macroscopic and microscopic el-
ements of the mathematical model are presented in Section 2. In Section 3
the dimensionless form of the governing equations is derived. The discretiza-
tion of the computational domain and the governing equations are described
in Sections 4 and 5, respectively. The numerical predictions for a range of
model parameters are presented in Section 6. Finally, concluding remarks
are given in Section 7.

2. Mathematical Model

In this work, a hybrid micro-macro model is used as the basis for numeri-
cal predictions since the approach provides greater flexibility in the modelling
of polymeric fluids. Not all kinetic theory models have closed-form macro-
scopic equivalents and the micro-macro approach circumvents the need to
implement closure approximations that are not universally accurate. We
assume that the fluid is incompressible.



2.1. Macroscopic Equations

The governing equations are the conservation equations of mass
V-v=0, (1)

and momentum

ov
p(a%—v-Vv):—VerV-a, (2)
where v is the velocity, p is the density, p is the pressure and o is the extra-
stress tensor. The extra-stress tensor o is decomposed into solvent and poly-
meric contributions, 6® and P, respectively, where ¢ = ° + oP. The solvent
contribution is given by ¢° = 2n.d, where 7; is the solvent viscosity and

d— % (Vv +(vv)"). (3)

is the rate-of-strain tensor. With this decomposition, the momentum equa-
tion can be written in the form

Dv

P = —Vp+2V - (nd)+V -oP. (4)

The polymeric contribution to the stress tensor is traditionally calculated
using a differential or integral constitutive equation. However, there are
models of kinetic theory that are able to provide an accurate representation
of polymeric fluids, but that do not possess an equivalent closed-form con-
stitutive equation. For this reason, in this paper the polymeric contribution
to the stress is evaluated by means of a microscopic description of polymer
dynamics.

2.2. Microscopic Equations

Consider an elastic dumbbell comprising two identical beads and a connect-
ing elastic spring immersed in a Newtonian solvent. Suppose that the con-
figuration of the dumbbell is represented by the end-to-end vector Q, which
provides information about the stretch and orientation of the dumbbell. The
equation of motion for the beads can be derived by considering the following
forces: the forces due to Brownian motion, the elastic spring force, and the
viscous drag force on the beads. This is the starting point for the derivation
of the Fokker-Planck equation, the details of which can be found in Ottinger



[22], for example. For the FENE dumbbell model, the Fokker-Planck equa-

tion is

0 0 2 2k, T 0 O

—p=—— t)-Q——-f — 5
where 1) is the configuration of the probability density function (pdf) and
»(Q,x,t)dQ represents the probability of finding a dumbbell with configu-
ration in the range Q to Q + dQ in (x,t), k(t) is the velocity gradient, < is
the friction coefficient, k; is Boltzmann’s constant, 7" is the absolute temper-
ature, and f represents the spring force which, for FENE dumbells, is given

by
HQ
= PR (6>
1- (Q/Qmax)
where H is the spring constant and Q. is the maximum spring extension.
The high-dimensional nature of the Fokker-Planck equation means that it is

expensive to solve computationally. However, one can use the equivalence
between Eq. (5) and the stochastic differential equation.

f(Q)

4k, T
S

1) = (s Q= 21(Q) ) dr-+ [ i) @)
as the basis for deriving computationally tractable numerical schemes. In
this equation ®(¢) is a multi-dimensional Wiener process, (see [22-24], for
details). It is possible to establish a relation between the material constants
at the microscopic and macroscopic levels: A = ¢/4H and 7, = nk,T'\, where
A, 7p, n are the relaxation time, polymeric viscosity, and the number of
dumbbells per unit of volume, respectively. Every dumbbell is characterized
by A and Quax. Once the configuration is determined, a? is evaluated using
the Kramers expression [9, 23|:

0" = —nkyT1+nQE(Q) = (-1 + QE(Q)). (8)

2.8. Transient Network Model

The FENE dumbbell model is a coarse level of description of the polymer
conformation of a polymer chain. For a dilute polymer solution, the inter-
actions between polymer chains are generally not considered in this model.
However, many chain molecules tend to become entangled or disentangled as
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Figure 1: Complex fluid confined between parallel plates. Left: initially a microstate (wy)
is present in a Newtonian solvent. Right: subsequently the flow separates into bands
comprising two different microstates under simple shear flow.

Microstate Number Number of Number I;
of nodes segments of chains
Wo 0 1 1 1
w1 1 4 2 1/2

Table 1: Microstate properties.

a result of flow or energy considerations. These processes produce time vary-
ing local changes in properties like maximum chain length, elastic constant
and relaxation time. In the following we describe how the FENE model can
be modified to account for these interactions utilizing a transient network
model.

In the dilute regime, it is possible to consider a small number of interac-
tions and small or negligible changes for every dumbbell. As the concentra-
tion increases, those changes are not negligible. These changes in behaviour
can be modelled by defining some characteristic states termed microstates
(see Fig. 1) that are defined by the number of chain segments and the number
of nodes required to produce it [8]. Within this framework, there are different
ways to determine what constitutes a microstate. In this paper only two mi-
crostates w;, © = 0, 1, are considered. For details of the full model, the reader
is referred to Gomez-Lopez et al. [25]. A chain arrangement is defined and
identified as shown in Table 1, where [; represents the fraction of maximum
extension length for each microstate [8, 14]. As we have already mentioned,
the formation and recombination of microstates depends on the energy of
the system used to form or break a node, by viscous dissipation or in the



equilibrium state. Based on this information, a kinetic scheme analogous to
that of a chemical reaction is proposed, whereby physical interactions be-
tween chains create and destroy microstates, which depend on the number
of chain segments and the number of nodes or interaction points. Creation
is a function of free energy, while rupture is a function of viscous dissipation,
the latter being a process in which the chains untangle and align themselves
in the direction of the main flow:

k{* exp (—g—%)

2w w1, (9>

kBo: 4

where kf, kP represent the formation and breakage constants for each mi-
crostate, respectively, and Fj is the energy required to create a node. If we
consider the formation and recombination constants to be proportional to
the number of nodes to create every microstate, it is possible to consider k4
and k% as the formation and recombination kinetic constants to establish the
following system of ordinary differential equations:

DC,
Dto = 2kB o ;YCH - kACg + DmV2007 (1())
DC 1
! = —kB o ’.701 + _kACg + Dmvzcla (11>
Dt 2
where % is the material derivative, D,, is the diffusion coefficient, C, and

(' are the concentrations of microstructures wy and wq, respectively. Each
microstate w; defines a microstructure in a region of space, which behaves as
a dumbbell with its own properties: partial viscosity fraction 7,;, relaxation
time 7; and maximum extension length b;, as shown in Table 2. Under these
assumptions, the stress produced by each microstructure is obtained by the
Kramers expression:

X 1
. Z Ok TT + G (Qifi(Qy)) = Z n)\_’j (—I + kbLT <szz<Qz)>> ., (12)
par i=0

where 7, = ZLO Npi = CikyT' A, £, and A; are the viscosity, spring force, and

relaxation time associated with the microstate w;, respectively. The angular
brackets denote the ensemble average over the configuration space.
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2.4. Dimensionless Equations

Let L, U, and C. denote characteristic length, velocity, and concentration
scales, respectively. Dimensionless variables are defined as follows:

* v * t * C * p * Up
v ==, t = T 5 C ==, P = — o.p = 7>
(13)
where 7y denotes the zero shear viscosity defined by 7y = 1+, in the initial
state. The dimensionless macroscopic equations are then

Vvt =0, (14)

Dv*

Dt*
where Re = pUL/ny is the Reynolds number and 5 = 7/n is the viscosity
ratio. The end-to-end vector Q is dimensionless using +/kyT/H so that the
dimensionless stochastic differential equation (7) becomes

Re = —V*p+ BV + V3. V'V 4+ V* . gP*, (15)

Q- L b

where Ay = /(4H) is the relaxation time and the dimensionless force is
1- (Q*/Qmax)2

We assume that the viscosity of the microstate wy is the solvent viscosity,
ns = Npo- Polymeric stress is evaluated using the Kramers expression:

f(Q")

o7 = D ((Q) @ £(Q)) — 1)

T()Wi
(1-5) . \
o (Qr®fi(Q) - 1), (17)
where Wi = AyU/L is the Weissenberg number, 7; = \; /Ay is the relaxation
time of the ith microstructure, a; = 2+%2 where d is the spatial dimension

b;
of the problem, and b; = bi? is the dimensionless maximum extension length
of the ith microstructure w;, where b = HQ? . /k,T. The dimensionless form
of the stochastic differential equations for each microstructure is:
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" % % 1 * * * * * *
dQp = (K Qo — 20—-f0(Q0) — k1Qp + 21{2Ql> dt

To Wi
L aw (18)
T()Wi 7
dQi = (K" Qg — mﬂ(Qﬁ + ?Qo — k;Qr) dt
1
dW 19
+ T1Wi ’ ( )

where W represents the dimensionless Wiener process, that is, Gaussian
processes with zero mean and covariance (W (¢)W(t)) = min(t, t)I [22-24].
Equations (18) and (19) are similar to Eq. (16) except that additional terms
have been included to account for the kinetic process (breakup /recombination).

Microstructure 7; l;
Wo 1 1
w1 /2 1/2

Table 2: Microstructure coefficients.
For the concentrations, the dimensionless equations are in term A = %,
which describes the ratio of the reaction rate to the advective transport rate
B D . C
and B = E2U which is the ratio of the dissipative process rate to the

LC.
advective transport rate as follows

DC} 1
S = BoACT = ACT+ 5 VPG, (20)
DCY 1
Dt*l = —Bo":4C+ACT + Ev*20;*, (21)
where Pe = % is the Peclet number, which relates the ratio of advective

transport rate to diffusion transport rate. In order to simplify the notation,
the symbol * is omitted from here onwards.



3. Computational Model

3.1. Computational Domain

Consider the start-up of a simple shear flow in a channel. The channel
contains a complex fluid that is initially at rest. At time ¢ = 0, the top
wall moves instantaneously with axial velocity u = 1, generating flow in the
channel. The bottom wall remains stationary. At the entrance and exit of
the channel, we impose u, = 0. In this paper, the evolution of the resulting
flow is studied for a range of material and flow parameters.

Consider the computational domain [0, 10] x [0, 1]. The governing equa-
tions are discretized using a finite difference scheme, and three meshes are
considered for the mesh refinement study: M; — M5 (40 x 40), (50 x 50)
and (60 x 60), respectively. The equations are solved for ¢ € [0, t,,q,] Where
tmaz = 100 using a constant time step of At = 1072 and the M5 mesh for all
simulations [14, 26].

3.2. Numerical Scheme

The numerical scheme is based on a decoupled approach in which the
governing equations are solved in three stages at each time step.

3.2.1. Stage 1: Macroscopic Equations

In the macroscopic stage, we assume knowledge of the polymeric contribution
to the extra-stress tensor of the previous time step, aP. The velocity at
the new time level is then obtained by solving the following semi-discrete
problem.

v A Vn+1 — 0, (22)
Be (g1 gnn) = gyt g e g v gy

This is an implicit treatment of the conservation equations where v**! is the

solution of the following pure convection problem at time t = "
ov n I n yn+1 o n n
5=V Vv, te[t" "], v(x,t") =v(x,t"). (24)

This equation is solved over the interval [t", t"1]. The conservation equations
(22) - (23) are solved iteratively using the Alternating Direction Implicit
(ADI) method [26].
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3.2.2. Stage 2: Concentration Equations
The concentration equations (20) and (21) are solved using an explicit
method in which the viscous dissipation term is evaluated at time ¢t = t¢,,.

3.2.3. Stage 3: Microscopic Equations

Hulsen et al. [27] developed the Brownian configuration fields method (BCFM)
to overcome the problem of having to track individual particle trajectories
Subsequent implementations of BCFM within a spectral element context can
be found in Smith and Phillips [28] and Vargas et al. [29]. The method is
based on the evolution of a number of continuous configuration fields by
combining dumbbell connectors with same initial configuration and subject
to the same random forces throughout the flow to form a configuration field.
An additional term needs to be included in the stochastic differential equa-
tions (18) and (19) to account for the convection of the configuration field
by the flow (see Lozinski et al. [30]). The modified equation is

dQ..(t) = (—v -VQum + k(1) - Qn (Qm) + Rk> dt

——f
2
1
+\/;d¢m(t), m=1,...,Ny, (25)

where Ry is the kinetic term and Ny is the number of configuration fields.
The main idea underlying BCFM is the assumption that the same initial en-
semble of dumbbells is located at every spatial discretization point instead of
independent ensembles, which enables the same sequence of random numbers
to be used to build the trajectories of many groups of dumbbells.

As the second moment of the Wiener process is of the order O(t) and using
the properties of ®(t) described previously, Eq. (25) becomes

1) = (v TQu (D) Q= Q)+ e

ot o

A set of conformation vectors that experience the same deformation history
is generated at each discretization point in space and time, with different
stochastic processes. Polymeric stress oP can be determined from the con-

11



formation vectors as follows:

o (X, 1) = %(—I+Nif(7iQm(X,t)Qm(X,t))>. (27)

Initially, the fluid is stationary so that ? = 0 at ¢ = 0 and at every spatial
discretization point the conformation fields must satisfy:

Ny
Nggam; Qu (X, £0)Qm (X, 1) = (QQ) = L. (28)
Since the statistical error is proportional to 1/,/N; as Ny — oo, then the

numerical convergence is of order O(1/,/Ny) according to the central limit
theorem. Eq. (26) can be generalized to be applicable for each microstate:

inj(t) = (—V . VQ” + K,(t) . Qij — %f(QU) + Rk) dt

[dt
+¢ZJ X’ZIO71732177Nf7 <29>

in which case the polymeric contribution to the extra-stress tensor at the
new time level t"*! is then calculated using the following:

Ny

1
(0-p)n+1 = TO\BZVi —1I + Ff ]Zl <Q0j & fO(QOj)>
(1-5) 1 &
+ay Wi —I+ N, jzl (Qu @f1(Quy)) |, (30)

where Ny is the number of trajectories. The temporal discretization of the
evolution equation for the configuration fields in Eq. (29) is performed using
a second-order predictor-corrector scheme, which is based on a forward Euler
predictor and trapezoidal corrector:

ij J

~n+1 n n n nMn n n

1
+4/ — WS (31)
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At 1 _
n+1 n+1 _ n+1 n+1 n n
A+ @) = Q”’_i(v Qv iﬂ')“
1 _
+§<Kn+1Q;zj+1 _}_,{n Z)At
At n 1 n n
TIEWi £(Q7;) + §<Rk+1 + Rp)At

1 n
* V Wi AW (32)

The right-hand side of Eq. (32) gives the orientation of the conformation
"1 with an arbitrary length. In order to obtain the length of

vector Q
QZ,“, Eq. (32) is expressed as

1 At
1 =40
[ Wi x?/bi]]x ’ (33)
or
g(x) == 2® — 02° — (1 + ! )bix +6b; =0 (34)
4T1W1 ’

where 0 is the right-hand side of Eq. (32) and z = |Q};"!|. Ottinger [22] has
shown that there exists a unique solution of this cubic equation in the interval
0, v/b;], meaning there is precisely one physically admissible solution. This
scheme circumvents difficulties that may arise using other temporal schemes
in which unphysical extensions can be generated during the iterative process.

A flow chart of this micro-macro algorithm is shown in Fig. 2.

3.2.4. Summary of the calculation procedure

In the first stage, the macroscopic equations are solved. Given the stress
tensor from the previous time step, the velocity at the new time step is deter-
mined by solving the conservation equations (22)-(24). In the second stage,
the evolution equations (20)-(21) of the microstate concentrations are solved
using an explicit method. In the final stage, the microscopic equations are
solved. Given the velocity field determined in the first stage, the stochastic
PDEs are solved for the Brownian configuration fields Eqs. (31)-(34). At
the end of each time step, the polymeric stress tensor is updated using the
Kramers expression Eq. (30) before moving on to the next time step. In this
work, multiscale modelling of complex fluids confined between parallel plates
is presented using a FENE-transient network model. The effect of kinetic
rate constants (A and B), viscosity ratio /5, maximum extension length b,

13



Set n =10
Set initial conditions for v, C;, i = 0,1, 3, and Q;.
Set boundary conditions for v.
Evaluate the initial polymeric stress using Kramers expression.

¥

n =1

Compute the velocity field using Eqs.(22)-(24)

Compute the concentrations using Eqs. (20)-(21), and update 3

Compute the Brownian configuration fields using Eqgs. (31)-(32)

Evaluate the polymeric stress using Kramers expression Eq. (30)

Steady

no

state or tax

n—>n+t1l

reached?

yes

Figure 2: Flow chart for the micro-macro numerical algorithm.
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elasticity W+t and inertia Re on the velocity, stress and concentration fields
is investigated and analysed.

4. Numerical Results

In this section, numerical solutions for the start-up of a simple shear flow of
complex fluids using the FENE transient network model are presented. All
numerical results were generated using the decoupled micro-macro numeri-
cal scheme shown in Fig. 2 using a Fortran code developed by the authors
[14, 20]. The transient network model developed by Rincon et al. [8] and im-
proved by Ferrer et al. [14] and Vargas et al. [20] was incorporated into this
numerical code. In a previous paper [20], the code was validated by compar-
ing macroscopic simulations using the Oldroyd B model with a micro-macro
approach for Hookean dumbbells. The purpose of the present numerical
study is to determine the range of parameters that generate fluctuations in
the velocity field for a simple shear flow.

4.1. FENFE Transient Network Model

In the first simulation, a transient network that initially comprises only
the microstate wy immersed in a Newtonian solvent is considered (see Fig. 1).
The values of the other parameters are Wi = 1, (z,y,t = to) = 1/10, A =1,
B =1,b=>50. A comparison of axial velocity and shear stress as a function of
time for two Reynolds numbers is performed using the three different meshes
defined in Section 3.1. Figs. 3(a) and 3(b) present a mesh convergence study
of the evolution of axial velocity and shear stress at (x,y) = (5,0.75) for
Re = 0.1 and Re = 1, respectively. Excellent spatial convergence is obtained
across all meshes. Based on these results, all subsequent simulations are
performed using the mesh M;. Figure 4 shows the effect of the number of
Brownian fields N; on the average concentrations, velocity, and stress. In
the case of concentrations and velocity, the convergence behaviour is excel-
lent. There are differences in the case of stress but these are of the same
order and due to the stochastic nature of this component of the simulation.
For the following simulations, we will use Ny = 2000. Fig. 5 shows the
evolution of the averaged microstate concentrations over the entire compu-
tational domain, as well as the axial velocity component, u, and the shear
stress, 0.y, at (z,y) = (5,0.75), and the distribution of the microstate con-
centration w; (contours) and velocity (vectors) at a number of instances at
dimensionless times (¢t = 0.005,0.1,0.3,0.5,1.0,5.0). Fig. 5(a) shows that

15



initially the microstates w; and wy are broken and recombined, respectively.
After time t ~ 0.7, the concentration of wy exceeds that of w; before both
microstates reach their equilibrium concentrations. Fig. 5(b) shows the evo-
lution of the axial velocity component at (z,y) = (5,0.75). A typical velocity
overshoot of start-up flows of viscoelastic fluids is present within the first two
dimensionless time units before a steady-state solution is reached. Fig. 5(c)
shows a similar plot for the shear stress. Since the stress is determined using
a stochastic technique, noise is to be expected in its temporal development.
Fig. 5(d) shows the evolution of the concentration distribution w; and how it
develops to reach an equilibrium concentration. The velocity vectors are su-
perimposed on this figure in order to show the transient development toward
the final steady state, with the expected linear profile. Adams et al. [1§]
compared the predictions of the VCM model, which treats wormlike micelles
as Hookean dumbbells that break at half-length to form two shorter dumb-
bells, to an analogous Brownian dynamics simulation of the same physical
model. They found deficiencies in the VCM model and incorporated mi-
croscopic reversibility by extending an ensemble-averaged bead-spring phase
space model to include reversible scission of two-spring chains; thus, they
recover complete agreement with the BD results. They concluded that it
would be important for future work to explore calculations with a FENE
spring and with models with more than two species, and this observation
reinforced our motivation to work with transient network models.

4.2. Effect of microstructural kinetics

Next, we explore the influence of the kinetic rate constants A and B
on the evolution of microstates and their associated propensity to generate
fluctuations in the velocity field even at low Reynolds numbers. We begin
this study by determining the choice of kinetic rate constants, which through
the process of microstructure breaking and recombination, lead to changes
in flow. The set of values selected for the simulations in this section are:
Re = 0.1, Wi = 1, B(z,y,t = ty) = 0.1, b = 50 and N; = 2000. The
values of the kinetic constants and the Peclet number were determined using
the material parameters in Table 3 which were taken from Fielding [31] and
Varchanis et al. [32]. Accordingly, we have A = 58, B = 27, and Pe = 1000.
The latter parameter can change substantially because it depends on the
diffusive coefficient of the material.

Figure 6 shows the comparison of axial velocity and shear stress as a func-
tion of time by modifying the kinetic rate constants A and B. In Fig. 6a, the
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Parameter Symbol Value REF
Rheometer gap L 0.15 mm [33]
Density ) 103 kg m™3 [33]

Solvent viscosity ns 1073 kg m~1s™! [33]
Polymeric viscosity My 0.4 kg m~1s™! [33]
Relaxation time A 3s [33]
Diffusion coefficient D 3x107 1 m?s~! [33]
Drag coefficient S 2.4x10"2 kg m3s™!  [33]
Kinetic generation constant kA 0.0058s~! [32]
Kinetic breakage constant kB 0.0017 [32]

Table 3: Material parameters of the model

velocity shows fluctuations, which are manifestations of the complex interac-
tions between the microstates. These interactions also modify shear stress,
as shown in Fig. 6b. Figure 7 shows the effect of increasing the magnitude of
A and B by 50% and 100% for two values of the Peclet number, Pe = 1000
and 3300, the same values used by Varchanis et al. [32]. The microstate con-
centrations in Fig. 7a show that as A and B increase, the interaction process
between microstates becomes faster. This effect occurs at short times and
generates fluctuations of the same order around the equilibrium concentra-
tion for both Pe numbers. The velocity and stress profiles exhibit the same
behaviour when increasing the kinetic constants or modifying the Pe; how-
ever, when increasing the values of A and B, convergence is lost more quickly.
This effect can be delayed by increasing the Peclet number to Pe=3300. This
indicates that the diffusive effect stabilises the system, as shown in Figure
7. This effect was also found by [32]. It is important to mention that the
values used for the kinetic constants were A = 58 and B = 27 for all sub-
sequent simulations. With these values or lower, no convergence problems
were found. Fig. 8 shows the evolution of the concentration distribution
wy and the superimposed velocity vectors, the latter not always completely
parallel to the plates, indicating the fluctuations experienced by the velocity.
The predictions in this section illustrate the complex interaction between
the microstructures. In solutions of entanglement polymers and viscoelastic
surfactants under shear, concentration fluctuations were first reported in ex-
periments [34, 35|, followed by theoretical studies developed by Helfand and
Fredrickson [16, 36]. Hu and Lips [37], using the particle tracking velocime-
try (PTV) technique, observed random fluctuations in the evolution of shear
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stress in an entangled micellar solution with shear banding.

4.3.  Effect of viscosity ratio

The viscosity ratio, 3, is another important factor that contributes to
the occurrence of fluctuations. Many models assume a constant value for f3.
However, in the transient network model studied in this paper, 3 is considered
to be a function of the concentration of the microstructures, Sy = Bo(wo, w1 ).
Since a viscosity is associated with each microstructure, an initial viscosity
ratio By = Bo(x,y,t = tg) is specified. The numerical simulations in this
section were performed with the following parameter values: Re = 0.1, Wi =
1, A=58 and B = 27, b = 50 and N; = 2000, for different initial values of
the viscosity ratio (8 = 1/3,1/10,1/13,1/21). As the value of 3, decreases,
the fluctuations in concentrations also decrease; however, the kinetic process
is slightly faster, as shown in Fig. 9a and Fig. 9b. Regarding velocity
and shear stress, the fluctuations and elastic overshoot that occur in the
transient part decrease, as expected, since diluting the system approximates
the behaviour of a viscous fluid (see Fig. 9c and Fig. 9d). The influence
of the viscosity ratio on inestabilities has been reported by Zhou et al. [38]
and Adams et al. [39], who suggested that there is a critical value of [
for fluctations to manifest themselves. Fielding and Olmsted [33] studied
the early stages of the instabilities using the non-local Johnson-Segalman
model with a two-fluid coupling of flow to micellar concentration, and found a
phase diagram that was qualitatively consistent with experiments on micellar
solutions, with critical values for shear stress or strain rate and concentration.

4.4. Effect of extension length b

In the classical FENE model, the maximum extension length of the dumb-
bells b is constant. Although coupling FENE with the transient network
model means that the dumbbell extension is variable, it never exceeds the
maximum length of each microstructure (see Table 2). The numerical simu-
lations in this section were performed using the following parameter values:
Re=0.1, Wi=1, A=58, B =27, f(z,y,t =ty) = 1/10 and Ny = 2000 for
different maximum extension lengths b = 10, 15, 30, 40, 50, 75, and 100.
Fig. 10 shows that the parameter b has no significant influence on the evo-
lution of microstate concentrations or on the velocity profile (see Figs. 10a,
b and Fig. 10c, respectively). Its main effect is on the shear stress, which
increases as b decreases (see Fig. 10d. This means that microstates tend to

18



behave like a rigid dumbbell, which undergoes small deformations. On the
other hand, for small values of b < 40, the simulations present convergence
problems, as shown in Fig. 10.

4.5. Influence of elasticity Wi

The numerical simulations in this subsection were performed with the
following values: Re = 0.1, A = 58, B = 27, f(z,y,t = ty) = 1/10, b = 50
and Ny = 2000. Fig. 11 shows the influence of elasticity Wi on microstate
concentrations, axial velocity, and shear stress. The evolution of microstate
concentrations shows a higher frequency of fluctuation when Wi = 0.5 (see
Fig. 1la and Fig. 11b). This indicates that the microstates experience
a greater interaction between them. As elasticity increases, these fluctua-
tions decrease, meaning that the system requires more energy for the mi-
crostates to interact, reducing the rate of the kinetic process. Furthermore,
the average of both concentrations across the whole domain approaches 0.5
as W1 increases. Regarding the macroscopic response, the main indicator of
changes in the elasticity of the system is the elastic overshoot that occurs
in the transient part of the velocity profile, as shown in Figure 11c. After
this, greater fluctuations in velocity are also observed for small values of W4,
which decrease as Wi increases. Miller and Rothstein [40] reported transient
experiments, which were resolved at very short timescales and demonstrated
the existence of a propagating damped elastic wave.

4.6.  Effect of inertia (Re)

The numerical simulations in this section were performed with the fol-
lowing values: Wi = 1, A = 58, B = 27, fB(x,y,t = ty) = 1/10, b = 50
and Ny = 2000. Fig. 12 shows the influence of inertia (Re) on microstate
concentrations, axial velocity, and shear stress. Figs. 12a, b, and ¢ show
that as Re increases, concentrations take longer to reach equilibrium. Figs.
12d and 12e show a comparison between the velocity profile with and with-
out fluctuations for two Reynolds numbers, Re = 0.1 and Re = 1. These
figures show that as Re increases, the frequency of fluctuations decreases,
but their amplitude increases, indicating that, with an appropriate value for
the kinetic constants, Re contributes to the magnitude of the fluctuations,
Fig. 12f, which for large values of Re can result in other phenomena such
as shear banding or elastic turbulence. A similar effect is seen in the shear
stress, as shown in Figs. 12g and 12h. As Re increases, an inertial overshoot
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is generated at the start-up of shear flow until equilibrium is reached, which
is common in dynamic tests in rheology [9].

Quintero et al. [12] modelled and simulated active FENE bead-spring
breaking/reforming single/double dumbbells in an imposed shear flow. They
show that the shear stress converges to similar values, indicating a possible
plateau, or even a negative slope in the flow curve for this range of shear rates.
Fig. 13 shows the evolution of the concentration distribution w; and the
superimposed velocity vectors for Re = 10. In this figure, it can be seen that
in the early stages, the diffusion of momentum in a direction perpendicular
to the flow is coupled with the breakdown of the microstate w;, until the
velocity acquires a linear profile starting from the bottom plate and the
concentrations reach a equilibrium state with their respective fluctuations.
Fig. 14 shows the evolution of the axial velocity and shear stress up to a
time of ¢ = 24 dimensionless units under the following conditions: Re = 0.1,
Wi =1, A =57, B =28, B(z,y,t =ty) = 1/10, b = 50, Ny = 2000.
This time interval is considered to evaluate the stability of the numerical
code. This figure confirms that, once fluctuations in velocity and shear stress
appear, they persist in time. Perge et al. [41] have shown that, even at
vanishingly small Reynolds numbers, micellar surfactant solutions are model
systems for studying shear band formation and elastic instabilities.
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5. Conclusions

In this work, we investigated the interplay between microstructural ki-
netics and macroscopic flow behaviour in complex fluids using the FENE
transient network model under simple shear flow. The main findings are
summarized as follows:

e Microstructural breakage and recombination dynamics can generate
persistent fluctuations in velocity and shear stress, even at vanishingly
small Reynolds numbers, ruling out inertia as their sole origin.

e The viscosity ratio 3, strongly influences the onset of fluctuations; di-
lution drives the system toward Newtonian-like behaviour with sup-
pressed flow instabilities.

e The maximum extension length b of the dumbbells exerts limited influ-
ence on microstate concentrations and velocity but significantly affects
shear stress, with small values of b contributing to increases in stress
and numerical convergence challenges.

e The effect of elasticity W+, modulates both microscopic and macro-
scopic responses: low elasticity promotes fluctuations, while high elas-
ticity stabilizes the system.

e Inertia influences fluctuations whenever the rate of microstructural in-
teraction exceeds a critical value.

The numerical predictions presented in this paper underscore the value of
transient network models in bridging kinetic mechanisms with observable
rheological responses. The FENE transient network model provides a pre-
dictive framework for analyzing flow instabilities in polymeric and micellar
systems.
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Figure 3: Mesh convergence of the evolution of the axial velocity component and shear
stress at (z,y) = (5,0.75); for a structured network with Wi=1, 5 =1/10, A=1, B =1,
b =50, Ny = 2000, for (a) Re =0.1 and (b) Re =1.
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Figure 10: Evolution of the averaged microstate concentrations (a) o
[0, 0.8]; axial velocity component (c), and shear stress (d) at (x,y)
values of extension length 6. With A = 58 and B = 27, Re = 0.

to) = 1/10, N

¢ = 2000, and Pe = 1000.
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Figure 11: Evolution of the averaged microstate concentrations (a) over [0,10]; (b) over
[0, 1.6]; axial velocity component (c), and shear stress (d) at (x,y) = (5,0.75) for different
values of Weissenberg number Wi, with Re = 0.1, S(z,y,t = t9) = 1/10, b = 50, Ny =
2000, and Pe = 1000.
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Figure 12: Evolution of the averaged microstate concentrations (a) and (b) over [0, 10];
(c) over [0,2.0]; axial velocity component (d-f), and shear stress (g-i) at (z,y) = (5,0.75)
for different values of Reynolds number Re, with Wi = 1, S(z,y,t = ty) = 1/10, b = 50,
Ny = 2000, and Pe = 1000.
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Figure 13: Evolution of concentration distribution of w; (contours) and velocity profiles
(vectors), for a structured network with: Re = 0.1, Wi=1, A = 58, B = 27, 8y = 1/10,
b = 50, Ny = 2000, Pe = 1000 throughout the computational domain.
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Figure 14: Effect of the long times evolution of (a) averaged microstate concentrations,(b)
axial velocity component, and (c) shear stress at (z,y) = (5,0.75) for a structured network
with: Re = 0.1, Wi =1, A = 58, B = 27, By = 1/10, b = 50, N; = 2000, and Pe = 1000.
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