

This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository:<https://orca.cardiff.ac.uk/id/eprint/184553/>

This is the author's version of a work that was submitted to / accepted for publication.

Citation for final published version:

Liu, Shiyang, Haghani, Sara, Petretto, Enrico, Madan, Babita, Harmston, Nathan and Virshup, David M. 2026. Identification of Wnt-regulated genes that are repressed by, or independent of, β -catenin. *The FEBS Journal* 10.1111/febs.70417

Publishers page: <https://doi.org/10.1111/febs.70417>

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See <http://orca.cf.ac.uk/policies.html> for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.

2 Identification of Wnt-regulated genes that are repressed by, or
independent of, β -catenin

4

Shiyan Liu^{1,2}

6 Sara Haghani⁴

Enrico Petretto^{2, 3}

8 Babita Madan¹

Nathan Harmston^{1, 4, 5}

10 David M Virshup^{1, 6}

12

1. Program in Cancer and Stem Cell Biology,

14 2. Centre for Computational Biology,

3. Program in Cardiovascular and Metabolic Disorders,

16 All at Duke-NUS School of Medicine, Singapore, 169857

4. Yale-NUS College, Singapore, 138614

18 5. Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK

6. Department of Pediatrics, Duke University School of Medicine, Durham NC, USA

20 27710

22 Address correspondence to Babita Madan, Nathan Harmston and David M Virshup.

24 **Corresponding Authors contact details:**

BM, Babita.Madan@duke-nus.edu.sg

26 NH, HarmstonN@cardiff.ac.uk

DMV, david.virshup@duke.edu

28

30

Running title: β -catenin independent and Wnt-repressed genes

32

Abbreviations: NRE, negative regulatory element; WRE, Wnt-responsive element; TCF, T-cell factor; LEF, Lymphoid Enhancer-binding Factor; TFBS, transcription factor binding site; FDR, False Discovery Rate)

36

Keywords: Wnt signaling/transcriptional regulation/repression/ β -catenin/pancreatic cancer/PORCN

40 **Conflict of interest:** Drs. Madan and Virshup have a financial interest in ETC-159.

Abstract

42 Wnt signaling regulates metazoan development and homeostasis, in part by β -catenin
44 dependent activation and repression of a large number of genes. However, Wnt signaling also
46 regulates genes independent of β -catenin, genes that are less well characterized. In this study,
48 using a pan-Wnt inhibitor, we performed a comprehensive transcriptome analysis in a Wnt-
50 addicted orthotopic cancer model to delineate the β -catenin-dependent and independent arms
52 of Wnt signaling. We find that while a large percentage of Wnt-regulated genes are regulated
54 by β -catenin, 10% of these genes are regulated independent of β -catenin. Interestingly, a large
56 proportion of these β -catenin independent genes are Wnt-repressed. Among the β -catenin
dependent genes, more than half are repressed by β -catenin. We used this dataset to investigate
the mechanisms by which Wnt/ β -catenin signaling represses gene expression, revealing the
role of a cis-regulatory motif, the negative regulatory element (NRE). The NRE motif is
enriched in the promoters of β -catenin repressed genes and is required for their repression. This
provides a comprehensive analysis of the β -catenin independent arm of the Wnt signaling
pathway in a cancer model and suggests that a cis-regulatory grammar may determine Wnt-
dependent gene activation versus repression.

Introduction

58 Wnt signaling is an evolutionarily conserved pathway involved in diverse processes
60 including development, homeostasis and tissue regeneration [1]. Dysregulation of this pathway
62 is implicated in myriad diseases including cancer, cardiometabolic disorders and
64 neurodegeneration [2,3]. Signaling is initiated by the binding of Wnt ligands to Frizzleds and
other integral membrane co-receptors, which subsequently leads to the activation of distinct
downstream signaling pathways. These pathways can operate either through, or independently
of, β -catenin, and can either activate or repress specific target genes [4–7].

66 In the β -catenin-dependent pathway, also known as the canonical pathway, the binding of
68 Wnt ligands to their cognate Frizzled receptors results in the stabilization of β -catenin. This
70 stabilized β -catenin translocates into the nucleus and binds to members of the TCF/LEF family
72 of transcription factors to regulate Wnt-target gene expression in a context-dependent manner
74 [2,8]. In this pathway, the β -catenin/TCF complex binds to DNA through the TCF binding
76 motif, also known as the Wnt-responsive element (WRE) [9]. The β -catenin independent
signaling pathways, also known as non-canonical signaling, includes the Wnt/Calcium,
Wnt/JNK, Wnt/STOP and planar cell polarity signaling, many of which involve non-canonical
Wnts (e.g., WNT5A) and alternative receptors such as ROR. These non-canonical pathways
have been implicated in several key cellular processes including migration, planar cell polarity
and adhesion that are essential for development and tumorigenesis [10,11]. In contrast to
canonical Wnt signaling, our knowledge of the signaling mechanisms and potential target
genes in the β -catenin independent arm of the Wnt signaling pathway is less well developed.

78 The high frequency of mutations leading to aberrant Wnt signaling in multiple tumor types
80 and the changes in transcriptional and cellular states driven by these mutations [12–15] has led
82 to the development of pharmacological approaches to inhibit the pathway [16–18]. One
84 approach is to target Wnt secretion. The post-translational addition of a palmitoleate group to
86 Wnt proteins is necessary for the secretion of all Wnts and is also required for binding to their
cognate Frizzled receptor [19–21]. This palmitoleation is catalyzed by the acyltransferase
Porcupine (PORCN)[22]. Treatment with small molecule inhibitors of PORCN such as ETC-
159 and LGK-974 prevents Wnt palmitoleation and the subsequent inhibition of both the β -
catenin-dependent and independent branches of Wnt signaling [23].

88 Wnt signaling is generally thought of as a pathway for driving the expression of genes,
90 with most of the well characterized Wnt target genes being Wnt-activated, e.g. *AXIN2*, *MYC*
92 and *Cyclin D1* [24–26]. In contrast, only a limited number of genes repressed by Wnt signaling
94 have been well characterized, e.g. *Mmp7* in mice [27] and *dpp*, *tig*, *dugt36Bc* in *Drosophila*
96 [28–30] and *BGLAP*, *CDH1* and *CDKN2A* [31,32] in mammalian cells. In our studies
investigating the transcriptional response to a pan-Wnt inhibitor in multiple models of Wnt-
driven pancreatic and colorectal cancers [7,18], we found that Wnt signaling induces the
expression of many genes, *i.e.* *Wnt-activated*, but that a comparable number of genes were
upregulated following Wnt inhibition, hence they were *Wnt-repressed*. Further investigation
identified that a subset of these *Wnt-repressed* genes were dependent on the inhibition of
MAPK signaling by Wnt/ β -catenin signaling [6,33]. However, the mechanisms and

98 transcriptional elements involved in Wnt signalling-mediated gene repression and the role of
β-catenin in this repression is not well understood.

100 In this study, we performed a comprehensive transcriptome analysis to delineate the β-
catenin dependent and independent arms of Wnt signaling. We used a sensitive orthotopic
102 xenograft model of Wnt-driven pancreatic cancer and compared the transcriptional response to
a Wnt-secretion inhibitor, ETC-159 in pancreatic tumors without or with ectopically expressed
104 stabilized β-catenin. This analysis revealed that ~90% of Wnt-dependent genes are regulated
by β-catenin, while only ~10% are regulated independently of β-catenin. The same dataset was
106 interrogated to better understand how Wnt/β-catenin signaling can repress gene expression.
This analysis identified an enrichment of a specific negative regulatory element (NRE) in the
108 promoters of the β-catenin-dependent Wnt-repressed [34]. Our data supports the role of the
NRE as an important cis-regulatory motif required for the regulation of β-catenin dependent
110 genes in human cells. This suggests the existence of a cis-regulatory grammar which may be
responsible for determining whether a target gene will be repressed or activated by Wnt
112 signaling.

114 **Results**

Identification of β-catenin-dependent and -independent Wnt target genes.

116 HPAF-II cells have an inactivating mutation in RNF43 that drives high autocrine Wnt
signaling, making them Wnt-addicted and sensitive to treatment with PORCN inhibitors such
118 as ETC-159 [18,35]. In this context, PORCN inhibition leads to the ablation of both β-catenin
dependent and independent Wnt signaling. To dissect the differences between these two
120 branches of the Wnt signaling pathway, we generated HPAF-II cells with constitutively active
β-catenin dependent signaling. This was accomplished by stably transducing HPAF-II cells
122 with a plasmid expressing β-catenin with four phosphorylation sites (S33, S37, T41, S45)
mutated to alanine, referred to here as β-cat4A [36]. Phosphorylation at these sites by CK1α
124 and GSK3 is required to target β-catenin for proteasomal degradation. As such, treatment of β-
cat4A cells with ETC-159 will only affect the expression of Wnt-dependent but β-catenin
126 independent target genes, while genes under the control of β-catenin will be unaffected (**Figure**
S1A).

128 Clones stably expressing β-cat4A were established by single-cell cloning and clones with
near-physiological expression levels were selected (**Figure 1A**). To assess the ligand-
130 independent activation of Wnt/β-catenin signaling in these cells we measured their sensitivity
to the pan-Wnt inhibitor ETC-159. Confirming the feasibility of this approach, in parental
132 HPAF-II cells (denoted WT in this and subsequent figures), ETC-159 treatment led to a dose-
dependent decrease in the expression of the well-characterized Wnt/β-catenin target gene
134 *AXIN2*, while in β-cat4A cells *AXIN2* expression increased at baseline and was not
downregulated by Wnt inhibition (**Figure 1B**). Moreover, in a soft agar assay there was only a
136 slight decrease in the β-cat4A colonies even in the presence of 100 nM (~30x the IC50) ETC-

138 159 (**Figure 1C, S1B**). This demonstrates that the growth of β -cat4A cells *in vitro* does not require Wnts to activate β -catenin signaling.

140 To identify β -catenin dependent and independent genes in a more physiological setting, we
142 used an orthotopic xenograft model, where the transcriptional response to Wnt inhibition is
144 significantly more robust than it is *in vitro* or in flank xenografts [7]. WT and β -cat4A HPAF-II
146 cells were injected into the mouse pancreas. Following tumor establishment pan-Wnt
148 inhibition was achieved with ETC-159 (37.5 mg/kg b.i.d. orally) treatment (**Figure 1D**). Gene
150 expression changes were assessed at 4, 16, and 56 h of treatment by RNA-seq. Based on
152 principal component analysis (PCA), the samples clustered as expected (**Figure S1C**). Genes
154 were classified as β -catenin dependent or independent based on their transcriptional response
156 to PORCN inhibition in the presence or absence of stabilized β -catenin (**Table S1**). β -catenin
dependent genes were defined as those that were differentially expressed over time in the WT
condition (false discovery rate (FDR)<0.1) and responded differently in WT versus β -cat4A
tumors (interaction test, FDR<0.1). These criteria resulted in 2988 genes being classified as
transcriptional targets of β -catenin dependent signaling. β -catenin independent genes, likely
regulated by Wnt-dependent non-canonical pathways, were those that were differentially
expressed over time after Wnt inhibition in both β -catenin WT (FDR<0.1) and β -cat4A
(FDR<0.1) conditions and whose response to ETC-159 treatment did not significantly differ
between conditions (interaction test, FDR>0.1). Using these criteria, 358 genes (~10% of the
total number of Wnt-regulated genes) were classified as β -catenin-independent.

158 To better understand the changes in gene expression, these two sets of genes were clustered
160 based on their temporal response to Wnt inhibition. This identified seven clusters of β -catenin-
162 independent genes, and three clusters of β -catenin independent genes (**Figure 1E**). DA1-4 (DA
= Dependent & Activated) were classified as β -catenin dependent and Wnt-activated, as their
164 expression decreased in response to ETC-159, while DR1-2 (DA = Dependent & Repressed)
were classified as β -catenin dependent and Wnt-repressed, as their expression increased in
response to ETC-159 treatment. DN1 (Dependent Noise) consisted of only nine genes, likely
due to clustering artefact. DA1 and DA3 contain most of the well-known direct Wnt-target
genes (e.g. *AXIN2*, *NOTUM*, *RNF43*, *MYC*, *NKDI*, *BMP4*).

166 As a proof of concept, we examined *AXIN2*, a well-known direct Wnt-regulated β -catenin
168 target gene. As expected, our analysis classified *AXIN2* as a β -catenin dependent Wnt-activated
170 gene (DA1). In orthotopic HPAF-II tumors, inhibition of Wnt/ β -catenin signaling by ETC-159
led to a dramatic downregulation of *AXIN2* expression (FDR=2.58x10⁻¹³²) (**Figure 2A**).
172 However, in the presence of mutant β -catenin, baseline *AXIN2* expression increased, and Wnt
inhibition had no further effect (FDR=0.49). When comparing the expression changes
174 following Wnt inhibition, a significant interaction was observed (interaction test,
FDR=196x10⁻⁵⁸), indicating a differential response to Wnt inhibition over time depending on
176 the status of β -catenin. Conversely, *DEPTOR* was identified as a β -catenin dependent, Wnt-
178 repressed gene (DR1). It was significantly upregulated in WT tumors following Wnt inhibition
(FDR=7.68x10⁻¹¹) but did not respond to ETC-159 treatment in the presence of mutant β -
catenin (FDR=0.52), and these responses were significantly different between the two
conditions (interaction test, FDR=0.06) (**Figure 2B**).

Three clusters were identified in the 358 β -catenin independent genes. Cluster IA1 (Independent & Activated) was Wnt-activated, while both IR1 and IR2 were Wnt-repressed. *PROCA1* (IA1) and *ABCA6* (IR1) are examples of β -catenin independent genes (**Figures 2C and 2D**) that responded to PORCN inhibition in both the WT and β -cat4A tumors with no significant difference in their response, regardless of the β -catenin protein abundance. Genes in these clusters are presumably regulated by non-canonical Wnt signaling pathways, either directly or indirectly.

We compared the clusters of β -catenin dependent and independent genes with the clusters of Wnt-activated and Wnt-repressed genes identified in [7] (Figure S2) and found them to be largely concordant. This demonstrates reproducibility between independent experiments, supporting the biological relevance of the gene expression patterns we observed.

As an independent validation that our approach identified *bona fide* β -catenin independent targets, we treated the β -cat4A and WT cells with a tankyrase inhibitor, G007LK. G007LK treatment alters β -catenin abundance, impacting the expression of β -catenin target genes without affecting β -catenin independent targets [37]. Similar to the effect of the PORCN inhibitor, G007LK treatment reduced *AXIN2* expression (**Figure S1D**), but did not reduce the expression of the β -catenin independent genes *KRT19* and *DUSP5* (**Figure S1E-F**).

HPAF-II tumors are dependent on continuous Wnt signaling, so it was of interest to determine if a further increase in β -catenin caused by ectopic expression of β -cat4A would further change gene expression, or if β -catenin was near-saturating in this system. Of the 2988 β -catenin-dependent Wnt-regulated genes in the HPAF-II orthotopic tumors, only ~10% (296) had significantly higher expression in the tumors with stabilized β -catenin, while 8.6% (258) had a significantly lower expression compared to the WT tumors (**Figure 1E**, column 1). Significant differences were defined as absolute fold-change > 1.5 , FDR < 0.1 from their baseline expression, *i.e.* between β -cat4A and WT (**Figure 1F**). As expected, no genes identified as β -catenin-independent were differentially expressed at baseline. This data suggests that this Wnt-addicted cancer has reached close to maximal β -catenin activation.

In summary, transcriptional profiling of our orthotopic *in vivo* model identified a robust set of β -catenin-dependent and -independent target genes, with the β -catenin independent, non-canonical genes accounting for only 10% of the differentially expressed genes in this model. This great difference between the number of β -catenin dependent and β -catenin independent genes indicates that, at least in this context, WNT signaling regulates gene expression predominantly through β -catenin, and/or that non-canonical Wnt signaling may predominantly be acting via non-transcriptional mechanisms.

β -catenin-dependent and -independent Wnt target genes associate with distinct biological pathways.

Functional enrichment analysis was performed to characterize the clusters of β -catenin dependent and independent genes (**Figure 3A, Table S2**). The clusters of Wnt-activated β -catenin dependent genes (DA1-4) were enriched for processes and pathways including Wnt signaling, ribosome biogenesis, DNA replication, splicing and DNA repair, while the Wnt-repressed β -catenin dependent genes (DR1-2) were enriched for protein transport and EGF

220 signaling pathways. This corroborates an extensive literature on Wnt target genes and our
222 previous findings dissecting the effects of inhibiting the Wnt signaling pathway in RNF43
224 mutant pancreatic cancer [6,7,33,38,39] and confirms that these processes are regulated
downstream of β -catenin.

226 In contrast, the clusters of β -catenin independent Wnt-activated genes in IA1 showed no
228 significant pathway enrichment. However, genes in the IR2 cluster showed enrichment for
230 processes related to endoderm development, protein O-linked glycosylation and axon
guidance, and those in IR1 were enriched for actin organization and cell junction assembly.
Taken together, this indicates that the β -catenin dependent and independent branches of the
Wnt signaling pathways regulate largely distinct downstream signaling pathways and
processes, with non-canonical signaling affecting processes related to development and tissue
organization.

232 **β -catenin dependent and independent genes are enriched for distinct transcription factor
234 binding sites.**

236 To identify the transcription factors potentially involved in regulating each of the β -catenin
dependent and independent clusters we performed Transcription Factor Binding Site (TFBS)
enrichment analysis (**Table S2**) on their promoters, examining sequences 2 kb upstream and
500 bp downstream from their respective transcriptional start site (TSS) (Figure 3B).

238 β -catenin most famously regulates gene expression by binding to and de-repressing
members of the LEF/TCF family of transcription factors, thus activating transcription.
240 Consistent with this, DA1, the cluster containing most of the well-known β -catenin dependent
genes showed significant enrichment for TCF7L1 motif, also known as the Wnt-response
242 element, or WRE. DA3 and DA4, clusters enriched for cell cycle related genes (Figure 3A)
244 were also enriched for binding sites for E2F1 and MYC and other key mediators of cell
proliferation and mitosis. We note that many relevant LEF/TCF binding sites may be present
246 in enhancers rather than promoters, explaining why they are not strongly enriched in all β -
catenin dependent Wnt activated gene clusters. On the other hand, β -catenin-dependent
repressed clusters were significantly enriched for binding sites for USF1, JUND and FOXO1.

248 The β -catenin-independent genes were enriched for a distinct set of TFBSs, with the
activated genes showing significant enrichment for RORB binding sites. The β -catenin
250 independent repressed genes were notably enriched for motifs bound by homeobox factors
including GSC2, POU6F2, and MSGN1. This finding aligns with the known role of non-
252 canonical Wnt signaling in embryonic development. Overall, the set of enriched motifs were
254 distinct for the dependent and independent genes, consistent with our current understanding
that they are regulated by distinct signaling pathways.

A Negative regulatory element (NRE) is enriched in Wnt-dependent gene clusters

256 An 11-bp sequence, known as the Negative Regulatory Element (NRE) (**Figure 3C**), was
258 previously identified as a motif that modulates the expression of Wnt/ β -catenin target genes in
Xenopus laevis, and was also shown to be functional in mouse embryonic stem cells [34]. This
260 sequence was shown to recruit both TCF and β -catenin, with the binding of both proteins being
necessary to mediate its repressive effects. We investigated whether any of the identified

clusters of Wnt-regulated genes were enriched for this motif (**Figure 3C**, Methods). Indeed, we observed an enrichment for a variant of the published NRE element in the Wnt/β-catenin dependent repressed gene clusters with significant enrichment in DR1, suggesting that this motif might be responsible for mediating the expression of a subset of Wnt-repressed target genes.

266 The NRE motif is enriched in TCF4 and β-catenin ChIP-seq bound peaks

Given the enrichment for the NRE motif in Wnt/β-catenin-repressed genes, we examined publicly available β-catenin and TCF4 (the protein product of the *TCF7L2* gene) ChIP-seq datasets to identify whether the NRE motif was present in regions bound by either of these proteins [40,41]. Analysis of the TCF4 ChIP-seq data obtained from six cell lines found that both the WRE motif and NRE motif were significantly enriched in the TCF4 peaks in all cell lines (**Figure 4A**, Bonferroni corrected p-value < 0.05). The NRE was also significantly enriched compared to random background sequences in the other seven cell-lines, although the enrichment was consistently lower compared to the enrichment observed for the TCF4-binding WRE (**Figure 4A and B**). Analysis of publicly available β-catenin ChIP-seq data generated from DLD1 and SW480 cells also revealed that β-catenin peaks were significantly enriched for both NREs and WREs. In five of the eight cell lines investigated, these two motifs were found to significantly co-occur within peaks more than expected by chance (Fisher's exact test, Bonferroni corrected p-value < 0.05) (**Figure 4C**); however, no preferred distance between NREs and WREs relative to each other was observed (**Figure S3A**). In addition, using publicly available datasets [42,43] we investigated the chromatin binding profiles for components of the LEF/TCF nuclear complex in HEK293T and HEPG2 cells and found significant enrichment for the NRE motif (**Figure S3B-C**). This supports the proposed role of WREs and NREs functioning together to regulate the expression of a target genes in response to Wnt signaling [34].

286 The negative regulatory element is sufficient to mediate Wnt signaling induced transcriptional repression in human cells.

288 To functionally assess the role of the NRE in repressing genes in a β-catenin-dependent manner we created three synthetic reporters: i) a minimal reporter (MimRep) that does not respond to Wnt signaling (**Figure S3D**), ii) a 2NRE-reporter containing two 11 bp NRE sites, and iii) a 2WRE-reporter with two WRE sites placed in front of the minimal reporter. In human 290 colorectal cancer HCT116 cells that have hyperactivated Wnt signaling due to a S45del mutation in β-catenin, as expected the 2WRE-reporter showed significantly increased activity, 292 while the 2NRE-reporter activity was repressed compared to the minimal reporter (**Figure 4D**). In contrast, in human fibrosarcoma HT1080 cells with low basal Wnt activity, both the 2NRE-reporter and minimal reporter had similar transcriptional activities, while the 2WRE-reporter 294 showed reduced transcriptional activity (**Figure 4E**). This reduction could potentially be due to the interaction between TCF/LEF and Groucho in the "Wnt-off" condition, which is shown 296 to mediate transcriptional repression of the Wnt activated genes via the WRE [44,45]. These 298 findings suggest that the NRE motif is sufficient to repress reporter activity in a β-catenin-dependent 300 manner in human cancer cell lines.

302 **NREs are necessary for the repression of the Wnt-repressed/β-catenin-dependent
303 lncRNA *ABHD11-AS1*.**

304 As the NRE motif was found to functionally repress reporter activity in HCT116 cells and
305 was enriched in multiple TCF4/β-catenin ChIP-seq datasets, we hypothesized that it may play
306 an important role in regulating a subset of Wnt-repressed/β-catenin-dependent genes in human
307 cancer cells. We previously identified *ABHD11-AS1* as a Wnt-repressed long non-coding RNA
308 (lncRNA) in an orthotopic model of Wnt-addicted pancreatic adenocarcinoma (**Figure 5A**).
309 CRISPRi mediated knockdown of *ABHD11-AS1* led to an increase in the growth of HPAF-II
310 derived subcutaneous tumors, supporting its role as a tumor suppressor *in vivo* (Liu et al.,
311 2020). To test if *ABHD11-AS1* expression is β-catenin-dependent, we treated HT1080 cells
312 with the GSK3 inhibitor BIO that regulates canonical Wnt signaling by stabilizing β-catenin
313 [46]. Treatment of HT1080 cells with BIO led to a significant decrease in *ABHD11-AS1*
314 expression (**Figure 5C**). In both HPAF-II and HCT116 cells that have hyperactivated Wnt
315 signaling due to mutations in *RNF43* and *CTNNB1* respectively, knocking down *CTNNB1*
316 using either CRISPRi in HPAF-II cells (**Figure 5D**), or siRNA in HCT116 cells (**Figure 5E**)
317 led to an increase in *ABHD11-AS1* expression. Furthermore, ETC-159 treatment of HPAF-II
318 cells, inhibiting Wnt secretion, increased *ABHD11-AS1* expression, but this effect was blocked
319 in the presence of stabilized β-catenin (**Figure 5F**). Taken together, these results indicate that
320 *ABHD11-AS1* lncRNA is repressed by β-catenin across multiple cancer cell lines.

321 We then examined the *ABHD11-AS1* for NREs and WREs. Analysis of the promoter region
322 of *ABHD11-AS1* (3.4 kb upstream and 200 bp downstream of its TSS to the 1st intron)
323 identified two candidate NREs ($P < 2 \times 10^{-4}$), located at 2797 and 1057 bp upstream of the TSS
324 (denoted N1 and N2 respectively), and three candidate WREs ($P < 6 \times 10^{-4}$), located 2785, 1462
325 and 1075 bp upstream of the TSS (**Figure 5B**). To elucidate the role of NREs in the regulation
326 of *ABHD11-AS1*, we cloned its promoter region, from 3327 bp upstream to 151 bp downstream
327 of its TSS, into a luciferase reporter pGL4.20. We then systematically deleted regions of the
328 promoter to remove NREs and measured the resulting reporter activity in HCT116 cells.
329 Deleting a region containing N1 ($\Delta N1$, W1), led to a 1.6-fold increase in reporter activity
330 compared to the full length (FL) construct (**Figure 5G**), suggesting that NRE (N1) represses
331 *ABHD11-AS1* expression. Further deletion of a 1265 bp fragment ($\Delta W2$), with no identifiable
332 NREs, did not change the transcriptional activity (**Figure 5G**). However, deleting a 400 bp
333 DNA fragment containing N2 ($\Delta N2$, W3), led to a 2.9-fold increase in the reporter activity
334 (**Figure 5G**). This suggests that NREs are required for repressing the expression of *ABHD11-
AS1*.

335 Large deletions of the promoter fragment could potentially lead to the loss of additional
336 functional elements besides the NREs. Therefore, to specifically investigate the effect of NREs
337 on the *ABHD11-AS1* regulation, we performed a series of mutagenesis experiments (**Figure
338 5H**). It has been shown that mutating the 11th base of the NRE motif can reduce its suppressive
339 function [34]. We therefore mutated the last base of each of the two NREs (Mut N1, Mut N2)
340 in the 3478-bp promoter fragment. Each of these mutants significantly enhanced reporter
341 activity to a level comparable to that observed following deletion of N1 ($\Delta N1$) harboring
342 regions. However, the reporter activity of the N2 mutant was further increased by deletion of
343 both the NRE and WRE elements (**Figure 5H**, compare $\Delta W2$ Mut N2 with $\Delta N2$, W3),

346 suggesting that a single bp change does not completely abrogate the NRE function, and/or that
347 the interaction with the WRE element is required for the repression. Taken together, these data
348 show that perturbation of NREs in the *ABHD11-AS1* promoter leads to its activation,
349 confirming that NREs are functional motifs that are capable of repressing gene expression in a
350 Wnt-dependent manner in human cancer cells.

350 **NRE modulates the expression of Wnt-activated/β-catenin-dependent gene *AXIN2*.**

352 Kim *et al.* suggested that β-catenin binds to both NREs as well as WREs to modulate the
353 expression of the Wnt-activated genes *siamois* in *Xenopus* and *Brachyury* in mESCs [34]. To
354 test the hypothesis that NREs can modulate Wnt-activated/β-catenin-dependent genes, we
355 examined *AXIN2*, a well-established β-catenin dependent Wnt-activated gene (**Figure 6A**).
356 Scanning the human *AXIN2* promoter region (from 3.5 kb upstream to 1 kb downstream of its
357 TSS), we identified seven WREs ($P < 1.5 \times 10^{-4}$) (**Figure 6B**) with five located within the first
358 intron and two within the 1 kb of its TSS. In addition, we also identified one NRE ($P < 1.5 \times 10^{-4}$) located 1329 bp upstream from the TSS (**Figure 6B**).

360 We confirmed that *AXIN2* is a Wnt-activated/β-catenin-dependent gene in various *in vitro*
361 models (**Figure S4A-C**). As expected, *AXIN2* was upregulated following BIO treatment in
362 HT1080 cells and was downregulated by using either CRISPRi or siRNA knockdown of β-
363 catenin in HPAF-II and HCT116 cells. In addition, *AXIN2* was significantly upregulated in β-
364 cat4A HPAF-II and did not respond to PORCN inhibition unlike the HPAF-II WT cells (**Figure**
S4D).

366 To study the functional importance of NREs in the regulation of *AXIN2* expression, we
367 cloned the *AXIN2* promoter region from 2012 bp upstream to 1261 bp downstream of its TSS
368 into a luciferase reporter. Removing the DNA region containing N1 ($\Delta N1$) in this 3273 bp
369 promoter fragment increased the reporter activity by 3-fold in HCT116 cells (**Figure 6C**).
370 Similarly, mutating multiple nucleotides in the poly(thymine) region of NRE N1 to guanine
371 (Mut N1), also significantly enhanced the reporter activity by 2.1-fold (**Figure 6D**). As
372 expected, removing the DNA sequence containing WREs led to a significant decrease in
373 reporter activity (**Figure 6C**). Thus, the NRE can modulate expression of both Wnt/β-catenin
374 repressed and Wnt /β-catenin-activated target genes.

374 **Discussion**

376 Wnt signaling is a potent regulator of gene expression, which is achieved primarily via
377 changes in nuclear β-catenin abundance. In addition, diverse β-catenin-independent Wnt-
378 regulated (non-canonical) pathways have also been described. However, the contribution of
379 these pathways to the Wnt-regulated transcriptional response is poorly understood. Here, using
380 a PORCN inhibitor that blocks the secretion of all Wnts in a robust orthotopic xenograft cancer
381 model, we find that the majority of Wnt-regulated genes (~90%) are regulated by changes in
382 β-catenin abundance, indicating that the Wnt-regulated non-canonical pathways, at least in this
383 cancer model, have a small transcriptional impact. Furthermore, this dataset was also
384 interrogated to better understand how Wnt/β-catenin signaling can repress gene expression.
This analysis confirms and refines the role of a specific negative Regulatory Element (NRE),

extending our understanding of how β -catenin can repress and/or modulate Wnt-regulated genes.

β -catenin independent roles of Wnt signaling have been well-described. Non-canonical Wnt signaling calcium transients can activate PKC and/or CAMKII, while planar cell polarity signaling functions in part via monomeric GTPase and activation of JNK [47,48]. The consequence of regulating these pathways is cytoskeletal or synaptic reorganization [49,50]. While Wnt-JNK signaling can activate gene expression in *Xenopus* there is little evidence this pathway regulates transcription in mammals [51]. Finally, Wnt/STOP signaling increases the proteolysis of proteins including transcription factors such as MYC [5,7,52] but how much they alter gene expression in a physiologic setting is not known. While we cannot separate out the contribution of each of these preceding pathways, our data suggests that taken together, the contribution of these pathways to transcriptional regulation is limited to only 10% of the Wnt-regulated genes. These β -catenin independent genes were enriched for developmental pathways and consistent with that, they showed an enrichment for the transcription factor binding sites for homeobox factors including GSC2, POU6F2 and MSGN1.

There are three strengths of our experimental system. First, we used a cancer model driven by an RNF43 mutation that sensitizes tumor cells to all Wnts, both canonical and non-canonical. Second, using an orthotopic xenograft mode provides a more physiologic milieu, making it far more robust in identifying Wnt-regulated genes than either non-orthotopic xenografts (usually flank) or tissue culture models [7]. Finally, using a drug that rapidly inactivates Wnt secretion and harvesting the tumors at early time points maximizes the identification of direct targets of the Wnt pathway. This approach provided clear insights into the Wnt-regulated transcriptome.

One striking finding in this and our prior studies is that although there are similar number of genes that are repressed versus activated by Wnt signaling, only a limited number Wnt repressed genes have been identified previously. Here we show that most of these Wnt-repressed genes are still regulated by β -catenin. Several mechanisms have been proposed to explain direct β -catenin/TCF dependent gene repression. This repression was shown to be mediated by binding of TCFs to Wnt Response Elements (WREs). For example, the positioning of WREs in relation to the transcription start site of *MMP7* was shown to be critical for determining its effect on gene expression [27]. In *Drosophila*, Wnt/ β -catenin signaling represses *stripe* expression at the parasegment boundary during development by steric competition between TCF/LEF (Pangolin) and the transcriptional activator Ci at partially overlapping binding sites [53]. In mice during hair follicle bud development Wnt/ β -catenin signaling represses E-cadherin [54] by TCF binding to WRE, which then recruits the transcriptional repressor Snail.

Here we confirm and extend the identification of a negative regulatory element (NRE), where β -catenin interacts with transcription factors such as TCF to repress gene expression. This is consistent with prior work that identified non-canonical TCF binding sites involved in gene repression. For example, a non-canonical TCF site repressed *Ugt36Bc* expression in *Drosophila* [28] and a novel bipartite TCF binding sequence mediating repression was identified in the fly lymph gland [29]. Other studies have suggested that Wnt-mediated

428 repression works by TCF forming a complex with another TF such as GATA3, forming a
repressive complex [41].

430 Kim et al. identified an 11 bp repressive motif termed the Negative Regulatory Element
432 often present alongside the canonical WRE in Wnt-regulated genes [34] that was shown to
interact with both TCF and β -catenin proteins. While TCF can bind to the NRE, β -catenin may
434 also form repressive complexes with transcription factors other than TCF/LEF that could also
interact with this element. Our study confirms that the NRE, albeit with a modified sequence,
436 is enriched in a subset of Wnt-repressed genes. Our mutagenesis studies show that the NRE
directs β -catenin dependent repression of the long non-coding RNA *ABHD11-AS1*, and
438 interestingly, also modulates the expression of the robustly Wnt-activated gene *AXIN2*.
Overall, this study supports the role of the NRE as an important *cis*-regulatory motif regulating
Wnt target genes in human cells and suggests a *cis*-regulatory grammar which can determine
whether a target gene will be repressed or activated by Wnt signaling.

440 We observed 10% of Wnt-regulated genes to be β -catenin independent. This may be due
442 to the high sensitivity of a cancer cell line used in this study that may have shaped the Wnt-
regulated transcriptome to favor expression of β -catenin dependent genes. It is also possible
444 that the β -catenin independent gene expression may be more common in normal tissue
homeostasis and/or developmental stages. These questions can be addressed in future studies.

446 In conclusion, this study provides a comprehensive analysis of the β -catenin dependent vs
independent genes in a cancer model and advances our knowledge of the role of a *cis*-regulatory
motif in regulating the expression of Wnt target genes in human cells.

448

450 **Materials and Methods**

Study approval

452 NOD SCID gamma mice were purchased from InVivos, Singapore and from Jackson
Laboratories, Bar Harbor, Maine. All animal studies were approved by the SingHealth
454 Institutional Animal Care and Use Committee (IACUC # 2014/SHS/975) and adhered to
relevant regulations. A total of 32 mice, both male and female, were used for the study and
456 housed in standard cages and had unrestricted access to food and water.

RNA-seq

458 Briefly, HPAF-II cells obtained from ATCC (RRID:CVCL_0313) with stable
expression of firefly luciferase with and without stable expression of mutant β -catenin were
460 orthotopically injected into the pancreas of NSG mice, as previously described. Approximately
4 weeks later, mice were treated with ETC-159 or vehicle as indicated and then sacrificed at
462 the indicated time points. RNAseq was performed on harvested tumors as previously described
[7].

464 **Data processing and quality control:**

466 Due to potential stromal contamination arising from the use of an orthotopic mouse model
468 Xenome was used prior to alignment to remove murine (mm10) reads [55]. FastQC was used
470 to ensure the overall quality of the sequences. The remaining reads were then aligned against
hg38 (Ensembl version 100) using STAR v2.7.1a [56] and RSEM v1.3.1[57]. Genes which
had less than 10 reads mapping on average over all samples, as well as reads mapping to rRNA,
mtRNA, snoRNA, and snRNA were filtered out. Differentially expressed genes were identified
using DEseq2 [58]. Independent filtering was not used in this analysis.

472 **Identification of β -catenin-dependent and independent clusters:**

474 DESeq2 was used to identify genes that responded differently to ETC-159 treatment
476 depending on CTNNB1 status. Gene expression changes were modelled as $y \sim \text{condition} + \text{timepoint} + \text{condition:timepoint}$, where condition is wildtype (WT) or mutant (Mut) and
478 timepoint is 0 h, 4 h, 16 h, 56 h. Likelihood ratio tests were also performed to identify genes
480 that changed expression significantly across time within conditions. Pairwise comparison using
Wald test was performed between WT and Mut conditions at 0 h to identify genes with
differences in baseline expression. Coefficients from the model (representing log fold changes)
were clustered using k-means clustering, with the value of k being determined using the elbow
criterion.

482 **Functional enrichment analysis:**

484 Gene Ontology (GO) enrichment was performed using enrichGO and pathway
enrichments using enrichKEGG from ClusterProfiler [59] using all expressed genes as
background. Terms with FDR < 0.1 were defined as being significantly enriched.

486 **Motif enrichment analysis:**

488 Promoters were defined as 2000 bp upstream and 500 bp downstream or as stated in the
results. Enrichment analysis was performed using monaLisa [60] using JASPAR2020 [61],
min.score 80%, binomial test, all promoters used as background, genome oversample 20.

490 **NRE motif**

492 The NRE motif was derived from the sequences reported [34], however the sequences for
494 Brachyury-1 and Brachyury-2 were reverse complemented before generation of the position
frequency matrix. The position frequency matrix was built following the same methods [62]
by aligning 11-bp NRE sequences using TFBSTools [63].

ChIP-seq

496 CTNNB1 and TCF7L2 ChIP-seq data was downloaded from GEO [40,41]. FastQC was
498 used to perform quality checks on raw sequence data and adapters were trimmed using
cutadapt. Reads were aligned against the human genome (hg38) using BWA [64] and peaks
500 were identified using MACS2, using default parameters [65]. ChIPQC was used to assess the
quality of ChIP-seq samples and experiments [66]. For samples where replicates were
available, an irreproducible discovery rate (IDR) threshold of 0.05 was used to select for highly

502 reproducible peaks [67]. Peaks were centered on their midpoint and resized to 500 bp for analysis.

504 Motif enrichment and identification was performed using MEME [68]. SpaMo was used to determine whether there were significantly enriched spacings between the NRE and WRE 506 motifs [69]. Default parameters used with the margin size of 150 bp.

Motif identification

508 *ABHD11-AS1* promoter region (3.4 kb upstream and 200 bp downstream of its TSS) and 510 *AXIN2* promoter region (3.5 kb upstream to 1 kb downstream of its TSS) were used as input 512 using FIMO [70] to scan for putative NRE and WRE sites with default settings and threshold 514 1e-3. The NRE motif file was generated as described above. The WRE motif was downloaded from JASPAR2020 with ID MA0523.1. We used the associated P value to filter out those less plausible sites in terms of computational prediction and then subjected remaining potential NRE and WRE sites reporter assay to test their functionality.

Construction of ABHD11-AS1 and AXIN2 promoter reporters to assess the effect of NRE truncation and mutation on promoter activity

516 *ABHD11-AS1* promoter region from 3327 bp upstream to 151 bp downstream of its TSS and *AXIN2* promoter region from 2012 bp upstream to 1261 bp downstream of its TSS were 518 cloned from genomic DNA with primer sequences listed in Table S3. The promoter regions 520 were cloned into the luciferase reporter pGL4.20 (Promega) with NheI and HindIII restriction sites (named as FL construct). A series of deletion constructs were generated using FL as a 522 template with primers sequences listed in Table S3. All PCR products were digested with NheI and HindIII and cloned into pGL4.20 (Promega). Site-directed mutagenesis was performed to 524 mutate NRE with primers listed in table S3.

Construction of minimal reporter

526 311 bp (without any putative NREs or WREs) from the ABHD11-AS1 promoter region 528 (sequences listed in Table S3) was cloned into the pGL4.20 (basic vector with no promoter) with NheI and HindIII restriction sites to construct a MimRep. Two NREs and 2 WREs 530 sequences (listed in Table S3) were cloned into the MimRep with SacI and KpnI restriction sites to construct 2NRE-Reporter and 2WRE-Reporter.

Luciferase assay

532 HCT116 (RRID:CVCL_0291) or HT1080 (RRID:CVCL_0317) cells were obtained from 534 ATCC and were seeded into 24-well plates one day before transfection. Cells were transfected with different constructs and control Renilla luciferase expression vector using Lipofectamine 536 2000 (Invitrogen) according to manufacturer's instructions. Luciferase activity was assessed 538 24 h after transfection with the Dual-Luciferase Reporter Assay System (Promega) as previously described [71]. Transfections were performed at least in triplicate on at least two separate experiments. Luciferase signals were first normalized to Renilla. The relative amount 540 of luciferase activity was further normalized to the empty vector (pGL4.20) transfected cells. All experiments were performed with mycoplasma-free cells.

CRISPRi Knock down studies

542 The sgRNAs were cloned into doxycycline-inducible lentiviral sgRNA expression vector
544 FgH1tUTG as previously described [72]. The sgRNA plasmid was packaged into lentiviral
546 particles with psPAX2 and pMD2.G packaging plasmids. The virus supernatant was harvested
48 and 72 h after transfection, filtered through 0.45- μ m filter, and stored at –80 °C. For
548 individual sgRNA knockdown using doxycycline-inducible lentiviral sgRNA expression
550 vector FgH1tUTG, 1 μ g/ml doxycycline final concentration (dox) (from a stock of 10 mg/ml
dissolved in DMSO) was used to induce sgRNA expression from the system, while DMSO
was used as the control. After 48 h induction, total RNA was isolated from the CRISPRi
knockdown cells. RT-qPCR was performed to assess the knockdown efficiency for *CTNNB1*
with *EPNI* gene as an internal control. RT-qPCR primers are listed in Table S3.

552 Author Contributions

554 SL, BM, NH, EP and DMV designed the study and planned experiments. SL and BM
performed experiments. SL, SH, BM and NH analysed data. All authors were involved in
interpretation of the data. SL, BM, NH and DMV wrote the manuscript.

556

Acknowledgements

558 This work was supported by National University of Singapore and Yale-NUS College
559 (through Reimagine Research Grant IG20-RRSG-001 to N.H.), STAR Award MOH-000155
560 to D.M.V. and OFIRG/0055/2017 to Babita Madan from the National Research Foundation
561 Singapore, administered by the Singapore Ministry of Health's National Medical Research
562 Council. The sponsors had no role in the study design, in the collection, analysis and
563 interpretation of data; in the writing of the report; and in the decision to submit the article for
564 publication. Components of the Bioinformatics analysis was performed on the Cardiff School
565 of Biosciences' Biocomputing Hub HPC/Cloud infrastructure (Resources funded by the Cardiff
566 School of Biosciences).

568 Data availability

569 RNA-Seq data is available in the NCBI Gene Expression Omnibus (GEO;
570 <http://www.ncbi.nlm.nih.gov/geo/>) under accession number GSE291732. All analysis code is
available at: https://github.com/harmstonlab/wnt_nre_manuscript

572

574 **References**

576

1 Steinhart Z & Angers S (2018) Wnt signaling in development and tissue homeostasis. *Development* **145**, dev146589.

2 MacDonald BT, Tamai K & He X (2009) Wnt/β-Catenin Signaling: Components, Mechanisms, and Diseases. *Dev Cell* **17**, 9–26.

3 Nusse R & Clevers H (2017) Wnt/β-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. *Cell* **169**, 985–999.

4 Wiese KE, Nusse R & Amerongen R van (2018) Wnt signalling: conquering complexity. *Development* **145**, dev165902.

5 Acebron SP & Niehrs C (2016) β-Catenin-Independent Roles of Wnt/LRP6 Signaling. *Trends Cell Biol* **26**, 956–967.

6 Harmston N, Lim JYS, Arqués O, Palmer HG, Petretto E, Virshup DM & Madan B (2021) Widespread Repression of Gene Expression in Cancer by a Wnt/β-Catenin/MAPK Pathway. *Cancer Res* **81**, 464–475.

7 Madan B, Harmston N, Nallan G, Montoya A, Faull P, Petretto E & Virshup DM (2018) Temporal dynamics of Wnt-dependent transcriptome reveals an oncogenic Wnt/MYC/ribosome axis. *J Clin Investig* **128**, 5620–5633.

8 Nakamura Y, Alves E de P, Veenstra GJC & Hoppler S (2016) Tissue- and stage-specific Wnt target gene expression is controlled subsequent to β-catenin recruitment to cis-regulatory modules. *Dev (Camb, Engl)* **143**, 1914–1925.

9 Wetering M van de, Cavallo R, Dooijes D, Beest M van, Es J van, Loureiro J, Ypma A, Hursh D, Jones T, Bejsovec A, Peifer M, Martín M & Clevers H (1997) Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. *Cell* **88**, 789–99.

10 Yang Y & Mlodzik M (2015) Wnt-Frizzled/Planar Cell Polarity Signaling: Cellular Orientation by Facing the Wind (Wnt). *Annu Rev Cell Dev Biol* **31**, 623–646.

11 Schlessinger K, Hall A & Tolwinski N (2009) Wnt signaling pathways meet Rho GTPases. *Genes Dev* **23**, 265–277.

12 Aoki K & Taketo MM (2007) Adenomatous polyposis coli (APC): a multi-functional tumor suppressor gene. *J Cell Sci* **120**, 3327–3335.

606 13 Zhong Z, Yu J, Virshup DM & Madan B (2020) Wnts and the hallmarks of cancer. *Cancer Metastasis Rev* **39**, 625–645.

608 14 Seshagiri S, Stawiski EW, Durinck S, Modrusan Z, Storm EE, Conboy CB, Chaudhuri S, Guan Y, Janakiraman V, Jaiswal BS, Guillory J, Ha C, Dijkgraaf GJP, Stinson J, Gnad F, Huntley MA, Degenhardt JD, Haverty PM, Bourgon R, Wang W, Koeppen H, Gentleman R, Starr TK, Zhang Z, Largaespada DA, Wu TD & Sauvage FJ de (2012) Recurrent R-spondin fusions in colon cancer. *Nature* **488**, 660–664.

614 15 Jiang X, Hao H-X, Grownay JD, Woolfenden S, Bottiglio C, Ng N, Lu B, Hsieh MH, Bagdasarian L, Meyer R, Smith TR, Avello M, Charlat O, Xie Y, Porter JA, Pan S, Liu J, McLaughlin ME & Cong F (2013) Inactivating mutations of RNF43 confer Wnt dependency in pancreatic ductal adenocarcinoma. *Proc Natl Acad Sci* **110**, 12649–12654.

618 16 Huang S-MA, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA, Charlat O, Wiellette E, Zhang Y, Wiessner S, Hild M, Shi X, Wilson CJ, Mickanin C, Myer V, Fazal A, Tomlinson R, Serluca F, Shao W, Cheng H, Shultz M, Rau C, Schirle M, Schlegl J, Ghidelli S, Fawell S, Lu C, Curtis D, Kirschner MW, Lengauer C, Finan PM, Tallarico JA, Bouwmeester T, Porter JA, Bauer A & Cong F (2009) Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. *Nature* **461**, 614–620.

624 17 Steinhart Z, Pavlovic Z, Chandrashekhar M, Hart T, Wang X, Zhang X, Robitaille M, Brown KR, Jaksani S, Overmeer R, Boj SF, Adams J, Pan J, Clevers H, Sidhu S, Moffat J & Angers S (2017) Genome-wide CRISPR screens reveal a Wnt–FZD5 signaling circuit as a druggable vulnerability of RNF43-mutant pancreatic tumors. *Nat Med* **23**, 60–68.

628 18 Madan B, Ke Z, Harmston N, Ho SY, Frois AO, Alam J, Jeyaraj DA, Pendharkar V, Ghosh K, Virshup IH, Manoharan V, Ong EH, Sangthongpitak K, Hill J, Petretto E, Keller TH, Lee MA, Matter A & Virshup DM (2016) Wnt addiction of genetically defined cancers reversed by PORCN inhibition. *Oncogene* **35**, 2197–2207.

632 19 Coombs GS, Yu J, Canning CA, Veltri CA, Covey TM, Cheong JK, Utomo V, Banerjee N, Zhang ZH, Jadulco RC, Concepcion GP, Bugni TS, Harper MK, Mihalek I, Jones CM, Ireland CM & Virshup DM (2010) WLS-dependent secretion of WNT3A requires Ser209 acylation and vacuolar acidification. *J Cell Sci* **123**, 3357–3367.

634 20 Lum L & Clevers H (2012) The Unusual Case of Porcupine. *Science* **337**, 922–923.

636 21 Proffitt KD, Madan B, Ke Z, Pendharkar V, Ding L, Lee MA, Hannoush RN & Virshup DM (2013) Pharmacological Inhibition of the Wnt Acyltransferase PORCN Prevents Growth of WNT-Driven Mammary Cancer. *Cancer Res* **73**, 502–507.

640 22 Takada R, Satomi Y, Kurata T, Ueno N, Norioka S, Kondoh H, Takao T & Takada S (2006) Monounsaturated Fatty Acid Modification of Wnt Protein: Its Role in Wnt Secretion. *Dev Cell* **11**, 791–801.

642 23 Madan B & Virshup DM (2015) Targeting Wnts at the Source—New Mechanisms, New Biomarkers, New Drugs. *Mol Cancer Ther* **14**, 1087–1094.

644 24 Tetsu O & McCormick F (1999) β -Catenin regulates expression of cyclin D1 in colon carcinoma cells. *Nature* **398**, 422–426.

646 25 Jho E, Zhang T, Domon C, Joo C-K, Freund J-N & Costantini F (2002) Wnt/beta-648 catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. *Molecular and Cellular Biology* **22**, 1172–1183.

650 26 He T-C, Sparks AB, Rago C, Hermeking H, Zawel L, Costa LT da, Morin PJ, Vogelstein B & Kinzler KW (1998) Identification of c-MYC as a Target of the APC Pathway. *Science* **281**, 1509–1512.

652 27 Gustavson MD, Crawford HC, Fingleton B & Matrisian LM (2004) Tcf binding sequence and position determines β -catenin and Lef-1 responsiveness of MMP-7 promoters. *Mol 654 Carcinog* **41**, 125–139.

656 28 Blauwkamp TA, Chang MV & Cadigan KM (2008) Novel TCF-binding sites specify transcriptional repression by Wnt signalling. *EMBO J* **27**, 1436–1446.

658 29 Zhang CU, Blauwkamp TA, Burby PE & Cadigan KM (2014) Wnt-Mediated Repression via Bipartite DNA Recognition by TCF in the Drosophila Hematopoietic System. *PLoS Genet* **10**, e1004509.

660 30 Theisen H, Syed A, Nguyen BT, Lukacsovich T, Purcell J, Srivastava GP, Iron D, Gaudenz K, Nie Q, Wan FYM, Waterman ML & Marsh JL (2007) Wingless Directly 662 Represses DPP Morphogen Expression via an Armadillo/TCF/Brinker Complex. *PLoS ONE* **2**, e142.

664 31 Saller E, Kelley A & Bienz M (2002) The transcriptional repressor Brinker antagonizes Wingless signaling. *Genes Dev* **16**, 1828–1838.

666 32 Hoverter NP & Waterman ML (2008) A Wnt-fall for gene regulation: repression. *Sci Signal* **1**, pe43–pe43.

668 33 Madan B, Wadia SR, Patnaik S, Harmston N, Tan EKW, Tan IBH, Nes WD, Petretto E & 670 Virshup DM (2024) The cholesterol biosynthesis enzyme FAXDC2 couples Wnt/ β -catenin to RTK/MAPK signaling. *J Clin Investig* **134**, e171222.

672 34 Kim K, Cho J, Hilzinger TS, Nunns H, Liu A, Ryba BE & Goentoro L (2017) Two-Element Transcriptional Regulation in the Canonical Wnt Pathway. *Current Biology* **27**, 2357-2364.e5.

674 35 Liu J, Pan S, Hsieh MH, Ng N, Sun F, Wang T, Kasibhatla S, Schuller AG, Li AG, Cheng D, Li J, Tompkins C, Pferdekamper A, Steffy A, Cheng J, Kowal C, Phung V, Guo G, 676 Wang Y, Graham MP, Flynn S, Brenner JC, Li C, Villarroel MC, Schultz PG, Wu X, McNamara P, Sellers WR, Petruzzelli L, Boral AL, Seidel HM, McLaughlin ME, Che J, 678 Carey TE, Vanasse G & Harris JL (2013) Targeting Wnt-driven cancer through the inhibition of Porcupine by LGK974. *Proc National Acad Sci* **110**, 20224–20229.

680 36 Fuerer C & Nusse R (2010) Lentiviral Vectors to Probe and Manipulate the Wnt Signaling Pathway. *Plos One* **5**, e9370.

682 37 Lau T, Chan E, Callow M, Waaler J, Boggs J, Blake RA, Magnuson S, Sambrone A,
684 Schutten M, Firestein R, Machon O, Korinek V, Choo E, Diaz D, Merchant M, Polakis P,
Holsworth DD, Krauss S & Costa M (2013) A novel tankyrase small-molecule inhibitor
686 suppresses APC mutation-driven colorectal tumor growth. *Cancer Research* **73**, 3132–
3144.

688 38 Idris M, Harmston N, Petretto E, Madan B & Virshup DM (2019) Broad regulation of
gene isoform expression by Wnt signaling in cancer. *Rna* **25**, 1696–1713.

690 39 Kaur A, Lim JYS, Sepramaniam S, Patnaik S, Harmston N, Lee MA, Petretto E, Virshup
694 DM & Madan B (2021) WNT inhibition creates a BRCA-like state in Wnt-addicted
cancer. *Embo Mol Med* **13**, e13349.

692 40 Wan C, Mahara S, Sun C, Doan A, Chua HK, Xu D, Bian J, Li Y, Zhu D, Sooraj D,
Cierpicki T, Grembecka J & Firestein R (2021) Genome-scale CRISPR-Cas9 screen of
694 Wnt/β-catenin signaling identifies therapeutic targets for colorectal cancer. *Sci Adv* **7**,
eabf2567.

696 41 Frietze S, Wang R, Yao L, Tak YG, Ye Z, Gaddis M, Witt H, Farnham PJ & Jin VX
(2012) Cell type-specific binding patterns reveal that TCF7L2 can be tethered to the
698 genome by association with GATA3. *Genome biology* **13**, R52.

700 42 Zambanini G, Nordin A, Jonasson M, Pagella P & Cantù C (2022) A new cut&run low
volume-urea (LoV-U) protocol optimized for transcriptional co-factors uncovers Wnt/b-
catenin tissue-specific genomic targets. *Development* **149**, dev201124.

702 43 Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA, Doyle F, Epstein CB, Frietze S,
Harrow J, Kaul R, Khatun J, Lajoie BR, Landt SG, Lee B-K, Pauli F, Rosenbloom KR,
704 Sabo P, Safi A, Sanyal A, Shores N, Simon JM, Song L, Trinklein ND, Altshuler RC,
Birney E, Brown JB, Cheng C, Djebali S, Dong X, Dunham I, Ernst J, Furey TS, Gerstein
706 M, Giardine B, Greven M, Hardison RC, Harris RS, Herrero J, Hoffman MM, Iyer S,
Kellis M, Khatun J, Kheradpour P, Kundaje A, Lassmann T, Li Q, Lin X, Marinov GK,
708 Merkel A, Mortazavi A, Parker SCJ, Reddy TE, Rozowsky J, Schlesinger F, Thurman RE,
Wang J, Ward LD, Whitfield TW, Wilder SP, Wu W, Xi HS, Yip KY, Zhuang J,
710 Bernstein BE, Birney E, Dunham I, Green ED, Gunter C, Snyder M, Pazin MJ, Lowdon
RF, Dillon LAL, Adams LB, Kelly CJ, Zhang J, Wexler JR, Green ED, Good PJ, Feingold
712 EA, Bernstein BE, Birney E, Crawford GE, Dekker J, Elnitski L, Farnham PJ, Gerstein M,
Giddings MC, Gingeras TR, Green ED, Guigó R, Hardison RC, Hubbard TJ, Kellis M,
714 Kent WJ, Lieb JD, Margulies EH, Myers RM, Snyder M, Stamatoyannopoulos JA,
Tenenbaum SA, Weng Z, White KP, Wold B, Khatun J, Yu Y, Wrobel J, Risk BA,
716 Gunawardena HP, Kuiper HC, Maier CW, Xie L, Chen X, Giddings MC, Bernstein BE,
Epstein CB, Shores N, Ernst J, Kheradpour P, Mikkelsen TS, Gillespie S, Goren A, Ram
718 O, Zhang X, Wang L, Issner R, Coyne MJ, Durham T, Ku M, Truong T, Ward LD,
Altshuler RC, Eaton ML, Kellis M, Djebali S, Davis CA, Merkel A, Dobin A, Lassmann
720 T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, Xue C, Marinov GK, Khatun
J, Williams BA, Zaleski C, Rozowsky J, Röder M, Kokocinski F, Abdelhamid RF, Alioto
722 T, Antoshechkin I, Baer MT, Batut P, Bell I, Bell K, Chakrabortty S, Chen X, Chrast J,
Curado J, Derrien T, Drenkow J, Dumais E, Dumais J, Duttagupta R, Fastuca M, Fejes-
724 Toth K, Ferreira P, Foissac S, Fullwood MJ, Gao H, Gonzalez D, Gordon A,
Gunawardena HP, Howald C, Jha S, Johnson R, Kapranov P, King B, Kingswood C, Li G,

726 Luo OJ, Park E, Preall JB, Presaud K, Ribeca P, Risk BA, Robyr D, Ruan X, Sammeth M,
728 Sandhu KS, Schaeffer L, See L-H, Shahab A, Skancke J, Suzuki AM, Takahashi H,
Tilgner H, Trout D, Walters N, Wang H, Wrobel J, Yu Y, Hayashizaki Y, Harrow J,
730 Gerstein M, Hubbard TJ, Reymond A, Antonarakis SE, Hannon GJ, Giddings MC, Ruan
Y, Wold B, Carninci P, Guigó R, Gingeras TR, Rosenbloom KR, Sloan CA, Learned K,
732 Malladi VS, Wong MC, Barber GP, Cline MS, Dreszer TR, Heitner SG, Karolchik D,
Kent WJ, Kirkup VM, Meyer LR, Long JC, Maddren M, Raney BJ, Furey TS, Song L,
Grasfeder LL, Giresi PG, Lee B-K, Battenhouse A, Sheffield NC, Simon JM, Showers
734 KA, Safi A, London D, Bhinge AA, Shestak C, Schaner MR, Kim SK, Zhang ZZ,
Mieczkowski PA, Mieczkowska JO, Liu Z, McDaniell RM, Ni Y, Rashid NU, Kim MJ,
736 Adar S, Zhang Z, Wang T, Winter D, Keefe D, Birney E, Iyer VR, Lieb JD, Crawford GE,
Li G, Sandhu KS, Zheng M, Wang P, Luo OJ, Shahab A, Fullwood MJ, Ruan X, Ruan Y,
738 Myers RM, Pauli F, Williams BA, Gertz J, Marinov GK, Reddy TE, Vielmetter J,
Partridge E, Trout D, Varley KE, Gasper C, Bansal A, Pepke S, Jain P, Amrhein H,
740 Bowling KM, Anaya M, Cross MK, King B, Muratet MA, Antoshechkin I, Newberry
KM, McCue K, Nesmith AS, Fisher-Aylor KI, Pusey B, DeSalvo G, Parker SL,
742 Balasubramanian S, Davis NS, Meadows SK, Eggleston T, Gunter C, Newberry JS, Levy
SE, Absher DM, Mortazavi A, Wong WH, Wold B, Blow MJ, Visel A, Pennachio LA,
744 Elnitski L, Margulies EH, Parker SCJ, Petrykowska HM, Abyzov A, Aken B, Barrell D,
Barson G, Berry A, Bignell A, Boychenko V, Bussotti G, Chrust J, Davidson C, Derrien
746 T, Despacio-Reyes G, Diekhans M, Ezkurdia I, Frankish A, Gilbert J, Gonzalez JM,
Griffiths E, Harte R, Hendrix DA, Howald C, Hunt T, Jungreis I, Kay M, Khurana E,
748 Kokocinski F, Leng J, Lin MF, Loveland J, Lu Z, Manthravadi D, Mariotti M, Mudge J,
Mukherjee G, Notredame C, Pei B, Rodriguez JM, Saunders G, Sboner A, Searle S, Sisu
750 C, Snow C, Steward C, Tanzer A, Tapanari E, Tress ML, Baren MJ van, Walters N,
Washietl S, Wilming L, Zadissa A, Zhang Z, Brent M, Haussler D, Kellis M, Valencia A,
752 Gerstein M, Reymond A, Guigó R, Harrow J, Hubbard TJ, Landt SG, Frietze S, Abyzov
A, Addleman N, Alexander RP, Auerbach RK, Balasubramanian S, Bettinger K,
754 Bhardwaj N, Boyle AP, Cao AR, Cayting P, Charos A, Cheng Y, Cheng C, Eastman C,
Euskirchen G, Fleming JD, Grubert F, Habegger L, Hariharan M, Harmanci A, Iyengar S,
756 Jin VX, Karczewski KJ, Kasowski M, Lacleoute P, Lam H, Lamarre-Vincent N, Leng J,
Lian J, Lindahl-Allen M, Min R, Miotto B, Monahan H, Moqtaderi Z, Mu XJ, O'Geen H,
758 Ouyang Z, Patacsi D, Pei B, Raha D, Ramirez L, Reed B, Rozowsky J, Sboner A, Shi M,
Sisu C, Slifer T, Witt H, Wu L, Xu X, Yan K-K, Yang X, Yip KY, Zhang Z, Struhl K,
760 Weissman SM, Gerstein M, Farnham PJ, Snyder M, Tenenbaum SA, Penalva LO, Doyle
F, Karmakar S, Landt SG, Bhanvadia RR, Choudhury A, Domanus M, Ma L, Moran J,
762 Patacsi D, Slifer T, Victorsen A, Yang X, Snyder M, White KP, Auer T, Centanin L,
Eichenlaub M, Gruhl F, Heermann S, Hoeckendorf B, Inoue D, Kellher T, Kirchmaier S,
764 Mueller C, Reinhardt R, Schertel L, Schneider S, Sinn R, Wittbrodt B, Wittbrodt J, Weng
Z, Whitfield TW, Wang J, Collins PJ, Aldred SF, Trinklein ND, Partridge EC, Myers RM,
Dekker J, Jain G, Lajoie BR, Sanyal A, Balasundaram G, Bates DL, Byron R, Canfield
766 TK, Diegel MJ, Dunn D, Ebersol AK, Frum T, Garg K, Gist E, Hansen RS, Boatman L,
Haugen E, Humbert R, Jain G, Johnson AK, Johnson EM, Kutyavin TV, Lajoie BR, Lee
768 K, Lotakis D, Maurano MT, Neph SJ, Neri FV, Nguyen ED, Qu H, Reynolds AP, Roach
V, Rynes E, Sabo P, Sanchez ME, Sandstrom RS, Sanyal A, Shafer AO, Stergachis AB,
Thomas S, Thurman RE, Vernot B, Vierstra J, Vong S, Wang H, Weaver MA, Yan Y,
770 Zhang M, Akey JM, Bender M, Dorschner MO, Groudine M, MacCoss MJ, Navas P,
Stamatoyannopoulos G, Kaul R, Dekker J, Stamatoyannopoulos JA, Dunham I, Beal K,
772 Brazma A, Fllice P, Herrero J, Johnson N, Keefe D, Lukk M, Luscombe NM, Sobral D,
Vaquerizas JM, Wilder SP, Batzoglou S, Sidow A, Hussami N, Kyriazopoulou-

776 Panagiotopoulou S, Libbrecht MW, Schaub MA, Kundaje A, Hardison RC, Miller W,
778 Giardine B, Harris RS, Wu W, Bickel PJ, Banfai B, Boley NP, Brown JB, Huang H, Li Q,
780 Li JJ, Noble WS, Bilmes JA, Buske OJ, Hoffman MM, Sahu AD, Kharchenko PV, Park
782 PJ, Baker D, Taylor J, Weng Z, Iyer S, Dong X, Greven M, Lin X, Wang J, Xi HS,
Zhuang J, Gerstein M, Alexander RP, Balasubramanian S, Cheng C, Harmanci A,
Lochovsky L, Min R, Mu XJ, Rozowsky J, Yan K-K, Yip KY & Birney E (2012) An
integrated encyclopedia of DNA elements in the human genome. *Nature* **489**, 57–74.

784 44 Roose J, Molenaar M, Peterson J, Hurenkamp J, Brantjes H, Moerer P, Wetering M van
de, Destree O & Clevers H (1998) The Xenopus Wnt effector XTcf-3 interacts with
Groucho-related transcriptional repressors. *Nature* **395**, 608–612.

786 45 Cavallo RA, Cox RT, Moline MM, Roose J, Polevoy GA, Clevers H, Peifer M &
788 Bejsovec A (1998) Drosophila Tcf and Groucho interact to repress Wingless signalling
activity. *Nature* **395**, 604–608.

790 46 Tseng A-S, Engel FB & Keating MT (2006) The GSK-3 Inhibitor BIO Promotes
Proliferation in Mammalian Cardiomyocytes. *Chem Biol* **13**, 957–963.

792 47 Koca Y, Collu GM & Mlodzik M (2022) Wnt-frizzled planar cell polarity signaling in the
regulation of cell motility. *Curr Top Dev Biol* **150**, 255–297.

794 48 Sheldahl LC, Slusarski DC, Pandur P, Miller JR, Kühl M & Moon RT (2003) Dishevelled
activates Ca²⁺ flux, PKC, and CamKII in vertebrate embryos. *J Cell Biol* **161**, 769–777.

796 49 McQuate A, Latorre-Esteves E & Barria A (2017) A Wnt/Calcium Signaling Cascade
Regulates Neuronal Excitability and Trafficking of NMDARs. *Cell Reports* **21**, 60–69.

798 50 Riquelme R, Li L, Gambrill A & Barria A (2023) ROR2 homodimerization is sufficient to
activate a neuronal Wnt/calcium signaling pathway. *J Biol Chem* **299**, 105350.

800 51 Ohkawara B & Niehrs C (2011) An ATF2-based luciferase reporter to monitor non-
canonical Wnt signaling in Xenopus embryos. *Developmental Dynamics* **240**, 188–194.

802 52 Acebron SP, Karaulanov E, Berger BS, Huang Y-L & Niehrs C (2014) Mitotic Wnt
signaling promotes protein stabilization and regulates cell size. *Molecular Cell* **54**, 663–
674.

804 53 Piepenburg O, Vorbrüggen G & Jäckle H (2000) Drosophila Segment Borders Result
from Unilateral Repression of Hedgehog Activity by Wingless Signaling. *Mol Cell* **6**,
806 203–209.

808 54 Jamora C, DasGupta R, Kocieniewski P & Fuchs E (2003) Links between signal
transduction, transcription and adhesion in epithelial bud development. *Nature* **422**, 317–
322.

810 55 Conway T, Wazny J, Bromage A, Tymms M, Sooraj D, Williams ED & Beresford-Smith
812 B (2012) Xenome—a tool for classifying reads from xenograft samples. *Bioinformatics*
28, i172–i178.

814 56 Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M & Gingeras TR (2012) STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15–21.

816 57 Li B & Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. *BMC Bioinform* **12**, 323.

818 58 Love MI, Huber W & Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome Biol* **15**, 550.

820 59 Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, Feng T, Zhou L, Tang W, Zhan L, Fu X, Liu S, Bo X & Yu G (2021) clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. *Innov (Camb (Mass))* **2**, 100141.

824 60 Machlab D, Burger L, Soneson C, Rijli FM, Schübeler D & Stadler MB (2022) monaLisa: an R/Bioconductor package for identifying regulatory motifs. *Bioinformatics* **38**, 2624–2625.

826 61 Fornes O, Castro-Mondragon JA, Khan A, Lee R van der, Zhang X, Richmond PA, Modi BP, Correard S, Gheorghe M, Baranašić D, Santana-Garcia W, Tan G, Chèneby J, Ballester B, Parcy F, Sandelin A, Lenhard B, Wasserman WW & Mathelier A (2020) JASPAR 2020: update of the open-access database of transcription factor binding profiles. *Nucleic Acids Res* **48**, D87–D92.

832 62 Kim K, Cho J, Hilzinger TS, Nunns H, Liu A, Ryba BE & Goentoro L (2017) Two-Element Transcriptional Regulation in the Canonical Wnt Pathway. *Current Biology* **27**, 2357–2364.e5.

834 63 Tan G & Lenhard B (2016) TFBSTools: an R/bioconductor package for transcription factor binding site analysis. *Bioinformatics* **32**, 1555–1556.

836 64 Li H & Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. *Bioinform (Oxf, Engl)* **26**, 589–95.

838 65 Feng J, Liu T, Qin B, Zhang Y & Liu XS (2012) Identifying ChIP-seq enrichment using MACS. *Nat Protoc* **7**, 1728–1740.

840 66 Carroll TS, Liang Z, Salama R, Stark R & Santiago I de (2014) Impact of artifact removal on ChIP quality metrics in ChIP-seq and ChIP-exo data. *Front Genet* **5**, 75.

842 67 Li Q, Brown JB, Huang H & Bickel PJ (2011) Measuring reproducibility of high-throughput experiments. *Ann Appl Stat* **5**, 1752–1779.

844 68 Bailey TL, Bodén M, Whitington T & Machanick P (2010) The value of position-specific priors in motif discovery using MEME. *BMC Bioinform* **11**, 179–179.

846 69 Whitington T, Frith MC, Johnson J & Bailey TL (2011) Inferring transcription factor complexes from ChIP-seq data. *Nucleic Acids Res* **39**, e98–e98.

848 70 Grant CE, Bailey TL & Noble WS (2011) FIMO: scanning for occurrences of a given
motif. *Bioinformatics* **27**, 1017–1018.

850 71 Yu J, Yusoff PAM, Woutersen DTJ, Goh P, Harmston N, Smits R, Epstein DM, Virshup
DM & Madan B (2020) The Functional Landscape of Patient-Derived RNF43 Mutations
852 Predicts Sensitivity to Wnt Inhibition. *Cancer Res* **80**, 5619–5632.

854 72 Liu S, Harmston N, Glaser TL, Wong Y, Zhong Z, Madan B, Virshup DM & Petretto E
(2020) Wnt-regulated lncRNA discovery enhanced by in vivo identification and CRISPRi
functional validation. *Genome Med* **12**, 89.

856

858 **Supporting Information**

860 Figure S1: Stabilization of β -catenin attenuates the impact of PORCN inhibition on colony
formation and gene expression. Data were analyzed using Student's t test and error bars
862 represent SD.

Figure S2: Clusters of Wnt-dependent genes are largely reproducible between studies

864 Figure S3: The NRE is present in multiple ChIP-seq datasets, but is not found at preferred
spacing from WRE motifs

866 Figure S4: *AXIN2* is a Wnt-activated β -catenin-dependent gene in multiple models

868 Table S1: Differential expression results from comparing response to PORCN inhibition in
WT and β -cat4A orthotopic tumors.

870 Table S2: Results from enrichment analysis for clusters of β -catenin dependent and
independent genes.

872 Table S3: Details of reporter constructs used in study

Figure legends

874 **Figure 1. Identification and classification of genes regulated by distinct branches of the**
Wnt signaling pathway.

876 A) Near-physiologic expression of β -cat4A in HPAF-II cells. WT = parental cell line. The
numbers under the lanes indicate the normalized ratio of β -catenin to β -actin.

878 B) β -cat4A prevents the loss of *AXIN2* expression as assessed by RT-qPCR following treatment
with increasing concentrations of PORCN inhibitor ETC-159.

880 C) Two independent β -cat4A expressing clones (#1 and #3) form colonies in soft agar despite
PORCN inhibition. Representative images from three independent plates with two replicates
882 for each condition are shown. Quantification for cl #3 is shown in Figure S1B.

884 D) WT and β -cat4A tumors (cl #3) were harvested for RNA-seq at four distinct timepoints
following treatment with ETC-159 (37.5 mg/kg every 12 hours by oral gavage). n = 3 tumors
for WT and 5 tumors for β -cat4A at each time point for a total of 32 tumors sequenced.

886 E) Differential expression analysis identified 3,346 genes that sorted into seven β -catenin
dependent clusters and three β -catenin independent clusters of genes (see Methods). Heatmap
888 shows log2 fold change for multiple comparisons of interest. β -cat4A vs WT at 0 h shows the
differences in expression between the two conditions at 0 h. Changes in gene expression over
890 time (compared to 0 h) are shown for tumors generated from WT HPAF-II cells (WT
timecourse) and mutant β -catenin cells (β -cat4A timecourse). Also displayed are interaction
892 terms representing the difference between these values after controlling for differences in
baseline expression. DA is dependent, activated, DR is dependent, repressed, DN is dependent
894 noise, IA is independent activated, IR is independent repressed.

896 F) 554 genes were identified as significantly differentially expressed at baseline (WT 0 h vs β -
cat4A 0 h), distributed across each of the β -catenin dependent clusters.

898 **Figure 2. Identification of β -catenin dependent and independent genes,**

900 Examples of Wnt target genes identified in this analysis. For each gene, the expression
900 (normalized counts) of the gene is shown, as are the fold changes and how these changes
correspond to the heatmap representation used in Figure 1E.

902 A) *AXIN2* is a β -catenin dependent Wnt-activated gene, in cluster DA1.

904 B) *DEPTOR* is a β -catenin dependent Wnt-repressed gene (DR1).

906 C) *PROCA1* is a β -catenin independent Wnt-activated gene (IA1).

908 D) *ABCA6* is a β -catenin independent Wnt-repressed gene (IR1).

910 **Figure 3: β -catenin independent and dependent clusters are enriched for distinct
911 pathways, processes and TFBS motifs.**

912 A) Enrichments for GO biological processes and KEGG pathways for each of the clusters of
 β -catenin dependent and independent genes (Hypergeometric test).

914 B) TFBS motifs enriched in the promoters of β -catenin dependent and independent genes.
Enrichment is calculated as observed divided by expected (Binomial test).

916 C) Sequence logo of the Negative Regulatory Element (NRE) motif, modified after [34], is
found in multiple clusters and significantly enriched in a cluster of β -catenin-dependent Wnt-
repressed genes (DR1) – (Binomial test).

918

920 **Figure 4: The Negative Regulatory Element (NRE) is capable of repressing reporter**
activity and is found at binding sites of TCF7L2/β-catenin

922 A) Enrichment of Wnt-Responsive Elements (WREs) across multiple TCF7L2/β-catenin ChIP-
seq datasets. %TP/%FP represents the ratio of the percentage of peaks identified as containing
a motif (%TP) versus percentage of background sequences containing a motif (%FP).

924 B) Enrichment of NREs across the same datasets. While HEPG2 shows strong enrichment for
NREs and WREs, it only has a small number of peaks in the dataset.

926 C) WREs and NREs co-occur more often than predicted by chance across TCF7L2/β-catenin
peaks identified in multiple cell lines. Venn diagrams show the number of WRE and NRE
928 motifs identified and the overlap between them; significance was calculated using Fishers
Exact test.

930 D) Addition of NREs represses, while WREs activates a minimal reporter (MimRep) in
HCT116 cells driven by stabilized β-catenin. Student's t-test for panels D-E. The data are
932 presented as mean ± standard error of the mean (SEM) of n = 6 independent biological
replicates spread over 3 separate experiments.

934 E) The same reporters are not Wnt-regulated in HT1080 Wnt-low cells. Data are presented as
mean ± SEM of n = 4 independent biological replicates from two separate experiments.

936

938

940 **Figure 5: The Negative Regulatory Element (NRE) is necessary for the repression of the**
Wnt-repressed/β-catenin-dependent lncRNA ABHD11-AS1.

942 A) *ABHD11-AS1* is a Wnt-repressed gene in orthotopic model of HPAF-II Wnt-addicted cancer
where its expression increases following PORCN inhibition. Data replotted from [7,72], n = 5-7 tumors as indicated.

944 B) Positions of putative Wnt-Responsive Elements (WREs) and NREs in the promoter of
ABHD11-AS1

946 C) *ABHD11-AS1* expression is repressed when β-catenin signaling is activated by inhibition of
GSK3 with BIO. Student's t-test for panels C-H, n = 2 independent biological replicates in one
948 experiment.

950 D) Inhibiting β-catenin using CRISPR or E) siRNA leads to an increase in expression of
ABHD11-AS1 in cultured HPAF-II and HCT116 cells respectively. n = 3 independent
952 biological replicates.

954 F) Expression of *ABHD11-AS1* increases in WT but not β-cat4A HPAF-II cells following Wnt
inhibition with ETC-159. n = 3 independent biological replicates.

956 G) Transcriptional activity of *ABHD11-AS1* reporter construct in HCT116 cells following
serial deletion of sequences containing WREs and NREs. n = 6 independent biological
replicates. Data are representative of three independent experiments.

958 H) Transcriptional activity of *ABHD11-AS1* reporter construct in HCT116 cells following
mutation of the two NRE sites. n = 2-6 independent biological replicates. Data are
representative of three independent experiments.

960

962 **Figure 6: The Negative Regulatory Element (NRE) modulates expression of the Wnt-activated/β-catenin-dependent gene *AXIN2*.**

964 A) *AXIN2* is a Wnt-activated gene in an orthotopic model of HPAF-II Wnt-addicted cancer
966 where its expression decreases following PORCN inhibition (data from [7], n = 5-7
independent biological replicates).


968 B) Positions of putative Wnt-Responsive Elements (WREs) and NREs in the promoter of
AXIN2.

970 C) Transcriptional activity of *AXIN2* reporter construct in HCT116 cells following removal of
972 the sequence containing NRE (ΔN1) leads to increased reporter expression. Student's t-test for
panels C-D, n = 6 independent biological replicates. Data are representative of three
independent experiments.

974 D) Removal or mutation of the NRE increases the transcriptional activity of the *AXIN2*
976 promoter in HCT116 cells. n = 4-8 independent biological replicates. Data are representative
of three independent experiments.

978

Figure 1

980

982

984

Figure 2

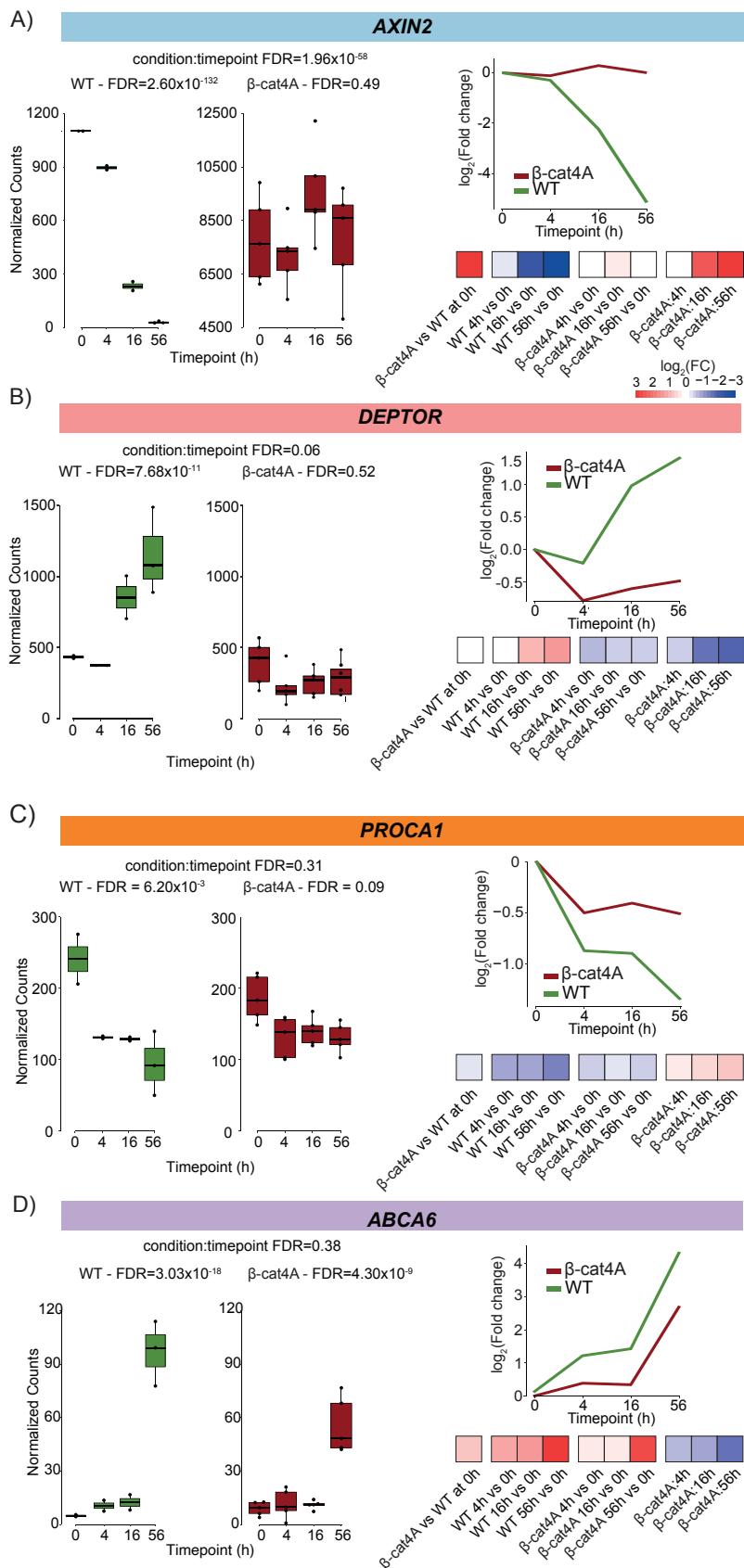


Figure 3

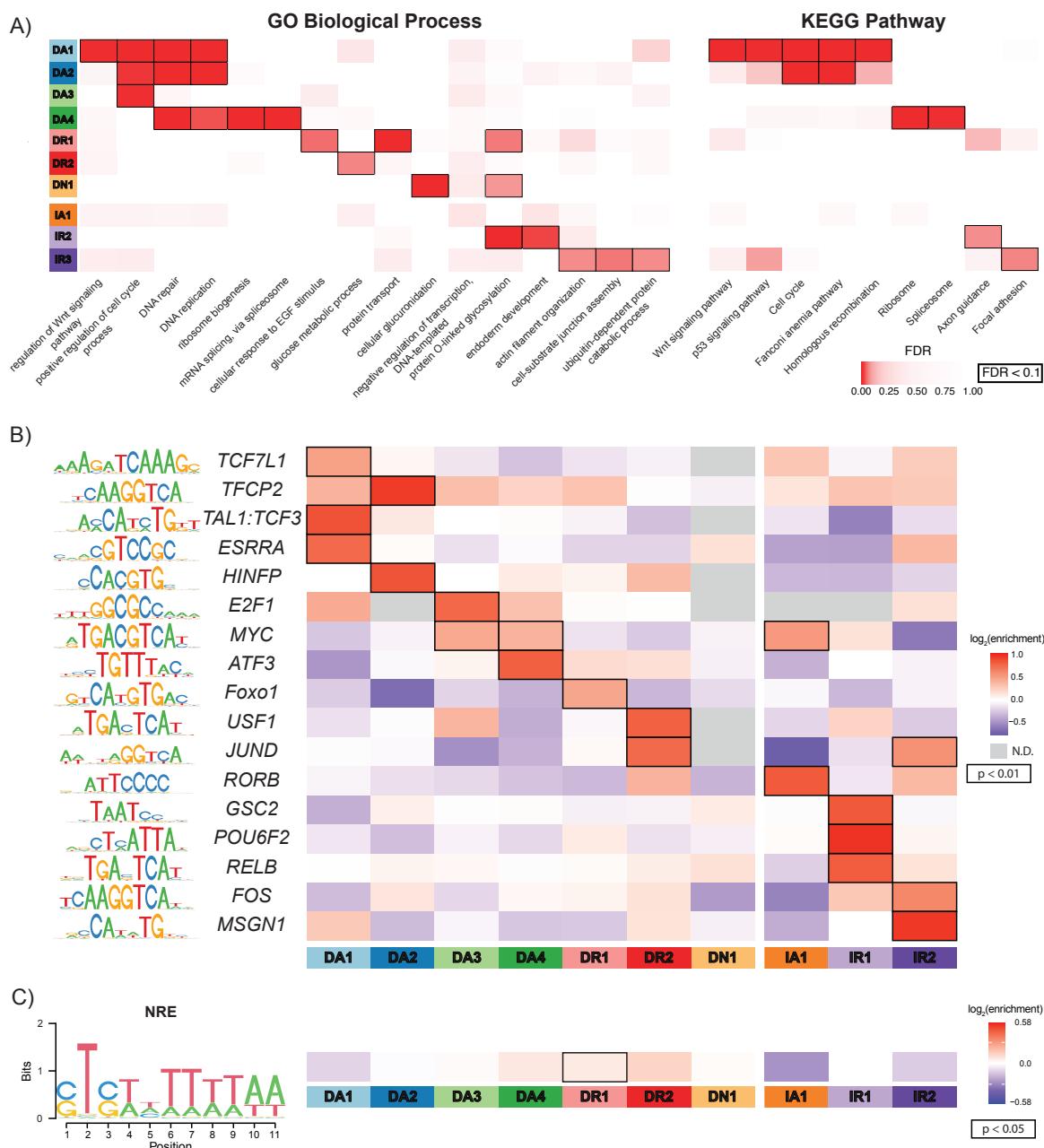
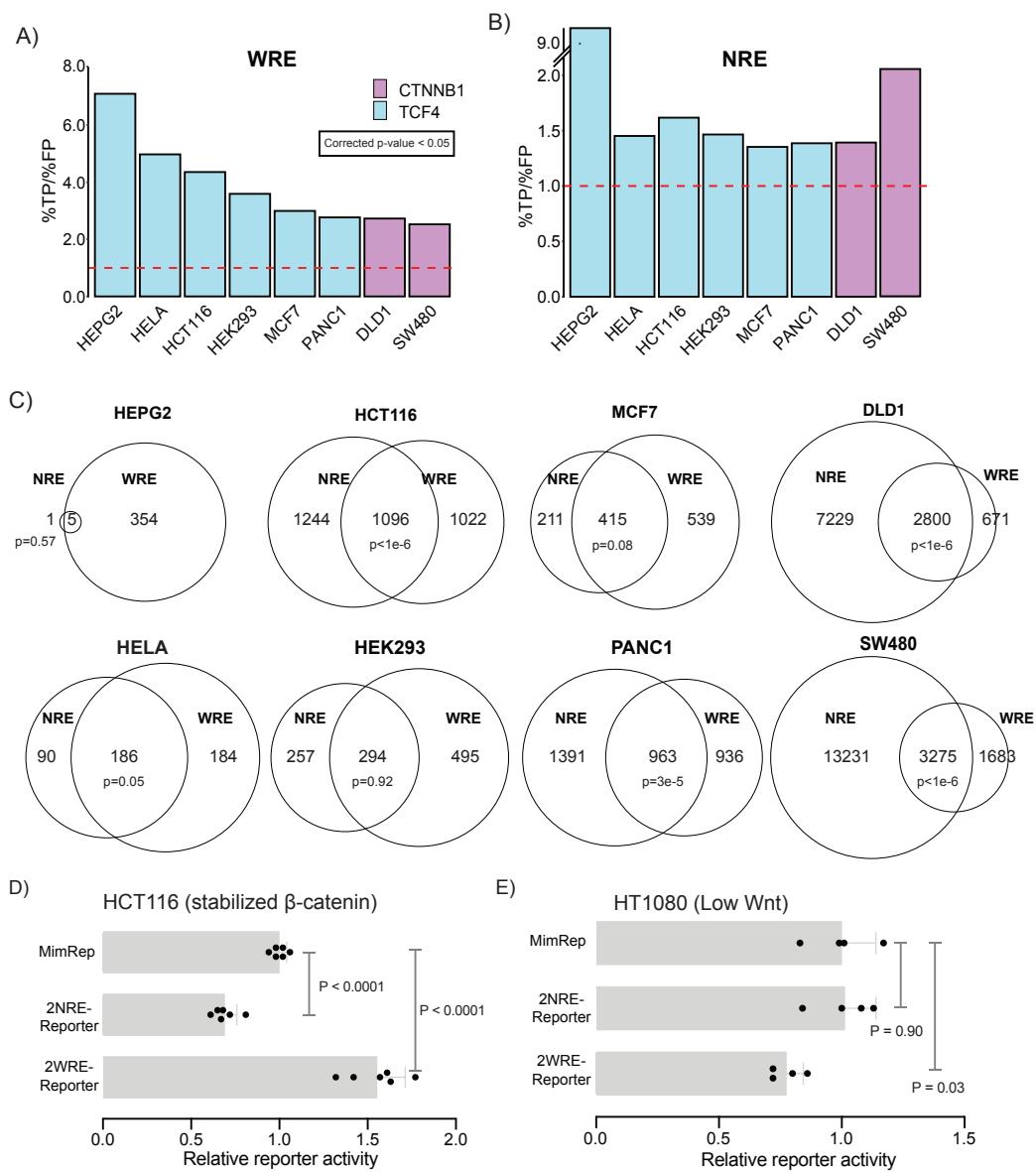
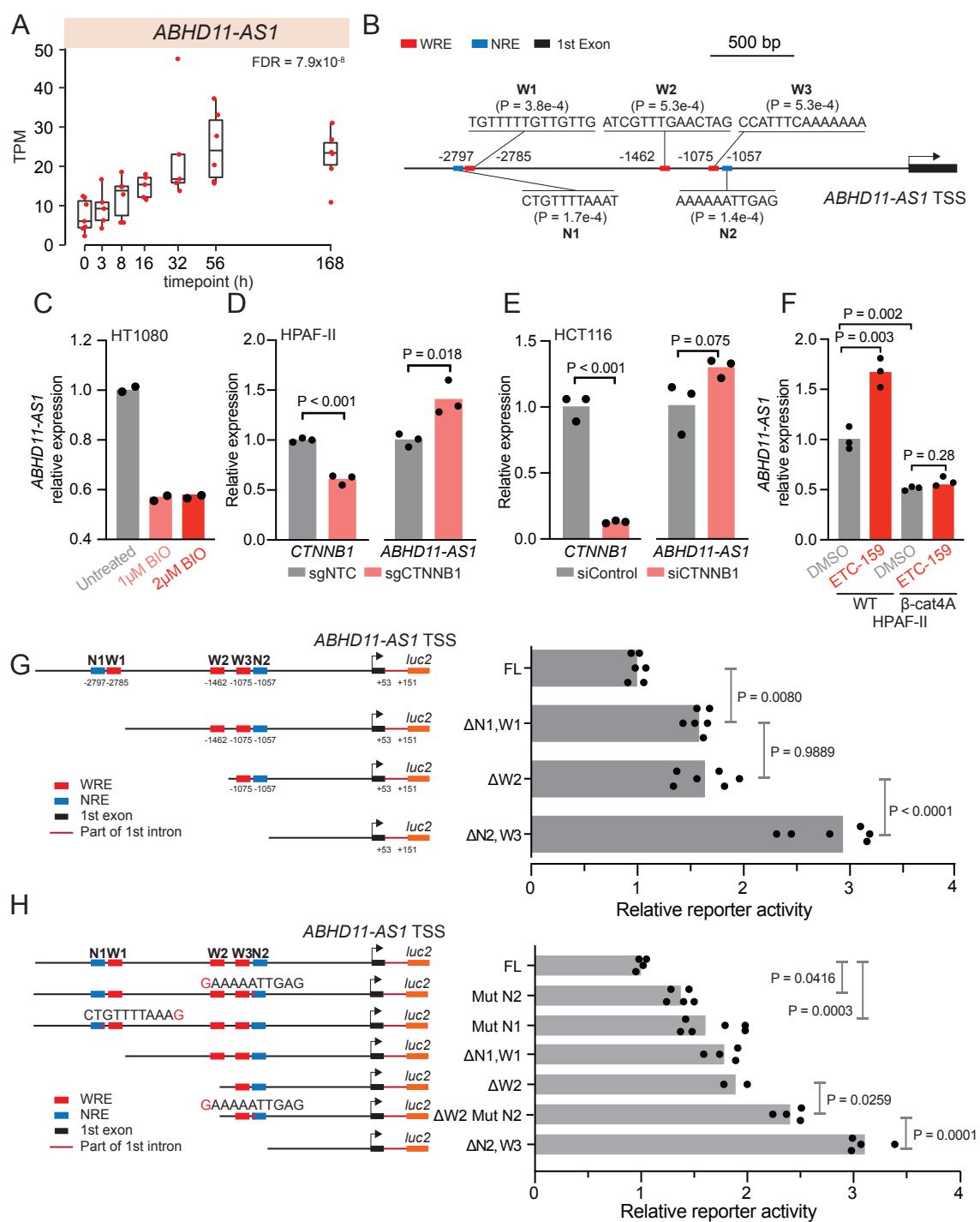



Figure 4

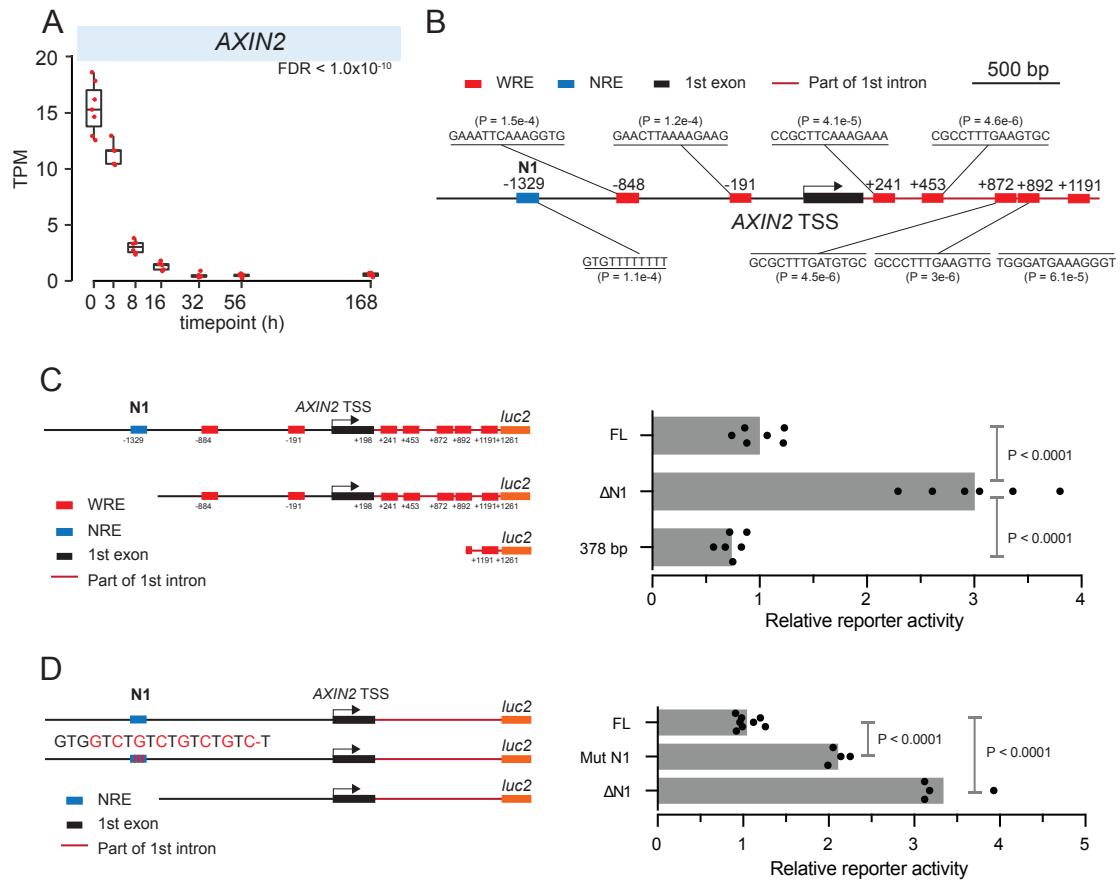


996

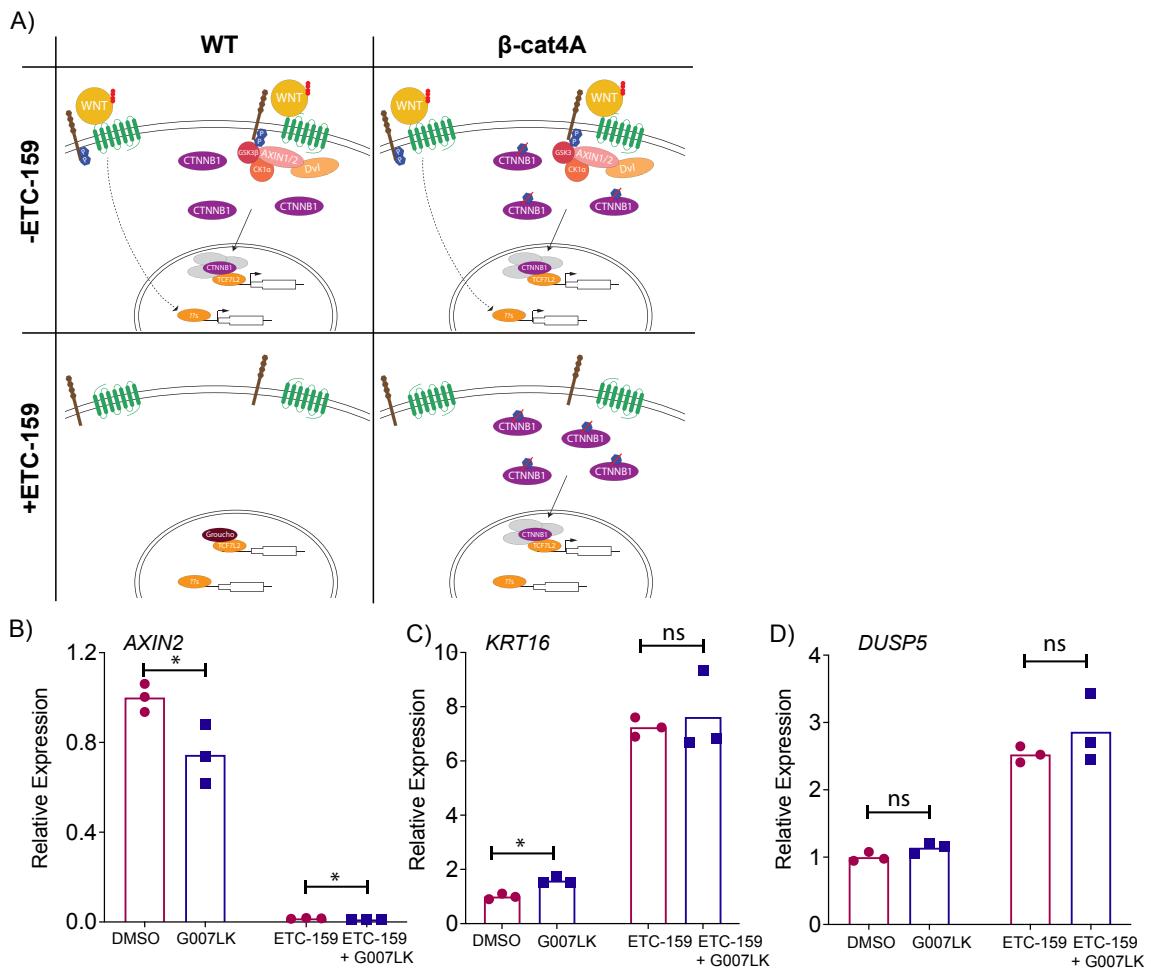
998

1000

Figure 5



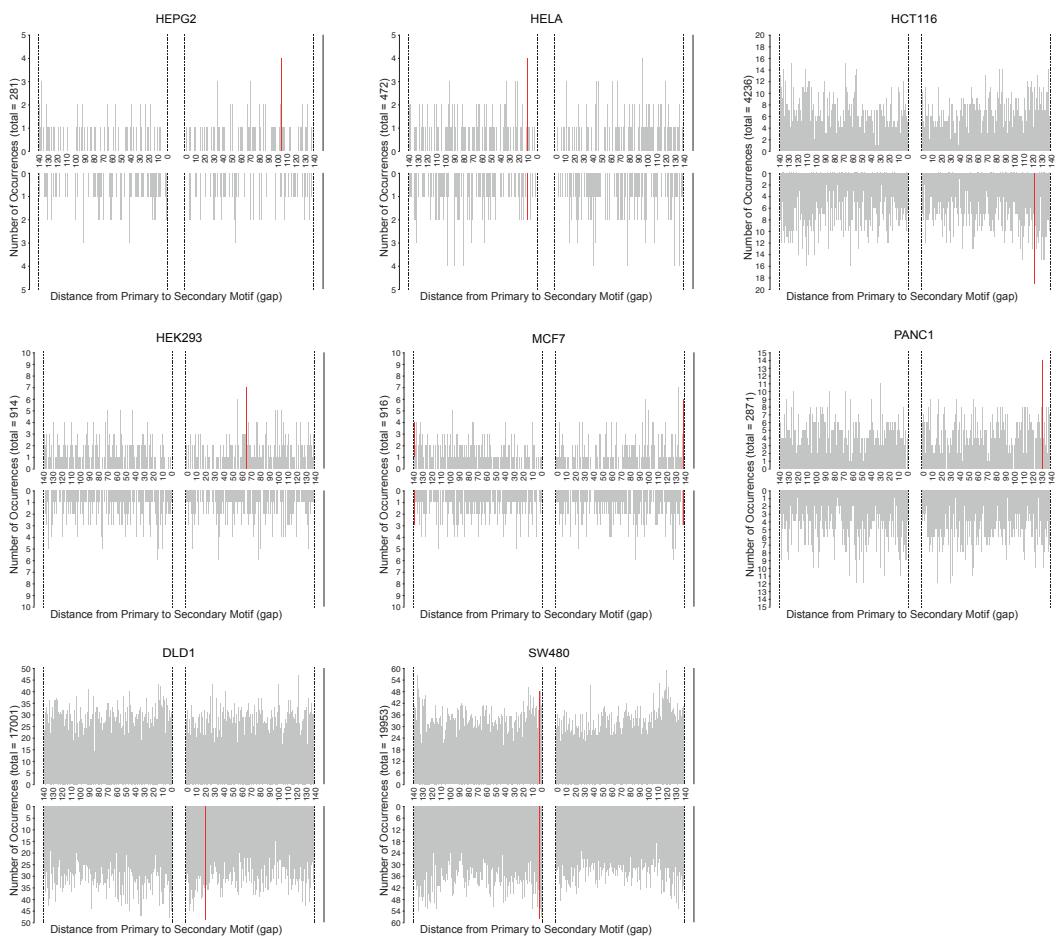
1002


1004

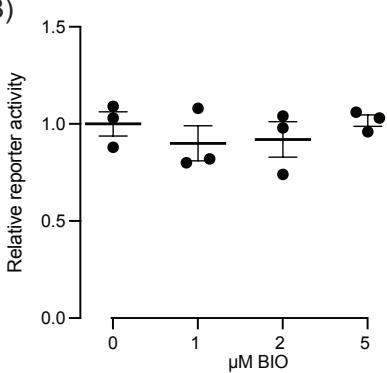
1006

Figure 6

Supplemental Figure 1


1012

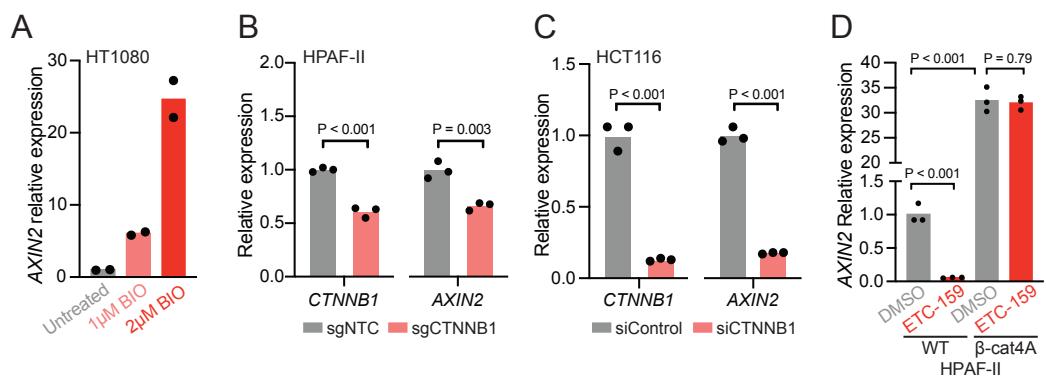
1014


1016

Supplemental Figure 2

A)

B)


1018

1020

1022

1024

Supplemental Figure 3

