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Abstract 

Schizophrenia genome-wide association studies (GWASes) have identified >250 significant loci 

and prioritized >100 disease-related genes. However, gene prioritization efforts have mostly been 

restricted to locus-based methods that ignore information from the rest of the genome. To more 

accurately characterize genes involved in schizophrenia etiology, we applied a combination of 

highly-predictive tools to a published GWAS of 67,390 schizophrenia cases and 94,015 controls. 

We combined both locus-based methods (fine-mapped coding variants, distance to GWAS 

signals) and genome-wide methods (PoPS, MAGMA, ultra-rare coding variant burden tests). We 

extracted genes that 1) are targeted by existing drugs that could potentially be repurposed for 

schizophrenia, 2) are predicted to be druggable, or 3) may be testable in rodent models. We 

prioritized 101 schizophrenia genes, including 15 that are targeted by approved or investigational 

drugs (e.g., DRD2, GRIN2A, CACNA1C, GABBR2). Of these, 7 have never been tested in clinical 

trials for schizophrenia or other psychiatric disorders (e.g., AKT3). Seven genes are not targeted 

by any existing small molecule drugs, but are predicted to be druggable (e.g., GRM1). We 

prioritized two potentially druggable genes in loci that are shared with an addiction GWAS (PDE4B 

and VRK2). We curated a high-quality list of 101 genes that likely play a role in the development 

of schizophrenia. Developing or repurposing drugs that target these genes may lead to a new 

generation of schizophrenia therapies. Rodent models of addiction more closely resemble the 

human disorder than rodent models of schizophrenia. As such, genes prioritized for both disorders 

could be explored in rodent addiction models, potentially facilitating drug development. 

Introduction 

Schizophrenia is a highly-heritable and heterogeneous disorder characterized by positive 

symptoms (e.g. delusions and hallucinations), negative symptoms (e.g. blunted affect), and 
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cognitive impairment1. Schizophrenia patients are often also diagnosed with neurodevelopmental 

disorders1,2 (e.g. intellectual disability and autism spectrum disorder) and other psychiatric 

conditions3,4 (e.g. substance use disorder [SUD] and depression). Antipsychotic medications 

antagonizing the dopamine receptor D2 are currently the first-line treatment for schizophrenia. 

However, approximately 34% of patients are considered treatment-resistant5, and especially 

cognitive deficits and negative symptoms often persist6,7. These unmet clinical needs, as well as 

the high burden of antipsychotic side effects8,9, clearly underline the necessity for 

pharmacotherapies with novel mechanisms of action. 

 

Only 6.2% of psychiatric drug programs that enter Phase I trials are ultimately approved—well 

below the average success rate of 9.6% across all medical areas10—and investment in psychiatric 

drug development programs have decreased in recent years11. This low success rate likely 

reflects the complex nature of mental disorders, limited knowledge of disease mechanisms, and 

sparsity of validated animal models. Given that 63% of drugs approved by the FDA from 2013–

2022 were supported by human genetic evidence12, pursuing targets that are genetically-linked 

to disease may lead to increased success rates13,14. A major source of this human genetic 

evidence comes from genome-wide association studies (GWASes)13,14. For instance, 

schizophrenia GWASes15–17 have identified a robust association near DRD2, which encodes the 

dopamine receptor D2. It is estimated that only 1.9% of genetically-supported drug targets for 

psychiatric disorders have been clinically explored18, suggesting that follow up of other 

schizophrenia GWAS findings may eventually lead to the design of new medicines. 

 

Several studies have attempted to prioritize the causal genes underlying published schizophrenia 

GWAS loci using a variety of methods, including: expression quantitative trait loci mapping and 

transcriptome-wide association studies19–21, massively parallel reporter assays22, summary data-
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based Mendelian randomization (SMR)17,23, and Hi-C-coupled MAGMA24. The largest published 

schizophrenia GWAS identified 287 significant loci and prioritized 120 genes for follow up using 

fine-mapped credible sets25, SMR26, and Hi-C interactions between enhancers and promoters27. 

However, a recent study has found that these methods vary substantially in their precision to 

correctly predict “probable causal genes” (defined using fine-mapped coding variants)28. They 

found that only 29% of genes with the lowest SMR P-value in their locus were probable causal 

genes, while this proportion was even lower (~14%) for genes with the strongest promoter capture 

Hi-C evidence.  

 

Here, we prioritized genes likely to play an important role in schizophrenia (SCZ) risk using high-

precision prioritization methods: 1) polygenic priority score (PoPS) combined with nearest gene, 

2) fine-mapped coding variants, and 3) and ultra-rare coding variant burden tests30. We nominated 

101 genes, 15 of which are targets of approved drugs (10 genes) or drugs that have been tested 

in clinical trials (“investigational drugs”, 5 genes). We discuss the potential utility of these drugs 

for treating schizophrenia and highlight an additional 7 prioritized genes that may be tractable via 

small molecule drugs. 

Methods and Materials 

Ethics statement 

This research was conducted in accordance with the ethical standards of the institutional and 

national research committees. Informed consent was obtained from all participants. Details on 

Institutional Review Board approvals of the individual studies included in the presented work are 

provided in the original publication17. 

 

GWAS summary statistics 
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We analyzed the publicly-available “core dataset” of GWAS summary statistics from the largest 

published SCZ GWAS from the Psychiatric Genomics Consortium (hereafter we will refer to this 

study as “PGC3”)17, a meta-analysis of 90 cohorts of European (EUR) and East Asian (EAS) 

descent including 67,390 cases and 94,015 controls (effective sample size [Neff] = up to 156,797). 

For analyses requiring data from a single ancestry, we used the EUR subset of the core dataset 

(76 cohorts, 53,386 cases, 77,258 controls, effective sample size [Neff] = up to 126,282) and the 

EAS-ancestry subset (14 cohorts, 14,004 cases, 16,757 controls, Neff = up to 30,515).  

 

Reference panels 

Accordingly, we used external data from the Haplotype Reference Consortium release 1.1 (HRC) 

to construct three linkage disequilibrium (LD) reference panels: an EUR panel (N ≥ 16,860), an 

EAS panel (N ≥ 538), and an EUR+EAS panel that included both EUR and EAS individuals in the 

same proportions as the GWAS summary statistics—80% EUR and 20% EAS (NEUR = 2,191, NEAS 

= 538). 

 

Variant quality control 

We removed EUR+EAS GWAS variants with: 1) a minor allele count < 10 (minor allele frequency 

[MAF] < 0.0018) in the EUR+EAS reference panel (259 variants removed), 2) a reported allele 

frequency that differed from the reference panel frequency by > 0.1 (29 variants removed), and 

3) a reported allele frequency that differed from the reference panel frequency by > 12-fold (11 

variants removed). After quality control, 7,584,817 variants remained.  

 

Isolating independent association signals 
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In order to disentangle statistically-independent genetic signals in the EUR+EAS dataset, we first 

clumped variants using PLINK v1.931 (P < 5×10-8, r2 < 0.1, window size = 3Mbp) and our 

EUR+EAS reference panel, expanded the boundaries of each clump by 500kb on either side, and 

merged overlapping boundaries. Within each resulting region, we ran COJO32 and removed hits 

with joint P > 5×10-8. If multiple independent hits in a region were found, we used COJO to isolate 

each signal by performing leave-one-hit-out conditional analysis. For each isolated signal, we 

computed credible sets (CSs) using the finemap.abf function in the coloc R package33,34. Finally, 

we defined loci as ±300kb around each credible set.  

 

MAGMA 

We performed gene-based association tests using MAGMA29 (“SNP-wise mean model”) and all 

variants with MAF > 1%. We analyzed the EUR- and EAS-based GWASes separately using the 

corresponding ancestry-specific reference panel and MAFs. We mapped variants to protein-

coding genes using Genome Reference Consortium Human Build 37 (GRCh37) gene start and 

end positions from GENCODE v4435. We removed genes that had fewer than 3 variants mapped 

to them. For each gene, we meta-analyzed the resulting ancestry-specific MAGMA z-scores 

weighted by the square root of sample size36.  

 

PoPS 

MAGMA z-scores can be thought of as a proxy for the magnitude of effect that each gene has on 

schizophrenia risk. As such, PoPS28 seeks to learn the properties of schizophrenia risk genes by 

training a ridge regression model to predict MAGMA z-scores using more than 57,000 gene-level 

features. These include 40,546 features derived from bulk and single-cell gene expression 

datasets (e.g., principal components of expression and cell type-specific expression), 8,718 

features derived from predicted protein-protein interaction networks from InWeb_IM, and 8,479 
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features derived from curated biological pathways (e.g., the gene ontology and Reactome 

databases37,38). PoPS output values are the fitted values of this ridge regression model, and 

represent the MAGMA z-score that a gene is predicted to have based on its properties. The 

original PoPS study recommended selecting the gene with the largest PoPS value in the locus 

rather than using a specific numerical threshold28. Using the ancestry-specific MAGMA results as 

input, we performed PoPS28 using all 57,543 gene-based features as predictors. These features 

were not available for chrX so we restricted our analysis to autosomal genes. The resulting 

ancestry-specific PoPS values were then also meta-analyzed weighted by the square root of 

sample size. We only used the meta-analyzed MAGMA and PoPS values for gene prioritization. 

 

This same study introduced a novel tool for gene prioritization, the polygenic priority score (PoPS). 

By intersecting genes with the top PoPS value in their locus with genes that were nearest to their 

GWAS signal, they were able to achieve a precision of 79%.  

 

Gene prioritization criteria 

Following the original PoPS publication, we prioritized genes that met both of the following criteria: 

1) had the top PoPS value in a given locus and 2) were the nearest gene to the corresponding 

GWAS signal based on the posterior inclusion probability (PIP)-weighted average position of 

credible set variants. Under these criteria, however, it is possible that the top POPS value within 

a locus is relatively weak on a genome-wide scale, or that the nearest gene is nevertheless 

relatively distant. We therefore also required that genes have a PoPS value in the top 10% of all 

values genome-wide. We also prioritized genes that had 1) PIP > 50% for non-synonymous 

credible set variants affecting the gene, or 2) false discovery rate-corrected P value (PFDR) < 5% 

in a published SCZ burden test of ultra-rare coding variants30. We used non-synonymous variants 

from the “baseline-LF 2.2.UKB model” (80,693 variants) and subsetted to those with an estimated 
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per-variant heritability > 1x10-7 (removed 4,709 variants, all with estimated h2 < 1x10-10: >1,000-

fold smaller)39. We removed loci that contained more than 20 genes since larger loci are more 

challenging to resolve40, but we have included results for these large loci in Table S3. 

 

Comparison with previous schizophrenia gene prioritization efforts  

We compared our prioritized genes with those highlighted in the original PGC3 publication. 

Specifically, we extracted the “Symbol.ID” and “Prioritised” columns from Table S12. While the 

PGC3 study utilized the same core dataset, they restricted analysis to loci that retained genome-

wide significance in the “extended GWAS”—a meta-analysis of the core dataset, 9 cohorts of 

African American and Latin American ancestry, and a dataset from deCODE genetics. They 

prioritized genes using a combination of FINEMAP, SMR, Hi-C interaction mapping, and non-

synonymous or untranslated region credible set variants with PIP > 10%. The PGC3 study 

validated their list of prioritized genes by looking for overlap with genes expressed in brain tissue, 

genes with signatures of mutation intolerance in large-scale exome studies41, or genes linked to 

schizophrenia through rare genetic variation in the SCHEMA study30. Furthermore, they also 

found genetic overlaps in other neurodevelopmental conditions using sequencing studies from 

autism spectrum disorder42 and developmental disorder43. We incorporated a subset of this 

information by extracting the “ASD” and “DDD” columns from Table S12 of the PGC3 study. For 

full details, please refer to the original publication17. 

 

PsyOPS 

We further validated our prioritized genes using the Psychiatric Omnilocus Prioritization Score 

(PsyOPS) tool44. The original PsyOPS publication44 found that PsyOPS achieved similar 

performance to PoPS in predicting causal psychiatric disease genes, but using only three 

predictors: probability of loss-of-function intolerance (pLI) > 0.99, brain-specific gene expression, 
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and overlap with 1,370 known genes for neurodevelopmental disorders (autism, epilepsy, 

intellectual disability). PsyOPS treats the nearest gene to each GWAS hit as a proxy for the causal 

gene in the locus, trains leave-one-chromosome-out logistic regression models, and outputs the 

predicted probability that a given gene is causal. We determined a gene to be prioritized by 

PsyOPS if the predicted probability of being a causal gene exceeded 50%. We computed PsyOPS 

scores using all 257 independent schizophrenia GWAS hits.  

Drug target mapping 

We determined whether our prioritized genes were targeted by approved or investigational drugs 

using GraphQL API queries of the Open Targets platform45, which in turn queries the EMBL-EBI 

ChEMBL database. For genes that were not targeted by approved or investigational drugs, we 

performed additional Open Targets API queries to extract evidence of drug tractability—the 

probability of identifying a drug that is able to bind and modulate a given target. We focussed on 

small molecule drugs, but results for other modalities can be found in Figure S1. 

 

Colocalization with other studies 

We prioritized several genes that have also been highlighted by recent GWASes for addiction46 

and Parkinson’s disease47. Using the EUR reference panel, we processed EUR-ancestry GWAS 

summary statistics from these studies using the same pipeline described above. We identified 

loci that physically overlapped with schizophrenia loci and computed the posterior probability of 

colocalization (H4) using all variants in the shared locus and the coloc.abf function in the coloc R 

package33,34. 

Results 

We prioritized schizophrenia genes using the “core dataset” from the largest published 

schizophrenia GWAS meta-analysis17, “PGC3” (67,390 cases and 94,015 controls). We identified 
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257 independent associations with P < 5x10-8 (Table S1). Across these loci, we prioritized 101 

schizophrenia genes (Figure 1, Table S2) based on their distance to the credible set, PoPS 

values, number of genes in the locus, presence of non-synonymous variants in the credible set, 

and support from a published schizophrenia burden test of ultra-rare coding variants30 (see 

Methods). To corroborate our findings with convergent evidence, we compared them with 

prioritization efforts from the PGC3 study17, genes linked to autism spectrum disorder42 (ASD) and 

developmental disorder43 (DD) via sequencing studies, and results from the PsyOPS tool (Figure 

2). Across all genes in GWAS loci, prioritized genes were also DD and/or ASD genes (Fisher’s 

exact test P = 7.8x10-11, odds ratio [OR] = 11) or PsyOPS genes (Fisher’s exact test P = 1.7x10-

8, OR = 18) significantly more often than expected due to chance.  

 

Overlap with previous schizophrenia gene prioritization efforts 

Of our 101 prioritized genes, 37 (37%) were also prioritized in the PGC3 study (“overlapping 

genes”) and several sources of evidence suggest that these genes are likely to play a role in 

schizophrenia risk. Ultra-rare coding variant burden in two overlapping genes (GRIN2A and SP4) 

was significantly associated (PFDR < 5%) with schizophrenia in the SCHEMA study30. Similarly, 

five overlapping genes (GRIN2A, CACNA1C, BCL11B, RERE, and SLC39A8) were also identified 

by rare variant exome sequencing studies of DD43 and/or ASD42 (see Figure 2). Furthermore, the 

lead schizophrenia variant in the SLC39A8 locus is a non-synonymous variant (PIP = 99%) that 

has been investigated in detail elsewhere48. WSCD2 (PIP = 53%) and THAP8 (PIP = 88%) were 

also prioritized due to a non-synonymous variant in the credible set. Four overlapping genes 

(GRIN2A, DLGAP2, GABBR2, and CSMD1) were nominated by PsyOPS (see Methods). Notably, 

CSMD1 is known to inhibit the complement cascade, has reduced expression in first-episode 

psychosis patients49, and knockout mice have exhibited behaviors resembling schizophrenia 

negative symptoms50. 
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Genes that were not nominated by previous schizophrenia gene prioritization efforts  

Of our 101 prioritized genes, 64 (63%) were not prioritized in the PGC3 study (“non-overlapping 

genes”). Two non-overlapping genes (STAG1 and FAM120A) were significantly associated with 

ultra-rare coding variant burden in the SCHEMA study30. Twelve non-overlapping genes (STAG1, 

ZEB2, MYT1L, TBL1XR1, SATB2, MEF2C, CUL3, BCL11A, KMT2E, FOXP1, EP300, and TCF4) 

were also identified by rare variant exome sequencing studies of DD43 and/or ASD42. Note that 

TCF4 was not prioritized in the PGC3 study because they only investigated regions containing 

three independent genetic associations or fewer and there were four associations near TCF4. We 

prioritized PPP1R26 due to a non-synonymous variant in the credible set (PIP = 96%). Six non-

overlapping genes (ZEB2, MYT1L, SATB2, HCN1, RIMS1, and CACNA1I) were nominated by 

PsyOPS (see Methods). Perhaps most importantly, our analysis highlighted the dopamine 

receptor gene DRD2, which is targeted by approved antipsychotic medications with varying 

affinity51 (Figure 3A). Finally, 31 of our 101 prioritized genes (31%) were not prioritized by PGC3, 

but have been highlighted by recent studies that prioritized schizophrenia genes using gene co-

expression52,53, expression quantitative trait loci mapping or TWAS20,54, epigenome-wide 

association study55, massively parallel reporter assays56, or 3D genome architecture analysis57 

(e.g., AP3B2, CACNB2, CNOT1, MEF2C, RBM26, SATB2; see Supplemental Material; Table 

S2). 

 

East Asian-specific gene prioritization 

Because East Asian-ancestry individuals were underrepresented in our dataset relative to 

European-ancestry individuals, we tested whether applying our prioritization criteria to the East 

Asian cohort would identify additional ancestry-specific genes. There were eight genome-wide 

significant loci in the East Asian-only dataset. In these loci, we prioritized four genes: two that 
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were also found in the multi-ancestry meta-analysis (VRK2 and SPATS2L) and two that were 

specific to the East Asian dataset (FRY and PTN). The FRY locus was not genome-wide 

significant in the multi-ancestry meta-analysis. Although the PTN locus was genome-wide 

significant in the multi-ancestry meta-analysis and PTN had the top local PoPS value, it was not 

the nearest gene and was therefore not prioritized. 

 

Drug target mapping  

In addition to DRD2, we prioritized 15 genes that are targeted by approved (10 genes) or 

investigational drugs (5 genes, Table S4, Table 1). Of these, 8 were also prioritized in the PGC3 

study (GRIN2A, CACNA1C, PDE4B, GABBR2, AKT3, DPYD, ACE, and ATP2A2) and 7 

(CACNB2, GRM3, SNCA, CACNA1I, CD47, KCNJ3, and CHRNA3) were prioritized in our 

analysis but not in PGC3 (see Discussion). Our list of prioritized genes also included 7 genes 

(HCN1, VRK2, TRPC4, EP300, GRM1, PTPRF, and MMP16) that belong to known druggable 

protein families58 and are reported to bind to at least one high-quality ligand45, suggesting potential 

as small molecule drug targets (Figure S1). 

Discussion 

We prioritized 101 genes near 257 independent GWAS signals. Of these genes, 52 (51%) were 

also supported by evidence (Figure 2) from the PGC3 study (37 genes), DD/ASD sequencing 

studies (17 genes), and PsyOPS (10 genes). We prioritized DRD2 (Figure 3A)51, as well as 15 

other genes targeted by approved drugs (10 genes) or drugs that have been tested in clinical 

trials (5 genes). Of these, only 8 genes were targeted by drugs that have been trialed in 

schizophrenia or other psychiatric disorders (see Table 1). 

 

Some of these druggable genes have also been highlighted by earlier drug repurposing studies, 
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including genes that are targeted by drugs affecting calcium signaling (CACNA1C19,59–61, 

CACNA1I60,61, CACNB259,60), glutamatergic (GRIN2A19,59,60, GRM359,61), GABAergic (GABBR260) 

and cholinergic pathways (CHRNA360). Our analyses do not predict whether the effect of these 

drugs (e.g. inhibitor) aligns with the effect that would be desired for schizophrenia. Therefore, we 

will now discuss literature supporting the potential for these drugs to be repurposed as treatments 

for schizophrenia. We also identified 7 other genes that may represent tractable small molecule 

drug targets and discuss how additional target validation could stimulate drug development 

programs.  

 

Glutamate receptors: GRIN2A, GRM3, and GRM1 

We prioritized GRIN2A, which encodes a subunit of the N-methyl-D-aspartate receptor (NMDA-

R, Figure 3B). In addition to GWAS, there is evidence that decreased NMDA-R function increases 

schizophrenia risk from GRIN2A ultra-rare variant burden tests30, GRIN2A mouse knockout 

models62, and pharmacological antagonism of the NMDA-R63. This raises the possibility that 

increasing NMDA-R activity may provide therapeutic benefit for schizophrenia patients. A meta-

analysis of 4,937 schizophrenia patients from 40 randomized controlled trials found that NMDA-

R modulator augmentation (e.g. via glycine or glycine transporter type I inhibitors) significantly 

improved total, positive, and negative schizophrenia symptoms versus placebo64. These 

compounds have also been proposed as a therapeutic strategy for schizophrenia patients who 

are treatment-resistant or have impaired cognition65 . There are currently three Phase III clinical 

trials underway assessing the effect of iclepertin, a glycine transporter type I inhibitor, on cognitive 

impairment associated with schizophrenia66. If ultimately approved, this may become the first 

medication indicated to treat the cognitive symptoms of schizophrenia. 
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We also prioritized GRM3, which encodes a different glutamate receptor: metabotropic glutamate 

receptor 3 (mGluR3). Clinical trials of pomaglumetad methionil, an mGluR2/3 agonist, have yielded 

inconclusive effects on positive symptoms67,68–71. However, an analysis of clinical trial data 

suggested that specific patient subgroups may have benefited72 and preclinical research has 

suggested that a cognitive endpoint may be more appropriate73,74. Similarly, positive modulation 

of mGluR1 (encoded by GRM1) showed pro-cognitive effects in animal studies (e.g., reversal of 

working memory deficits) possibly via interneuronal regulation of cortical inhibition75. MGluR1 

activation also decreases striatal dopaminergic neurotransmission, which could lead to 

antipsychotic-like properties (e.g., reduction in positive symptoms)76. Interestingly, the newly 

approved schizophrenia drug, KarXT, attenuates dopamine release and exerts antipsychotic-like 

effects by activating M4 muscarinic acetylcholine receptors77,78. This process appears to be 

codependent on mGluR1 activation77. 

 

Voltage-gated calcium channels: CACNA1C, CACNB2, and CACNA1I 

We prioritized CACNA1C (Figure 3C), which encodes the alpha-1 subunit of a voltage-gated 

calcium channel (Cav1.2). A Phase III clinical trial for bipolar disorder showed that 11 out of 13 

non-responders to first-line therapy (lithium) showed a clinically-meaningful response to 

verapamil (a calcium channel blocker [CCB]), or verapamil + lithium79. The genetic correlation 

between schizophrenia and bipolar disorder is approximately 70%2 and a recent bipolar disorder 

GWAS also identified a significant association near CACNA1C80, suggesting that verapamil may 

be a promising treatment option for schizophrenia. Other CCBs may also be effective—a large 

cohort study (N = 10,460) found that use of dihydropyridine CCBs was associated with reduced 

risk of psychiatric rehospitalization81. CCBs may also improve certain cognitive functions82,83. The 

use of CCBs for treating schizophrenia is further supported by the fact that we prioritized 

CACN2B, an auxiliary subunit of voltage-gated calcium channels. A T-type calcium channel 
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antagonist targeting Cav3.3 (encoded by CACNA1I) has been tested in schizophrenia patients in 

a phase II trial, which produced inconclusive evidence since neither the investigated drug (MK-

8998) nor the active comparator (olanzapine) showed significant symptom improvement84. 

 

Loci shared with addiction: PDE4B and VRK2 

We prioritized PDE4B, which encodes phosphodiesterase 4B (Figure 3E). A recent GWAS of an 

addiction-related latent factor derived from four SUDs46 also found a signal near PDE4B and 

highlighted PDE4B as the likely causal gene. SUDs are frequently comorbid with schizophrenia4 

and there is significant genetic correlation between schizophrenia and several SUDs85. While it is 

challenging to assess psychotic symptoms in rodents, high-quality rodent addiction models exist 

for a wide range of substances86. Indeed, several drugs that are approved to treat alcohol use 

disorder (e.g. naltrexone and acamprosate) were originally pursued based in part on success in 

preclinical animal models86,87. Administering ibudilast, a drug that inhibits PDE4B and other 

phosphodiesterases, has been shown to reduce alcohol intake by approximately 50% in rats88 

and decrease the odds of heavy drinking by 45% in a randomized clinical trial in humans89. Given 

that both addiction and schizophrenia GWASes have suggested an important role for PDE4B in 

disease risk, PDE4B inhibitors may also benefit schizophrenia patients. A Phase I study in 15 

schizophrenia patients found that roflumilast, an inhibitor of all four PDE4 phosphodiesterases, 

significantly improved verbal memory, but not working memory90. 

 

We prioritized VRK2, which encodes vaccinia-related kinase 2 (Figure 3F). While the role of VRK2 

in schizophrenia remains unclear, it is expressed in microglial cells and a mechanism involving 

synaptic elimination by microglial cells has been proposed91,92. Like PDE4B, the same addiction 

GWAS46 also found an association near VRK2. The addiction and schizophrenia signals 

colocalize (H4 = 92%), suggesting a shared causal variant. Therefore, modulating VRK2 activity 
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might result in clinical benefit for people with SUD and/or schizophrenia. VRK2 is a member of 

the highly-druggable serine/threonine kinases group of enzymes58 and has been co-crystallised 

with a small molecule ligand93. VRK2 modulation could be tested in rodent addiction models and, 

if successful, may warrant further testing in human clinical trials of SUD and SCZ patients.  

 

Three other prioritized genes reside in loci shared with the addiction GWAS46: DRD2, SLC39A8 

(H4 = 100%), and PLCL2 (H4 = 74%). Although our analyses did not find evidence that SLC39A8 

and PLCL2 are easily druggable by small molecule drugs, knockdown or overexpression of these 

genes in rodent addiction models may nevertheless improve our understanding of the shared 

biology of addiction and schizophrenia. 

 

GABBR2 

We prioritized GABBR2, which encodes the gamma-aminobutyric acid (GABA) type B receptor 

and is known to inhibit neuronal activity via downstream signaling cascades (Figure 3D). A Phase 

II clinical trial is currently testing whether arbaclofen, a GABAB receptor agonist, can rescue ASD 

symptoms94. Both post-mortem and in vivo studies identified reduced GABA levels in 

schizophrenia patients compared to controls, and impaired gamma band oscillations—which are 

linked with GABAergic signaling—are associated with schizophrenia95–99. If proven to be a 

successful therapy for ASD, arbaclofen may therefore represent an interesting drug repurposing 

candidate for schizophrenia, particularly for symptoms and socio-cognitive deficits that are shared 

between the two disorders100,101. 

 

AKT3 

We prioritized AKT3, the member of the AKT serine/threonine-protein kinase gene family with the 

highest brain-specific expression. Capivasertib—an inhibitor of all three AKT kinases—was 
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recently approved by the FDA to treat a subset of breast cancer patients102. However, AKT 

inhibition can lead to adverse psychiatric side effects103 and AKT3 knockout or knockdown 

resulted in cognitive deficits and reduced brain size in mice104,105. Further studies are necessary 

to determine whether overall or isoform-specific54 increases in AKT3 activity would benefit 

schizophrenia patients without increasing cancer risk. 

 

SNCA 

We prioritized SNCA, which encodes α-synuclein (α-syn). α-syn aggregates are the pathological 

hallmark of Parkinson’s disease (PD) and antibodies targeting aggregated α-syn have been 

tested in two Phase II clinical trials for PD, although neither meet their primary endpoint106,107. The 

schizophrenia association near SNCA colocalizes (H4 = 85%) with an association from a recent 

European-ancestry PD GWAS47. The schizophrenia risk allele was associated with increased PD 

risk, which is in turn linked to increased α-syn production108. As such, interventions that decrease 

α-syn production may benefit both PD and schizophrenia patients. 

 

Besides AKT3 and SNCA, there are 4 other genes that are targeted by approved or investigational 

drugs but have not been investigated in clinical trials of any psychiatric disorders. These include 

CD47, KCNJ3, DPYD and ATP2A2. 

 

Limitations 

The PGC3 study prioritized 83 genes that were not prioritized in our study. The majority of these 

(49 genes) were prioritized via SMR. We did not include SMR because it only demonstrated a 

precision of 29% when predicting a “gold standard” dataset of causal and non-causal trait-gene 

pairs28, consistent with recent models for systematic differences between variants highlighted by 

GWAS and expression studies109. The precision of SMR-nominated genes that failed to meet our 
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gene prioritization criteria is therefore likely to be lower than 29%. Only one additional gene 

(CLCN3) had SMR evidence and the top PoPS value in its locus. The PGC3 study prioritized an 

additional 26 genes where the entire credible set resided within the gene body, but did not have 

the top PoPS value. These included 6 non-coding genes: AC068490.2, CTD-2008L17.2, 

LINC00320, LINC01088, RP11-399D6.2, and RP11-507B12.2. The original PoPS study 

estimated that nearest genes without PoPS evidence had a <27% probability of being a “probable 

causal gene”28. In the PoPS study, selecting the top-ranked gene in a locus led to a higher 

precision than including all genes above a specific threshold28. While we nominated only one gene 

per locus, some loci may contain multiple causal genes. 

 

The original PGC3 study performed gene prioritization analyses in the “core dataset". This 

excluded individuals of African (AFR) or Latin American (LAT) ancestry found in the “extended 

dataset”. To ensure consistency with the original PGC3 study, we also analyzed the core dataset. 

Furthermore, the AFR and LAT datasets only included GWAS summary statistics, not individual-

level genotypes, preventing us from identifying well-matched LD reference panels—something 

particularly important for admixed populations110. Nevertheless, we stress the importance of 

expanding gene prioritization to include more ancestries to ensure that findings are generalizable 

to a broader range of people. 

 

Finally, we assembled our list of prioritized schizophrenia genes using in silico methods. Future 

functional validation studies are critical for dissecting the biological processes underpinning 

schizophrenia risk and for selecting candidate targets for drug development or repurposing. 

 

Conclusion 
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We have curated a high-quality list of 101 genes that likely play a role in the development of 

schizophrenia. Developing or repurposing drugs that target these genes may lead to a new 

generation of schizophrenia therapies. Reassuringly, we prioritized several genes targeted by 

drugs that have been approved for schizophrenia (DRD2) or shown promising results in clinical 

trials (e.g., GRIN2A, CACNA1C, CACN2B). We prioritized genes that likely also play a role in 

SUD (e.g., PDE4B, VRK2). Drugs that modulate the activity of these genes could be tested in 

high-quality rodent models of addiction and, if shown to be safe and effective, should be 

considered for human clinical trials for SUD and/or schizophrenia. We also prioritized 7 genes 

that have not been targeted in clinical trials, but are predicted to be druggable via small molecule 

drugs. Additional efforts that improve our understanding of how these genes influence 

schizophrenia risk on a molecular level may stimulate the initiation of new drug programs. As new 

drug modalities continue to be invented and refined, more genes will become druggable. We hope 

that our list of prioritized genes will ultimately facilitate the development of new medicines for 

people living with schizophrenia. 
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Figure legends 

Figure 1. Heatmap 

An overview of the evidence supporting each prioritized gene, separated based on whether they were (left panel) 

or were not (middle and continued in the right panel) previously prioritized in the PGC3 study17. Distance: 

distance in kilobases between gene and credible set. PoPS: PoPS percentile where 0 represents the smallest 

genome-wide value and 1 represents the largest. # genes: number of genes in the locus. SCHEMA: a binary 

indicator of whether ultra-rare coding variant burden in a given gene was also significantly associated (PFDR < 

5%) with schizophrenia in a study from the Schizophrenia Exome Sequencing Meta-analysis (SCHEMA) 

consortium30. Non-synonymous: a binary indicator of whether the credible set contained non-synonymous 

variants with a summed posterior inclusion probability >50%. Genes are sorted first by “Non-synonymous”, then 

by SCHEMA, distance, and PoPS percentile.  

 

 

Figure 2. Venn diagram 

Venn diagram showing the overlap between the number of genes identified by the present analysis (PoPS+), 

rare-variant studies of autism spectrum disorder (ASD) and/or developmental disorder (DD), the Psychiatric 

Omnilocus Prioritization Score (PsyOPS), and prior gene prioritization efforts (PGC3). Gene symbols are 

displayed for a subset of intersecting regions. 

 

Figure 3. Variant-level associations and PoPS results for selected loci 

The prioritized genes in plots A-E are targets of approved drugs; the prioritized genes in plots E-F are in loci 

shared by an addiction GWAS46. The upper portion of each sub-plot is a LocusZoom plot. Each point represents 

a different genetic variant, the x-axis represents physical position on the listed chromosome, the left y-axis 

represents –log10-transformed P value, the right y-axis represents the recombination rate, colour represents 

linkage disequilibrium with the lead variant in the locus (as shown in the legend), and the horizontal dashed line 

represents the genome-wide significance P value threshold of 5x10-8. The lower portion of each figure is a PoPS 
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plot. Genes are denoted as blue bars spanning from their transcription start site to their transcription stop site 

using the same x-axis as the LocusZoom plot, the y-axis represents the raw PoPS score, the dashed horizontal 

grey lines represent the top 10% and 1% of PoPS scores genome-wide, and the solid horizontal grey line 

represents a PoPS score of 0. 
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Tables 

Table 1. Prioritized genes targeted by approved or investigational drugs, or nominated by 

tractability analysis 

Level of evidence Genes 

Clinical trial, 

schizophrenia 

DRD2A, GRIN2AA, CACNA1CA, GRM3, CACNA10IA, 

PDE4B A 

Clinical trial, other 

psychiatric disease 

GABBR2A, CHRNA3 A, CACNB2 A, ACE A 

Clinical trial, non-

psychiatric disease 

CD47, ATP2A2, KCNJ3 A, AKT3 A, DPYD, SNCA 

Predicted to be 

tractable 

HCN1, VRK2, TRPC4, EP300, GRM1, PTPRF, MMP16 

 A – targeted by approved drugs 
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