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Deep learning enhanced ALPS reveals genetic and
environmental factors of brain glymphatic function
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Summary

Background The glymphatic system plays a critical role in brain waste clearance and health. Diffusion tensor im-
aging along the perivascular space (DTI-ALPS) is an emerging approach to assess glymphatic function, but manual
analysis is limited by its subjectivity and laboriousness in clinical practice. To address these challenges, we devel-
oped a deep learning-enhanced DTI-ALPS (dALPS) method that automates and enhances measurement of DTI-
ALPS in large-scale cohorts, enabling us to uncover its genetic and environmental determinants.

Methods We proposed an automated workflow combining convolutional neural network (CNN) and You Only Look
Once (YOLO) for region-of-interest detection in DTI images. Using this method, we calculated dALPS index for over
65,000 participants from UK Biobank and multiple cohorts, and performed a genome-wide association study (GWAS).
Additionally, we conducted transcriptome-wide association study (TWAS) and proteome-wide association study
(PWAS) to explore the genetic and molecular underpinnings of glymphatic function. Associations between dALPS
and demographic, lifestyle, and clinical traits were comprehensively evaluated. Mediation analysis was conducted to
explore the potential mediating role of pharmacological treatments, including antidepressants and sleep
medications, in the relationship between disease status and dALPS outcomes.

Findings Our automated dALPS index showed excellent reliability and reproducibility compared to conventional
manual techniques (intraclass correlation coefficient = 0-95). We observed that the dALPS index was associated
with a wide range of body composition measures and brain structures across different age groups and sex. GWAS
identified five significant genetic loci associated with dALPS, two of which were replicated in an independent
dataset. Subsequent TWAS and PWAS analyses highlighted potential causal genes and proteins linked to brain
fluid dynamics. We found that higher healthy lifestyle index (HLI) was positively correlated with improved dALPS,
and confirmed the associations between reduced dALPS and various central nervous system (CNS) disorders,
including depression, anxiety and neurodegenerative diseases. Notably, mediation analysis indicated that anti-
depressants were a risk factor for lower brain glymphatic function (P = 0-004) by partly mediating the risk factor of
depression.

Interpretation The dALPS analysis provides a reliable, precise, and automated biomarker for assessing brain
glymphatic function. Our findings illuminate the genetic and environmental determinants of glymphatic activity,
underscoring the potential of dALPS in clinical assessment, disease prediction and targeted therapeutic strategies.
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disease

Research in context

Evidence before this study

The glymphatic system is essential for clearing brain waste,
and the DTI-ALPS index has emerged as a non-invasive
marker of its function. Numerous studies have linked
reduced DTI-ALPS indexes to brain diseases, but they relied
on manual or semi-automated ROI placement, limiting large-
scale application. While previous genetic analyses revealed
potential associations, deep learning-based methods and
multi-omics integration remain underexplored in glymphatic
imaging.

Added value of this study
This study provides a deep learning-enhanced DTI-ALPS
(dALPS) method that enables automated and reliable

Introduction

The glymphatic system plays a pivotal role in main-
taining homeostasis by facilitating the clearance of
metabolic waste,’ including amyloid-beta and tau pro-
teins, which are implicated in neurodegenerative
diseases such as Alzheimer’s disease (AD)’ and Par-
kinson’s disease (PD).* However, assessing the function
of the glymphatic system in vivo poses a considerable
challenge.** Slice-based fluorescent imaging following
tracer injection into the cisternal cerebrospinal fluid
(CSF) is the most commonly used method for evalu-
ating glymphatic exchange.' Keil et al.® introduced a
novel approach for real-time quantification by employ-
ing co-injection of infrared (IR) and conventional
fixable fluorescent tracers in mice. Besides, Han et al.”
proposed the global blood-oxygen-level-dependent
signal-CSF coupling (gBOLD-CSF), which represents
the coupling between the global functional magnetic
resonance imaging (fMRI) signal and CSF influx, as a
potential proxy for glymphatic function, demonstrating
its correlation with AD-related pathology. Additionally,
Harrison et al. utilized an ultra-long echo time, low
b-value, multi-direction diffusion-weighted ~MRI
sequence (DTI},,_;) to assess perivascular fluid move-
ment in mice,* while Han et al. were the first to employ
DTl , to measure glymphatic system influx in
humans.” Ringstad et al.”” detected glymphatic clear-
ance function directly by comparing magnetic reso-
nance imaging (MRI) signal intensity before and after
intrathecal injection of gadolinium. Although

measurement of glymphatic function. In our analysis of over
65,000 individuals, many genetic loci, causal genes and
proteins, lifestyle factors, and associations with
neuropsychiatric diseases were identified. These findings
establish dALPS as a scalable biomarker and reveal insights
into the genetic and environmental influences on brain
waste clearance.

Implications of all the available evidence

This study suggests that dALPS index is a potential
biomarker for early detection and monitoring of brain health,
providing insights into preventive strategies and
personalized interventions targeting brain clearance
pathways.

informative, many of these techniques are invasive or
technically challenging, limiting their utility in large-
scale human studies.

To overcome these limitations, Taoka et al."" intro-
duced the Diffusion Tensor Imaging-Along the Peri-
vascular Space (DTI-ALPS) index as a non-invasive and
reliable approach for evaluating the human glymphatic
system. The DTI-ALPS index leverages the assumption
that water diffusivity along the perivascular spaces (PVS)
reflects CSF—interstitial fluid (ISF) exchange, thereby
serving as an indicator of glymphatic function. The DTI-
ALPS index is calculated from the diffusion tensor
model parameters in a region of interest (ROI) at the
level of the lateral ventricles, where deep medullary veins
run mainly in parallel with the image slice orientation
(Fig. 1a). Reduced DTI-ALPS index has been reported in
diverse neurological disorders, suggesting a broadly
compromised glymphatic pathway. These include AD,"
PD,*" possible idiopathic rapid eye movement sleep
behaviour disorder (piRBD),” multiple sclerosis,"
stroke,” glioma,'® and fibromyalgia,” suggesting DTI-
ALPS as a widely used method for characterizing glym-
phatic dysfunction in clinical and research settings.

Conventionally, the calculation of the DTI-ALPS
index has been performed manually, requiring skilled
operators to identify and measure specific ROIs on a
single slice. This process is time-consuming and prone
to inter-operator variability, making it impractical for
routine clinical visits or large-scale population studies.'®
To address these challenges, several automated
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Fig. 1: dALPS index and its association with body composition and brain structural changes. (a) Schematic representation of DTI-ALPS index
calculation. The left panel illustrates the DTI-ALPS method, showing projection, association, and subcortical fibers in relation to the perivascular
space. The right panels depict the dALPS processing pipeline, including raw DTI data transformation into native space, slice selection, and region
of interest (ROI) extraction. The dALPS index is calculated as the ratio of diffusion tensor components in projection versus association areas. (b)
Heatmap of Spearman rank correlations (p) between the dALPS index and body-composition traits across age-by-sex strata; color encodes p, cells
are colored only for nominal P-value < 0-05 (two-sided Spearman test), and asterisks denote significance after Benjamini-Hochberg FDR
correction (q < 0-05). (c) Brain maps highlighted regions significantly correlated with dALPS in different age groups and sex. The upper panel
focused on subcortical structures (FreeSurfer ASEG), while the lower panel presented cortical segmentations (FreeSurfer DKT).

approaches have been developed. For instance, Tate-
kawa et al."” introduced a method that registered vector
images to a standard space and created reoriented
diffusivity maps, significantly improving reproducibility
in calculating the ALPS index. Similarly, Liu et al.” and
Ran et al”' automated the DTI-ALPS calculation by
predefining the center coordinates of ROIs in the JHU-
ICBM FA template and co-registering each subject’s FA
map to the template, facilitating consistent ROI place-
ment across subjects and enhancing the efficiency and
scalability of the analysis. Additionally, Huang et al.*?
developed a method involving the creation of group-
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averaged ROI templates by randomly selecting partici-
pants from large cohorts to generate an average ROI
template from the training set. These advancements
have significantly enhanced the reproducibility and
scalability of DTI-ALPS calculations, facilitating large-
scale analyses of the function of the human glym-
phatic system. Huang et al.** analyzed over 30,000 in-
dividuals from the UKB and identified hundreds of
genetic loci significantly associated with the DTI-ALPS
index, further pinpointing 161 genes related to the DTI-
ALPS index. Additionally, genetic correlation analyses
confirmed a shared underlying genetic mechanism
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linking the DTI-ALPS index, ventricular volume, and
CSF tau levels.”” Ran et al.* identified 17 genetic loci
associated with regional DTI-ALPS index in around
40,000 individuals, and indicated that a lower DTI-
ALPS index was a risk factor for ischemic stroke.

In this study, we advanced DTI-ALPS analysis by
developing a deep learning-enhanced framework that
can easily be deployed (Fig. la). Using a diverse
training set of DTI images from several hundred Chi-
nese and European participants, we established a
robust deep learning-based tool capable of accurately
identifying multi-slice ROIs and computing a refined
deep learning—enhanced DTI-ALPS index (dALPS).
Applying this pipeline, we successfully derived the
dALPS index from over 65,000 participants from UK
Biobank and multiple cohorts, and performed
comprehensive downstream analyses. Our results pro-
vide insights into the genetic and environmental de-
terminants of glymphatic system function, expanding
our understanding of how glymphatic disruption may
contribute to neurological and psychiatric diseases and
offering an efficient, scalable protocol for high-
throughput glymphatic assessment in large cohorts.

Methods

Study participants

We utilized MRI imaging and genetic data from par-
ticipants in multiple cohorts: Guangzhou Healthy Ag-
ing and Dementia Cohort (GHAD), Guangzhou
Precision Medicine Parkinson’s Cohort (GPMP), Alz-
heimer’s Disease Neuroimaging Initiative 3 (ADNI3),
Parkinson’s Progression Markers Initiative (PPMI), UK
Biobank (UKB), Open Access Series of Imaging Studies
3 (OASIS3) and European Prevention of Alzheimer’s
Dementia Longitudinal Cohort Study (EPAD LCS
V.IMI, https://doi.org/10.34688/epadlcs_v.imi_20.10.
30). The demographic and clinical characteristics of
the subjects at baseline from each cohort are summa-
rized in Table 1. For cohorts with longitudinal designs,
only one imaging time point per participant was used
as specified below; repeated scans were not included in
primary analyses.

DTI acquisition and pre-processing

DTI imaging was performed using a single-shot echo
planar imaging sequence. For the GHAD cohort,
scanning was carried out on a Siemens Prisma scanner,
while the GPMP cohort was scanned on a Siemens
Verio scanner. DTT images for other cohorts, including
PPMI, ADNI3, UKB, OASIS3, and EPAD LCS v.IMI,
were obtained from their respective databases and
platforms. Detailed DTI protocols are available in the
Supplementary Methods. In addition, we provide a
cohort-level protocol summary (Table S1), which details
scanner manufacturer and model, field strength, repe-
tition time (TR) and echo time (TE), in-plane resolution
and slice thickness, diffusion weighting (b-values),
number of diffusion-encoding directions, and the use
of parallel imaging or multiband acceleration where
applicable.

The DTI data were pre-processed using FMRIB
Software Library (FSL, version 6-0). The pre-processing
steps included: (1) conversion of DTI data from Digital
Imaging and Communications in Medicine (DICOM)
to Neuroimaging Informatics Technology Initiative
(NIfTI) format; (2) correction for head motion and brain
extraction using FSL’s eddy_correct and bet tools; (3)
fitting the diffusion tensor model with FSL’s dtifit tool
to obtain tensor parameters; and (4) segmentation of
the tensor file into multiple 3D files using FSL’s fslsplit
tool. The diffusion tensor model’s output was then
transformed into a color-coded RGB map using the
Python Imaging Library (PIL, version: 8-0-1,
Supplementary Methods), with voxel values represent-
ing the direction of the primary eigenvector.

Development and workflow of dALPS

500 subjects with DTT images from GHAD and GPMP
cohorts, and 500 from PPMI and ADNI3 cohorts were
randomly selected. After pre-processing and conversion
via dem2png, V1 files in each DTI image were trans-
formed into color-coded maps, yielding 106,278 color-
coded maps from 1000 subjects. Among these, 2125
images were annotated ‘yes’ (lateral ventricle body sli-
ces), and the remaining 104,153 were annotated ‘no’ by
two neurologists. For ‘yes’ images, the two neurologists

GHAD GPMP ADNI3 PPMI UK Biobank 0ASIS3 EPAD
Sample size (n) 201 352 702 668 61,190 1026 1078
Age at MRI (mean years [SD]) 67-48 (7-20)  64-26 (9-11) 74-35 (7-48) 63-46 (9-38) 54-46 (7-48) 49-65 (8-84) 64-50 (7-22)
Male (n, %) 80 (39:80) 250 (71-02) 330 (47-01) 392 (58:68) 28,989 (47:37) 468 (45-61) 465 (43-14)
Years of education (mean years [SD])  11-29 (3-24) 11-22 (5-10) 1576 (2-39) 15-87 (3-41) NA® 1557 (2:76) 426 (3-73)
dALPS® (mean [SD]) 1129 (0-11) 1198 (0-13) 1-115 (0-12) 1-124 (0-13) 1189 (0-13)  1-105 (0-14) 1-173 (0-12)

GHAD, Guangzhou Healthy Aging and Dementia Cohort; GPMP, Guangzhou Precision Medicine Parkinson’s Cohort; ADNI, Alzheimer’s Disease Neuroimaging Initiative;
PPMI, Parkinson’s Progression Markers Initiative; OASIS, Open Access Series of Imaging Studies; EPAD, European Prevention of Alzheimer’s Dementia Study; SD, Standard
Deviation; NA, Not applicable. *dALPS is the dALPS index of the subject at the time of their first DTI screening during the study. PUK Biobank does not directly provide the

exact number of years of education for each participant.

Table 1: Demographic and clinical characteristics of participants across cohorts in this study.
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used Labellmg (version: 1-8-6) to annotate anchor boxes
for projection and association fiber ROIs. To mitigate
class imbalance and improve model robustness, we
applied data augmentation to the positive (‘yes’) images,
including random in-plane rotation (+15°) and hori-
zontal translation (<20% of the image width). This
procedure expanded the 2125 original positive images
to 9665 augmented positive images. Combined with the
104,153 negative images, the final dataset comprised
113,818 images. All images were resampled to
224 x 224 pixels. The dataset was randomly divided into
training and validation sets (80-20) at the subject level.
The validation set was used only for model selection
and early stopping: convergence monitoring, learning
rate/regularization tuning, and augmentation intensity
adjustment within a pre-specified grid. Data augmen-
tation was applied exclusively to the training set.

For slice classification, we used a lightweight Visual
Geometry Group (VGG)-style CNN consisting of three
convolutional blocks (32, 64, and 128 filters, each fol-
lowed by max-pooling) and two fully connected layers
(128 neurons). The model input size was 224 x 224
pixels. Training was performed using stochastic
gradient descent (learning rate 0-001, momentum 0-9,
batch size 32) for up to 50 epochs, with early stopping if
validation loss plateaued. For ROI detection, we
employed the YOLOVSs architecture with an input size
of 640 x 640 pixels, batch size 50, and 300 epochs.
Default YOLOvS5 data augmentation strategies (color
jitter, scaling, flipping, mosaic) were applied. Training
was initialized with the yolov5s.pt weights, and the best
model was selected based on validation loss. All hyper-
parameters and thresholds were finalized prior to any
external evaluation. A full summary of model architec-
tures and hyperparameters is provided in Table S2. ROIs
were defined based on predefined color ranges. dALPS
index was then computed for each ROI pair per subject.
The term dALPS (deep learning—enhanced ALPS) is
used to indicate that the original DTI-ALPS formula is
preserved, with ROI placement automated via deep
learning models. The relationship between manual DTI-
ALPS and dALPS was validated by two neurologists. The
detailed methods for the development of dALPS are
available in the Supplementary Methods.

Inter-rater reliability and external testing of dALPS
To establish the reliability of manual DTI-ALPS as a
reference standard and to validate the automated pipe-
line against an independent benchmark, we first
quantified inter-rater consistency between two experi-
enced neurologists across five cohorts (ADNI3, PPMI,
UKB, OASIS3, EPAD; n = 200 subjects per cohort). For
each subject, the raters independently placed ROIs and
manually calculated DTI-ALPS, and agreement was
evaluated using intraclass correlation coefficient (ICC,
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model A, 1), mean absolute error (MAE), Lin’s
concordance correlation coefficient (CCC), Pearson
correlation, and Bland-Altman analysis in accordance
with established guidelines; results are reported in
Table S3 and illustrated in Fig. S7. To address potential
overfitting and to provide an independent benchmark,
we tested the dALPS pipeline on datasets that were not
used in model development, with a primary indepen-
dent test set drawn from the UKB and supplementary
test cohorts from OASIS3 and EPAD. Specifically, we
analyzed 1000 randomly selected UKB subjects as the
main test set, and 200 subjects from OASIS3 and 200
from EPAD as supplementary confirmations. For each
subject, two neurologists independently manually
calculated DTI-ALPS index, which were averaged to
form the manual reference. Automated dALPS index
was computed using the proposed pipeline. Agreement
between manual and automated index was quantified
using ICC, MAE, Lin’s CCC, Pearson correlation, and
Bland-Altman analysis.

Cross-cohort stability analysis

To evaluate potential site-specific or cohort-related bias
in dALPS index, we performed additional statistical
analyses across the seven independent cohorts. First,
we compared the distribution of ALPS index across
cohorts using both a one-way analysis of variance
(ANOVA) and a nonparametric Kruskal-Wallis test.
Second, we fitted a linear mixed effects model (LMM)
with cohort specified as a random intercept to partition
the variance in dALPS into between-cohort and within-
cohort components. From this model, we estimated the
variance attributable to cohort-level effects, the residual
within-cohort variance, and the ICC to quantify the
proportion of total variability explained by cohort
membership. Boxplots/violin plots of cross-cohort dis-
tributions and a bar plot of variance components are
shown in Fig. S10.

Genetic data processing

Genotyping and imputation were performed by the UKB
team.” We acquired the imputed genotype data from the
UKB (Data-Field 22828). To minimize confounding from
population stratification, we selected only those UKB
participants who both self-identified as ‘White British’
and clustered closely with the European reference sam-
ples in a principal component analysis. Subsequently, we
used PLINK (version: 2-0; a whole-genome association
analysis toolset)* to perform further quality control. The
detailed quality control procedures are provided in the
Supplementary Methods. Finally, we retained 53,719 in-
dividuals and 7,906,415 autosomal single nucleotide
polymorphisms (SNPs; hgl9). Furthermore, we inte-
grated the EPAD, ADNI, and PPMI cohorts to form an
independent validation set: after applying a quality control
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pipeline identical to that used for the UKB data, 1596
individuals and 7,316,787 SNPs (hg38) were retained.

dALPS index GWAS

We performed genome-wide association study
(GWAS) on the dALPS index (mean values) for the
discovery dataset, replication dataset, combined data-
set and independent validation set using the fast
MLM-based genome-wide association tool (fastGWA)*
implemented in Genome-wide Complex Trait Analysis
(GCTA, version: 1.94-1). This method utilizes a
sparse genetic relationship matrix (sparse GRM) to
account for both population structure and kinship,
allowing for the inclusion of related individuals to
enhance statistical power. We adjusted the model for age,
age’, sex, imaging center, genotype array, systolic blood
pressure, and the top 40 genetic principal components
(PCs). For the discovery and combined datasets, the
GWAS significance threshold was set at P-value
<5 x 107®, whereas for the replication dataset, a signifi-
cance threshold of P-value <0-05 was applied. In the in-
dependent validation set, we performed the GWAS
analysis adjusting for age, age?, sex, cohort, and the top
40 PCs. Associations with P-value <0-05 were considered
successfully validated. For downstream analyses, sum-
mary statistics from the combined dataset were used by
default. Additionally, we performed joint association
analysis (GCTA-COJO)” using default parameters in
GCTA to identify independent genetic variants at signif-
icant loci. We also calculated the genomic inflation factor
(A\) and the intercept of linkage disequilibrium score
regression (LDSC, version: 1-0-1)* to assess whether
population structure was adequately controlled in the
GWAS. LDSC reference LD files were derived from the
European population in the 1000 Genomes Project
(https://doi.org/10.5281/zenodo.7768714).

Transcriptome- and proteome-wide association
studies

PrediXcan® and MR-JTI (joint-tissue imputation (JTI)
and Mendelian randomization framework)” were used
to perform transcriptome-wide association study
(TWAS). We next performed causal inference using the
MR-JTLr function. We performed a proteome-wide as-
sociation study (PWAS) to assess the association be-
tween protein expression and dALPS index using the
FUSION software.’* The genetic effect weights for pro-
tein expression were derived from Wingo et al.” Based
on the GWAS summary statistics from the independent
validation set, we performed a replication analysis for the
significant TWAS/PWAS genes//proteins using the same
method. Associations with P-value <0-05 were consid-
ered successfully validated. Subsequently, we performed
summary data-based Mendelian Randomization (SMR)*
to identify potential causal proteins. Detailed TWAS and
PWAS are provided in the Supplementary Methods.
Furthermore, to test whether the significant associations

for genes/proteins identified by TWAS/PWAS were
driven by the same causal variants as the GWAS signals
for the dALPS index, we performed colocalization anal-
ysis using the coloc tool (version: 5-2-3).**

Cell-type enrichment analysis

We performed a cell-type enrichment analysis using the
scDRS tool* to test for associations between specific
cell types and the dALPS index. This analysis utilized a
single-nucleus RNA-sequencing (snRNA-seq) dataset
from healthy subjects in the Accelerating Medicines
Partnership Parkinson’s Disease (AMP-PD) cohort, for
which the quality control and cell-type annotation pro-
cedures were detailed in our prior work.** The scDRS
method integrates GWAS summary statistics with
snRNA-seq data to assess whether trait-associated
genes are preferentially expressed in certain cell types.
Further details on the single-cell quality control (QC)
and annotation are described in the Supplementary
Materials.

Statistical analyses

All statistical analyses in this study were performed using
R (version: 4-1-0; https://CRAN.R-project.org/). All ana-
lyses involving UKB’s raw imaging data and genomic
data were conducted on the DNAnexus platform using
JupyterLab, with the IMAGE_PROCESSING feature
selected. Analyses involving EPAD’s genomic and clinical
data were carried out on the Alzheimer’s Disease Data
Initiative (ADDI) workspace virtual machine. Full details
on the statistical methods, including the analysis of brain
volumes, GWAS locus annotation, heritability estimation,
genetic correlations, body composition and lifestyle fac-
tors, CNS disorders, case—control matching, and media-
tion analysis, are presented in the Supplementary
Methods.

Although several cohorts are longitudinal studies, all
primary analyses in this study were conducted using a
single imaging time point per participant. For model
development, we used baseline DTI scans only (GHAD,
GPMP, PPMI, ADNI3). For independent validation, we
used the first available imaging assessment per subject:
UKB (Instance 2 imaging visit), OASIS3 (first DTI
session), and EPAD (first DTT session). For association
analyses (e.g., structural MRI metrics, HLI, lifestyle/
environmental measures), covariates were drawn from
the same visit window as the dALPS measurement
(UKB Instance 2 for imaging-based analyses). For
disease-risk analyses, dALPS from the first imaging
visit served as the exposure and incident diagnoses
during follow-up as outcomes. If multiple DTI acqui-
sitions existed within the same visit (e.g., rescans), we
retained one acquisition according to a pre-specified QC
rule (QC-pass and earliest acquisition). No repeated
measures from the same participant were included in
model development, validation, or primary association
analyses.
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To quantify the association between age and dALPS,
we modeled age as a continuous predictor and fitted
ordinary least-squares (OLS) regressions with (i) z-
scored age to report the standardized slope B per 1
standard deviation (SD) of age, and (ii) age scaled in
decades to report the absolute A per 10 years. For both
metrics, we provide 95% confidence intervals (CIs)
from Wald theory and from nonparametric bootstrap
(2000 resamples). To convey practical relevance beyond
P-values, we report the partial R? for age (computed
from the age t-statistic) as the proportion of variance
uniquely explained by age after the intercept. Potential
nonlinearity was evaluated with restricted cubic splines
(natural splines; 3 df) and a global Wald/ANOVA test
comparing the spline model against the linear model; a
small P-value indicates improved fit by allowing cur-
vature. As a complementary, distribution-aware sum-
mary, we also present scatter/loess visualizations in the
Supplement (figure referenced in the Results). For sex
differences, we stratified the cohort into four age bins
(45-54, 55-64, 65-74, 75-84 years) and compared fe-
males versus males within each bin. Effect sizes are
reported as Cohen’s d (female-male) with 95% boot-
strap CIs (2000 resamples). Mean differences were
additionally tested with Welch’s t-test, and multiple
testing across the four bins was controlled using
Benjamini-Hochberg False Discovery Rate (FDR; we
display g-values and significance stars in the figure). As
a sensitivity analysis that removes any residual age
imbalance inside bins, we fitted OLS models
dALPS ~ sex + age within each age bin and standard-
ized the sex coefficient by the within-bin pooled SD to
obtain age-adjusted standardized contrasts with 95%
CIs. For body composition features, we fitted OLS
models of the form. We report standardized regression
slopes (B per 1 SD of the feature), 95% confidence in-
tervals (Wald and bootstrap, 2000 resamples), and par-
tial R? values computed from the feature t-statistic. To
quantify effect size beyond P-values, we also provide
Cohen’s f* (partial R?/(1-partial R?). To evaluate cor-
relations between dALPS and brain volumetric mea-
sures, we computed Spearman’s correlation (p)
between dALPS and each structural volume within each
stratum. Stratum-specific p values were then pooled
using random-effects = meta-analysis (DerSimo-
nian—Laird, Fisher z domain) to obtain an overall cor-
relation with 95% CI and heterogeneity (I%). Left and
right hemisphere structures were merged when
appropriate by inverse-variance weighting.

We evaluated whether medication use mediates the
association between depression or other anxiety disor-
ders and the dALPS index. Exposures and mediators
were binary (yes/no), and the outcome (dALPS) was
continuous. The primary analysis used a two-model
framework with a linear probability model (LPM) for
the mediator and a linear regression for the outcome.
All models were adjusted for age, sex, and imaging site
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(fixed effects). Mediation effects—average causal
mediation effect (ACME), average direct effect (ADE),
total effect, and proportion mediated—were estimated
with the R package ‘mediation’ (version 4-5-0) using
quasi-Bayesian Monte Carlo (1000 simulations) to
obtain 95% confidence intervals and two-sided P-values.
For exploratory, class-specific analyses restricted to an-
tidepressant classes with adequate sample size (Selec-
tive Serotonin Reuptake Inhibitors [SSRIs], Tricyclic
Antidepressants [TCAs], Serotonin—Norepinephrine
Reuptake Inhibitors [SNRIs], and Noradrenergic and
Specific Serotonergic Antidepressants [NaSSAs]), we
controlled the false discovery rate using
Benjamini-Hochberg (FDR, threshold g < 0-10). Model
fit was summarized by R?/adjusted R” and AIC/BIC for
outcome models. Robustness to unmeasured
mediator—outcome confounding was examined via
medsens, replication in the EPAD cohort followed the
same analysis. We provide a schematic directed acyclic
graph (DAG) for illustrating the analysis in this study
(Figs. S24 and S25).

Role of funders

The funders of the current study had no role in the
design, data collection, data analysis, data interpreta-
tion, or writing of this manuscript.

Results

Development of deep learning enhanced DTI-ALPS
(dALPS)

The dALPS workflow follows the conventional DTI-
ALPS pipeline—DTI pre-processing, ROI selection,
mask binarization, value extraction, and DTI-ALPS
computation—but replaces manual ROI placement
with a two-step deep learning approach (Fig. 1a, Sup-
plementary Methods). Instead of using template-based
ROI coordinates, our method uses a CNN to detect
relevant DTI slices covering the lateral ventricles (typi-
cally 3-6 slices) and YOLOVS5 to identify ROI positions.
The CNN, trained with an 80/20 train-validation split,
achieved high accuracy: AUC of 0-989 (95% CI:
0-946-0-992) and PRC of 0-883 (95% CI: 0-874-0-893)
on validation data (Fig. S1a and b). This enables broader
slice coverage compared to the single-slice focus of the
conventional method.

We annotated the ROIs using labellmg and trained
YOLOVS5, which showed steadily improving loss func-
tions (Fig. S2a—c f and g, f and g), and increasing pre-
cision, recall, and mean average precision (mAP)
during training (Fig. S3d and e, i and j). YOLOvV5
reached a mAP of 0-993 at an intersection over union
(IoU) threshold of 0-5 (Fig. S3b), with high F1 score
near 0-99 across all classes (Fig. S3c). Confusion matrix
results showed robust classification (Fig. S4a), and
model predictions were consistent across batches
(Fig. S4). Detected objects similarity in location and
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size was confirmed via correlogram analysis (Fig. S5).
After object detection, two parallel ROIs were
segmented (Fig. S6), and individual dALPS indexes
were calculated by averaging left and right DTI-ALPS
index.

Reliability of dALPS and its generalizability across
cohorts

Despite extensive training and standardized in-
structions, manual DTI-ALPS presented moderate
agreement between the two neurologists, with ICC
values ranging from 0-29 to 0-62 across cohorts and
Pearson correlations of 0-29-0-62 (all P-values <0-0001,
Table S3 and Fig. S7). This finding underscores that
even the manual method—widely regarded as the “gold
standard”—is inherently subject to inter-rater vari-
ability. When validated against independent test sets,
dALPS presented better agreement with manual DTI-
ALPS, consistently outperforming inter-rater reliability
between the two neurologists. In the UKB cohort
(n = 1000), the automated index achieved ICC = 0-90,
CCC = 0-90, MAE = 0-047, and Pearson r = 0-74 (P-
value <0-0001, Table S4, Fig. S8). Comparable results
were obtained in OASIS3 (n = 200, ICC = 0-80, r = 0-77)
and EPAD (n = 200, ICC = 0-78, r = 0-80), details in
Table S4, Fig. S9. Together, we showed that dALPS
achieves reliability that is at least comparable to, and in
some cases exceeds, the reproducibility of manual DTI-
ALPS.

Given that the study draws on seven neuroimaging
cohorts with different acquisition protocols, we further
assessed the extent to which cohort membership
influenced dALPS index. Distributional comparisons
revealed significant differences in absolute value dis-
tributions across cohorts (Kruskal-Wallis test:
H = 1703-2, P-value <0-0001; one-way ANOVA:
F = 277-8, P-value <0-0001; Fig. S10a). To quantify the
contribution of cohort-level variability, we applied a
LMM with cohort specified as a random effect. The
variance attributable to between-cohort differences was
0-00132, while within-cohort variance was 0-0177, cor-
responding to an ICC of 0-069. Thus, about 7% of the
total variance in dALPS index could be explained by
cohort membership (Fig. S10b).

dALPS index associated with demographics and
brain structures

In the UK Biobank cohort (n = 61,011), the dALPS index
showed a wunimodal distribution (median 1-179;
Q1 =1-097, Q3 = 1-270; Fig. S1la). Age was associated
with a small but consistent decline in dALPS: the stan-
dardized effect was p_std (per 1 SD age) = —0-020 (95%
CI -0-0214 to —0-0193), with partial R? = 0-023 (Table S5).
Sex differences were small in magnitude yet stable
across age bins: Cohen’s d (female-male) ~ 0-22-0-31
(Table S6, Fig. S11b—c). Across other six independent
datasets, the meta-analytic pooled difference was

Hedges’ g = 0-33 (95% CI 0-25-0-40; I? ~ 0%), indicating
a small but highly consistent effect (female higher than
male, Table S7, Fig. S12g).

In addition, the dALPS index showed consistent
associations with body-composition metrics, particu-
larly adiposity-related measures such as leg, arm, trunk,
and whole-body fat mass and percentage (Fig. 1b;
Tables S8 and S9). Across age- and sex-stratified
models, these associations were directionally uniform
and generally positive, with effect sizes that were small
in magnitude (median f_std ~ 0-03; median partial
R” &~ 0-1%). The strongest associations were observed
for leg fat percentage (P_std ~ 0-08-0-09; partial
R? ~ 0-2%), followed by body fat percentage and trunk/
arm fat percentage. Although the pulse-wave traits
showed little to no association, the consistent pattern
across multiple adiposity metrics suggests that higher
fat composition is reliably linked to variation in dALPS.

We next examined brain structural measures. Effect
sizes were summarized by Spearman correlation co-
efficients (p) with 95% Cls and pooled across the eight
age-by-sex strata using random-effects meta-analysis.
Ventricular/CSF and choroid-plexus measures showed
the largest—yet small-to-moderate—associations with
dALPS: VentricleChoroid p = —0-300 (95% CI —-0-346
to —0-252; p? ~ 9%), choroid-plexus p = —0-229
(—0-248 to —0-209; ~5%), CSF (whole brain) p = —0-169
(-0-193 to —0-146; ~3%), and WM-hypointensities
p = —0-167 (-0-200 to -0-133; ~0-8%). In contrast,
global/cortical measures were small (e.g., BrainSeg/
SupraTentorial p &~ —0-08, p? & 0-7%; Cortex p ~ —0-046,
p? &= 0-2%) (Fig. S13). Full pooled estimates with het-
erogeneity (I°) and FDR-adjusted P-values are provided
in Table S10. Region-wise cortical maps (Fig. 1c) show
predominantly negative correlations in parietal, tempo-
ral, precuneus, and pericalcarine regions, and positive
correlations in pars orbitalis, pars triangularis, insula,
pars opercularis, and posterior cingulate cortex, while
ventricular structures (lateral, inferior lateral, third, and
fourth ventricles) showed negative associations consis-
tent with glymphatic function coupling to ventricular
expansion and CSF homeostasis.

Identification of genome-wide association loci
associated with dALPS index

Following rigorous QC procedures, we performed a
GWAS on the mean dALPS index. In the discovery
dataset (n = 37,543), we identified 24 significant SNPs
(Pvalue < 5 x 1078 Table S11), four of which
(rs12146713, rs12370774, rs7225002, rs2696466) were
verified in the replication dataset (n = 16,176, P-value <
0-05, Table S11). Subsequent analysis of the combined
dataset (n = 53,719) identified 34 significant SNPs (P-
value < 5 x 1078, Fig. 2a, Table S11), with all four
verified SNPs remaining significant (Table S11). We
then performed COJO analysis on these 34 SNPs,
identifying five lead SNPs: rs696859, rs12146713,

www.thelancet.com Vol 124 February, 2026


http://www.thelancet.com

Articles

a
5. o NUAKT
0 o) o KANSLT
K RP5-855F14.1
g e MAPT,*
; TTC39C
ad C160rf95 \l /
(=2 - .
o
o
0 I I '
12 14 15 16 17 18 19 2021 22
Chromosome
10-
LRRCI7A_
CABYR
s - RP11-798G7.6
MAPTAS\ | ¥:HP11-799312.4
T RP3-466P17.1 COF’O5\ $
T 61 RP11-545/5.3 RRAS2 PLEKHMT ’
S ANKSTA CTD-2020K17.1
a S0D3 sLcotaz  ETv4
039 ¢ ‘/ . ]
o T TR P T b
i TR
‘ i
|l

12 13 14 15 16 17 18 1920 2122
Chromosome
(o]
6-
RRAS2
&
4 LAYN
° - SSH2 o NiabT
GIT1>/
PYGM
o 4 ‘BSMBiEFEMm ‘/SODS «
S Sttt ST T T T
§ . Y . .
Ea ®] . . e ‘ . ° . . 2 .
5 .o . .0 e PR I
T 24 e . ¢ . *2 o ] .
ot 3 .;. o T el e ) .;”..°'a.} “ KRR AN .o ..
. o . LaRg D ] .
'?'5'.' TN TSI RS ':.'-:5-"::" R
o ¢ . - o %, 0 @ . oo\ o0 338 ! Po “wlcl .
1 o Uge ey 3:‘ ,‘o'; Yoy et 8¢ "'. O s 2 ',. 3 ";t
SX 88 SN  R N R T ERRT e Ty L 7 ;
% i S it al i B
0- 1 1 1 im ‘I 1 1 ¢ 1 A 1 U 1 ’ 1 U L
1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18 19 202122
Chromosome

Fig. 2: Manhattan plots of GWAS, TWAS and PWAS results for the mean dALPS index. (a) Manhattan plot of GWAS results for the mean
dALPS index in the combined UKB cohort (n = 53,719). The y-axis shows -log, (P-value) for each SNP, and the x-axis shows the chromosomal
base-pair position. P-values are two-tailed. The GWAS significance threshold (P-value < 5 x 107%) is indicated by a red dashed line. Lead SNPs
are marked with red diamonds. Annotated genes for significant loci are labeled only at the most significant SNP. The lead SNPs validated in
the independent dataset are labeled with their associated gene in magenta. (b) Manhattan plot of TWAS results across 13 brain tissues and
whole blood. Each point represents a gene-tissue pair. The y-axis shows -log,, (P-value), and the x-axis displays the chromosomal position of
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rs7225002, rs8083625, and rs4843555 (Fig. S14b-f,
Table S11). Despite a genomic inflation factor (A) of
1-099 in the combined dataset GWAS, the linkage
disequilibrium score regression (LDSC) intercept was
1-0018 (SE = 0-0077), indicating effective control of
population stratification. Subsequently, five significant
loci were validated (P-value <0-05) in the GWAS anal-
ysis of an independent validation set, including two lead
SNPs (rs12146713 and rs8083625, Fig. 2a, Table S11).
The genomic inflation factor (4) for the validation
GWAS was 0-983, and the LDSC intercept was 0-9774
(SE = 0-0065).

Additionally, SNP-based heritability estimates for
dALPS index were 13-4% using LDSC* and 31-2% using
GCTA-GREML,” suggesting a partial genetic contribu-
tion. We subsequently annotated the significant loci us-
ing the Functional Mapping and Annotation (FUMA)
platform, revealing that most were located in intronic
and intergenic regions (Table S11). Specifically, the lead
variant rs696859 was mapped to the intergenic region of
RP5-855F14-1, rs12146713 located in the intronic region
of NUAK family SNF1-like kinase 1 (NUAKI), rs4843555
located in the intergenic region near the C160rf95 gene,
1r$7225002 located in the intronic region of KAT8 regu-
latory NSL complex subunit 1 (KANSLI), and rs8083625
located in the intronic region of Tetratricopeptide repeat
domain 39C (TTC39C, Fig. 2a, Table S11). We per-
formed a functional annotation of our five lead SNPs
using HaploReg, and revealed that these variants are
located in regions enriched with histone marks charac-
teristic of active regulatory elements in brain tissues
(including H3K4mel, H3K4me3, H3K27ac, and
H3K9ac), suggesting they have a high potential to be
functional (Table S12).

We also investigated the global/local genetic corre-
lations between the dALPS index and 36 phenotypes
spanning neuropsychiatric traits, sleep-related features,
neurological diseases, metabolic disorders, cardiovas-
cular traits and neuroimaging markers (Supplementary
Methods, Table S14). Significant global genetic corre-
lations (FDR <0-05) were observed between the dALPS
index and body mass index (BMI, r, = 0-095), snoring
(rg = 0-097), anxiety disorders (AND, 7, = 0-122), and
mean diffusivity (MD, rg = —0-189, Fig. S15a,
Table S15). We observed 74 significant local genetic
correlations between the dALPS index and 31 pheno-
types across 55 genomic loci (Fig. S15b, Table S16). The
most significant local genetic associations (FDR <0-05)
were  observed at locus  17q21-31, chrl7:
43,460,501-44,865,832 (Fig. S15c), including AD (local

7y = 0:977), autism spectrum disorder (ASD, local
1y = —1), pulse pressure (PP, local r, = 0-994), ease of
getting up (local 7, = —0-956), daytime napping (local
1y = 1), snoring (local r, = —1), and post-traumatic stress
disorder (PTSD, local r, = —0-941, Table S17).

Cis-regulated genes/proteins causally associated
with the dALPS index

To identify potential genes associated with dALPS, we
performed a multi-tissue TWAS using expression pro-
files from 13 distinct brain subregions and whole blood
(Supplementary Methods). Among the 114,674
gene—tissue pairs tested, 340 exhibited (81 genes across
14 tissues) significant associations (FDR <0-05, Fig. 2b,
Table S18). We further applied MR-JTI causal inference
to these significant gene-tissue pairs and identified 46
gene-tissue pairs with significant causal associations (P-
values <0-05/340, Bonferroni-corrected threshold,
Table S18) spanning 13 brain tissues (Fig. 2b,
Table S18). Of the 340 significant gene-tissue pairs, 20
were successfully validated in the independent cohort
(Table S18). Moreover, we performed PWAS to investi-
gate the relationship between the dALPS index and
protein abundance, and identified 10 proteins associated
with dALPS (false discovery rate, FDR <0-05, Fig. 2c,
Table S19). Subsequent summary data-based Mendelian
randomization (SMR) analysis revealed that six of these
proteins—PSMB4, SOD3, RRAS2, SSH2, PYGM, and
NSF—exhibited significant causal associations with
dALPS index (Fig. 2¢c, Table S20). Finally, we performed
colocalization analysis on all 340 significant gene—tissue
pairs from the TWAS and the 10 significant proteins
from the PWAS to investigate whether these associations
were driven by shared causal variants. This integrated
analysis identified five genes (RP11-798G7-6, ARL17B,
MEN1, LRRC37A, and C2CD2; Table S18; Fig. S16a) and
two proteins (SOD3, NSF; Table S19, Fig. S16d) that
showed strong evidence of colocalization with our
dALPS GWAS signal (PP.H4 > 0-8; Tables S18 and S19).

Lifestyle factors associated with the dALPS index
To further investigate the potential environmental and
lifestyle determinants of glymphatic function, we exam-
ined the associations between the dALPS index and
various lifestyles. We revealed that alcohol consumption
(particularly wine and champagne), smoking, and
sleeping (particularly daytime napping and snoring),
were significantly associated with dALPS index (Fig. S18a
and b). Specifically, moderate intake of wine and cham-
pagne was linked to a slightly higher dALPS index, as

each gene-tissue pair. Gene-tissue pairs with significant causal associations are highlighted with red diamonds. Labels for genes surviving
causal analysis are retained only at the most significant locus. The red dashed line represents the significance threshold adjusted for the false
discovery rate (FDR <0-05) for two-tailed P-values. (c) Manhattan plot of PWAS results in brain tissues. Each point represents a protein, with
its encoding gene labeled for significant hits. Proteins with significant causal associations are marked with red diamonds. The red dashed line
represents the significance threshold adjusted for the false discovery rate (FDR <0-05) for two-tailed P-values.
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consumption levels increased, a negative association
emerged (Fig. S18c). We also computed HLI, a composite
measure reflecting adherence to health-promoting be-
haviors, and found a strong positive correlation between
dALPS index and higher HLI scores (Fig. 3).

Alterations of dALPS in CNS diseases and the
mediating role of medications

We next explored the relationship between dALPS in-
dex and various central nervous system (CNS) diseases
(Table S22) in UKB. Significant differences in dALPS
were observed between disease groups and healthy
controls across eight conditions, with all disease groups
exhibiting lower dALPS than healthy individuals
(Fig. 4a). The most significant reductions were found in
multiple sclerosis and depressive episodes (both P-
value < 0-001), followed by somatoform disorders
(P = 0-018) and other anxiety disorders (P = 0-019)
(Fig. 4a). Notably, the reduction in dALPS observed in
individuals with depression and anxiety disorders was
further validated in the EPAD cohort (Fig. 4b). In
addition, in disease-specific cohorts, we observed sig-
nificant correlations between dALPS and established
clinical rating scales. For example, in ADNI3 at baseline
(AD, Mild Cognitive Impairment [MCI]), higher dALPS
was associated with Dbetter cognitive performance
(Montreal Cognitive Assessment [MoCA], r; = 0-187;
Mini-Mental State Examination [MMSE], ;= 0-179) and
lower dementia rating (Clinical Dementia Rating
[CDR], r, = —0-151), and fewer functional limitations
(Functional Activities Questionnaire [FAQ], r, = —0-195)
(Fig. S19a). In PPMI at baseline (PD only), dALPS was
inversely correlated with non-motor symptom burden
on the rater-completed Movement Disorder
Society-Unified Parkinson’s Disease Rating Scale
(MDS-UPDRS) Part I total score (Non-Motor Aspects of
Experiences of Daily Living total score [NP1RTOT],
ry = —0-152) (Fig. S19b). These results further support
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the clinical relevance of dALPS as a biomarker linked to
cognitive impairment and disease severity.

We also performed a mediation analysis to assess
whether drug usage (Table S23) mediates the relation-
ship between depression or anxiety disorders and
dALPS. We observed that drug use played a significant
mediating role in the relationship between depression
and dALPS (P = 0-020) (Fig. 4c), but no mediation effect
in the context of other anxiety disorders (P = 0-66)
(Fig. 4d), and these findings were validated in the EPAD
cohort (Fig. S20a—c). To explore whether specific classes
of antidepressants contributed differentially to this
mediation effect, we stratified the 58 antidepressants
into ten mechanistically defined categories (Table S24).
Among these, four drug classes—SSRIs, TCAs, SNRIs,
and NaSSAs—had sufficient sample sizes (n > 100) for
subgroup mediation analyses. We found that SSRIs and
TCAs exhibited significant mediating effects, account-
ing for 21-1% and 10-5% of the mediation percentage of
depression on dALPS, respectively (Fig. S21a and b,
Table S25). In contrast, no significant mediation effects
were observed for SNRIs and NaSSAs (Fig. S21c and d,
Table S25). Notably, the mediating role of SSRIs was
independently confirmed in the EPAD cohort
(Fig. S20b, Table S25).

Since sleep medications have been found to disrupt
the brain’s waste clearance during sleep, we analyzed
whether disease or insomnia affected dALPS through
the use of sleep medications, primarily benzodiaze-
pines and Z-drugs. We did not observe the use of sleep
medications mediate the relationship between either
disease or insomnia and dALPS (Fig. S22a and b,
Table S26). Although diseases and insomnia can in-
fluence medication use, the effect of medication on
dALPS index was not significant (Fig. S22a and b,
Table S26). This suggests that the impact of sleep
medications on dALPS was not substantial, and their
usage did not significantly alter dALPS index in these
cases.

Furthermore, we examined whether baseline dALPS
index was associated with the future risk of CNS dis-
eases. Cox regression analysis revealed that lower
baseline dALPS index was associated with an increased
risk of developing AD, cerebrovascular diseases, and
hydrocephalus, with the strongest association observed
for AD (Fig. 4e). This relationship remained significant
after adjusting for age, sex, and APOE e4 status
(Fig. S23a), and was validated in the OASIS3 cohort
(Fig. S23b).

Discussion

In this study, we developed a deep learning-based
automation of the DTI-ALPS procedure, which should
be understood as a diffusion-derived proxy sensitive to
water motion along perivascular spaces rather than a
direct measurement of glymphatic flux. This framing
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Fig. 4: Association between dALPS and CNS diseases. (a) Eight different CNS disease groups showed significantly lower dALPS index
compared to healthy individuals. (b) Violin plots illustrating significantly reduced dALPS index in patients with depression and anxiety
disorders compared to healthy controls in the European Prevention of Alzheimer's Dementia (EPAD) study. Mediation analysis evaluated
whether drug use might explain the link between depression (c) and anxiety disorder (d) and dALPS reduction. (e) Cox regression analysis was
performed to examine whether baseline dALPS index could predict the future risk of developing CNS diseases. HR, hazard ratio.

follows recent reviews that revisit both the rationale and
the interpretational caveats of DTI-ALPS. * We adopted
a lightweight VGG backbone for CNN slice classifica-
tion and YOLOvS5s for ROI detection because the
recognition tasks were straightforward and the
anatomical features were highly distinctive. Compared
to more complex networks (e.g., ResNet, Mask R-CNN),
the simpler architectures converged rapidly and avoided
unnecessary overfitting while still achieving excellent
performance (AUC = 0-989 for CNN, mAP@0-5 = 0-993
for YOLOVS5). Therefore, minimal augmentation and
default hyperparameter settings were sufficient. By

leveraging CNN and YOLOvS5-based ROI detection, we
achieved highly accurate and automated identification
of ALPS-related ROIs, overcoming key limitations of
manual ROI placing. Through large-scale analysis of
over 65,000 individuals, we revealed that dALPS shows
sex- and age-related differences and is linked to several
body composition and cardiovascular traits. Further-
more, our GWAS identified five genetic loci linked to
dALPS, highlighting a substantial genetic contribution
to glymphatic function. Multi-omics integration via
TWAS, PWAS, and colocalization uncovered potential
causal genes and proteins, providing novel insights into
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the molecular pathways governing brain fluid dy-
namics. Additionally, we identified a strong positive
association between the dALPS index and the HLI,
suggesting that adherence to healthier lifestyle behav-
iors is linked to improved glymphatic function.
Furthermore, dALPS was significantly correlated with
clinical rating scales across independent cohorts: in
ADNI3 (AD, MCI) with cognition (MoCA/MMSE) and
dementia rating (CDR), and in PPMI (PD) with non-
motor symptoms (NP1RTOT). A PD-focused meta-
analysis found that the DTI-ALPS index was signifi-
cantly associated with MDS-UPDRS III and
Hoehn-Yahr stage.” In AD, a recent systematic review
reported that DTI-ALPS was reduced in AD and MCI
versus controls and correlates with global cognition
(e.g., MMSE)*—consistent with our ADNI3 findings.
These results support the clinical relevance of dALPS as
a biomarker linked to both cognitive decline and func-
tional impairment in neurodegenerative diseases.
Importantly, we showed that reduced dALPS index is
associated with multiple CNS disorders, including
depression, anxiety and neurodegenerative diseases, with
lower baseline dALPS predicting higher future risk of
AD and cerebrovascular conditions. Thus, we suggest
that dALPS is a powerful imaging-derived biomarker
with broad implications for studying brain waste clear-
ance, neurological health and disease susceptibility.
Automated, large-scale calculation of DTI-ALPS
typically involves normalizing individual DTT data to a
standardized anatomical space using image registration
methods. For instance, Huang et al. utilized a group-
averaged ROI template to facilitate DTI-ALPS mea-
surements across extensive cohorts,”” whereas Ran et al.
employed the widely-adopted ANTsX spatial normali-
zation tool to register individual FA images to the FA
template provided by the JHU DTI atlas,”" which is the
most commonly employed strategy for calculating DTI-
ALPS index in neuroimaging studies. However, it
should be noted that such template-based registration
approaches may suffer from reduced accuracy in brains
exhibiting significant anatomical atrophy—a common
phenomenon in elderly populations.” Brain atrophy
often leads to structural deformation,” which causes
misalignment between standardized templates and in-
dividual FA images,* thereby compromising the pre-
cision of the derived DTI-ALPS index. The conventional
procedure for calculating the DTI-ALPS index is rela-
tively straightforward, primarily involving the selection
of a slice at the body of the lateral ventricles from axial
brain images, followed by placing ROIs on each side of
this slice (in some cases, ROIs on the left and right
sides may not be drawn on the same slice), and then
computing the DTI-ALPS index using the established
formula." Our dALPS approach automated the afore-
mentioned process, being able to measure the DTI-
ALPS index in large-scale cohorts and investigate the
genetic and molecular mechanisms underlying the
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glymphatic function. In doing so, our pipeline formal-
izes the geometric rationale of the original DTI-ALPS
method—ventricular-body slice selection and ROI
placement along projection and association fibers—
while removing operator dependence via CNN-based
slice selection and YOLOvS5 ROI detection. Consistent
with the reproducibility findings of Taoka et al.,* we
therefore treat manual DTI-ALPS as an expert reference
rather than a physiological gold standard, and evaluate
dALPS against this reference using agreement-focused
metrics (ICC, CCC, Bland-Altman). Furthermore, in
line with the review by Taoka et al.,”” our contribution
should be interpreted as automating expert best-
practice ROI selection and scaling it to population
studies, while acknowledging the interpretational limi-
tations inherent to DTI-ALPS. To enhance the gener-
alizability of our tool and improve its adaptability to
diverse populations, we selected DTT images from 500
Chinese individuals and 500 European Caucasians to
construct our models. The CNN model achieved a
validation set AUC of 0-989 and PRC of 0-883,
demonstrating robust multi-slice identification around
the lateral ventricle regions. The YOLOv5 model
exhibited strong training convergence with a high mAP
of 0-993, reflecting precise and reliable target localiza-
tion. Our dALPS workflow showed excellent agreement
with traditional manual approaches (ICC = 0:95),
underscoring its reliability and practical utility. At the
same time, the correlation between the two methods
remained moderate (r = 0-55), suggesting the presence
of numerical differences. This discrepancy may stem
from the increased sensitivity of the deep learning-
based DTI-ALPS method, which likely captures subtle
variations that manual methods might overlook. Addi-
tionally, manual approaches inherently involve subjec-
tive judgment, whereas the automated dALPS analysis
minimizes such biases. Notably, the capability of
dALPS to automatically identify multiple slices offers a
more comprehensive analysis compared to traditional
single-slice selection, potentially contributing to the
observed numerical differences. Overall, our dALPS
minimizes dependence on operator expertise, thereby
improving objectivity, reproducibility and the overall
consistency of DTI-ALPS index measurement. As
emphasized by Taoka et al.,®* manual DTI-ALPS
should be regarded as an expert-derived reference
rather than a physiological gold standard, and numer-
ical differences between automated and manual ap-
proaches should be interpreted as method-level
variation within the broader limitations of the DTI-
ALPS framework.

In contrast to the previous studies,”** we performed
the largest GWAS of DTI-ALPS to date, with a total
sample size of 53,719. Among the 34 SNPs significantly
associated with the mean dALPS index, four of them
were also identified as significant (P-value < 5 x 107®) in
the recent GWAS of the mean DTI-ALPS index
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performed by Huang et al., including the most signif-
icant variant, rs12146713 (Table S13).”* However, no
overlapping significant SNPs (P-value < 5 x 107%) were
found in the study by Ran et al. (Table S13)," which
may be attributed to differences in DTI-ALPS index
calculation methods and sample sizes across studies.
The most significant locus we identified, rs12146713,
has been previously reported to be associated with
accelerated brain ageing,* which is analogous with our
observation that mutations are linked to a decline in the
dALPS index. Notably, rs12146713 is located in
NUAKI1, which mediates Ser356 phosphorylation of
tau. This phosphorylation destabilizes microtubules,
promotes tau release, and impedes proteasomal degra-
dation of tau, thereby exacerbating tau hyper-
phosphorylation and aggregation. These pathological
mechanisms are hallmarks of AD neuropathology,”” but
the roles of NUAKI in glymphatic system remained
unclear. The glymphatic system has been implicated in
various central nervous system disorders and sleep
disturbances,* and our genetic correlation analyses
provide further support for these associations. We
discovered that the dALPS index shares a common
genetic architecture with neurological disorders, brain
structures, and sleep-related traits. Notably, the
genomic region 17q21-31 exhibits the highest number
of local genetic correlations. This region contains genes
such as MAPT, MAPT-AS1, KANSL1, and LRRC37A,
among others (Fig. S15c), which have been strongly
linked to various neurological disorders.” Whether this
shared genetic mechanism promotes or mitigates the
related symptoms requires further investigation. We
further performed TWAS and PWAS and identified
potential causal effects genes on dALPS index.
LRRC37A, CABYR, and MAPT-AS1 are among the top
TWAS protein coding gene associations identified
through causal analysis. In the colocalization analysis,
LRRC37A emerged as a particularly compelling candi-
date, as its lead cis-eQTL corresponded to one of the
primary lead GWAS SNPs (rs7225002, Fig. S14d).
Furthermore, we found LRRC37A was consistent as-
sociations with the trait in the initial TWAS across
multiple brain regions (Table S18), supporting its role
as a likely mediator of the GWAS signal. Notably,
LRRC37A showed the strongest overall association with
the dALPS index, with significant associations across 13
tissues (Fig. 2b, Table S18). Previous studies have
established LRRC37A as a TWAS significant gene
linked to brain structure.”® Moreover, postmortem
RNAseq based eQTL analyses have shown that
LRRC37A expression is associated with the caudal
middle frontal thickness.”' CABYR, primarily expressed
in the testes and involved in sperm capacitation, has
been reported to exhibit higher expression in fetal
brains compared to adult brains, suggesting a potential
role in brain development.”> MAPT-ASI is a natural
antisense transcript (NAT) closely associated with the

MAPT, which encodes the microtubule-associated pro-
tein tau. In our TWAS, MAPT-AS1 exhibited significant
associations across nine tissues and was identified as a
causal gene in four tissues: the amygdala, cerebellum,
hypothalamus, and spinal cord (cervical c-1). Previous
studies have reported that MAPT-AS1 inhibits tau
protein translation and shows a negative correlation
with tau pathology (Braak staging) in the brain.”
Additionally, several long non-coding RNAs
(IncRNAs) were identified through causal analysis
(Fig. 2b, Table S18), although numerous studies have
established that IncRNAs play critical roles in neuro-
development and neurodegenerative diseases, limited
research has linked the IncRNAs identified in this study
to brain structure, function, and diseases.** We identified
three genes/proteins—PSMB4, PYGM, and SOD3—as
causal candidates, as they were consistently implicated in
both TWAS and PWAS (Fig. 2b—). PSMB4, a compo-
nent of the multicatalytic proteasome complex, plays a
crucial role in ATP/ubiquitin-dependent protein degra-
dation and maintaining intracellular proteostasis. Inte-
grative analysis of GWAS and human plasma
proteomics has identified PSMB4 as a potential
biomarker and therapeutic target for depression.”
Additionally, in a lipopolysaccharide (LPS)-induced
neuroinflammatory rat model, PSMB4 expression was
significantly elevated in apoptotic neurons, suggesting
its potential involvement in neurodegenerative dis-
eases.” PYGM encodes myophosphorylase, an enzyme
that catalyzes glycogenolysis. While previous studies
have primarily associated PYGM with glycogen storage
diseases.” and a recent study revealed that neuronal
downregulation of PYGM in wild-type mice impaired
synaptic plasticity and cognitive function, while its
overexpression in AD mice ameliorated synaptic
dysfunction and cognitive deficits.” SOD3 encodes
extracellular superoxide dismutase, an enzyme that cat-
alyzes the conversion of superoxide radicals into
hydrogen peroxide and oxygen, thereby protecting cells
from oxidative stress damage.” Previous studies have
demonstrated that SOD3 plays a pivotal role in cerebral
vascular and vasomotor function, while also providing
neuroprotective effects.”® Finally, to further elucidate the
functional context of the genetic variants associated with
the dALPS index, we integrated our results with a multi-
region single-nucleus RNA-seq dataset derived from
postmortem brain samples. This analysis revealed a
significant enrichment in vascular cells, particularly
within the globus pallidus interna (GPI), primary motor
cortex (PMC), dorsolateral prefrontal cortex (DLPFC,
Table S21, Fig. S17e). These findings are especially
relevant given that the glymphatic system is intrinsically
coupled to the brain’s vascular network.

Previous studies have reported that the DTI-ALPS
index decreases with advancing age, exhibits higher
values in females compared to males, and is notably
associated with obesity-related traits and pulse rate.”*
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A recent study in patients with PD further confirmed a
significant negative correlation between BMI and the
DTI-ALPS index, with obese patients exhibiting signif-
icantly reduced glymphatic function compared to
normal-weight individuals.® Our deep learning-based
dALPS index showed consistent trends, aligning
closely with these prior observations, and this consis-
tency underscores the reproducibility and reliability of
the dALPS approach. The robustness of associations
between the dALPS index and demographic character-
istics highlights the stability of this phenomenon across
different measurement methodologies. These findings
further support the validity of the dALPS index as a
promising biomarker for assessing glymphatic function
in the brain. Additionally, the association with obesity-
related traits suggests that elevated BMI might impair
glymphatic clearance, potentially increasing the risk of
neurodegenerative conditions and highlighting the
clinical importance of managing obesity to maintain
optimal brain health. HLI reflects a composite measure
encompassing multiple beneficial behaviors, including
a balanced diet, regular physical activity, adequate sleep,
moderate alcohol consumption, and non-smoking sta-
tus.®? Our study observed higher dALPS among subjects
with elevated HLI scores, suggesting a potential pro-
tective effect of maintaining a healthy lifestyle on
glymphatic system functionality. Further research is
warranted to investigate whether targeted interventions
aimed at improving lifestyle factors could effectively
enhance dALPS and, consequently, bolster glymphatic
function in the brain.

More evidence suggests that DTI-ALPS is reduced
across various neurological disorders, including multi-
ple sclerosis,” depression,* and intracerebral hemor-
rhage.” Our findings support the previous observations
and additionally provide evidence linking the DTI-ALPS
index with anxiety, somatoform disorder, subarachnoid
hemorrhage, and cerebral infarction. These findings
underscore the potential of the dALPS index as a valu-
able biomarker for assessing the impact of multiple
CNS disorders. The associations with anxiety and
somatoform disorder are particularly noteworthy, as
both conditions have traditionally been considered
psychological disorders. Their connections to glym-
phatic function suggest possible underlying biological
mechanisms. Future research may explore whether
interventions aimed at improving glymphatic clearance
(e.g., enhancing sleep quality, reducing inflammation
or optimizing vascular function) could help alleviate the
pathological impacts associated with these mental
health disorders. Notably, our mediation analyses sug-
gest that drug usage for depression could impact the
glymphatic system, consequently reducing the dALPS
index. This may partly explain the impaired glymphatic
function observed in depressed patients, beyond the
direct effects of depression itself. It is important to
clarify that our mediation analysis was not designed as
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a pharmacological study of antidepressant effects per
se, but as a statistical exploration of whether medication
use might account for part of the observed association
between psychiatric diagnosis and reduced dALPS.
Nevertheless, since our primary model treated psychi-
atric diagnosis as the independent variable and drug
usage as the mediator, these unmeasured treatment
parameters are conceptually downstream of the medi-
ator itself and would not invalidate the interpretability
of the indirect pathway. Consequently, our findings
should be understood as revealing a statistical media-
tion pattern—suggesting that antidepressant use may
partially explain the observed link between depression
and reduced dALPS—rather than demonstrating a direct
causal pharmacological effect. In the UKB cohort, the
four most commonly used classes of antidepressants
were SSRIs, TCAs, SNRIs, and NaSSAs. We found that
SSRIs and TCAs had significant mediating effects, ac-
counting for 21-1% and 10-5% of the association be-
tween depression and reduced dALPS, respectively.
While SSRIs primarily function by elevating serotonin
levels,” emerging evidence suggests that they may still
influence CSF circulation, blood-brain barrier (BBB)
permeability, and neuroinflammatory pathways®*—all
of which are tightly linked to CSF dynamics and glym-
phatic function. TCAs exhibit broader actions, affecting
both serotonin and norepinephrine systems and pos-
sessing significant anticholinergic properties, potentially
exerting more complex effects on cerebral blood flow and
metabolism.” Consequently, both SSRIs and TCAs
might alter sleep architecture and cerebral metabolism,
leading to changes in nocturnal glymphatic efficiency. In
contrast, no significant mediation effects were observed
for SNRIs and NaSSAs, despite their modulation of
multiple neurotransmitter systems.”” This could be due
to smaller sample sizes limiting the statistical power to
detect glymphatic alterations, and it is also possible that
the pharmacological mechanisms of these drugs exert
relatively weak effects on the glymphatic system. Given
these differential impacts of various antidepressants on
brain clearance function, the therapeutic strategies for
depression should explicitly account for these potential
neurometabolic side effects. Traditionally, evaluations of
antidepressant side effects have predominantly empha-
sized cognitive, emotional, or systemic parameters, such
as changes in body weight or gastrointestinal func-
tion.”””> Our findings underscore the importance of
incorporating ‘brain clearance function’ as an additional
dimension in assessing drug impacts, particularly in
populations undergoing chronic pharmacological
treatment.

Our study has several limitations. Firstly, the anal-
ysis primarily utilized data from the UKB, predomi-
nantly composed of individuals of European ancestry,
with limited representation of non-European pop-
ulations. Although we included DTI data from 500
Chinese participants during model training to enhance
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generalizability, further validation in more diverse and
multi-ethnic cohorts is essential to confirm the stability
and reproducibility of the dALPS method across
different populations. Secondly, despite employing
CNN and YOLOvV5 models for automated ROI detec-
tion, significantly reducing human error, DTT itself re-
mains susceptible to inherent limitations associated
with MRI scanning, such as resolution constraints and
noise. Subtle motion artifacts or magnetic field in-
homogeneities, for instance, may affect the accuracy of
FA calculations, thereby influencing the reliability of
the ALPS index. Moreover, although our findings reveal
significant associations between dALPS and various
factors such as age, sex, lifestyle, genetic variants, and
multiple CNS disorders, the precise physiological and
pathological interpretations remain to be fully eluci-
dated. Another limitation is that we were unable to
verify whether the observed lower dALPS index in the
disease group, compared to healthy controls, reflects a
causal relationship. The dALPS index primarily reflects
directional water diffusion within the brain, and
whether it directly corresponds to glymphatic function
remains a matter of debate and should be interpreted
cautiously.”* Future research integrating dynamic
contrast-enhanced MRI (DCE-MRI) or in vivo tracer
experiments could provide more direct evidence to
validate the relationship between dALPS and cerebro-
spinal fluid dynamics, enhancing the biological rele-
vance and interpretability of this imaging biomarker.
Additionally, given the findings from our mediation
analysis, future investigations employing animal
models or human functional neuroimaging are essen-
tial, which could more definitively establish whether
antidepressants directly influence glymphatic clearance
efficiency via modulation of BBB integrity, cerebral
blood flow, or sleep architecture. More importantly,
whether and how to optimize antidepressant regimens
requires more well-designed clinical studies.
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