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Summary
Background The glymphatic system plays a critical role in brain waste clearance and health. Diffusion tensor im-
aging along the perivascular space (DTI-ALPS) is an emerging approach to assess glymphatic function, but manual 
analysis is limited by its subjectivity and laboriousness in clinical practice. To address these challenges, we devel-
oped a deep learning-enhanced DTI-ALPS (dALPS) method that automates and enhances measurement of DTI-
ALPS in large-scale cohorts, enabling us to uncover its genetic and environmental determinants.

Methods We proposed an automated workflow combining convolutional neural network (CNN) and You Only Look 
Once (YOLO) for region-of-interest detection in DTI images. Using this method, we calculated dALPS index for over 
65,000 participants from UK Biobank and multiple cohorts, and performed a genome-wide association study (GWAS). 
Additionally, we conducted transcriptome-wide association study (TWAS) and proteome-wide association study 
(PWAS) to explore the genetic and molecular underpinnings of glymphatic function. Associations between dALPS 
and demographic, lifestyle, and clinical traits were comprehensively evaluated. Mediation analysis was conducted to 
explore the potential mediating role of pharmacological treatments, including antidepressants and sleep 
medications, in the relationship between disease status and dALPS outcomes.

Findings Our automated dALPS index showed excellent reliability and reproducibility compared to conventional 
manual techniques (intraclass correlation coefficient = 0⋅95). We observed that the dALPS index was associated 
with a wide range of body composition measures and brain structures across different age groups and sex. GWAS 
identified five significant genetic loci associated with dALPS, two of which were replicated in an independent 
dataset. Subsequent TWAS and PWAS analyses highlighted potential causal genes and proteins linked to brain 
fluid dynamics. We found that higher healthy lifestyle index (HLI) was positively correlated with improved dALPS, 
and confirmed the associations between reduced dALPS and various central nervous system (CNS) disorders, 
including depression, anxiety and neurodegenerative diseases. Notably, mediation analysis indicated that anti-
depressants were a risk factor for lower brain glymphatic function (P = 0⋅004) by partly mediating the risk factor of 
depression.

Interpretation The dALPS analysis provides a reliable, precise, and automated biomarker for assessing brain 
glymphatic function. Our findings illuminate the genetic and environmental determinants of glymphatic activity, 
underscoring the potential of dALPS in clinical assessment, disease prediction and targeted therapeutic strategies.
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Introduction
The glymphatic system plays a pivotal role in main-
taining homeostasis by facilitating the clearance of 
metabolic waste, 1 including amyloid-beta and tau pro-
teins, which are implicated in neurodegenerative 
diseases such as Alzheimer’s disease (AD) 2 and Par-
kinson’s disease (PD). 3 However, assessing the function 
of the glymphatic system in vivo poses a considerable 
challenge. 4,5 Slice-based fluorescent imaging following 
tracer injection into the cisternal cerebrospinal fluid 
(CSF) is the most commonly used method for evalu-
ating glymphatic exchange. 1 Keil et al. 6 introduced a 
novel approach for real-time quantification by employ-
ing co-injection of infrared (IR) and conventional 
fixable fluorescent tracers in mice. Besides, Han et al. 7 

proposed the global blood-oxygen-level-dependent 
signal–CSF coupling (gBOLD-CSF), which represents 
the coupling between the global functional magnetic 
resonance imaging (fMRI) signal and CSF influx, as a 
potential proxy for glymphatic function, demonstrating 
its correlation with AD-related pathology. Additionally, 
Harrison et al. utilized an ultra-long echo time, low 
b-value, multi-direction diffusion-weighted MRI 
sequence (DTI low–b ) to assess perivascular fluid move-
ment in mice, 8 while Han et al. were the first to employ 
DTI low–b to measure glymphatic system influx in 
humans. 9 Ringstad et al. 10 detected glymphatic clear-
ance function directly by comparing magnetic reso-
nance imaging (MRI) signal intensity before and after 
intrathecal injection of gadolinium. Although

informative, many of these techniques are invasive or 
technically challenging, limiting their utility in large-
scale human studies.
To overcome these limitations, Taoka et al. 11 intro-

duced the Diffusion Tensor Imaging–Along the Peri-
vascular Space (DTI-ALPS) index as a non-invasive and 
reliable approach for evaluating the human glymphatic 
system. The DTI-ALPS index leverages the assumption 
that water diffusivity along the perivascular spaces (PVS) 
reflects CSF–interstitial fluid (ISF) exchange, thereby 
serving as an indicator of glymphatic function. The DTI-
ALPS index is calculated from the diffusion tensor 
model parameters in a region of interest (ROI) at the 
level of the lateral ventricles, where deep medullary veins 
run mainly in parallel with the image slice orientation 
(Fig. 1a). Reduced DTI-ALPS index has been reported in 
diverse neurological disorders, suggesting a broadly 
compromised glymphatic pathway. These include AD, 11 

PD, 12,13 possible idiopathic rapid eye movement sleep 
behaviour disorder (piRBD), 13 multiple sclerosis, 14 

stroke, 15 glioma, 16 and fibromyalgia, 17 suggesting DTI-
ALPS as a widely used method for characterizing glym-
phatic dysfunction in clinical and research settings. 
Conventionally, the calculation of the DTI-ALPS 

index has been performed manually, requiring skilled 
operators to identify and measure specific ROIs on a 
single slice. This process is time-consuming and prone 
to inter-operator variability, making it impractical for 
routine clinical visits or large-scale population studies. 18 

To address these challenges, several automated

Research in context

Evidence before this study
The glymphatic system is essential for clearing brain waste, 
and the DTI-ALPS index has emerged as a non-invasive 
marker of its function. Numerous studies have linked 
reduced DTI-ALPS indexes to brain diseases, but they relied 
on manual or semi-automated ROI placement, limiting large-
scale application. While previous genetic analyses revealed 
potential associations, deep learning-based methods and 
multi-omics integration remain underexplored in glymphatic 
imaging.

Added value of this study
This study provides a deep learning–enhanced DTI-ALPS 
(dALPS) method that enables automated and reliable

measurement of glymphatic function. In our analysis of over 
65,000 individuals, many genetic loci, causal genes and 
proteins, lifestyle factors, and associations with 
neuropsychiatric diseases were identified. These findings 
establish dALPS as a scalable biomarker and reveal insights 
into the genetic and environmental influences on brain 
waste clearance.

Implications of all the available evidence 
This study suggests that dALPS index is a potential 
biomarker for early detection and monitoring of brain health, 
providing insights into preventive strategies and 
personalized interventions targeting brain clearance 
pathways.
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approaches have been developed. For instance, Tate-
kawa et al. 19 introduced a method that registered vector 
images to a standard space and created reoriented 
diffusivity maps, significantly improving reproducibility 
in calculating the ALPS index. Similarly, Liu et al. 20 and 
Ran et al. 21 automated the DTI-ALPS calculation by 
predefining the center coordinates of ROIs in the JHU-
ICBM FA template and co-registering each subject’s FA 
map to the template, facilitating consistent ROI place-
ment across subjects and enhancing the efficiency and 
scalability of the analysis. Additionally, Huang et al. 22 

developed a method involving the creation of group-

averaged ROI templates by randomly selecting partici-
pants from large cohorts to generate an average ROI 
template from the training set. These advancements 
have significantly enhanced the reproducibility and 
scalability of DTI-ALPS calculations, facilitating large-
scale analyses of the function of the human glym-
phatic system. Huang et al. 22 analyzed over 30,000 in-
dividuals from the UKB and identified hundreds of 
genetic loci significantly associated with the DTI-ALPS 
index, further pinpointing 161 genes related to the DTI-
ALPS index. Additionally, genetic correlation analyses 
confirmed a shared underlying genetic mechanism
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Fig. 1: dALPS index and its association with body composition and brain structural changes. (a) Schematic representation of DTI-ALPS index 
calculation. The left panel illustrates the DTI-ALPS method, showing projection, association, and subcortical fibers in relation to the perivascular 
space. The right panels depict the dALPS processing pipeline, including raw DTI data transformation into native space, slice selection, and region 
of interest (ROI) extraction. The dALPS index is calculated as the ratio of diffusion tensor components in projection versus association areas. (b) 
Heatmap of Spearman rank correlations (ρ) between the dALPS index and body-composition traits across age-by-sex strata; color encodes ρ, cells 
are colored only for nominal P-value < 0⋅05 (two-sided Spearman test), and asterisks denote significance after Benjamini–Hochberg FDR 
correction (q < 0⋅05). (c) Brain maps highlighted regions significantly correlated with dALPS in different age groups and sex. The upper panel 
focused on subcortical structures (FreeSurfer ASEG), while the lower panel presented cortical segmentations (FreeSurfer DKT).
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linking the DTI-ALPS index, ventricular volume, and 
CSF tau levels. 22 Ran et al. 21 identified 17 genetic loci 
associated with regional DTI-ALPS index in around 
40,000 individuals, and indicated that a lower DTI-
ALPS index was a risk factor for ischemic stroke.
In this study, we advanced DTI-ALPS analysis by 

developing a deep learning–enhanced framework that 
can easily be deployed (Fig. 1a). Using a diverse 
training set of DTI images from several hundred Chi-
nese and European participants, we established a 
robust deep learning-based tool capable of accurately 
identifying multi-slice ROIs and computing a refined 
deep learning–enhanced DTI-ALPS index (dALPS). 
Applying this pipeline, we successfully derived the 
dALPS index from over 65,000 participants from UK 
Biobank and multiple cohorts, and performed 
comprehensive downstream analyses. Our results pro-
vide insights into the genetic and environmental de-
terminants of glymphatic system function, expanding 
our understanding of how glymphatic disruption may 
contribute to neurological and psychiatric diseases and 
offering an efficient, scalable protocol for high-
throughput glymphatic assessment in large cohorts.

Methods
Study participants
We utilized MRI imaging and genetic data from par-
ticipants in multiple cohorts: Guangzhou Healthy Ag-
ing and Dementia Cohort (GHAD), Guangzhou 
Precision Medicine Parkinson’s Cohort (GPMP), Alz-
heimer’s Disease Neuroimaging Initiative 3 (ADNI3), 
Parkinson’s Progression Markers Initiative (PPMI), UK 
Biobank (UKB), Open Access Series of Imaging Studies 
3 (OASIS3) and European Prevention of Alzheimer’s 
Dementia Longitudinal Cohort Study (EPAD LCS 
V.IMI, https://doi.org/10.34688/epadlcs_v.imi_20.10. 
30). The demographic and clinical characteristics of 
the subjects at baseline from each cohort are summa-
rized in Table 1. For cohorts with longitudinal designs, 
only one imaging time point per participant was used 
as specified below; repeated scans were not included in 
primary analyses.

DTI acquisition and pre-processing
DTI imaging was performed using a single-shot echo 
planar imaging sequence. For the GHAD cohort, 
scanning was carried out on a Siemens Prisma scanner, 
while the GPMP cohort was scanned on a Siemens 
Verio scanner. DTI images for other cohorts, including 
PPMI, ADNI3, UKB, OASIS3, and EPAD LCS v.IMI, 
were obtained from their respective databases and 
platforms. Detailed DTI protocols are available in the 
Supplementary Methods. In addition, we provide a 
cohort-level protocol summary (Table S1), which details 
scanner manufacturer and model, field strength, repe-
tition time (TR) and echo time (TE), in-plane resolution 
and slice thickness, diffusion weighting (b-values), 
number of diffusion-encoding directions, and the use 
of parallel imaging or multiband acceleration where 
applicable.
The DTI data were pre-processed using FMRIB 

Software Library (FSL, version 6⋅0). The pre-processing 
steps included: (1) conversion of DTI data from Digital 
Imaging and Communications in Medicine (DICOM) 
to Neuroimaging Informatics Technology Initiative 
(NIfTI) format; (2) correction for head motion and brain 
extraction using FSL’s eddy_correct and bet tools; (3) 
fitting the diffusion tensor model with FSL’s dtifit tool 
to obtain tensor parameters; and (4) segmentation of 
the tensor file into multiple 3D files using FSL’s fslsplit 
tool. The diffusion tensor model’s output was then 
transformed into a color-coded RGB map using the 
Python Imaging Library (PIL, version: 8⋅0⋅1, 
Supplementary Methods), with voxel values represent-
ing the direction of the primary eigenvector.

Development and workflow of dALPS
500 subjects with DTI images from GHAD and GPMP 
cohorts, and 500 from PPMI and ADNI3 cohorts were 
randomly selected. After pre-processing and conversion 
via dcm2png, V1 files in each DTI image were trans-
formed into color-coded maps, yielding 106,278 color-
coded maps from 1000 subjects. Among these, 2125 
images were annotated ‘yes’ (lateral ventricle body sli-
ces), and the remaining 104,153 were annotated ‘no’ by 
two neurologists. For ‘yes’ images, the two neurologists

GHAD GPMP ADNI3 PPMI UK Biobank OASIS3 EPAD

Sample size (n) 201 352 702 668 61,190 1026 1078
Age at MRI (mean years [SD]) 67⋅48 (7⋅20) 64⋅26 (9⋅11) 74⋅35 (7⋅48) 63⋅46 (9⋅38) 54⋅46 (7⋅48) 49⋅65 (8⋅84) 64⋅50 (7⋅22)
Male (n, %) 80 (39⋅80) 250 (71⋅02) 330 (47⋅01) 392 (58⋅68) 28,989 (47⋅37) 468 (45⋅61) 465 (43⋅14)
Years of education (mean years [SD]) 11⋅29 (3⋅24) 11⋅22 (5⋅10) 15⋅76 (2⋅39) 15⋅87 (3⋅41) NA b 15⋅57 (2⋅76) 4⋅26 (3⋅73)
dALPS a (mean [SD]) 1⋅129 (0⋅11) 1⋅198 (0⋅13) 1⋅115 (0⋅12) 1⋅124 (0⋅13) 1⋅189 (0⋅13) 1⋅105 (0⋅14) 1⋅173 (0⋅12)

GHAD, Guangzhou Healthy Aging and Dementia Cohort; GPMP, Guangzhou Precision Medicine Parkinson’s Cohort; ADNI, Alzheimer’s Disease Neuroimaging Initiative; 
PPMI, Parkinson’s Progression Markers Initiative; OASIS, Open Access Series of Imaging Studies; EPAD, European Prevention of Alzheimer’s Dementia Study; SD, Standard 
Deviation; NA, Not applicable. a dALPS is the dALPS index of the subject at the time of their first DTI screening during the study. b UK Biobank does not directly provide the 
exact number of years of education for each participant.

Table 1: Demographic and clinical characteristics of participants across cohorts in this study.
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used LabelImg (version: 1⋅8⋅6) to annotate anchor boxes 
for projection and association fiber ROIs. To mitigate 
class imbalance and improve model robustness, we 
applied data augmentation to the positive (‘yes’) images, 
including random in-plane rotation (±15 ◦ ) and hori-
zontal translation (≤20% of the image width). This 
procedure expanded the 2125 original positive images 
to 9665 augmented positive images. Combined with the 
104,153 negative images, the final dataset comprised 
113,818 images. All images were resampled to 
224 × 224 pixels. The dataset was randomly divided into 
training and validation sets (80–20) at the subject level. 
The validation set was used only for model selection 
and early stopping: convergence monitoring, learning 
rate/regularization tuning, and augmentation intensity 
adjustment within a pre-specified grid. Data augmen-
tation was applied exclusively to the training set.
For slice classification, we used a lightweight Visual 

Geometry Group (VGG)-style CNN consisting of three 
convolutional blocks (32, 64, and 128 filters, each fol-
lowed by max-pooling) and two fully connected layers 
(128 neurons). The model input size was 224 × 224 
pixels. Training was performed using stochastic 
gradient descent (learning rate 0⋅001, momentum 0⋅9, 
batch size 32) for up to 50 epochs, with early stopping if 
validation loss plateaued. For ROI detection, we 
employed the YOLOv5s architecture with an input size 
of 640 × 640 pixels, batch size 50, and 300 epochs. 
Default YOLOv5 data augmentation strategies (color 
jitter, scaling, flipping, mosaic) were applied. Training 
was initialized with the yolov5s.pt weights, and the best 
model was selected based on validation loss. All hyper-
parameters and thresholds were finalized prior to any 
external evaluation. A full summary of model architec-
tures and hyperparameters is provided in Table S2. ROIs 
were defined based on predefined color ranges. dALPS 
index was then computed for each ROI pair per subject. 
The term dALPS (deep learning–enhanced ALPS) is 
used to indicate that the original DTI-ALPS formula is 
preserved, with ROI placement automated via deep 
learning models. The relationship between manual DTI-
ALPS and dALPS was validated by two neurologists. The 
detailed methods for the development of dALPS are 
available in the Supplementary Methods.

Inter-rater reliability and external testing of dALPS
To establish the reliability of manual DTI-ALPS as a 
reference standard and to validate the automated pipe-
line against an independent benchmark, we first 
quantified inter-rater consistency between two experi-
enced neurologists across five cohorts (ADNI3, PPMI, 
UKB, OASIS3, EPAD; n = 200 subjects per cohort). For 
each subject, the raters independently placed ROIs and 
manually calculated DTI-ALPS, and agreement was 
evaluated using intraclass correlation coefficient (ICC,

model A, 1), mean absolute error (MAE), Lin’s 
concordance correlation coefficient (CCC), Pearson 
correlation, and Bland–Altman analysis in accordance 
with established guidelines; results are reported in 
Table S3 and illustrated in Fig. S7. To address potential 
overfitting and to provide an independent benchmark, 
we tested the dALPS pipeline on datasets that were not 
used in model development, with a primary indepen-
dent test set drawn from the UKB and supplementary 
test cohorts from OASIS3 and EPAD. Specifically, we 
analyzed 1000 randomly selected UKB subjects as the 
main test set, and 200 subjects from OASIS3 and 200 
from EPAD as supplementary confirmations. For each 
subject, two neurologists independently manually 
calculated DTI-ALPS index, which were averaged to 
form the manual reference. Automated dALPS index 
was computed using the proposed pipeline. Agreement 
between manual and automated index was quantified 
using ICC, MAE, Lin’s CCC, Pearson correlation, and 
Bland–Altman analysis.

Cross-cohort stability analysis
To evaluate potential site-specific or cohort-related bias 
in dALPS index, we performed additional statistical 
analyses across the seven independent cohorts. First, 
we compared the distribution of ALPS index across 
cohorts using both a one-way analysis of variance 
(ANOVA) and a nonparametric Kruskal–Wallis test. 
Second, we fitted a linear mixed effects model (LMM) 
with cohort specified as a random intercept to partition 
the variance in dALPS into between-cohort and within-
cohort components. From this model, we estimated the 
variance attributable to cohort-level effects, the residual 
within-cohort variance, and the ICC to quantify the 
proportion of total variability explained by cohort 
membership. Boxplots/violin plots of cross-cohort dis-
tributions and a bar plot of variance components are 
shown in Fig. S10.

Genetic data processing
Genotyping and imputation were performed by the UKB 
team. 23 We acquired the imputed genotype data from the 
UKB (Data-Field 22828). To minimize confounding from 
population stratification, we selected only those UKB 
participants who both self-identified as ‘White British’ 
and clustered closely with the European reference sam-
ples in a principal component analysis. Subsequently, we 
used PLINK (version: 2⋅0; a whole–genome association 
analysis toolset) 24 to perform further quality control. The 
detailed quality control procedures are provided in the 
Supplementary Methods. Finally, we retained 53,719 in-
dividuals and 7,906,415 autosomal single nucleotide 
polymorphisms (SNPs; hg19). Furthermore, we inte-
grated the EPAD, ADNI, and PPMI cohorts to form an 
independent validation set: after applying a quality control
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pipeline identical to that used for the UKB data, 1596 
individuals and 7,316,787 SNPs (hg38) were retained.

dALPS index GWAS
We performed genome-wide association study 
(GWAS) on the dALPS index (mean values) for the 
discovery dataset, replication dataset, combined data-
set and independent validation set using the fast 
MLM-based genome-wide association tool (fastGWA) 25 

implemented in Genome-wide Complex Trait Analysis 
(GCTA, version: 1⋅94⋅1). 26 This method utilizes a 
sparse genetic relationship matrix (sparse GRM) to 
account for both population structure and kinship, 
allowing for the inclusion of related individuals to 
enhance statistical power. We adjusted the model for age, 
age 2 , sex, imaging center, genotype array, systolic blood 
pressure, and the top 40 genetic principal components 
(PCs). For the discovery and combined datasets, the 
GWAS significance threshold was set at P-value 
<5 × 10 −8 , whereas for the replication dataset, a signifi-
cance threshold of P-value <0⋅05 was applied. In the in-
dependent validation set, we performed the GWAS 
analysis adjusting for age, age 2 , sex, cohort, and the top 
40 PCs. Associations with P-value <0⋅05 were considered 
successfully validated. For downstream analyses, sum-
mary statistics from the combined dataset were used by 
default. Additionally, we performed joint association 
analysis (GCTA-COJO) 27 using default parameters in 
GCTA to identify independent genetic variants at signif-
icant loci. We also calculated the genomic inflation factor 
(λ) and the intercept of linkage disequilibrium score 
regression (LDSC, version: 1⋅0⋅1) 28 to assess whether 
population structure was adequately controlled in the 
GWAS. LDSC reference LD files were derived from the 
European population in the 1000 Genomes Project 
(https://doi.org/10.5281/zenodo.7768714).

Transcriptome- and proteome-wide association 
studies
PrediXcan 29 and MR-JTI (joint-tissue imputation (JTI) 
and Mendelian randomization framework) 30 were used 
to perform transcriptome-wide association study 
(TWAS). We next performed causal inference using the 
MR-JTI.r function. We performed a proteome-wide as-
sociation study (PWAS) to assess the association be-
tween protein expression and dALPS index using the 
FUSION software. 31 The genetic effect weights for pro-
tein expression were derived from Wingo et al. 32 Based 
on the GWAS summary statistics from the independent 
validation set, we performed a replication analysis for the 
significant TWAS/PWAS genes/proteins using the same 
method. Associations with P-value <0⋅05 were consid-
ered successfully validated. Subsequently, we performed 
summary data-based Mendelian Randomization (SMR) 33 

to identify potential causal proteins. Detailed TWAS and 
PWAS are provided in the Supplementary Methods. 
Furthermore, to test whether the significant associations

for genes/proteins identified by TWAS/PWAS were 
driven by the same causal variants as the GWAS signals 
for the dALPS index, we performed colocalization anal-
ysis using the coloc tool (version: 5⋅2⋅3). 34

Cell-type enrichment analysis
We performed a cell-type enrichment analysis using the 
scDRS tool 35 to test for associations between specific 
cell types and the dALPS index. This analysis utilized a 
single-nucleus RNA-sequencing (snRNA-seq) dataset 
from healthy subjects in the Accelerating Medicines 
Partnership Parkinson’s Disease (AMP-PD) cohort, for 
which the quality control and cell-type annotation pro-
cedures were detailed in our prior work. 36 The scDRS 
method integrates GWAS summary statistics with 
snRNA-seq data to assess whether trait-associated 
genes are preferentially expressed in certain cell types. 
Further details on the single-cell quality control (QC) 
and annotation are described in the Supplementary 
Materials.

Statistical analyses
All statistical analyses in this study were performed using 
R (version: 4⋅1⋅0; https://CRAN.R-project.org/). All ana-
lyses involving UKB’s raw imaging data and genomic 
data were conducted on the DNAnexus platform using 
JupyterLab, with the IMAGE_PROCESSING feature 
selected. Analyses involving EPAD’s genomic and clinical 
data were carried out on the Alzheimer’s Disease Data 
Initiative (ADDI) workspace virtual machine. Full details 
on the statistical methods, including the analysis of brain 
volumes, GWAS locus annotation, heritability estimation, 
genetic correlations, body composition and lifestyle fac-
tors, CNS disorders, case–control matching, and media-
tion analysis, are presented in the Supplementary 
Methods.
Although several cohorts are longitudinal studies, all 

primary analyses in this study were conducted using a 
single imaging time point per participant. For model 
development, we used baseline DTI scans only (GHAD, 
GPMP, PPMI, ADNI3). For independent validation, we 
used the first available imaging assessment per subject: 
UKB (Instance 2 imaging visit), OASIS3 (first DTI 
session), and EPAD (first DTI session). For association 
analyses (e.g., structural MRI metrics, HLI, lifestyle/ 
environmental measures), covariates were drawn from 
the same visit window as the dALPS measurement 
(UKB Instance 2 for imaging-based analyses). For 
disease-risk analyses, dALPS from the first imaging 
visit served as the exposure and incident diagnoses 
during follow-up as outcomes. If multiple DTI acqui-
sitions existed within the same visit (e.g., rescans), we 
retained one acquisition according to a pre-specified QC 
rule (QC-pass and earliest acquisition). No repeated 
measures from the same participant were included in 
model development, validation, or primary association 
analyses.
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To quantify the association between age and dALPS, 
we modeled age as a continuous predictor and fitted 
ordinary least-squares (OLS) regressions with (i) z-
scored age to report the standardized slope β per 1 
standard deviation (SD) of age, and (ii) age scaled in 
decades to report the absolute Δ per 10 years. For both 
metrics, we provide 95% confidence intervals (CIs) 
from Wald theory and from nonparametric bootstrap 
(2000 resamples). To convey practical relevance beyond 
P-values, we report the partial R 2 for age (computed 
from the age t-statistic) as the proportion of variance 
uniquely explained by age after the intercept. Potential 
nonlinearity was evaluated with restricted cubic splines 
(natural splines; 3 df) and a global Wald/ANOVA test 
comparing the spline model against the linear model; a 
small P-value indicates improved fit by allowing cur-
vature. As a complementary, distribution-aware sum-
mary, we also present scatter/loess visualizations in the 
Supplement (figure referenced in the Results). For sex 
differences, we stratified the cohort into four age bins 
(45–54, 55–64, 65–74, 75–84 years) and compared fe-
males versus males within each bin. Effect sizes are 
reported as Cohen’s d (female–male) with 95% boot-
strap CIs (2000 resamples). Mean differences were 
additionally tested with Welch’s t-test, and multiple 
testing across the four bins was controlled using 
Benjamini–Hochberg False Discovery Rate (FDR; we 
display q-values and significance stars in the figure). As 
a sensitivity analysis that removes any residual age 
imbalance inside bins, we fitted OLS models 
dALPS ∼ sex + age within each age bin and standard-
ized the sex coefficient by the within-bin pooled SD to 
obtain age-adjusted standardized contrasts with 95% 
CIs. For body composition features, we fitted OLS 
models of the form. We report standardized regression 
slopes (β per 1 SD of the feature), 95% confidence in-
tervals (Wald and bootstrap, 2000 resamples), and par-
tial R 2 values computed from the feature t-statistic. To 
quantify effect size beyond P-values, we also provide 
Cohen’s f 2 (partial R 2 /(1-partial R 2 )). To evaluate cor-
relations between dALPS and brain volumetric mea-
sures, we computed Spearman’s correlation (ρ) 
between dALPS and each structural volume within each 
stratum. Stratum-specific ρ values were then pooled 
using random-effects meta-analysis (DerSimo-
nian–Laird, Fisher z domain) to obtain an overall cor-
relation with 95% CI and heterogeneity (I 2 ). Left and 
right hemisphere structures were merged when 
appropriate by inverse-variance weighting.
We evaluated whether medication use mediates the 

association between depression or other anxiety disor-
ders and the dALPS index. Exposures and mediators 
were binary (yes/no), and the outcome (dALPS) was 
continuous. The primary analysis used a two-model 
framework with a linear probability model (LPM) for 
the mediator and a linear regression for the outcome. 
All models were adjusted for age, sex, and imaging site

(fixed effects). Mediation effects—average causal 
mediation effect (ACME), average direct effect (ADE), 
total effect, and proportion mediated—were estimated 
with the R package ‘mediation’ (version 4⋅5⋅0) using 
quasi-Bayesian Monte Carlo (1000 simulations) to 
obtain 95% confidence intervals and two-sided P-values. 
For exploratory, class-specific analyses restricted to an-
tidepressant classes with adequate sample size (Selec-
tive Serotonin Reuptake Inhibitors [SSRIs], Tricyclic 
Antidepressants [TCAs], Serotonin–Norepinephrine 
Reuptake Inhibitors [SNRIs], and Noradrenergic and 
Specific Serotonergic Antidepressants [NaSSAs]), we 
controlled the false discovery rate using 
Benjamini–Hochberg (FDR, threshold q < 0⋅10). Model 
fit was summarized by R 2 /adjusted R 2 and AIC/BIC for 
outcome models. Robustness to unmeasured 
mediator–outcome confounding was examined via 
medsens, replication in the EPAD cohort followed the 
same analysis. We provide a schematic directed acyclic 
graph (DAG) for illustrating the analysis in this study 
(Figs. S24 and S25).

Role of funders
The funders of the current study had no role in the 
design, data collection, data analysis, data interpreta-
tion, or writing of this manuscript.

Results
Development of deep learning enhanced DTI-ALPS 
(dALPS)
The dALPS workflow follows the conventional DTI-
ALPS pipeline—DTI pre-processing, ROI selection, 
mask binarization, value extraction, and DTI-ALPS 
computation—but replaces manual ROI placement 
with a two-step deep learning approach (Fig. 1a, Sup-
plementary Methods). Instead of using template-based 
ROI coordinates, our method uses a CNN to detect 
relevant DTI slices covering the lateral ventricles (typi-
cally 3–6 slices) and YOLOv5 to identify ROI positions. 
The CNN, trained with an 80/20 train-validation split, 
achieved high accuracy: AUC of 0⋅989 (95% CI: 
0⋅946–0⋅992) and PRC of 0⋅883 (95% CI: 0⋅874–0⋅893) 
on validation data (Fig. S1a and b). This enables broader 
slice coverage compared to the single-slice focus of the 
conventional method.
We annotated the ROIs using labelImg and trained 

YOLOv5, which showed steadily improving loss func-
tions (Fig. S2a–c f and g, f and g), and increasing pre-
cision, recall, and mean average precision (mAP) 
during training (Fig. S3d and e, i and j). YOLOv5 
reached a mAP of 0⋅993 at an intersection over union 
(IoU) threshold of 0⋅5 (Fig. S3b), with high F1 score 
near 0⋅99 across all classes (Fig. S3c). Confusion matrix 
results showed robust classification (Fig. S4a), and 
model predictions were consistent across batches 
(Fig. S4). Detected objects similarity in location and
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size was confirmed via correlogram analysis (Fig. S5). 
After object detection, two parallel ROIs were 
segmented (Fig. S6), and individual dALPS indexes 
were calculated by averaging left and right DTI-ALPS 
index.

Reliability of dALPS and its generalizability across 
cohorts
Despite extensive training and standardized in-
structions, manual DTI-ALPS presented moderate 
agreement between the two neurologists, with ICC 
values ranging from 0⋅29 to 0⋅62 across cohorts and 
Pearson correlations of 0⋅29–0⋅62 (all P-values <0⋅0001, 
Table S3 and Fig. S7). This finding underscores that 
even the manual method—widely regarded as the “gold 
standard”—is inherently subject to inter-rater vari-
ability. When validated against independent test sets, 
dALPS presented better agreement with manual DTI-
ALPS, consistently outperforming inter-rater reliability 
between the two neurologists. In the UKB cohort 
(n = 1000), the automated index achieved ICC = 0⋅90, 
CCC = 0⋅90, MAE = 0⋅047, and Pearson r = 0⋅74 (P-
value <0⋅0001, Table S4, Fig. S8). Comparable results 
were obtained in OASIS3 (n = 200, ICC = 0⋅80, r = 0⋅77) 
and EPAD (n = 200, ICC = 0⋅78, r = 0⋅80), details in 
Table S4, Fig. S9. Together, we showed that dALPS 
achieves reliability that is at least comparable to, and in 
some cases exceeds, the reproducibility of manual DTI-
ALPS.
Given that the study draws on seven neuroimaging 

cohorts with different acquisition protocols, we further 
assessed the extent to which cohort membership 
influenced dALPS index. Distributional comparisons 
revealed significant differences in absolute value dis-
tributions across cohorts (Kruskal–Wallis test: 
H = 1703⋅2, P-value <0⋅0001; one-way ANOVA: 
F = 277⋅8, P-value <0⋅0001; Fig. S10a). To quantify the 
contribution of cohort-level variability, we applied a 
LMM with cohort specified as a random effect. The 
variance attributable to between-cohort differences was 
0⋅00132, while within-cohort variance was 0⋅0177, cor-
responding to an ICC of 0⋅069. Thus, about 7% of the 
total variance in dALPS index could be explained by 
cohort membership (Fig. S10b).

dALPS index associated with demographics and 
brain structures
In the UK Biobank cohort (n = 61,011), the dALPS index 
showed a unimodal distribution (median 1⋅179; 
Q1 = 1⋅097, Q3 = 1⋅270; Fig. S11a). Age was associated 
with a small but consistent decline in dALPS: the stan-
dardized effect was β_std (per 1 SD age) = −0⋅020 (95% 
CI -0⋅0214 to −0⋅0193), with partial R 2 = 0⋅023 (Table S5). 
Sex differences were small in magnitude yet stable 
across age bins: Cohen’s d (female–male) ≈ 0⋅22–0⋅31 
(Table S6, Fig. S11b–c). Across other six independent 
datasets, the meta-analytic pooled difference was

Hedges’ g = 0⋅33 (95% CI 0⋅25–0⋅40; I 2 ≈ 0%), indicating 
a small but highly consistent effect (female higher than 
male, Table S7, Fig. S12g).
In addition, the dALPS index showed consistent 

associations with body-composition metrics, particu-
larly adiposity-related measures such as leg, arm, trunk, 
and whole-body fat mass and percentage (Fig. 1b; 
Tables S8 and S9). Across age- and sex-stratified 
models, these associations were directionally uniform 
and generally positive, with effect sizes that were small 
in magnitude (median β_std ≈ 0⋅03; median partial 
R 2 ≈ 0⋅1%). The strongest associations were observed 
for leg fat percentage (β_std ≈ 0⋅08–0⋅09; partial 
R 2 ≈ 0⋅2%), followed by body fat percentage and trunk/ 
arm fat percentage. Although the pulse-wave traits 
showed little to no association, the consistent pattern 
across multiple adiposity metrics suggests that higher 
fat composition is reliably linked to variation in dALPS. 
We next examined brain structural measures. Effect 

sizes were summarized by Spearman correlation co-
efficients (ρ) with 95% CIs and pooled across the eight 
age-by-sex strata using random-effects meta-analysis. 
Ventricular/CSF and choroid-plexus measures showed 
the largest—yet small-to-moderate—associations with 
dALPS: VentricleChoroid ρ = −0⋅300 (95% CI −0⋅346 
to −0⋅252; ρ 2 ≈ 9%), choroid-plexus ρ = −0⋅229 
(−0⋅248 to −0⋅209; ∼5%), CSF (whole brain) ρ = −0⋅169 
(−0⋅193 to −0⋅146; ∼3%), and WM-hypointensities
ρ = −0⋅167 (−0⋅200 to −0⋅133; ∼0⋅8%). In contrast, 
global/cortical measures were small (e.g., BrainSeg/ 
SupraTentorial ρ ≈ −0⋅08, ρ 2 ≈ 0⋅7%; Cortex ρ ≈ −0⋅046,
ρ 2 ≈ 0⋅2%) (Fig. S13). Full pooled estimates with het-
erogeneity (I 2 ) and FDR-adjusted P-values are provided 
in Table S10. Region-wise cortical maps (Fig. 1c) show 
predominantly negative correlations in parietal, tempo-
ral, precuneus, and pericalcarine regions, and positive 
correlations in pars orbitalis, pars triangularis, insula, 
pars opercularis, and posterior cingulate cortex, while 
ventricular structures (lateral, inferior lateral, third, and 
fourth ventricles) showed negative associations consis-
tent with glymphatic function coupling to ventricular 
expansion and CSF homeostasis.

Identification of genome-wide association loci 
associated with dALPS index
Following rigorous QC procedures, we performed a 
GWAS on the mean dALPS index. In the discovery 
dataset (n = 37,543), we identified 24 significant SNPs 
(P-value < 5 × 10 −8 , Table S11), four of which 
(rs12146713, rs12370774, rs7225002, rs2696466) were 
verified in the replication dataset (n = 16,176, P-value < 
0⋅05, Table S11). Subsequent analysis of the combined 
dataset (n = 53,719) identified 34 significant SNPs (P-
value < 5 × 10 −8 , Fig. 2a, Table S11), with all four 
verified SNPs remaining significant (Table S11). We 
then performed COJO analysis on these 34 SNPs, 
identifying five lead SNPs: rs696859, rs12146713,
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Fig. 2: Manhattan plots of GWAS, TWAS and PWAS results for the mean dALPS index. (a) Manhattan plot of GWAS results for the mean 
dALPS index in the combined UKB cohort (n = 53,719). The y-axis shows -log 10 (P-value) for each SNP, and the x-axis shows the chromosomal 
base-pair position. P-values are two-tailed. The GWAS significance threshold (P-value < 5 × 10 −8 ) is indicated by a red dashed line. Lead SNPs 
are marked with red diamonds. Annotated genes for significant loci are labeled only at the most significant SNP. The lead SNPs validated in 
the independent dataset are labeled with their associated gene in magenta. (b) Manhattan plot of TWAS results across 13 brain tissues and 
whole blood. Each point represents a gene–tissue pair. The y-axis shows -log 10 (P-value), and the x-axis displays the chromosomal position of
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rs7225002, rs8083625, and rs4843555 (Fig. S14b–f, 
Table S11). Despite a genomic inflation factor (λ) of 
1⋅099 in the combined dataset GWAS, the linkage 
disequilibrium score regression (LDSC) intercept was 
1⋅0018 (SE = 0⋅0077), indicating effective control of 
population stratification. Subsequently, five significant 
loci were validated (P-value <0⋅05) in the GWAS anal-
ysis of an independent validation set, including two lead 
SNPs (rs12146713 and rs8083625, Fig. 2a, Table S11). 
The genomic inflation factor (λ) for the validation 
GWAS was 0⋅983, and the LDSC intercept was 0⋅9774 
(SE = 0⋅0065).
Additionally, SNP-based heritability estimates for 

dALPS index were 13⋅4% using LDSC 28 and 31⋅2% using 
GCTA-GREML, 37 suggesting a partial genetic contribu-
tion. We subsequently annotated the significant loci us-
ing the Functional Mapping and Annotation (FUMA) 
platform, revealing that most were located in intronic 
and intergenic regions (Table S11). Specifically, the lead 
variant rs696859 was mapped to the intergenic region of 
RP5-855F14⋅1, rs12146713 located in the intronic region 
of NUAK family SNF1-like kinase 1 (NUAK1), rs4843555 
located in the intergenic region near the C16orf95 gene, 
rs7225002 located in the intronic region of KAT8 regu-
latory NSL complex subunit 1 (KANSL1), and rs8083625 
located in the intronic region of Tetratricopeptide repeat 
domain 39C (TTC39C, Fig. 2a, Table S11). We per-
formed a functional annotation of our five lead SNPs 
using HaploReg, and revealed that these variants are 
located in regions enriched with histone marks charac-
teristic of active regulatory elements in brain tissues 
(including H3K4me1, H3K4me3, H3K27ac, and 
H3K9ac), suggesting they have a high potential to be 
functional (Table S12).
We also investigated the global/local genetic corre-

lations between the dALPS index and 36 phenotypes 
spanning neuropsychiatric traits, sleep-related features, 
neurological diseases, metabolic disorders, cardiovas-
cular traits and neuroimaging markers (Supplementary 
Methods, Table S14). Significant global genetic corre-
lations (FDR <0⋅05) were observed between the dALPS 
index and body mass index (BMI, r g = 0⋅095), snoring 
(r g = 0⋅097), anxiety disorders (AND, r g = 0⋅122), and 
mean diffusivity (MD, r g = −0⋅189, Fig. S15a, 
Table S15). We observed 74 significant local genetic 
correlations between the dALPS index and 31 pheno-
types across 55 genomic loci (Fig. S15b, Table S16). The 
most significant local genetic associations (FDR <0⋅05) 
were observed at locus 17q21⋅31, chr17: 
43,460,501–44,865,832 (Fig. S15c), including AD (local

r g = 0⋅977), autism spectrum disorder (ASD, local 
r g = −1), pulse pressure (PP, local r g = 0⋅994), ease of 
getting up (local r g = −0⋅956), daytime napping (local 
r g = 1), snoring (local r g = −1), and post-traumatic stress 
disorder (PTSD, local r g = −0⋅941, Table S17).

Cis-regulated genes/proteins causally associated 
with the dALPS index
To identify potential genes associated with dALPS, we 
performed a multi-tissue TWAS using expression pro-
files from 13 distinct brain subregions and whole blood 
(Supplementary Methods). Among the 114,674 
gene–tissue pairs tested, 340 exhibited (81 genes across 
14 tissues) significant associations (FDR <0⋅05, Fig. 2b, 
Table S18). We further applied MR-JTI causal inference 
to these significant gene–tissue pairs and identified 46 
gene–tissue pairs with significant causal associations (P-
values <0⋅05/340, Bonferroni-corrected threshold, 
Table S18) spanning 13 brain tissues (Fig. 2b, 
Table S18). Of the 340 significant gene–tissue pairs, 20 
were successfully validated in the independent cohort 
(Table S18). Moreover, we performed PWAS to investi-
gate the relationship between the dALPS index and 
protein abundance, and identified 10 proteins associated 
with dALPS (false discovery rate, FDR <0⋅05, Fig. 2c, 
Table S19). Subsequent summary data-based Mendelian 
randomization (SMR) analysis revealed that six of these 
proteins—PSMB4, SOD3, RRAS2, SSH2, PYGM, and 
NSF—exhibited significant causal associations with 
dALPS index (Fig. 2c, Table S20). Finally, we performed 
colocalization analysis on all 340 significant gene–tissue 
pairs from the TWAS and the 10 significant proteins 
from the PWAS to investigate whether these associations 
were driven by shared causal variants. This integrated 
analysis identified five genes (RP11-798G7⋅6, ARL17B, 
MEN1, LRRC37A, and C2CD2; Table S18; Fig. S16a) and 
two proteins (SOD3, NSF; Table S19, Fig. S16d) that 
showed strong evidence of colocalization with our 
dALPS GWAS signal (PP.H4 > 0⋅8; Tables S18 and S19).

Lifestyle factors associated with the dALPS index
To further investigate the potential environmental and 
lifestyle determinants of glymphatic function, we exam-
ined the associations between the dALPS index and 
various lifestyles. We revealed that alcohol consumption 
(particularly wine and champagne), smoking, and 
sleeping (particularly daytime napping and snoring), 
were significantly associated with dALPS index (Fig. S18a 
and b). Specifically, moderate intake of wine and cham-
pagne was linked to a slightly higher dALPS index, as

each gene–tissue pair. Gene-tissue pairs with significant causal associations are highlighted with red diamonds. Labels for genes surviving 
causal analysis are retained only at the most significant locus. The red dashed line represents the significance threshold adjusted for the false 
discovery rate (FDR <0⋅05) for two-tailed P-values. (c) Manhattan plot of PWAS results in brain tissues. Each point represents a protein, with 
its encoding gene labeled for significant hits. Proteins with significant causal associations are marked with red diamonds. The red dashed line 
represents the significance threshold adjusted for the false discovery rate (FDR <0⋅05) for two-tailed P-values.
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consumption levels increased, a negative association 
emerged (Fig. S18c). We also computed HLI, a composite 
measure reflecting adherence to health-promoting be-
haviors, and found a strong positive correlation between 
dALPS index and higher HLI scores (Fig. 3).

Alterations of dALPS in CNS diseases and the 
mediating role of medications
We next explored the relationship between dALPS in-
dex and various central nervous system (CNS) diseases 
(Table S22) in UKB. Significant differences in dALPS 
were observed between disease groups and healthy 
controls across eight conditions, with all disease groups 
exhibiting lower dALPS than healthy individuals 
(Fig. 4a). The most significant reductions were found in 
multiple sclerosis and depressive episodes (both P-
value < 0⋅001), followed by somatoform disorders 
(P = 0⋅018) and other anxiety disorders (P = 0⋅019) 
(Fig. 4a). Notably, the reduction in dALPS observed in 
individuals with depression and anxiety disorders was 
further validated in the EPAD cohort (Fig. 4b). In 
addition, in disease-specific cohorts, we observed sig-
nificant correlations between dALPS and established 
clinical rating scales. For example, in ADNI3 at baseline 
(AD, Mild Cognitive Impairment [MCI]), higher dALPS 
was associated with better cognitive performance 
(Montreal Cognitive Assessment [MoCA], r s = 0⋅187; 
Mini-Mental State Examination [MMSE], r s = 0⋅179) and 
lower dementia rating (Clinical Dementia Rating 
[CDR], r s = −0⋅151), and fewer functional limitations 
(Functional Activities Questionnaire [FAQ], r s = −0⋅195) 
(Fig. S19a). In PPMI at baseline (PD only), dALPS was 
inversely correlated with non-motor symptom burden 
on the rater-completed Movement Disorder 
Society–Unified Parkinson’s Disease Rating Scale 
(MDS-UPDRS) Part I total score (Non-Motor Aspects of 
Experiences of Daily Living total score [NP1RTOT], 
r s = −0⋅152) (Fig. S19b). These results further support

the clinical relevance of dALPS as a biomarker linked to 
cognitive impairment and disease severity.
We also performed a mediation analysis to assess 

whether drug usage (Table S23) mediates the relation-
ship between depression or anxiety disorders and 
dALPS. We observed that drug use played a significant 
mediating role in the relationship between depression 
and dALPS (P = 0⋅020) (Fig. 4c), but no mediation effect 
in the context of other anxiety disorders (P = 0⋅66) 
(Fig. 4d), and these findings were validated in the EPAD 
cohort (Fig. S20a–c). To explore whether specific classes 
of antidepressants contributed differentially to this 
mediation effect, we stratified the 58 antidepressants 
into ten mechanistically defined categories (Table S24). 
Among these, four drug classes—SSRIs, TCAs, SNRIs, 
and NaSSAs—had sufficient sample sizes (n > 100) for 
subgroup mediation analyses. We found that SSRIs and 
TCAs exhibited significant mediating effects, account-
ing for 21⋅1% and 10⋅5% of the mediation percentage of 
depression on dALPS, respectively (Fig. S21a and b, 
Table S25). In contrast, no significant mediation effects 
were observed for SNRIs and NaSSAs (Fig. S21c and d, 
Table S25). Notably, the mediating role of SSRIs was 
independently confirmed in the EPAD cohort 
(Fig. S20b, Table S25).
Since sleep medications have been found to disrupt 

the brain’s waste clearance during sleep, 38 we analyzed 
whether disease or insomnia affected dALPS through 
the use of sleep medications, primarily benzodiaze-
pines and Z-drugs. We did not observe the use of sleep 
medications mediate the relationship between either 
disease or insomnia and dALPS (Fig. S22a and b, 
Table S26). Although diseases and insomnia can in-
fluence medication use, the effect of medication on 
dALPS index was not significant (Fig. S22a and b, 
Table S26). This suggests that the impact of sleep 
medications on dALPS was not substantial, and their 
usage did not significantly alter dALPS index in these 
cases.
Furthermore, we examined whether baseline dALPS 

index was associated with the future risk of CNS dis-
eases. Cox regression analysis revealed that lower 
baseline dALPS index was associated with an increased 
risk of developing AD, cerebrovascular diseases, and 
hydrocephalus, with the strongest association observed 
for AD (Fig. 4e). This relationship remained significant 
after adjusting for age, sex, and APOE ε4 status 
(Fig. S23a), and was validated in the OASIS3 cohort 
(Fig. S23b).

Discussion
In this study, we developed a deep learning-based 
automation of the DTI-ALPS procedure, which should 
be understood as a diffusion-derived proxy sensitive to 
water motion along perivascular spaces rather than a 
direct measurement of glymphatic flux. This framing
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follows recent reviews that revisit both the rationale and 
the interpretational caveats of DTI-ALPS. 39 We adopted 
a lightweight VGG backbone for CNN slice classifica-
tion and YOLOv5s for ROI detection because the 
recognition tasks were straightforward and the 
anatomical features were highly distinctive. Compared 
to more complex networks (e.g., ResNet, Mask R-CNN), 
the simpler architectures converged rapidly and avoided 
unnecessary overfitting while still achieving excellent 
performance (AUC = 0⋅989 for CNN, mAP@0⋅5 = 0⋅993 
for YOLOv5). Therefore, minimal augmentation and 
default hyperparameter settings were sufficient. By

leveraging CNN and YOLOv5-based ROI detection, we 
achieved highly accurate and automated identification 
of ALPS-related ROIs, overcoming key limitations of 
manual ROI placing. Through large-scale analysis of 
over 65,000 individuals, we revealed that dALPS shows 
sex- and age-related differences and is linked to several 
body composition and cardiovascular traits. Further-
more, our GWAS identified five genetic loci linked to 
dALPS, highlighting a substantial genetic contribution 
to glymphatic function. Multi-omics integration via 
TWAS, PWAS, and colocalization uncovered potential 
causal genes and proteins, providing novel insights into
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Fig. 4: Association between dALPS and CNS diseases. (a) Eight different CNS disease groups showed significantly lower dALPS index 
compared to healthy individuals. (b) Violin plots illustrating significantly reduced dALPS index in patients with depression and anxiety 
disorders compared to healthy controls in the European Prevention of Alzheimer’s Dementia (EPAD) study. Mediation analysis evaluated 
whether drug use might explain the link between depression (c) and anxiety disorder (d) and dALPS reduction. (e) Cox regression analysis was 
performed to examine whether baseline dALPS index could predict the future risk of developing CNS diseases. HR, hazard ratio.
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the molecular pathways governing brain fluid dy-
namics. Additionally, we identified a strong positive 
association between the dALPS index and the HLI, 
suggesting that adherence to healthier lifestyle behav-
iors is linked to improved glymphatic function. 
Furthermore, dALPS was significantly correlated with 
clinical rating scales across independent cohorts: in 
ADNI3 (AD, MCI) with cognition (MoCA/MMSE) and 
dementia rating (CDR), and in PPMI (PD) with non-
motor symptoms (NP1RTOT). A PD-focused meta-
analysis found that the DTI-ALPS index was signifi-
cantly associated with MDS-UPDRS III and 
Hoehn–Yahr stage. 40 In AD, a recent systematic review 
reported that DTI-ALPS was reduced in AD and MCI 
versus controls and correlates with global cognition 
(e.g., MMSE) 41 —consistent with our ADNI3 findings. 
These results support the clinical relevance of dALPS as 
a biomarker linked to both cognitive decline and func-
tional impairment in neurodegenerative diseases. 
Importantly, we showed that reduced dALPS index is 
associated with multiple CNS disorders, including 
depression, anxiety and neurodegenerative diseases, with 
lower baseline dALPS predicting higher future risk of 
AD and cerebrovascular conditions. Thus, we suggest 
that dALPS is a powerful imaging-derived biomarker 
with broad implications for studying brain waste clear-
ance, neurological health and disease susceptibility.
Automated, large-scale calculation of DTI-ALPS 

typically involves normalizing individual DTI data to a 
standardized anatomical space using image registration 
methods. For instance, Huang et al. utilized a group-
averaged ROI template to facilitate DTI-ALPS mea-
surements across extensive cohorts, 22 whereas Ran et al. 
employed the widely-adopted ANTsX spatial normali-
zation tool to register individual FA images to the FA 
template provided by the JHU DTI atlas, 21 which is the 
most commonly employed strategy for calculating DTI-
ALPS index in neuroimaging studies. However, it 
should be noted that such template-based registration 
approaches may suffer from reduced accuracy in brains 
exhibiting significant anatomical atrophy—a common 
phenomenon in elderly populations. 42 Brain atrophy 
often leads to structural deformation, 43 which causes 
misalignment between standardized templates and in-
dividual FA images, 44 thereby compromising the pre-
cision of the derived DTI-ALPS index. The conventional 
procedure for calculating the DTI-ALPS index is rela-
tively straightforward, primarily involving the selection 
of a slice at the body of the lateral ventricles from axial 
brain images, followed by placing ROIs on each side of 
this slice (in some cases, ROIs on the left and right 
sides may not be drawn on the same slice), and then 
computing the DTI-ALPS index using the established 
formula. 11 Our dALPS approach automated the afore-
mentioned process, being able to measure the DTI-
ALPS index in large-scale cohorts and investigate the 
genetic and molecular mechanisms underlying the

glymphatic function. In doing so, our pipeline formal-
izes the geometric rationale of the original DTI-ALPS 
method—ventricular-body slice selection and ROI 
placement along projection and association fibers— 
while removing operator dependence via CNN-based 
slice selection and YOLOv5 ROI detection. Consistent 
with the reproducibility findings of Taoka et al., 45 we 
therefore treat manual DTI-ALPS as an expert reference 
rather than a physiological gold standard, and evaluate 
dALPS against this reference using agreement-focused 
metrics (ICC, CCC, Bland–Altman). Furthermore, in 
line with the review by Taoka et al., 39 our contribution 
should be interpreted as automating expert best-
practice ROI selection and scaling it to population 
studies, while acknowledging the interpretational limi-
tations inherent to DTI-ALPS. To enhance the gener-
alizability of our tool and improve its adaptability to 
diverse populations, we selected DTI images from 500 
Chinese individuals and 500 European Caucasians to 
construct our models. The CNN model achieved a 
validation set AUC of 0⋅989 and PRC of 0⋅883, 
demonstrating robust multi-slice identification around 
the lateral ventricle regions. The YOLOv5 model 
exhibited strong training convergence with a high mAP 
of 0⋅993, reflecting precise and reliable target localiza-
tion. Our dALPS workflow showed excellent agreement 
with traditional manual approaches (ICC = 0⋅95), 
underscoring its reliability and practical utility. At the 
same time, the correlation between the two methods 
remained moderate (r = 0⋅55), suggesting the presence 
of numerical differences. This discrepancy may stem 
from the increased sensitivity of the deep learning-
based DTI-ALPS method, which likely captures subtle 
variations that manual methods might overlook. Addi-
tionally, manual approaches inherently involve subjec-
tive judgment, whereas the automated dALPS analysis 
minimizes such biases. Notably, the capability of 
dALPS to automatically identify multiple slices offers a 
more comprehensive analysis compared to traditional 
single-slice selection, potentially contributing to the 
observed numerical differences. Overall, our dALPS 
minimizes dependence on operator expertise, thereby 
improving objectivity, reproducibility and the overall 
consistency of DTI-ALPS index measurement. As 
emphasized by Taoka et al., 39,45 manual DTI-ALPS 
should be regarded as an expert-derived reference 
rather than a physiological gold standard, and numer-
ical differences between automated and manual ap-
proaches should be interpreted as method-level 
variation within the broader limitations of the DTI-
ALPS framework.
In contrast to the previous studies, 21,22 we performed 

the largest GWAS of DTI-ALPS to date, with a total 
sample size of 53,719. Among the 34 SNPs significantly 
associated with the mean dALPS index, four of them 
were also identified as significant (P-value < 5 × 10 −8 ) in 
the recent GWAS of the mean DTI-ALPS index
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performed by Huang et al., including the most signif-
icant variant, rs12146713 (Table S13). 22 However, no 
overlapping significant SNPs (P-value < 5 × 10 −8 ) were 
found in the study by Ran et al. (Table S13), 21 which 
may be attributed to differences in DTI-ALPS index 
calculation methods and sample sizes across studies. 
The most significant locus we identified, rs12146713, 
has been previously reported to be associated with 
accelerated brain ageing, 46 which is analogous with our 
observation that mutations are linked to a decline in the 
dALPS index. Notably, rs12146713 is located in 
NUAK1, which mediates Ser356 phosphorylation of 
tau. This phosphorylation destabilizes microtubules, 
promotes tau release, and impedes proteasomal degra-
dation of tau, thereby exacerbating tau hyper-
phosphorylation and aggregation. These pathological 
mechanisms are hallmarks of AD neuropathology, 47 but 
the roles of NUAK1 in glymphatic system remained 
unclear. The glymphatic system has been implicated in 
various central nervous system disorders and sleep 
disturbances, 48 and our genetic correlation analyses 
provide further support for these associations. We 
discovered that the dALPS index shares a common 
genetic architecture with neurological disorders, brain 
structures, and sleep-related traits. Notably, the 
genomic region 17q21⋅31 exhibits the highest number 
of local genetic correlations. This region contains genes 
such as MAPT, MAPT-AS1, KANSL1, and LRRC37A, 
among others (Fig. S15c), which have been strongly 
linked to various neurological disorders. 49 Whether this 
shared genetic mechanism promotes or mitigates the 
related symptoms requires further investigation. We 
further performed TWAS and PWAS and identified 
potential causal effects genes on dALPS index. 
LRRC37A, CABYR, and MAPT-AS1 are among the top 
TWAS protein coding gene associations identified 
through causal analysis. In the colocalization analysis, 
LRRC37A emerged as a particularly compelling candi-
date, as its lead cis-eQTL corresponded to one of the 
primary lead GWAS SNPs (rs7225002, Fig. S14d). 
Furthermore, we found LRRC37A was consistent as-
sociations with the trait in the initial TWAS across 
multiple brain regions (Table S18), supporting its role 
as a likely mediator of the GWAS signal. Notably, 
LRRC37A showed the strongest overall association with 
the dALPS index, with significant associations across 13 
tissues (Fig. 2b, Table S18). Previous studies have 
established LRRC37A as a TWAS significant gene 
linked to brain structure. 50 Moreover, postmortem 
RNAseq based eQTL analyses have shown that 
LRRC37A expression is associated with the caudal 
middle frontal thickness. 51 CABYR, primarily expressed 
in the testes and involved in sperm capacitation, has 
been reported to exhibit higher expression in fetal 
brains compared to adult brains, suggesting a potential 
role in brain development. 52 MAPT-AS1 is a natural 
antisense transcript (NAT) closely associated with the

MAPT, which encodes the microtubule-associated pro-
tein tau. In our TWAS, MAPT-AS1 exhibited significant 
associations across nine tissues and was identified as a 
causal gene in four tissues: the amygdala, cerebellum, 
hypothalamus, and spinal cord (cervical c-1). Previous 
studies have reported that MAPT-AS1 inhibits tau 
protein translation and shows a negative correlation 
with tau pathology (Braak staging) in the brain. 53 

Additionally, several long non-coding RNAs 
(lncRNAs) were identified through causal analysis 
(Fig. 2b, Table S18), although numerous studies have 
established that lncRNAs play critical roles in neuro-
development and neurodegenerative diseases, limited 
research has linked the lncRNAs identified in this study 
to brain structure, function, and diseases. 54 We identified 
three genes/proteins—PSMB4, PYGM, and SOD3—as 
causal candidates, as they were consistently implicated in 
both TWAS and PWAS (Fig. 2b–c). PSMB4, a compo-
nent of the multicatalytic proteasome complex, plays a 
crucial role in ATP/ubiquitin-dependent protein degra-
dation and maintaining intracellular proteostasis. Inte-
grative analysis of GWAS and human plasma 
proteomics has identified PSMB4 as a potential 
biomarker and therapeutic target for depression. 55 

Additionally, in a lipopolysaccharide (LPS)-induced 
neuroinflammatory rat model, PSMB4 expression was 
significantly elevated in apoptotic neurons, suggesting 
its potential involvement in neurodegenerative dis-
eases. 56 PYGM encodes myophosphorylase, an enzyme 
that catalyzes glycogenolysis. While previous studies 
have primarily associated PYGM with glycogen storage 
diseases. 57 and a recent study revealed that neuronal 
downregulation of PYGM in wild-type mice impaired 
synaptic plasticity and cognitive function, while its 
overexpression in AD mice ameliorated synaptic 
dysfunction and cognitive deficits. 58 SOD3 encodes 
extracellular superoxide dismutase, an enzyme that cat-
alyzes the conversion of superoxide radicals into 
hydrogen peroxide and oxygen, thereby protecting cells 
from oxidative stress damage. 59 Previous studies have 
demonstrated that SOD3 plays a pivotal role in cerebral 
vascular and vasomotor function, while also providing 
neuroprotective effects. 60 Finally, to further elucidate the 
functional context of the genetic variants associated with 
the dALPS index, we integrated our results with a multi-
region single-nucleus RNA-seq dataset derived from 
postmortem brain samples. This analysis revealed a 
significant enrichment in vascular cells, particularly 
within the globus pallidus interna (GPI), primary motor 
cortex (PMC), dorsolateral prefrontal cortex (DLPFC, 
Table S21, Fig. S17e). These findings are especially 
relevant given that the glymphatic system is intrinsically 
coupled to the brain’s vascular network.
Previous studies have reported that the DTI-ALPS 

index decreases with advancing age, exhibits higher 
values in females compared to males, and is notably 
associated with obesity-related traits and pulse rate. 21,22
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A recent study in patients with PD further confirmed a 
significant negative correlation between BMI and the 
DTI-ALPS index, with obese patients exhibiting signif-
icantly reduced glymphatic function compared to 
normal-weight individuals. 61 Our deep learning-based 
dALPS index showed consistent trends, aligning 
closely with these prior observations, and this consis-
tency underscores the reproducibility and reliability of 
the dALPS approach. The robustness of associations 
between the dALPS index and demographic character-
istics highlights the stability of this phenomenon across 
different measurement methodologies. These findings 
further support the validity of the dALPS index as a 
promising biomarker for assessing glymphatic function 
in the brain. Additionally, the association with obesity-
related traits suggests that elevated BMI might impair 
glymphatic clearance, potentially increasing the risk of 
neurodegenerative conditions and highlighting the 
clinical importance of managing obesity to maintain 
optimal brain health. HLI reflects a composite measure 
encompassing multiple beneficial behaviors, including 
a balanced diet, regular physical activity, adequate sleep, 
moderate alcohol consumption, and non-smoking sta-
tus. 62 Our study observed higher dALPS among subjects 
with elevated HLI scores, suggesting a potential pro-
tective effect of maintaining a healthy lifestyle on 
glymphatic system functionality. Further research is 
warranted to investigate whether targeted interventions 
aimed at improving lifestyle factors could effectively 
enhance dALPS and, consequently, bolster glymphatic 
function in the brain.
More evidence suggests that DTI-ALPS is reduced 

across various neurological disorders, including multi-
ple sclerosis, 63 depression, 64 and intracerebral hemor-
rhage. 65 Our findings support the previous observations 
and additionally provide evidence linking the DTI-ALPS 
index with anxiety, somatoform disorder, subarachnoid 
hemorrhage, and cerebral infarction. These findings 
underscore the potential of the dALPS index as a valu-
able biomarker for assessing the impact of multiple 
CNS disorders. The associations with anxiety and 
somatoform disorder are particularly noteworthy, as 
both conditions have traditionally been considered 
psychological disorders. Their connections to glym-
phatic function suggest possible underlying biological 
mechanisms. Future research may explore whether 
interventions aimed at improving glymphatic clearance 
(e.g., enhancing sleep quality, reducing inflammation 
or optimizing vascular function) could help alleviate the 
pathological impacts associated with these mental 
health disorders. Notably, our mediation analyses sug-
gest that drug usage for depression could impact the 
glymphatic system, consequently reducing the dALPS 
index. This may partly explain the impaired glymphatic 
function observed in depressed patients, beyond the 
direct effects of depression itself. It is important to 
clarify that our mediation analysis was not designed as

a pharmacological study of antidepressant effects per 
se, but as a statistical exploration of whether medication 
use might account for part of the observed association 
between psychiatric diagnosis and reduced dALPS. 
Nevertheless, since our primary model treated psychi-
atric diagnosis as the independent variable and drug 
usage as the mediator, these unmeasured treatment 
parameters are conceptually downstream of the medi-
ator itself and would not invalidate the interpretability 
of the indirect pathway. Consequently, our findings 
should be understood as revealing a statistical media-
tion pattern—suggesting that antidepressant use may 
partially explain the observed link between depression 
and reduced dALPS—rather than demonstrating a direct 
causal pharmacological effect. In the UKB cohort, the 
four most commonly used classes of antidepressants 
were SSRIs, TCAs, SNRIs, and NaSSAs. We found that 
SSRIs and TCAs had significant mediating effects, ac-
counting for 21⋅1% and 10⋅5% of the association be-
tween depression and reduced dALPS, respectively. 
While SSRIs primarily function by elevating serotonin 
levels, 66 emerging evidence suggests that they may still 
influence CSF circulation, blood–brain barrier (BBB) 
permeability, and neuroinflammatory pathways 67,68 —all 
of which are tightly linked to CSF dynamics and glym-
phatic function. TCAs exhibit broader actions, affecting 
both serotonin and norepinephrine systems and pos-
sessing significant anticholinergic properties, potentially 
exerting more complex effects on cerebral blood flow and 
metabolism. 69 Consequently, both SSRIs and TCAs 
might alter sleep architecture and cerebral metabolism, 
leading to changes in nocturnal glymphatic efficiency. In 
contrast, no significant mediation effects were observed 
for SNRIs and NaSSAs, despite their modulation of 
multiple neurotransmitter systems. 70 This could be due 
to smaller sample sizes limiting the statistical power to 
detect glymphatic alterations, and it is also possible that 
the pharmacological mechanisms of these drugs exert 
relatively weak effects on the glymphatic system. Given 
these differential impacts of various antidepressants on 
brain clearance function, the therapeutic strategies for 
depression should explicitly account for these potential 
neurometabolic side effects. Traditionally, evaluations of 
antidepressant side effects have predominantly empha-
sized cognitive, emotional, or systemic parameters, such 
as changes in body weight or gastrointestinal func-
tion. 71,72 Our findings underscore the importance of 
incorporating ‘brain clearance function’ as an additional 
dimension in assessing drug impacts, particularly in 
populations undergoing chronic pharmacological 
treatment.
Our study has several limitations. Firstly, the anal-

ysis primarily utilized data from the UKB, predomi-
nantly composed of individuals of European ancestry, 
with limited representation of non-European pop-
ulations. Although we included DTI data from 500 
Chinese participants during model training to enhance
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generalizability, further validation in more diverse and 
multi-ethnic cohorts is essential to confirm the stability 
and reproducibility of the dALPS method across 
different populations. Secondly, despite employing 
CNN and YOLOv5 models for automated ROI detec-
tion, significantly reducing human error, DTI itself re-
mains susceptible to inherent limitations associated 
with MRI scanning, such as resolution constraints and 
noise. Subtle motion artifacts or magnetic field in-
homogeneities, for instance, may affect the accuracy of 
FA calculations, thereby influencing the reliability of 
the ALPS index. Moreover, although our findings reveal 
significant associations between dALPS and various 
factors such as age, sex, lifestyle, genetic variants, and 
multiple CNS disorders, the precise physiological and 
pathological interpretations remain to be fully eluci-
dated. Another limitation is that we were unable to 
verify whether the observed lower dALPS index in the 
disease group, compared to healthy controls, reflects a 
causal relationship. The dALPS index primarily reflects 
directional water diffusion within the brain, and 
whether it directly corresponds to glymphatic function 
remains a matter of debate and should be interpreted 
cautiously. 39,45 Future research integrating dynamic 
contrast-enhanced MRI (DCE-MRI) or in vivo tracer 
experiments could provide more direct evidence to 
validate the relationship between dALPS and cerebro-
spinal fluid dynamics, enhancing the biological rele-
vance and interpretability of this imaging biomarker. 
Additionally, given the findings from our mediation 
analysis, future investigations employing animal 
models or human functional neuroimaging are essen-
tial, which could more definitively establish whether 
antidepressants directly influence glymphatic clearance 
efficiency via modulation of BBB integrity, cerebral 
blood flow, or sleep architecture. More importantly, 
whether and how to optimize antidepressant regimens 
requires more well-designed clinical studies.
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Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack 
Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; 
Piramal Imaging; Servier; Takeda Pharmaceutical Company; and 
Transition Therapeutics. The Canadian Institutes of Health Research is 
providing funds to support ADNI clinical sites in Canada. Private sector 
contributions are facilitated by the Foundation for the National In-
stitutes of Health (www.fnih.org). The grantee organization is the 
Northern California Institute for Research and Education, and the 
study is coordinated by the Alzheimer’s Therapeutic Research Institute 
at the University of Southern California. ADNI data are disseminated 
by the Laboratory for Neuro Imaging at the University of Southern 
California.

Data used in preparation of this article were obtained from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni. 
loni.usc.edu). As such, the investigators within the ADNI contributed 
to the design and implementation of ADNI and/or provided data but 
did not participate in analysis or writing of this report. A complete 
listing of ADNI investigators can be found at http://adni.loni.usc.edu/ 
wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf. 

PPMI: Data used in the preparation of this article were obtained [on 
November, 14 2022] from the Parkinson’s Progression Markers Initia-
tive (PPMI) database (www.ppmi-info.org/access-dataspecimens/ 
download-data), RRID: SCR 006431. This analysis used MRI imaging 
data for PD participants, obtained from PPMI upon request after 
approval by the PPMI Data Access Committee. For up-to-date infor-
mation on the study, visit www.ppmi-info.org. PPMI – a public-private 
partnership – is funded by the Michael J. Fox Foundation for Parkin-
son’s Research and funding partners, including 4D Pharma, AbbVie, 
AcureX, Allergan, Amathus Therapeutics, Aligning Science Across 
Parkinson’s, AskBio, Avid Radiopharmaceuticals, BIAL, Biogen, Bio-
haven, BioLegend, BlueRock Therapeutics, Bristol-Myers Squibb, Cal-
ico Labs, Celgene, Cerevel Therapeutics, Coave Therapeutics, DaCapo 
Brainscience, Denali, Edmond J. Safra Foundation, Eli Lilly, Gain 
Therapeutics, GE HealthCare, Genentech, GSK, Golub Capital, Handl 
Therapeutics, Insitro, Janssen Neuroscience, Lundbeck, Merck, Meso 
Scale Discovery, Mission Therapeutics, Neurocrine Biosciences, Pfizer, 
Piramal, Prevail Therapeutics, Roche, Sanofi, Servier, Sun Pharma 
Advanced Research Company, Takeda, Teva, UCB, Vanqua Bio, Verily,
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Voyager Therapeutics, the Weston Family Foundation and Yumanity 
Therapeutics.

EPAD: EPAD LCS is registered at www.clinicaltrials.gov Identifier: 
NCT02804789. Data used in preparation of this article were obtained 
from the EPAD LCS data set Version.IMI (V.IMI), doi: 10.34688/ 
epadlcs_v.imi_20.10.30. The EPAD LCS was launched in 2015 as a 
public private partnership, led by Chief Investigator Professor Craig 
Ritchie MB BS. The primary research goal of the EPAD LCS is to 
provide a well-phenotyped probability-spectrum population for devel-
oping and continuously improving disease models for Alzheimer’s 
disease in individuals without dementia. This work used data and/or 
samples from the EPAD project which received support from the EU/ 
EFPIA Innovative Medicines Initiative Joint Undertaking EPAD grant 
agreement no. 115736 and an Alzheimer’s Association Grant (SG21-
818099-EPAD).

Data used in preparation of this article were obtained from the 
Longitudinal Cohort Study (LCS), delivered by the European Prevention 
of Alzheimer’s Disease (EPAD) Consortium. As such investigators 
within the EPAD LCS and EPAD Consortium contributed to the design 
and implementation of EPAD and/or provided data but did not 
participate in analysis or writing of this report. A complete list of EPAD 
Investigators can be found at: http://ep-ad.org/wp-content/uploads/ 
2020/12/202010_List-of-epadistas.pdf.

The snRNA-seq data (the release 4⋅0 post-mortem sequencing 
cohort) used in the preparation of this article were obtained from the 
Accelerating Medicine Partnership® (AMP®) Parkinson’s Disease 
(AMP PD) Knowledge Platform. For up-to-date information on the 
study, visit https://www.amp-pd.org.

The AMP® PD program is a public-private partnership managed 
by the Foundation for the National Institutes of Health and funded by 
the National Institute of Neurological Disorders and Stroke (NINDS) in 
partnership with the Aligning Science Across Parkinson’s (ASAP) 
initiative; Celgene Corporation, a subsidiary of Bristol-Myers Squibb 
Company; GlaxoSmithKline plc (GSK); The Michael J. Fox Foundation 
for Parkinson’s Research; Pfizer Inc.; AbbVie Inc.; Sanofi US Services 
Inc.; and Verily Life Sciences.

ACCELERATING MEDICINES PARTNERSHIP and AMP are 
registered service marks of the U.S. Department of Health and Human 
Services.

Appendix A. Supplementary data
Supplementary data related to this article can be found at https://doi. 
org/10.1016/j.ebiom.2026.106133.
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