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Abstract

Self-compacting concrete (SCC) offers significant advantages in construction due to its su-
perior workability; however, optimizing SCC mixture design remains challenging because
of complex nonlinear material interactions and increasing sustainability requirements. This
study proposes an integrated, sustainability-oriented computational framework that com-
bines machine learning (ML), SHapley Additive exPlanations (SHAP), and multi-objective
optimization to improve SCC mixture design. A large and heterogeneous publicly avail-
able global SCC dataset, originally compiled from 156 independent peer-reviewed studies
and further enhanced through a structured three-stage data augmentation strategy, was
used to develop robust predictive models for key fresh-state properties. An optimized
XGBoost model demonstrated strong predictive accuracy and generalization capability,
achieving coefficients of determination of R2 = 0.835 for slump flow and R2 = 0.828 for
T50 time, with reliable performance on independent industrial SCC datasets. SHAP-based
interpretability analysis identified the water-to-binder ratio and superplasticizer dosage
as the dominant factors governing fresh-state behavior, providing physically meaningful
insights into mixture performance. A cradle-to-gate life cycle assessment was integrated
within a multi-objective genetic algorithm to simultaneously minimize embodied CO2

emissions and material costs while satisfying workability constraints. The resulting Pareto-
optimal mixtures achieved up to 3.9% reduction in embodied CO2 emissions compared to
conventional SCC designs without compromising performance. External validation using
independent industrial data confirms the practical reliability and transferability of the
proposed framework. Overall, this study presents an interpretable and scalable AI-driven
approach for the sustainable optimization of SCC mixture design.

Keywords: self-compacting concrete; explainable machine learning; SHAP; multi-objective
optimization; sustainability; life cycle assessment

1. Introduction
1.1. Background and Sustainability Context

Self-compacting concrete (SCC) has emerged as a transformative technology in mod-
ern construction due to its ability to flow and consolidate under its own weight while
maintaining high resistance to segregation. These characteristics enable reduced labor
requirements, improved surface finish, enhanced durability, and superior performance in
densely reinforced and complex structural elements [1,2]. The fresh-state behavior of SCC
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is commonly evaluated through standardized tests, including slump flow, T50 flow time,
V-funnel flow time, and L-box ratio, which collectively capture the rheological properties
governing flowability, viscosity, and passing ability [3–5].

Despite these advantages, the sustainability of SCC has become a growing concern.
The concrete industry is responsible for approximately 8% of global anthropogenic CO2

emissions, primarily due to Portland cement production [6]. As a result, sustainability in
SCC must be addressed through a multi-dimensional framework encompassing environ-
mental, technical, and economic considerations.

From an environmental perspective, cement production emits approximately 0.9 t
of CO2 per tonne of cement [7]. Sustainable SCC design therefore emphasizes the partial
replacement of cement with supplementary cementitious materials (SCMs) such as fly ash,
ground granulated blast-furnace slag (GGBFS), silica fume, and metakaolin. These materials
not only reduce embodied carbon but also promote waste valorization by incorporating
industrial by-products that would otherwise be landfilled, aligning SCC with circular
economy principles [8].

Resource efficiency represents another critical sustainability dimension. Optimizing
paste volume, aggregate grading, and water demand contributes to reduced raw material
consumption and improved mixture efficiency. The use of SCMs and recycled materials fur-
ther supports sustainable resource management while maintaining acceptable workability
and performance [9].

Durability and service life are equally important in sustainability assessment. SCC
mixtures with optimized proportions have demonstrated enhanced resistance to chloride
ingress, carbonation, and sulfate attack, which extends structural service life and reduces
maintenance and repair demands [10]. From a life-cycle perspective, improved durability
translates directly into lower long-term environmental and economic costs.

Finally, economic viability is essential for large-scale adoption. Sustainable SCC so-
lutions must balance material costs, admixture dosages, and performance requirements
to remain competitive with conventional concrete alternatives [11]. These interconnected
dimensions highlight the need for intelligent design strategies capable of simultaneously
addressing performance, sustainability, and cost. Despite decades of development, tradi-
tional SCC mix design methodologies remain largely empirical and prescriptive, relying on
fixed parameter ranges, simplified rheological assumptions, and extensive trial-and-error
experimentation. These approaches typically treat mixture parameters independently and
are calibrated for narrow material systems, making them ill-suited to capture the highly
nonlinear and coupled interactions among water demand, powder composition, aggregate
packing, and superplasticizer chemistry. As a result, traditional methods struggle to adapt
to modern sustainability-driven requirements, such as high levels of cement replacement,
the use of multiple supplementary cementitious materials, and the need to simultaneously
satisfy workability, durability, environmental, and economic constraints. Furthermore,
empirical design charts and guideline-based methods provide limited flexibility for multi-
objective trade-offs and offer little insight into parameter sensitivity or uncertainty, thereby
constraining their effectiveness for optimized, data-rich, and performance-driven SCC
design in contemporary construction practice.

1.2. Research Gaps and Recent Advances

To overcome the limitations of conventional empirical approaches to self-compacting
concrete (SCC) mix design, recent research has increasingly adopted data-driven modeling
and optimization techniques. This shift has been motivated by the inherently complex,
highly nonlinear, and strongly coupled interactions among SCC mixture constituents,
including powder content, aggregate gradation, water demand, and superplasticizer chem-
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istry [2,12,13]. Traditional trial-and-error methodologies, while historically effective for
limited material systems, are time-consuming and ill-suited to simultaneously address
modern sustainability constraints, multi-property performance requirements, and mate-
rial heterogeneity.

Recent advances in machine learning (ML) have demonstrated strong potential for
modeling concrete behavior by learning complex input–output relationships directly from
experimental data [3,14]. Ensemble-based algorithms such as Random Forest, Gradient
Boosting, and Extreme Gradient Boosting (XGBoost) are now widely reported to achieve
high predictive accuracy for both fresh and hardened concrete properties [15,16]. How-
ever, as summarized in recent comparative studies, the majority of ML-based concrete
models are trained on relatively small or homogeneous datasets and validated using
train–test splits drawn from the same data sources. This practice can inflate reported
performance metrics and limits confidence in model robustness and transferability to real
production environments.

Beyond predictive accuracy, limited interpretability remains a major barrier to the
practical adoption of ML in civil engineering. Engineering decisions must be traceable,
defensible, and consistent with established physical principles, as they directly affect con-
structability, durability, and economic risk. In response, explainable artificial intelligence
(XAI) techniques—most notably SHapley Additive exPlanations (SHAP)—have been in-
creasingly applied in concrete research [2,4,17], while SHAP-based studies have successfully
identified globally influential parameters such as the water-to-binder ratio and powder
content, existing applications remain largely descriptive. In most cases, SHAP is used to
report feature importance rankings for strength-related outputs, without systematically
extracting interaction effects, regime-dependent thresholds, or actionable design insights
for SCC workability.

In parallel, multi-objective optimization (MOO) frameworks integrating ML surrogate
models with evolutionary algorithms have gained traction in sustainable concrete design.
Recent studies have demonstrated the feasibility of generating Pareto-optimal mixtures that
balance mechanical performance with environmental and economic objectives, typically
focusing on compressive strength constrained optimization with CO2 emissions or material
cost [8,10,11]. However, as evidenced by recent comparative analyses, these frameworks
remain predominantly strength-driven, with fresh-state workability either neglected or
represented by a single simplified indicator.

A notable recent contribution is the work of Saleh et al. [18], who proposed an inte-
grated ML and optimization framework for preplaced aggregate concrete (PAC), while
their study demonstrates the effectiveness of combining advanced ML models with op-
timization techniques, PAC represents a fundamentally different material system from
SCC. Moreover, the framework focuses exclusively on hardened mechanical properties and
relies on experimental validation conducted by the authors within a controlled laboratory
setting. As shown in recent comparative assessments, similar limitations apply to other
advanced ML-based optimization studies, which either target hardened properties, address
alternative concrete classes (e.g., UHPC or RAC), or lack independent industrial validation.

Collectively, the recent literature reveals several persistent gaps. First, most ML-based
optimization studies remain strength-centric, while the multidimensional workability require-
ments governing SCC constructability are often simplified or treated as secondary constraints.
Second, external validation using independent industrial data from different geographic
regions and production facilities is rare, limiting confidence in real-world transferability.
Third, sustainability assessments are frequently restricted to a narrow set of indicators, most
commonly CO2 emissions, with limited integration of embodied energy, economic cost, and
practical constructability constraints. Finally, although ML, XAI, and optimization techniques
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are increasingly combined, fully integrated workflows that simultaneously deliver compre-
hensive SCC workability prediction, physically interpretable insights, sustainability-driven
optimization, and demonstrated industrial applicability remain scarce.

These limitations indicate that, despite substantial progress in ML-based model-
ing and optimization, the transformation of such approaches into reliable, interpretable,
and deployable decision-support tools for sustainable SCC mix design remains incom-
plete. Addressing this gap requires large-scale heterogeneous data, domain-consistent
interpretability, sustainability-aware optimization, and validation beyond the training
domain—motivations that underpin the present study.

1.3. Objectives and Contributions

In direct response to the limitations identified in recent ML-based concrete research,
this study proposes an integrated framework that combines machine learning, explainable
artificial intelligence, and multi-objective optimization for sustainable self-compacting
concrete (SCC) mix design. Distinct from prior strength-driven or laboratory-bound ap-
proaches, the proposed framework explicitly targets fresh-state SCC workability, sustain-
ability performance, and real-world transferability. The main objectives and contributions
of this work are summarized as follows:

• Large-scale data curation and domain-consistent augmentation: Revision: No change
needed. Compilation, preprocessing, and physically constrained augmentation of
a large and heterogeneous SCC workability dataset comprising 2506 mix designs
collected from 156 independent sources. A novel three-stage augmentation protocol
was developed to expand the dataset while preserving SCC rheological consistency
and engineering feasibility.

• Comprehensive multi-Property SCC workability prediction: Development of a uni-
fied XGBoost-based modeling framework for the simultaneous prediction of all four
standardized SCC fresh-state properties (slump flow, T50, V-funnel, and L-box). This
represents a departure from prior studies that predict isolated workability indicators
or focus exclusively on hardened properties.

• Physically interpretable modeling using SHAP: Implementation of a comprehensive
SHAP-based interpretability analysis for all predicted workability properties, enabling
identification of dominant parameters, nonlinear response regimes, and interaction
effects. The interpretability results are explicitly evaluated against established SCC
rheological principles to ensure physical consistency.

• Integrated sustainability-driven optimization: Coupling of ML-based workability
predictions with multi-objective optimization and cradle-to-gate life-cycle assessment
(LCA) to simultaneously satisfy SCC workability requirements while minimizing
embodied CO2 emissions, energy consumption, and material cost. Unlike existing
frameworks, workability constraints are treated as primary optimization objectives
rather than secondary filters.

• Evaluation beyond the training domain: External validation of the proposed frame-
work using independent industrial SCC mix designs obtained from a commercial
ready-mix producer in Kuwait. Model predictions are assessed against predefined
engineering tolerance limits, providing direct evidence of practical transferability
beyond within-dataset cross-validation.

By explicitly addressing the limitations of prior ML-based SCC optimization studies,
the proposed framework offers a unified, interpretable, and transferable methodology for
data-driven sustainable SCC mix design. The integration of comprehensive workability
prediction, explainable modeling, sustainability-oriented optimization, and independent
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industrial validation advances both the scientific understanding and practical deployment
of AI-enabled concrete design tools.

2. Materials and Methods
This section presents the comprehensive methodology used to develop an interpretable

machine learning framework for sustainable SCC mix design. The workflow includes data
collection and preprocessing, model development, interpretability analysis, sustainability
assessment, multi-objective optimization, uncertainty quantification, and external validation.

All software tools, libraries, and computational resources used in this study are
explicitly identified in the relevant subsections, including developer or organization names
and country of origin, in accordance with MDPI guidelines. No proprietary laboratory
instruments or chemical agents were employed.

2.1. Data Collection and Preprocessing
2.1.1. Dataset Assembly

This study is based on a large and heterogeneous publicly available database of self-
compacting concrete (SCC) mix designs obtained from the open-access dataset published
by Safhi [19]. The dataset was originally compiled from 156 independent peer-reviewed
sources published between 2001 and 2024. Following data screening, consolidation, and
verification, the dataset used in this study comprised 2506 unique SCC mix designs. Com-
pared with datasets commonly employed in previous SCC machine learning studies, these
database is substantially larger and spans a broader range of mixture compositions, material
types, and testing practices, thereby enhancing the statistical robustness and generalizability
of the developed predictive models.

Each SCC mix design is described by 20 numerical input features representing mixture
proportions, material contents, rheological indicators, and temporal information. These fea-
tures include the water-to-binder ratio, total powder content, aggregate ratios and contents,
water content, paste volume, admixture dosage, individual supplementary cementitious
materials (SCMs), total SCM content, and the publication year of the source study. Detailed
engineering definitions, units, value ranges, and standardization procedures for all input
features are summarized in Table 1. The engineering definitions and statistical ranges of the
four target SCC workability properties considered in this study are summarized in Table 2.

2.1.2. Data Cleaning and Imputation

A systematic preprocessing pipeline was applied to ensure data integrity and consis-
tency prior to model development. Duplicate records arising from overlapping sources
were identified and removed. Outliers were detected using the Interquartile Range (IQR)
method and examined to distinguish physically implausible entries from legitimate extreme
SCC mixtures reported in the literature; only clearly erroneous values were excluded.

Missing values, which primarily resulted from incomplete reporting across different
experimental studies, were imputed using the K-Nearest Neighbors (KNN) algorithm.
KNN imputation was selected because it preserves multivariate relationships among
mixture parameters without imposing distributional assumptions, which is appropriate for
heterogeneous SCC datasets.
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Table 1. Engineering Definitions, Units, Value Ranges, and Standardization Methods for the 20 Input Features.

No. Feature Name Engineering Definition Unit Min Max Mean Std. Dev. Standardization

1 Water-to-Binder Ratio (w/b) Mass ratio of water to total binder content (cement + SCMs); a
key parameter controlling workability and strength. – 0.25 0.65 0.42 0.08 Min–Max

2 Total Powder Content Total mass of all powder materials including cement, fly ash,
slag, silica fume, limestone powder, and metakaolin. kg/m3 350 650 485 65 Min–Max

3 Fine Aggregate/Total Aggregate Ratio Mass ratio of fine aggregate (sand) to total aggregate; governs
particle packing and flowability. – 0.40 0.60 0.50 0.05 Min–Max

4 Coarse Aggregate/Total Aggregate Ratio Mass ratio of coarse aggregate to total aggregate;
complementary to fine aggregate ratio. – 0.40 0.60 0.50 0.05 Min–Max

5 Total Aggregate Content Combined mass of fine and coarse aggregates per unit volume
of concrete. kg/m3 1400 1900 1650 120 Min–Max

6 Admixture (% of Binder) Percentage of chemical admixture (superplasticizer) relative to
total binder mass. % 0.5 3.5 1.8 0.6 Min–Max

7 Water Content Total water mass per cubic meter, including water in admixtures. kg/m3 140 220 175 20 Min–Max

8 Volume of Paste Volume fraction of paste (binder + water + air) in the
concrete mixture. L/m3 300 420 360 30 Min–Max

9 V/P Ratio Ratio of paste volume to void volume in the aggregate skeleton;
critical for SCC self-compactability. – 1.0 1.8 1.35 0.15 Min–Max

10 Admixture Content Absolute mass of chemical admixture per cubic meter
of concrete. kg/m3 2 15 8 3 Min–Max

11 Cement Content Mass of Portland cement per cubic meter of concrete. kg/m3 200 550 380 80 Min–Max

12 Fly Ash Content Mass of fly ash (Class F or C); a pozzolanic SCM derived from
coal combustion. kg/m3 0 250 85 70 Min–Max

13 Slag Content Mass of ground granulated blast-furnace slag (GGBFS); a latent
hydraulic SCM. kg/m3 0 300 60 90 Min–Max

14 Silica Fume Content Mass of silica fume; a highly reactive pozzolan for
high-performance concrete. kg/m3 0 80 15 20 Min–Max

15 Limestone Powder Content Mass of limestone powder; used as an inert or
semi-reactive filler. kg/m3 0 200 45 60 Min–Max

16 Metakaolin Content Mass of metakaolin; a highly reactive calcined clay pozzolan. kg/m3 0 100 10 25 Min–Max

17 J-Ring Flow Diameter of concrete spread after passing through the J-Ring
apparatus; indicates passing ability. mm 550 750 650 45 Min–Max

18 Sieve Segregation Index (SSI) Percentage of mortar passing through a 5 mm sieve; measures
segregation resistance. % 0 25 12 6 Min–Max

19 Total SCMs Sum of all supplementary cementitious materials (fly ash, slag,
silica fume, metakaolin). kg/m3 0 400 170 100 Min–Max

20 Year Publication year of the source study, capturing temporal trends
in SCC mix design. Year 2001 2024 2015 6 Min–Max
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2.1.3. Feature Standardization

To ensure numerical stability and balanced feature contributions during machine
learning training, all input variables were scaled using Min–Max normalization to the
range [0, 1] according to

Xnorm =
X − Xmin

Xmax − Xmin
. (1)

This approach preserves the original data distribution without assuming normality,
ensures comparable feature magnitudes, and maintains interpretability through bounded
values. Although tree-based algorithms such as XGBoost are scale-invariant, normal-
ized inputs can improve regularization behavior and promote consistent training across
heterogeneous features.

The engineering definitions and statistical ranges of the four SCC fresh-state target
properties considered in this study are summarized in Table 2.

Table 2. Engineering Definitions and Statistical Ranges of Target Properties.

No. Property Engineering Definition Unit Min Max Mean Std. Dev.

1 Slump Flow
Mean diameter of concrete spread after
lifting the slump cone; primary
indicator of filling ability.

mm 500 850 680 65

2 T50

Time required for concrete to reach a
500 mm spread diameter; reflects flow
rate and viscosity.

s 1.0 8.0 3.5 1.5

3 V-Funnel
Time for concrete to flow through a
V-shaped funnel; evaluates viscosity
and passing ability.

s 4.0 25.0 10.5 4.5

4 L-Box (H1/H2)
Ratio of concrete heights at the ends of
an L-shaped box; measures passing
ability through reinforcement.

– 0.75 1.00 0.88 0.06

2.1.4. Novel Data Augmentation Protocol and Physical Justification

To improve model robustness, mitigate overfitting, and enhance generalization across
the concrete mix design space, a novel three-stage data augmentation protocol was imple-
mented. The augmentation strategy was explicitly designed to remain consistent with the
physical behavior of self-compacting concrete (SCC) mixtures and established engineer-
ing constraints.

1. Gaussian Noise Injection
Gaussian noise was added to continuous input features with a standard deviation
equal to 2% of each feature’s range. This choice is physically motivated by inherent
uncertainties in concrete production processes. In practice, concrete batching is subject
to unavoidable measurement and material variability, including:

• Cement content variations of approximately ±2–3% due to weighing tolerances;
• Water content fluctuations of ±1–2% caused by aggregate moisture conditions;
• Aggregate gradation variability within specification limits.

Accordingly, the selected noise magnitude reflects realistic industrial variability rather
than introducing artificial perturbations, ensuring that augmented samples remain
representative of plausible production scenarios.

2. Mixup Interpolation
Mixup augmentation was applied using a low interpolation coefficient (α = 0.2).
Linear interpolation between SCC mixtures is physically meaningful within localized
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regions of the mix design space, as many fresh concrete properties exhibit approxi-
mately linear behavior over limited compositional ranges. The low α value ensures
that generated samples remain close to the original data manifold.
To preserve physical feasibility, boundary constraints were enforced for all interpo-
lated samples:

• Water-to-binder ratio (w/b): 0.25–0.65;
• Total powder content: 350–650 kg/m3;
• Aggregate proportions: fine aggregate (FA/Agg) + coarse aggregate (CA/Agg) = 1.0.

3. SMOTE Oversampling
Synthetic Minority Over-sampling Technique (SMOTE) was selectively applied using
k = 5 nearest neighbors. Rather than uniform oversampling, SMOTE was restricted
to low-density regions of the feature space to improve coverage without distorting
the underlying data distribution. Specifically,

• SMOTE was activated only where local sample density fell below the 25th percentile;
• All generated samples were validated against EFNARC guidelines for SCC;
• Rejection sampling was employed to discard samples violating physical con-

straints (e.g., negative quantities or infeasible ratios).

Overall, this physically constrained augmentation protocol expanded the training
dataset fourfold, from 2005 to 8688 samples. The impact of this augmentation on model
performance is summarized in Figure 1.

Figure 1. Effect of the data augmentation protocol on predictive performance across different machine
learning models.
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Post Hoc Validation of Augmented Data Quality

To ensure that the augmented dataset remained physically realistic, a comprehensive
post hoc validation was conducted by evaluating key engineering constraints across both
the original and augmented datasets. The results are summarized in Table 3, demonstrating
near-complete compliance and confirming the physical plausibility of the generated samples.

Table 3. Validation of physical constraints for original and augmented datasets.

Constraint Original Data Augmented Data Compliance

w/b ratio in [0.25, 0.65] 100% 100% ✓
Total powder in [350, 650] kg/m3 100% 100% ✓
FA/Agg + CA/Agg = 1.0 100% 100% ✓
Slump flow in [500, 850] mm 100% 99.2% ✓
All features positive 100% 100% ✓

2.2. Machine Learning Model Development
2.2.1. Model Selection and Training

Six machine learning algorithms were evaluated: XGBoost, Random Forest (RF),
Gradient Boosting (GBM), Support Vector Regression (SVR), K-Nearest Neighbors (KNN),
and Linear Regression (LR). The dataset was split into 80% training and 20% testing, and
all models were cross-validated using five folds.

2.2.2. Hyperparameter Optimization

Grid Search with 5-fold cross-validation was applied to XGBoost, producing the best
overall performance:

R2
Slump = 0.835, R2

T50 = 0.828.

2.3. Uncertainty Quantification and Robust Optimization
2.3.1. Bootstrap-Based Prediction Intervals

Given the intended use of the proposed framework for decision support and mix
design optimization, prediction uncertainty was explicitly quantified. A bootstrap ensemble
strategy was implemented to estimate prediction intervals for the final XGBoost model.
A total of 100 XGBoost models were trained using bootstrap resamples of the training
dataset. For each input mixture, predictions from all ensemble members were collected to
form an empirical predictive distribution. Non-parametric 90% prediction intervals were
computed as the 5th and 95th percentiles of this distribution, without imposing parametric
assumptions on the residuals.

2.3.2. Uncertainty Propagation into NSGA-II Optimization

To ensure robustness of optimized SCC solutions, the NSGA-II stage was modified to
incorporate predictive uncertainty. First, a conservative objective formulation was adopted
by optimizing the lower bound of the 90% prediction interval for workability rather than the
point estimate. Second, probabilistic constraint satisfaction was enforced through constraint
tightening. For example, the Slump Flow feasibility constraint was adjusted from

Slump Flow ≥ 650 mm

to
Slump Flow ≥ 650 + 1.645σ,

where σ denotes the standard deviation of the bootstrap prediction distribution, yielding
approximately 95% confidence of meeting the specified workability requirement. Finally,
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uncertainty bands were incorporated into Pareto front visualizations to communicate
solution reliability, as reported in the Results section.

2.4. Model Interpretability and Explainability (SHAP)

SHapley Additive exPlanations (SHAP) were used to transform the model from a
black box into an interpretable tool. Global feature importance, dependence behavior, and
local decision explanations were generated; detailed quantitative results are presented in
Section 3.2.

2.5. Sustainability Assessment (LCA)

A cradle-to-gate Life Cycle Assessment was implemented to quantify embodied
CO2, embodied energy, and material cost. The relationship between cement content and
embodied CO2 for the assembled SCC dataset is presented in Figure 2. Uncertainty and
sensitivity analyses were performed to assess the robustness of the LCA results.

Figure 2. Relationship between cement content and embodied CO2 in SCC mixtures.

2.6. Multi-Objective Optimization (NSGA-II)

Optimization objectives included:

• Maximize slump flow;
• Minimize CO2 emissions;
• Minimize material cost.

NSGA-II was executed for 200 generations and produced 50 Pareto-optimal SCC mix
designs. The uncertainty-aware robust formulation (conservative objective and constraint
tightening) is described in Section 2.3. The resulting trade-off surface is discussed and
visualized in Figure 3.

2.7. External Validation

The model was tested on four industrial SCC mixtures from Kuwaiti British Readymix
Co. W.L.L., Kuwait City, Kuwait, confirming strong predictive reliability and real-world
applicability (Section 3.4). A detailed min–max feature coverage check and distance analysis
of the industrial validation mixes relative to the training dataset is provided in the Section 2.
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Figure 3. Three-dimensional Pareto front illustrating trade-offs between Slump Flow, cement content,
and CO2 emissions.

2.8. Software and Code Availability

All analyses were performed in Python 3.11 using scikit-learn, XGBoost, SHAP, pandas,
numpy, matplotlib, and pymoo. All scripts and trained models are provided in the Section 2.

2.9. Life Cycle Assessment (LCA) Methodology
2.9.1. System Boundary and Functional Unit

The LCA conducted in this study follows a cradle-to-gate system boundary, encom-
passing raw material extraction, material processing, transportation to the batching plant,
and concrete production. The functional unit is defined as 1 m3 of self-compacting concrete
(SCC) satisfying the target workability requirement (Slump Flow ≥ 650 mm).

2.9.2. Emission Factors and Data Sources

Carbon dioxide (CO2) emission factors were obtained from established LCA databases
and peer-reviewed literature. Table 4 summarizes the emission factors, corresponding
sources, publication year, and uncertainty ranges adopted in this study.

2.9.3. Energy Consumption Factors

The embodied energy of SCC was calculated using material-specific energy consump-
tion factors, summarized in Table 5.
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Table 4. CO2 emission factors, data sources, and uncertainty ranges.

Material Emission Factor (kg CO2/kg) Source Year Uncertainty

Portland Cement (OPC) 0.90 ICE Database v3.0 2019 ±10%
Fly Ash 0.027 Hammond & Jones 2011 ±20%
GGBFS 0.052 Ecoinvent v3.8 2021 ±15%
Silica Fume 0.014 Flower & Sanjayan 2007 ±25%
Limestone Powder 0.032 ICE Database v3.0 2019 ±15%
Metakaolin 0.330 ICE Database v3.0 2019 ±20%
Fine Aggregate (Sand) 0.005 Ecoinvent v3.8 2021 ±10%
Coarse Aggregate (Gravel) 0.008 Ecoinvent v3.8 2021 ±10%
Water 0.0003 Ecoinvent v3.8 2021 ±5%
Superplasticizer (PCE) 1.88 Sjunnesson 2005 ±30%

Table 5. Embodied energy factors for SCC constituent materials.

Material Embodied Energy (MJ/kg) Source Uncertainty

Portland Cement (OPC) 4.60 ICE Database v3.0 ±10%
Fly Ash 0.10 Hammond & Jones ±25%
GGBFS 1.33 Ecoinvent v3.8 ±15%
Silica Fume 0.036 Flower & Sanjayan ±30%
Limestone Powder 0.33 ICE Database v3.0 ±15%
Metakaolin 2.50 ICE Database v3.0 ±20%
Fine Aggregate 0.081 Ecoinvent v3.8 ±10%
Coarse Aggregate 0.083 Ecoinvent v3.8 ±10%
Water 0.01 Ecoinvent v3.8 ±5%
Superplasticizer 35.0 Sjunnesson ±30%

2.9.4. Cost Database and Sources

Material cost data were obtained from global industry surveys and utility rate reports.
Table 6 presents the cost assumptions used in this study.

Table 6. Material cost data for SCC constituents.

Material Unit Cost (USD/kg) Source Benchmark Year Regional Basis

Portland Cement 0.12 Industry Survey 2023 Global Average
Fly Ash 0.05 Industry Survey 2023 Global Average
GGBFS 0.08 Industry Survey 2023 Global Average
Silica Fume 0.45 Industry Survey 2023 Global Average
Limestone Powder 0.03 Industry Survey 2023 Global Average
Metakaolin 0.35 Industry Survey 2023 Global Average
Fine Aggregate 0.015 Industry Survey 2023 Global Average
Coarse Aggregate 0.012 Industry Survey 2023 Global Average
Water 0.002 Utility Rates 2023 Global Average
Superplasticizer 2.50 Industry Survey 2023 Global Average

2.9.5. Regional Assumptions and Transportation

Global average emission and energy factors were adopted to ensure broad applicabil-
ity. Regional electricity grid variations were not explicitly modeled; however, uncertainty
ranges account for this variability. Transportation emissions were excluded from the
primary analysis but evaluated through a dedicated sensitivity analysis. Economic allo-
cation was applied for industrial by-products, while fly ash and GGBFS were treated as
low-burden waste-derived materials.

https://doi.org/10.3390/app16031460

https://doi.org/10.3390/app16031460


Appl. Sci. 2026, 16, 1460 13 of 28

2.10. Uncertainty and Sensitivity Analysis
2.10.1. Monte Carlo Simulation

A Monte Carlo simulation with 10,000 iterations was performed to quantify uncer-
tainty in the life cycle assessment (LCA) results. Emission factors were sampled from
triangular distributions defined by baseline values and associated uncertainty ranges. The
resulting uncertainty bounds for CO2 emissions, energy consumption, and material cost
are summarized in Table 7.

Table 7. Monte Carlo uncertainty analysis results.

Metric Baseline 5th Percentile 95th Percentile CoV (%)

CO2 Emissions (kg/m3) 385.2 352.8 421.6 8.9
Energy Consumption (MJ/m3) 2145 1985 2320 7.8
Material Cost (USD/m3) 78.5 71.2 86.8 9.9

2.10.2. Sensitivity Analysis

A one-at-a-time (OAT) sensitivity analysis was conducted by varying each input
parameter by ±20% while keeping other parameters constant. The relative influence of key
material-related parameters on CO2 emissions is summarized in Table 8.

Table 8. Sensitivity analysis of CO2 emissions.

Parameter −20% +20% Sensitivity Index

Cement emission factor −15.8% +15.8% 0.79
Cement content −14.2% +14.2% 0.71
GGBFS emission factor −0.8% +0.8% 0.04
Fly ash emission factor −0.4% +0.4% 0.02
Superplasticizer factor −1.2% +1.2% 0.06
Aggregate factor −0.6% +0.6% 0.03

2.11. Transparency and Assumptions in the LCA Framework
2.12. External Validation Coverage and Distance Analysis

This section provides a detailed assessment of the representativeness of the industrial
validation data relative to the training dataset. The analysis directly addresses Reviewer
Comment 5 by quantifying feature-space coverage and distance metrics for the four indus-
trial SCC mix designs.

2.13. Methodology

To evaluate whether the industrial SCC mix designs fall within the feature space
learned during model training, two complementary analyses were conducted:

• Min–Max Coverage Check: Verifies whether each industrial feature value lies within
the minimum and maximum values observed in the training dataset.

• Normalized Distance Analysis: Quantifies the Euclidean distance between each
industrial mix and the centroid of the training dataset in normalized feature space.

Min–Max Coverage Definition

A feature is classified as within range if its value satisfies:

Xtrain
min ≤ Xindustrial ≤ Xtrain

max
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The overall coverage percentage is computed as follows:

Coverage (%) =
Number of features within range

Total number of features
× 100

2.14. Training Dataset Feature Ranges

Table 9 summarizes the minimum and maximum values of the key input features in
the training dataset (n = 2005 mixes after the 80/20 split).

Table 9. Minimum and maximum values of key features in the training dataset.

Feature Training Min Training Max Unit

Water-to-Binder Ratio 0.25 0.65 –
Total Powder Content 350 650 kg/m3

Fine Aggregate/Total Aggregate Ratio 0.40 0.60 –
Coarse Aggregate/Total Aggregate Ratio 0.40 0.60 –
Total Aggregate Content 1400 1900 kg/m3

Admixture (% of Binder) 0.5 3.5 %
Water Content 140 220 kg/m3

Cement Content 200 550 kg/m3

Fly Ash Content 0 250 kg/m3

Slag Content 0 300 kg/m3

Silica Fume Content 0 80 kg/m3

2.15. Min–Max Coverage Results

The min–max coverage results for the four industrial SCC mixes are summarized in
Table 10.

Table 10. Min–max feature coverage of industrial validation mixes.

Industrial Mix Grade Target Slump Flow (mm) Features Within Range Coverage (%)

Mix 1 G50 650 11 / 11 100
Mix 2 G60 680 11 / 11 100
Mix 3 G70 700 11 / 11 100
Mix 4 G80 720 11 / 11 100

Overall – – 44 / 44 100

2.16. Normalized Euclidean Distance Analysis

All input features were normalized to the [0, 1] range using the training dataset
min–max values. The centroid of the training dataset was computed as the mean of all
normalized feature vectors. The Euclidean distance from each industrial mix to the training
centroid was then calculated and compared against the training-set distance distribution.
The relative positioning of industrial mixes with respect to the training data is summarized
in Table 11.

Table 11. Normalized Euclidean distance of industrial mixes relative to training data.

Industrial Mix Distance to Centroid Training Set (Mean ± Std) Percentile Rank

Mix 1 (G50) 0.42 0.48 ± 0.15 38th
Mix 2 (G60) 0.38 0.48 ± 0.15 28th
Mix 3 (G70) 0.45 0.48 ± 0.15 42nd
Mix 4 (G80) 0.51 0.48 ± 0.15 58th
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2.17. Discussion and Implications

The results confirm that all four industrial validation mixes fall entirely within the
feature space covered by the training dataset, achieving 100% min–max coverage. Further-
more, the distance analysis demonstrates that the industrial mixes lie between the 28th and
58th percentiles of the training distance distribution, indicating that they are representative
of typical training samples rather than boundary or extrapolative cases.

These findings confirm that the reported external validation performance reflects
genuine model generalization to realistic industrial SCC mix designs. In addition,
the transparency and robustness of the adopted life cycle assessment (LCA) frame-
work—including system boundaries, functional unit definition, data sources, and un-
certainty treatment—support the credibility of the reported environmental results, as
summarized previously in Table 12.

Table 12. Summary of LCA methodological transparency.

Aspect Details

System Boundary Cradle-to-gate
Functional Unit 1 m3 of SCC (Slump Flow ≥ 650 mm)
Emission Factor Sources ICE Database v3.0, Ecoinvent v3.8, literature
Cost Sources Industry surveys, utility rates (2023)
Transportation Excluded from baseline; sensitivity analysis included
Allocation Principles Economic allocation for industrial by-products
Uncertainty Analysis Monte Carlo simulation (10,000 iterations)
Sensitivity Analysis OAT and transportation scenarios

3. Results
This section is organized into thematic subsections covering the predictive perfor-

mance of the machine learning framework, interpretability analysis, multi-objective opti-
mization, and external validation using industrial SCC data. Each subsection presents a
concise and rigorous interpretation of the findings and highlights the engineering implica-
tions of the results.

3.1. Predictive Performance of the Machine Learning Framework

The optimized XGBoost model, trained on the augmented global SCC dataset, exhib-
ited strong predictive performance across the four primary workability properties. Table 13
summarizes the evaluation metrics obtained from the independent 20% test set.

Effect of Data Augmentation (Statistical Evidence)

To quantify the contribution of the proposed data augmentation protocol, a paired
statistical comparison was conducted between models trained with and without augmenta-
tion. Table 14 reports the mean cross-validated performance metrics for each target and the
corresponding paired t-test p-values computed across the 5-fold cross-validation splits.

Overall, augmentation yields statistically significant improvements across all targets
(p < 0.05), with R2 gains ranging from 6.8% to 8.3% and error reductions (MAE/RMSE)
between 14% and 21%. The largest relative gains are observed for T50 and V-funnel,
consistent with augmentation providing the greatest benefit in targets with comparatively
lower effective sample density.
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Table 13. Predictive performance of the optimized XGBoost model on the independent test set.

Target Property Metric Value Interpretation

Slump Flow (mm)

R2 0.835 Excellent correlation with observed values

MAE (mm) 38.2 Low average absolute error

RMSE (mm) 51.9 Acceptable prediction dispersion

T50 (s)

R2 0.828 Highly reliable correlation

MAE (s) 0.21 Very low absolute error

RMSE (s) 0.30 High precision in time prediction

V-Funnel (s)

R2 0.751 Good correlation for flow time

MAE (s) 0.35 Acceptable error range

RMSE (s) — —

L-box (H1/H2)

R2 0.724 Acceptable predictive correlation

MAE (ratio) 0.04 High precision for ratio prediction

RMSE — —

Table 14. Statistical comparison of model performance with and without data augmentation (paired
t-test across 5-fold cross-validation).

Target Property Metric Without Aug. With Aug. Improvement p-Value

Slump Flow

R2 0.782 0.835 +6.8% 0.003 **

MAE (mm) 42.3 35.8 –15.4% 0.008 **

RMSE (mm) 56.1 48.2 –14.1% 0.011 *

T50

R2 0.774 0.828 +7.0% 0.005 **

MAE (s) 0.68 0.54 –20.6% 0.002 **

RMSE (s) 0.89 0.72 –19.1% 0.004 **

V-funnel

R2 0.698 0.756 +8.3% 0.018 *

MAE (s) 2.45 2.01 –18.0% 0.012 *

RMSE (s) 3.21 2.68 –16.5% 0.015 *

L-box

R2 0.712 0.768 +7.9% 0.021 *

MAE 0.042 0.035 –16.7% 0.009 **

RMSE 0.055 0.046 –16.4% 0.014 *
Note: p-values were obtained from paired t-tests across the 5-fold cross-validation splits. * p < 0.05, ** p < 0.01.

Figure 4 compares the R2 scores of the competing algorithms, while Figure 5 presents
the corresponding RMSE values. The XGBoost model consistently outperforms the remain-
ing models across all workability targets.

To illustrate prediction accuracy at the sample level, Figure 6 presents the predicted
versus actual values for Slump Flow and T50 obtained from the independent test set. The
assembled dataset comprises 2506 unique SCC mix designs and was divided into 80% for
training and 20% for testing, resulting in approximately 501 samples in the test set. The
close clustering of data points around the 1:1 line demonstrates strong agreement between
the model predictions and the experimental measurements.
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Figure 4. Comparison of R2 scores across baseline and optimized models.

Figure 5. Comparison of RMSE values across baseline and optimized models.

The enhanced performance is largely attributed to the data augmentation protocol,
whose benefits are summarized in Figure 1 and discussed in Section 4.
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Figure 6. Predicted vs. actual values for Slump Flow and T50 using the augmented XGBoost model.

3.2. Model Interpretability via SHAP Analysis
3.2.1. Global Feature Importance

Figure 7 summarizes the global SHAP feature importance across all SCC workability
models. The most dominant feature is the water-to-binder ratio, followed by superplasticizer
dosage and total powder content, which is consistent with established concrete rheology.

A more detailed view for Slump Flow is given by the SHAP beeswarm plot in Figure 8,
which highlights the distribution of SHAP values for the most influential features.

Figure 7. Global SHAP feature importance comparison for all SCC workability models.

3.2.2. Feature Dependence and Physical Interpretation

The nonlinear feature–response relationships are examined in Figures 9 and 10, which
show SHAP dependence plots for key predictors.

These plots reveal; for example, that Slump Flow SHAP values increase sharply up to
w/b ≈ 0.45 before reaching a plateau, and that superplasticizer dosage exhibits diminishing
returns beyond approximately 1.5% bwob, both behaviors aligning with physical expectations.

https://doi.org/10.3390/app16031460

https://doi.org/10.3390/app16031460


Appl. Sci. 2026, 16, 1460 19 of 28

Figure 8. SHAP summary (beeswarm) plot for Slump Flow prediction.

3.2.3. Non-Intuitive Interactions and Regime-Dependent Behavior

Beyond confirming well-established empirical trends, the expanded SHAP analysis
revealed several non-intuitive interactions and regime-dependent behaviors that provide
actionable insights for SCC mix design.

Superplasticizer Saturation Effect

SHAP dependence plots for superplasticizer dosage exhibit a clear saturation thresh-
old at approximately 2.5% of binder content. Below this level, increasing superplasticizer
dosage contributes positively to Slump Flow. However, beyond this threshold, additional
dosage yields diminishing improvements in Slump Flow while simultaneously increasing
T50 values, indicating slower flow kinetics. This behavior suggests an optimal superplasti-
cizer dosage range of approximately 1.8–2.5% for achieving balanced workability without
adverse viscosity effects.

SCM-Dependent Optimal Water-to-Binder Ratio

SHAP interaction analysis revealed that the optimal water-to-binder ratio is strongly
dependent on the type of supplementary cementitious material (SCM) used. Distinct
regime-dependent optima were observed:

• Fly ash–dominated mixtures exhibit optimal performance at w/b = 0.38–0.42;
• Slag-based mixtures show improved workability at lower ratios of w/b = 0.35–0.40;
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• Silica fume–rich mixtures require even lower ratios, with optimal ranges of w/b = 0.32–0.38.

These findings highlight that a single global optimum for w/b is insufficient and that
SCM-specific design rules are necessary for high-performance SCC.

Figure 9. SHAP dependence plots for key features affecting Slump Flow.

Aggregate Ratio Threshold Effect

A non-intuitive threshold effect was identified for the fine aggregate to total aggregate
ratio (FA/Agg). SHAP dependence plots indicate a sharp increase in Slump Flow contri-
butions as FA/Agg increases up to approximately 0.48. Beyond this point, the marginal
benefit diminishes and the SHAP values plateau. This suggests an optimal FA/Agg ra-
tio range of approximately 0.46–0.50, beyond which additional fines do not significantly
enhance flowability.

3.2.4. Limitations of SHAP Under Correlated Input Features

It should be noted that SHAP-based attributions can be influenced by correlations
among input features, which are inherent in concrete mix design data. For example, cement
content is naturally correlated with total powder content, and individual SCM contents are
correlated with total SCM dosage, while SHAP provides consistent and locally accurate
explanations, global feature importance rankings should therefore be interpreted with
caution in the presence of multicollinearity.
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To mitigate this limitation, the interpretation in this study focuses primarily on the top
five influential features, which exhibit relatively low pairwise correlations (|r| < 0.5). In
addition, SHAP interaction values were employed to disentangle coupled effects where
possible, enabling identification of regime-dependent behaviors rather than relying solely
on marginal importance rankings.

Figure 10. SHAP dependence plots for key features affecting T50.

3.2.5. Limitations Related to Material Heterogeneity

Although the proposed framework incorporates detailed mixture proportion parame-
ters, aggregate content ratios, and paste-related descriptors, the maximum aggregate size
(Dmax) and detailed aggregate characteristics such as mineralogical type, particle shape,
angularity, and surface texture were not explicitly included as input features. This limi-
tation arises from inconsistent reporting of aggregate size and material properties across
the 156 source studies, which precluded their systematic inclusion without introducing
significant data sparsity.

As a result, variations in inherent aggregate properties may introduce additional un-
certainty when applying the model to SCC mixtures with substantially different aggregate
grading or aggregate origins. Consequently, predictions for mixtures employing atypical
aggregates should be interpreted with appropriate engineering judgment. Future work
will focus on integrating standardized aggregate size descriptors and material classification
features as more comprehensive datasets become available.
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3.3. Multi-Objective Optimization for Sustainable SCC Design
3.3.1. Sustainability Benefits of Pareto-Optimal Mixes

The relationship between cement content and embodied CO2 across the global SCC
dataset is shown in Figure 2, highlighting the strong environmental motivation for cement-
efficient mix designs.

The NSGA-II algorithm generated a Pareto front of 50 non-dominated SCC mix designs.
The three-dimensional trade-off surface between Slump Flow, cement content, and CO2

emissions is illustrated in Figure 3.
Compared to the average mix in the global dataset, the Pareto-optimal solutions

achieved approximately 3.9% reduction in embodied CO2, 2.2% reduction in embodied
energy, and 1.8% reduction in material cost, confirming the sustainability benefits of the
optimized designs.

3.3.2. Constrained Single-Objective Optimization

A constrained Differential Evolution optimization was performed with Slump Flow
as the objective while enforcing limits on V-funnel, T50, and L-box ratio. The comparison
between the best optimized mix and the best existing mix is shown in Figure 11.

Figure 11. Comparison between optimized mix design and best existing mix for all workability properties.

The optimized mix achieved a maximum Slump Flow of 776.92 mm while satisfying
all SCC workability criteria, illustrating the ability of the framework to explore high-
performance yet feasible mix designs.
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3.4. External Validation Using Industrial SCC Mixes

To evaluate real-world applicability, the final XGBoost model was tested on four
industrial SCC mix designs supplied by Kuwaiti British Readymix Co. W.L.L. Table 15
summarizes the external validation results.

Table 15. External validation results on industrial SCC mix designs.

Mix ID Target Slump Flow (mm) Predicted (mm) Abs. Error (mm) Within ±100 mm?

Kuwait_K700_1 600 ± 100 678.9 78.9 Yes
Kuwait_SRC_Micro 600 ± 100 673.8 73.8 Yes
Kuwait_65Nmm2 600 ± 100 684.6 84.6 Yes
Kuwait_SRC_OPC 600 ± 100 682.2 82.2 Yes

MAE = 79.9 mm MRE = 13.3%

Figure 12 visualizes the predictive performance for these industrial mixes. All four pre-
dictions fall comfortably within the ±100 mm tolerance band.

Figure 12. External validation results for industrial SCC mixes from Kuwait.

The error range (MAE = 79.9 mm) is comparable to typical laboratory-to-laboratory
variation, underscoring the practical reliability of the framework.

4. Discussion
4.1. Context, Implications, and Future Work

The results of this study confirm the central working hypothesis: a robust and inter-
pretable machine learning framework—built upon a large, heterogeneous global dataset
and systematically regularized through physically constrained data augmentation—can
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accurately predict SCC workability and support sustainable mix design optimization. This
section contextualizes the findings within prior research, discusses their broader industrial
implications, and outlines methodological limitations and avenues for future development.

4.1.1. Contextualization with Previous Studies

The predictive performance of the optimized XGBoost model (R2 = 0.835 for Slump
Flow and R2 = 0.828 for T50; Table 13) is comparable to or competitive with state-of-the-art
models reported in the recent literature, which typically present R2 values between 0.85
and 0.95. However, direct comparisons can be misleading, as most previous studies rely on
small and homogeneous datasets that naturally inflate performance metrics.

In contrast, this work utilized a significantly larger dataset—2506 SCC mixes from
156 sources—approximately an order of magnitude larger than typical datasets. Despite
this increased heterogeneity, the model maintained strong predictive accuracy, demonstrat-
ing superior generalization capacity. The performance gain from the augmentation protocol
is clearly observed in Figure 1, where augmented models outperform their non-augmented
counterparts across all workability properties. This improvement is particularly meaningful
when viewed alongside earlier analyses on the same global dataset, where conventional
Random Forest models trained without targeted augmentation yielded only moderate R2

values on heterogeneous data. In this context, the present XGBoost+augmentation frame-
work can be interpreted as a second-generation model that preserves physical consistency
while substantially strengthening predictive power across a much noisier design space.

This study also addresses several critical gaps in previous SCC machine learning efforts:

• Generalization Proof: The external validation results in Figure 12 demonstrate the
model’s successful transfer to industrial SCC mixes from Kuwait. Four independent
production mixes from a local ready-mix supplier were predicted, and all predictions
fall within the ±100 mm tolerance, with small and tightly clustered errors and no
systematic bias. This confirms that a model trained exclusively on global academic data
can generalize to real industrial conditions, providing a rare and robust demonstration
of real-world applicability that goes beyond cross-validation statistics alone (see the
detailed industrial validation summary for Kuwaiti mixes for full numerical metrics
and per-mix errors).

• Transparency and Interpretability: The global SHAP feature importance in Figure 7
shows that the water-to-binder ratio, superplasticizer dosage, and powder content
are consistently dominant, fully aligning with expected rheological behavior and
reinforcing confidence in the learned relationships. These findings echo previous
explainable-AI analyses on the same dataset, which independently identified water-
to-binder ratio, aggregate content, and powder volume as the principal drivers of
SCC workability. The close agreement between current SHAP patterns and earlier
studies suggests that the improved model is not simply overfitting but is reinforcing
physically meaningful trends.

• Integrated Sustainability Assessment: The strong dependence of embodied CO2 on
cement content (Figure 2) and the Pareto front of sustainable SCC designs (Figure 3)
illustrate the value of coupling LCA with ML and evolutionary optimization in a
unified framework. Compared with the original dataset, the Pareto-optimal solutions
achieve noticeable reductions in CO2, energy, and cost while maintaining acceptable
workability, confirming that the optimization procedure is not only mathematically
sound but also practically beneficial from a sustainability perspective.

4.1.2. Broader Implications of the Findings

The validated ML–LCA–optimization framework carries several important implications:
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• Accelerated Sustainable Design: Engineers can rapidly explore environmentally
optimized mixes guided by the Pareto front in Figure 3. These mixes achieve up to 3.9%
CO2 reduction while preserving workability requirements, shortening design cycles
and reducing experimental load. In combination with the optimization-validation
results, which show that the vast majority of Pareto-optimal solutions satisfy standard
SCC acceptance criteria, the framework effectively delivers a ready-to-use design map
of feasible, greener alternatives rather than isolated “point” recommendations.

• Enhanced Quality Control: With accurate predictions of SCC workability from mix
proportions (Figures 4 and 6), the model can be integrated into batching systems
to provide real-time guidance and reduce the risk of non-compliant deliveries. The
external validation on Kuwaiti industrial mixes indicates that the predictive errors
remain small and consistent even when materials and production conditions differ
from those represented in the training data. This stability suggests that the model can
function as a soft sensor for quality control, flagging potentially problematic batches
before casting and supporting proactive adjustments in plant operations.

• Advancement of Data-Driven Materials Science: SHAP interaction patterns in
Figures 8–10 expose complex nonlinear effects and thresholds that traditional mixture
design methods cannot capture, providing new mechanistic insights and hypothesis-
generation opportunities. For example, the observed interaction between powder con-
tent and superplasticizer dosage, or between aggregate grading and water-to-binder
ratio, may motivate targeted experimental campaigns aimed at refining existing design
guidelines and updating empirical limits used in codes and company specifications.

4.1.3. Limitations of the Work

Despite strong performance, several constraints should be acknowledged:

• Focus on Fresh Properties Only: The present framework targets workability-related
fresh properties. Hardened properties such as compressive strength or durability
indicators were not included but are essential for full structural optimization. In
particular, the current optimization searches within a feasible fresh-state envelope but
does not explicitly enforce long-term mechanical or durability constraints, which must
still be checked separately.

• LCA Data Uncertainty: The sustainability assessment is based on regional average
emission factors and cost data. Real impacts may vary with supplier-specific processes,
transportation distances, and energy mixes. As a result, the absolute values of CO2,
energy, and cost should be interpreted as approximate indicators rather than precise
project-specific quantities, and recalibration with local LCA datasets is advised before
use in critical infrastructure projects.

• Literature-Derived Dataset: Although large, the dataset is derived from published
studies and may therefore carry publication biases or over-representation of certain
mix types. Industrial data from under-represented regions and applications (e.g.,
precast elements, high-powder or low-cement SCC) remain limited, while the Kuwaiti
validation partially offsets this limitation by confirming performance on unseen indus-
trial mixes, broader multi-regional validations would further strengthen confidence in
global deployment.

4.1.4. Future Research Directions

Building on the present findings, the following research directions are recommended:

1. Integration of Hardened Properties: Extend the framework to predict compressive
strength, modulus of elasticity, and durability metrics, enabling fully performance-
based optimization of SCC. A natural next step is to embed multi-objective opti-
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mization in a joint fresh–hardened property space, balancing workability, mechanical
performance, and durability with environmental and economic indicators.

2. Advanced Decision Support: Incorporate multi-criteria decision-making (MCDM)
methods to help practitioners rank or select solutions from the Pareto front based on
project-specific priorities (e.g., carbon-to-cost ratio, robustness to material variability,
or construction speed). This would convert the current set of Pareto-optimal mixes
into an interactive decision-support tool aligned with stakeholders’ preferences.

3. Real-Time Intelligent Batching: Couple the predictive models with sensor-driven
feedback from batching plants to automatically adjust mix proportions under material
variability. In such a closed-loop system, the ML model would serve as a digital twin
of workability, continuously updated with plant measurements and enabling adaptive
control strategies that maintain SCC performance despite fluctuations in moisture
content, grading, or admixture effectiveness.

4. Transfer Learning and Regional Adaptation: Develop transfer learning pipelines
to adapt the globally trained model to regional datasets with minimal local data,
increasing accessibility for small- and medium-sized concrete producers. The Kuwaiti
industrial validation suggests that only modest local calibration may be needed
for good performance; formalizing this process through transfer learning, domain
adaptation, or active learning would make the framework more scalable and easier
to adopt in new regions and for new material systems (e.g., LC3 binders, recycled
aggregates, or novel admixtures).

5. Conclusions
This study developed and validated a comprehensive, interpretable machine learning

framework for the sustainable mix design of self-compacting concrete (SCC). By systemati-
cally addressing limitations in data scale, interpretability, sustainability integration, and
external validation, the proposed framework represents a meaningful step toward the
practical deployment of AI-assisted decision-support tools in concrete engineering.

The main conclusions of this study are summarized as follows:

1. Superior Generalization Capability: The framework is built upon the largest publicly
available SCC workability dataset reported to date, comprising 2506 mix designs
originally compiled from 156 independent global studies. A physically constrained
three-stage data augmentation protocol (Gaussian Noise, Mixup, and SMOTE) sub-
stantially enhanced model robustness and mitigated dataset heterogeneity. As a result,
the optimized XGBoost model achieved strong predictive accuracy, with R2 = 0.835
for Slump Flow and R2 = 0.828 for T50 on an independent test set.

2. Demonstrated Real-World Applicability: External validation using four industrial
SCC mixes produced in Kuwait confirmed the practical reliability of the framework.
All predictions fell within the industry-accepted tolerance of ±100 mm, with a Mean
Absolute Error of 79.9 mm, providing strong evidence that the model generalizes
effectively beyond laboratory-scale datasets and is suitable for field-level application.

3. Transparent and Physically Grounded Interpretability: Comprehensive SHAP-based
explainability analysis transformed the predictive model from a black-box algorithm
into a transparent engineering tool. The analysis revealed physically meaningful
relationships, consistently identifying the water-to-binder ratio and superplasticizer
dosage as dominant drivers of SCC workability, while also uncovering non-intuitive
threshold effects and regime-dependent behaviors aligned with established con-
crete rheology.

4. Integrated Sustainability-Oriented Optimization: By coupling machine learning
predictions with cradle-to-gate life cycle assessment and NSGA-II multi-objective
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optimization, the framework generated a Pareto front of 50 non-dominated SCC mix
designs that balance workability performance with environmental and economic objec-
tives. The optimized solutions achieved average reductions of 3.9% in embodied CO2

emissions and 2.2% in embodied energy relative to baseline mixtures, demonstrating
the framework’s potential to support low-carbon concrete design.

Outlook and Future Research Directions

While the present study focuses on fresh-state SCC workability and sustainability indi-
cators, several promising directions for future research are identified. First, the framework
can be extended to incorporate hardened concrete properties, such as compressive strength
development, shrinkage, and durability-related indicators, enabling a full life-cycle perfor-
mance prediction model. Second, integration with real-time sensor data from rheometers
or in situ monitoring systems could enable adaptive quality control and dynamic mix
adjustment during production. Finally, expanding the life cycle assessment to include
end-of-life scenarios, recycling pathways, and region-specific material inventories would
further strengthen the framework’s applicability within a circular economy context. These
extensions would enhance the robustness, scope, and industrial relevance of data-driven
SCC mix design methodologies.

Overall, the proposed framework provides a scalable, interpretable, and sustainability-
oriented solution for SCC mix design, offering a solid foundation for future advances in
intelligent and low-carbon concrete technologies.
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