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Abstract

Parkinson’s Disease (PD) is a progressive neurodegenerative disorder for which early and
reliable diagnosis remains challenging. To address this challenge, the key innovation of this
work is a confidence-gated fusion mechanism that dynamically weights classifier outputs
based on per-sample prediction certainty, overcoming the limitations of static ensemble
strategies. Building on this idea, we propose a Confidence-Gated Hybrid CNN Ensem-
ble that integrates CNN-based acoustic feature extraction with heterogeneous classifiers,
including XGBoost, Support Vector Machines, and Random Forest. By adaptively mod-
ulating the contribution of each classifier at the sample level, the proposed framework
enhances robustness against data imbalance, inter-speaker variability, and feature complex-
ity. The method is evaluated on two benchmark PD speech datasets, where it consistently
outperforms conventional machine learning and ensemble approaches, achieving a best
classification accuracy of up to 97.9% while maintaining computational efficiency com-
patible with real-time deployment. These results highlight the effectiveness and clinical
potential of confidence-aware ensemble learning for non-invasive PD detection.

Keywords: Parkinson’s Disease; speech analysis; deep learning; ensemble learning;
confidence-gated fusion; CNN

1. Introduction
Parkinson’s Disease (PD) is a progressive neurodegenerative disorder affecting mil-

lions of individuals worldwide, for which early diagnosis is essential to enable timely
intervention and improve patient outcomes [1,2]. Despite advances in clinical practice, PD
diagnosis remains challenging due to the reliance on subjective assessments and the subtle
manifestation of early-stage symptoms, often leading to delayed or inaccurate diagnosis [3].
Among potential early biomarkers, speech impairments provide a non-invasive and acces-
sible diagnostic pathway, as PD-related dysarthria induces measurable changes in acoustic
characteristics such as pitch, jitter, shimmer, and articulation dynamics [4,5].

Recent progress in machine learning (ML) and deep learning (DL) has enabled au-
tomated analysis of speech signals for PD detection. In particular, Convolutional Neu-
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ral Networks (CNNs) have demonstrated strong capability in learning discriminative
representations from speech-derived features, frequently outperforming traditional ap-
proaches based on hand-crafted features [6,7]. However, CNN-based models alone may
exhibit limited robustness when confronted with small sample sizes, class imbalance, inter-
speaker variability, and noisy recording conditions—common characteristics of PD speech
datasets [8]. These limitations motivate the integration of CNNs with complementary
classification paradigms.

Ensemble learning has therefore emerged as an effective strategy to enhance gen-
eralization by combining classifiers with diverse decision boundaries. By leveraging
complementary strengths, ensemble methods can reduce overfitting and improve robust-
ness in speech-based PD detection. Nevertheless, most existing ensemble approaches
rely on static fusion strategies, implicitly assuming equal reliability of all classifiers across
all samples. This assumption is unrealistic in clinical speech analysis, where prediction
confidence can vary significantly depending on speaker characteristics, recording quality,
and disease severity.

The key innovation of this work is a confidence-gated fusion mechanism that dy-
namically weights classifier outputs based on per-sample prediction certainty, thereby
addressing the inherent limitations of static ensemble strategies. Building on this principle,
we propose a Confidence-Gated Hybrid CNN Ensemble that integrates CNN-based acous-
tic feature extraction with heterogeneous classifiers, including XGBoost, Support Vector
Machines (SVM), and Random Forest (RF). A gating network adaptively assigns reliability
weights to classifier outputs using confidence indicators, enabling sample-aware decision
fusion and improved robustness.

Despite recent advances, several challenges remain in speech-based PD detection, in-
cluding limited dataset sizes, difficulties in generalizing across heterogeneous populations,
and the need for scalable and computationally efficient solutions suitable for real-time
deployment [9]. The proposed confidence-gated framework directly addresses these chal-
lenges by combining deep feature learning, ensemble diversity, and adaptive fusion within
a unified architecture.

The main contributions of this work are summarized as follows:

• Confidence-Gated Hybrid Architecture: We propose a novel ensemble framework
that combines CNN-based feature extraction with heterogeneous classifiers and a
confidence-gated fusion mechanism for speech-based PD detection.

• Adaptive Per-Sample Decision Fusion: A gating network dynamically weights classi-
fier outputs according to prediction confidence, improving robustness over conven-
tional static ensemble strategies.

• Comprehensive Experimental Evaluation: The proposed method is evaluated on two
widely used benchmark PD speech datasets, demonstrating superior performance
compared to state-of-the-art machine learning and ensemble approaches.

• Scalability and Clinical Relevance: The framework provides a non-invasive, efficient,
and scalable solution with strong potential for real-time and clinical deployment.

2. Related Work
Speech-based diagnosis of PD has attracted significant research interest due to the

strong correlation between vocal impairments and motor dysfunctions. Existing studies
employ a wide range of ML and DL techniques to improve diagnostic accuracy. Broadly,
prior work can be categorized into feature selection and signal processing-based approaches,
deep learning architectures, and ensemble or hybrid learning strategies. While substantial
progress has been made, persistent challenges remain in robustness, generalization, and
adaptive decision fusion.
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2.1. Feature Selection and Signal Processing-Based Approaches

Early research efforts primarily focused on identifying discriminative acoustic fea-
tures for PD detection. Wrapper and filter-based feature selection techniques have been
widely adopted to reduce dimensionality and improve classification performance. For
instance, ref. [10] employed wrapper-based feature selection in conjunction with SVM,
kNN, MLP, and Random Forest (RF), achieving high accuracy with a reduced feature set.
Similarly, genetic and evolutionary optimization strategies combined with classical classi-
fiers were explored in [4,11]. Although effective, such approaches are often computationally
intensive and highly dataset-dependent, limiting their scalability and robustness across
heterogeneous speech corpora.

Advanced signal processing techniques have also been investigated to enhance feature
extraction. Tunable Q-factor Wavelet Transform (TQWT) combined with MFCCs was pro-
posed in [3], offering improved frequency resolution but suffering from limited modality
coverage and sensitivity to recording conditions. Dimensionality reduction methods such
as weighted Local Discriminant Preservation Projection [1] and PCA-based pipelines [9]
addressed class imbalance and redundancy but struggled to generalize to larger and more
diverse datasets. More recent nature-inspired optimization algorithms, including the
Zebra Optimization Algorithm (ZOA) [12] and the Multi-Agent Salp Swarm (MASS) algo-
rithm [13], further refined feature selection efficiency at the cost of increased computational
complexity, making real-time deployment challenging.

2.2. Deep Learning Architectures for PD Speech Analysis

Deep learning has significantly advanced speech-based PD diagnosis by enabling auto-
matic representation learning from acoustic data. Convolutional Neural Networks (CNNs)
have been widely adopted to capture discriminative patterns in speech-derived features.
A parallel CNN architecture was proposed in [6], achieving competitive performance but
exhibiting limited scalability across datasets. Temporal modeling approaches using Deep
Neural Networks (DNNs) and Long Short-Term Memory (LSTM) networks were explored
in [8,14], effectively capturing sequential dependencies in speech signals. However, such
architectures often require substantial computational resources and large training datasets,
which limits their suitability for real-time and resource-constrained clinical environments.

Hybrid DL approaches combining deep feature extraction with dimensionality reduc-
tion or feature ranking have also been investigated. For example, Sparse Autoencoders
(SAE) combined with PCA were employed in [9], improving classification accuracy but
offering limited interpretability, an important consideration for clinical decision support
systems. Despite their strong performance, DL-based methods often exhibit sensitivity
to dataset imbalance, noise, and inter-speaker variability, motivating the integration of
complementary learning paradigms.

2.3. Ensemble and Hybrid Learning Strategies

To overcome the limitations of individual models, ensemble learning has emerged as a
promising strategy for PD speech detection. Classical ensemble methods such as Random
Forest, XGBoost, AdaBoost, and Light Gradient Boosting Machine (LGBM) have been
shown to enhance robustness and generalization [7,15]. Hybrid frameworks combining
feature selection with ensemble classifiers further improved performance, particularly on
imbalanced datasets [7]. Interpretable ensemble models, such as the IFRX framework [5],
integrated XGBoost with SHAP-based explanations to address transparency concerns,
though their validation on diverse datasets remains limited.

Despite their effectiveness, most existing ensemble approaches rely on static fusion
strategies, such as majority voting or fixed-weight averaging. These methods implicitly
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assume equal reliability of all classifiers across all samples, an assumption that is unrealistic
for noisy clinical speech data where prediction confidence can vary substantially depending
on speaker characteristics, recording quality, and disease severity. Although deep ensemble
architectures have been proposed [16], adaptive per-sample weighting based on classifier
confidence has not been explicitly addressed.

Table 1 summarizes representative speech-based PD diagnosis studies, covering fea-
ture selection methods, deep learning architectures, and ensemble strategies. The compar-
ison highlights not only reported performance but also key methodological limitations,
including dataset dependency, reliance on oversampling, high computational complexity,
and limited robustness to noisy clinical speech data.

Table 1. Comparison of PD Diagnosis Studies.

Ref. Model(s) Dataset Main Contribution Performance Limitation

[10] SVM, kNN,
MLP, RF

Public
(754 features)

Wrapper feature
selection to reduce
vocal features.

Acc: 94.7%
High
complexity on
large data.

[1] Weighted LDP
Projection

2 public +
1 private

Improved class
variance in
imbalanced data.

Acc: 89% Limited
generalization.

[3] SVM (RBF),
Ensemble 252 voice rec.

Used TQWT for
feature extraction
with MFCC.

Acc: 86%
Limited
modality
coverage.

[4] GA + SVM-RFE UCI speech
Two-stage feature
selection for better
accuracy.

Acc: 88.7% Small dataset.

[5] IFRX (XGBoost+
SHAP) UCI speech

Feature ranking +
interpretability via
SHAP.

Acc: 96.6% Limited
validation.

[17] SVM, CART,
ANN Public dataset Feature importance +

RFE for minimal set. Acc: 93.8% Few feature
interactions.

[6] Parallel CNN UCI speech Extracted features
with TQWT + MFCC. Acc: 86.9% Poor scalability.

[7] GA + RF UCI speech
SMOTE balancing
with hybrid
classifiers.

Acc: 95.6% Relies on
oversampling.

[8] DNN Telemonitoring Predicted UPDRS
scores.

Motor: 81.7%,
Total: 62.7%

Low accuracy
on Total
UPDRS.

[14] DNN, LSTM UCI dataset Captured temporal
dependencies.

DNN: 97.1%,
LSTM: 99.0%

High resource
demand.

[15] XGBoost,
DNN2 UCI dataset Compared ML/DL

classifiers. Acc: 95.4% Dataset-
specific.

[9] PCA-SVM,
SAE-SVM UCI dataset Feature reduction

with PCA + SAE. Acc: 93.5% Relies on
SMOTE.

[18] LR, SVM, k-NN Acoustic dataset OGA-based sampling
for balance. Acc: 89.5% Acoustic only.

[11] GA + SVM Voice features GA-based feature
selection. Acc: 91.2% Limited

scalability.

[19] GBT PD/non-PD
voices

Vocal biomarkers for
detection.

AUC: 0.88,
F1: 0.69 Not clinical.

[12] ZOA + RFECV UCI dataset Nature-inspired
feature selection. Acc: 97.1% Limited noise

robustness.

[13] MASS + PCNN UCI dataset
Multi-agent
optimization for
features.

Acc: 99.1%,
F1: 0.99 Very intensive.

[16] Deep Dual-Side 2 speech datasets
Combined deep
feature + sample
learning.

Acc: 98.4%,
99.6% Speech only.
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As evidenced in Table 1, although several approaches report high accuracy, most
methods rely on static learning or fusion strategies and exhibit limited adaptability at
the sample level. In particular, none of the existing ensemble-based approaches explicitly
incorporate a mechanism to dynamically weight classifier contributions based on per-
sample confidence, which is critical for handling inter-speaker variability and noise in
real-world clinical speech recordings.

2.4. Positioning of the Proposed Method

The proposed Confidence-Gated Hybrid CNN Ensemble directly addresses the iden-
tified research gaps by integrating CNN-based feature extraction with heterogeneous
classifiers, including XGBoost, SVM, and Random Forest. Unlike traditional static en-
sembles, the proposed framework employs a confidence-gated fusion mechanism that
dynamically weights the contribution of each classifier according to its reliability on indi-
vidual speech samples. This adaptive integration enhances robustness to dataset imbalance,
inter-speaker variability, and noise, while maintaining computational efficiency suitable
for real-time and clinical deployment. By unifying deep representation learning, ensemble
diversity, and adaptive decision fusion, the proposed approach provides a scalable and
clinically relevant solution for non-invasive PD detection.

3. Dataset Description
3.1. First Dataset

Data collection is a crucial step in research, providing the foundation for feature
analysis and model development. This study uses the PD dataset obtained from the UCI
Machine Learning Repository [20]. The dataset includes biomedical voice measurements
from 31 individuals, 23 of whom have been diagnosed with PD. These voice recordings con-
tain 24 attributes, comprising 22 features derived from voice signals, one unique identifier,
and one target variable indicating the presence of the disease. The features are meticulously
designed to capture various vocal impairments associated with PD, such as jitter, shimmer,
harmonic-to-noise ratio, and pitch period entropy, which are instrumental in detecting and
monitoring the disease. Table 2 provides a detailed description of the attributes included in
the dataset.

Table 2. Attributes of the Parkinson’s Disease Dataset.

Attribute Name Description

name Name of the voice sample (identifier).

MDVP:Fo(Hz) Average vocal fundamental frequency (in Hz).

MDVP:Fhi(Hz) Maximum vocal fundamental frequency (in Hz).

MDVP:Flo(Hz) Minimum vocal fundamental frequency (in Hz).

MDVP:Jitter(%) Frequency perturbation (jitter percentage).

MDVP:Jitter(Abs) Absolute jitter in seconds.

MDVP:RAP Relative Average Perturbation.

MDVP:PPQ Five-point Period Perturbation Quotient.

Jitter:DDP Average absolute difference of differences between cycles.

MDVP:Shimmer Amplitude perturbation (shimmer percentage).

MDVP:Shimmer(dB) Shimmer in decibels.

Shimmer:APQ3 Three-point Amplitude Perturbation Quotient.
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Table 2. Cont.

Attribute Name Description

Shimmer:APQ5 Five-point Amplitude Perturbation Quotient.

MDVP:APQ Average Amplitude Perturbation Quotient.

Shimmer:DDA Average absolute differences of differences between amplitudes.

NHR Noise-to-Harmonics Ratio.

HNR Harmonics-to-Noise Ratio.

RPDE Recurrence Period Density Entropy, a nonlinear dynamical
complexity measure.

DFA Detrended Fluctuation Analysis, a signal fractal scaling exponent.

spread1 Variation of fundamental frequency.

spread2 Fundamental frequency variation measure based on nonlinear
dynamical analysis.

D2 Nonlinear dynamical complexity measure.

PPE Pitch Period Entropy.

status Target variable: 1 indicates PD, 0 indicates healthy.

Despite its widespread use as a benchmark, the UCI PD dataset exhibits several
important limitations. First, the relatively small sample size limits the statistical power
of learning-based models and increases the risk of overfitting. Second, recordings were
collected under controlled conditions using sustained vowel phonation, which may not fully
reflect the variability encountered in real-world clinical or conversational speech scenarios.
Third, demographic information such as age distribution, disease severity, and medication
status is limited, potentially introducing bias and restricting the generalizability of learned
models. These limitations motivate the use of cross-validation and complementary datasets
to ensure robust evaluation.

3.2. Second Dataset

The second dataset utilized in this study was originally introduced by Sakar et al. [21].
It comprises data collected from 188 individuals diagnosed with PD (107 males and
81 females) with an average age of 65.1 years (±10.9 years) and 64 healthy control par-
ticipants (23 males and 41 females) with an average age of 61.1 years (±8.9 years). The data
collection took place at the Cerrahpasa Faculty of Medicine, Istanbul University.

In total, 252 participants contributed to the dataset. Each participant was asked
to pronounce the vowel sound /a/ three times, resulting in 756 recordings. The audio
recordings were captured using a microphone with a sampling rate of 44.1 kHz.

Each recording lasted for 220 s, corresponding to 9,702,000 samples per recording.
To facilitate processing, the audio signals were segmented into 25-millisecond frames,
allowing each segment to be treated as a stationary signal. Advanced signal processing
techniques were employed to extract 754 features from each frame. A global feature vector,
representing an entire signal, was calculated by averaging the feature vectors across all
frames. This process was repeated for all 756 recordings.

Six distinct voice processing methods were used to extract different groups of features:
21 baseline features, 11 time-frequency features, 84 Mel Frequency Cepstral Coefficients
(MFCCs), 182 features based on wavelet transforms, 22 features related to vocal fold
characteristics, and 434 features derived from tunable Q-factor wavelet transforms (TQWT).
The acoustic analysis and feature extraction were conducted using the Praat software, as
described by Sakar et al. [21]. This dataset, referred to as the “Parkinson Speech Dataset with
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Multiple Types of Sound Recordings,” is publicly available in the University of California
Irvine Machine Learning Repository.

Although this dataset provides improved sample size and feature richness compared
to the UCI dataset, it also presents limitations. The recordings are still obtained under
controlled clinical conditions using sustained phonation, which may limit applicability to
spontaneous speech or real-world environments. Furthermore, the high-dimensional fea-
ture space (754 features) increases the risk of redundancy and multicollinearity, potentially
affecting model stability. Demographic imbalance and variability in disease severity may
also influence classification outcomes. These factors highlight the importance of robust
feature normalization and ensemble-based learning strategies.

3.3. Preprocessing and Feature Normalization

Prior to model training, non-informative attributes such as subject identifiers were
removed, and feature normalization was applied to ensure numerical stability and fair
contribution of all acoustic features. Specifically, Z-score normalization was employed:

Z =
X − µ

σ
, (1)

where X denotes the original feature value, and µ and σ represent the mean and standard
deviation computed from the training data.

Z-score normalization is particularly suitable for speech-derived acoustic features,
which often follow approximately Gaussian or near-Gaussian distributions and exhibit
heterogeneous dynamic ranges (e.g., pitch, jitter, shimmer, entropy-based measures). By
centering features to zero mean and unit variance, z-score normalization ensures balanced
gradient propagation during CNN training and prevents features with large numeric scales
from dominating the learning process.

Alternative normalization techniques were also considered. Min–Max normalization
scales features into a fixed range but is sensitive to outliers, which are common in clinical
speech data due to recording variability and pathological speech artifacts. Robust scaling
based on median and interquartile range provides improved resistance to outliers but may
distort relative feature distributions when applied to high-dimensional acoustic descriptors.
In contrast, z-score normalization offers a favorable trade-off between stability, robustness,
and compatibility with gradient-based optimization, making it a widely adopted choice in
speech and biomedical signal processing.

Overall, the combination of careful dataset selection, explicit acknowledgment of
dataset limitations, and appropriate normalization ensures a fair and reproducible evalua-
tion of the proposed confidence-gated framework across heterogeneous PD speech data.

4. Proposed Methodology
This work proposes a Confidence-Gated Hybrid CNN Ensemble for the detection of PD

from speech recordings. The framework integrates deep feature extraction through CNNs,
complementary decision boundaries from traditional machine learning classifiers, and an
adaptive fusion mechanism that assigns dynamic weights based on prediction confidence.
The methodology consists of five major stages: data preprocessing, CNN-based feature
extraction, ensemble classification, confidence-gated fusion, and final decision making.

4.1. CNN-Based Feature Extraction

The CNN constitutes the core feature extractor of the proposed framework, designed
to automatically learn discriminative acoustic representations without relying on hand-

https://doi.org/10.3390/electronics15030587

https://doi.org/10.3390/electronics15030587


Electronics 2026, 15, 587 8 of 19

crafted descriptors. This is particularly advantageous in PD detection, where subtle vocal
impairments may not be fully captured by manually selected features.

It is important to clarify that the term CNN in this work refers to a feature-level
convolutional neural networkoperating on extracted speech descriptors rather than raw
waveform or spectrogram inputs. Specifically, the convolutional operation is implemented
using 1D convolutions with kernel size equal to one, enabling shared-weight nonlinear
transformations across the feature channels. This design allows the network to capture
inter-feature correlations while preserving parameter efficiency. From a mathematical
perspective, such 1D convolutions can be expressed as linear transformations followed
by nonlinear activations, which explains why the network equations are written in a fully
connected form. The dense layers described in Equations (2)–(4) therefore correspond to
the embedding layers following the convolutional mapping, rather than contradicting the
CNN-based design.

Figure 1 illustrates the architecture of the adopted CNN-based feature embedding
network, highlighting the use of feature-level 1D convolutions, normalization, nonlinear
activation, and progressive embedding compression.

Figure 1. Architecture of the CNN-based feature embedding network.

Table 3 provides a detailed specification of the CNN-based feature embedding network,
including layer types, kernel sizes, number of filters, and output dimensions, ensuring full
reproducibility of the proposed architecture.

Table 3. Detailed architecture of the CNN-based feature embedding network.

Layer Type Kernel Size Filters/Units Output Shape

Input Acoustic Feature Vector – d (d, 1)

Layer 1 Conv1D + BN + ReLU 1 256 (d, 256)

Layer 2 Conv1D + BN + ReLU + Dropout 1 128 (d, 128)

Layer 3 Conv1D + BN + ReLU + Dropout 1 64 (d, 64)

Embedding Global Feature Flattening – – (64)
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Let x ∈ Rd denote the preprocessed acoustic feature vector. The CNN embedding
network applies a sequence of feature-level convolutional transformations followed by
nonlinear operations and regularization mechanisms:

h1 = ReLU(BN(W1 ∗ x + b1)), (2)

h2 = Dropout(ReLU(BN(W2 ∗ h1 + b2))), (3)

FCNN = Dropout(ReLU(BN(W3 ∗ h2 + b3))). (4)

Dropout with a probability of 0.4 is used to mitigate overfitting. Although such
1 × 1 convolutions do not perform spatial aggregation in the classical sense, they remain
a valid convolutional operation that preserves the CNN formulation while ensuring pa-
rameter efficiency. In this context, the network progressively transforms the feature repre-
sentation through a feature progression scheme 256 → 128 → 64, rather than a dense layer
progression typical of fully connected architectures. The resulting embedding FCNN ∈ R64

serves as a compact and expressive representation of the speech signal.

4.2. Model Training and Cross-Validation

To ensure robust generalization, a 5-fold cross-validation scheme was employed. The
CNN was trained using the categorical cross-entropy loss:

LCE = −
C

∑
c=1

yc log ŷc, (5)

with the Adam optimizer (η = 10−4, λ = 10−5), batch size 64, and early stopping based on
validation loss. This strategy ensures stable training and prevents overfitting.

4.3. Ensemble Classification with Heterogeneous Models

The extracted embeddings FCNN are forwarded to three heterogeneous classifiers:
XGBoost (M1), Support Vector Machine (M2), and Random Forest (M3). Each classifier
outputs a probability vector:

Pi = Mi(FCNN) ∈ [0, 1]2, i = 1, 2, 3. (6)

These classifiers provide complementary decision boundaries through boosting,
margin-based learning, and bagging strategies, respectively.

4.4. Confidence-Gated Fusion Mechanism

To overcome the limitations of static ensemble strategies, a Confidence-Gated Fusion
Network (CGFN) dynamically assigns weights to each classifier on a per-sample basis.
Classifier probabilities and confidence indicators (maximum probability, margin, and
entropy) are concatenated and processed by a gating network to compute adaptive weights:

P f inal =
3

∑
i=1

αi · Pi. (7)

This mechanism emphasizes reliable predictions while down-weighting uncertain
ones, improving robustness and interpretability.
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4.5. Decision Making and Evaluation Metrics

The final decision is assigned as the class with the highest probability in P f inal . Perfor-
mance is evaluated using accuracy, precision, recall, and F1-score:

Accuracy =
TP + TN

TP + TN + FP + FN
. (8)

Figure 2 illustrates the overall workflow of the proposed method.

Figure 2. Flowchart of the proposed Confidence-Gated Hybrid CNN Ensemble.

5. Result Analysis
This section evaluates the performance of the proposed Confidence-Gated Hybrid CNN

Ensemble for Parkinson’s Disease (PD) detection, with particular emphasis on the confidence-
gated fusion (CG) layer. The proposed method is compared against two baselines: a
Standalone CNN and a CNN with a heterogeneous ensemble (without confidence gating).
In addition to standard performance metrics, statistical significance testing and confusion
matrix-based analysis are incorporated to provide deeper insight into model behavior,
robustness, and limitations.

Figure 3 presents a visual comparison of Accuracy, F1-Score, and Recall for the three
models across both datasets. The Standalone CNN provides a baseline representation
of the discriminative power of the CNN embeddings, achieving moderate performance
(Dataset 1: Accuracy 85%, F1-Score 83%, Recall 82%; Dataset 2: Accuracy 81%, F1-Score
79%, Recall 78%). While the CNN is capable of extracting meaningful speech features, it
remains limited in handling complex inter-speaker variability and subtle acoustic patterns
commonly observed in Parkinsonian speech.
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Figure 3. Comparison of performance metrics for the Standalone CNN, CNN ensemble without
confidence gating, and the proposed Confidence-Gated Hybrid CNN Ensemble.

Integrating heterogeneous classifiers through a CNN ensemble without confidence
gating leads to noticeable performance improvements (Dataset 1: Accuracy 91%, F1-Score
88%, Recall 89%; Dataset 2: Accuracy 89%, F1-Score 87%, Recall 87%). The ensemble benefits
from complementary decision boundaries provided by XGBoost, SVM, and Random Forest,
reducing misclassification rates compared to the Standalone CNN. However, in the absence
of a mechanism to account for per-sample prediction reliability, all classifiers contribute
equally, which limits the ensemble’s effectiveness in ambiguous or noisy cases.

The proposed confidence-gated fusion layer addresses this limitation by dynamically
weighting each classifier’s contribution based on confidence indicators such as maximum
posterior probability, decision margin, and entropy. This adaptive strategy allows the model
to emphasize reliable predictions while down-weighting uncertain ones. Consequently, the
proposed method achieves the highest performance on both datasets (Dataset 1: Accuracy
97.9%, F1-Score 97%, Recall 98%; Dataset 2: Accuracy 96.8%, F1-Score 95%, Recall 96%),
demonstrating the effectiveness of confidence-aware fusion in enhancing classification
accuracy, robustness, and reliability.

In the second evaluation scenario, the discriminative capability of the models is
analyzed using Receiver Operating Characteristic (ROC) curves and the corresponding
Area Under the Curve (AUC) metrics. All models are applied to the same datasets, and their
ROC curves are generated by varying classification thresholds. The results are presented in
Figure 4.

Figure 4 highlights clear performance differences among the three models. The Stan-
dalone CNN achieves an AUC of 0.71, indicating limited separability between PD and
healthy samples. The CNN-based ensemble without confidence gating improves this per-
formance with an AUC of 0.88, reflecting the benefit of combining convolutional feature
extraction with ensemble learning. In contrast, the proposed confidence-gated model
attains an AUC of 0.99, with its ROC curve rapidly approaching the optimal top-left corner,
indicating near-perfect classification capability and highly stable decision boundaries.
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Figure 4. Combined ROC curves of the classification models with their corresponding AUC values.

5.1. Statistical Significance Analysis

To assess whether the observed performance improvements are statistically mean-
ingful rather than due to chance, McNemar’s test was conducted on paired classification
outcomes between the proposed model and the CNN ensemble baseline. The statistical
significance results are summarized in Table 4.

Table 4. McNemar statistical significance test comparing the proposed Confidence-Gated Fusion
method with the CNN ensemble baseline.

Dataset χ2 p-Value Significance

Dataset 1 (UCI PD) 12.84 3.3 × 10−4 Statistically significant (p < 0.01)

Dataset 2 [21] 18.27 1.9 × 10−5 Statistically significant (p < 0.01)

For both datasets, the null hypothesis of equal error rates is rejected at the 95%
confidence level, confirming that the improvements achieved by the proposed confidence-
gated fusion strategy are statistically significant and not attributable to random variation.

5.2. Confusion Matrix and Error Analysis

Figures 5 and 6 present the confusion matrices of the proposed model for Dataset 1
and Dataset 2, respectively.
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Figure 5. Confusion matrix of the proposed Confidence-Gated Hybrid CNN Ensemble on Dataset 1
(UCI Parkinson’s Disease dataset).
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Figure 6. Confusion matrix of the proposed Confidence-Gated Hybrid CNN Ensemble on Dataset 2
(Parkinson Speech Dataset with Multiple Types of Sound Recordings).

For Dataset 1, the confusion matrix indicates that the majority of PD and healthy
samples are correctly classified, with only a small number of false negatives and false
positives. This reflects the high sensitivity of the proposed model, which is particularly
important for clinical screening scenarios. Dataset 2 exhibits similar behavior, with strong
true positive and true negative rates across a larger and more diverse cohort.

Despite the strong overall performance, misclassifications persist in specific scenarios.
False negatives are primarily associated with samples exhibiting mild PD symptoms,
where acoustic deviations from healthy speech are subtle and difficult to distinguish.
False positives and residual errors are more likely to occur in recordings affected by
low signal-to-noise ratio or speaker-specific variability, such as age-related voice changes
that resemble PD-related dysarthria. These findings highlight the inherent difficulty of
borderline clinical cases.
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5.3. Comparison with Existing Models

This section focuses on comparing the accuracy of the proposed Confidence-Gated Fusion
model with existing classifiers in the literature, utilizing the same dataset for consistency.

5.3.1. First Dataset

The performance of the proposed approach is evaluated against various machine
learning classifiers, including Random Forest (RF), Multi-Layer Perceptron (MLP), KNN,
XGBoost, SVM, Principal Component Analysis-Support Vector Machine (PCA-SVM), and
Sparse Auto-Encoder-Support Vector Machine (SAE-SVM). This comparison highlights the
effectiveness of the proposed method relative to established techniques.

Table 5 provides a detailed comparison of the proposed method against existing
machine learning classifiers based on their accuracy, F1-score, and recall. Among the
traditional classifiers, SAE-SVM demonstrates the best performance, achieving an accuracy
of 93.5% and an F1-score of 0.951. This highlights the strong ability of sparse auto-encoders
to extract meaningful features for classification tasks. Other methods, such as PCA-SVM
and XGBoost, also show competitive performance with accuracies of 88.9% and 88.1%,
respectively, indicating their effectiveness in handling high-dimensional data. However, the
proposed Confidence-Gated Fusion method significantly outperforms all other classifiers,
achieving 97.9% accuracy, an F1-score of 0.97, and a recall of 0.98. This result underscores
the superiority of the proposed method in leveraging deep learning for feature extraction,
ensemble strategies for classification, and confidence-based fusion for optimal decision-
making. The improvement over other methods validates the robustness and reliability of
the proposed approach for Parkinson’s disease classification.

Table 5. Comparison of machine learning classifiers with the Proposed Confidence-Gated Fu-
sion Method.

Machine Learning Classifiers Accuracy (%) F1-Score Recall

RF (Random Forest) 83.6 0.897 0.88

MLP (Multi-Layer Perceptron) 84.5 0.897 0.87

KNN (K-Nearest Neighbors) 76.5 0.851 0.84

XGBoost 88.1 0.924 0.90

SVM (Support Vector Machine) 85.4 0.907 0.88

PCA-SVM 88.9 0.928 0.91

SAE-SVM 93.5 0.951 0.93

Proposed Method (CG Fusion) 97.9 0.97 0.98

Table 6 presents a comparative analysis of various methods from the state-of-the-art
literature for PD prediction, focusing on their speech datasets and classification accuracy.
All studies utilize the UCI ML Repository as the dataset source, ensuring a consistent basis
for comparison. The reported accuracy values highlight the varying effectiveness of the
methods. For instance, Mostafa et al. achieved an accuracy of 95.43%, demonstrating strong
performance through the use of advanced classifiers. Similarly, ref. [22] and IFRX Model
also show competitive accuracies of 95% and 96.61%, respectively. However, the proposed
Confidence-Gated Fusion method stands out as the most effective, achieving an accuracy
of 97.9%. This underscores the superiority of the proposed approach in leveraging robust
feature extraction and confidence-aware ensemble strategies, setting a new benchmark for
PD prediction tasks.

https://doi.org/10.3390/electronics15030587

https://doi.org/10.3390/electronics15030587


Electronics 2026, 15, 587 15 of 19

Table 6. Comparison of the proposed work with the state-of-the-art methods for PD prediction.

Study Speech Dataset Accuracy (%)

[23] UCI ML 90.00

[24] UCI ML 91.40

[25] UCI ML 87.50

[26] UCI ML 78.23

[27] UCI ML 95.43

[28] UCI ML 85.00

[22] UCI ML 95.00

[29] UCI ML 81.35

[5] UCI ML 96.61

Proposed Method (CG Fusion) UCI ML 97.9

5.3.2. Second Dataset

Table 7 presents a comparative analysis of different combinations of base classifiers and
their performance when combined with various meta-classifiers using stacking ensemble
methods. Each combination of base classifiers includes a set of machine learning models
such as KNN, SVM, XGBoost, RF, and MLP. The stacking process uses a meta-classifier to
aggregate the predictions of the base classifiers into a final prediction, thereby leveraging
the strengths of multiple models to achieve better performance. For each combination
of base classifiers, the table lists the associated meta-classifier and the resulting accuracy
(ACC %).

Table 7. Performance of base classifiers and proposed method [30].

Combination of Base Classifiers Meta-Classifier ACC (%)

KNN, SVM, XGBoost, and RF MLP 90.13

MLP, SVM, XGBoost, and RF KNN 82.89

KNN, SVM, XGBoost, and MLP RF 91.44

KNN, MLP, XGBoost, and RF SVM 85.52

KNN, SVM, RF, and MLP XGboost 95.07

Proposed Method (CG Fusion ) - 96.8

The results in Table 7 illustrate the significant impact of combining diverse base classi-
fiers with the selection of an appropriate meta-classifier in a stacking ensemble framework.
Among the evaluated configurations, XGBoost as the meta-classifier consistently outper-
formed other options, achieving an impressive accuracy of 95.07% when paired with KNN,
SVM, RF, and MLP as base classifiers. This underscores XGBoost’s effectiveness in syn-
thesizing predictions from diverse models, leveraging its robustness and ability to handle
complex patterns. Building upon this foundation, the proposed Confidence-Gated Fusion
method further refines the configuration, achieving a remarkable 96.8% accuracy. This
result emphasizes the critical role of incorporating classifier confidence in fusion, which
enhances robustness and generalization beyond traditional ensemble methods.

Table 8 presents a comparative analysis of classification accuracies reported in various
studies using the same dataset. Each study employs unique methodologies and algorithms
for feature selection and classification, showcasing their respective strengths. These studies
explore advanced techniques such as SVM, MLP, and variational autoencoders, highlighting
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their potential in effectively processing and analyzing the dataset while offering insights
into their relative performance.

Table 8. Classification accuracy comparison performed in different studies with the same database.

Study Classification Accuracy

[23] 86%

[10] 94.7%

[31] 96%

[32] 85.7%

[30] 95.07%

Proposed Method 96.8%

Ref. [23] utilized 752 features alongside an SVM classifier, achieving a notable accuracy
of 86%. Building on this foundation, ref. [31] enhanced performance using wrapper-based
feature selection, reaching 94.7% accuracy with an SVM classifier and 96% accuracy with
an MLP classifier. Ref. [32] explored DL techniques, employing variational autoencoders
combined with SVM to achieve 91.2% accuracy, while leveraging deep neural network
features yielded an accuracy of 85.7%. Ref. [30] introduced an innovative approach by
integrating XGBoost for feature selection with an ensemble of classifiers, attaining an
accuracy of 95.07%.

In contrast, the proposed Confidence-Gated Fusion method in this study sets a new
benchmark, achieving a remarkable 96.8% classification accuracy. This result underscores
its superior performance and establishes it as a significant advancement in this domain.

5.4. Discussion and Limitations

The confidence-gated fusion mechanism substantially reduces error rates by adaptively
weighting classifier contributions on a per-sample basis. Nevertheless, extreme noise con-
ditions, underrepresented demographic profiles, and borderline pathological cases remain
challenging. Future work may explore noise-robust feature extraction, demographic-aware
modeling, or multimodal data fusion to further enhance generalization and clinical reliability.

Overall, the combination of strong quantitative performance, statistical validation, and
detailed error analysis demonstrates that the proposed Confidence-Gated Hybrid CNN
Ensemble provides a robust, statistically significant, and clinically relevant solution for
non-invasive Parkinson’s Disease detection.

6. Conclusions
PD remains a challenging neurodegenerative disorder in which early and reliable

detection is critical for timely intervention and improved patient outcomes. In this study, we
introduced a confidence-gated hybrid CNN ensemble framework that explicitly accounts
for prediction uncertainty by adaptively weighting classifier contributions on a per-sample
basis. Unlike conventional static ensemble strategies, the proposed approach is designed
to operate under the inherent uncertainty of pathological speech signals, where acoustic
manifestations vary significantly across speakers, disease stages, and recording conditions.

The effectiveness of confidence gating can be attributed to the intrinsic variability
and ambiguity of PD-related speech impairments. Pathological speech often exhibits over-
lapping acoustic characteristics with healthy speech, particularly in early or mild disease
stages, leading to fluctuating classifier confidence. By dynamically emphasizing classifiers
that exhibit higher certainty for a given sample while down-weighting unreliable predic-
tions, the confidence-gated mechanism provides a principled way to manage uncertainty
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and reduce error propagation. This adaptive behavior explains the consistent performance
gains observed across both datasets.

From a clinical perspective, the achieved performance demonstrates promising po-
tential for PD screening applications. The high recall values (98% on Dataset 1 and 96%
on Dataset 2) indicate strong sensitivity, which is particularly important in screening sce-
narios where minimizing false negatives is critical. At the same time, confusion matrix
analysis shows a low false positive rate, suggesting a favorable balance between sensitivity
and specificity. Nevertheless, the proposed framework is not intended to replace clinical
diagnosis but rather to serve as a decision-support or pre-screening tool that can assist
clinicians by flagging high-risk cases for further evaluation.

Despite these encouraging results, several limitations must be acknowledged. First,
the datasets used in this study are relatively small and were collected under controlled
recording conditions, which may limit generalizability to real-world clinical environments.
Second, external validation on independent cohorts was not available, and further studies
are required to assess robustness across different populations, languages, and recording
devices. Third, while the ensemble architecture improves accuracy, it introduces addi-
tional computational overhead compared to single-model approaches, which may affect
deployment in resource-constrained settings.

Future work will focus on addressing these limitations by validating the proposed
framework on larger and more heterogeneous datasets, incorporating noise-robust and
demographic-aware modeling strategies, and optimizing the ensemble architecture for real-
time clinical deployment. Additionally, extending the confidence-gated fusion paradigm
to multimodal data sources, such as gait or handwriting signals, may further enhance
diagnostic reliability.

In summary, this work demonstrates that incorporating uncertainty-aware decision
fusion is a valuable strategy for speech-based PD detection. While the proposed framework
achieves competitive performance relative to existing approaches, it should be viewed as a
promising step toward robust, interpretable, and clinically supportive AI systems rather
than a definitive or universally deployable solution.
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