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ABSTRACT
The development, integration, and maintenance of geospatial databases rely heavily on efficient and accurate matching proce-
dures of Geospatial Entity Resolution (ER). While resolution of points-of-interest (POIs) has been widely addressed, resolution 
of entities with diverse geometries has been largely overlooked. This is partly due to the lack of a uniform technique for em-
bedding heterogeneous geometries seamlessly into a neural network framework. Existing neural approaches simplify complex 
geometries to a single point, resulting in significant loss of spatial information. To address this limitation, we propose Omni, a 
geospatial ER model featuring an omni-geometry encoder. This encoder is capable of embedding point, line, polyline, polygon, 
and multi-polygon geometries, enabling the model to capture the complex geospatial intricacies of the places being compared. 
Furthermore, Omni leverages transformer-based pre-trained language models over individual textual attributes of place records 
in an Attribute Affinity mechanism. The model is rigorously tested on existing point-only datasets and a new diverse-geometry 
geospatial ER dataset. Omni produces up to 12% (F1) improvement over existing methods. Furthermore, we test the potential 
of Large Language Models (LLMs) to conduct geospatial ER, experimenting with prompting strategies and learning scenarios, 
comparing the results of pre-trained language model-based methods with LLMs. Results indicate that LLMs show competitive 
results.

1   |   Introduction

Location-based services (LBS) are computer applications that 
cater to the user or device based on their current location (Raper 
et al. 2007). Vital to the robust functioning of all geographic in-
formation systems is a geospatial database providing adequate 
coverage and quality. These databases often store the place 
names (i.e., toponyms), place type, their geospatial footprint 
(as a point location or a complex geometry), and sometimes ad-
dresses, relations between places, quality attributes, temporal 
attributes, etymologies, officiality of toponyms, etc. However, 
researchers and application developers frequently encounter the 
need to merge geospatial databases (or search results from them) 

due to factors such as incomplete coverage in individual data-
bases, disparate attribute focuses, or variations in the quality of 
certain attributes (Sun et al. 2023).

Entity resolution (ER) (Christophides et  al.  2020; Köpcke 
et al. 2010) is the task of identifying different descriptions that 
represent the same real-world entities. The challenge in geo-
spatial ER is rooted in the inherently multi-modal nature of 
geospatial data. A place is characterized not only by its textual 
attributes but also its geospatial footprint. Although POIs are 
commonly stored as point objects (simple pair of coordinates), 
more detailed spatial footprints in the form of polygons and lines 
are available in most comprehensive databases. For example, 
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OpenStreetMap, one of the most widely used global geospatial 
resources, represents roughly 68% of features as polygons, 18% 
as lines, and only about 13% as points in New Zealand. Similarly, 
for the New Zealand Geographic Board data (the official gazet-
teer for New Zealand), when combined with their roads data-
set, point geometries constitute only 33.8% data. Although these 
percentages vary across sources, the storage of complex geom-
etries is the norm rather than the exception. Classical machine 
learning approaches that tackle this problem with engineered 
features exist (Hastings  2008; Martins  2011). Unfortunately, 
their data are not readily available. The current state-of-the-art 
methods for geospatial ER do not accommodate these complex 
geometries (Acheson et al. 2020; Balsebre et al. 2022, 2023; Zhou 
et al. 2021) primarily due to the absence of a unified embedding 
technique. Current neural approaches simplify these geome-
tries to point objects, resulting in a loss of information or more 
commonly only consider point datasets for their evaluations 
(Balsebre et al. 2022, 2023; Zhou et al. 2021).

Advancing GeoAI necessitates encoding spatial data, including 
points, polygons, lines, and networks, into a representation com-
patible with neural network inputs (Mai, Huang, et  al.  2023). 
These embeddings can subsequently be applied across a wide 
array of geospatial tasks, including but not limited to spatial 
relation prediction, geography-enhanced question answering, 
cartographic generalization, and building pattern classifica-
tion. This area has received attention in recent research ef-
forts, with a growing emphasis on representing non-Euclidean 
data (Bronstein et al. 2017). In downstream tasks where input 
sources have multiple types of geometries, an encoder capable of 
handling them in a single mini-batch becomes indispensable for 
a deep learning framework.

Figure 1 illustrates some of the acute challenges and nuances of 
ER in a geospatial context using real-world examples.

Limitation in textual similarity measures: Figure 1a shows two 
entries from two sources for the same wharf. A simple string 
similarity measure over the names of the two places, or their 
types (indicated within parentheses), shows minimal similarity. 
Semantic similarity between the place types also does not indi-
cate strong similarity. However, upon considering all textual at-
tributes along with the spatial footprints, it becomes evident that 

the two sources are referring to the same wharf. Both Figure 1a 
and b demonstrate the challenge of multilingualism, vernacu-
lar names, and different typing schemes when matching places 
(Laurini 2015).

Inadequacy of simple point-to-point geographic distance mea-
sures: Figure 1b provides an example of a true match in which the 
polygons overlap almost perfectly (a tiny sliver of the underlying 
green polygon is visible in the eastern region of the park). Both 
of these source databases store point locations in addition to the 
polygons. However, the point locations from the two sources, 
indicated by the red points, are over 7 km apart, not perfectly 
matching on the toponym or the place type. Imperfect matching 
on the name and type attributes combined with the possibility of 
such large spatial distances pose a significant challenge for ex-
isting distance-based methods that do not account for complex 
geometries. This is especially true for places with larger spatial 
extents (Ahlers 2013). An ER method capable of exploiting the 
details of the complex polygons will also enable a subsequent 
trivial resolution of the points as they are often internally linked 
to its complex geometry within a single source. However, point 
location sources can be highly error-prone even within a single 
database, making distances between places across databases 
highly unreliable (Ahlers 2013; Gao et al. 2017).

Need for individual attention to attributes: Figure 1c illustrates 
a non-match, where the place names are a perfect match and 
the footprints of the two entities are in close proximity and over-
lap. While these attributes may obfuscate the ER task, the key 
to its non-match lies in a single attribute: the place type. This 
underscores the necessity of individually attending to pairs of 
textual attributes when comparing entities from different data-
bases. Current methods only consider summary representations 
of pairs of entities that fall short of understanding the structured 
nature and semantics of attribute value pairs in ER datasets 
(Paganelli et al. 2023).

To this end, we propose Omni, a model uniquely capable of ad-
dressing these challenges. Omni consists of three modules: a 
language module, a geographic distance module, and the Omni-
GeoEncoder—the geospatial footprint encoder. We enable our 
model to learn from all available textual attributes of the places 
using the language module. Concurrently, we make the model 

FIGURE 1    |    Illustration of the challenges of geospatial ER. (a) and (b) show examples of matches while (c) shows a non-match. The type of the 
place is indicated within parentheses. Zoom in for best view.
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aware of geometric or topological relations between the foot-
prints of the two places using our Omni-GeoEncoder module. 
To the best of our knowledge, this is the only encoder capable 
of uniformly embedding diverse geometry types. Finally, using 
our geo-distance module, we embed several pertinent distances 
to enhance the model's understanding of the spatial relations be-
tween the two places.

Recent LLMs such as GPT4 (Achiam et al. 2023), Llama (Touvron 
et al. 2023), and PaLM (Chowdhery et al. 2023) have established 
state-of-the-art performances in a variety of downstream tasks 
(Peeters et al. 2023; Wang et al. 2023; Wang, Yang, et al. 2024; 
Zhu et al.  2024). Although recent applications of LLMs in ge-
neric ER have seen them surpass pre-trained language model 
(PLM)-based approaches (Fan et  al.  2024; Kasinikos and 
Papadakis  2024; Li et  al.  2024; Narayan et  al.  2022; Peeters 
et al. 2023; Wang, Chen, et al. 2024), LLMs have not yet been 
utilized in geospatial ER. We adapt LLMs for this task, exploring 
their spatial understanding and ability to match spatial entities, 
testing on numerous prompts and learning techniques. We com-
pare and contrast their performance with existing PLM-based 
methods and our novel Omni model.

The key contributions of this paper are summarized as follows:

1.	 We propose Omni, an open source architecture providing a 
unified framework leveraging spatial and textual informa-
tion from source databases for geospatial ER.

2.	 We develop the Omni-GeoEncoder, capable of encoding 
heterogeneous geometry types into a uniform embedding 
space, allowing neural models to comprehend spatial and 
topological relations of geospatial footprints. We demon-
strate the effectiveness of this module in ER and geospatial 
relation mining.

3.	 NZER: The first publicly available dataset for the task of 
geospatial ER with diverse-geometry types from real-world 
databases.

4.	 We leverage LLMs for the task of geospatial ER. We explore 
their capabilities in zero-shot, few-shot, and fine-tuned 
settings.

5.	 Extensive experiments comparing (and demonstrating the 
benefit of) Omni and the LLM-based approach with exist-
ing methods on point-only and diverse-geometry datasets.

The remainder of the paper is organized as follows: We first 
introduce the technical background of ER within the broader 
context of database integration, followed by an overview of lan-
guage models relevant to our setting. We then review related 
work on geospatial ER, representation learning for geospatial 
data, and the use of LLMs in ER. Section 4 presents the Omni 
framework and our methodology for applying LLMs to this task. 
We then report the experimental setup, analysis, and results in 
Section 5, before concluding the paper.

2   |   Background

This section provides the foundational concepts underlying 
our work. We first outline the principles of ER and formalize 

the problem in the context of database integration, with a 
focus on the unique challenges posed by geospatial records. 
We then summarize key developments in language models, 
including both pre-trained language models (PLMs) and large 
language models (LLMs), and describe how these models are 
typically used in downstream tasks such as ER.

2.1   |   Entity Resolution

Entity resolution, also known as entity matching, is a cru-
cial task in database integration (Köpcke et  al.  2010; Li 
et  al.  2020; Wang et  al.  2012). Given two source databases, 
D1 =

{

e1
1
, e1
2
, e1
3
, … , e1m

}

 and D2 =
{

e2
1
, e2
2
, e2
3
, … , e2n

}

, where ei 
is a single record in the database, the goal of ER is to identify 
pairs of entities from both source databases that refer to the 
same real-world entity. In generic ER, ei =

{

t1, t2, t3, … , tk
}

, 
where tk is a textual attribute. Although generic database re-
cords are not limited to textual attributes, geospatial database 
or gazetteer records are unique due to each record being char-
acterized by a geospatial footprint, gi, in addition to textual 
attributes.

Traditionally, string similarity measures have been widely 
used to capture textual attribute similarity (Köpcke 
et  al.  2010; Sehgal et  al.  2006; Smart et  al.  2010; Wang 
et al. 2012). Methods relying on PLMs pass pairs of serialized 
entities 

(

Ser
(

ei
)

, Ser
(

ej
))

 to the PLM and treat ER as a binary 
classification task (Balsebre et  al.  2022, 2023; Brunner and 
Stockinger 2020; Li et al. 2020; Paganelli et al. 2023; Peeters 
and Bizer  2021; Zeakis et  al.  2023), often using the [CLS] 
token as the representation of the pair of entities. ER meth-
ods using LLMs are based on a prompt consisting of a task 
description defining the ER task, together with a pair of seri-
alized entities (Fan et al. 2024; Kasinikos and Papadakis 2024; 
Li et al. 2024; Narayan et al. 2022; Peeters et al. 2023; Wang, 
Chen, et al. 2024).

All geospatial ER methods rely on some distance measure to 
assess the level of match in the geospatial footprint. As all ex-
isting neural geospatial ER methods only use point locations, 
they are limited to using a distance measure to capture spatial 
similarity (Balsebre et al. 2022, 2023; Zhou et al. 2021).

2.2   |   Language Models

Language models (LMs) are foundational tools in natural lan-
guage processing (NLP), designed to understand, generate, and 
manipulate human language. Among the most impactful ad-
vancements in NLP are pre-trained language models and large 
language models which have set new benchmarks by harness-
ing massive datasets and sophisticated architectures. PLMs 
focus on leveraging pre-training with fine-tuning for specific 
tasks, while LLMs extend this approach by scaling up model 
size and data, achieving remarkable generalization across di-
verse language tasks. At the core of most modern LMs lies the 
transformer architecture (Vaswani  2017), a paradigm-shifting 
innovation in deep learning. Transformers eschew traditional 
recurrence mechanisms in favor of a self-attention mechanism, 
enabling efficient processing of text sequences while capturing 
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long-range dependencies. Equation  (1) expresses the attention 
mechanism.

where Q, K, and V  are the query, key, and value vectors de-
rived from the input and dk is the dimension of the key vec-
tors. This mechanism calculates a weighted sum of the value 
vectors, where the weights are determined by the similarity 
between the query and the key vectors. The resulting attention 
scores, normalized via the softmax function, allow the model 
to selectively focus on the relevant parts of the input sequence 
(Vaswani 2017).

The most significant difference between PLMs like BERT, 
RoBERTa (Liu et al. 2019), BART (Lewis 2019), and LLMs like 
GPT4, Llama, and PaLM is the scale of the models and the 
amount of training data. While both frameworks leverage un-
supervised pre-training to learn generalizable features, LLMs 
are characterized by their scale and flexibility, making them 
suitable for emergent capabilities like instruction-following 
and creative generation. On the other hand, PLMs are opti-
mized for task-specific fine-tuning with relatively smaller pa-
rameter sizes.

For many downstream tasks, including ER, PLMs are used to 
obtain contextual embeddings of text sequences. These models 
are often fine-tuned on annotated training datasets to allow 
the embeddings to capture the context. Conversely, decoder-
only LLMs often use their text generation ability in down-
stream tasks. There are several approaches to utilizing LLMs 
effectively in downstream tasks:

1.	 Zero-shot prompting: A task description is provided along 
with the instance on which the model needs to make a 
prediction. With no access to training data, the model 
makes a prediction solely relying on the knowledge ac-
quired during its pre-training and the provided prompt 
itself. This method does not require gradient-based fine-
tuning or updates to the model's parameters.

2.	 Few-shot prompting: The model is provided with a few 
task-specific examples within the prompt. In an ER set-
ting, the prompt could include examples of serialized 
entities along with their corresponding labels. No model 
weight updates are required.

3.	 Fine-tuning: A labeled dataset is used to update the 
model's weights through backpropagation, tailoring the 
model to a specific downstream task. Fine-tuning can be 
performed in multiple ways:
•	 Full fine-tuning: All parameters of the original model 

are updated.
•	 Parameter-efficient fine-tuning methods: Techniques 

like Low-Rank Adaptation (LoRA) introduce a small 
number of task-specific parameters while keeping most 
of the pre-trained model's parameters frozen. This 
approach is particularly advantageous in resource-
constrained settings.

3   |   Related Work

3.1   |   Geospatial Entity Resolution

In addition to being studied as an information retrieval task, 
entity resolution also appears in the gazetteer conflation 
literature, where it is treated as a preliminary step in merg-
ing or integrating two or more gazetteers (Hastings  2008; 
Manguinhas et  al.  2008; Smart et  al.  2010; Wijegunarathna 
et al. 2025). In the early rule-based approach to geospatial ER 
(Hastings  2008; McKenzie et  al.  2013), heuristics were used 
to filter places or place pairs until no duplicates remained. 
Later solutions involved machine learning, where textual 
similarities and geographical distances were converted into 
features for algorithms like Support Vector Machines (SVM) 
(Martins  2011; Sehgal et  al.  2006; Zhou et  al.  2021), logistic 
regression (Sehgal et al. 2006; Zhou et al. 2021), decision trees 
(Martins 2011; Zheng et al. 2010; Zhou et al. 2021), and ran-
dom forests (Acheson et  al.  2020). Graph-based approaches 
have also been popular, especially with POI conflation, and 
are often used in combination with spatial and linguistic sim-
ilarity measures. Kim et al. (2017) build a labeled graph using 
information extracted from place descriptions and introduce 
a graph matching algorithm, essentially combining string 
matching with graph traversal. However, their matching is 
based on linguistic attributes such as the name and address 
of the place but does not take spatial attributes and similar-
ity into account. Novack et al. (2018) leverage spatial similar-
ity using bipartite graphs, representing POIs as nodes from 
two datasets and their edges representing possible matches 
with weights based on multi-criteria similarity, including 
Euclidean distance and WordNet (Meng et al. 2013) based se-
mantic similarity.

Earliest use of deep learning can be seen in Santos et al. (2018), 
using Recurrent Neural Networks (RNN) for alternate place 
name classification. Subsequent work applies embedding tech-
niques like FastText (Bojanowski et  al.  2017) and Word2Vec 
(Mikolov et al. 2013) with Gated Recurrent Unit (GRU) models 
and Multilayer Perceptrons (MLPs) (Cousseau and Barbosa 2021; 
Yang, Hoang, et  al.  2019) to capture toponym, category, and 
geographical similarities to identify duplicates. SkyEx (Isaj 
et  al.  2019) and methods introduced by Deng et  al.  (2019) are 
notable exceptions to machine learning-based methods. While 
Deng et al. (2019) use improved Dempster-Shafer evidence the-
ory, Isaj et al. (2019) use Pareto optimality to separate matching 
pairs from non-matching pairs of places from multiple sources. 
SkyEx shows superior performance to geographical distance and 
string similarity-based traditional methods (Berjawi et al. 2014; 
Morana et al. 2014).

Akin to generic ER (Brunner and Stockinger 2020; Li et al. 2020; 
Peeters and Bizer 2021; Zeakis et al. 2023), PLMs such as BERT 
(Devlin et al. 2018) have produced excellent results in geospa-
tial ER. Although not specifically designed for ER, GTMiner 
(Balsebre et  al.  2023), a graph-based geospatial relation pre-
diction model, predicts same_as relations using a geo-textual 
interaction mechanism that combines geographic distance 
(Haversine distance) with BERT embeddings. GeoER (Balsebre 
et al. 2022) similarly uses Haversine distance but only uses the 

(1)Attention(Q,K ,V ) =

�

QKT
√

dk

�

V ,
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[CLS] token from a BERT model, while also incorporating con-
text from neighboring places through a neighborhood attention 
mechanism. GeoER produces excellent results, outperforming 
SkyEx and several other state-of-the-art ER methods adopted 
for the geospatial domain. He et al. (2024) present a similar ap-
proach for conflating spatial data in place knowledge graphs 
using the [CLS] representation of a serialized place entity em-
bedded using a PLM. Although using the [CLS] token's repre-
sentation is standard practice in classification tasks including 
ER (Balsebre et  al.  2022; Brunner and Stockinger  2020; Li 
et al. 2020; Zeakis et al. 2023), recent research suggests that it 
does not fully capture the semantic similarities (or differences) 
in comparable attribute pairs. Furthermore, BERT and its vari-
ants struggle to fully grasp the structured nature of ER datasets 
(Paganelli et al. 2023).

3.2   |   Representation Learning for Geospatial Data

Point encoders can be categorized into two types: encoders 
that represent a single point (or location) using only the loca-
tion of the point, and encoders that incorporate the neighbor-
ing information of the point when encoding a single location 
(Mai et al. 2022). The first approach includes methods such as 
discretized grids with one-hot encoding (Tang et al. 2015), nor-
malized latitude and longitude with MLPs (Chu et al. 2019; Xu 
et al. 2018), and encoding geographic coordinates using deter-
ministic functions such as sinusoidal functions (Mac Aodha 
et al. 2019). Methods that aggregate the neighbor information 
often model the neighborhood as a point cloud. Kernel-based 
encoders (Mai et al. 2020; Yin et al. 2019), graph convolutional 
networks (Valsesia et al.  2018), CNN-based encoder-decoder 
architectures Li et  al.  (2018) and MLPs (Qi et  al.  2017) are 
some of the many methods that have been experimented with 
for this approach. We refer to Mai et al. (2022) for a detailed 
review.

Apart from point encoders, attempts have also been made to 
encode and embed polygons and polylines. Polyline embed-
dings obtained using LSTMs have been used for the problem of 
trajectory prediction (Xu et al. 2018; Zhang et al. 2019). CNN-
based architectures have been used to embed polygons (Mai, 
Jiang, et  al.  2023; Veer et  al.  2018). Additionally, Mai, Jiang, 
et al. (2023) propose a conversion of polygonal geometries into a 
spectral domain using a non-uniform Fourier transform, which 
is then embedded using an MLP. Yan et  al.  (2021) take a dif-
ferent approach employing a graph convolutional autoencoder's 
bottleneck layer representation as the latent space embedding of 
the polygon. To the best of our knowledge, no existing method 
attempts to encode and embed different types of geometry in a 
single encoder.

3.3   |   Entity Resolution With LLMs

Narayan et  al.  (2022) first employed LLMs for ER, testing 
OpenAI's GPT-3 model, experimenting with various prompt 
designs for both in-context learning and zero-shot learning. 
Their findings demonstrated that GPT-3 achieved results com-
parable to those of PLM-based methods. Similarly, Wang, Chen, 
et al. (2024) introduce novel prompting strategies that diverged 

from the traditional pairwise matching approach commonly 
used in ER. They explore “comparison” and “selection” prompt-
ing strategies along with the traditional “matching” technique.

Peeters et al.  (2023) further investigated the impact of prompt 
variations on performance across multiple LLMs. Their results 
underscored that fine-tuning LLMs could lead to substantial im-
provements in ER performance. Additionally, LLMs have been 
leveraged to enhance traditional and PLM-based ER approaches, 
as demonstrated by Li et al. (2024). In parallel, other studies have 
focused on the use of smaller models and cost-effective prompt-
ing strategies for ER to address the computational cost associ-
ated with LLM-based approaches (Fan et  al.  2024; Kasinikos 
and Papadakis  2024). No research appears to have been con-
ducted on utilizing LLMs for geospatial ER.

4   |   Methodology

4.1   |   Omni: Methods and System

In this section, we introduce Omni, our framework for per-
forming entity matching. Omni performs matching on a set of 
entity pairs, C =

{(

ei, ej
)

| ei ∈ D1, e2 ∈ D2

}

 where D1 and D2 are 
the databases being merged and e is an individual place from 
the database. Omni consists of three modules that capture and 
compare different attributes of place pairs: (1) A pre-trained 
language module enhanced with Attribute Affinity generation, 
(2) Geographic distance embedding module, and (3) Omni-
GeoEncoder. The model overview is shown in Figure 2.

4.1.1   |   Language Module With Attribute Affinity

Each place record in a geospatial database, ei, has a set of 
textual attributes such as the name, place type, address, and 
postal code. Though comparison of toponyms with a string 
similarity metric in the case of mono-lingual databases can 
be highly effective, it fails to capture changes of names (out-
dated names in one or more sources) and vernacular or un-
official names. It can also be inadequate when toponyms are 
multilingual. Other possible textual attributes like place type 
may have very little string similarity across sources (due to 
the use of different typing schemes) but often exhibit semantic 
relationships.

PLMs can be used to obtain highly contextualized seman-
tic embeddings, making them especially useful in NLP tasks. 
Following previous ER approaches (Balsebre et al. 2022, 2023; 
Li et al. 2020), we serialize the textual attributes pertaining to a 
single entity from our sources in the following format:

Subsequently, the serialized textual attributes of the pairs of 
places are combined.

Attribute affinity generation: While earlier PLM based ER ap-
proaches use the final embeddings of the [CLS] token from the 

(2)Ser
(

ei
)

= [COL]attr1i [VAL]val
1
i … [COL]attrHi [VAL]val

H
i .

(3)Text_ input
(

ei, ej
)

= [CLS]Ser
(

ei
)

[SEP]Ser
(

ej
)

[SEP].
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language model (lm), �lm(CLS), to represent the similarities 
between entities, recent research indicates that this method 
is inadequate to capture finer grained semantic differences in 
comparable textual attributes (Paganelli et al. 2023). The study 
also suggests that PLMs like BERT, pre-trained primarily on 
masked language modeling and next sentence prediction, do 
not fully comprehend the structure of ER datasets. To grasp 
the semantic similarities between corresponding attributes, 
we design an Attribute Affinity mechanism. We propose two 
variations:

(1) Default: A concatenation of the embeddings of the counterpart 
attributes with their Hadamard product [optimal operations were 
empirically determined, similar to Reimers  (2019)]. We use the 
[VAL] token to represent the value for each attribute. The affinity of 
a single attribute between two entities is shown in Equation (4). Note 
that ⊕ indicates a tensor concatenation.

(2) Pooled cosine similarity: For a more concise representation of 
affinity, we pool the token embeddings associated with each at-
tribute and calculate the cosine similarity with the correspond-
ing representation from the other entity. Equation  (5) shows 
affinity between two entities for a single attribute, attrh.

where mattrh

i
 and mattrh

j
 are the pooled representations of the 

tokens for attrh for entities i and j, respectively. With this 

(4)
Affinityattr

h

i,j =

[

�lm

(

VALhi
)

⊕�lm

(

VALhj

)]

⊕

[

�lm

(

VALhi
)

⋅�lm

(

VALhj

)]

.

(5)Affinityattr
h

i,j =

(

mattrh

i

)⊤

mattrh

j

∥mattrh

i
∥ ∥mattrh

j
∥
,

FIGURE 2    |    Illustration of the proposed Omni architecture. Both Attribute Affinity generation strategies are shown in (a), (b) and (c) show the 
distance embedding module and the GeoEncoder.

FIGURE 3    |    Omni-Kdelta encoding. Edge columns with solid fill indicate padding and red dotted line shows a 3 × 1 kernel. (a) Vertex KDelta 
neighbors are cyclic. Circular padding is used on the complete KDelta encoding. (b) At edge vertices, KDelta neighbors are acyclic. Zero padding is 
used on the complete KDelta encoding.
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variation, Affinityattrh
i,j

∈ [ − 1, 1] yields a single scalar value per 
attribute.

Finally, Equation  (6) shows the final output of the language 
module. Note that the 

∑

⊕ is used to represent a series of con-
catenation operations.

4.1.2   |   Distance Embedding Module

Capturing geographic distance is a vital aspect of any geospatial 
ER framework. The choice of distance (or similarity) measure 
for geospatial ER is a widely discussed research topic. While a 
simple point-to-point distance is adequate for point-only data-
sets, the ideal choice for diverse geometries is more nuanced. 
Distance measures like centroid-to-centroid distance, minimum 
distance, maximum distance, Fréchet distance, and Hausdorff 
distance have been proposed in various ER and non-ER geome-
try comparing tasks (Ghosh et al. 2018; Lei and Lei 2022; Xavier 
et al. 2016).

Omni processes diverse geometries in a uniform manner, and as 
a neural framework, this requires handling heterogeneous ge-
ometries in a single mini-batch. Fréchet distance, for example, is 
defined on ordered sets of points and is particularly effective for 
comparing polylines in trajectory analysis. However, in our set-
ting, the direction of traversal is not explicit in geometries across 
sources, and enforcing direction invariance is computationally 
expensive (Lei and Lei  2022). Moreover, the Fréchet distance 
cannot be directly applied to point–polygon or point–line com-
parisons, and for point–point comparisons, it reduces to simple 
Euclidean distance. While a highly engineered Fréchet distance 
is applicable in principle, this is not a practical solution within 
a neural framework that must process diverse geometries in the 
same mini-batch.

Methods like (Balsebre et al. 2022, 2023) use Haversine distance 
between point locations. We adapt this Haversine distance 
embedding as a centroid-to-centroid distance. The centroid-
to-centroid distance is a widely used distance measure when 
comparing complex geometries in ER tasks (Hastings  2008; 
Martins  2011) and offers a simple yet generalizable distance 
measure across diverse geometries. This measure is particularly 
effective because many sources store the centroid of a complex 
polygon as the feature's point representation; consequently, 
centroid-based comparison provides a strong alignment signal 
when matching a complex geometry with its corresponding point 
representation or with a simplified point representation from a 
different source. Another viable and generalizable candidate 
distance measure is the Hausdorff distance. We conducted pre-
liminary experiments to compare the performance of Hausdorff 
distance vs. centroid-to-centroid distance and found that the lat-
ter yields better performance in practice (see Section 5.6).

However, with complex geometries, centroid-to-centroid dis-
tance alone is not an adequate representation of the geospatial 
distance. Therefore, we supplement the distance module with a 
minimum distance measure (Acheson et al. 2020; Hastings 2008; 

Martins 2011). This minimum distance module uses the geome-
try normalization used in the Omni-GeoEncoder (Section 4.1.3). 
The minimum distance di,j between the two geometries is scaled 
using the maximum normalized distance, max_norm_dist and 
embedded using a linear layer with two learnable parameters, 
�min_dist and �min_dist.

The centroid-to-centroid Haversine distance embedding and the 
minimum distance embedding are concatenated to obtain the 
final distance embedding.

4.1.3   |   Omni-GeoEncoder

As discussed previously, a deep learning entity resolution 
model can benefit immensely by learning representations 
of complex geometries and their geometrical relationships. 
Representing places with complex geometries as points al-
ways results in a loss of information. Hence, we propose a 
novel geometry encoder: Omni-GeoEncoder that is capable 
of encoding complex geometries of varying types and also 
creating embeddings of the geometries that capture geomet-
rical relations between them. We leverage CNNs adapting a 
ResNet architecture (He et al. 2016), inspired by Mai, Jiang, 
et al. (2023).

Firstly, given a pair of geometries (gi, gj), belonging to the two 
entities ei and ej, if any of the geometries is a point, we trans-
form the point geometry to a simple circular disk with a nom-
inal radius of 1 m and P vertices. Indeed, no physical place 
on Earth can be accurately represented as a zero-dimensional 
point. We test this approach with several exclusively point 
datasets (Section 5.4). Henceforth, this entity's point geometry 
is replaced by the circular disk geometry. Polygons with holes 
are simplified by removing the holes. For encoding purposes, 
all geometries need to be represented with a fixed number of 
vertices, P. Using a larger P value will result in a more detailed 
geometry (see Section 5.6 for the empirical determination of 
the ideal P value). If the number of vertices of geometry ∣ g ∣ 
is greater than P, we use a modified Douglas-Peucker algo-
rithm (Douglas and Peucker 1973) to decimate the geometry 
(polygon, multi-polygon, line or polyline) into a geometry of 
fixed number of P vertices. Instead of recursively removing 
all vertices that lie beyond a distance of �, we order the verti-
ces according to importance and retrieve the top P most im-
portant vertices, taking care to preserve first and last vertices 
in all cases. In the case of multi-polygons and polylines, the 
number of vertices allocated to each polygon or line segment 
is calculated proportional to the area or length respectively. 
Conversely, if the number of vertices in the original geometry 
is less than P, we do an equidistant interpolation to increase 
the number of vertices to P.

Subsequently, we carry out a projection of the geometries 
from their original datum to a planar projection. This projec-
tion enables easier distance calculation between vertices and 

(6)�lang

(

ei, ej
)

= �lm(CLS)⊕

(

H
∑

h= 1

⊕ Affinityattr
h

i,j

)

.

(7)

�min_dist

(

di,j
)

= 𝛼⊤

min_dist

(

di,j

max_norm_dist
− 1

)

+ 𝛽min_dist.
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normalization required for our subsequent steps. Next, the two 
geometries are normalized to a [−1, 1] × [−1, 1] 2D unit space 
using a common minimum bounding box. This resulting pair 
of geometries is then encoded using our Omni-Kdelta encoding, 
padded, and subsequently passed on to the ResNet1D encoder to 
obtain the embeddings of the geometries.

Omni-KDelta encoder: KDelta encoding is a preliminary encod-
ing that is used to add the neighborhood structure information 
of each vertex to the encoding of each vertex, reducing the need 
for very deep encoders (Mai, Jiang, et  al.  2023). We adapt the 
KDelta encoder, enabling it to encode both polygonal and linear 
geometries. This encoding treats a series of vertices (be it lines 
or polygons) as a 1D coordinate sequence. A geometry g is rep-
resented as:

KDelta encoding for the mth vertex, 
(

xm, ym
)

, can be shown as 
follows:

To identify neighboring polygons in edge cases, that is, when 
m − k < 0 or m − k ≧ P, Omni-KDelta encoding uses a circular 
padding for polygons. Conversely, lines use zero padding as per 
Equation (9). This reflects the difference of the cyclic nature of a 
series of polygonal vertices and the acyclic nature of a line series.

Thus, we obtain the final Omni-KDelta encoding for the 
whole geometry, ℂ = [c⊤

1
, c⊤
2
, … , c⊤m, … , c⊤

P
] by stacking the 

point encodings. Additionally, we use custom padding accord-
ing to the type of geometry. We pad linear geometries with 
zero padding and polygon geometries with circular padding 
(Figure 3). Note that this is different from the neighbor pad-
ding for each vertex described above. This padding reinforces 
the type of geometry and respects the clear difference between 
the two types of geometries.

Finally, the encoded geometry ℂ is input to the ResNet1D encoder. 
We use a standard ResNet1D architecture to obtain the embed-
dings. Since we have applied a custom geometry-specific padding 
for our geometries, we omit any padding from the first convolu-
tional layer. ℂ is passed to the first 1D-CNN with stride of 1 and no 
padding with l 3 × 1 kernels. After a subsequent 1D batch normal-
ization layer and ReLU activation, we carry out a 1D max pooling 
operation with a kernel of size 2, stride of 2 and zero padding. The 
output is then passed to a series of R standard ResNet1D layers 
with zero padding. The results from the ResNet1D layers are then 
passed through a global max pooling layer and a dropout layer to 
produce the embeddings of geometry, �Rsnt

(

gi
)

. The embeddings 

for gj are similarly obtained and the two embeddings �Rsnt
(

gi
)

 and 
�Rsnt

(

gj
)

 are concatenated and passed on to a fully connected neu-
ral network with ReLU activation and a dropout layer to learn spa-
tial and topological relations between the geometries.

In conclusion, using the language module, we have captured 
the relations between the textual attributes, �lang

(

ei, ej
)

, not 
only by the summary representation of the serialized textual 
attributes, �lm(CLS), but also by training the model to focus 
on pairs of attributes that should be compared for matching 
through attribute affinity generation, Affinityattr

i,j
. With our dis-

tance embedding model, we have focused on two distances: 
capturing minimum distance, �min_dist, and centroid-to-centroid 
Haversine distance, �centroid. We leverage the Omni-GeoEncoder 
to embed the two geometries (�Rsnt

(

gi
)

, �Rsnt
(

gj
)

) and learn a 
combined representation, learning the spatial and topological 
relations between the geometries �geom

(

gi, gj
)

. Finally, we carry 
out a concatenation of these representations and pass it to an 
MLP for prediction.

4.2   |   LLMs for Geospatial ER

In this section, we detail the methods used to leverage large lan-
guage models for geospatial ER: the learning strategies and the 
prompt variations used.

4.2.1   |   Scenario 1: Zero-Shot Prompting

In contrast to PLMs, LLMs have demonstrated remarkable zero-
shot capabilities (Kojima et al. 2022). In the zero-shot prompt-
ing scenario, we evaluate the performance of the LLM without 
using any training data. Various prompt variations are tested by 
adopting existing prompts from generic ER tasks and designing 
more domain-specific prompts tailored to the geospatial nature 
of the task. At its core, each prompt includes a task description 
and a serialized input of the two places to be matched. Following 
a building-block approach, we combine different task descrip-
tions with various entity serialization formats. All task descrip-
tions specify the format of the answer: either “Yes” or “No” in 
the entity resolution setting or one of the four predefined labels 
in the multi-class relation classification problem in GTMiner 
dataset (GTMD) (see Section 5.2).

Figure 4 details the task descriptions and the serialization for-
mats used for each prompt. Examples for all prompt designs can 
be found in the project repository.1

Zero-shot prompts tested are listed below:

1.	 simple: This prompt is adapted from the domain-complex-
force prompt for generic ER (Peeters et al. 2023). Diverging 
from their original prompt, the two entities to be matched 
are explicitly defined as “places” and “place descriptions.” 
For ER, this prompt combines the task description in 

[

x1, y1, x2, y2, … , xm−1, ym−1, xm, ym, xm+1, ym+1, … , xP−1, yP−1, xP , yP
]

.

(8)
cm= [xm, ym, xm−xm−k , ym−ym−k , … , xm−xm−1,

ym−ym−1, xm−xm+1, ym−ym+1, … , xm−xm+k , ym−ym+k].

(9)m

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

<k;∀l when k−m− l<0, xl← xm; yl← ym;

∴xm−xl=0; ym−yl=0

k<m≦p−k; follow Equation (8)

≧p−k;∀l when l<P−m, xl← xm; yl← ym;

∴xm−xl=0; ym−yl=0

(10)

Prediction
(

match | ei, ej
)

= softmax(MLP([�lang
(

ei, ej
)

⊕�min_dist

(

dgi ,gj

)

⊕�centroid

(

dgi ,gj

)

⊕�geom

(

gi, gj
)

])).
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Figure  4a (and entity serialization Figure  4e). For multi-
class relation prediction, it combines Figure 4b,e.

2.	 attribute-value (a-v): Variation of simple where the place de-
scriptions' serialization includes the attribute type and the 
value as opposed to only values, providing more context to the 
model. For ER, this strategy combines Figure 4a,f. Multi-class 
relation prediction uses Figure 4d combined with Figure 4f.

3.	 plm-serialization (plm-ser): The place descriptions are se-
rialized in the same format as the input to the PLMs in 
the PLM-based solutions (Balsebre et  al.  2022, 2023; Li 
et al. 2020) as described in Section 4.1.1. This strategy com-
bines Figure  4a,g for ER and Figure  4d,g for multi-class 
relation prediction.

4.	 attribute-value-distance (a-v-d): The attribute-value prompt 
is enhanced with the distance between the two places 
explicitly included in the prompt. For ER, this prompt 
combines Figure  4c,h. For multi-class relations, the task 
description in Figure  4d is altered by changing the first 
sentence to “Two place descriptions and the geographic 
distance between them are provided.” This new task de-
scription is combined with the serialization shown in 
Figure 4h.

4.2.2   |   Scenario 2: Few-Shot Learning

We use task-specific training examples in the prompt to test 
the model's in-context learning ability (Dong et  al.  2024). 
We use attribute-value and attribute-value-distance prompts 

during our few-shot learning experiments. In the few-shot 
setting, the task description is followed by several demonstra-
tions sampled from the training split and their ground truth 
labels before the serialized place descriptions of the place 
pairs for which the model should make a prediction for. The 
serialization of the entities in the demonstrations is kept con-
sistent with the test prompt. We use two sampling strategies 
for selecting train samples:

1.	 Random: Demonstrations are randomly sampled from the 
training datasets, with four examples utilized in our exper-
iments. This yields two experiments random-attribute-value 
(rand-a-v) and random-attribute-value-distance (rand-a-v-d).

2.	 Class-balanced: A fixed number of demonstrations are ran-
domly sampled from each class to ensure that the model is 
exposed to examples from every class. Two demonstrations 
from each class were used in the experiments. This too yields 
two experiments class-balanced-attribute-value (cbal-a-v) 
and class-balanced-attribute-value-distance (cbal-a-v-d).

4.2.3   |   Scenario 3: Fine-Tuning

In this scenario, the train and validation splits of each dataset are 
used to fine-tune the LLM locally using Low-Rank Adaptation 
for Quantized Models (QLoRA) (Dettmers et al. 2024). First, 4-
bit quantization is applied to the base model, reducing the mem-
ory footprint. This step converts high-precision floating-point 
values into low-precision “4-bit NormalFloats.” Subsequently, 
low-ranked adapter matrices focused on specific modules are 

FIGURE 4    |    Prompt building blocks: Task descriptions on the left and entity serializations on the right.
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introduced. Instead of training the complete model, these low-
rank matrices can be learned, significantly reducing the number 
of trainable parameters and VRAM requirements. The models 
were fine-tuned on three of the prompts used for zero-shot learn-
ing: simple, attribute-value, and attribute-value-distance. Upon 
fine-tuning a model with prompt using the respective dataset's 
training split, the model is set to generate (or evaluation) mode 
to make predictions on the relevant test split.

5   |   Experiments and Analysis

This section presents our experimental findings in light of the 
following research questions:

•	 RQ1: How does Omni generalize to sources containing only 
point locations, and how does it compare with existing PLM-
based methods and the novel LLM approaches? (Section 5.4)

•	 RQ2: How do Omni and the LLM based methods perform 
on diverse-geometry datasets? (Section 5.5)

•	 RQ3: How effective are the novelties of the Omni model 
and how do they contribute to the final output of the Omni 
model? (Section 5.6)

•	 RQ4: How do the models rank in terms of parameter effi-
ciency and inference time? (Section 5.7)

In order to assess the performance of Omni and the LLMs on 
geospatial ER, we implement a comprehensive set of experi-
ments on 4 datasets originating from 6 different real-world data-
bases covering 12 different cities and regions.

5.1   |   Implementation Details

Omni is implemented using PyTorch on a single A40 GPU. We 
employ an Adam optimizer and a linear scheduler with a warm 
up of 100 steps and a learning rate of 0.0003. We trained all 
models for 15 epochs. As our language model for Omni, lm, we 
used the Bert-base-uncased model from HuggingFace.2 We only 
used at most two attributes for Attribute Affinity generation: 
toponym and place type, place type and address or toponym 
and address. For Omni-KDelta encoding, P is set to 300 and 
the number of neighbors for each vertex on a single side, k, is 
set to 6. Number of kernels, l set to 512. R, number of standard 
ResNet1D layers is set to 6 with a dropout rate of 0.3. Unless 
specified otherwise, we use this configuration for our model.

For generative LLM based experiments, we chose a 4-bit quantized 
Llama-3-8B-Instruct model by Meta.3 The model was selected 
based on its superior performance compared to similar sized mod-
els, open availability, and hardware limitations. We used Quantized 
Low-rank Adapters to fine-tune the model on a single A40 GPU.

5.2   |   Datasets

SwissGeoNames dataset (SGN) (Acheson et  al.  2017, 2020): 
Dataset resolves 400 SwissNAMES3D (S3D)4 and 400 GeoNames 
(GN)5 places from Switzerland. The dataset only publishes the 

IDs of 400 positive matches. Unfortunately, due to the S3D's 
UUID updates, we were only able to retrieve 287 of the 400 
positive pairs. Ninety-three of the retrieved S3D places were en-
hanced with their corresponding complex geometries from S3D.

GeoER dataset (GeoD) (Balsebre et al. 2022): Dataset covers four 
cities (Singapore, Edinburgh, Toronto, and Pittsburgh) from 
three different sources: Open Street Map (OSM),6 FourSquare 
(FSQ),7 and Yelp.8 Eight different sub-datasets are presented 
with two datasets for each city matching OSM-FSQ and OSM-
Yelp. Although this dataset is a POI dataset, we were able to 
find complex geometries for some places in the datasets in their 
original sources on manual inspection. Unfortunately, we were 
unable to enhance any of these places with complex geometries, 
as the dataset does not offer original OSM identifiers. Therefore, 
GeoD will serve as a point-only dataset. This dataset will help 
assess Omni's ability to generalize to point-only datasets when 
complex geometries are not available.

GTMiner dataset (GTMD) (Balsebre et  al.  2023): Created for 
geospatial relation mining, the dataset covers four cities from 
OSM and Yelp and annotates three relations: part_of, same_as, 
and serves. This dataset too is originally a point-only dataset, 
but it publishes the source identifiers from both OSM and Yelp. 
However, we were unable to rely solely on the IDs, as OSM not 
only updates but also re-uses its IDs. This posed a challenge 
in verifying whether the features in OSM at the time of pre-
processing were consistent with the features in the original 
dataset. Consequently, we only used complex geometries of fea-
tures that we could programmatically confirm as corresponding 
to the original records. Alongside the ID matches, we enforced 
other constraints: perfect matches on the name, place type, and 
geospatial locations. Using these stringent filtering techniques, 
we retrieved 0, 19, 466, and 101 complex geometries from OSM 
for Singapore, Toronto, Seattle, and Melbourne sub-datasets, 
respectively.

New Zealand Entity Resolution dataset (NZER)9: This is a 
dataset we manually annotated covering five regions across 
New Zealand. New Zealand, a bilingual country with two of-
ficial languages (English and Te Reo Māori), offers a complex 
problem in string matching for place names as places across 
sources can have English names, Te Reo Māori names or con-
catenations of English and Te Reo Māori names. This should 
require ER methods to shift the focus from place names (which 
often provide the strongest signal for a match) to other attri-
butes like footprint similarity or feature type similarity. We 
chose five different regions to capture the nuances of popula-
tion densities, proximity to large cities, percentages of English 
and Māori speakers, and the differences in ratios of natu-
ral and man-made features. The five regions selected were: 
Auckland, Hope Blue river range, Norsewood, Northland, and 
Palmerston North. We used three different sources: OSM, GN 
and the New Zealand Geographic Board's gazetteer (NZGB) 
from Land Information New Zealand (LINZ).10 For both OSM 
and LINZ, we utilized not only the point shapefiles tradition-
ally used in prior work, but also the polygon, line, and dedi-
cated road shapefiles. We then overlaid all features from the 
shapefiles from the regions and employed four graduate GIS 
students to manually annotate the matches. Initial sandbox 
annotation revealed a Cohen's Kappa of 0.95 indicating a high 
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inter-annotator agreement. We maintained a 30:1 ratio of 
negatives to positives which is suggested in the literature to 
reflect the real world situation (Acheson et  al.  2020; Sehgal 
et  al.  2006). NZER is the first manually annotated, publicly 
available dataset that allows complex geometries. Further de-
tails on the datasets are given in Table 1.

5.3   |   Methods Compared

For a comprehensive analysis, we test Omni, the LLM-based 
methods, and the existing SOTA methods on all datasets. Here 
we list all methods compared:

•	 GTMiner (Balsebre et al. 2023) is a geospatial relation pre-
diction model. For GeoD, NZER, and SGN, the classifica-
tion layer is modified to carry out binary classification.

•	 GTMiner(ExRe) (Balsebre et al. 2023) is a knowledge graph 
refinement algorithm applied on top of the GTMiner rela-
tion predictor. This only applies to GTMD.

•	 GeoER (Balsebre et al. 2022) is a geospatial ER model. We 
extend its classification layer to predict multiple relations 
for GTMD. For NZER, we apply its blocking mechanism 
only on the train splits but not on the test and valid splits 
for a fair comparison. Furthermore, to support GeoER's 
neighborhood attention mechanism, we use their neighbor 
search algorithm to create neighboring entities for NZER.

•	 Zero-shot, Few-shot & Fine-tuned See Section 4.2.

•	 Omni-small is the variation of the Omni model using a 
mean pooled cosine similarity for the attribute affinity 
mechanism. We extend its classification layer to predict 
multiple relations for GTMD.

TABLE 1    |    Table summarizes the attributes of the datasets used.

Dataset Matching type
Diverse 

geometry?

Complex 
geometry 

enhanced? Regions # of pairs
#positive 

pairs
%complex 

geometries

GeoD Dirty-Dirty No No Pittsburgh 
(PIT)

5001 1459 0

5116 1622

Toronto (TOR) 17,858 3826 0

27,969 5426

Edinburgh 
(EDI)

17,386 3350 0

18,733 2310

Singapore 
(SIN)

19,243 2116 0

21,588 2914

SGN Clean-Clean No Yes Switzerland 8387 287 2.1

GTMD Dirty-Dirty No Yes Singapore 
(SIN)

26,157 12,729* 0

Toronto (TOR) 16,979 8194* 1

Seattle (SEA) 15,815 6610* 4.5

Melbourne 
(MEL)

6117 3717* 7.5

NZER Clean-Clean Yes NA Auckland 
(ACK)

4001 130 48.62

Hope Blue 
(HOP)

19,374 624 30.14

Norsewood 
(NRS)

11,885 388 48.62

Northland 
(NTH)

23,027 752 32.21

Palmerston 
(PLM)

7934 254 78.92

Note: The “Diverse Geometry” column indicates whether the datasets originally included complex geometries and the next column indicates if we were able to enhance 
the original datasets with complex geometries from their original sources. # of matching pairs for GeoD shows OSM-FSQ first followed by OSM-YELP subsets. *For the 
purposes of this summary representation, GTMD's number of positive pairs count all pairs that are not of the “unknown” type. For the exact distribution of relations in 
GTMD, refer to the original paper Balsebre et al. (2023).
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•	 Omni is the default Omni model. We extend its classifica-
tion layer to predict multiple relations for GTMD.

5.4   |   Point-Only Datasets (RQ1)

Table 2 reports the performance of the models on a point-only 
dataset, GeoD. As an ER model, GeoER outperforms GTMiner 
on all of GeoD sub-datasets. Despite being limited to only 
point geometries, Omni outperforms GeoER in all but two 
sub-datasets. It should be noted that all fine-tuned ER models 
compete very closely in this point-only dataset. It is also import-
ant to note that Omni only uses attributes from the two entities 
being compared and does not use the additional neighborhood 
details that GeoER leverages. These results attest to Omni's abil-
ity to generalize to point-only data. These results also confirm 
the intuitive observation that augmenting a theoretical zero-
dimensional point location as a two-dimensional disk does not 
have any detrimental effect on the results.

Omni-small uses a mean pooling strategy (see Section  4.1.1). 
However, the pooling produces some loss of information. Other 
pooling strategies tested produced similar or worse results. In 
a dirty data setting, with sparsely populated columns, the use 

of the [VAL] token's representation for Attribute Affinity, as in 
the default Omni model, consistently produces better results, as 
evident in the experiments with GeoD.

The effectiveness of prompts shows massive variations depend-
ing on the sub-dataset. This is consistent with the findings of 
Peeters et al. (2023) in generic ER. In general, the LLM favors 
a simple prompt, as is evident from the comparatively supe-
rior results produced by a simple prompt in a zero-shot setting. 
This is stressed in the poor performance of the complex and 
verbose plm-serialization. In the same setting, the attribute-
value-distance prompt consistently outperforms the attribute-
value prompt. This suggests the LLM's inability to calculate 
geographic distance on its own from the coordinates provided 
when the distance is not explicitly provided in the prompt.

In general, few-shot learning produces better results than zero-
shot, although results show large variations. Randomly sam-
pling the training dataset produced better results than ensuring 
class balance in the demonstrations. This can be attributed to 
the class imbalance present in all of these datasets. In the class-
balanced sampling setting, larger numbers of false positives were 
recorded, resulting in a drastic drop in precision as the model 
appears to carry a bias created by the balanced demonstrations.

TABLE 2    |    Comparison between SOTA PLM-based methods, our LLM, and Omni on point-only datasets (F1%).

Methods

GeoD

PIT TOR EDI SIN

OSM-
YELP OSM-FSQ

OSM-
YELP OSM-FSQ

OSM-
YELP OSM-FSQ

OSM-
YELP OSM-FSQ

PLM baselines

GeoER 97.11 92.65 95.87 93.35 96.64 94.90 92.45 88.90

GTMiner 95.83 92.23 95.52 87.79 95.40 94.15 80.98 87.51

Zero-shot LLM

simple 68.39 63.58 67.23 56.81 85.95 68.71 52.64 43.80

a-v 42.08 38.42 50.35 37.24 53.6 46.00 35.99 31.39

plm-ser 21.16 21.41 19.14 9.26 22.08 15.51 8.27 11.29

a-v-d 67.17 70.25 65.54 66.35 56.83 61.92 44.81 39.86

Few-shot LLM

rand-a-v 68.35 82.99 77.92 67.11 92.50 83.79 58.50 67.72

rand-a-v-d 80.28 81.71 84.89 86.19 93.35 91.70 80.71 63.57

cbal-a-v 70.15 82.51 27.26 40.83 87.45 45.71 64.28 70.10

cbal-av-d 78.48 87.37 53.66 50.18 91.49 63.74 73.10 71.72

Fine-tuned LLM

simple 96.24 92.90 95.03 94.79 93.19 94.25 91.62 85.70

a-v 96.98 93.71 95.33 94.65 95.16 93.49 90.14 88.20

a-v-d 96.57 93.90 95.47 94.42 94.51 94.50 91.31 87.90

Omni-small 95.43 91.88 95.31 93.66 95.96 94.72 90.91 88.65

Omni 96.68 93.19 96.77 94.92 97.58 95.46 92.36 89.40

Note: Bold denotes best performance. Underlined numbers indicate the next best results. All PLM results are averages of three tests.
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The fine-tuned LLMs demonstrate closely competitive perfor-
mance, with none of the prompts used for fine-tuning emerging 
as a definitive one-size-fits-all solution for the task. An inter-
esting observation made was the absence of a clear distinction 
between LLMs fine-tuned on attribute-value and attribute-
value-distance. The lack of a clear difference in results as seen 
in the zero-shot setting indicates the LLM's ability to calculate 
or deduce distances from the provided coordinate pairs upon 
fine-tuning.

5.5   |   Diverse-Geometry Datasets (RQ2)

Omni's improvements become more prominent with datasets that 
contain higher numbers of complex geometries (Table 3). Omni 
produces the best results among all the tested models except in 
two sub-datasets: NZER's Auckland sub-dataset and GTMD's 
Singapore sub-dataset. It should be noted that the Singapore 
sub-dataset is essentially a point-only dataset. Although with 
minimal modification to predict multiple relation classes, Omni 
shows outstanding improvements over GTMiner on GTMD, es-
pecially with sub-datasets that we were able to enhance with 
their recovered original complex geometries. The performance 
gain resulting from the addition of this small number of geome-
tries is compelling. With the enhancement of just 4.5% complex 

geometries in SEA (GTMD) and 7.5% in MEL (GTMD), the F1 
score improves by over 10% and nearly 5% respectively. This is 
a clear indication of the loss of information when simplifying 
complex features to points. These improvements can mainly be 
attributed to the Omni-GeoEncoder's spatial insights.

Omni demonstrates significant gains in the NZER dataset, 
outperforming existing PLM-based state-of-the-art (SOTA) 
methods by up to ~14% in F1 score in certain sub-datasets. The 
Auckland region proves to be distinctly challenging for all meth-
ods due to three reasons: (i) Large number of polyline geometries 
(streets); (ii) Very close proximity of all entities as a dense urban 
region; (iii) This region has the highest percentage of textually 
dissimilar names (Māori and English) in annotated matches. 
From the PLM-based methods, Omni produces the best results, 
as it is not limited by the simplification of linear geometries to 
simple points (like GeoER or GTMiner) resulting in a minimal 
information loss. It is also aided by the Attribute Affinity mech-
anism's ability to capture finer grained semantic similarities 
(from attributes like place type) where the [CLS] token's sum-
mary representation is inadequate to identify matching entities 
with completely dissimilar names.

Although not a direct comparison, we highlight the origi-
nal results reported by Acheson et  al.  (2020) on the full SGN 

TABLE 3    |    Comparison between SOTA PLM-based methods, our LLM, and Omni on diverse-geometry datasets (F1%).

Methods SGN

GTMD NZER

SIN TOR SEA MEL ACK HOP NRS NTH PLM

PLM baselines

GeoER 91.66 85.97 85.32 78.59 84.98 72.67 95.93 86.73 92.13 88.45

GTMiner 92.84 90.71 89.15 81.10 86.92 62.82 95.19 88.59 92.89 92.56

GTMiner(ExRe) — 89.92 87.64 80.97 85.68 — — — — —

Zero-shot LLM

simple 48.48 13.30 13.67 27.67 18.91 63.82 69.65 69.56 75.51 58.66

a-v 73.23 43.68 46.53 42.28 60.59 46.66 53.16 42.62 75.69 27.43

plm-ser 54.23 46.58 44.14 40.93 56.21 44.44 10.08 8.33 24.48 10.00

a-v-d 37.62 32.26 23.29 37.53 26.01 55.07 81.98 79.16 68.43 60.19

Few-shot LLM

rand-a-v 74.07 28.07 36.93 24.81 22.99 78.26 64.74 69.49 76.63 79.51

rand-a-v-d 54.16 22.58 37.64 19.01 14.55 78.26 71.85 61.99 70.90 72.72

cbal-a-v 78.12 66.41 63.57 48.11 65.28 79.71 69.47 66.66 78.78 81.15

cbal-a-v-d 86.95 65.91 70.19 67.46 56.68 73.68 77.88 66.66 86.03 85.71

Fine-tuned LLM

simple 94.20 73.52 54.26 44.89 35.94 81.00 89.27 93.47 92.75 94.71

a-v 93.33 60.10 70.23 54.01 53.36 81.36 81.88 92.64 93.61 91.80

a-v-d 91.89 75.30 79.93 72.31 75.07 86.90 89.65 91.30 92.18 82.75

Omni-small 94.37 89.27 89.00 90.51 90.66 82.10 98.22 93.85 95.24 95.11

Omni 96.10 89.58 90.36 91.33 90.87 84.64 98.92 96.75 95.77 96.38

Note: Bold denotes best performance. Underlined numbers indicate the next best results. All PLM results are averages of three tests.
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dataset. Using their best-performing combination of engineered 
machine-learning features, they achieve an F1 score of 90.2% 
on the complete dataset. On the subset of this dataset that was 
recoverable, Omni achieves an F1 score exceeding 96%. It is also 
worth noting that Acheson et al. (2020) incorporate additional 
information—such as landcover and elevation—that is not used 
by any of the other methods evaluated in our study.

Omni-small produces more competitive results in a clean-clean 
ER setting as seen in NZER. GTMD is also a much cleaner 
and complete dataset than GeoD Balsebre et  al.  (2023). It can 
be concluded that the pooled cosine similarity strategy pro-
duces competitive results when the data are fully (or almost 
fully) populated. In both cases, selecting a limited number of 
well-populated attributes (as mentioned in Section  5.1) was 
preferable.

Contrary to what was observed in the point-only datasets, the 
performance of the attribute-value-distance prompt is poorer 
than the attribute-value prompt for GTMD. This is caused by 
distance being a misleading factor when it came to relations like 
part_of and serves. Especially if only point locations were con-
sidered, a part of relation can easily be misclassified as a same_
as relation when the distance is zero. This is quite common, for 
example: when a stall in a mall and the mall (part_of relation) 
have the same or very close point locations. LLMs also respond 
better to class-balanced few-shot prompts than randomly sam-
pled few-shot prompts with GTMD as the relations are more bal-
anced in the dataset than in the strictly ER datasets.

The fine-tuned LLM-based approaches consistently outperform 
existing PLM-based methods on the strictly ER datasets like SGN 
and NZER. However, the performance of the LLM on GTMD is 
significantly lower than existing PLM-based approaches. This is 
mainly due to the complexity of the task as GTMD is a multi-class 
relation classification dataset. Although fine-tuning has led to a 
notable gain in performance for all prompts in the LLM, it has 
fallen short of learning all the nuanced relations in the dataset.

LLM fine-tuned on the attribute-value-distance produces excel-
lent results on the NZER's Auckland sub-dataset, surpassing all 
PLM-based methods. Upon further investigation, this standout 
performance was discovered to be attributable to the prior knowl-
edge acquired by the LLM during its pre-training. With exposure 
to massive amounts of textual knowledge, even few-shot prompts 

consistently outperform all PLM-based solutions except Omni. 
We analyze more on this improvement in Section 5.8.

In summary, Omni demonstrates strong generalizability. In ad-
dition to significantly outperforming existing baselines on our 
own complex geometry dataset (NZER dataset) and third party 
datasets that we were able to enhance with a few complex geom-
etries (GTMD, SGN), Omni performs competitively and almost 
always surpasses existing baselines that can only process point 
data on their original point-only datasets (GeoD).

5.6   |   Ablation Experiments and Analysis (RQ3)

Ablation experiments: We present the results of our abla-
tion study conducted to verify the effectiveness of our novel-
ties in Tables  4 and 5. We carry out four experiments: (1) No 
Lang.: removing the language component to rely only on dis-
tance and GeoEncoder modules; (2) No GeoEnc.: removing the 
GeoEncoder module; (3) No Att. Aff.: removing the Attribute 
Affinity generation; (4) No Dist.: removing the distance module. 
As expected, the language module proves to be the backbone of 
the framework. The No GeoEnc. experiments demonstrate the 
effectiveness of the GeoEncoder. The impact of the removal var-
ies as expected, with greater reduction in performance in data-
sets with larger numbers of complex geometries. The effect of 
Attribute Affinity remains fairly constant in all datasets as this 
mechanism is shown to help in the challenging comparisons 
(see Section  5.8) where semantic similarities of specific attri-
butes hold the key to correct predictions. The importance of the 
Distance module is seen to decrease as the significance of the 
GeoEncoder increases. While the GeoEncoder exhibits the abil-
ity to capture relative spatial distances between two features, it 
is not exposed to their actual geographic distance because all 
geometries are encoded using the K-Delta encoding (Section 3). 
Results indicate that the explicit distance embedding therefore 
plays a complementary role to the GeoEncoder. The Distance 
module demonstrates consistent contribution across datasets—
particularly in point-only settings, where the distance embed-
ding contributes more to performance than the GeoEncoder 
itself. A notable exception, as a diverse geometry dataset, is the 
SGN dataset where the Distance module's contribution remains 
more significant than the GeoEncoder's contribution owing to 
the very large geographic coverage of the dataset (covering places 
all across Switzerland as opposed to all other datasets covering 

TABLE 4    |    Ablation study results (F1%) on point-only datasets.

Methods

GeoD

PIT TOR EDI SIN

OSM-YELP OSM-FSQ OSM-YELP OSM-FSQ OSM-YELP OSM-FSQ OSM-YELP OSM-FSQ

Omni 96.7 93.2 96.8 94.9 97.6 95.5 92.4 89.4

No Lang. 88.7 68.6 90.3 87.5 86.5 84.7 74.8 62.6

No GeoEnc. 95.3 91.5 95.2 94.2 96.3 94.2 91.7 88.9

No Att. Aff. 94.9 91.6 95.0 92.8 95.5 94.3 90.1 87.8

No Dist. 95.0 89.7 94.5 92.6 95.8 92.6 87.6 85.2

Note: Bold denotes best performance.
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several cities or smaller regions). In this setting, geographic dis-
tance serves as a very strong indicator of match likelihood.

Distance embedding experiments: We experimented with in-
corporating Hausdorff distance across several sub-datasets, 
comparing it against Omni's existing distance embeddings 
(centroid-to-centroid and minimum distance). We evaluated 
Hausdorff distance both as a stand-alone metric and in combi-
nation with minimum distance, replacing only the centroid-to-
centroid component from the original method. The resulting F1 
scores are presented in Table 6.

As the experiments suggest, performance with Hausdorff dis-
tance as a stand-alone distance measure falls significantly below 
the current method. Minimum distance is a highly informative 
signal for geospatial ER. A point in a polygon or a point lying 
on a line evaluates to zero with minimum distance—offering a 
strong indication that the two records may represent the same 
real-world feature. Conversely, Hausdorff distance may return a 
misleadingly large distance. For example, some linear features 
like rivers may have a single point representing them in some 
point-only databases (like GeoNames) or consist of multiple 
representations within the same database (like LINZ or OSM) 
where it is represented both as a linear feature and a point. In 
these cases, Hausdorff distance returns the distance furthest 
from the point, which is an inflated and misleading value.

Hausdorff distance performs much better when used in combi-
nation with the minimum distance. However, we note that it does 

not outperform our existing approach. This is due to the effect 
of the centroid representations discussed earlier (Section 4.1.2) 
that provides the framework a better signal about true positives. 
As expected, in point-only datasets, the performance of all the 
methods remains consistent since all methods yield effectively 
equivalent distance values.

Number of K-Delta vertices, an empirical analysis: The choice 
of P (see Section 4.1.3) is crucial in determining the quality and 
fidelity of the geometry representation. Figure 5 shows the re-
sults from an empirical study on the optimal value for P. For 
point-only datasets, the experiments reveal minimal informa-
tion gain as P increases. This observation highlights a critical 
finding: for point-only datasets, Omni can achieve comparable 
performance with as few as 50 points, maintaining the same re-
sults. Conversely, for datasets containing diverse and complex 
geometries, the results demonstrate significant improvements 
as P increases. Notably, in all diverse geometry datasets except 
the AKL (NZER) dataset, very low P values can mislead the 
model, resulting in F1 scores lower than those observed in abla-
tion tests where the GeoEncoder was completely removed. The 
improvements in performance generally plateau around P = 300 
in most cases.

Generic spatial relation understanding of Omni-GeoEncoder: 
We designed a diagnostic task to probe the fidelity of the geom-
etry representations learned by the Omni-GeoEncoder during 
the training on our geospatial ER task. This experiment eval-
uates how well the encoder exhibits an upstream capability 

TABLE 5    |    Ablation study results (F1%) on diverse-geometry datasets.

Methods SGN

GTMD NZER

SIN TOR SEA MEL ACK HOP NRS NTH PLM

Omni 96.1 89.6 90.4 91.3 90.9 84.6 98.9 96.8 95.8 96.4

No Lang. 84.6 56.3 57.2 68.2 70.5 58.8 56.3 54.0 65.0 78.2

No GeoEnc. 92.9 89.0 89.7 81.5 89.5 78.4 97.2 92.9 93.1 92.4

No Att. Aff. 94.5 87.7 86.3 89.2 89.9 80.1 98.1 95.5 94.2 95.1

No Dist. 91.9 86.8 87.7 87.5 89.2 81.8 98.0 95.9 94.6 94.5

Note: Bold denotes best performance.

TABLE 6    |    F1 scores comparing Hasudorff distance with the current combination of minimum distance and centroid-to-centroid distance.

Distance 
embedding

AKL 
(NZER)

NTH 
(NZER)

PLM 
(NZER) SGN

PIT 
(OSM-
YELP)

PIT 
(OSM 
-FSQ)

SIN 
(OSM-
YELP)

SIN 
(OSM 
-FSQ)

Omni 84.64 95.77 96.38 96.1 96.68 93.19 92.36 89.40

Hausdorff 
Distance

80.26 91.59 91.88 90.85 96.70 92.90 93.16 88.83

Minimum 
Distance + 
Hausdorff 
Distance

82.4 94.96 94.06 94.78 95.90 93.37 92.88 89.15

Note: Second row shows results from using Hausdorff distance by itself and the third row is with Hausdorff distance replacing only centroid-to-centroid distance in the 
Distance module.



16 of 20 Transactions in GIS, 2026

(spatial relation understanding) based solely on the embedding 
representations acquired during ER training. For this purpose, 
we isolated a GeoEncoder module “pre-trained” on an ER data-
set and evaluated its performance in predicting three spatial 
relations which are expected to give strong signals in the down-
stream ER task:

1.	 Contain: Object B (including its boundary) is fully con-
tained inside object A.

2.	 Touch: The objects share a boundary but no interior points.

3.	 Overlap: The objects share some but not all interior points.

We created three separate datasets for each of these relations, 
modeling the spatial relation understanding as a binary clas-
sification problem similar to Fleuret et  al.  (2011), Mai, Jiang, 

et al. (2023), and Yang, Russakovsky, and Deng (2019). The ge-
ometries were sourced from OSM and LINZ and the relations 
were automatically annotated using QGIS.11 To evaluate the 
isolated GeoEncoder, we implemented a classification head on 
top of the pre-trained GeoEncoder, training it for 10 epochs on 
the train split while keeping the GeoEncoder's weights frozen. 
The results, presented in Figure 6, highlight the spatial under-
standing of the GeoEncoder. GeoEncoders trained on point-
only ER datasets exhibited limited spatial understanding, as 
expected, given their exposure only to point pairs augmented 
as disks with nominal radii of 1 m. Conversely, GeoEncoders 
trained on complex geometry datasets demonstrated excellent 
performance in predicting the contain and overlap relations, 
underscoring the K-Delta encodings' and the embeddings' 
ability to capture spatial relationships. However, the perfor-
mance in the touch relation was notably weaker. This outcome 

FIGURE 5    |    Best performance of Omni on select sub-datasets with varying P values.

FIGURE 6    |    Performance of the Omni-GeoEncoder on three generic spatial relation prediction tasks.
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is unsurprising, as the touch relation requires the boundaries 
of two geometries to coincide, which can be as minimal as a 
single vertex intersection. This loss of information is caused by 
the simplification of geometries during the modified Douglas–
Peucker decimation process.

5.7   |   Model Efficiency (RQ4)

Naively comparing all records across databases when merging 
geospatial databases is computationally expensive, resulting 
in O(n ×m) complexity. While various blocking techniques 
like spatial blocking can mitigate this cost, they still lead to a 
computationally expensive ER task. Consequently, efficiency 
becomes a critical factor in evaluating ER solutions. Table  7 
compares the size and inference time of each model. Omni 
is significantly lighter compared to GeoER. This is primarily 
due to GeoER's bulky neighborhood attention mechanism. 
GTMiner is slightly lighter and comparable to Omni-small, 
though the latter usually outperforms it. What is impressive 
about Omni is that the added functionality of geometry en-
coding does not compromise inference time, as Omni remains 
the fastest model at inference clocking almost 50 times faster 
than GeoER.

The Llama-3-8B-Instruct model tested in this experiment 
comprises 8 billion parameters, making it significantly more 
resource-intensive than PLM-based solutions. Although the use 
of QLoRA reduces the number of trainable parameters to fewer 
than 200 million, in general, inference remains almost 100 
times slower than Omni. In addition to their demanding VRAM 
requirements, this positions LLMs at the bottom of the list in 
terms of efficiency.

5.8   |   Qualitative Analysis

Figure 7 illustrates some examples from the NZER dataset with 
their predictions from the Omni model. Figure 7a resolves a point 
feature and a polygon feature that bear minimal textual similar-
ity. It is also an instance of a multilingual place name where one 
name consists of the English name and the other is a concatena-
tion of a different version of the English name and a Māori name. 
Figure 7b shows an instance of a correct prediction with minimal 
geospatial overlap between the polygon and the line. Figure 7c 
also presents an interesting case of non-matches between a re-
serve and a river that flows through it. While the complete Omni 
model correctly predicts a true negative, ablation studies reveal 
that removing the Attribute Affinity results in a false positive. 
This misclassification is attributed to the high textual and geo-
footprint similarity. In such challenging cases, insight provided 
by Attribute Affinity on specific attributes plays a crucial role in 
the model's correct interpretation of the relation between places.

To investigate the exceptionally high performance of the LLMs 
on the NZER's Auckland sub-dataset, we designed a simple 
experiment: We posed the base Llama-3-8B-Instruct model 
the following question: “Answer the following question. What 
is an alternative name for <PLACE> in Auckland?” where 
<PLACE> was replaced with a name from our test set. Even 
for challenging cases such as “Te Wāpū o Queen,” the model's 
response, although verbose and simply predicting next token, 
consistently included the correct answer, “Queens Wharf,” every 
time (Te Wāpū o Queen is the Māori name for Queen's Wharf). 
Unlike PLMs, LLMs are better equipped to deal with multilin-
gual challenges owing to their vast pre-trained knowledge. This 
outcome highlights two key points: the extensive knowledge 
LLMs acquire during pre-training on large-scale corpora and the 

TABLE 7    |    Table compares the weight and inference speed of the models.

Methods Total # parameters # Trainable parameters Average inference time per 1000 samples

GeoER 221M 221M 80.2 s

GTMiner 112M 112M 1.83 s

In-context LLM 8B — 158.3–208.3 s

Fine-tuned LLM 8B 167M 253.33 s

Omni-small 125M 125M 1.25 s

Omni 132M 132M 1.66 s

Note: All inference times are calculated on the NZER's Auckland sub-dataset. In-context LLMs report two inference times: Zero-shot and Few-shot.

FIGURE 7    |    Examples from the NZER dataset with predictions from the Omni model.
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inherent limitations in evaluating and comparing LLMs using 
test datasets they may have been indirectly exposed to during 
pre-training.

6   |   Conclusion

This work introduces a novel omni-geometry encoder and the 
use of a novel attribute affinity generation concept for ER in 
geospatial databases. Our solution is the first deep learning-
based approach to perform ER on geospatial databases with 
complex geometries, seamlessly encoding diverse geometry 
types in a single encoder. The affinity generation concept shows 
improvement in results over a simple summary representation 
of the entities' textual attributes and can be generalized to ge-
neric ER. Evaluated on existing point datasets and our man-
ually annotated diverse geometry dataset, Omni-GeoEncoder 
demonstrates the ability to learn and represent geometries and 
how these representations can be effectively used to detect 
spatial relationships between entities in downstream tasks. 
Experiments on LLMs reveal that they lack true spatial under-
standing in zero-shot settings. Albeit being computationally ex-
pensive, they perform competitively in few-shot and fine-tuned 
settings. Although they fall behind Omni in truly understand-
ing spatial relations, LLMs demonstrate superior language ca-
pability coupled with vast prior knowledge of places. Distilling 
LLMs' language understanding in combination with spatial 
embeddings is an interesting avenue of future research.
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