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ABSTRACT

The development, integration, and maintenance of geospatial databases rely heavily on efficient and accurate matching proce-
dures of Geospatial Entity Resolution (ER). While resolution of points-of-interest (POIs) has been widely addressed, resolution
of entities with diverse geometries has been largely overlooked. This is partly due to the lack of a uniform technique for em-
bedding heterogeneous geometries seamlessly into a neural network framework. Existing neural approaches simplify complex
geometries to a single point, resulting in significant loss of spatial information. To address this limitation, we propose Omni, a
geospatial ER model featuring an omni-geometry encoder. This encoder is capable of embedding point, line, polyline, polygon,
and multi-polygon geometries, enabling the model to capture the complex geospatial intricacies of the places being compared.
Furthermore, Omni leverages transformer-based pre-trained language models over individual textual attributes of place records
in an Attribute Affinity mechanism. The model is rigorously tested on existing point-only datasets and a new diverse-geometry
geospatial ER dataset. Omni produces up to 12% (F1) improvement over existing methods. Furthermore, we test the potential
of Large Language Models (LLMs) to conduct geospatial ER, experimenting with prompting strategies and learning scenarios,
comparing the results of pre-trained language model-based methods with LLMs. Results indicate that LLMs show competitive
results.

1 | Introduction due to factors such as incomplete coverage in individual data-

bases, disparate attribute focuses, or variations in the quality of

Location-based services (LBS) are computer applications that
cater to the user or device based on their current location (Raper
et al. 2007). Vital to the robust functioning of all geographic in-
formation systems is a geospatial database providing adequate
coverage and quality. These databases often store the place
names (i.e., toponyms), place type, their geospatial footprint
(as a point location or a complex geometry), and sometimes ad-
dresses, relations between places, quality attributes, temporal
attributes, etymologies, officiality of toponyms, etc. However,
researchers and application developers frequently encounter the
need to merge geospatial databases (or search results from them)

certain attributes (Sun et al. 2023).

Entity resolution (ER) (Christophides et al. 2020; Kopcke
et al. 2010) is the task of identifying different descriptions that
represent the same real-world entities. The challenge in geo-
spatial ER is rooted in the inherently multi-modal nature of
geospatial data. A place is characterized not only by its textual
attributes but also its geospatial footprint. Although POIs are
commonly stored as point objects (simple pair of coordinates),
more detailed spatial footprints in the form of polygons and lines
are available in most comprehensive databases. For example,
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OpenStreetMap, one of the most widely used global geospatial
resources, represents roughly 68% of features as polygons, 18%
as lines, and only about 13% as points in New Zealand. Similarly,
for the New Zealand Geographic Board data (the official gazet-
teer for New Zealand), when combined with their roads data-
set, point geometries constitute only 33.8% data. Although these
percentages vary across sources, the storage of complex geom-
etries is the norm rather than the exception. Classical machine
learning approaches that tackle this problem with engineered
features exist (Hastings 2008; Martins 2011). Unfortunately,
their data are not readily available. The current state-of-the-art
methods for geospatial ER do not accommodate these complex
geometries (Acheson et al. 2020; Balsebre et al. 2022, 2023; Zhou
et al. 2021) primarily due to the absence of a unified embedding
technique. Current neural approaches simplify these geome-
tries to point objects, resulting in a loss of information or more
commonly only consider point datasets for their evaluations
(Balsebre et al. 2022, 2023; Zhou et al. 2021).

Advancing GeoAl necessitates encoding spatial data, including
points, polygons, lines, and networks, into a representation com-
patible with neural network inputs (Mai, Huang, et al. 2023).
These embeddings can subsequently be applied across a wide
array of geospatial tasks, including but not limited to spatial
relation prediction, geography-enhanced question answering,
cartographic generalization, and building pattern classifica-
tion. This area has received attention in recent research ef-
forts, with a growing emphasis on representing non-Euclidean
data (Bronstein et al. 2017). In downstream tasks where input
sources have multiple types of geometries, an encoder capable of
handling them in a single mini-batch becomes indispensable for
a deep learning framework.

Figure 1 illustrates some of the acute challenges and nuances of
ER in a geospatial context using real-world examples.

Limitation in textual similarity measures: Figure 1a shows two
entries from two sources for the same wharf. A simple string
similarity measure over the names of the two places, or their
types (indicated within parentheses), shows minimal similarity.
Semantic similarity between the place types also does not indi-
cate strong similarity. However, upon considering all textual at-
tributes along with the spatial footprints, it becomes evident that

the two sources are referring to the same wharf. Both Figure 1a
and b demonstrate the challenge of multilingualism, vernacu-
lar names, and different typing schemes when matching places
(Laurini 2015).

Inadequacy of simple point-to-point geographic distance mea-
sures: Figure 1b provides an example of a true match in which the
polygons overlap almost perfectly (a tiny sliver of the underlying
green polygon is visible in the eastern region of the park). Both
of these source databases store point locations in addition to the
polygons. However, the point locations from the two sources,
indicated by the red points, are over 7km apart, not perfectly
matching on the toponym or the place type. Imperfect matching
on the name and type attributes combined with the possibility of
such large spatial distances pose a significant challenge for ex-
isting distance-based methods that do not account for complex
geometries. This is especially true for places with larger spatial
extents (Ahlers 2013). An ER method capable of exploiting the
details of the complex polygons will also enable a subsequent
trivial resolution of the points as they are often internally linked
to its complex geometry within a single source. However, point
location sources can be highly error-prone even within a single
database, making distances between places across databases
highly unreliable (Ahlers 2013; Gao et al. 2017).

Need for individual attention to attributes: Figure 1c illustrates
a non-match, where the place names are a perfect match and
the footprints of the two entities are in close proximity and over-
lap. While these attributes may obfuscate the ER task, the key
to its non-match lies in a single attribute: the place type. This
underscores the necessity of individually attending to pairs of
textual attributes when comparing entities from different data-
bases. Current methods only consider summary representations
of pairs of entities that fall short of understanding the structured
nature and semantics of attribute value pairs in ER datasets
(Paganelli et al. 2023).

To this end, we propose Omni, a model uniquely capable of ad-
dressing these challenges. Omni consists of three modules: a
language module, a geographic distance module, and the Omni-
GeoEncoder—the geospatial footprint encoder. We enable our
model to learn from all available textual attributes of the places
using the language module. Concurrently, we make the model

(a) Queens Wharf - Te Wapd o Queen : Match

(b) Aoraki — Mount Cook national Park : Match

(c) Makara cemetery - Makara cemetery road :
Non-Match

FIGURE1 | Illustration of the challenges of geospatial ER. (a) and (b) show examples of matches while (c) shows a non-match. The type of the

place is indicated within parentheses. Zoom in for best view.
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aware of geometric or topological relations between the foot-
prints of the two places using our Omni-GeoEncoder module.
To the best of our knowledge, this is the only encoder capable
of uniformly embedding diverse geometry types. Finally, using
our geo-distance module, we embed several pertinent distances
to enhance the model's understanding of the spatial relations be-
tween the two places.

Recent LLMs such as GPT4 (Achiam et al. 2023), Llama (Touvron
et al. 2023), and PaLM (Chowdhery et al. 2023) have established
state-of-the-art performances in a variety of downstream tasks
(Peeters et al. 2023; Wang et al. 2023; Wang, Yang, et al. 2024;
Zhu et al. 2024). Although recent applications of LLMs in ge-
neric ER have seen them surpass pre-trained language model
(PLM)-based approaches (Fan et al. 2024; Kasinikos and
Papadakis 2024; Li et al. 2024; Narayan et al. 2022; Peeters
et al. 2023; Wang, Chen, et al. 2024), LLMs have not yet been
utilized in geospatial ER. We adapt LLMs for this task, exploring
their spatial understanding and ability to match spatial entities,
testing on numerous prompts and learning techniques. We com-
pare and contrast their performance with existing PLM-based
methods and our novel Omni model.

The key contributions of this paper are summarized as follows:

1. We propose Omni, an open source architecture providing a
unified framework leveraging spatial and textual informa-
tion from source databases for geospatial ER.

2. We develop the Omni-GeoEncoder, capable of encoding
heterogeneous geometry types into a uniform embedding
space, allowing neural models to comprehend spatial and
topological relations of geospatial footprints. We demon-
strate the effectiveness of this module in ER and geospatial
relation mining.

3. NZER: The first publicly available dataset for the task of
geospatial ER with diverse-geometry types from real-world
databases.

4. We leverage LLMs for the task of geospatial ER. We explore
their capabilities in zero-shot, few-shot, and fine-tuned
settings.

5. Extensive experiments comparing (and demonstrating the
benefit of) Omni and the LLM-based approach with exist-
ing methods on point-only and diverse-geometry datasets.

The remainder of the paper is organized as follows: We first
introduce the technical background of ER within the broader
context of database integration, followed by an overview of lan-
guage models relevant to our setting. We then review related
work on geospatial ER, representation learning for geospatial
data, and the use of LLMs in ER. Section 4 presents the Omni
framework and our methodology for applying LLMs to this task.
We then report the experimental setup, analysis, and results in
Section 5, before concluding the paper.

2 | Background

This section provides the foundational concepts underlying
our work. We first outline the principles of ER and formalize

the problem in the context of database integration, with a
focus on the unique challenges posed by geospatial records.
We then summarize key developments in language models,
including both pre-trained language models (PLMs) and large
language models (LLMs), and describe how these models are
typically used in downstream tasks such as ER.

2.1 | Entity Resolution

Entity resolution, also known as entity matching, is a cru-
cial task in database integration (Kopcke et al. 2010; Li
et al. 2020; Wang et al. 2012). Given two source databases,
D1={el,el,el, ... ,el } and D2 = {e?,e2,e2, ... €2}, where ¢
is a single record in the database, the goal of ER is to identify
pairs of entities from both source databases that refer to the
same real-world entity. In generic ER, ¢, = {t;,t,,t;, ... ,{; },
where t, is a textual attribute. Although generic database re-
cords are not limited to textual attributes, geospatial database
or gazetteer records are unique due to each record being char-
acterized by a geospatial footprint, g;, in addition to textual
attributes.

Traditionally, string similarity measures have been widely
used to capture textual attribute similarity (Kdpcke
et al. 2010; Sehgal et al. 2006; Smart et al. 2010; Wang
et al. 2012). Methods relying on PLMs pass pairs of serialized
entities (Ser(e;), Ser(e;) ) to the PLM and treat ER as a binary
classification task (Balsebre et al. 2022, 2023; Brunner and
Stockinger 2020; Li et al. 2020; Paganelli et al. 2023; Peeters
and Bizer 2021; Zeakis et al. 2023), often using the [CLS]
token as the representation of the pair of entities. ER meth-
ods using LLMs are based on a prompt consisting of a task
description defining the ER task, together with a pair of seri-
alized entities (Fan et al. 2024; Kasinikos and Papadakis 2024;
Li et al. 2024; Narayan et al. 2022; Peeters et al. 2023; Wang,
Chen, et al. 2024).

All geospatial ER methods rely on some distance measure to
assess the level of match in the geospatial footprint. As all ex-
isting neural geospatial ER methods only use point locations,
they are limited to using a distance measure to capture spatial
similarity (Balsebre et al. 2022, 2023; Zhou et al. 2021).

2.2 | Language Models

Language models (LMs) are foundational tools in natural lan-
guage processing (NLP), designed to understand, generate, and
manipulate human language. Among the most impactful ad-
vancements in NLP are pre-trained language models and large
language models which have set new benchmarks by harness-
ing massive datasets and sophisticated architectures. PLMs
focus on leveraging pre-training with fine-tuning for specific
tasks, while LLMs extend this approach by scaling up model
size and data, achieving remarkable generalization across di-
verse language tasks. At the core of most modern LMs lies the
transformer architecture (Vaswani 2017), a paradigm-shifting
innovation in deep learning. Transformers eschew traditional
recurrence mechanisms in favor of a self-attention mechanism,
enabling efficient processing of text sequences while capturing
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long-range dependencies. Equation (1) expresses the attention
mechanism.

. QK" )
Attention(Q,K, V)= — |V, (€))]
(%

where Q, K, and V are the query, key, and value vectors de-
rived from the input and d; is the dimension of the key vec-
tors. This mechanism calculates a weighted sum of the value
vectors, where the weights are determined by the similarity
between the query and the key vectors. The resulting attention
scores, normalized via the softmax function, allow the model
to selectively focus on the relevant parts of the input sequence
(Vaswani 2017).

The most significant difference between PLMs like BERT,
RoBERTa (Liu et al. 2019), BART (Lewis 2019), and LLMs like
GPT4, Llama, and PaLM is the scale of the models and the
amount of training data. While both frameworks leverage un-
supervised pre-training to learn generalizable features, LLMs
are characterized by their scale and flexibility, making them
suitable for emergent capabilities like instruction-following
and creative generation. On the other hand, PLMs are opti-
mized for task-specific fine-tuning with relatively smaller pa-
rameter sizes.

For many downstream tasks, including ER, PLMs are used to
obtain contextual embeddings of text sequences. These models
are often fine-tuned on annotated training datasets to allow
the embeddings to capture the context. Conversely, decoder-
only LLMs often use their text generation ability in down-
stream tasks. There are several approaches to utilizing LLMs
effectively in downstream tasks:

1. Zero-shot prompting: A task description is provided along
with the instance on which the model needs to make a
prediction. With no access to training data, the model
makes a prediction solely relying on the knowledge ac-
quired during its pre-training and the provided prompt
itself. This method does not require gradient-based fine-
tuning or updates to the model's parameters.

2. Few-shot prompting: The model is provided with a few
task-specific examples within the prompt. In an ER set-
ting, the prompt could include examples of serialized
entities along with their corresponding labels. No model
weight updates are required.

3. Fine-tuning: A labeled dataset is used to update the
model's weights through backpropagation, tailoring the
model to a specific downstream task. Fine-tuning can be
performed in multiple ways:
 Full fine-tuning: All parameters of the original model

are updated.

« Parameter-efficient fine-tuning methods: Techniques
like Low-Rank Adaptation (LoRA) introduce a small
number of task-specific parameters while keeping most
of the pre-trained model's parameters frozen. This
approach is particularly advantageous in resource-
constrained settings.

3 | Related Work
3.1 | Geospatial Entity Resolution

In addition to being studied as an information retrieval task,
entity resolution also appears in the gazetteer conflation
literature, where it is treated as a preliminary step in merg-
ing or integrating two or more gazetteers (Hastings 2008;
Manguinhas et al. 2008; Smart et al. 2010; Wijegunarathna
et al. 2025). In the early rule-based approach to geospatial ER
(Hastings 2008; McKenzie et al. 2013), heuristics were used
to filter places or place pairs until no duplicates remained.
Later solutions involved machine learning, where textual
similarities and geographical distances were converted into
features for algorithms like Support Vector Machines (SVM)
(Martins 2011; Sehgal et al. 2006; Zhou et al. 2021), logistic
regression (Sehgal et al. 2006; Zhou et al. 2021), decision trees
(Martins 2011; Zheng et al. 2010; Zhou et al. 2021), and ran-
dom forests (Acheson et al. 2020). Graph-based approaches
have also been popular, especially with POI conflation, and
are often used in combination with spatial and linguistic sim-
ilarity measures. Kim et al. (2017) build a labeled graph using
information extracted from place descriptions and introduce
a graph matching algorithm, essentially combining string
matching with graph traversal. However, their matching is
based on linguistic attributes such as the name and address
of the place but does not take spatial attributes and similar-
ity into account. Novack et al. (2018) leverage spatial similar-
ity using bipartite graphs, representing POIs as nodes from
two datasets and their edges representing possible matches
with weights based on multi-criteria similarity, including
Euclidean distance and WordNet (Meng et al. 2013) based se-
mantic similarity.

Earliest use of deep learning can be seen in Santos et al. (2018),
using Recurrent Neural Networks (RNN) for alternate place
name classification. Subsequent work applies embedding tech-
niques like FastText (Bojanowski et al. 2017) and Word2Vec
(Mikolov et al. 2013) with Gated Recurrent Unit (GRU) models
and Multilayer Perceptrons (MLPs) (Cousseau and Barbosa 2021;
Yang, Hoang, et al. 2019) to capture toponym, category, and
geographical similarities to identify duplicates. SkyEx (Isaj
et al. 2019) and methods introduced by Deng et al. (2019) are
notable exceptions to machine learning-based methods. While
Deng et al. (2019) use improved Dempster-Shafer evidence the-
ory, Isaj et al. (2019) use Pareto optimality to separate matching
pairs from non-matching pairs of places from multiple sources.
SkyEx shows superior performance to geographical distance and
string similarity-based traditional methods (Berjawi et al. 2014;
Morana et al. 2014).

Akin to generic ER (Brunner and Stockinger 2020; Li et al. 2020;
Peeters and Bizer 2021; Zeakis et al. 2023), PLMs such as BERT
(Devlin et al. 2018) have produced excellent results in geospa-
tial ER. Although not specifically designed for ER, GTMiner
(Balsebre et al. 2023), a graph-based geospatial relation pre-
diction model, predicts same_as relations using a geo-textual
interaction mechanism that combines geographic distance
(Haversine distance) with BERT embeddings. GeoER (Balsebre
et al. 2022) similarly uses Haversine distance but only uses the
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[CLS] token from a BERT model, while also incorporating con-
text from neighboring places through a neighborhood attention
mechanism. GeoER produces excellent results, outperforming
SkyEx and several other state-of-the-art ER methods adopted
for the geospatial domain. He et al. (2024) present a similar ap-
proach for conflating spatial data in place knowledge graphs
using the [CLS] representation of a serialized place entity em-
bedded using a PLM. Although using the [CLS] token's repre-
sentation is standard practice in classification tasks including
ER (Balsebre et al. 2022; Brunner and Stockinger 2020; Li
et al. 2020; Zeakis et al. 2023), recent research suggests that it
does not fully capture the semantic similarities (or differences)
in comparable attribute pairs. Furthermore, BERT and its vari-
ants struggle to fully grasp the structured nature of ER datasets
(Paganelli et al. 2023).

3.2 | Representation Learning for Geospatial Data

Point encoders can be categorized into two types: encoders
that represent a single point (or location) using only the loca-
tion of the point, and encoders that incorporate the neighbor-
ing information of the point when encoding a single location
(Mai et al. 2022). The first approach includes methods such as
discretized grids with one-hot encoding (Tang et al. 2015), nor-
malized latitude and longitude with MLPs (Chu et al. 2019; Xu
et al. 2018), and encoding geographic coordinates using deter-
ministic functions such as sinusoidal functions (Mac Aodha
et al. 2019). Methods that aggregate the neighbor information
often model the neighborhood as a point cloud. Kernel-based
encoders (Mai et al. 2020; Yin et al. 2019), graph convolutional
networks (Valsesia et al. 2018), CNN-based encoder-decoder
architectures Li et al. (2018) and MLPs (Qi et al. 2017) are
some of the many methods that have been experimented with
for this approach. We refer to Mai et al. (2022) for a detailed
review.

Apart from point encoders, attempts have also been made to
encode and embed polygons and polylines. Polyline embed-
dings obtained using LSTMs have been used for the problem of
trajectory prediction (Xu et al. 2018; Zhang et al. 2019). CNN-
based architectures have been used to embed polygons (Mai,
Jiang, et al. 2023; Veer et al. 2018). Additionally, Mai, Jiang,
et al. (2023) propose a conversion of polygonal geometries into a
spectral domain using a non-uniform Fourier transform, which
is then embedded using an MLP. Yan et al. (2021) take a dif-
ferent approach employing a graph convolutional autoencoder's
bottleneck layer representation as the latent space embedding of
the polygon. To the best of our knowledge, no existing method
attempts to encode and embed different types of geometry in a
single encoder.

3.3 | Entity Resolution With LLMs

Narayan et al. (2022) first employed LLMs for ER, testing
OpenAl's GPT-3 model, experimenting with various prompt
designs for both in-context learning and zero-shot learning.
Their findings demonstrated that GPT-3 achieved results com-
parable to those of PLM-based methods. Similarly, Wang, Chen,
et al. (2024) introduce novel prompting strategies that diverged

from the traditional pairwise matching approach commonly
used in ER. They explore “comparison” and “selection” prompt-
ing strategies along with the traditional “matching” technique.

Peeters et al. (2023) further investigated the impact of prompt
variations on performance across multiple LLMs. Their results
underscored that fine-tuning LLMs could lead to substantial im-
provements in ER performance. Additionally, LLMs have been
leveraged to enhance traditional and PLM-based ER approaches,
as demonstrated by Li et al. (2024). In parallel, other studies have
focused on the use of smaller models and cost-effective prompt-
ing strategies for ER to address the computational cost associ-
ated with LLM-based approaches (Fan et al. 2024; Kasinikos
and Papadakis 2024). No research appears to have been con-
ducted on utilizing LLMs for geospatial ER.

4 | Methodology
4.1 | Omni: Methods and System

In this section, we introduce Omni, our framework for per-
forming entity matching. Omni performs matching on a set of
entity pairs, C = {(e;,¢;)| ¢; € D,, e, € D, } where D, and D, are
the databases being merged and e is an individual place from
the database. Omni consists of three modules that capture and
compare different attributes of place pairs: (1) A pre-trained
language module enhanced with Attribute Affinity generation,
(2) Geographic distance embedding module, and (3) Omni-
GeoEncoder. The model overview is shown in Figure 2.

4.1.1 | Language Module With Attribute Affinity

Each place record in a geospatial database, e;, has a set of
textual attributes such as the name, place type, address, and
postal code. Though comparison of toponyms with a string
similarity metric in the case of mono-lingual databases can
be highly effective, it fails to capture changes of names (out-
dated names in one or more sources) and vernacular or un-
official names. It can also be inadequate when toponyms are
multilingual. Other possible textual attributes like place type
may have very little string similarity across sources (due to
the use of different typing schemes) but often exhibit semantic
relationships.

PLMs can be used to obtain highly contextualized seman-
tic embeddings, making them especially useful in NLP tasks.
Following previous ER approaches (Balsebre et al. 2022, 2023;
Li et al. 2020), we serialize the textual attributes pertaining to a
single entity from our sources in the following format:

Ser(e;) = [COLlattr}[VAL]val! ... [COL]attr[[VALIval?. (2)

Subsequently, the serialized textual attributes of the pairs of
places are combined.

Text_input(e;,¢;) = [CLS]Ser(e;) [SEP]Ser(e;)[SEP].  (3)

Attribute affinity generation: While earlier PLM based ER ap-
proaches use the final embeddings of the [CLS] token from the
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language model (Im), E,,(CLS), to represent the similarities
between entities, recent research indicates that this method
is inadequate to capture finer grained semantic differences in
comparable textual attributes (Paganelli et al. 2023). The study
also suggests that PLMs like BERT, pre-trained primarily on
masked language modeling and next sentence prediction, do
not fully comprehend the structure of ER datasets. To grasp
the semantic similarities between corresponding attributes,
we design an Attribute Affinity mechanism. We propose two
variations:

(1) Default: A concatenation of the embeddings of the counterpart
attributes with their Hadamard product [optimal operations were
empirically determined, similar to Reimers (2019)]. We use the
[VAL] token to represent the value for each attribute. The affinity of
asingle attribute between two entitiesis shown in Equation (4). Note
that @ indicates a tensor concatenation.

Aﬁnitygjrrh = [[E,m (VAL ®E,, (VAL}‘)]

® [[Elm(VAL?) : [Elm<VAL;’>]. @

(2) Pooled cosine similarity: For a more concise representation of
affinity, we pool the token embeddings associated with each at-
tribute and calculate the cosine similarity with the correspond-
ing representation from the other entity. Equation (5) shows
affinity between two entities for a single attribute, attr™.

-
(mattrh ) mattr"
i J

h ho?
[ N (|

Affinity™" = ©)

where mf”’h and m*™" are the pooled representations of the
tokens for atir™ for entities i and j, respectively. With this
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variation, Aﬁinity?;"h €[ —1,1]yields a single scalar value per
attribute.

Finally, Equation (6) shows the final output of the language
module. Note that the ) @ is used to represent a series of con-
catenation operations.

H

[Emng(ei,e,-)ﬂElm(CLsm( @Afﬁnity;’j"h) ©)

h=1
4.1.2 | Distance Embedding Module

Capturing geographic distance is a vital aspect of any geospatial
ER framework. The choice of distance (or similarity) measure
for geospatial ER is a widely discussed research topic. While a
simple point-to-point distance is adequate for point-only data-
sets, the ideal choice for diverse geometries is more nuanced.
Distance measures like centroid-to-centroid distance, minimum
distance, maximum distance, Fréchet distance, and Hausdorff
distance have been proposed in various ER and non-ER geome-
try comparing tasks (Ghosh et al. 2018; Lei and Lei 2022; Xavier
et al. 2016).

Omni processes diverse geometries in a uniform manner, and as
a neural framework, this requires handling heterogeneous ge-
ometries in a single mini-batch. Fréchet distance, for example, is
defined on ordered sets of points and is particularly effective for
comparing polylines in trajectory analysis. However, in our set-
ting, the direction of traversal is not explicit in geometries across
sources, and enforcing direction invariance is computationally
expensive (Lei and Lei 2022). Moreover, the Fréchet distance
cannot be directly applied to point-polygon or point-line com-
parisons, and for point-point comparisons, it reduces to simple
Euclidean distance. While a highly engineered Fréchet distance
is applicable in principle, this is not a practical solution within
a neural framework that must process diverse geometries in the
same mini-batch.

Methods like (Balsebre et al. 2022, 2023) use Haversine distance
between point locations. We adapt this Haversine distance
embedding as a centroid-to-centroid distance. The centroid-
to-centroid distance is a widely used distance measure when
comparing complex geometries in ER tasks (Hastings 2008;
Martins 2011) and offers a simple yet generalizable distance
measure across diverse geometries. This measure is particularly
effective because many sources store the centroid of a complex
polygon as the feature's point representation; consequently,
centroid-based comparison provides a strong alignment signal
when matching a complex geometry with its corresponding point
representation or with a simplified point representation from a
different source. Another viable and generalizable candidate
distance measure is the Hausdorff distance. We conducted pre-
liminary experiments to compare the performance of Hausdorff
distance vs. centroid-to-centroid distance and found that the lat-
ter yields better performance in practice (see Section 5.6).

However, with complex geometries, centroid-to-centroid dis-
tance alone is not an adequate representation of the geospatial
distance. Therefore, we supplement the distance module with a
minimum distance measure (Acheson et al. 2020; Hastings 2008;

Martins 2011). This minimum distance module uses the geome-
try normalization used in the Omni-GeoEncoder (Section 4.1.3).
The minimum distance d;; between the two geometries is scaled
using the maximum normalized distance, max_norm _dist and
embedded using a linear layer with two learnable parameters,

Xmin_dist and ﬁmin,dist'

d..

— 7 Y _
Eonin_ais () = a’”“—"“‘(max norm_dist

1) + ﬂmin_dist'
7

The centroid-to-centroid Haversine distance embedding and the
minimum distance embedding are concatenated to obtain the
final distance embedding.

4.1.3 | Omni-GeoEncoder

As discussed previously, a deep learning entity resolution
model can benefit immensely by learning representations
of complex geometries and their geometrical relationships.
Representing places with complex geometries as points al-
ways results in a loss of information. Hence, we propose a
novel geometry encoder: Omni-GeoEncoder that is capable
of encoding complex geometries of varying types and also
creating embeddings of the geometries that capture geomet-
rical relations between them. We leverage CNNs adapting a
ResNet architecture (He et al. 2016), inspired by Mai, Jiang,
et al. (2023).

Firstly, given a pair of geometries (g;, g), belonging to the two
entities e; and e;, if any of the geometries is a point, we trans-
form the point geometry to a simple circular disk with a nom-
inal radius of 1m and P vertices. Indeed, no physical place
on Earth can be accurately represented as a zero-dimensional
point. We test this approach with several exclusively point
datasets (Section 5.4). Henceforth, this entity's point geometry
is replaced by the circular disk geometry. Polygons with holes
are simplified by removing the holes. For encoding purposes,
all geometries need to be represented with a fixed number of
vertices, P. Using a larger P value will result in a more detailed
geometry (see Section 5.6 for the empirical determination of
the ideal P value). If the number of vertices of geometry | g |
is greater than P, we use a modified Douglas-Peucker algo-
rithm (Douglas and Peucker 1973) to decimate the geometry
(polygon, multi-polygon, line or polyline) into a geometry of
fixed number of P vertices. Instead of recursively removing
all vertices that lie beyond a distance of €, we order the verti-
ces according to importance and retrieve the top P most im-
portant vertices, taking care to preserve first and last vertices
in all cases. In the case of multi-polygons and polylines, the
number of vertices allocated to each polygon or line segment
is calculated proportional to the area or length respectively.
Conversely, if the number of vertices in the original geometry
is less than P, we do an equidistant interpolation to increase
the number of vertices to P.

Subsequently, we carry out a projection of the geometries
from their original datum to a planar projection. This projec-
tion enables easier distance calculation between vertices and
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normalization required for our subsequent steps. Next, the two
geometries are normalized to a [-1, 1]x[-1, 1] 2D unit space
using a common minimum bounding box. This resulting pair
of geometries is then encoded using our Omni-Kdelta encoding,
padded, and subsequently passed on to the ResNet1D encoder to
obtain the embeddings of the geometries.

Omni-KDelta encoder: KDelta encoding is a preliminary encod-
ing that is used to add the neighborhood structure information
of each vertex to the encoding of each vertex, reducing the need
for very deep encoders (Mai, Jiang, et al. 2023). We adapt the
KDelta encoder, enabling it to encode both polygonal and linear
geometries. This encoding treats a series of vertices (be it lines
or polygons) as a 1D coordinate sequence. A geometry g is rep-
resented as:
[X0, Y1 %0, Y20 v s X1 Vi1 X Yo Xmats Yt 1o - +Xp—1>Yp—1>Xps Vp] -
KDelta encoding for the mth vertex, (x,,,y,,). can be shown as
follows:

Cn= [xm’ym’xm_xm—k’ym “Vm—ks -+

Vm _ym—l’xm_xm+l’ym _ym+1’

s X = Xpm—15

®

> Xim _xm+kvym _ym+k]'

To identify neighboring polygons in edge cases, that is, when
m —k <0orm—k 2P, Omni-KDelta encoding uses a circular
padding for polygons. Conversely, lines use zero padding as per
Equation (9). This reflects the difference of the cyclic nature of a
series of polygonal vertices and the acyclic nature of a line series.

-

<k;Viwhenk—m—1<0,X, < X,;; Y, < Yms
SXn =X =0,y =y =0

ms k <m < p—k; follow Equation (8) 9

2p—k;Viwhen <P —m,X; < X,; Y| < Vs

Xy =% =05y, -y,=0

Thus, we obtain the final Omni-KDelta encoding for the
whole geometry, C=[c[,c], ...,cl, ... ,cj] by stacking the
point encodings. Additionally, we use custom padding accord-
ing to the type of geometry. We pad linear geometries with
zero padding and polygon geometries with circular padding
(Figure 3). Note that this is different from the neighbor pad-
ding for each vertex described above. This padding reinforces
the type of geometry and respects the clear difference between

the two types of geometries.

Finally, the encoded geometry C is input to the ResNet1D encoder.
We use a standard ResNetl1D architecture to obtain the embed-
dings. Since we have applied a custom geometry-specific padding
for our geometries, we omit any padding from the first convolu-
tional layer. C is passed to the first 1D-CNN with stride of 1 and no
padding with I 3x1 kernels. After a subsequent 1D batch normal-
ization layer and ReLU activation, we carry out a 1D max pooling
operation with a kernel of size 2, stride of 2 and zero padding. The
output is then passed to a series of R standard ResNet1D layers
with zero padding. The results from the ResNet1D layers are then
passed through a global max pooling layer and a dropout layer to
produce the embeddings of geometry, Egg,,(g;) The embeddings

for g; are similarly obtained and the two embeddings E gy, ( gi) and
Egone gj) are concatenated and passed on to a fully connected neu-
ral network with ReLU activation and a dropout layer to learn spa-
tial and topological relations between the geometries.

In conclusion, using the language module, we have captured
the relations between the textual attributes, [Elang(ei,ej), not
only by the summary representation of the serialized textual
attributes, E,;,,(CLS), but also by training the model to focus
on pairs of attributes that should be compared for matching
through attribute affinity generation, Aﬁ“mityfj". With our dis-
tance embedding model, we have focused on two distances:
capturing minimum distance, E,;, 4;;» and centroid-to-centroid
Haversine distance, E,,,;,;q- We leverage the Omni-GeoEncoder
to embed the two geometries (Eggy(8;), Egon(g;)) and learn a
combined representation, learning the spatial and topological
relations between the geometries Eg,,p, (g g )- Finally, we carry
out a concatenation of these representations and pass it to an
MLP for prediction.

Prediction(match | e;,e;) = softmax(MLP([E,,,,(e;, ;)
@ IEminfdist (dgi,gj ) @ [Ecentroid (dgi,gj ) @ [Egeom (gi’ gj)]))
(10)

4.2 | LLMs for Geospatial ER

In this section, we detail the methods used to leverage large lan-
guage models for geospatial ER: the learning strategies and the
prompt variations used.

4.2.1 | Scenario 1: Zero-Shot Prompting

In contrast to PLMs, LLMs have demonstrated remarkable zero-
shot capabilities (Kojima et al. 2022). In the zero-shot prompt-
ing scenario, we evaluate the performance of the LLM without
using any training data. Various prompt variations are tested by
adopting existing prompts from generic ER tasks and designing
more domain-specific prompts tailored to the geospatial nature
of the task. At its core, each prompt includes a task description
and a serialized input of the two places to be matched. Following
a building-block approach, we combine different task descrip-
tions with various entity serialization formats. All task descrip-
tions specify the format of the answer: either “Yes” or “No” in
the entity resolution setting or one of the four predefined labels
in the multi-class relation classification problem in GTMiner
dataset (GTMD) (see Section 5.2).

Figure 4 details the task descriptions and the serialization for-
mats used for each prompt. Examples for all prompt designs can
be found in the project repository.!

Zero-shot prompts tested are listed below:

1. simple: This prompt is adapted from the domain-complex-
force prompt for generic ER (Peeters et al. 2023). Diverging
from their original prompt, the two entities to be matched
are explicitly defined as “places” and “place descriptions.”
For ER, this prompt combines the task description in
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Do the two place descriptions refer to the same
real-world place?
Answer with 'Yes' if they do and 'No' if they do
not.

Place 1: 'Base Backpackers hostel -36.8496619
174.764636"
Place 2: 'Queen Street Backpackers hostel -
36.8489282 174.7624718"'

(a) simple task description

(e) simple serialization

Two place descriptions are provided. Predict the
relation between them. Answer only with ‘same as’,
‘part_of’, ‘serves’ or ‘unknown’

(b) multi-class simple task description

Place 1: 'name: Base Backpackers type: hostel
latitude: -36.8496619 longitude: 174.764636"'
Place 2: 'name: Queen Street Backpackers type:
hostel
latitude: -36.8489282 longitude: 174.7624718°

Two place descriptions and the geographic distance
between them are provided. Do the two place
descriptions refer to the same real-world place?
Answer with 'Yes' if they do and 'No' if they do
not

(f) attribute-value serialization

(c) distance task description

Place 1: ‘COL name VAL Columbia Bank / Te Nuku-o-
Mourea COL type VAL Bank COL latitude VAL -
34.419964 COL longitude VAL 172.66064° Place 2:
‘COL name VAL Columbia Reef COL type VAL Bank COL
latitude VAL -34.4199972617787 COL longitude VAL
172.6606316145834"

Two place descriptions are provided. Answer with
'same_as' if the first place is the same as the
second place. Answer with 'part of' if the first
place is a part of the second place and is located
inside the second place. Answer with 'serves' if
the first place provides a service to the second
place in terms of human mobility, assistance, etc.
Answer with 'unknown' if the two places show none
of these relations.

(g) PLM serialization

Place 1: 'name: Aoraki/Mount Cook National Park
type: protected area
latitude: -43.5496 longitude: 170.206240°"
Place 2: 'name: Mount Cook National Park type:
National Park
latitude: -43.59499 longitude: 170.14166’
Distance: 7.25km

(d) multi-class full task description

(h) attribute-value-distance serialization

FIGURE4 | Prompt building blocks: Task descriptions on the left and entity serializations on the right.

Figure 4a (and entity serialization Figure 4e). For multi-
class relation prediction, it combines Figure 4b,e.

2. attribute-value (a-v): Variation of simple where the place de-
scriptions’ serialization includes the attribute type and the
value as opposed to only values, providing more context to the
model. For ER, this strategy combines Figure 4a,f. Multi-class
relation prediction uses Figure 4d combined with Figure 4f.

3. plm-serialization (plm-ser): The place descriptions are se-
rialized in the same format as the input to the PLMs in
the PLM-based solutions (Balsebre et al. 2022, 2023; Li
et al. 2020) as described in Section 4.1.1. This strategy com-
bines Figure 4a,g for ER and Figure 4d,g for multi-class
relation prediction.

4. attribute-value-distance (a-v-d): The attribute-value prompt
is enhanced with the distance between the two places
explicitly included in the prompt. For ER, this prompt
combines Figure 4c,h. For multi-class relations, the task
description in Figure 4d is altered by changing the first
sentence to “Two place descriptions and the geographic
distance between them are provided.” This new task de-
scription is combined with the serialization shown in
Figure 4h.

4.2.2 | Scenario 2: Few-Shot Learning

We use task-specific training examples in the prompt to test
the model's in-context learning ability (Dong et al. 2024).
We use attribute-value and attribute-value-distance prompts

during our few-shot learning experiments. In the few-shot
setting, the task description is followed by several demonstra-
tions sampled from the training split and their ground truth
labels before the serialized place descriptions of the place
pairs for which the model should make a prediction for. The
serialization of the entities in the demonstrations is kept con-
sistent with the test prompt. We use two sampling strategies
for selecting train samples:

1. Random: Demonstrations are randomly sampled from the
training datasets, with four examples utilized in our exper-
iments. This yields two experiments random-attribute-value
(rand-a-v) and random-attribute-value-distance (rand-a-v-d).

2. Class-balanced: A fixed number of demonstrations are ran-
domly sampled from each class to ensure that the model is
exposed to examples from every class. Two demonstrations
from each class were used in the experiments. This too yields
two experiments class-balanced-attribute-value (cbal-a-v)
and class-balanced-attribute-value-distance (cbal-a-v-d).

4.2.3 | Scenario 3: Fine-Tuning

In this scenario, the train and validation splits of each dataset are
used to fine-tune the LLM locally using Low-Rank Adaptation
for Quantized Models (QLoRA) (Dettmers et al. 2024). First, 4-
bit quantization is applied to the base model, reducing the mem-
ory footprint. This step converts high-precision floating-point
values into low-precision “4-bit NormalFloats.” Subsequently,
low-ranked adapter matrices focused on specific modules are
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introduced. Instead of training the complete model, these low-
rank matrices can be learned, significantly reducing the number
of trainable parameters and VRAM requirements. The models
were fine-tuned on three of the prompts used for zero-shot learn-
ing: simple, attribute-value, and attribute-value-distance. Upon
fine-tuning a model with prompt using the respective dataset's
training split, the model is set to generate (or evaluation) mode
to make predictions on the relevant test split.

5 | Experiments and Analysis

This section presents our experimental findings in light of the
following research questions:

« RQI1: How does Omni generalize to sources containing only
point locations, and how does it compare with existing PLM-
based methods and the novel LLM approaches? (Section 5.4)

» RQ2: How do Omni and the LLM based methods perform
on diverse-geometry datasets? (Section 5.5)

« RQ3: How effective are the novelties of the Omni model
and how do they contribute to the final output of the Omni
model? (Section 5.6)

+ RQ4: How do the models rank in terms of parameter effi-
ciency and inference time? (Section 5.7)

In order to assess the performance of Omni and the LLMs on
geospatial ER, we implement a comprehensive set of experi-
ments on 4 datasets originating from 6 different real-world data-
bases covering 12 different cities and regions.

5.1 | Implementation Details

Omni is implemented using PyTorch on a single A40 GPU. We
employ an Adam optimizer and a linear scheduler with a warm
up of 100 steps and a learning rate of 0.0003. We trained all
models for 15 epochs. As our language model for Omni, Im, we
used the Bert-base-uncased model from HuggingFace.? We only
used at most two attributes for Attribute Affinity generation:
toponym and place type, place type and address or toponym
and address. For Omni-KDelta encoding, P is set to 300 and
the number of neighbors for each vertex on a single side, k, is
set to 6. Number of kernels, I set to 512. R, number of standard
ResNet1D layers is set to 6 with a dropout rate of 0.3. Unless
specified otherwise, we use this configuration for our model.

For generative LLM based experiments, we chose a 4-bit quantized
Llama-3-8B-Instruct model by Meta.> The model was selected
based on its superior performance compared to similar sized mod-
els, open availability, and hardware limitations. We used Quantized
Low-rank Adapters to fine-tune the model on a single A40 GPU.

5.2 | Datasets
SwissGeoNames dataset (SGN) (Acheson et al. 2017, 2020):

Dataset resolves 400 SwissNAMES3D (S3D)* and 400 GeoNames
(GN)’ places from Switzerland. The dataset only publishes the

IDs of 400 positive matches. Unfortunately, due to the S3D's
UUID updates, we were only able to retrieve 287 of the 400
positive pairs. Ninety-three of the retrieved S3D places were en-
hanced with their corresponding complex geometries from S3D.

GeoER dataset (GeoD) (Balsebre et al. 2022): Dataset covers four
cities (Singapore, Edinburgh, Toronto, and Pittsburgh) from
three different sources: Open Street Map (OSM),® FourSquare
(FSQ),” and Yelp.® Eight different sub-datasets are presented
with two datasets for each city matching OSM-FSQ and OSM-
Yelp. Although this dataset is a POI dataset, we were able to
find complex geometries for some places in the datasets in their
original sources on manual inspection. Unfortunately, we were
unable to enhance any of these places with complex geometries,
as the dataset does not offer original OSM identifiers. Therefore,
GeoD will serve as a point-only dataset. This dataset will help
assess Omni's ability to generalize to point-only datasets when
complex geometries are not available.

GTMiner dataset (GTMD) (Balsebre et al. 2023): Created for
geospatial relation mining, the dataset covers four cities from
OSM and Yelp and annotates three relations: part_of, same_as,
and serves. This dataset too is originally a point-only dataset,
but it publishes the source identifiers from both OSM and Yelp.
However, we were unable to rely solely on the IDs, as OSM not
only updates but also re-uses its IDs. This posed a challenge
in verifying whether the features in OSM at the time of pre-
processing were consistent with the features in the original
dataset. Consequently, we only used complex geometries of fea-
tures that we could programmatically confirm as corresponding
to the original records. Alongside the ID matches, we enforced
other constraints: perfect matches on the name, place type, and
geospatial locations. Using these stringent filtering techniques,
we retrieved 0, 19, 466, and 101 complex geometries from OSM
for Singapore, Toronto, Seattle, and Melbourne sub-datasets,
respectively.

New Zealand Entity Resolution dataset (NZER)®: This is a
dataset we manually annotated covering five regions across
New Zealand. New Zealand, a bilingual country with two of-
ficial languages (English and Te Reo Maori), offers a complex
problem in string matching for place names as places across
sources can have English names, Te Reo Maori names or con-
catenations of English and Te Reo Maori names. This should
require ER methods to shift the focus from place names (which
often provide the strongest signal for a match) to other attri-
butes like footprint similarity or feature type similarity. We
chose five different regions to capture the nuances of popula-
tion densities, proximity to large cities, percentages of English
and Maori speakers, and the differences in ratios of natu-
ral and man-made features. The five regions selected were:
Auckland, Hope Blue river range, Norsewood, Northland, and
Palmerston North. We used three different sources: OSM, GN
and the New Zealand Geographic Board's gazetteer (NZGB)
from Land Information New Zealand (LINZ).1° For both OSM
and LINZ, we utilized not only the point shapefiles tradition-
ally used in prior work, but also the polygon, line, and dedi-
cated road shapefiles. We then overlaid all features from the
shapefiles from the regions and employed four graduate GIS
students to manually annotate the matches. Initial sandbox
annotation revealed a Cohen's Kappa of 0.95 indicating a high
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inter-annotator agreement. We maintained a 30:1 ratio of
negatives to positives which is suggested in the literature to
reflect the real world situation (Acheson et al. 2020; Sehgal
et al. 2006). NZER is the first manually annotated, publicly
available dataset that allows complex geometries. Further de-
tails on the datasets are given in Table 1.

5.3 | Methods Compared
For a comprehensive analysis, we test Omni, the LLM-based
methods, and the existing SOTA methods on all datasets. Here
we list all methods compared:

« GTMiner (Balsebre et al. 2023) is a geospatial relation pre-

diction model. For GeoD, NZER, and SGN, the classifica-
tion layer is modified to carry out binary classification.

TABLE1 | Table summarizes the attributes of the datasets used.

« GTMiner(ExRe) (Balsebre et al. 2023) is a knowledge graph
refinement algorithm applied on top of the GTMiner rela-
tion predictor. This only applies to GTMD.

« GeoER (Balsebre et al. 2022) is a geospatial ER model. We
extend its classification layer to predict multiple relations
for GTMD. For NZER, we apply its blocking mechanism
only on the train splits but not on the test and valid splits
for a fair comparison. Furthermore, to support GeoER's
neighborhood attention mechanism, we use their neighbor
search algorithm to create neighboring entities for NZER.

« Zero-shot, Few-shot & Fine-tuned See Section 4.2.

« Omni-small is the variation of the Omni model using a
mean pooled cosine similarity for the attribute affinity
mechanism. We extend its classification layer to predict
multiple relations for GTMD.

Complex
Diverse geometry #positive %complex
Dataset  Matching type  geometry? enhanced? Regions # of pairs pairs geometries
GeoD Dirty-Dirty No No Pittsburgh 5001 1459 0
(PIT) 5116 1622
Toronto (TOR) 17,858 3826 0
27,969 5426
Edinburgh 17,386 3350 0
(EDI) 18,733 2310
Singapore 19,243 2116 0
(SIN) 21,588 2914
SGN Clean-Clean No Yes Switzerland 8387 287 2.1
GTMD Dirty-Dirty No Yes Singapore 26,157 12,729* 0
(SIN)
Toronto (TOR) 16,979 8194* 1
Seattle (SEA) 15,815 6610* 4.5
Melbourne 6117 3717* 7.5
(MEL)
NZER Clean-Clean Yes NA Auckland 4001 130 48.62
(ACK)
Hope Blue 19,374 624 30.14
(HOP)
Norsewood 11,885 388 48.62
(NRS)
Northland 23,027 752 32.21
(NTH)
Palmerston 7934 254 78.92
(PLM)

Note: The “Diverse Geometry” column indicates whether the datasets originally included complex geometries and the next column indicates if we were able to enhance
the original datasets with complex geometries from their original sources. # of matching pairs for GeoD shows OSM-FSQ first followed by OSM-YELP subsets. *For the
purposes of this summary representation, GTMD's number of positive pairs count all pairs that are not of the “unknown” type. For the exact distribution of relations in

GTMD, refer to the original paper Balsebre et al. (2023).
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o Omni is the default Omni model. We extend its classifica-
tion layer to predict multiple relations for GTMD.

5.4 | Point-Only Datasets (RQ1)

Table 2 reports the performance of the models on a point-only
dataset, GeoD. As an ER model, GeoER outperforms GTMiner
on all of GeoD sub-datasets. Despite being limited to only
point geometries, Omni outperforms GeoER in all but two
sub-datasets. It should be noted that all fine-tuned ER models
compete very closely in this point-only dataset. It is also import-
ant to note that Omni only uses attributes from the two entities
being compared and does not use the additional neighborhood
details that GeoER leverages. These results attest to Omni's abil-
ity to generalize to point-only data. These results also confirm
the intuitive observation that augmenting a theoretical zero-
dimensional point location as a two-dimensional disk does not
have any detrimental effect on the results.

Omni-small uses a mean pooling strategy (see Section 4.1.1).
However, the pooling produces some loss of information. Other
pooling strategies tested produced similar or worse results. In
a dirty data setting, with sparsely populated columns, the use

of the [VAL] token's representation for Attribute Affinity, as in
the default Omni model, consistently produces better results, as
evident in the experiments with GeoD.

The effectiveness of prompts shows massive variations depend-
ing on the sub-dataset. This is consistent with the findings of
Peeters et al. (2023) in generic ER. In general, the LLM favors
a simple prompt, as is evident from the comparatively supe-
rior results produced by a simple prompt in a zero-shot setting.
This is stressed in the poor performance of the complex and
verbose plm-serialization. In the same setting, the attribute-
value-distance prompt consistently outperforms the attribute-
value prompt. This suggests the LLM's inability to calculate
geographic distance on its own from the coordinates provided
when the distance is not explicitly provided in the prompt.

In general, few-shot learning produces better results than zero-
shot, although results show large variations. Randomly sam-
pling the training dataset produced better results than ensuring
class balance in the demonstrations. This can be attributed to
the class imbalance present in all of these datasets. In the class-
balanced sampling setting, larger numbers of false positives were
recorded, resulting in a drastic drop in precision as the model
appears to carry a bias created by the balanced demonstrations.

TABLE 2 | Comparison between SOTA PLM-based methods, our LLM, and Omni on point-only datasets (F1%).
GeoD
PIT TOR EDI SIN
OSM- OSM- OSM- OSM-
Methods YELP OSM-FSQ YELP OSM-FSQ YELP OSM-FSQ YELP OSM-FSQ
PLM baselines
GeoER 97.11 92.65 95.87 93.35 96.64 94.90 92.45 88.90
GTMiner 95.83 92.23 95.52 87.79 95.40 94.15 80.98 87.51
Zero-shot LLM
simple 68.39 63.58 67.23 56.81 85.95 68.71 52.64 43.80
a-v 42.08 38.42 50.35 37.24 53.6 46.00 35.99 31.39
plm-ser 21.16 21.41 19.14 9.26 22.08 15.51 8.27 11.29
a-v-d 67.17 70.25 65.54 66.35 56.83 61.92 44.81 39.86
Few-shot LLM
rand-a-v 68.35 82.99 77.92 67.11 92.50 83.79 58.50 67.72
rand-a-v-d 80.28 81.71 84.89 86.19 93.35 91.70 80.71 63.57
cbhal-a-v 70.15 82.51 27.26 40.83 87.45 45.71 64.28 70.10
cbhal-av-d 78.48 87.37 53.66 50.18 91.49 63.74 73.10 71.72
Fine-tuned LLM
simple 96.24 92.90 95.03 94.79 93.19 94.25 91.62 85.70
a-v 96.98 93.71 95.33 94.65 95.16 93.49 90.14 88.20
a-v-d 96.57 93.90 95.47 94.42 94.51 94.50 91.31 87.90
Omni-small 95.43 91.88 95.31 93.66 95.96 94.72 90.91 88.65
Omni 96.68 93.19 96.77 94.92 97.58 95.46 92.36 89.40

Note: Bold denotes best performance. Underlined numbers indicate the next best results. All PLM results are averages of three tests.
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The fine-tuned LLMs demonstrate closely competitive perfor-
mance, with none of the prompts used for fine-tuning emerging
as a definitive one-size-fits-all solution for the task. An inter-
esting observation made was the absence of a clear distinction
between LLMs fine-tuned on attribute-value and attribute-
value-distance. The lack of a clear difference in results as seen
in the zero-shot setting indicates the LLM's ability to calculate
or deduce distances from the provided coordinate pairs upon
fine-tuning.

5.5 | Diverse-Geometry Datasets (RQ2)

Omni'simprovementsbecome more prominent with datasets that
contain higher numbers of complex geometries (Table 3). Omni
produces the best results among all the tested models except in
two sub-datasets: NZER's Auckland sub-dataset and GTMD's
Singapore sub-dataset. It should be noted that the Singapore
sub-dataset is essentially a point-only dataset. Although with
minimal modification to predict multiple relation classes, Omni
shows outstanding improvements over GTMiner on GTMD, es-
pecially with sub-datasets that we were able to enhance with
their recovered original complex geometries. The performance
gain resulting from the addition of this small number of geome-
tries is compelling. With the enhancement of just 4.5% complex

geometries in SEA (GTMD) and 7.5% in MEL (GTMD), the F1
score improves by over 10% and nearly 5% respectively. This is
a clear indication of the loss of information when simplifying
complex features to points. These improvements can mainly be
attributed to the Omni-GeoEncoder's spatial insights.

Omni demonstrates significant gains in the NZER dataset,
outperforming existing PLM-based state-of-the-art (SOTA)
methods by up to ~14% in F1 score in certain sub-datasets. The
Auckland region proves to be distinctly challenging for all meth-
ods due to three reasons: (i) Large number of polyline geometries
(streets); (ii) Very close proximity of all entities as a dense urban
region; (iii) This region has the highest percentage of textually
dissimilar names (Maori and English) in annotated matches.
From the PLM-based methods, Omni produces the best results,
as it is not limited by the simplification of linear geometries to
simple points (like GeoER or GTMiner) resulting in a minimal
information loss. It is also aided by the Attribute Affinity mech-
anism's ability to capture finer grained semantic similarities
(from attributes like place type) where the [CLS] token's sum-
mary representation is inadequate to identify matching entities
with completely dissimilar names.

Although not a direct comparison, we highlight the origi-
nal results reported by Acheson et al. (2020) on the full SGN

TABLE 3 | Comparison between SOTA PLM-based methods, our LLM, and Omni on diverse-geometry datasets (F1%).

GTMD NZER
Methods SGN SIN TOR SEA MEL ACK HOP NRS NTH PLM
PLM baselines
GeoER 91.66 85.97 85.32 78.59 84.98 72.67 95.93 86.73 92.13 88.45
GTMiner 92.84 90.71 89.15 81.10 86.92 62.82 95.19 88.59 92.89 92.56
GTMiner(ExRe) — 89.92 87.64 80.97 85.68 — — — — —
Zero-shot LLM
simple 48.48 13.30 13.67 27.67 18.91 63.82 69.65 69.56 75.51 58.66
a-v 73.23 43.68 46.53 42.28 60.59 46.66 53.16 42.62 75.69 27.43
plm-ser 54.23 46.58 44.14 40.93 56.21 44.44 10.08 8.33 24.48 10.00
a-v-d 37.62 32.26 23.29 37.53 26.01 55.07 81.98 79.16 68.43 60.19
Few-shot LLM
rand-a-v 74.07 28.07 36.93 24.81 22.99 78.26 64.74 69.49 76.63 79.51
rand-a-v-d 54.16 22.58 37.64 19.01 14.55 78.26 71.85 61.99 70.90 72.72
cbal-a-v 78.12 66.41 63.57 48.11 65.28 79.71 69.47 66.66 78.78 81.15
cbal-a-v-d 86.95 65.91 70.19 67.46 56.68 73.68 77.88 66.66 86.03 85.71
Fine-tuned LLM
simple 94.20 73.52 54.26 44.89 35.94 81.00 89.27 93.47 92.75 94.71
a-v 93.33 60.10 70.23 54.01 53.36 81.36 81.88 92.64 93.61 91.80
a-v-d 91.89 75.30 79.93 72.31 75.07 86.90 89.65 91.30 92.18 82.75
Omni-small 94.37 89.27 89.00 90.51 90.66 82.10 98.22 93.85 95.24 95.11
Omni 96.10 89.58 90.36 91.33 90.87 84.64 98.92 96.75 95.77 96.38
Note: Bold denotes best performance. Underlined numbers indicate the next best results. All PLM results are averages of three tests.
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dataset. Using their best-performing combination of engineered
machine-learning features, they achieve an F1 score of 90.2%
on the complete dataset. On the subset of this dataset that was
recoverable, Omni achieves an F1 score exceeding 96%. It is also
worth noting that Acheson et al. (2020) incorporate additional
information—such as landcover and elevation—that is not used
by any of the other methods evaluated in our study.

Omni-small produces more competitive results in a clean-clean
ER setting as seen in NZER. GTMD is also a much cleaner
and complete dataset than GeoD Balsebre et al. (2023). It can
be concluded that the pooled cosine similarity strategy pro-
duces competitive results when the data are fully (or almost
fully) populated. In both cases, selecting a limited number of
well-populated attributes (as mentioned in Section 5.1) was
preferable.

Contrary to what was observed in the point-only datasets, the
performance of the attribute-value-distance prompt is poorer
than the attribute-value prompt for GTMD. This is caused by
distance being a misleading factor when it came to relations like
part_of and serves. Especially if only point locations were con-
sidered, a part of relation can easily be misclassified as a same_
as relation when the distance is zero. This is quite common, for
example: when a stall in a mall and the mall (part_of relation)
have the same or very close point locations. LLMs also respond
better to class-balanced few-shot prompts than randomly sam-
pled few-shot prompts with GTMD as the relations are more bal-
anced in the dataset than in the strictly ER datasets.

The fine-tuned LLM-based approaches consistently outperform
existing PLM-based methods on the strictly ER datasets like SGN
and NZER. However, the performance of the LLM on GTMD is
significantly lower than existing PLM-based approaches. This is
mainly due to the complexity of the task as GTMD is a multi-class
relation classification dataset. Although fine-tuning has led to a
notable gain in performance for all prompts in the LLM, it has
fallen short of learning all the nuanced relations in the dataset.

LLM fine-tuned on the attribute-value-distance produces excel-
lent results on the NZER's Auckland sub-dataset, surpassing all
PLM-based methods. Upon further investigation, this standout
performance was discovered to be attributable to the prior knowl-
edge acquired by the LLM during its pre-training. With exposure
to massive amounts of textual knowledge, even few-shot prompts

TABLE 4 | Ablation study results (F1%) on point-only datasets.

consistently outperform all PLM-based solutions except Omni.
We analyze more on this improvement in Section 5.8.

In summary, Omni demonstrates strong generalizability. In ad-
dition to significantly outperforming existing baselines on our
own complex geometry dataset (NZER dataset) and third party
datasets that we were able to enhance with a few complex geom-
etries (GTMD, SGN), Omni performs competitively and almost
always surpasses existing baselines that can only process point
data on their original point-only datasets (GeoD).

5.6 | Ablation Experiments and Analysis (RQ3)

Ablation experiments: We present the results of our abla-
tion study conducted to verify the effectiveness of our novel-
ties in Tables 4 and 5. We carry out four experiments: (1) No
Lang.: removing the language component to rely only on dis-
tance and GeoEncoder modules; (2) No GeoEnc.: removing the
GeoEncoder module; (3) No Att. Aff.: removing the Attribute
Affinity generation; (4) No Dist.: removing the distance module.
As expected, the language module proves to be the backbone of
the framework. The No GeoEnc. experiments demonstrate the
effectiveness of the GeoEncoder. The impact of the removal var-
ies as expected, with greater reduction in performance in data-
sets with larger numbers of complex geometries. The effect of
Attribute Affinity remains fairly constant in all datasets as this
mechanism is shown to help in the challenging comparisons
(see Section 5.8) where semantic similarities of specific attri-
butes hold the key to correct predictions. The importance of the
Distance module is seen to decrease as the significance of the
GeoEncoder increases. While the GeoEncoder exhibits the abil-
ity to capture relative spatial distances between two features, it
is not exposed to their actual geographic distance because all
geometries are encoded using the K-Delta encoding (Section 3).
Results indicate that the explicit distance embedding therefore
plays a complementary role to the GeoEncoder. The Distance
module demonstrates consistent contribution across datasets—
particularly in point-only settings, where the distance embed-
ding contributes more to performance than the GeoEncoder
itself. A notable exception, as a diverse geometry dataset, is the
SGN dataset where the Distance module's contribution remains
more significant than the GeoEncoder's contribution owing to
the very large geographic coverage of the dataset (covering places
all across Switzerland as opposed to all other datasets covering

GeoD
PIT TOR EDI SIN
Methods OSM-YELP OSM-FSQ OSM-YELP OSM-FSQ OSM-YELP OSM-FSQ OSM-YELP OSM-FSQ
Omni 96.7 93.2 96.8 94.9 97.6 95.5 92.4 89.4
No Lang. 88.7 68.6 90.3 87.5 86.5 84.7 74.8 62.6
No GeoEnc. 95.3 91.5 95.2 94.2 96.3 94.2 91.7 88.9
No Att. Aff. 94.9 91.6 95.0 92.8 95.5 94.3 90.1 87.8
No Dist. 95.0 89.7 94.5 92.6 95.8 92.6 87.6 85.2

Note: Bold denotes best performance.
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several cities or smaller regions). In this setting, geographic dis-
tance serves as a very strong indicator of match likelihood.

Distance embedding experiments: We experimented with in-
corporating Hausdorff distance across several sub-datasets,
comparing it against Omni's existing distance embeddings
(centroid-to-centroid and minimum distance). We evaluated
Hausdorff distance both as a stand-alone metric and in combi-
nation with minimum distance, replacing only the centroid-to-
centroid component from the original method. The resulting F1
scores are presented in Table 6.

As the experiments suggest, performance with Hausdorff dis-
tance as a stand-alone distance measure falls significantly below
the current method. Minimum distance is a highly informative
signal for geospatial ER. A point in a polygon or a point lying
on a line evaluates to zero with minimum distance—offering a
strong indication that the two records may represent the same
real-world feature. Conversely, Hausdorff distance may return a
misleadingly large distance. For example, some linear features
like rivers may have a single point representing them in some
point-only databases (like GeoNames) or consist of multiple
representations within the same database (like LINZ or OSM)
where it is represented both as a linear feature and a point. In
these cases, Hausdorff distance returns the distance furthest
from the point, which is an inflated and misleading value.

Hausdorff distance performs much better when used in combi-
nation with the minimum distance. However, we note that it does

not outperform our existing approach. This is due to the effect
of the centroid representations discussed earlier (Section 4.1.2)
that provides the framework a better signal about true positives.
As expected, in point-only datasets, the performance of all the
methods remains consistent since all methods yield effectively
equivalent distance values.

Number of K-Delta vertices, an empirical analysis: The choice
of P (see Section 4.1.3) is crucial in determining the quality and
fidelity of the geometry representation. Figure 5 shows the re-
sults from an empirical study on the optimal value for P. For
point-only datasets, the experiments reveal minimal informa-
tion gain as P increases. This observation highlights a critical
finding: for point-only datasets, Omni can achieve comparable
performance with as few as 50 points, maintaining the same re-
sults. Conversely, for datasets containing diverse and complex
geometries, the results demonstrate significant improvements
as P increases. Notably, in all diverse geometry datasets except
the AKL (NZER) dataset, very low P values can mislead the
model, resulting in F1 scores lower than those observed in abla-
tion tests where the GeoEncoder was completely removed. The
improvements in performance generally plateau around P =300
in most cases.

Generic spatial relation understanding of Omni-GeoEncoder:
We designed a diagnostic task to probe the fidelity of the geom-
etry representations learned by the Omni-GeoEncoder during
the training on our geospatial ER task. This experiment eval-
uates how well the encoder exhibits an upstream capability

TABLE 5 | Ablation study results (F1%) on diverse-geometry datasets.
GTMD NZER
Methods SGN SIN TOR SEA MEL ACK HOP NRS NTH PLM
Omni 96.1 89.6 90.4 91.3 90.9 84.6 98.9 96.8 95.8 96.4
No Lang. 84.6 56.3 57.2 68.2 70.5 58.8 56.3 54.0 65.0 78.2
No GeoEnc. 92.9 89.0 89.7 81.5 89.5 78.4 97.2 92.9 93.1 92.4
No Att. Aff. 94.5 87.7 86.3 89.2 89.9 80.1 98.1 95.5 94.2 95.1
No Dist. 91.9 86.8 87.7 87.5 89.2 81.8 98.0 95.9 94.6 94.5

Note: Bold denotes best performance.

TABLE 6 | F1scores comparing Hasudorff distance with the current combination of minimum distance and centroid-to-centroid distance.
PIT PIT SIN SIN

Distance AKL NTH PLM (OSM- (OSsM (OSM- (OSsM
embedding (NZER) (NZER) (NZER) SGN YELP) -FSQ) YELP) -FSQ)
Omni 84.64 95.77 96.38 96.1 96.68 93.19 92.36 89.40
Hausdorff 80.26 91.59 91.88 90.85 96.70 92.90 93.16 88.83
Distance

Minimum 82.4 94.96 94.06 94.78 95.90 93.37 92.88 89.15
Distance +

Hausdorff

Distance

Note: Second row shows results from using Hausdorff distance by itself and the third row is with Hausdorff distance replacing only centroid-to-centroid distance in the

Distance module.
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(spatial relation understanding) based solely on the embedding
representations acquired during ER training. For this purpose,
we isolated a GeoEncoder module “pre-trained” on an ER data-
set and evaluated its performance in predicting three spatial
relations which are expected to give strong signals in the down-
stream ER task:

1. Contain: Object B (including its boundary) is fully con-
tained inside object A.

2. Touch: The objects share a boundary but no interior points.

3. Overlap: The objects share some but not all interior points.

We created three separate datasets for each of these relations,

modeling the spatial relation understanding as a binary clas-
sification problem similar to Fleuret et al. (2011), Mai, Jiang,
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et al. (2023), and Yang, Russakovsky, and Deng (2019). The ge-
ometries were sourced from OSM and LINZ and the relations
were automatically annotated using QGIS.! To evaluate the
isolated GeoEncoder, we implemented a classification head on
top of the pre-trained GeoEncoder, training it for 10 epochs on
the train split while keeping the GeoEncoder's weights frozen.
The results, presented in Figure 6, highlight the spatial under-
standing of the GeoEncoder. GeoEncoders trained on point-
only ER datasets exhibited limited spatial understanding, as
expected, given their exposure only to point pairs augmented
as disks with nominal radii of 1m. Conversely, GeoEncoders
trained on complex geometry datasets demonstrated excellent
performance in predicting the contain and overlap relations,
underscoring the K-Delta encodings' and the embeddings'
ability to capture spatial relationships. However, the perfor-
mance in the touch relation was notably weaker. This outcome
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FIGURE 5 | Best performance of Omni on select sub-datasets with varying P values.
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FIGURE 6 | Performance of the Omni-GeoEncoder on three generic spatial relation prediction tasks.
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is unsurprising, as the touch relation requires the boundaries
of two geometries to coincide, which can be as minimal as a
single vertex intersection. This loss of information is caused by
the simplification of geometries during the modified Douglas-
Peucker decimation process.

5.7 | Model Efficiency (RQ4)

Naively comparing all records across databases when merging
geospatial databases is computationally expensive, resulting
in O(n x m) complexity. While various blocking techniques
like spatial blocking can mitigate this cost, they still lead to a
computationally expensive ER task. Consequently, efficiency
becomes a critical factor in evaluating ER solutions. Table 7
compares the size and inference time of each model. Omni
is significantly lighter compared to GeoER. This is primarily
due to GeoER's bulky neighborhood attention mechanism.
GTMiner is slightly lighter and comparable to Omni-small,
though the latter usually outperforms it. What is impressive
about Omni is that the added functionality of geometry en-
coding does not compromise inference time, as Omni remains
the fastest model at inference clocking almost 50 times faster
than GeoER.

The Llama-3-8B-Instruct model tested in this experiment
comprises 8 billion parameters, making it significantly more
resource-intensive than PLM-based solutions. Although the use
of QLoRA reduces the number of trainable parameters to fewer
than 200 million, in general, inference remains almost 100
times slower than Omni. In addition to their demanding VRAM
requirements, this positions LLMs at the bottom of the list in
terms of efficiency.

5.8 | Qualitative Analysis

Figure 7 illustrates some examples from the NZER dataset with
their predictions from the Omni model. Figure 7a resolves a point
feature and a polygon feature that bear minimal textual similar-
ity. It is also an instance of a multilingual place name where one
name consists of the English name and the other is a concatena-
tion of a different version of the English name and a Maori name.
Figure 7b shows an instance of a correct prediction with minimal
geospatial overlap between the polygon and the line. Figure 7c
also presents an interesting case of non-matches between a re-
serve and a river that flows through it. While the complete Omni
model correctly predicts a true negative, ablation studies reveal
that removing the Attribute Affinity results in a false positive.
This misclassification is attributed to the high textual and geo-
footprint similarity. In such challenging cases, insight provided
by Attribute Affinity on specific attributes plays a crucial role in
the model's correct interpretation of the relation between places.

To investigate the exceptionally high performance of the LLMs
on the NZER's Auckland sub-dataset, we designed a simple
experiment: We posed the base Llama-3-8B-Instruct model
the following question: “Answer the following question. What
is an alternative name for <PLACE> in Auckland?” where
<PLACE> was replaced with a name from our test set. Even
for challenging cases such as “Te Wapt o Queen,” the model's
response, although verbose and simply predicting next token,
consistently included the correct answer, “Queens Wharf,” every
time (Te Wapt o Queen is the Maori name for Queen's Wharf).
Unlike PLMs, LLMs are better equipped to deal with multilin-
gual challenges owing to their vast pre-trained knowledge. This
outcome highlights two key points: the extensive knowledge
LLMs acquire during pre-training on large-scale corpora and the

TABLE 7 | Table compares the weight and inference speed of the models.

Methods Total # parameters # Trainable parameters Average inference time per 1000 samples
GeoER 221M 221M 80.2s

GTMiner 112M 112M 1.83s

In-context LLM 8B 158.3-208.3s

Fine-tuned LLM 8B 167M 253.33s

Omni-small 125M 125M 1.25s

Omni 132M 132M 1.66s

Note: All inference times are calculated on the NZER's Auckland sub-dataset. In-context LLMs report two inference times: Zero-shot and Few-shot.

/ Te Nuku-o-Mourea

(a) Point - poly : True positive

(b) Line - poly : True positive

(c) Poly - line : True negative

FIGURE 7 | Examples from the NZER dataset with predictions from the Omni model.
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inherent limitations in evaluating and comparing LLMs using
test datasets they may have been indirectly exposed to during
pre-training.

6 | Conclusion

This work introduces a novel omni-geometry encoder and the
use of a novel attribute affinity generation concept for ER in
geospatial databases. Our solution is the first deep learning-
based approach to perform ER on geospatial databases with
complex geometries, seamlessly encoding diverse geometry
types in a single encoder. The affinity generation concept shows
improvement in results over a simple summary representation
of the entities' textual attributes and can be generalized to ge-
neric ER. Evaluated on existing point datasets and our man-
ually annotated diverse geometry dataset, Omni-GeoEncoder
demonstrates the ability to learn and represent geometries and
how these representations can be effectively used to detect
spatial relationships between entities in downstream tasks.
Experiments on LLMs reveal that they lack true spatial under-
standing in zero-shot settings. Albeit being computationally ex-
pensive, they perform competitively in few-shot and fine-tuned
settings. Although they fall behind Omni in truly understand-
ing spatial relations, LLMs demonstrate superior language ca-
pability coupled with vast prior knowledge of places. Distilling
LLMs' language understanding in combination with spatial
embeddings is an interesting avenue of future research.
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