

ORIGINAL RESEARCH

Do high rheumatoid factor levels impact response to certolizumab pegol in patients with inadequately controlled rheumatoid arthritis? A post hoc analysis of the phase IIIb REALISTIC trial

Josef S Smolen ,¹ Ted R Mikuls,² James Galloway ,³ Ulf Müller-Ladner,⁴ Jeffrey R Curtis,⁵ Motomu Hashimoto,⁶ Tsutomu Takeuchi,^{7,8} Ernest Choy ,⁹ Yoshiya Tanaka ,^{10,11} Carlos Cara,¹² Bernard Lauwers ,¹³ Nicola Tilt,¹⁴ Baran Ufuktepe,¹³ Peter C Taylor ,¹⁵

To cite: Smolen JS, Mikuls TR, Galloway J, et al. Do high rheumatoid factor levels impact response to certolizumab pegol in patients with inadequately controlled rheumatoid arthritis? A post hoc analysis of the phase IIIb REALISTIC trial. *RMD Open* 2026;12:e006094. doi:10.1136/rmdopen-2025-006094

► Additional supplemental material is published online only. To view, please visit the journal online (<https://doi.org/10.1136/rmdopen-2025-006094>).

Received 4 July 2025
Accepted 11 December 2025

ABSTRACT

Objectives To assess the impact of rheumatoid factor (RF) levels and previous inadequate responses/intolerance to tumour necrosis factor inhibitors (TNFi-IR) on the efficacy of certolizumab pegol (CZP) in patients with rheumatoid arthritis (RA) through a post hoc analysis of the RA Evaluation in Subjects Receiving TNF Inhibitor CZP (REALISTIC) trial.

Methods In the phase IIIb REALISTIC trial, patients with RA were randomised to CZP (400 mg at weeks 0, 2 and 4, then 200 mg every 2 weeks) or placebo (PBO) for 12 weeks, followed by open-label CZP (minimum 16 weeks). Outcomes reported to week 36 include Disease Activity Score 28 C-reactive protein (DAS28-CRP) and Clinical Disease Activity Index (CDAI) scores, rates of DAS28-CRP <2.6 and CDAI remission (CDAI ≤2.8) and components of each. Data were stratified by baseline RF level (≤3rd quartile (≤Q3; <180 kU/L) vs 4th quartile (Q4; 'high RF'; ≥180 kU/L) and prior TNFi use (TNFnaive vs TNFi-IR).

Results A total of 930 patients were included: 751 CZP-randomised and 179 PBO-randomised. At week 12, CZP-randomised patients experienced marked and similar improvements in disease activity, irrespective of RF level and prior TNFi use, while PBO-randomised patients did not. Responses generally improved through week 36 in CZP-treated patients (including PBO-randomised switchers), with similar efficacy across subgroups.

Conclusions Patients with high and low RF levels experienced similar clinical responses to CZP treatment, irrespective of previous inadequate responses or intolerance to TNFis. These findings expand previous observations, supporting CZP as an effective treatment for patients with RA who have high RF levels and prior inadequate responses to TNFis.

Trial registration number NCT00717236.

WHAT IS ALREADY KNOWN ON THIS TOPIC

- ⇒ Patients with rheumatoid arthritis (RA) and high rheumatoid factor (RF) levels have poorer prognosis compared with patients with lower RF levels.
- ⇒ Unlike most tumour necrosis factor inhibitors (TNFis) used for RA, certolizumab pegol (CZP) does not have a fragment crystallisable region that can be bound by RF.
- ⇒ Among patients with higher RF levels, CZP-treated patients demonstrate higher drug concentrations and greater efficacy compared with other TNFis.

WHAT THIS STUDY ADDS

- ⇒ We demonstrate that patients with high and low RF levels experienced similar clinical responses to CZP treatment, irrespective of previous inadequate responses or intolerance to TNFis.

HOW THIS STUDY MIGHT AFFECT RESEARCH, PRACTICE OR POLICY

- ⇒ Our findings support CZP as an effective treatment for patients with RA who have high RF levels and prior inadequate responses to TNFis.

autoantibodies, such as rheumatoid factor (RF) and anti-citrullinated protein antibody (ACPA), which are detectable in up to 80% of patients with established RA and provide important diagnostic and prognostic information.^{1 2} RFs target the fragment crystallisable (Fc) portion of immunoglobulin G (IgG), leading to the formation of immune complexes that are crucial in the pathogenesis of RA.³ Patients with RA and high levels of RF have poorer prognosis, more aggressive and destructive disease, higher cardiovascular risk and higher risk of radiographic progression,

© Author(s) (or their employer(s)) 2026. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ Group.

For numbered affiliations see end of article.

Correspondence to

Dr Josef S Smolen;
josef.smolen@meduniwien.ac.at

INTRODUCTION

A common feature of rheumatoid arthritis (RA) is the presence of circulating

as well as increased levels of tumour necrosis factor (TNF), compared with patients with lower RF levels or absence of RF.^{4–11} These consequences are well known to be driven by high disease activity in patients with high RF levels.^{5,8,10–12} Moreover, RF level has been more strongly associated with disease activity than ACPA level.^{2,13}

Most TNF inhibitors (TNFis) used in the treatment of RA are monoclonal antibodies or receptor constructs with an Fc region (Fc-mAbs) that can be bound by RF.¹⁴ Binding of IgM-RF to TNFis enables the formation of large protein complexes,¹⁴ which can be subsequently internalised and undergo lysosomal degradation by macrophages.^{15,16} Clearance of Fc-containing TNFis is therefore enhanced in patients with high RF levels, appearing to lead to the reduced efficacy observed in these patients.^{11,14,17,18} These findings provide molecular insights into why patients with RA and high RF levels may have worse treatment outcomes with Fc-containing TNFis compared with those with lower RF levels.

Certolizumab pegol (CZP), a PEGylated TNFi without an Fc fragment, is effective for the treatment of RA and does not form complexes with IgM-RF.^{14,19} Thus, patients with RA and high RF levels may benefit from treatment with Fc-free TNFis. Indeed, in post hoc analyses and retrospective studies, among patients with higher baseline RF levels, CZP-treated patients have consistently demonstrated drug concentrations comparable to patients with lower baseline RF levels, and these patients have experienced greater efficacy with CZP compared with other TNFi treatments.^{15,17,20,21} Specifically, in a post hoc analysis of the phase IV EXXELERATE trial which included biological disease-modifying anti-rheumatic drug (bDMARD)-naïve patients with RA, CZP-treated patients with high RF levels (>204IU/mL; the highest quartile in the study) exhibited similar CZP drug concentrations and clinical responses as patients with RA and lower RF levels.²² On the other hand, patients with RA and high RF levels treated with the human TNFi adalimumab (ADA) had lower drug concentrations and poorer clinical outcomes than CZP-treated patients with low RF levels.²²

While it has been observed that high levels of RF are associated with lower clinical effectiveness of treatment with Fc-mAbs, it remains unknown whether this only pertains to patients with insufficient prior response to csDMARDs such as methotrexate (MTX), or also to those with inadequate response or intolerance to prior TNFis (TNFi-IR).

Here, we present the results of a post hoc analysis of RA Evaluation in Subjects Receiving TNF Inhibitor CZP (REALISTIC), a phase IIIB, randomised trial which assessed the efficacy of CZP versus placebo (PBO) in a large cohort of patients with RA. In REALISTIC, almost 40% of the RA patients had experienced a TNFi previously and CZP was associated with rapid and consistent clinical responses and improved physical function, irrespective of the type of previous therapy.²³ Here, we report the clinical efficacy of CZP in patients with RA, further

stratified by baseline RF level as well as previous TNFi use, to assess the potential impact of these differential characteristics on the efficacy of CZP treatment across different RA populations. Building on previous observations, our hypothesis was that patients with RA would experience consistent clinical responses to CZP, irrespective of high RF levels and inadequate response or intolerance to previous TNFis.

METHODS

Study design

The phase IIIB REALISTIC (NCT00717236) trial was a multicentre study conducted in 230 centres in the USA, Canada and Europe to evaluate the safety and efficacy of CZP administered to patients with moderate to severe RA.²⁴ The trial comprised a 12-week, double-blind, PBO-controlled, randomised phase, followed by an open-label extension in which all patients received CZP. The full study design has been reported previously.²³

At baseline, patients were stratified by MTX use (yes vs no), previous TNFi use (yes vs no) and disease duration (<2 vs ≥2 years) and were randomised 4:1 to receive either CZP (400 mg subcutaneous (SC) at weeks 0, 2 and 4, followed by 200 mg SC every 2 weeks (Q2W)) or PBO injection (0.9% sodium chloride) for a 12-week period. CZP or PBO was administered in addition to current RA treatment (if any), which could include any combination of the following: DMARDs (MTX, leflunomide, sulfasalazine, chloroquine or hydroxychloroquine, azathioprine and/or gold), tetracyclines, glucocorticoids (prednisone equivalent ≤10 mg/day) and non-steroidal anti-inflammatory drugs (cyclo-oxygenase-2 inhibitors), or none of these. Following this, patients who completed 12 weeks of treatment with either CZP or PBO were eligible to either continue, or start receiving, open-label 200 mg CZP Q2W for a minimum of 16 weeks and up to 28 weeks or until CZP commercial availability in the relevant region, whichever was latest.

Patients

Included patients were ≥18 years old, with a diagnosis of adult-onset RA of at least 3 months, as defined by the 1987 American College of Rheumatology (ACR) classification criteria,²⁵ and with active RA disease as defined by: ≥5 tender joints, ≥4 swollen joints (out of 28 joints), a C-reactive protein (CRP) concentration ≥10 mg/L and/or an erythrocyte sedimentation rate ≥28 mm/hour at screening. Patients must have also had an unsatisfactory response or intolerance to at least one csDMARD.

Reasons for patients being excluded included: having received experimental biological or non-biological treatment for RA in the last 3 months or within five half-lives prior to the baseline visit or having received treatment with more than two TNFis prior to enrolment. Full exclusion criteria have been reported previously.²³

Outcomes

Effectiveness outcomes were stratified by baseline RF level quarter (\leq 3rd quarter (\leq Q3; 'low RF'; <180 kU/L) vs 4th quarter (Q4; 'high RF'; ≥180 kU/L)) and any prior TNFi use (TNFi-IR (previous inadequate response or intolerance) vs TNFi-naïve). Data are reported to week 12 for PBO-randomised patients and week 36 for all CZP-treated patients, including those who switched from PBO to open-label CZP at week 12.

Response to treatment was assessed using the 28-joint Disease Activity Score (DAS28) with CRP and Clinical Disease Activity Index (CDAI). Mean DAS28-CRP and CDAI scores, and rates of DAS28-CRP <2.6 and ACR-European Alliance of Associations for Rheumatology (ACR-EULAR) index-based remission²⁶ (CDAI remission; CDAI ≤2.8) are reported to week 12 for both treatment groups, and to week 36 for patients who continued to receive CZP, or switched to open-label CZP, after week 12. As a sensitivity analysis, mean DAS28-CRP and CDAI are additionally reported stratified by lowest baseline RF level quarter (1st quarter (Q1; 'very low RF'; ≤13 kU/L) vs Q4).

Additionally, mean scores for each of the following individual components of DAS28-CRP and CDAI are reported to week 36: swollen joint count (SJC), tender joint count (TJC), patient global assessment (PtGA) and physician global assessment (PhGA) of disease activity, as well as mean CRP level.

Statistical analysis

The analyses included patients from the full analysis set comprising all randomised patients who had an RF assessment at baseline. Data are reported as observed case (OC). Non-responder imputation (NRI) data are also presented for DAS28-CRP <2.6 and CDAI remission rates in the online supplemental material. As a post hoc analysis, only descriptive statistics are presented for all outcomes. In the absence of formal hypothesis testing, results should be considered exploratory rather than confirmatory.

RESULTS

Patient disposition and baseline characteristics

A total of 930 patients were included in this study: 751 patients were randomised to CZP and 179 to PBO. Baseline characteristics are presented in table 1. Most patients were women (722/930; 77.6%) and the mean (SD) age was 55.0 (12.7) years. The majority of patients had a disease duration of \geq 2 years (695/930; 74.7%) and over two-thirds of patients were on concomitant treatment with MTX (642/930; 69.0%). More than one-third of patients had prior TNFi use (352/930; 37.8%); of patients with TNFi-IR, approximately half had stopped their prior TNFi due to efficacy reasons. The TNFi-IR population had longer mean disease duration at baseline than the TNFi-naïve population; this pattern was consistent across treatment groups and RF subgroups. Baseline

demographics, including number of previous DMARDs, were similar between patients with low RF (\leq Q3) and high RF (Q4) levels, and between those randomised to each treatment arm.

DAS28-CRP and CDAI

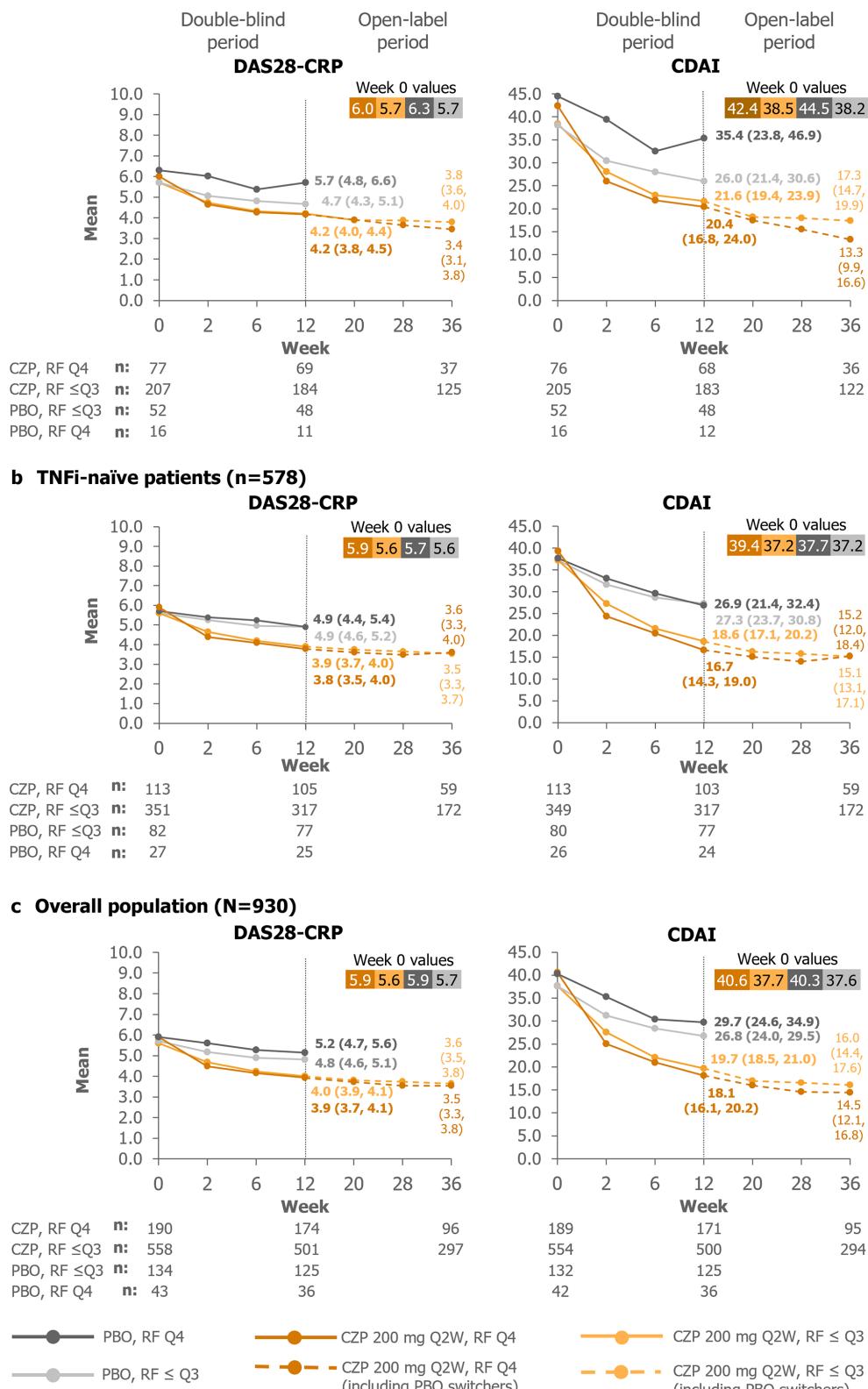
In the TNFi-IR population, mean DAS28-CRP and CDAI were similar at week 12 in CZP-randomised patients irrespective of RF levels, and were consistently lower than in PBO-randomised patients, with a numerically larger difference between CZP-treated and PBO-treated patients seen in those with high RF levels (DAS28-CRP: 4.2 (CZP) and 5.7 (PBO); CDAI: 20.4 (CZP) and 35.4 (PBO)) compared with those with low RF levels (DAS28-CRP: 4.2 (CZP) and 4.7 (PBO); CDAI: 21.6 (CZP) and 26.0 (PBO); figure 1a). Responses were generally similar at week 36 in all CZP-treated groups.

TNFi-naïve patients treated with CZP had numerically lower mean DAS28-CRP and CDAI scores at week 12 than PBO-randomised patients, regardless of RF level (figure 1b). The differences between PBO-treated TNFi-naïve patients with high and low RF levels at week 12 were numerically smaller than in TNFi-IR patients, while CZP-randomised patients demonstrated similar efficacy across TNFi subgroups irrespective of RF level. Similar consistent efficacy was seen at week 36 across TNFi and RF subgroups of CZP-treated patients (comprising both CZP-randomised patients and PBO-randomised patients who received CZP from week 12). In patients who switched from PBO to CZP at week 12, broadly similar patterns in DAS28-CRP and CDAI were observed through week 36 as those seen in CZP-randomised patients between baseline and week 12 (data not shown). Similar outcomes were observed in the overall population (figure 1c).

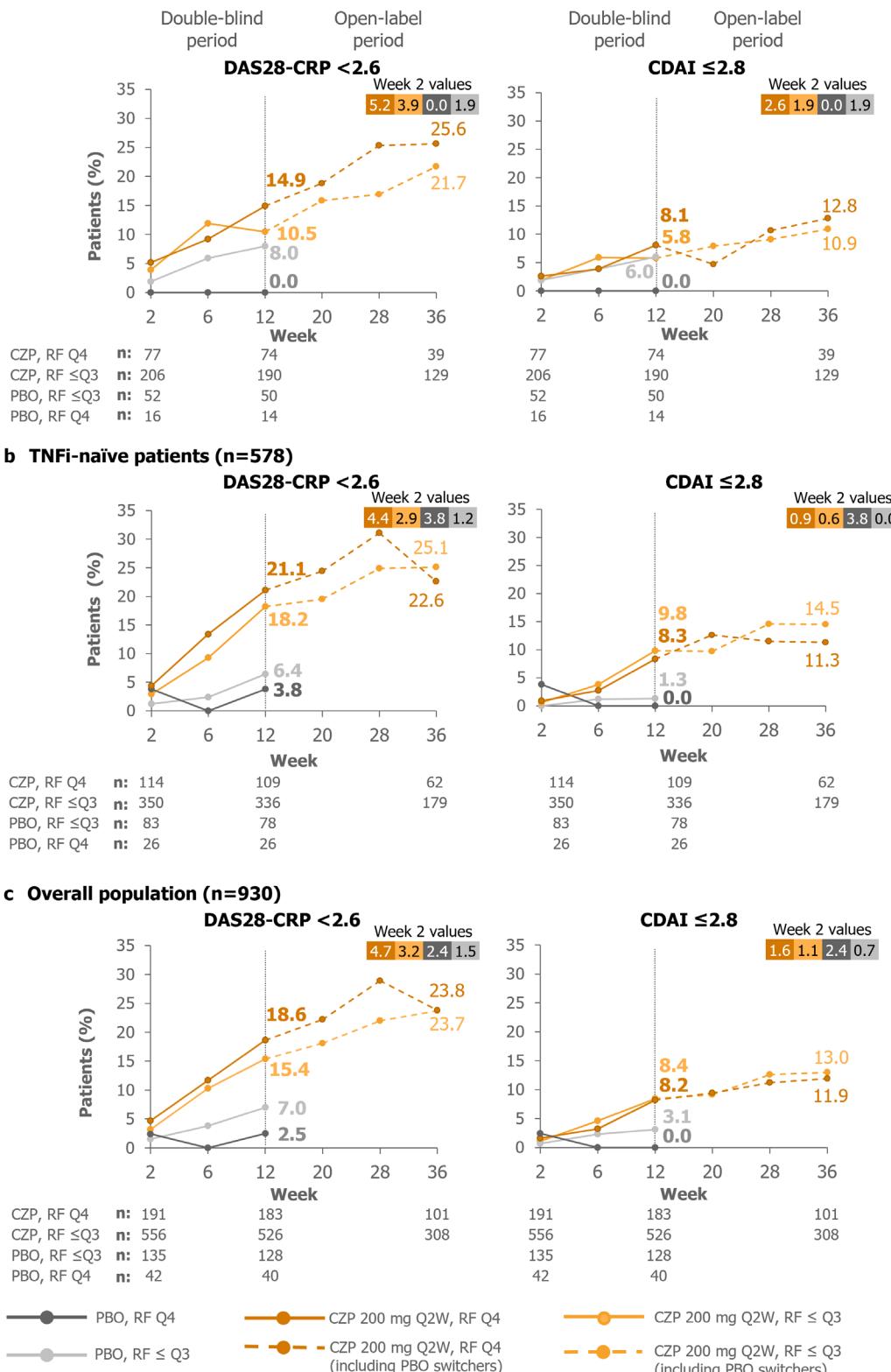
Sensitivity analyses comparing DAS28-CRP and CDAI in patients with baseline RF level in the lowest quarter (Q1) with those in Q4 demonstrated a broadly similar pattern (online supplemental figure S2).

Rates of DAS28-CRP <2.6 and CDAI remission (≤2.8)

In TNFi-IR patients, no PBO-randomised patients with high RF levels achieved DAS28-CRP <2.6 or CDAI remission (≤2.8) at week 12, while these were achieved by 8.0% and 6.0% of patients with low RF levels, respectively. The proportions of TNFi-IR CZP-treated patients who achieved these thresholds were similar across RF levels (DAS28-CRP: 14.9% (high RF) and 10.5% (low RF); CDAI remission: 8.1% (high RF) and 5.8% (low RF); figure 2a). Similarly, among TNFi-naïve patients, the proportions of patients achieving DAS28-CRP <2.6 and CDAI remission (≤2.8) were consistently higher in CZP-randomised patients compared with PBO-randomised patients at week 12, including in patients with high RF levels (figure 2b). At week 36, the proportion of TNFi-naïve CZP-treated patients who achieved DAS28-CRP <2.6 and CDAI remission (≤2.8) was similar across RF levels. Generally, similar patterns were observed using NRI (online supplemental figure S1). In patients who


Table 1 Patient demographics and baseline disease characteristics

Baseline population characteristic	RF≤Q3 (<180 KU/L) (n=695)			RF Q4 (≥180 KU/L) (n=235)			TNFi-naïve (n=142)		
	TNFi-IR (n=259)		TNFi-naïve (n=436)		TNFi-IR (n=93)		TNFi-naïve (n=142)		
	PBO (n=52)	CZP (n=207)	PBO (n=83)	CZP (n=353)	PBO (n=16)	CZP (n=77)	PBO (n=28)	CZP (n=114)	
Mean age, years (SD)	50.3 (13.6)	54.2 (12.3)	54.7 (13.1)	55.3 (13.4)	57.3 (6.6)	54.9 (11.5)	53.6 (12.7)	57.6 (11.4)	
Female, n (%)	45 (86.5)	168 (81.2)	65 (78.3)	282 (79.9)	10 (62.5)	53 (68.8)	21 (75.0)	78 (68.4)	
Mean disease duration, years (SD)	9.7 (9.3)	11.8 (9.8)	8.4 (9.8)	6.3 (7.7)	11.8 (7.6)	11.1 (9.0)	5.9 (6.2)	7.0 (7.1)	
Disease duration <2 years, n (%)	7 (13.5)	17 (8.2)	29 (34.9)	133 (37.7)	0 (0)	5 (6.5)	9 (32.1)	35 (30.7)	
Positive RF (≥14 IU/ml) at baseline, n (%)	43 (82.7)	141 (68.1)	50 (60.2)	223 (63.2)	16 (100)	77 (100)	28 (100)	114 (100)	
RF level, IU/mL, mean (SD)	58.4 (49.5)	47.3 (46.0)	47.8 (46.9)	45.6 (46.3)	714.4 (1265.3)	602.3 (558.7)	519.9 (399.1)	544.4 (435.8)	
Prior TNFi reason for discontinuation, n (%) ^a									
Efficacy	23 (44.2)	92 (44.4)	—	—	11 (68.6)	29 (37.7)	—	—	
Non-efficacy	29 (55.8)	111 (53.6)	—	—	4 (25.0)	47 (61.0)	—	—	
Concomitant DMARD use, n (%)	37 (71.2)	163 (78.7)	69 (83.1)	307 (87.0)	11 (68.8)	54 (70.1)	24 (85.7)	94 (82.5)	
Concomitant bDMARD use, n (%)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	
Concomitant csDMARD use, n (%)	37 (71.2)	163 (78.7)	69 (83.1)	307 (87.0)	11 (68.8)	54 (70.1)	24 (85.7)	94 (82.5)	
Number of previous csDMARDs, n (%)									
0	13 (25.0)	59 (28.5)	32 (38.6)	134 (38.0)	7 (43.8)	19 (24.7)	15 (53.6)	39 (34.2)	
1	25 (48.1)	81 (39.1)	32 (38.6)	130 (36.8)	4 (25.0)	37 (48.1)	9 (32.1)	40 (35.1)	
2	8 (15.4)	26 (12.6)	10 (12.0)	59 (16.7)	2 (12.5)	10 (13.0)	4 (14.3)	22 (19.3)	
≥3	6 (11.5)	41 (19.8)	9 (10.8)	30 (8.5)	3 (18.8)	11 (14.3)	0 (0)	13 (11.4)	
Concomitant methotrexate use, n (%)	35 (67.3)	142 (68.6)	55 (66.3)	255 (72.2)	9 (56.3)	46 (59.7)	23 (82.1)	77 (67.5)	
DAS28-CRP Score, mean (SD)	5.7 (0.9)	5.7 (0.8)	5.6 (0.8)	5.6 (0.8)	6.3 (1.0)	6.0 (1.1)	5.7 (0.8)	5.9 (1.0)	
CDAI Score, mean (SD)	38.2 (12.5)	38.5 (11.6)	37.2 (11.1)	37.2 (12.2)	44.5 (14.0)	42.4 (14.7)	37.7 (10.2)	39.4 (13.0)	
ACPA, KIU/L, mean (SD)	139.0 (194.0)	111.5 (188.4)	99.5 (171.8)	115.2 (194.6)	260.8 (309.4)	302.7 (285.0)	340.3 (322.7)	268.5 (256.7)	


Only those patients with a non-missing RF assessment at baseline are included.

^aIf a patient had lack of response from either a primary or secondary TNFi, they were categorised under 'efficacy reasons'.

ACPA, anti-citrullinated protein antibodies; bDMARD, biological DMARD; CDAI, clinical disease activity index; CRP, C-reactive protein; csDMARD, conventional synthetic DMARD; CZP, certolizumab pegol; DAS28-CRP, 28-joint Disease Activity Score C reactive protein; DMARD, disease-modifying anti-rheumatic drugs; PBO, placebo; Q3, third quarter; Q4, fourth quarter; RF, rheumatoid factor; TNFi, tumour necrosis factor inhibitor; TNFi-IR, inadequate response or intolerance to TNFi.

a TNFi-IR patients (n=352)

Figure 1 28-joint Disease Activity Score C reactive protein (DAS28-CRP) and Clinical Disease Activity Index (CDAI) in (a) inadequate response or intolerance to tumour necrosis factor inhibitors (TNFi-IR) patients, (b) TNFi-naïve patients and (c) overall population, stratified by rheumatoid factor (RF) level (<180 kU/L ($\le Q3$) vs ≥ 180 kU/L (Q4)) (observed case). Data are reported (as mean [95% confidence interval]) to Week 12 for PBO-randomised patients and Week 36 for CZP-treated patients, including those who switched from PBO to open-label CZP from Week 12. CZP, certolizumab pegol; PBO, placebo; Q2W, every 2 weeks; Q3, third quarter; Q4, fourth quarter.

a TNFi-IR patients (n=352)

Figure 2 Rates of 28-joint Disease Activity Score C reactive protein (DAS28-CRP) <2.6 and Clinical Disease Activity Index (CDAI) remission (CDAI ≤2.8) in (a) inadequate response or intolerance to tumour necrosis factor inhibitors (TNFi-IR) patients, (b) TNFi-naïve patients and (c) overall population, stratified by rheumatoid factor (RF) level (<180 kU/L (≤Q3) vs ≥180 kU/L (Q4)) (observed case). Data are reported to Week 12 for PBO-randomised patients and Week 36 for CZP-treated patients, including those who switched from PBO to open-label CZP from Week 12. CDAI remission defined as CDAI ≤2.8. CDAI: Clinical Disease Activity Index; CZP, certolizumab pegol; PBO, placebo; Q2W, every 2 weeks; Q3, third quarter; Q4, fourth quarter.

Table 2 Individual DAS28-CRP and CDAI components in the overall population, TNFi-IR patients and TNFi-naïve patients, stratified by RF level (RF (<180 kU/L (\leq Q3) vs \geq 180 kU/L (Q4)) (OC)

Overall (N=930)				TNFi-IR (n=352)				TNFi-naïve (n=578)			
PBO		CZP		PBO		CZP		PBO		CZP	
Baseline n=179		Baseline n=751		Baseline n=68		Baseline n=284		Baseline n=111		Baseline n=467	
RF \leq Q3	RF Q4	RF \leq Q3	RF Q4	RF \leq Q3	RF Q4	RF \leq Q3	RF Q4	RF \leq Q3	RF Q4	RF \leq Q3	RF Q4
Swollen joint count, mean											
Week 0	10.9 n=135	12.3 n=44	11.4 n=559	12.7 n=191	11.0 n=52	13.5 n=16	11.4 n=207	13.3 n=77	10.8 n=83	11.6 n=28	11.4 n=352
Week 12	7.4 n=126	9.1 n=37	5.3 n=511	5.5 n=175	7.5 n=48	10.4 n=12	6.1 n=185	6.6 n=69	7.3 n=78	8.6 n=25	4.8 n=326
Week 36	—	—	4.2 n=299	4.5 n=99	—	—	4.5 n=125	4.4 n=38	—	—	4.0 n=174
Tender joint count, mean											
Week 0	14.5 n=135	15.4 n=44	14.4 n=559	15.3 n=191	14.6 n=52	16.8 n=16	14.8 n=207	16.1 n=77	14.5 n=83	14.7 n=28	14.1 n=352
Week 12	10.2 n=126	10.8 n=37	7.6 n=511	6.4 n=175	9.5 n=48	13.0 n=12	8.1 n=185	6.9 n=69	10.6 n=78	9.8 n=25	7.4 n=326
Week 36	—	—	6.1 n=299	4.9 n=99	—	—	6.6 n=125	3.7 n=38	—	—	5.7 n=174
CRP level (mg/L), mean											
Week 0	16.0 n=135	22.3 n=44	15.4 n=560	23.7 n=191	15.6 n=52	27.0 n=16	16.7 n=207	26.4 n=77	16.3 n=83	19.6 n=28	14.7 n=353
Week 12	17.9 n=125	21.5 n=36	9.1 n=507	12.5 n=176	14.8 n=48	31.7 n=11	11.1 n=185	16.1 n=70	19.9 n=77	17.0 n=25	8.0 n=322
Week 36	—	—	7.3 n=300	12.3 n=99	—	—	8.1 n=126	11.1 n=39	—	—	6.8 n=174
Patient's Global Assessment of Disease Activity											
Week 0	60.8 n=133	61.9 n=43	61.0 n=555	63.3 n=190	61.6 n=52	67.9 n=16	62.1 n=205	67.6 n=76	60.3 n=81	58.3 n=27	60.3 n=350
Week 12	41.2 n=125	45.8 n=36	30.4 n=504	27.1 n=174	40.9 n=48	60.8 n=12	32.3 n=183	29.9 n=69	41.4 n=77	38.3 n=24	29.4 n=321
Week 36	—	—	23.8 n=296	21.4 n=98	—	—	25.8 n=122	21.0 n=38	—	—	22.4 n=174
Physicians' Global Assessment of Disease Activity											
Week 0	60.9 n=134	61.8 n=43	57.9 n=559	62.6 n=190	64.6 n=52	74.6 n=16	60.9 n=207	63.0 n=77	58.6 n=82	54.2 n=27	56.1 n=352

Continued

		Overall (N=930)				TNFI-IR (n=352)				TNFI-naïve (n=578)			
		PBO Baseline n=179		CZP Baseline n=751		PBO Baseline n=68		CZP Baseline n=284		PBO Baseline n=111		CZP Baseline n=467	
		RF ≤Q3	RF Q4	RF ≤Q3	RF Q4	RF ≤Q3	RF Q4	RF ≤Q3	RF Q4	RF ≤Q3	RF Q4	RF ≤Q3	RF Q4
Week 12	49.4 n=126	49.1 n=37	38.0 n=510	34.3 n=176	49.4 n=48	59.8 n=12	41.3 n=186	39.7 n=70	49.4 n=78	44.0 n=25	36.1 n=324	30.8 n=106	
Week 36	–	–	34.2 n=298	29.5 n=97	–	–	38.5 n=125	27.1 n=37	–	–	31.1 n=173	30.9 n=60	

Data are reported to week 12 for PBO-randomised patients and week 36 for CZP-treated patients, including those who switched from PBO to open-label CZP from week 12.

CDAI, clinical disease activity index; CRP, C reactive protein; CZP, certolizumab pegol; DAS28-CRP, 28-joint Disease Activity Score C reactive protein; OC, observed case; PBO, placebo; Q3, third quarter; Q4, fourth quarter; RF, rheumatoid factor; TNFI, tumour necrosis factor inhibitor; TNFI-IR, inadequate response or intolerance to TNFI.

switched from PBO to CZP at week 12, similar patterns were observed through week 36 as those seen in CZP-randomised patients between baseline and week 12 (data not shown).

Similar outcomes were observed in the overall population (figure 2c).

DAS28-CRP and CDAI individual components

At week 12, mean SJC, TJC, CRP, PtGA and PhGA were numerically lower in CZP-randomised patients compared with PBO-randomised patients irrespective of RF levels and prior TNFI treatment (table 2; OC). At week 36, CZP-treated patients exhibited generally similar outcomes across all components, regardless of RF level and prior TNFI treatment.

DISCUSSION

The data reported in this post hoc analysis of the phase IIIb REALISTIC trial build on previous findings that patients with RA and high RF levels may achieve and maintain clinical improvement when treated with TNFIs without an Fc region, such as CZP.^{16 19 21} Here, the efficacy of CZP was not only confirmed across RF levels in bDMARD-naïve patients with RA, but extended to a large population of patients who had experienced prior TNFI use.^{18 21 22}

Recent in vitro studies have provided molecular insight into the clinical outcomes of RA patients with high RF levels.^{14 15} Increased clearance of TNFIs with an Fc, such as ADA, has been observed in patients with RA and high RF.²⁷ Additionally, it has been reported that patients tend to maintain higher drug concentrations and achieve better clinical outcomes when treated with CZP compared with Fc-containing TNFIs.^{14 15 22} Pentameric IgM RF in particular has been shown to bind and enhance the clearance of Fc-containing bDMARDs. Therefore, the prominence of IgM RF may have particularly important clinical implications,²⁸ since these autoantibodies have been shown to bind Fc-containing bDMARDs, enhancing their clearance.¹⁵

Around 40% of patients with RA are thought to have inadequate response or intolerance to TNFIs.^{29 30} Given this large proportion, it is important to optimise the treatment of this patient population in clinical practice. In this study, the notion that the efficacy of CZP is sustained irrespective of baseline RF levels is expanded to patients with previous inadequate response or intolerance to TNFIs, with each reason (efficacy and non-efficacy) comprising approximately half of the included patient population. Following inadequate response to TNFIs, clinicians may suggest a treatment switch to an alternative biologic, per current guidance from the ACR and the EULAR.^{31 32} However, no specific recommendations are made with regard to which bDMARDs patients should switch to following inadequate response to a first-line TNFI, suggesting that the treating physician should take the patients' characteristics and history into account.³³

Determining the patient's RF level may provide insight into whether an Fc-free TNFi may be more beneficial than an Fc-containing TNFi.

Here, CZP-treated patients with high RF levels exhibited similar clinical outcomes to those with low RF levels at week 12 and through week 36. These findings were further supported by a sensitivity analysis that stratified patients by Q1 versus Q4, which demonstrated a similar pattern of response as the $\leq Q3$ versus Q4 comparison. Furthermore, mean values of individual DAS28-CRP and CDAI components, including SJC, TJC, CRP, PtGA and PhGA were numerically lower in CZP-randomised patients compared with PBO-randomised patients at week 12, irrespective of RF levels, and a similar pattern was observed at week 36 in the overall CZP-treated patient group (including those who switched from PBO to open-label CZP from week 12). These results support previous findings that clinical outcomes are consistent in CZP-treated patients, irrespective of baseline RF level.^{18 20 22}

In TNFi-IR patients at week 12, the difference in treatment responses achieved by patients who received CZP versus PBO was numerically greater in patients with high RF levels than in patients with low RF levels. The rates of DAS28-CRP <2.6 and ACR-EULAR index-based remission,²⁶ that is, CDAI remission, achieved at week 36 in CZP-treated patients were similar across patients with low and high baseline RF levels, and between TNFi-IR and TNFi-naïve patients. Together, this suggests that the benefit of CZP treatment is maintained in patients with high RF levels and also in those with prior inadequate response to a different TNFi.

While the present study provides an analysis demonstrating the consistent efficacy of CZP in patients with RA irrespective of RF level and TNFi-IR status, the REALISTIC trial was not designed to study TNFi-IR patients specifically. Nevertheless, at baseline, patients had been prospectively stratified according to prior TNFi use. Moreover, the results of this post hoc analysis are supported by previous studies which have reported the pattern of sustained CZP efficacy in patients with high RF levels.^{15 18 21 22} Further, it should be noted that the TNFi-IR group included patients with prior TNFi discontinuation due to both efficacy and non-efficacy reasons (with each reason comprising approximately half of the included patient population). Thus, results described are a composite of patients with inadequate response as well as those with intolerance to previous TNFi treatment, for which different response mechanisms may be involved.³⁴ Future investigation into these two subgroups is warranted.

While studies have previously demonstrated numerically greater efficacy of CZP against comparator treatments in patients with high RF levels,^{15 20 22} the current study did not include an active comparator arm. Therefore, it is not possible to directly contextualise the efficacy of CZP in TNFi-IR patients in the present study against other available treatments. Nevertheless, in this study, CZP efficacy was maintained both in patients with high RF

levels and those with TNFi-IR. Furthermore, in the REALISTIC trial, patients treated with more than two TNFis, or rituximab and/or abatacept were excluded. Therefore, the findings of this post hoc analysis may not necessarily be applicable to these specific patient groups.²⁴

Since the data presented in this manuscript are derived from a post hoc analysis of the REALISTIC trial, no formal statistical analyses were conducted. Thus, results must be considered as exploratory rather than confirmatory. However, by visual inspection, broad similarities between the CZP-treated patients in the high and low RF groups are evident, such as very similar changes in DAS28-CRP and CDAI over time. This is in line with previous findings using CZP^{20–22} and is hereby expanded to a TNFi-IR population.

Finally, in the REALISTIC trial, owing to patients having active RA, a 4:1 CZP:PBO randomisation ratio was chosen, such that 20% of patients were exposed to PBO. The maximum duration that patients were exposed to PBO was 12 weeks, after which patients received CZP in the open-label period. This randomisation ratio and shorter-than-usual double-blind period was utilised in order to balance the need for scientific rigour and the ethical protection of patients.

These data collectively demonstrate that the effectiveness of CZP is maintained in patients with high RF levels and previous inadequate response or intolerance to TNFis, thus expanding earlier findings to the TNFi-IR patient subgroup. This is an important observation for this subset of patients, who constitute a substantial proportion of the overall RA patient population. This study further highlights the importance of personalising treatment choices based on patients' characteristics in the context of managing RA. Specifically, determining the patient's RF level may be beneficial to inform subsequent treatment decisions, including patients who have had inadequate response to other TNFis.

Author affiliations

- ¹Division of Rheumatology, Medical University of Vienna, Vienna, Austria
- ²Division of Rheumatology and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- ³Centre for Rheumatic Diseases, King's College London, London, UK
- ⁴Department of Rheumatology and Clinical Immunology, Justus-Liebig University Giessen, Campus Kerckhoff, Bad Nauheim, Germany
- ⁵Division of Clinical Immunology and Rheumatology, University of Alabama, Birmingham, Alabama, USA
- ⁶Department of Clinical Immunology, Osaka Metropolitan University, Osaka, Japan
- ⁷Division of Rheumatology, Department of Internal Medicine, Keio University, Tokyo, Japan
- ⁸Department of Rheumatology and Allied Immunology, Saitama Medical University, Saitama, Japan
- ⁹Division of Infection and Immunity, Cardiff University, Cardiff, UK
- ¹⁰Department of Molecular Targeted Therapeutics, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
- ¹¹First Department of Internal Medicine, University of Occupational and Environmental Health Japan, Kitakyushu, Japan
- ¹²UCB, Madrid, Spain
- ¹³UCB, Brussels, Belgium
- ¹⁴UCB, Slough, UK
- ¹⁵Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK

Acknowledgements The authors thank the patients, the investigators and their teams who took part in this study. The authors also acknowledge Baran Ufuktepe, UCB, for publication coordination and Erin Clarkson, BSc, and Andrew Wilhelmsen, PhD, Costello Medical, UK for medical writing and editorial assistance based on the authors' input and direction.

Contributors Substantial contributions to study conception and design; analysis and interpretation of the data; drafting the article or revising it critically for important intellectual content; and final approval of the version of the article to be published: JSS, TRM, JG, UM-L, JRC, MH, TT, EC, YT, CC, BL, NT, BU and PCT. JSS is the guarantor.

Funding This study was sponsored by UCB. Support for third-party writing assistance for this article, provided by Erin Clarkson, BSc, and Andrew Wilhelmsen, PhD, Costello Medical, UK, was funded by UCB in accordance with Good Publication Practice (GPP 2022) guidelines (<https://www.ismpp.org/gpp-2022>).

Competing interests JSS: Research grants from: AbbVie, AstraZeneca, Eli Lilly, Novartis and Roche; honouraria from: AbbVie, Amgen, AstraZeneca, Astro, Bristol-Myers Squibb, Celgene, Celltrion, Chugai, Eli Lilly, Gilead, ILTOO, Janssen, Merck Sharp & Dohme, Pfizer, R-Pharma, Roche, Samsung, Sandoz, Sanofi and UCB; editor of: *Annals of the Rheumatic Diseases*; co-editor of: *Rheumatology* 7E/8E; convenor of: EULAR Task Forces and T2T Task Forces. TRM: Consultant for: Horizon Therapeutics, Olatech Therapeutics, Pfizer, Sanofi and UCB; research support from: Horizon Therapeutics; royalties from: Wolters Kluwer Health (UpToDate) and Elsevier. JG: Grant/research support/speaker fees from: Abbvie, Galapagos, Janssen, Eli Lilly, Pfizer and UCB. UM-L: Speaker/advisor for UCB. JRC: Grant/research and consultancy fees: AbbVie, Amgen, Bristol-Myers Squibb, Janssen, Pfizer, Sanofi and UCB. MH: Research grants from: Asahi Kasei, Astellas, Bristol-Myers, Eisai, Gilead Sciences Japan, Taisho Pharma, Towa Pharma; speaker fees from: Asahi Kasei, Astellas, AstraZeneca, Ayumi Pharma, Bristol-Myers, Chugai, Eisai, Eli Lilly, Gilead Sciences Japan, Janssen Pharma, Ono Pharma, Tanabe Mitsubishi, UCB Japan. TT: Grant/honoraria and consultancy fees from: AbbVie, Asahi Kasei, Astellas, AYUMI, Bristol-Myers Squibb, Chugai, Daiichi Sankyo, Eisai, Janssen, Mitsubishi Tanabe and Pfizer Japan; served on speakers bureaus for: Abbott, Bristol-Myers Squibb, Chugai, Eisai, Janssen, Mitsubishi Tanabe, Pfizer, Takeda and UCB Pharma; consultant for: Asahi Kasei, AstraZeneca, Eli Lilly and Company, Mitsubishi Tanabe and Novartis; received research support from Abbott, Astellas, Bristol-Myers Squibb, Chugai, Daiichi Sankyo, Eisai, Janssen, Mitsubishi Tanabe, Nippon Shinyaku, Otsuka, Pfizer, Sanofi, Santen, Takeda and Teijin. EC: Research grants from: Bio-Cancer, Biogen, Novartis, Pfizer and Sanofi; consultancy fees from: Abbvie, Amgen, Biogen, Biocon, Chugai, Eli Lilly, Fresenius Kabi, Gilead, Janssen, Novartis, Pfizer, Regeneron, Roche, RPharm, Sanofi and Viatris; speaker fees from Abbvie, Amgen, Bristol-Myers Squibb, Chugai Pharma, Eli Lilly, Fresenius Kabi, Galapagos, Gilead, Janssen, Novartis, Pfizer, Regeneron, RPharm, Roche, Sanofi, UCB and Viatris. YT: Speaking fees and/or honoraria from Chugai, UCB, Abbvie, AstraZeneca, Eli-Lilly, Boehringer-Ingelheim, GlaxoSmithKline, Eisai, IQVIA, Daiichi-Sankyo, Otsuka, Taisho, Gilead, Bristol-Myers. CC: Employee and stockholder of UCB. BL: Employee and stockholder of UCB. NT: Employee and shareholder of UCB. BU: Employee of UCB. PCT: Research grants from: Alfasigma. Consultancy fees from: AbbVie, Eli Lilly, UCB, Roche, Biogen, Janssen, Fresenius, Alfasigma, Gilead, Nordic Pharma, Takeda, AnaptysBio, Acelyrin Inc.; and participation on a Data Safety Monitoring Board/Advisory Board for Immunovant, Moonlake and Sanofi.

Patient consent for publication Not applicable.

Ethics approval This study involved human participants. The study is a post hoc analysis of a clinical trial, which was approved by an ethics committee or institutional board. The following ethics committees approved the original study: Capital Health, Halifax, Nova Scotia, Canada; CEIC Hospital Clinic I Provincial, Barcelona, Spain; CHU Pontchaillou, Rennes, France; College of Physicians and Surgeons of Alberta, Edmonton, Alberta, Canada; Comitato Etico locale per Sperimentazione Clinica dei Medicinali Azienda Ospedaliera Universitaria Senese, Siena, Italy; Commissie Medische Ethisiek, Leiden, the Netherlands; Conjoint Health Research Ethics Board, Calgary, Alberta, Canada; Ethikkommission der Ärztekammer Hamburg, Hamburg, Germany; Hôpital Maisonneuve Rosemont, Montreal, Quebec, Canada; Institutional Board of Research Associates New York, New York, New York, USA; IUPUI Clarian Institutional Review Board, Indianapolis, Indiana, USA; Loyola University Medical Center, Maywood, Illinois, USA; Mayo Foundation IRB, Rochester, Minnesota, USA; McGuire Institutional Review Board, Richmond, Virginia, USA; Mount Sinai Hospital, Toronto, Ontario, Canada; Office of Human Subjects Research IRB, Baltimore, Maryland, USA; Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA; Partners Human Research Committee, Boston, Massachusetts, USA; Quorum Review, Seattle, Washington, USA; Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA; St Joseph's Mercy Health Center, Hot Springs, Arkansas, USA; St Luke's IRB, Duluth, Minnesota, USA; Sutter Health Central Area, Sacramento, California, USA; Texas Health Resources IRB, Arlington, Texas, USA; The University of Arizona, Tucson, Arizona, USA; The University of North Carolina, Chapel Hill, North Carolina,

USA; The University of Texas, Houston, Texas, USA; The University of Western Ontario, London, Ontario, Canada; Thomas Jefferson University IRB, Philadelphia, Pennsylvania, USA; UCSD, La Jolla, California, USA; University Health Network, Toronto, Ontario, Canada; University of British Columbia, Vancouver, British Columbia, Canada; University of Illinois College, Peoria, Illinois, USA; University of Manitoba Bannatyne Campus, Winnipeg, Manitoba, Canada; University of North Texas Health, Fort Worth, Texas, USA; University of Utah, Salt Lake City, Utah, USA; Western Institutional Review Board, Olympia, Washington, USA. Participants gave informed consent to participate in the study before taking part.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Underlying data from this manuscript may be requested by qualified researchers 6 months after product approval in the USA and/or Europe, or global development is discontinued, and 18 months after trial completion. Investigators may request access to anonymised individual patient-level data and redacted trial documents which may include: analysis-ready datasets, study protocol, annotated case report form, statistical analysis plan, dataset specifications and clinical study report. Prior to the use of the data, proposals need to be approved by an independent review panel at www.Vivli.org and a signed data sharing agreement will need to be executed. All documents are available in English only, for a prespecified time, typically 12 months, on a password-protected portal.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: <https://creativecommons.org/licenses/by-nc/4.0/>.

ORCID iDs

Josef S Smolen <https://orcid.org/0000-0002-4302-8877>
 James Galloway <https://orcid.org/0000-0002-1230-2781>
 Ernest Choy <https://orcid.org/0000-0003-4459-8609>
 Yoshiya Tanaka <https://orcid.org/0000-0002-0807-7139>
 Bernard Lauwers <https://orcid.org/0000-0003-3243-6151>
 Peter C Taylor <https://orcid.org/0000-0001-7766-6167>

REFERENCES

- 1 Volkov M, van Schie KA, van der Woude D. Autoantibodies and B Cells: The ABC of rheumatoid arthritis pathophysiology. *Immunol Rev* 2020;294:148–63.
- 2 Sokolove J, Johnson DS, Lahey LJ, et al. Rheumatoid factor as a potentiator of anti-citrullinated protein antibody-mediated inflammation in rheumatoid arthritis. *Arthritis Rheumatol* 2014;66:813–21.
- 3 Corper AL, Sohi MK, Bonagura VR, et al. Structure of human IgM rheumatoid factor Fab bound to its autoantigen IgG Fc reveals a novel topology of antibody-antigen interaction. *Nat Struct Biol* 1997;4:374–81.
- 4 Albrecht K, Zink A. Poor prognostic factors guiding treatment decisions in rheumatoid arthritis patients: a review of data from randomized clinical trials and cohort studies. *Arthritis Res Ther* 2017;19:68.
- 5 Cuchacovich M, Bueno D, Carvajal R, et al. Clinical parameters and biomarkers for anti-TNF treatment prognosis in rheumatoid arthritis patients. *Clin Rheumatol* 2014;33:1707–14.
- 6 Fazeli MS, Khaychuk V, Wittstock K, et al. Cardiovascular Disease in Rheumatoid Arthritis: Risk Factors, Autoantibodies, and the Effect of Antirheumatic Therapies. *Clin Med Insights Arthritis Musculoskeletal Disord* 2021;14:11795441211028751.
- 7 Honda S, Yano K, Tanaka E, et al. Development of a scoring model for the Sharp/van der Heijde score using convolutional neural networks and its clinical application. *Rheumatology (Oxford)* 2023;62:2272–83.
- 8 Liang KP, Kremers HM, Crowson CS, et al. Autoantibodies and the risk of cardiovascular events. *J Rheumatol* 2009;36:2462–9.

- 9 Sobhy N, Ghoniem SA, Eissa BM, et al. Disease characteristics in high versus low titers of rheumatoid factor or anti-citrullinated peptide antibody in rheumatoid arthritis patients. *The Egyptian Rheumatologist* 2022;44:325–8.
- 10 Takeuchi T, Miyasaka N, Inui T, et al. High titers of both rheumatoid factor and anti-CCP antibodies at baseline in patients with rheumatoid arthritis are associated with increased circulating baseline TNF level, low drug levels, and reduced clinical responses: a post hoc analysis of the RISING study. *Arthritis Res Ther* 2017;19:194.
- 11 Vastesaeger N, Xu S, Aletaha D, et al. A pilot risk model for the prediction of rapid radiographic progression in rheumatoid arthritis. *Rheumatology (Oxford)* 2009;48:1114–21.
- 12 Avci AB, Feist E, Burmester GR. Rheumatoid factors revisited in the age of biologic therapy. *Rheumatology (Oxford)* 2025;64:ii15–24.
- 13 Aletaha D, Alasti F, Smolen JS. Rheumatoid factor, not antibodies against citrullinated proteins, is associated with baseline disease activity in rheumatoid arthritis clinical trials. *Arthritis Res Ther* 2015;17:229.
- 14 Bidgood S, Kallenberg D, Turner A, et al. POS0722 PURIFIED MONOCLONAL RHEUMATOID FACTORS BIND FC CONTAINING TNF INHIBITORS IN VITRO BUT NOT THE FC-FREE TNF INHIBITOR, CERTOLIZUMAB PEGOL. *Ann Rheum Dis* 2024;83:727–8.
- 15 Kanda-Satoh YM, Sonomoto K, Ufuktepe B, et al. Does rheumatoid factor level affect the pharmacodynamics of disease-modifying antirheumatic drugs and the efficacy of tumour necrosis factor inhibitors with different molecular structures? in vitro and clinical findings from the FIRST registry. Presented at JCR 2024, 33; 2024
- 16 Tanaka Y. What is rheumatoid factor? From screening to personalized management. *Rheumatology (Oxford)* 2025;64:ii9–14.
- 17 Martínez-Feito A, Hernández-Brejo B, Novella-Navarro M, et al. POS0647 DOES TNF INHIBITOR MOLECULAR STRUCTURE MATTER? ANALYSIS OF IMPACT OF BASELINE RHEUMATOID FACTOR TITERS ON DRUG LEVELS IN PATIENTS WITH RHEUMATOID ARTHRITIS. *Ann Rheum Dis* 2022;81:594–5.
- 18 Nakayama Y, Watanabe R, Murakami K, et al. Differential efficacy of TNF inhibitors with or without the immunoglobulin fragment crystallizable (Fc) portion in rheumatoid arthritis: the ANSWER cohort study. *Rheumatol Int* 2022;42:1227–34.
- 19 Mease PJ. Certolizumab pegol in the treatment of rheumatoid arthritis: a comprehensive review of its clinical efficacy and safety. *Rheumatology (Oxford)* 2011;50:261–70.
- 20 Takahiro Yamano KY, Iwao H, Sakai T, et al. W43-5: Usefulness of certolizumab pegol useful rheumatoid arthritis with high rheumatoid factor. *Mod Rheumatol* 2024;34.
- 21 Tanaka Y, Takeuchi T, Haaland D, et al. Efficacy of certolizumab pegol across baseline rheumatoid factor subgroups in patients with rheumatoid arthritis: Post-hoc analysis of clinical trials. *Int J Rheum Dis* 2023;26:1248–59.
- 22 Smolen JS, Taylor PC, Tanaka Y, et al. Impact of high rheumatoid factor levels on treatment outcomes with certolizumab pegol and adalimumab in patients with rheumatoid arthritis. *Rheumatology (Oxford)* 2024;63:3015–24.
- 23 Weinblatt ME, Fleischmann R, Huizinga TWJ, et al. Efficacy and safety of certolizumab pegol in a broad population of patients with active rheumatoid arthritis: results from the REALISTIC phase IIIb study. *Rheumatology (Oxford)* 2012;51:2204–14.
- 24 Weinblatt ME, Fleischmann R, van Vollenhoven RF, et al. Twenty-eight-week results from the REALISTIC phase IIIb randomized trial: efficacy, safety and predictability of response to certolizumab pegol in a diverse rheumatoid arthritis population. *Arthritis Res Ther* 2015;17:325.
- 25 Arnett FC, Edworthy SM, Bloch DA, et al. The american rheumatism association 1987 revised criteria for the classification of rheumatoid arthritis. *Arthritis Rheum* 1988;31:315–24.
- 26 Studenic P, Aletaha D, de Wit M, et al. American College of Rheumatology/EULAR remission criteria for rheumatoid arthritis: 2022 revision. *Ann Rheum Dis* 2023;82:74–80.
- 27 FDA. US humira prescribing information. Volume 2024. 2014. Available: https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/125057s356lbl.pdf
- 28 Motta F, Bizzaro N, Giavarina D, et al. Rheumatoid factor isotypes in rheumatoid arthritis diagnosis and prognosis: a systematic review and meta-analysis. *RMD Open* 2023;9:e002817.
- 29 Ochi S, Saito K, Mizoguchi F, et al. Insensitivity versus poor response to tumour necrosis factor inhibitors in rheumatoid arthritis: a retrospective cohort study. *Arthritis Res Ther* 2020;22:41.
- 30 Mehta P, Manson JJ. What Is the Clinical Relevance of TNF Inhibitor Immunogenicity in the Management of Patients With Rheumatoid Arthritis? *Front Immunol* 2020;11:589.
- 31 Fraenkel L, Bathon JM, England BR, et al. 2021 American College of Rheumatology Guideline for the Treatment of Rheumatoid Arthritis. *Arthritis Care Res (Hoboken)* 2021;73:924–39.
- 32 Smolen JS, Landewé RBM, Bijlsma JWJ, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. *Ann Rheum Dis* 2020;79:685–99.
- 33 Taylor PC, Matucci Cerinic M, Alten R, et al. Managing inadequate response to initial anti-TNF therapy in rheumatoid arthritis: optimising treatment outcomes. *Ther Adv Musculoskeletal Dis* 2022;14:1759720X221114101.
- 34 Emery P, Gottenberg JE, Rubbert-Roth A, et al. Rituximab versus an alternative TNF inhibitor in patients with rheumatoid arthritis who failed to respond to a single previous TNF inhibitor: SWITCH-RA, a global, observational, comparative effectiveness study. *Ann Rheum Dis* 2015;74:979–84.